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Our Result

A Simple Semi-Generic Method to Construct 
QROM Secure Lattice-based ZK PoKs*

- New tool: Extractable Linear Homomorphic Commitment (ExtLinHC)

- Semi-Generic Transform:

*In this talk, we do not differentiate 
between “proofs” and “arguments”

ExtLinHC
Many Classically Secure 

Lattice-based Public-
Coin Interactive Protocol

QROM Secure NIZK
(w/ Online-Extractability)
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Prover Verifier(𝑥, 𝑤)

𝜋
𝑥𝑥 ∈ 𝐿

Preparation: Non-Interactive Zero-Knowledge

ü Completeness: If 𝑥,𝑤 ∈ 𝑅!, then Verifier is convinced.



𝜋

Zero-Knowledge
Cheating
Verifier 𝑤? ?𝑥

ü Completeness: If 𝑥,𝑤 ∈ 𝑅!, then Verifier is convinced.ü Completeness: If 𝑥,𝑤 ∈ 𝑅!, then Verifier is convinced.

ü Zero-Knowledge: If 𝑥 ∈ 𝐿, Verifier only learns that 𝑥 ∈ 𝐿.



Extractor

𝜋
𝑥𝑥 ∈ 𝐿

Proof of Knowledge

Cheating
Prover

𝑤 s. t. (𝑥, 𝑤) ∈ 𝑅!

*Implies soundness

ü Completeness: If 𝑥,𝑤 ∈ 𝑅!, then Verifier is convinced.

ü Proof of Knowledge: There exists an efficient extractor Ext s.t., if a cheating 
Prover outputs a valid 𝜋, then Ext outputs 𝑤 s.t. 𝑥,𝑤 ∈ 𝑅!.

(*w/ extra capabilities)

ü Zero-Knowledge: If 𝑥 ∈ 𝐿, Verifier only learns that 𝑥 ∈ 𝐿.
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Models
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• Standard Model

• Common Reference String Model

Only exist for trivial languages [GO94]

CRS RO/

Users are given a CRS generated by a trusted authority.
Provably secure but could be impractical.
Also. trusted setup is required.

Only secure in the ROM but typically most 
efficient and practical.

• Random Oracle Model 
Users are given access to a RO.

This Talk



Classical vs Quantum ROM

Classical ROM
𝑥

𝑦…

Quantum ROM
∑𝛼!|𝑥⟩

…∑𝛼!|𝑦⟩

∑! 𝛼!|𝑥⟩ → ∑! 𝛼!|𝑥, H 𝑥 ⟩
A quantum adversary can evaluate hash function over qbits in real-world.

QROM should model this capability!



Some Difficulty in QROM

∑𝛼!|𝑥⟩
…∑𝛼!|𝑦⟩

Typical CROM proof that “seems” hard to import to QROM.

① Observe the adversary’s input query
② Know the corresponding output

Why? May disturb adversary’s quantum state.
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Some Difficulty in QROM

∑𝛼!|𝑥⟩
…∑𝛼!|𝑦⟩

Typical CROM proof that “seems” hard to import to QROM.

① Observe the adversary’s input query
② Know the corresponding output

Why? May disturb adversary’s quantum state.

③ Adaptively program the RO
Why? The adversary may query on the entire 
input space in superposition. 

We now know many ways to overcome these seeming 
hardness but it is not as “free” as in the classical setting.
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Some Other Difficulties in Quantum Setting

Handling quantum adversaries is difficult regardless of 
ROM being classical or quantum.

…

𝑥

𝑦

𝑥′

𝑦′

randomness R

Representative Example) Rewinding

reduction …

𝑥

𝑦

𝑥′

𝑦′′

randomness R

Run        on same R but 
different RO output.

No notion of fixed 
“randomness”
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State-of-the-Affair for Lattice-based NIZKs

p CRS-NIZK (w/ quantum adversary)

p CROM-NIZK (w/ classical adversary)

Correlation Intractable hash approach: [CCHLRRW19] and [PS19]

Fiat-Shamir w/ Abort approach [Lyu09,Lyu12]

- [Lyu09,Lyu12] is an analog of Schnorr’s protocol.
- Many tricks exploiting lattice structure for better efficiency. 
- Efficiency increased drastically in the past few years: 

[BLS19,YAZXYW19,ESLL19,ALS20...]. efficient

inefficient

Stern protocol approach [Ste94, KTX08]
- Combinatorial method and easy to understand.

Due to its commit-and-
open nature, QROM 
security is known.

Other than [Lyu09,Lyu12] 
not much about QROM 
security is known.



2. More on Lattice-based QROM NIZKs



Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))
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𝑎

𝑐 ∈ 𝐶

𝑧

Prover Verifier(𝑥, 𝑤) 𝑥



Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))

26

𝑎

𝑐 ∈ 𝐶

𝑧

Prover Verifier

ü Honest-Verifier ZK:
∃PPT Sim such that 𝑎, 𝑐, 𝑧 ← Sim 𝑥, 𝑐 ≈ { 𝑎, 𝑐, 𝑧 ← ⟨𝑃 𝑥,𝑤 , 𝑉" 𝑥 ⟩}. 

(𝑥, 𝑤) 𝑥

Standard Security Notions

*Simulator knows no witness!



Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))
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𝑎

𝑐 ∈ 𝐶

𝑧

Prover Verifier

ü Special Soundness: 
∃PT Ext such that Ext 𝑥, 𝑎, 𝑐, 𝑧 , 𝑐#, 𝑧# → 𝑤 𝑠. 𝑡. 𝑥, 𝑤 ∈ 𝑅!

ü Honest-Verifier ZK:
∃PPT Sim such that 𝑎, 𝑐, 𝑧 ← Sim 𝑥, 𝑐 ≈ { 𝑎, 𝑐, 𝑧 ← ⟨𝑃 𝑥,𝑤 , 𝑉" 𝑥 ⟩}. 

(𝑥, 𝑤) 𝑥

Standard Security Notions

*2 valid transcripts with same a!

*Simulator knows no witness!
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Proof 
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any One hash rewind

Fischlin ‘05
-Small |𝐶|
-Quasi-unique 
response

None (but 
parallel rep.)

Straight-
line

(= tight 
proof)

Unruh ‘15

In general Fiat-Shamir 
is the best transform 
in the classical setting.
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Sigma Protocol to NIZK Transform

Transform

Classical Quantum

Type of 
Sigma prot.

Proof 
overhead PoK

Type of 
Sigma 
prot.

Proof 
overhead PoK

Fiat-
Shamir ’88

([LZ19,DFMR19])
any One hash rewind collapsing One hash

rewind 
(lose at least 

O(𝑞!))

Fischlin ‘05
-Small |𝐶|
-Quasi-unique 
response

None (but 
parallel rep.)

Straight-
line

(= tight 
proof)

????

Unruh ‘15 （右同） Small |𝐶| x|𝐶| with
parallel rep.

Straight-
line

(= tight 
proof)

𝑞: #RO query
𝑡: #valid transcript to 
extract witness
Use to be 𝑶(𝒒𝟐𝒕#𝟏) till 
very recent [CMSZ21]

Proof overhead is large…

Not all existing Sigma prot.
are known to be collapsing.



In a Bit More Detail: Fiat-Shamir

1. 𝑎
2. 𝑐 ← 𝐻 𝑥, 𝑎
3. 𝑧
4. Output(𝑎, 𝑐, 𝑧)

FS

In Classical Setting…
- Rewind the cheating prover so that it answers to two 

different challenges.
- Adaptively reprogram the RO at 𝐻(𝑥, 𝑎) to two different 

challenges. 

Both procedures are difficult in QROM…??
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QROM security by [DFMS19,LZ19].

Sigma Protocol with  
“quantum PoK” QROM Secure NIZK“Collapsing”
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FS

Collapsingness allows 
to rewind quantum 
adversaries w/o 
destroying its state.

General method to 
reprogram the QRO on 
specific query input.



In a Bit More Detail: Fiat-Shamir

QROM security by [DFMS19,LZ19].

Sigma Protocol with  
“quantum PoK” QROM Secure NIZK“Collapsing”

Sigma Protocol

FS

Collapsingness allows 
to rewind quantum 
adversaries w/o 
destroying its state.

General method to 
reprogram the QRO on 
specific query input.

*Not an easy property to prove. *Not clear if existing 
schemes are collapsing.

*Seems to incur at least 𝑂(𝑞!") reduction 
loss for 𝑛 different programmed points.



In a Bit More Detail: Unruh

Getting around rewinding and adaptive reprogramming [U15].
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2. For 𝑖 ∈ 𝐶

i. Generate response 𝑧(
ii. com) = Com(𝑧(; rand))

3. 𝑐 ← 𝐻(𝑥, 𝑎, com( (∈+)
4. Output (𝑎, 𝑐, 𝑧", com( (∈+)

Rough Idea: Let Prover commit to all (challenge, response) pair.
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In a Bit More Detail: Unruh

Getting around rewinding and adaptive reprogramming [U15].

Rough Idea: Let Prover commit to all (challenge, response) pair.

Simplified Proof for PoK:
1. The cheating prover must have committed 

to valid responses 𝑧#, 𝑧#! for 𝑖 ≠ 𝑖$ to have 
non-negl. advantage.

2. If Com is extractable, then the reduction 
inverts com#, com#! .

p Challenge space must be poly-large => Parallel repetition.
p Must include extra com( (∈+ in proof.
p Com can be instantiated by RO, Online Extractable => Tight Proof  

1. 𝑎
2. For 𝑖 ∈ 𝐶

i. Generate response 𝑧(
ii. com) = Com(𝑧(; rand))

3. 𝑐 ← 𝐻(𝑥, 𝑎, com( (∈+)
4. Output (𝑎, 𝑐, 𝑧", com( (∈+)



Recent CROM Lattice-based PCIP

p [Lyu09,Lyu12]: Most Basic (Relaxed proof for SIS/LWE relation)
[DFMS19,LZ19] showed that it is “collapsing” (w/ a slight increase in the 
parameters). 

p [BDLOP18]: Opening to commitments
p [ESLL19]: Range proofs, one-out-of-many proofs
p [YAZXYW19]: Exact sound proofs for quadratic relations

*Non-exhaustive list*

QROM secure via Fiat-Shamir

QROM secure via Unruh but chall. set is restricted to be small

p [BLS19, ENS20]: Exact sound proofs for SIS/LWE relation (5-round)
p [ALS20]: Product proofs for commitments (5-round)
p [LNS20]: Integer relations (5≥-round)

*5-round protocols may be secure via modified Unruh [CHRSS18].



Main Question of This Talk

Can we get the best of the 
Fiat-Shamir and Unruh 
transform and more??

ü FS: No overhead and works for exp. large chall. set size.
ü Unruh: Tight (straight-line extractable) and simple proof.
ü And More: Applies to PCIP that FS or Unruh is not known to apply.



3. Our Result: ExtLinHC



Our Result: A New Transform

A partial answer:
A semi-generic approach that sits somewhere 

between Fiat-Shamir and Unruh.

Properties
• Works for many lattice-based PCIPs (or in general, any PCIP with a linear response)
• Handles exponential challenge set
• |FS overhead| < |Our overhead| < |Unruh overhead|, for exp. chall. set.
• Reduction loss is smaller than FS (it is straight-line extractable like Unurh)

• Construction and proof is very simple (almost classical)



New Technical Tool

Extractable Linear Homomorphic Commitment (ExtLinHC)

Sigma Protocol with  
“quantum PoK” QROM Secure NIZK“Collapsing”

Sigma Protocol

Sigma Protocol w/
“Linear Response”

FS

(Simple) 
ExtLinHC ExtLinHC

reprogram

no-rewind
no-reprogram

*Very natural and satisfied by many Sigma protocols [M15] 

no-rewind

rewind

Our Transform



A Bottom-Up Approach to Our Transform

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]

Prover Verifier

A ue =Statement: A, u ∈ 𝑅12×4×𝑅12
Witness: “short” e ∈ 𝑅14

*𝑅" = ℤ 𝑋 /(𝑋# + 1)
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Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]

Prover Verifier

A ue =Statement: A, u ∈ 𝑅12×4×𝑅12
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w

c



A Bottom-Up Approach to Our Transform

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]

Prover Verifier

A ue =Statement: A, u ∈ 𝑅12×4×𝑅12
Witness: “short” e ∈ 𝑅14

1. r ← 𝐷4
2. w = Ar ∈ 𝑅12

𝑐 ← 0,1 5 ⊂ 𝑅1

*𝑅" = ℤ 𝑋 /(𝑋# + 1)

3. z = c ⋅ e + r ∈ 𝑅14
4. RejSamp(z) Check - z is short

- Az = c ⋅ u + w

w

c

z
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p HVZK

*The extracted witness lies in a “gap/relaxed” relation. 
But this suffices in many applications.
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Special Sound + HVZK

p Special (Relaxed) Soundness

Given (w, c, z) and (w, c#, z′)

Az = c ⋅ u + w
Az′ = c′ ⋅ u + w ⇒ A(z − z6) = (c − c6) ⋅ u

p HVZK
- Due to RejSamp, z is uniform over some witness-independent dist. G’
- ZKSim just samples z and sets w = Az − c ⋅ u.

Main Question
How do we obtain two valid transcripts 
w/o rewinding the quantum adversary?? 

*The extracted witness lies in a “gap/relaxed” relation. 
But this suffices in many applications.



1st Step: Add Linear Homomorphic Com.
Prover: ( A, u , e) Verifier: A, u

1. r ← D3
2. w = Ar
3. com4 = Com56 e δ4
4. com7 = Com56 r [δ7]

w, com4, com7

CRS: 𝑝𝑘 ← 0,1 %

*Commit to witness e and randomness r
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1st Step: Add Linear Homomorphic Com.
Prover: ( A, u , e) Verifier: A, u

1. r ← D3
2. w = Ar
3. com4 = Com56 e δ4
4. com7 = Com56 r [δ7]

𝑐 ← 0,1 8

5. z = c ⋅ e + r
6. δ9 = c ⋅ δ4 + δ7
7. RejSamp(z)

w, com4, com7

c

z, 𝛿:

- z short?
- Az = c ⋅ u + w
- Com56 z δ9 = c ⋅ com4 + com7

?
?

*Create com& and check if δ&
is a valid opening.

CRS: 𝑝𝑘 ← 0,1 %



1st Step: Add Linear Homomorphic Com.
Prover: ( A, u , e) Verifier: A, u

1. r ← D3
2. w = Ar
3. com4 = Com56 e δ4
4. com7 = Com56 r [δ7]

𝑐 ← 0,1 8

5. z = c ⋅ e + r
6. δ9 = c ⋅ δ4 + δ7
7. RejSamp(z)

w, com4, com7

c

z, 𝛿:

- z short?
- Az = c ⋅ u + w
- Com56 z δ9 = c ⋅ com4 + com7

?
?

Is it still a standard Sigma protocol?
ü Special soundness => Yes, just ignore LinHC
ü HVZK => Yes, if LinCH is hiding. 

CRS: 𝑝𝑘 ← 0,1 %
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pk ← 0,1 !

(pk∗, τ) ← SimCRS

For any honestly generated com; =
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2nd Step: Add Extractability

pk ← 0,1 !

(pk∗, τ) ← SimCRS

For any honestly generated com; =
Com56∗ x [δ;], we have Extract<=3 τ, com; → x.

≈!

What we want to show
Only given ( w, com4, com7 , c, (z, δ9)), extract witness e in the “gap” relation.

Incorrect Naïve Argument

Just run Extract<=3 τ, com4 → e!
- No guarantee that com4 is valid L
- Only Com56 z δ9 is known to be valid.

Why Wrong?
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2. Try ExtractB=3 τ, com9) → z)/⊥

By assumption, if i = c′, then ExtractB=3 succeeds since com9*+ =
Com56∗ z# δ9+ is guaranteed to be a valid commitment.



3rd Step: How to Argue Extraction Correctly
Simple Observation
(com4, com7) is prepared before challenge c. 

- Assume 2> = poly(λ).
- Assume another (c#, z#, 𝛿:#) s.t. V accepts.

Extract?)@3A τ, trans :

For i ∈ 0,1 >

1. Set com9) ≔ i ⋅ com4 + com7
2. Try ExtractB=3 τ, com9) → z)/⊥

By assumption, if i = c′, then ExtractB=3 succeeds since com9*+ =
Com56∗ z# δ9+ is guaranteed to be a valid commitment.

After extracting z′, simply use 
w, c, c#, z, z# to extract witness e J
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4th Step: Making Chall. Set Exponentially Large

Only terminates if 28 is polynomial…

New − Extract?)@3A τ, trans :
While t < N:
1. i ← 0,1 >

2. Set com9) ≔ i ⋅ com4 + com7
3. Try ExtractB=3 τ, com9) → z)/⊥
4. t ← t + 1

Run for at most N times 
until ExtractB=3 succeeds.

Why should this work?
How do we set N?
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4th Step: Making Chall. Set Exponentially Large

Assume adversary A has non-negl adv. 𝜖
in completing the Sigma protocol.

Why it works

Then, there exists at least 28 ⋅ 𝜖 challenges for 
which A could have correctly respond w/ prob. 1/2.

*Standard statistical argument.

If New − Extract?)@3A samples N = 𝑂(CD)-random 
challenge i, then it will hit a valid commitment 𝑐𝑜𝑚:,
with o.w.p.

Analysis is the same even if A is quantum J



Summary So Far

Discussed so far

PoK of Sigma protocol can be shown w/o 
rewinding the adversary J



Extending to QROM-Secure NIZK
We start with a Sigma protocol w/ quantum “straight-line” PoK.

We can make it non-interactive via Fiat-Shamir with a simpler proof
(i.e., no-reprogramming) akin to [U15,KLS18] J

Just discussed



4. Constructing ExtLinHC



Lattice-based ExtLinHC

Com. Key: pk = A, B ← 𝑅14×2×𝑅14×2
𝑝 < 𝑞: some large enough integer 

comD ≔ (𝑝 ⋅ AsD,E + sD,F , 𝑝 ⋅ BsD,E + sD,G + 𝐞)
*witness

*randomness
comH ≔ (𝑝 ⋅ AsH,E + sH,F , 𝑝 ⋅ BsH,E + sI,G + 𝐫)

where δ4 = s4,) )∈[G], δ7 = s7,) )∈[G].



Lattice-based ExtLinHC

Com. Key: pk = A, B ← 𝑅14×2×𝑅14×2
𝑝 < 𝑞: some large enough integer 

comD ≔ (𝑝 ⋅ AsD,E + sD,F , 𝑝 ⋅ BsD,E + sD,G + 𝐞)

comI ≔ (𝑝 ⋅ AsI,E + sI,F , 𝑝 ⋅ BsI,E + sI,G + c ⋅ 𝐞 + 𝐫)

*witness

*randomness
comH ≔ (𝑝 ⋅ AsH,E + sH,F , 𝑝 ⋅ BsH,E + sI,G + 𝐫)

where δ4 = s4,) )∈[G], δ7 = s7,) )∈[G].

Linear homomorphism

where δ9 = s9,) = c ⋅ s4,) + s7,) )∈[G].



Extraction Mode: Dual Regev PKE

Sim Com. Key: pk = A, B = (A, DEA + DF)
𝜏 = "small" DE, DF

comJ ≔ (tE, tF)
≔ (𝑝 ⋅ AsJ,E + sJ,F , 𝑝 ⋅ BsJ,E + sJ,G + x)

ExtractKLM 𝜏, comJ :
Output 𝑡F − 𝐷E𝑡E mod 𝑞 mod 𝑝 = 𝑝 ⋅ "noise" + 𝑥 mod 𝑞 mod 𝑝

= 𝑝 ⋅ "noise" + 𝑥 mod 𝑝
= 𝑥

Com. keys are indistinguishable due to LWE.



Extraction Mode: Dual Regev PKE

Sim Com. Key: pk = A, B = (A, DEA + DF)
𝜏 = "small" DE, DF

comJ ≔ (tE, tF)
≔ (𝑝 ⋅ AsJ,E + sJ,F , 𝑝 ⋅ BsJ,E + sJ,G + x)

ExtractKLM 𝜏, comJ :
Output 𝑡F − 𝐷E𝑡E mod 𝑞 mod 𝑝 = 𝑝 ⋅ "noise" + 𝑥 mod 𝑞 mod 𝑝

= 𝑝 ⋅ "noise" + 𝑥 mod 𝑝
= 𝑥

Com. keys are indistinguishable due to LWE.

For concrete efficiency, we can 
optimize the scheme by using 
NTRU-like PKE.



Concrete Application

[BLS19] Exact Sound 5-Round PCIP

- Not obvious if Fiat-Shamir applies.
- Modified Unruh [CHRSS18] may apply.

p CROM NIZK = 812 KB
p QROM NIZK via Unruh = 44.9 MB (CROM x134.7)
p QROM NIZK via ExtLinHC = 2071 KB (CROM x2.6)



Summary & Open Problems

A simple method to construct 
QROM secure NIZKs via ExtLinHC

Ø Works for many lattice-based PCIPs before early 2020-ish but 
what about the more recent ones, e.g., [BLNS20,BLNS20,LNS21]?

Ø Can we make ExtLinHC more efficient (possibly w/o trapdoor)??

Ø General method to show collapsingness of existing lattice-based 
Sigma protocols?? => No need using ExtLinHC J









Special Sound + HVZK

P: ( A, u , e) V: A, u
1. r ← 𝐷4
2. w = Ar

𝑐 ← 0,1 5

3. z = c ⋅ e + r
4. RejSamp(z)

w

c

z - z short?
- Az = c ⋅ u + w?



1st Step: Add Linear Homomorphic Com.
Prover: ( A, u , e) Verifier: A, u

1. r ← D3
2. w = Ar
3. com4 = Com56 e δ4
4. com7 = Com56 r [δ7]

𝑐 ← 0,1 8

5. z = c ⋅ e + r
6. δ9 = c ⋅ δ4 + δ7
7. RejSamp(z)

w, com4, com7

c

z, 𝛿:

- z short?
- Az = c ⋅ u + w
- Com56 z δ9

= c ⋅ com4 + com7

?

?
Is it still a standard Sigma protocol?

ü Special soundness => Yes, just ignore LinHC
ü HVZK => Yes, if LinCH is hiding. 

CRS: 𝑝𝑘 ← 0,1 %



*General (2𝑛 + 1)-Round PCIP

Transform

Classical Quantum

Type of 
Sigma prot.

Proof 
overhead PoK Type of 

Sigma prot.
Proof 

overhead PoK

Fiat-
Shamir ‘88

any One hash rewind collapsing One hash
rewind 

(lose at least 
O(𝑞!$))

Fischlin ‘05

Unruh ‘15

5-round with 
1st chall. set 
small and 2nd 
chall. set  {0,1}.

x|𝐶| with
parallel rep.

Straight-
line

(= tight 
proof)

Limited to specific 
Sigma protocols.

[CHRSS18]



Some Details Worth Mentioning

- In our Fiat-Shamir transform, we require a slightly stronger 
flavor of ExtLinHC since the Sigma protocol is only comp. HVZK. 

- Since commitment key pk ← 0,1 P, we can use RO rather than 
relying on a CRS.

- It is a dual-mode NIZK (i.e., depending on pk, it will be stat. ZK 
or stat. sound). 

- Analysis extends to multi-round.


