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Reinforcement learning seeks to find an
optimal policy for sequential decision making

Action (4;)
Agent \ /

mT: S, - A, Observation (S;) Environment
Reward (R;) SiyAr = Ry, Spiq

Goal:
Maximize expected cumulative reward
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An approach of reinforcement learning is to
learn the action-value function

Action-value function: Q (s, a)

* Expected cumulative reward from state s by taking action a
and then following optimal policy

___________________________

Q(Sr Cl) = R(S; Cl) Ty ZP(S'|S, a) rnafilx Q(S,, Cl,) @L';_i _________ o i

7
R, R, Rs
Q(s, @)

* Assume (relaxed later): Markovian s is fully observable



For most practical tasks, the action-value
function needs to be approximated

Exponentially large state space Exponentially large action space

* Combination of multiple factors * Combination of multiple “levers”

* e.g. Factor: “state” of each position « Combination of multiple agents

Pommerman

CEC BF [ a6
e o )

e History of observations

» Cannot deal with Q(s, a) in tabular form
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Action-value functions approximated with
(deep) neural networks

e @(S' al) b

— Q(S, aZ)

Exponentially many
> units for exponentially
large action space

state s —

OOO0000000

Distributed representation
(e.g. each unit for each pixel)



Challenges in collaborative multi-agent
reinforcement learning

* Exponentially many combinations of actions (team-actions)

1. How to efficiently evaluate the value of team-actions
2. How to efficiently sample good team-actions

»



Taking into account diversity in
reinforcement learning



Want to take relevant and diverse actions in
team sports

Zone defense Man-to-man defense
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Consider the diversity of actions, in addition
to the value (relevance) of each action
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Value of team-action of 3 agents:
Volume? = Q(s, (aq, as, as))

Diversity

O, a)



Diversity can be represented by determinant

aq V11 V12 V13
_____________________________ ] /az\ /U21 V22 UZS\
”’¢" v=|%|_=|Ps1V32733
””””””””” / Ay V41 Va2 VU3
__________________ \a5 / \U51 Us2 Us3 /
"""“'~-----::::,,,’ L=VV'
,,,,,,,,,, x=(1,0,1,0,1,..) ~—— Indicate
,,,,, L(x) = V) Vx)T selected
Volume? actions
= Q(s, (ay, a3, as))

=det(VX) V(x)")



Our definition of diversity (similarity) in
multi-agent reinforcement learning

* The value of team-action is represented by determinant (volume)

Two actions are similar {——> Value is low when the two actions are taken together

Two actions are dissimilar <——> Value is high when the two actions are taken together

# We will learn the similarity between actions accordingly



We represent the action-value function with
determinant

H N
Qo(Z<s, X¢) = a + logdet Ly (x;) (xe)i = 14 I

* Z.s = (Z¢,24, ...,2;): Time-series of observations
* Z.; = S; if Markovian state s; is observable

* X, = Y(a,) € {0, 1}": Binary features of team-action a
* e.g. X; indicates which actions are selected by the team

* L;: Positive semi-definite matrix (kernel) that can depend on z;

(C) Copyright IBM Corp. 2021 13



Particular structure of the kernel for effective
learning

Qo(Z<s, X¢) = a + logdet Ly (x;)

° Lt =V Dt VT
* V: N X K matrix (K < N)
D, = Diagonal(exp(dt(¢)))

* d,(¢p): differentiable time-series model with parameter ¢
(e.e. RNN, LSTM, DyBM, VAR)



Special case of diagonal kernel reduces to the
standard approach of ighoring diversity

¢ Lt —_ Dt (letV: I)

D, = Diag(eXp(dt(¢))) L’..

* d;(¢p): differentiable time-series model (xp); =1

» Qo(Z<s, X¢) = a + logdet L (x;)
=a+d.(¢)"x;

L

= a + z d:();  Sum of the values of selected actions
i:(xp);=1 d;(¢);: value of a; at time t



Determinantal layer for diversity

state s — —> Qg(s,X;) = a + logdetL;(x;)

L, =V Dlag(exp(dt(qb))) 'l

OO0000000

d.(¢)
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Prior work uses free-energy of restricted
Boltzmann machines [Sallans & Hinton 2001]

hidden units

F(x) = — logz exp (—E(x, B))

h
E(xh)=-b'x—c"h—x"Wh

‘ No hidden units

F(x) = -b'x

= OO0O0000

Bias b represents individual
value of each action

< OO0000000

state-action pair
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Learning diversity via reinforcement
learning



Reinforcement learning with SARSA

 Tabular case
Q(s¢ ar) < Q(sg,ar) +nTDg

where TD; = 1y1q + p Q(St41, Apr1) — Q(St, ar)

N J N J
' Y
Cumulative reward Cumulative reward
from t from t

 With functional approximation: Qg(s,a) = Q(s,a)

0 < 0 +nTD. VgQg(st, ar)



Can learn our kernel L; via SARSA in an end-
to-end manner

* Qo(z<t,X¢) = a +logdet L (x¢)
o Lt =V Dt VT
D, = Diagonal(eXp(dt(¢)))

VaQo (zst»xt) =1
» Vv, Qo(Z<t, X)) =0
Vyx,) Ve (Z<, X)) =2 (V(x)D)T
V0o (z<e, X¢) = diag(V(x)™ V(x)) V¢dt(¢)

» 0 < 0 +nTD; VgQg (st ar)
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Example: Blocker Task

e Reward
e +1 when an attacker reaches the end zone ? @ @
e —1 each step ]
|
A\ {/‘

* We use target positions of agents as the feature of state-action pair
¢ Xt — l/)(at) = St4+1 (S {O, 1}21
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Determinantal SARSA finds a nearly optimal
policy 10 times faster than baseline methods

avg. reward per action

-0.77

-0.8¢

-0.9¢

= —
- - —

L

f’r‘flf
¥
L/1 —— SARSA
Ve ——NN
}f’ —=— EQNAC
-/ { ENATDAC
80000 240000
# actions

Determinantal SARSA

[Heese+ 2013]
SARSA: Free-energy SARSA

EQNAC: Energy-based Q-value natural actor critic

400000
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Quality-similarity decomposition of the kernel

* Value, relevance, quality

qi =+/L;;
e Similarity
Ly L _
Si,j — _
VLiiL;
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Value of individual actions (next positions)
learned by Determinantal SARSA

—




Similarity between actions (next positions)
learned by Determinantal SARSA

Recall:
Our definition of action similarity

similar <> low value when
taken together

dissimilar <> high value when
taken together
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Stochastic Policy Task

e 2N actions

e If action matches states
e Get +10 reward
e Hidden state transitions

-




Determinantal SARSA finds nearly optimal policies,
while baselines suffer from partial observability

10 Determinantal SARSA 10o- Determinantal SARSA 10 Determinantal SARSA
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(a) Task 1 (N = 5) (b) Task 2 (N = 6) (c) Task 3 (N = 8)

Baselines from [Heese+ 2013]
SARSA: Free-energy SARSA

EQNAC: Energy-based Q-value natural actor critic
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Choosing diverse actions



Want to sample actions having high value
with high probability
e e-greedy

e Uniformly at random with probability &
e Best action (a* = argmax, Q(s, a)) with probability 1 — ¢

» Intractable for large action space

* Boltzmann exploration
* Take action a with probability ~ exp(—f Q(s,a))
* [: inverse temperature



Choosing a diverse team-action with
Boltzmann exploration

X, = Y(a,) € {0, 1}V:
Binary features of team-action a;

e Our value function:

Qg(Z4,X:) = a + logdet L (x;)

* Team-action selected according to Boltzmann exploration

eXp(ﬁQG(Zst:Xt)) _ detLt(Xt)B
Yexp(BQo(z<:, X)) XgdetL (R)F

T(Xe | Zee ) =



Boltzmann exploration can be performed
efficiently when f =1

(x, |7.,) = detL;(x;)  detL;(x;)
TXe 12<t) =5 det L, (X)  det(L, + )

/ \

Sum over 2V terms Determinant of N X N matrix




Nearly exact Boltzmann exploration with
MCMC [Kang 2013 (for § = 1)]

1. Initialize x
2. Repeat

e xw o [ (et
X < X with probability min {1' ( det Lt(X)) }

* When X’ and x differs by one bit, det L, (x") can be computed from
det L;(x) via rank-one update techniques

e Assume we can find a « P~ 1(x)



Simpler approaches:
Heuristics for more exploration and exploitation

* For more exploration

* Uniform with probability &
* DPP with probability 1 — ¢

* For more exploitation
 Sample M actions according to DPP
* Choose the best among M

e Hard-core point processes [Matérn 1986]

Any of these approaches are possible once we learn L;



Centralized Training and Decentralized Execution



So far, Recent trend is

Agents are trained and executed Centralized Training and
with central control Decentralized Execution

[Osogami & Raymond, AAAI-19] [Yang et al., ICML 2020]



Centralized Training and Decentralized
Execution [Lowe+ 2017, Foerster+ 2017]

Centralized training Decentralized execution

000®, 0@ 6@ g1 4@ ()
7D (a0

3 (a®]03)

n(l)(a(l)lo(l)) 7T(z)(a(z)lo(z)) n(3)(a(3)|0(3))

1@ (a@|o2)
Viogrn®(a®|o®) @(o,a)



Determinantal RL achieves state-of-the-art in
the settings of decentralized execution

[Yang et al., ICML 2020]
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Kernel studied in Yang et al., ICML 2020

Agents - {(oi(z),afz))}i’j L -
SR S 0
) | L) |} (@) | Agents
Observation-action pairs Actions for all agents
for all agents with given o
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Summary



Need diversity in team-actions Our definition of action similarity

similar <= low value when
taken together

dissimilar <> high value when
taken together

Challenge Our solution
Exponentially many team-actions Qo(zZ<t,X;) = a + logdet Ly (x;)
Efficient learning Efficient sampling (cf. DPP)
VV(Xt)Qe (Z<p, X¢) = 2 (V(Xt)+)T m(X; | Z<p ) = EXp(,BQQ (Z<, Xt)) — det Lt(xt)ﬁ
Vg Qo (Z<t, Xe) = diag(V(x) TV (x,)) Vyde () T Xeexp(BQo(z<e, X)) TgdetL (0F
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