iV —2 23 vy 7@AIMKE

l

i

p=(t1l}

-+

p=qlll}
Y

HAREE DR

R & IR _— A DF a HiEkGERH &
QROMZ T T B T I)VIpFiEIZ DN T

2021/11/16
X F5— (EERS

JF/AIST)

g -

*CRYPTO21DAHEHR LV

Our Result

A Simple Semi-Generic Method to Construct
QROM Secure Lattice-based ZK PoKs*

*In this talk, we do not differentiate
between “proofs” and “arguments”

- New tool: Extractable Linear Homomorphic Commitment (ExtLinHC)

- Semi-Generic Transform:

Many Classically Secure
Lattice-based Public- l:,']:l ExtLinHC I:I) QROM Secure NIZK
. . (w/ Online-Extractability)
Coin Interactive Protocol

Agenda

1. Background and Motivation

2. More on Lattice-based QROM NIZKs
3. Our Result: ExtLinHC

4. Constructing ExtLinHC

1. Background and Motivation

Preparation: Non-Interactive Zero-Knowledge

e L .
Prover(x,w) x Verifier x

%\"v > (é; ‘
=2

— Ve &

v' Completeness: If (x,w) € R;, then Verifier is convinced.

/Zero-Knowledge

Cheating
Verifier X

v' Completeness: If (x,w) € R;, then Verifier is convinced.

v Zero-Knowledge: If x € L, Verifier only learns that x € L.

Proof of Knowledge

Cheating X €L

o

Prover Extractor x

D
o)
&=

mp vs.t.(x,w) ER;

-

v Proof of Knowledge: There exists an efficient extractor Ext s.t., if a cheating
Prover outputs a valid &, then Ext outputs w s.t. (x,w) € R;.

(*w/ extra capabilities)

Implies soundness

Models

« Standard Model .

Only exist for trivial languages [GO94] Prover (x, w) Verifier x

G = 9

— /\.\/j)\

Models

- -
CRS |== RO
e Standard Model - R E/L -
X . g
Only exist for trivial languages [GO94] PrOVer\(xr w) Verifier x
@W 1l i
R — /(é\’f)\

« Common Reference String Model
Users are given a CRS generated by a trusted authority.

« Random Oracle Model
Users are given access to a RO.

Models

- -
CRS | RO
» Standard Model ~ 8 E/L -
Only exist for trivial languages [GO94] Prover(x, w) Verifier x
(L) —p @
« Common Reference String Model =2

Users are given a CRS generated by a trusted authority.

Provably secure but could be impractical.
Also, trusted setup is required.

« Random Oracle Model

Users are given access to a RO.

» Only secure in the ROM but typically most
efficient and practical. 10

Models

- -
CRS | RO
» Standard Model ~ 8 E/L -
Only exist for trivial languages [GO94] Prover(x, w) Verifier x
(L) —p @
« Common Reference String Model =2

Users are given a CRS generated by a trusted authority.

Provably secure but could be impractical.
Also. trusted setup is required.

« |[Random Oracle Model This Talk

Users are given access to a RO.

» Only secure in the ROM but typically most
efficient and practical. 11

Classical vs Quantum ROM

A quantum adversary can evaluate hash function over gbits in real-world.

Dix Uy |X) = Xy ay|x, H(x))
m)p QROM should model this capability!

Classical ROM Quantum ROM

@ X 20| X) %ég
'T -

2.0x|y) -

Some Difficulty in QROM

Typical CROM proof that “seems” hard to import to QROM.

©

(1) Observe the adversary's input query
(2) Know the corresponding output

2.0 X) &
2.0x|y) -

Why? May disturb adversary’s quantum state.

Some Difficulty in QROM

Typical CROM proof that “seems” hard to import to QROM.

(1) Observe the adversary’s input query

(2) Know the corresponding output 2.0x|X) @@%
Why? May disturb adversary’s quantum state. Z' a.ly)

(3) Adaptively program the RO

Why? The adversary may query on the entire
Input space in superposition.

Some Difficulty in QROM

Typical CROM proof that “seems” hard to import to QROM.

©

We now know many ways to overcome these seeming
hardness but it is not as “free” as in the classical setting.

(1) Observe the adversary's input query
(2) Know the corresponding output

2.0 X) &
2.0x|y) -

Why? May disturb adversary’s quantum state.
(3) Adaptively program the RO

Why? The adversary may query on the entire
Input space in superposition.

Some Other Difficulties in Quantum Setting

Handling quantum adversaries is difficult regardless of
ROM being classical or quantum.

Representative Example) Rewinding

:
e ;
V| -

reduction

©

randomness R

Some Other Difficulties in Quantum Setting

Handling quantum adversaries is difficult regardless of
ROM being classical or quantum.

Representative Example) Rewinding

:
e ;
V| -

reduction

©

randomness R

s e
— Run on same R but - —

different RO output. Yy

Some Other Difficulties in Quantum Setting

Handling quantum adversaries is difficu
ROM being classical or quantum.

Representative Example) Rewinding

No notion of fixed
“randomness”

:
e ;
V| -

reduction

©

randomness R

s e
— Run on same R but - —

different RO output. Yy

State-of-the-Affair for Lattice-based NIZKs

O CRS-NIZK (w/ quantum adversary) inefficient
Correlation Intractable hash approach: [CCHLRRW19] and [PS19]

O CROM-NIZK (w/ classical adversary)

efficient

State-of-the-Affair for Lattice-based NIZKs

O CRS-NIZK (w/ quantum adversary) inefficient
Correlation Intractable hash approach: [CCHLRRW19] and [PS19]

O CROM-NIZK (w/ classical adversary)

Stern protocol approach [Ste94, KTX08]
- Combinatorial method and easy to understand.

efficient

State-of-the-Affair for Lattice-based NIZKs

O CRS-NIZK (w/ quantum adversary) inefficient
Correlation Intractable hash approach: [CCHLRRW19] and [PS19]

O CROM-NIZK (w/ classical adversary)

Stern protocol approach [Ste94, KTX08]
- Combinatorial method and easy to understand.

Fiat-Shamir w/ Abort approach [Lyu09,Lyu12]

- [Lyu09,Lyu12] is an analog of Schnorr's protocol.

- Many tricks exploiting lattice structure for better efficiency.

- Efficiency increased drastically in the past few years:
[BLS19,YAZXYW19,ESLL19,ALS20...]. efficient

State-of-the-Affair for Lattice-based NIZKs

(@T@
O CRS-NIZK (w/ quantum adversary) N %@%

Correlation Intractable hash approach| Dué to its commit-and-
open nature, QROM

security is known.

inefficient

O CROM-NIZK (w/ classical adversary

Stern protocol approach [Ste94, KTX08]
- Combinatorial method and easy to understand.

Fiat-Shamir w/ Abort approach [Lyu09,Lyu12]

- [Lyu09,Lyu12] is an analog of Schnorr's protocol.

- Many tricks exploiting lattice structure for better efficiency.

- Efficiency increased drastically in the past few years:
[BLS19,YAZXYW19,ESLL19,ALS20...]. efficient

State-of-the-Affair for Lattice-based NIZKs

(@T@
O CRS-NIZK (w/ quantum adversary) N %@%

Correlation Intractable hash approach| Dué to its commit-and-
open nature, QROM

O CROM-NIZK (w/ classical adversaryl UMY 1S known.

Stern protocol approach [Ste94, KTX08]
- Combinatorial method and easy to understa

inefficient

PN\
Other than [Lyu09,Lyu12]

. , not much about QROM
- [Lyu09,Lyu12] is an analog of Schnorr’s prd S T

- Many tricks exploiting lattice structure for Ddeee
- Efficiency increased drastically in the past few years:
[BLS19,YAZXYW19,ESLL19,ALS20...]. efficient

Fiat-Shamir w/ Abort approach [Lyu09,Lyu12]

2. More on Lattice-based QROM NIZKs

Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))

Prover (x,w) a Verifier x
ceC @
Z /(é!/)\

25

Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))

.
Prover (x,w) a_ Verifier x
-’/1?’), ceC =
-5y : >
S 2
’w\ 7 /\,\/

Standard Security Notions

v' Honest-Verifier ZK:
3PPT Sim such that {(a, c,z) « Sim(x,c)} = {(a,c,z) « (P(x,w), V.(x))}.
*Simulator knows no witness!

26

Recap: Sigma-Protocol (or Public-Coin Interactive Proof (PCIP))

.
Prover (x,w) a_ Verifier x
//1"%, ceC =
) : iy
/\\J\ > YA /L\/)

Standard Security Notions

v' Honest-Verifier ZK:
3PPT Sim such that {(a, c,z) « Sim(x,c)} = {(a,c,z) « (P(x,w), V.(x))}.

*Simulator knows no witness!
v Special Soundness:

JPT Ext such that Ext(x, a, (c,z), (c’,z’)) - ws.t.(x,w) €ER;
*2 valid transcripts with same a!

27

Sigma Protocol to NIZK Transform

Classical Quantum

Transform Type of BreET o TSyipre;‘I c;f S »
Sigma prot. overhead p%ot overhead
Fiat- |
Shamir <88 any One hash rewind
Fischlin <05

Unruh <15

Sigma Protocol to NIZK Transform

Classical Quantum

Type of

Transform
.Type of Proof PoK Sigma Proof PoK
Sigma prot. overhead overhead
prot.
ShaFl‘Ir?it; 88 any One hash rewind
Straight-
->mall |C| None (but '
: o S line
Fischlin <05 | -Quasi-unique saralielep) izt
response
proof)

Unruh <15

Sigma Protocol to NIZK Transform

Classical Quantum

L@ In general Fiat-Shamir
@is the best transform

in the classical setting.

Transform Type of Proof
Sigma prot. overhead

®

PoK

Fiat-

. an One hash rewind
Shamir <88 Y
Straight-
-Small |C| .
: — el None (but line
Fischlin <05 | -Quasi-unique parallel rep.) (= tight
response
proof)

Unruh <15

Sigma Protocol to NIZK Transform

Classical Quantum

Transform [sVerRe; Proof Type of Proof
: PoK Sigma PoK
Sigma prot. overhead overhead
prot.
Fla.t- any One hash rewind 2777
Shamir <88
Straight-

->mall |C| None (but '
: o Y line
Fischlin <05 | -Quasi-unique parallel rep) (= tight 2777

response

proof)

Unruh <15

Sigma Protocol to NIZK Transform

Transform

Fiat-
Shamir <88

Fischlin <05

Unruh <15

Classical

Quantum

Type of Proof Type o Proof
: PoK Sigma PoK
Sigma prot. overhead overhead
prot.
any One hash rewind 27707
Straight-
_Smal.l |C| None (but line 37999
“QUEEHLInig Lz parallel rep.) (=tight Tt
response
proof)
& Straight-
. X|C| with line
(Fils) Sl 6] parallel rep. (= tight

proof)

Sigma Protocol to NIZK Transform

Transform

Fiat-

Shamir 'ss
([LZ19,DFMR19])

Fischlin <05

Unruh <15

Classical

Quantum

Type of
Type of Proof PoK Syipma Proof POK
Sigma prot. overhead 5 overhead
prot. .
JAAN L2\ rewind
any One hash rewind | collapsing One hash
Straight- q: #RO query
-SmaI.I |C| None (but “nge 2777 Z:Xféaclédv\firtir;ssznpt to
“Quasi-unique parallel rep.) (=tight Use to be till
response proof) very recent [CMSZ21]

(A 1R))

Small |C]|

A\

Straight-
x|C| with line
parallel rep. (= tight

proof)

Sigma Protocol to NIZK Transform

Classical Quantum

Transform ' _

Type of

L. . : Proof
(®x®) Not all existing Sigma prot. | Sigma overhead PoK
N\ are known to be collapsing. | prot. .
Fiat- JAAN LN rewind
Shamir 's8 any One hash ré"mey, collapsing One hash (lose at least
(ILZ19,DFMR19]) 0(q*))
GJ\C) . - q: #RO query
L Proof overhead is large... 7777 & #valid transcriptto
Fischlin <0 B E"”i“t‘)"“tgesi 1 il
JdIl C ~)= setobeO(g~ ")t
response N very recent [CMSZ21]
& Straight-
‘ N X|C| with line
Unruh <15 (hilaD) Sl 6] parallel rep. (= tight
proof)

IN a Bit More Detail: Fiat-Shamir

. = 1. a
Prover (x,w) a | Verifier x DA =
- _ RS) 2. ceH(xa) /@\
2 cecC m A~
o)) : & T 3. Z
38, &)~ o=
=2 z = 4. Output(a,c,z)

In Classical Setting...

- Rewind the cheating prover so that it answers to two

different challenges.
- Adaptively reprogram the RO at H(x, a) to two different

challenges.

IN a Bit More Detail: Fiat-Shamir

QROM security by [DFMS19,LZ19].

“Collapsing” Sigma Protocol with QROM Secure NIZK

Sigma Protocol : “quantum PoK”

Collapsingness allows General method to
to rewind quantum reprogram the QRO on
adversaries w/o specific query input.

destroying its state.

IN a Bit More Detail: Fiat-Shamir

.
QROM security by [DFMS19,LZ19].
*Not clear if existing *
A schemes are collapsing. ANot an easy property to prove.

Sigma Protocol with

“Collapsing” QROM Secure NIZK

“guantum PoK”

Sigma Protocol

Collapsingness allows General method to

to rewind quantum reprogram the QRO on

adversaries w/o specific query input.

destroying its state. *Seems to incur at least 0(g%™) reduction

loss for n different programmed points.

IN a Bit More Detail: Unruh

Getting around rewinding and adaptive reprogramming [U15].

Rough Idea: Let Prover commit to all (challenge, response) pair.
1. a

22 : For.i eEC

§f§“)) I. Generate response z;

\ g/ .

P&y sN iIl. com; = Com(z;; rand;)

- 3. ¢« H(x,a,{com;}icc)

4. OQutput(a,c,z.,{com,;}cc)

IN a Bit More Detail: Unruh

Getting around rewinding and adaptive reprogramming [U15].

Rough Idea: Let Prover commit to all (challenge, response) pair.

1. a Simplified Proof for PoK:
70 2. For_l €cC 1. The cheating prover must have committed
é@,g)l . Generate response z; to valid responses z;, z; for i # i’ to have
) iIl. com; = Com(z;; rand;) non-negl. advantage.
= 3. ¢« H(x,a,{com;}icc) 2. If Comis extractable, then the reduction
4. Output(a,c,z,, {com;};ec) Inverts com;, com;r.

IN a Bit More Detail: Unruh

Getting around rewinding and adaptive reprogramming [U15].

Rough Idea: Let Prover commit to all (challenge, response) pair.
1. a Simplified Proof for PoK:
70 2. For.l €cC 1. The cheating prover must have committed
§Qg)’, . Generate response z; to valid responses z;, z; for i # i’ to have
e iIl. com; = Com(z;; rand;) non-negl. advantage.
.= 3. ¢« H(x,a,{com;}icc) 2. If Com is extractable, then the reduction
4. Output(a,c,z,, {com;};ec) Inverts com;, com;r.

O Mustinclude extra {com;};c in proof.

@ O Challenge space must be poly-large => Parallel repetition.
O Com can be instantiated by RO, Online Extractable => Tight Proof

Recent CROM Lattice-based PCIP

Non-exhaustive list

[DFMS19,LZ19] showed that it is “collapsing” (w/ a slight increase in the
parameters).

@D [Lyu09,Lyu12]: Most Basic (Relaxed proof for SIS/LWE relation)

QROM secure via Fiat-Shamir

O [BDLOP18]: Opening to commitments
@E ‘ESLL19]: Range proofs, one-out-of-many proofs
O [YAZXYW19]: Exact sound proofs for quadratic relations
QROM secure via Unruh but chall. set is restricted to be small

O [BLS19, ENS20]: Exact sound proofs for SIS/LWE relation (5-round)
@D 'ALS20]: Product proofs for commitments (5-round)

O [LNS20]: Integer relations (5=>-round)
*5-round protocols magybe secure via modified Unruh [CHRSS18].

Main Question of This Talk

Quantum

c, HEURCME Type of Proof POk
‘. Sigma prot. overhead
— A rewind
Can We get the beSt Of the Sh Fla.t . collapsing One hash %ose at least
amir 88 O(q)Zn)

Fiat-Shamir and Unruh

Fischlin -
transform and more?? o OS/

5-round vvithAA Straight-

. 1st chall. set X|C| with line
Unruh <15 small and 2nd parallel rep. (= tight
chall. set {0,1}. proof)

v FS: No overhead and works for exp. large chall. set size.
v Unruh: Tight (straight-line extractable) and simple proof.
v' And More: Applies to PCIP that FS or Unruh is not known to apply.

3. Our Result: ExtLiInHC

Our Result: A New Transform

A partial answer:
A semi-generic approach that sits somewhere
between Fiat-Shamir and Unruh.

@ Properties

Works for many lattice-based PCIPs (or in general, any PCIP with a linear response)
Handles exponential challenge set

| FS overhead| < |Our overhead| < |Unruh overhead |, for exp. chall. set.
Reduction loss is smaller than FS (it is straight-line extractable like Unurh)
Construction and proof is very simple (almost classical)

New Technical Tool

@ Extractable Linear Homomorphic Commitment (ExtLinHC)

“Collapsing”
Sigma Protocol

Our Transform

Sigma Protocol w/
“Linear Response”

Sigma Protocol with
“quantum PoK”

rewind

r

FS

=

pprogra

(Simple)
ExtLinHC

no-rewind

*Very natural and satisfied by many Sigma protocols [M15]

A

QROM Secure NIZK

ExtLinHC

no-rewind

no-reprogram

A Bottom-Up Approach to Our Transtorm

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]
Statement: (A,u) € R§™“™XR7
Witness: “short” e € R’

H -
R, = Z[X]/(X + 1)

Prover Verifier

A Bottom-Up Approach to Our Transtorm

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]
Statement: (A,u) € R§™“™XR7
Witness: “short” e € R’

H -
R, = Z[X]/(X + 1)

Prover Verifier

1.r < D™
2.W=AI‘ERZI1

A Bottom-Up Approach to Our Transtorm

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]
Statement: (A,u) € R§™“™XR7
Witness: “short” e € R’

H -
R, = Z[X]/(X + 1)

Prover Verifier

1.r < D™
2.W=AI‘ERZI1

c < {01} c R,

3.z=c-e+r€R}l"

A Bottom-Up Approach to Our Transtorm

Base Example: Sigma protocol for SIS/LWE relation [Lyu09,12]
Statement: (A,u) € R§™“™XR7
Witness: “short” e € R’

H -
R, = Z[X]/(X + 1)

Prover Verifier

1.r < D™
2.W=AI‘ERZI1

c < {01} c R,

3.Z:C'e+rERZIn _Zisshort

-Az=c-u+w

Z > Check

Special Sound + HVZK P: (A1), €) V: (A,u)

— 1.r«< D™ w
2.w = Ar —
, ¢ c«{01}¢
O Special (Relaxed) Soundness
3.z=c-e+r -z short?

Z

——

’,
-Az=c-u+w

O RVZK

Special Sound + HVZK P: ((A,u),)

— 1.t <« D™ w
2.w = Ar —
C
O Special (Relaxed) Soundness
3.z=c-e+r

Z

Given (w,c,z) and (w,c’,z")
Az=c-u+w

A = utw Az—z)=(c—c)-u

*The extracted witness lies in a “gap/relaxed” relation.
But this suffices in many applications.

O RVZK

V: (A u)

c « {0,1}¢4

- 7z short?
?
-Az=c-u+w

Special Sound + HVZK

O Special (Relaxed) Soundness
Given (w,c,z) and (w,c’,z")

Az=c-u+w

A = utw Az—z)=(c—c)-u

P: ((A u),e)

T.r < D™
2. w = Ar

3.z=c-e+r

—

*The extracted witness lies in a “gap/relaxed” relation.

But this suffices in many applications.

O HVZK

V: (A u)

c « {0,1}¢4

-z short?
7
-Az=c-u+w

- Due to RejSamp, z is uniform over some witness-independent dist. G’

- ZKSim just samples zand sets w = Az — c - u.

Special Sound + HVZK P: (A1), €) V: (A,u)

— l.r< D™ w
2.w = Ar —
, ¢ c < {0,134
O Special (Relaxed) Soundness
3.z=c-e+r . -z short?
Given (w,c,z) and (w,c’,z") AzZcutw

Az=c-u+w

Al = utw Az—z2)=(c—c')-u

*The extracted witness lies in a “gap/relaxed” relation.
But this suffices in many applications.

0 Main Question

How do we obtain fwo valid transcripts
w/o rewinding the quantum adversary??

O HVZK

- Due to RejSa
- ZKSIm just sa

15t Step: Add Linear Homomorphic Com.

[
Prover: ((A,u),e) CRS:pk < {0.1}* verifier: (A, u)

1.r « D™
2. W = Ar' W, Come, Comr

3. com, = Compi(e)[d¢]
4. comy = Comp(r)[8,]

*Commit to witness e and randomness r

15t Step: Add Linear Homomorphic Com.

[
Prover: ((A,u),e) CRS:pk < {0.1}* verifier: (A, u)

1.r « D™
2. W = Ar' W, Come, Comr

3. com, = Compi(e)[d¢]
4. comy = Comp(r)[8,]

5.z=c-e+r
6.6, =cC: 0+ 6,
/. RejSamp(z)

15t Step: Add Linear Homomorphic Com.

Prover: ((A,u),e) CRS:pk < {0.1}* verifier: (A, u)

1.r « D™
2. W = Ar' W, Come, Comr

3. com, = Compi(e)[d¢]
4. comy = Comp(r)[8,]

C c < {0,1}
S.z=c-etr - z short?
6.5, =c:06s+ 9, d
7. RejSamp(z) 2,0z fo=curwy

- Compk(2)[6,] = ¢ - com, + com,

*Create com, and check if §,
is a valid opening.

15t Step: Add Linear Homomorphic Com.

.
Prover: ((A,u),e) CRS:pk < {0.1}* verifier: (A, u)
1.r « D™
2 w = Ar W, COMg, COM
3. com, = Compi(e)[d¢]
4. comy = Comp(r)[8,]
C c < {0,1}¢
S.z=c-etr - z short?
E7S SZejzair;If(ez;_ Or Z,0, AzLcou+ w_
i - Compk(2)[6,] = ¢ - com, + com,
& Isitstill a standard Sigma protocol?

v’ Special soundness => Yes, justignore LinHC
v' HVZK => Yes, if LinCH is hiding.

24 Step: Add Extractability

pk < {0,1}"
~c
(pk™,) « SimCRS

For any honestly generated comy

Comp- (x)[6«], we have Extractcom (T, comy) — x.

oY U1l

Prover: ((A, u),e) Verifier: (A, u)

1.r <D™
w = Ar w, COImg, COMy

com, = Compy(e)[8]
com; = Comp(r)[5,]

C c « {0,1}4
pASICRE TRE -z short?
| - Comp(2)[5,]

='C-Ccom + comy,

24 Step: Add Extractability

pk < {0,1}"
~c
(pk™,) « SimCRS

For any honestly generated comy

Comp- (x)[6«], we have Extractcom (T, comy) — x.

What we want to show

. com, = Compg(e)[5,]

W

~J O Ul

Prover: ((A, u),e) Verifier: (A, u)

1.r <D™

\,auv f— AAI‘ ‘\/\r’r’ Come’ Comr

com; = Comp(r)[5,]

Lmeett - z short?
.8, =cC-0g+ Oy '
. RejSamp(z)

A2
7,8, -Az=c-u+w
- Comﬁpk(Z) 16,1
='C* COm, + com,

Only given ((w, com,, com,), ¢, (z,8,)), extract witness e in the “gap” relation.

2"9 Step: Add Extractability T

1 T«]")HT
I 2w = Ar W, COImg, COMy i
pk < {0,1} i. com, = compkge))[[ge]] ,
. com, = Comy(r)|o,
~c " c c < {0,1}¢
(pk*, T) — SlmCRS 5.Zz2=c-e+r -7 short?

6.8, =c" 8+ 8 2w
/. RejSamp(z) Z 0z Shzemcoudw
For any honestly generated comy = o > - Compy(2)[8,]

='C-Ccom + comy,

Comp- (x)[6«], we have Extractcom (T, comy) — x.

What we want to show
Only given ((w, com,, com,), ¢, (z,8,)), extract witness e in the “gap” relation.

@ Incorrect Naive Argument Why Wrong?
- No guarantee that com, is valid ®

Just run Extractcom (T, come) — el » - Only Comy(z)[8,] is known to be valid.

3"d Step: How to Argue Extraction Correctly

Simple Observation

(com,, com,) is prepared before challenge c.

Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)

’l. r « DIT]
2. w = Ar W, COMg, COM-

3. comg = Compy(e)[S]
4. com, = Compy (r)[5,]

3"d Step: How to Argue Extraction Correctly

Simple Observation
(com,, com,) is prepared before challenge c.

- Assume |24| = poly (D).
- Assume another (c¢’,z’,§,,) s.t. V accepts.

Extractgjgma (T, trans):
Fori € {0,1}4
1. Set com,, :=1i-comg + com,
2. Try Extractcom(r, comzi) - zi/1

Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)

1.r «< D™
2 w = Ar W, COMg, COMy.

3. comg = Compy(e)[S]
4. com, = Compy(r)[5,]

C c «{0,1}4
5.z=c-e+r
6.8, =c-8c+ O 5
/. RejSamp(z) 40z

3"d Step: How to Argue Extraction Correctly

.
Slmple Observation Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)
’I‘ r « Dl’n
(com,, com,) is prepared pbefore challenge c. 2 w-=#

3. comg = Compy(e)[S]
4. com, = Compy(r)[5,]

- Assume |24| = poly (D).

- Assume another (c¢’,z’,§,,) s.t. V accepts. g 8, =c 8¢+

. RejSamp(z)

Extractgjgma (T, trans):
Fori € {0,1}4
1. Set com,, :=1i-comg + com,
2. Try Extractcom(r, comzi) - zi/1

By assumption, if i = ¢’, then Extract.,, succeeds since com,_, =
Comp-(z')[8,/] is guaranteed to be a valid commitment.

31 Step: How to Argue Extraction Correctly

Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)

.
Simple Observation

(com,, com,) is prepared before challenge c.

1.1« D™

W, COMg, COMy.

- Assume |24| = poly (D). o
- Assume another (¢, z’,8,) s.t. V accepts. RO .6,

Extractgjgma (T, trans):

Fori € {0,1}4 Aft tracting 7. Simpl
1. Set COHIZi =1- COMg + com, er extrac Ing Z, Slmp y use

2. Try Extractcom(r, comzi) - zi/1

=

(w,c,c’,z,z") to extract withess e ©

By assumption, if i = ¢’, then Extract.,, succeeds since com,_, =
Comp-(z')[8,/] is guaranteed to be a valid commitment.

4t Step: Making Chall. Set Exponentially Large

Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)

1.r «< D™
2w = Ar W, COMg, COMy

Extractsjgma (T, trans):

- d
Fori€ {0,1} 3. com, = Compy(e)[8]

1. Set com,. :=1i-com, + com, 4. com, = Comy ()[5,]
1 . r pk r
-« {0,1}4
2. Try Extractcom(r, comzi) - z;i/L N

Zézc'e;rs -z short?
.0, =C-" e+ r - :? . .
@ Only terminates if 2¢ is polynomial... 7. RejSamp(z) 48 _fégmy;(zg[gz‘]“

= C:Ccome + com;,

4t Step: Making Chall. Set Exponentially Large

Extractsjgma (T, trans):

Fori € {0,1}4

. Set com,, :=i-com, + com,
1

2. Try Extractcom(r, comzi) - z;i/L

@ Only terminates if 2¢ is polynomial...

New — Extractgjgma (T, trans):

While t < N:
1. i« {0,1}4
2. Setcom, :=1i-com, + com,
3. Try Extractcom(r, comzi) — zi/1
4, t<t+1

Prover: (A u),e) CRS: Pk ={0.13" vsarifier: (A, u)

1.r «< D™
2 w = Ar W, COMg, COMy.

3. comg = Compy(e)[S]

4. com, = Compy(r)[5,]
|

5.z=c-e+r -z short?
g' %@;ﬁ:ﬁfg " 2,8, AzZcoutw
» RIS IPAL, - Com,}ak(z)[Sz]

= C-comg + comy

LN .
until Extract.,,, succeeds.

Why should this work?
How do we set N?

4t Step: Making Chall. Set Exponentially Large

—
. New-Extractgjgma (T, trans):
Why it works While t < N:
1. i« {0,1}d

Assume adversary A has non-negl adv. € . Set comy, = i come + com,

2
in completing the Sigma protocol. 3. Try Extracteom(t, comy,) - z;/1
4, t<t+1

4t Step: Making Chall. Set Exponentially Large

—
. New-Extractgjgma (T, trans):
Why it works While t < N:
1. i« {0,1}d

Assume adversary A has non-negl adv. e 2. Set comy, = i- come + com,

in completing the Sigma protocol. 3. Try Extractom(t, com,,) - z;/1
4, t<t+1

Then, there exists at least 2¢ - € challenges for
which A could have correctly respond w/ prob. 1/2.
*Standard statistical argument.

4t Step: Making Chall. Set Exponentially Large

—
. New-Extractgjgma (T, trans):
Why it works While t < N:
1. i« {0,1}d

Assume adversary A has non-negl adv. €

. . _ 2. Setcom,, :=1i-comg+ com,
in completing the Sigma protocol.

3. Try Extractcom(r, comzi) -7/l

4, te<t+1
Then, there exists at least 2¢ - € challenges for
which A could have correctly respond w/ prob. 1/2.
*Standard statistical argument.
If New — Extractgjgm, Samples N = 0(%)-random e
N\

challenge i, then it will hit a valid commitment com,,
with o.w.p.

4t Step: Making Chall. Set Exponentially Large

.
. New-Extractgjgma (T, trans):

Why it works While t < N:
1. i« {0,1}¢

Assume adversary A has non-negl adv. € 5> Set com.. = i - comm. + com

in completing the Sigma protocol. 3. Try Extracteom(T, comy,) = 7/
4, t<t+1

Then, there exists at least 2¢ - € challenges for

which A could have correctly respond w/ prob. 1/2.

*Standard statistical argument.

If New — Extractgjgm, Samples N = 0(%)-random e

challenge i, then it will hit a valid commitment com,, s

with o.w.p.

- Analysis is the same even if A is quantum ©

Summary So Far

PoK of Sigma protocol can be shown w/o
rewinding the adversary ©

“Collapsing”
Sigma Protocol

Our Transform

Sigma Protocol w/
“Linear Response”

d sO far

Prover: ((A,u),e)

*linear response

DisCUSSEY

S
Sigma Protocol with
' “gquantum PoK”
rgwind repogra
(Simple)
ExtLinHC

no-rewind

3. comg = Compg(e)[d]
4. com, = Compy(r)[6,]

6.8, =c-8 +8, .
Z

CRS: pk < {0,1}* verifier: (A, u)

,COMg, COM-

—— - Comp(@)I3,]

='C-comg + com,

n

QROM Secure NIZK

ExtLinHC

no-rewind
no-reprogram

Extending to QROM-Secure NIZK

We start with a Sigma protocol w/ quantum “straight-line” PoK.

¥

We can make it non-interactive via Fiat-Shamir with a simpler proof
(i.e., no-reprogramming) akin to [U15,KLS18] ©

Just 4
dis

Sigma Protocol wjth
“gquantum PoKj
re

“Collapsing”
Sigma Protocq

rewind

Our Transform

Sigma Protocol w/
“Linear Response”

ExtLinHC

no-rewind
no-reprogram

4. Constructing ExtLIinHC

: : Prover: (A, u),e) CRS:pk:
Lattice-based ExtLinHC N
2.w = Ar W, €
3. com, = Comp(e)[8]
4. com, = Comp(r)[S,]

Com. Key: pk = (A, B) « R{¥"XRg™ "

p < q. some large enough integer S.z=cretr
g. (}S{Z ':‘,C,'6e+6r z,0
. RejSamp(z)
COMmg = (p ' (Ase,l + Se,z)»P ' (BSe,l + Se,3) + e*?/vitness
com, := (p (Asm + Sr’z),p : (Bsr,l + Sz,3) + 1)
*randomness

where §, = (Se'i)ie[B]’Sr = (Sl‘»i)ie[s]'

Prover: ((A,u),e) CRS: Pk

| attice-based ExtLinHC

2.w = Ar w, com,

o 3. com, = Comp(e)[8]

4. com, = Comp(r)[S,]

Com. Key: pk = (A, B) « R{¥"XRg™ "

p < q.some large enough integer samcetr
0z = C* O¢ t Or
/. RejSamp(z) z,0
comg ‘= (p - (ASe;1 +Se2), P (BSe1 +Se3)+ €
e = (P (e,1 e,2) p (e,1 e,3) *?Nitness
Comr = (p | (ASI‘,l + Sr,Z);p ’ (BSI',l + SZ,B) -+ l‘)
*randomness

where §, = (Se,i)ie[3]»6r = (spi).
com, == (p - (Asz,l + SZ’Z),p - (BSZJ + SZ,3) +c-e+r)

where §, = (Sz’i =C-Sej T Sr»i)ie[s]'

Prover: ((A,u),e) CRS:pk:

Extraction Mode: Dual Regev PKE o

2.w = Ar W, COme

3. com, = Comp(e)[8]

S|m Com. Key: pk o (A, B) — (A, DlA _I_ DZ) 4, com, = Compk(l‘)[Sr])
T = "small" D4, D, »

=CcC-e+r

= -8 + 6,
jSamp(z)

~J O U1

. Z
.0,
. Re

Commly = (tll tZ)
= (p - (ASX’l + SX,Z),p ‘ (Bsx,l T Sx,3) + x)

Extract.,m, (T, com,):

Output (¢, — D;t;) mod g modp = (p - "noise" + x) mod g mod p
= (p - "noise" + x) mod p
=X

@ Com. keys are indistinguishable due to LWE.

Prover: ((A,u),e) CRS:pk:

Extraction Mode: Dual Regev PKE o

2.w = Ar W, COme

_— 3. com, = Comp(e)[8]

S|m Com. Key: pk o (A, B) — (A, DlA _I_ DZ) 4, com, = Compk(l‘)[Sr])
T = "small" D4, D, »

=CcC-e+r

= -8 + 6,
Samp(z)

~J O U1

. Z
.0,
. Rej

Commly = (tll tZ)
= (p - (ASX’l + SX,Z),p ‘ (Bsx,l T Sx,3) + x)

For concrete efficiency, we can
optimize the scheme by using
NTRU-like PKE.

Extract.,m, (T, com,):
Output (t, — D,

@ Com. keys are indistinguishable due to LWE.

Prover: X:(Awuliégdxzqm as=B € RP® Verifier: X = (A, u)
o . y(—Rg - q
Concrete Application =%, .
L t (Ez:) e+ (z) € R} ()
vt) e
w— Ay € Z"
Ll e
[BLS19] Exact Sound 5-Round PCIP 25 e e
B B+ C
- Not obvious if Fiat-Shamir applies. kel
- Modified Unruh [CHRSS18] may apply. el m e - 1w : ‘(’E”fﬁb 7 -
= (t t)+:r:
((20— .

O CROM NIZK =812 KB
O QROM NIZK via Unruh = 44.9 MB (CROM x134.7)
O QROM NIZK via ExtLinHC = 2071 KB (cROM x2.6)

Summary & Open Problems

A simple method to construct
QROM secure NIZKs via ExtLInHC

» Works for many lattice-based PCIPs before early 2020-ish but
what about the more recent ones, e.g., [BLNS20,BLNS20,LNS21]?

» Can we make ExtLinHC more efficient (possibly w/o trapdoor)??

» General method to show collapsingness of existing lattice-based
Sigma protocols?? => No need using ExtLiInHC ©

Special Sound + HVZK

Prover ((A,u), e)

1.r < D™

2.w=ArERg Al
3.z:c-e+rERZI” .
P: ((A,u), e) V: (A u)
1.r « D™
W
2. W = Ar
¢ c < {0,1}¢
3.z=c-e+r . -z short?
> ’)

-Az=c-u+w

Verifier (A, u)

¢ < {0,1}¢ c R,

Check 7 is short

-Az=c-ut+w

15t Step: Add Linear Homomorphic Com.

I
Prover: ((A,u),e) CRS:pk < {0.1}" verifier: (A, u)
1. r < DN
2.w = Ar W, COMg, COMy
3. com = Compy(e)[Se]
4. com, = Compy (r)[,]
d
¢ c < {0,1}
AR -z short?
6.8, =8¢ + Op) 'Az—?c-u-l-w
7. eiSamp(z 2,04 o
- - Comyy (2)[]
it sti i ="c-com, +
& s itstill a standard Sigma protocol? e T CcOmy

v’ Special soundness => Yes, justignore LinHC
v' HVZK => Yes, if LinCH is hiding.

*General (2n + 1)-Round PCIP

Classical Quantum

HEUSICUUE Type of Proof Type of Proof
: PoK : PoK
Sigma prot. overhead Sigma prot. overhead
E | | A & rewind
: any One hash rewind collapsing One hash (lose at least
Shamir <88 0(g?™)
Fischlin <05 Sy
@ Limited to specific
Sigma protocols. |>-round With&A Straight-
Unruh 15 1st chall. set X|C| with line
small and 2nd parallel rep. (= tight
chall. set {0,1}. proof)

[CHRSS18]

Some Details Worth Mentioning

In our Fiat-Shamir transform, we require a slightly stronger
flavor of ExtLinHC since the Sigma protocol is only comp. HVZK.

- Analysis extends to multi-round.

- Since commitment key pk « {0,1}4, we can use RO rather than
relying on a CRS.

- Itis a dual-mode NIZK (i.e., depending on pk, it will be stat. ZK
or stat. sound).

