強化学習における多様性 恐神貴行

IBM Research – Tokyo

強化学習と関連技術のゲームと実社会における成功の歴史

チェッカー バックギャモン
(1956) (1992)

searcher.watson.ibm.com/researcher/view_page.php?id=6853

チェス

(1997)

www.ibm.com/investor/att/pdf/BAML-AI-Conference-09272018.pdf

ビデオゲーム

(2015)

n.wikipedia.org/wiki/Breakout_(video_game)

囲碁

(2016)

ポーカー

(2017)

カタログ送付 (1960)

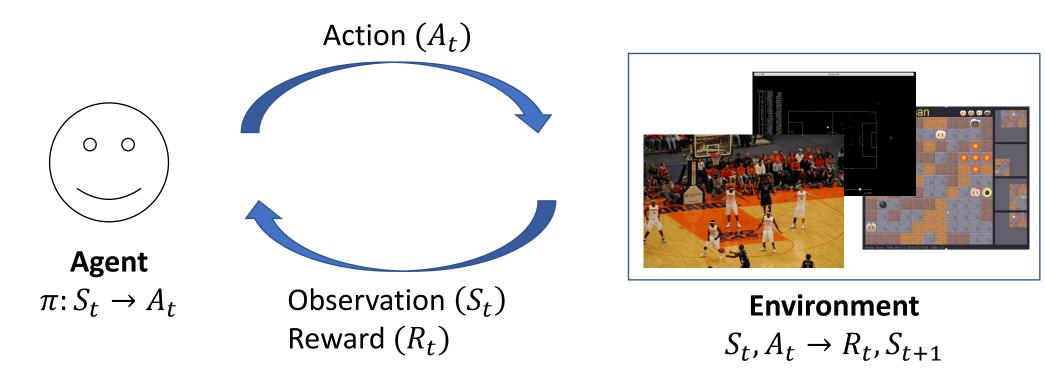
(C) Copyright IBM Corp. 2021

徴税支援 (2010)

ww.youtube.com/watch?v=VGKp13APsBg

2

Reinforcement learning seeks to find an optimal policy for sequential decision making



Goal:

Maximize expected cumulative reward

$$\sum_{t} \gamma^{t} \mathbf{E}^{\pi}[R_{t}]$$

An approach of reinforcement learning is to learn the action-value function

Action-value function: Q(s, a)

• Expected cumulative reward from state *s* by taking action *a* and then following optimal policy

• Assume (relaxed later): Markovian *s* is fully observable

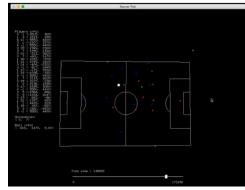
For most practical tasks, the action-value function needs to be approximated

Exponentially large state space

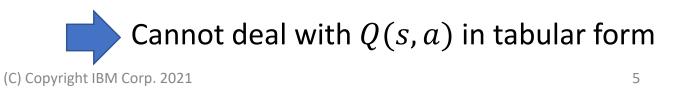
- Combination of multiple factors
 - *e.g.* Factor: "state" of each position

Exponentially large action space

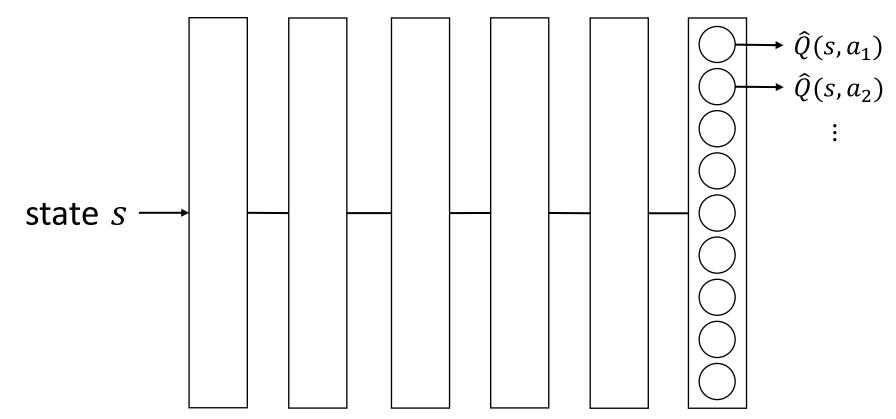
- Combination of multiple "levers"
- Combination of multiple agents



• History of observations



Action-value functions approximated with (deep) neural networks



Exponentially many units for exponentially large action space

Distributed representation

(e.g. each unit for each pixel)

Challenges in collaborative multi-agent reinforcement learning

• Exponentially many combinations of actions (team-actions)

- 1. How to efficiently evaluate the value of team-actions
- 2. How to efficiently sample good team-actions

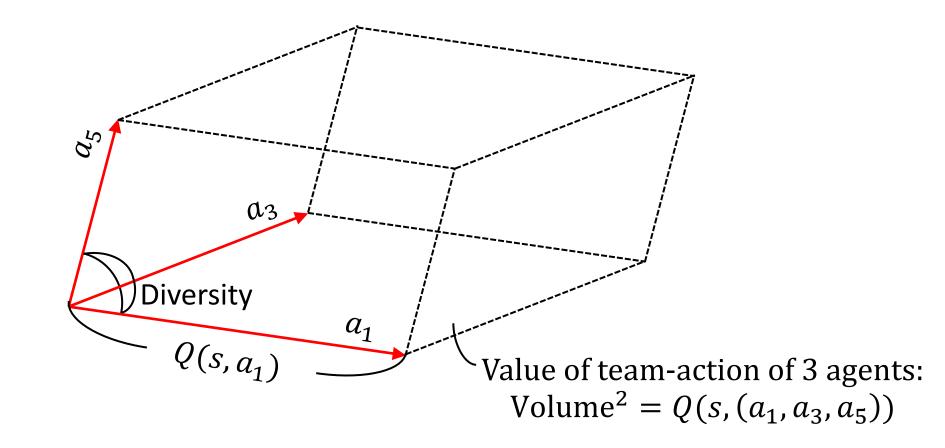
Taking into account diversity in reinforcement learning

Want to take relevant and diverse actions in team sports

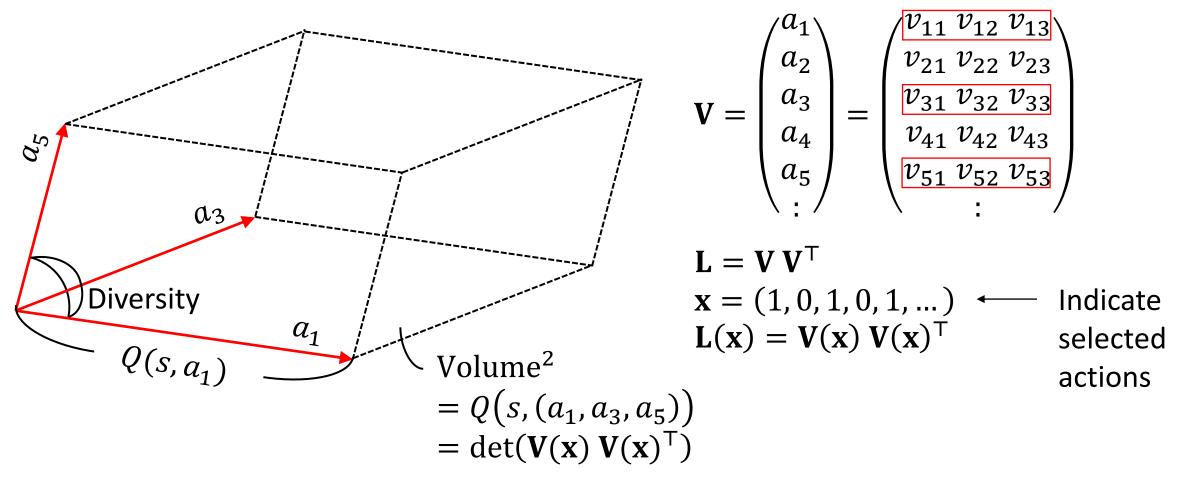
Zone defense

Man-to-man defense

Consider the diversity of actions, in addition to the value (relevance) of each action



Diversity can be represented by determinant



(C) Copyright IBM Corp. 2021

Our definition of diversity (similarity) in multi-agent reinforcement learning

• The value of team-action is represented by determinant (volume)

Two actions are **similar**

Value is **low** when the two actions are taken together

Two actions are **dissimilar** \langle \rangle Value is **high** when the two actions are taken together

We represent the action-value function with determinant

$$Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \alpha + \log \det \mathbf{L}_{t}(\mathbf{x}_{t})$$

$$(x_t)_i = 1$$

 L_t
 $L_t(x_t)$
ons

- $\mathbf{z}_{\leq t} \equiv (\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_t)$: Time-series of observations
 - $\mathbf{z}_{\leq t} = s_t$ if Markovian state s_t is observable
- $\mathbf{x}_t \equiv \psi(a_t) \in \{0, 1\}^N$: Binary features of team-action a_t
 - $e.g. \mathbf{x}_t$ indicates which actions are selected by the team
- L_t : Positive semi-definite matrix (kernel) that can depend on $z_{\leq t}$

Particular structure of the kernel for effective learning

$$Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \alpha + \log \det \mathbf{L}_{t}(\mathbf{x}_{t})$$

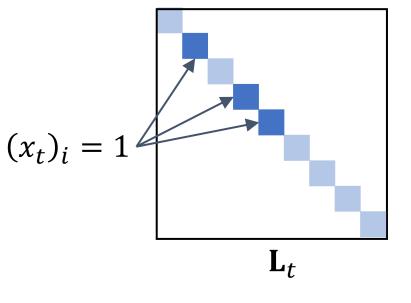
- $\mathbf{L}_t \equiv \mathbf{V} \, \mathbf{D}_t \, \mathbf{V}^{\mathsf{T}}$
- **V**: $N \times K$ matrix ($K \leq N$)
- $\mathbf{D}_t \equiv \text{Diagonal}(\exp(\mathbf{d}_t(\phi)))$
- $\mathbf{d}_t(\phi)$: differentiable time-series model with parameter ϕ (e.g. RNN, LSTM, DyBM, VAR)

Special case of diagonal kernel reduces to the standard approach of ignoring diversity

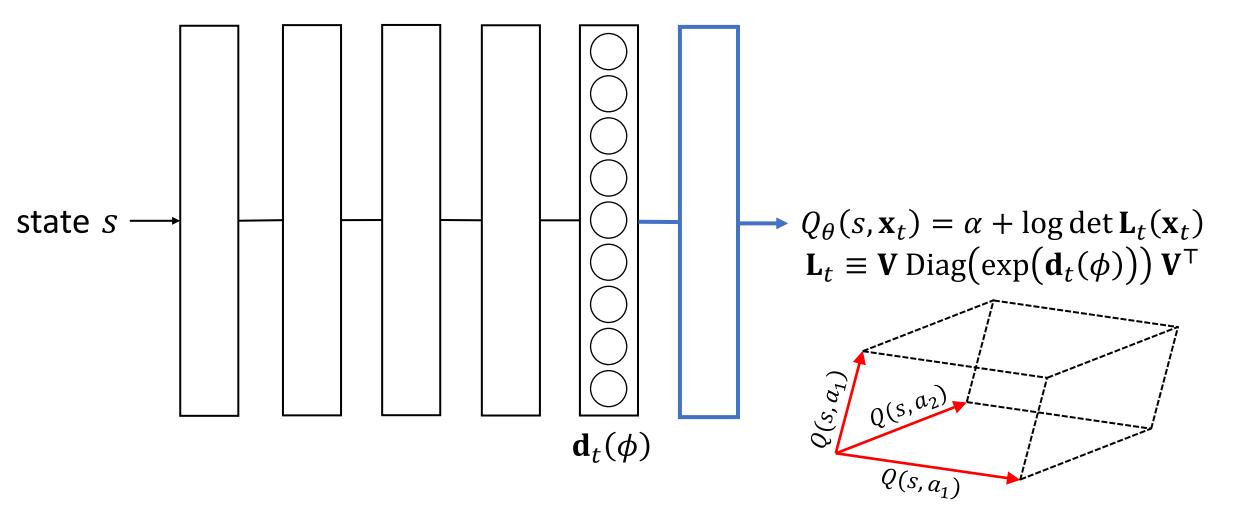
- $\mathbf{L}_t = \mathbf{D}_t (\operatorname{let} \mathbf{V} = \mathbf{I})$
- $\mathbf{D}_t \equiv \text{Diag}(\exp(\mathbf{d}_t(\phi)))$
- $\mathbf{d}_t(\phi)$: differentiable time-series model

$$\mathbf{Q}_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \alpha + \log \det \mathbf{L}_{t}(\mathbf{x}_{t})$$
$$= \alpha + \mathbf{d}_{t}(\phi)^{\top} \mathbf{x}_{t}$$
$$= \alpha + \sum_{i:(x_{t})_{i}=1} d_{t}(\phi)_{i}$$

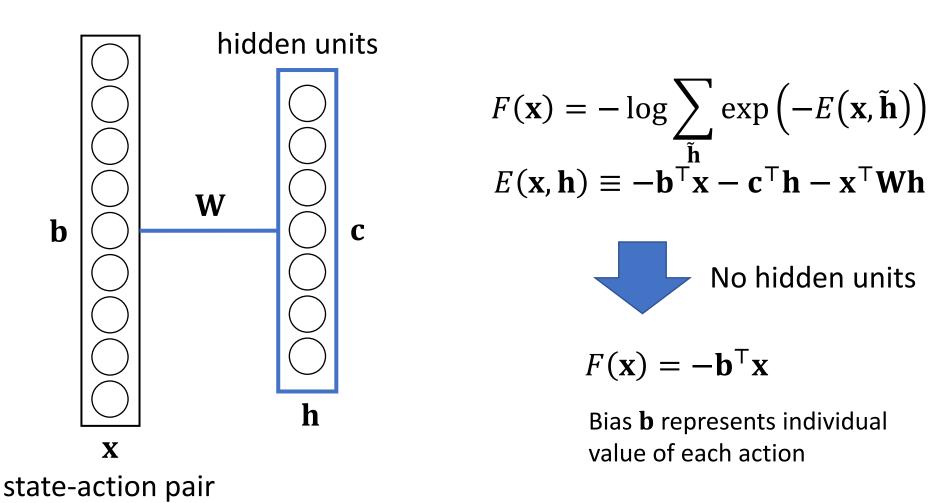
Sum of the values of selected actions $d_t(\phi)_i$: value of a_i at time t



Determinantal layer for diversity



Prior work uses free-energy of restricted Boltzmann machines [Sallans & Hinton 2001]



Learning diversity via reinforcement learning

Reinforcement learning with SARSA

• Tabular case

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \operatorname{TD}_t$$

where $\operatorname{TD}_t \equiv r_{t+1} + \rho Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)$
Cumulative reward
from t Cumulative reward
from t

• With functional approximation: $Q_{\theta}(s, a) \approx Q(s, a)$

 $\theta \leftarrow \theta + \eta \operatorname{TD}_t \nabla_\theta Q_\theta(s_t, a_t)$

Can learn our kernel \mathbf{L}_t via SARSA in an endto-end manner

•
$$Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \alpha + \log \det \mathbf{L}_{t}(\mathbf{x}_{t})$$

- $\mathbf{L}_t \equiv \mathbf{V} \, \mathbf{D}_t \, \mathbf{V}^{\mathsf{T}}$
- $\mathbf{D}_t \equiv \text{Diagonal}(\exp(\mathbf{d}_t(\phi)))$

$$\nabla_{\alpha} Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = 1$$

$$\nabla_{\mathbf{V}(\bar{\mathbf{x}}_{t})} Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \mathbf{0}$$

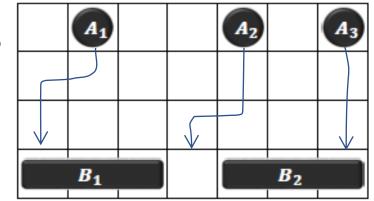
$$\nabla_{\mathbf{V}(\mathbf{x}_{t})} Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = 2 (\mathbf{V}(\mathbf{x}_{t})^{+})^{\top}$$

$$\nabla_{\phi} Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \text{diag}(\mathbf{V}(\mathbf{x}_{t})^{+} \mathbf{V}(\mathbf{x}_{t})) \nabla_{\phi} \mathbf{d}_{t}(\phi)$$

$$\theta \leftarrow \theta + \eta \operatorname{TD}_t \nabla_\theta Q_\theta(s_t, a_t)$$

Example: Blocker Task

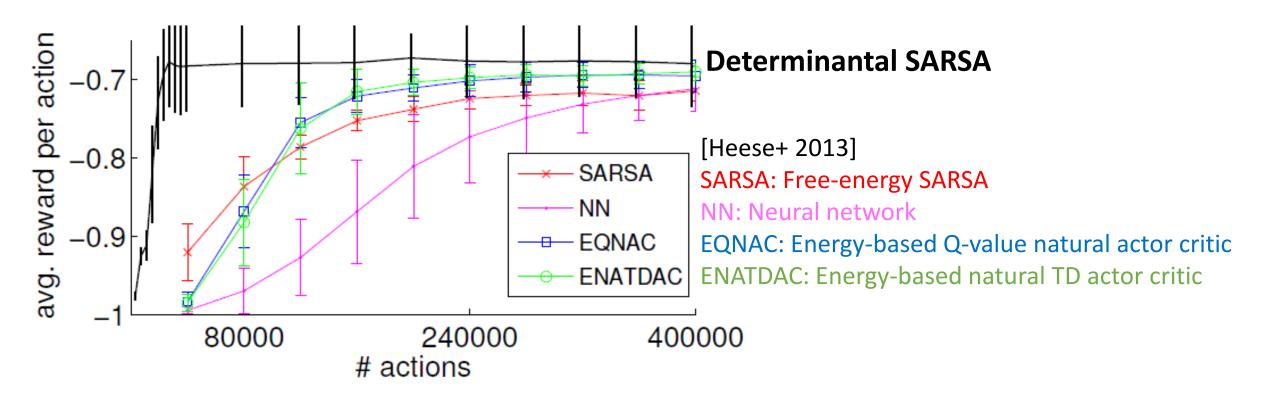
- Reward
 - \bullet +1 when an attacker reaches the end zone
 - -1 each step



• We use target positions of agents as the feature of state-action pair

•
$$\mathbf{x}_t \equiv \psi(a_t) = s_{t+1} \in \{0, 1\}^{21}$$

Determinantal SARSA finds a nearly optimal policy 10 times faster than baseline methods



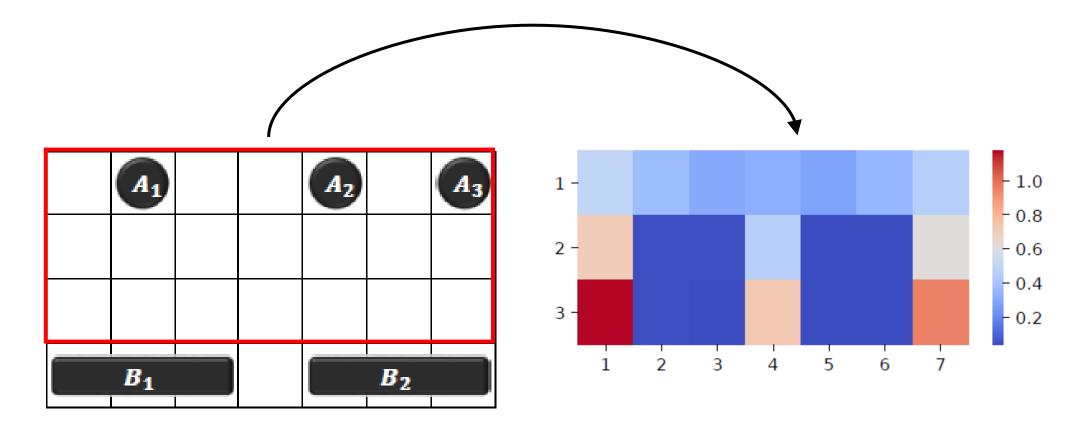
Quality-similarity decomposition of the kernel

• Value, relevance, quality

$$q_i = \sqrt{L_{i,i}}$$

• Similarity

Value of individual actions (next positions) learned by Determinantal SARSA



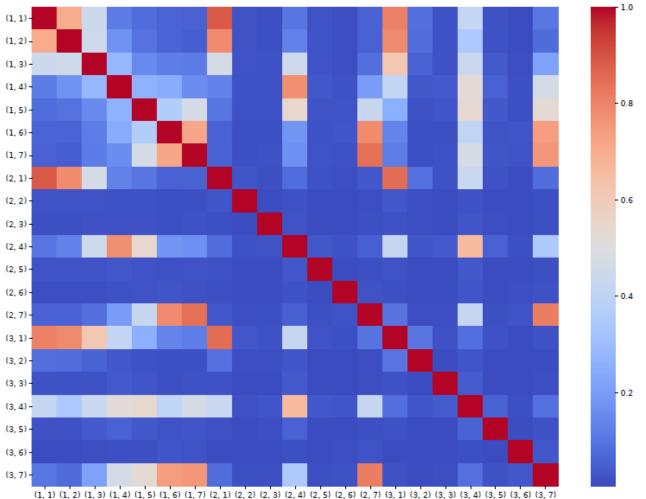
Similarity between actions (next positions) learned by Determinantal SARSA

Recall:

Our definition of action similarity

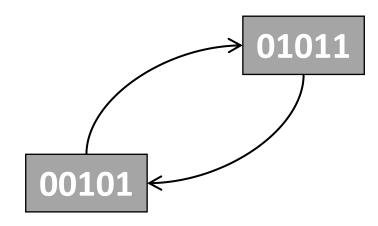
similar taken together

dissimilar high value when taken together

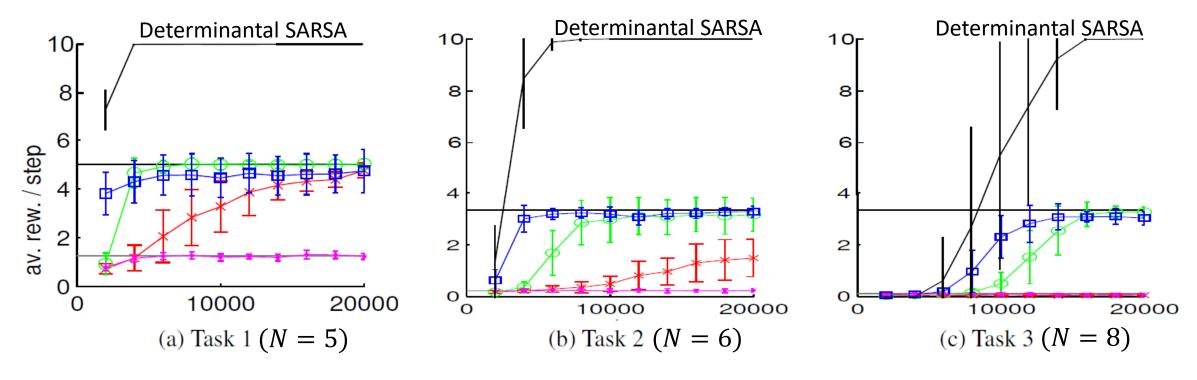


Stochastic Policy Task

- 2^N actions
- If action matches states
 - Get +10 reward
 - Hidden state transitions



Determinantal SARSA finds nearly optimal policies, while baselines suffer from partial observability



Baselines from [Heese+ 2013] SARSA: Free-energy SARSA NN: Neural network EQNAC: Energy-based Q-value natural actor critic ENATDAC: Energy-based natural TD actor critic

Choosing diverse actions

Want to sample actions having high value with high probability

- *ɛ*-greedy
 - Uniformly at random with probability arepsilon
 - Best action ($a^* = \operatorname{argmax}_a Q(s, a)$) with probability 1ε

Intractable for large action space

- Boltzmann exploration
 - Take action a with probability $\sim \exp(-\beta Q(s, a))$
 - β : inverse temperature

Choosing a diverse team-action with Boltzmann exploration

• Our value function:

 $\mathbf{x}_t \equiv \psi(a_t) \in \{0, 1\}^N$: Binary features of team-action a_t

$$Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}) = \alpha + \log \det \mathbf{L}_{t}(\mathbf{x}_{t})$$

• Team-action selected according to Boltzmann exploration

$$\pi(\mathbf{x}_{t} \mid \mathbf{z}_{\leq t}) = \frac{\exp(\beta Q_{\theta}(\mathbf{z}_{\leq t}, \mathbf{x}_{t}))}{\sum_{\tilde{\mathbf{x}}} \exp(\beta Q_{\theta}(\mathbf{z}_{\leq t}, \tilde{\mathbf{x}}))} = \frac{\det \mathbf{L}_{t}(\mathbf{x}_{t})^{\beta}}{\sum_{\tilde{\mathbf{x}}} \det \mathbf{L}_{t}(\tilde{\mathbf{x}})^{\beta}}$$

Boltzmann exploration can be performed efficiently when $\beta=1$

$$\pi(\mathbf{x}_{t} \mid \mathbf{z}_{\leq t}) = \frac{\det \mathbf{L}_{t}(\mathbf{x}_{t})}{\sum_{\tilde{\mathbf{x}}} \det \mathbf{L}_{t}(\tilde{\mathbf{x}})} = \frac{\det \mathbf{L}_{t}(\mathbf{x}_{t})}{\det(\mathbf{L}_{t} + \mathbf{I})}$$

$$\int$$
Sum over 2^N terms
Determinant of N × N matrix

Nearly exact Boltzmann exploration with MCMC [Kang 2013 (for $\beta = 1$)]

- 1. Initialize \mathbf{x}
- 2. Repeat

$$\mathbf{x} \leftarrow \mathbf{x}'$$
 with probability $\min\left\{1, \left(\frac{\det \mathbf{L}_t(\mathbf{x}')}{\det \mathbf{L}_t(\mathbf{x})}\right)^{\beta}\right\}$

• When x' and x differs by one bit, det $L_t(x')$ can be computed from det $L_t(x)$ via rank-one update techniques

• Assume we can find $a \leftarrow \psi^{-1}(\mathbf{x})$

Simpler approaches: Heuristics for more exploration and exploitation

- For more exploration
 - Uniform with probability arepsilon
 - DPP with probability $1-\varepsilon$
- For more exploitation
 - Sample *M* actions according to DPP
 - Choose the best among *M*
- Hard-core point processes [Matérn 1986]

Any of these approaches are possible once we learn \mathbf{L}_t

Centralized Training and Decentralized Execution

So far,

Agents are trained and executed with central control

[Osogami & Raymond, AAAI-19]

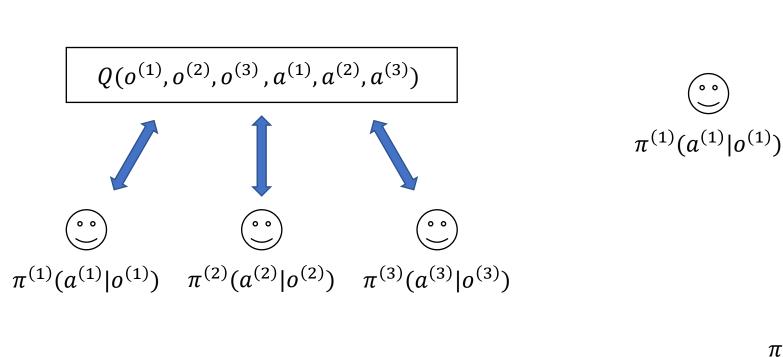
Recent trend is

Centralized Training and Decentralized Execution

[Yang et al., ICML 2020]

(C) Copyright IBM Corp. 2021

Centralized training



Decentralized execution

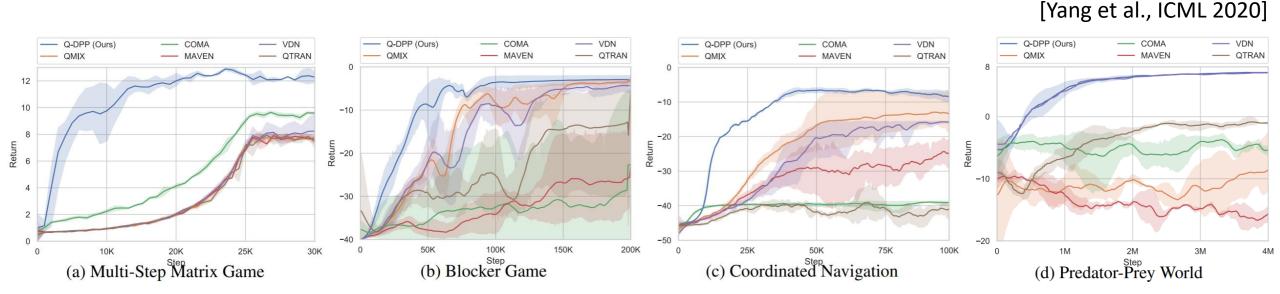
 $\pi^{(2)}(a^{(2)}|o^{(2)})$

Centralized Training and Decentralized Execution [Lowe+ 2017, Foerster+ 2017]

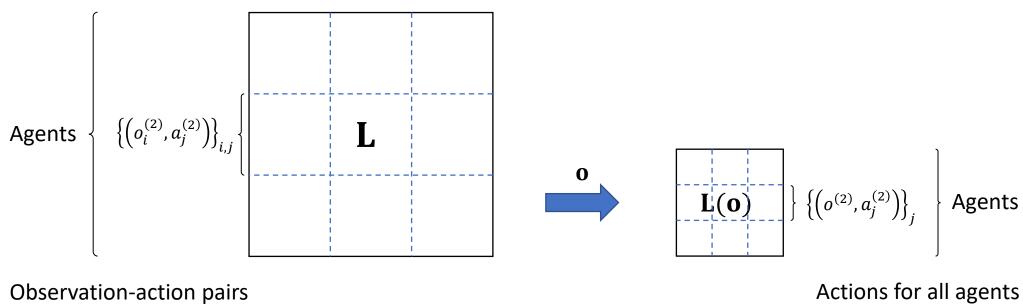
36

 $\pi^{(3)}(a^{(3)}|o^{(3)})$

Determinantal RL achieves state-of-the-art in the settings of decentralized execution



Kernel studied in Yang et al., ICML 2020



for all agents

Actions for all agents with given **o**

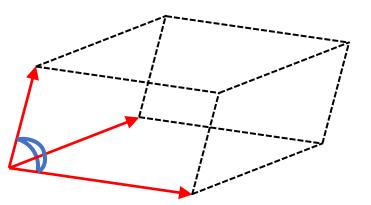
Summary

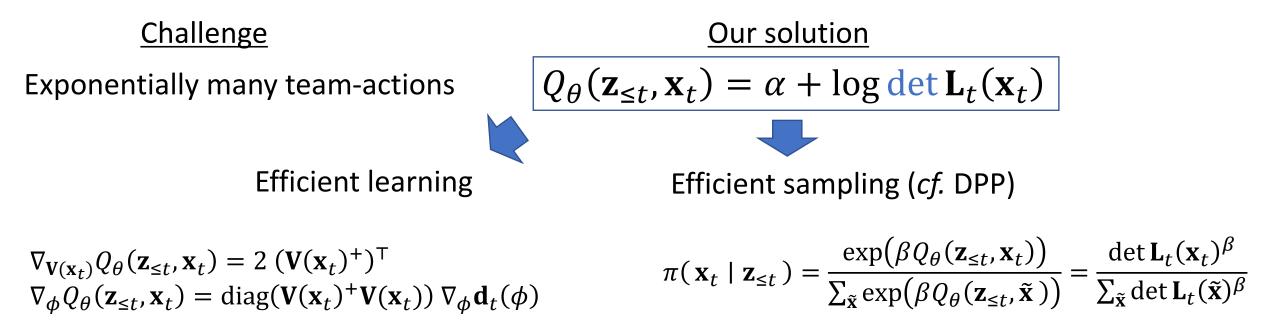
Need **diversity** in team-actions

Our definition of action similarity

similar <⇒ low value when taken together

dissimilar > high value when taken together





References

- T. Osogami and R. Raymond, Determinantal reinforcement learning, AAAI-19
- Y. Yang et al., Multi-Agent Determinantal Q-Learning, ICML 2020