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Basics on Lattices
• For linearly independent 𝐛!, … , 𝐛" ∈ ℤ", 

𝐿 = ℒ 𝐛!,… , 𝐛" ∶= (
#$!

"

𝑥#𝐛# | 𝑥# ∈ ℤ

is a (full-rank) lattice of dimension 𝑛
– 𝐁 = (𝐛!, … , 𝐛"): a basis of 𝐿

• Regard it as the 𝑛×𝑛 matrix
– Infinitely many bases if 𝑛 ≥ 2

• If 𝐁! and 𝐁% span the same lattice, 
• then ∃𝐕 ∈ GL"(ℤ) such that 𝐁! = 𝐁%𝐕

– vol 𝐿 = det 𝐁 :  the volume of 𝐿
• Independent of the choice of bases
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𝐛!

𝐛"

Integral combination

A lattice of dimension 𝑛 = 2



Lattices in Cryptography
• Post-Quantum Cryptography (PQC) Standardization

– Since 2015, National Institute of  Standards and Technology (NIST) has 
proceeded a standardization project for PQC
• To standardize quantum-resistant public-key cryptographic algorithms
• Post-Quantum Cryptography | CSRC (nist.gov)

– In July 2020, NIST selected 7 Finalists and 8 Alternates
• 7 lattice-based schemes are now in evaluation at the 3rd round

– 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)
– 2 Alternates (FrodoKEM, NTRUprime)

3NIST Status Update on the 3rd Round (PDF)

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/CSRC/media/Presentations/status-update-on-the-3rd-round/images-media/session-1-moody-nist-round-3-update.pdf


Lattice Problems

• Algorithmic problems for lattices
– SVP (Shortest Vector Problem)

• Given a basis 𝐁 = (𝐛!, … , 𝐛") of a lattice 𝐿
• Find a non-zero shortest vector in 𝐿

– CVP (Closest Vector Problem)
– LWE (Learning with Errors)
– NTRU, etc.

• Relationship with cryptography
– The security of lattice-based cryptography is 

based on the hardness of lattice problems
– In particular, the hardness of SVP and CVP 

supports the security of most schemes
4

Our focus 𝐛!

𝐛"
𝐯

SVP in a two-dimensional lattice

• Given linearly independent 𝐛", 𝐛!
• Find a non-zero shortest vector 

𝐯 = 𝑎"𝐛" + 𝑎!𝐛! for some 𝑎", 𝑎! ∈ ℤ



Known Results for 𝜆!(𝐿)
• The first successive minimum

– Define 𝜆! 𝐿 as the length of a non-zero shortest vector in a lattice 𝐿
– SVP is the problem that finds 𝐬 ∈ 𝐿 such that 𝐬 = 𝜆!(𝐿)

• Theoretical results
– Minkowski’s convex body theorem implies 

𝜆! 𝐿 ≤ 2𝜔"
'!"vol 𝐿

!
"

for any lattice 𝐿 of dimension 𝑛 (𝜔": the volume of the unit ball in ℝ")
• Heuristic results

– The Gaussian Heuristic implies 

𝜆! 𝐿 ≈ 𝜔"
'!"vol 𝐿

!
" ∼ 2𝑛 2𝜋𝑒 vol 𝐿

!
" =: GH(𝐿)

• The Gaussian Heuristic: The number of vectors in 𝐿 ∩ 𝑆 is roughly equal to 
vol 𝑆 /vol(𝐿) for a measurable set 𝑆 in ℝ"

• It holds in practice for “random” lattices in high dimensions 𝑛 ≥ 50 5



SVP Challenge 

• The Darmstadt SVP challenge
– Sample bases 𝐁 = (𝐛!, … , 𝐛") are 

presented for dimensions 40 ≤ 𝑛 ≤ 198
– Any vector 𝐯 ∈ 𝐿 = ℒ(𝐁) of length

𝐯 < 1.05GH(𝐿) ≈ 1.05𝜆!(𝐿)
can be submitted to the hall of fame
• That is, approximate SVP with factor 1.05

– The current highest dimension to be 
solved is 𝒏 = 𝟏𝟖𝟎 (141.pdf (iacr.org))
• It took about 51.6 days on a server with 4 

NVIDIA Turing GPUs with 1.5 TB RAM
• But the record must be not the shortest 

(since its approximation factor is about 1.04)
6SVP Challenge (latticechallenge.org)

https://eprint.iacr.org/2021/141.pdf
https://www.latticechallenge.org/svp-challenge/


Lattice Basis Reduction
• Strong tool for solving lattice problems including SVP

– Find a basis 𝐁 = (𝐛!, … , 𝐛") with short and nearly orthogonal vectors
• Such a basis is called “good” or “reduced”
• Some basis vectors 𝐛#’s are very short

– Consist of basic unimodular transformations
① Multiply by (-1): 𝐛# ← −𝐛#
② Swap 𝐛# and 𝐛$
③ Multiply (by integer)-Add: 𝐛# ← 𝐛#+a𝐛$ (𝑎 ∈ ℤ)
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LLL (1/3): 
Definition and Properties
• Lenstra-Lenstra-Lovász (LLL)-reduction [LLL82]

– 𝐁 = (𝐛!, … , 𝐛") is δ-LLL-reduced if it satisfies two conditions

① Size-reduced: 𝜇#( ≤ %
& for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

② Lovász’ condition: 𝐛)∗ % ≥ 𝛿 − 𝜇),)'!% 𝐛)'!∗ %

– #
$ < 𝛿 < 1: reduction parameter (e.g., 𝛿 = 0.99 for practice)

– 𝐁∗ = (𝐛!∗ , … , 𝐛"∗ ), 𝜇 = (𝜇#$): Gram-Schmidt information of 𝐁: 

𝐛!∗ = 𝐛!, 𝐛#
∗ = 𝐛# − ∑$(!

#)! 𝜇#$𝐛$
∗ , 𝜇#$ =

⟨𝐛%, 𝐛&
∗⟩

𝐛&
∗ (

– Every LLL-reduced basis 𝐁 = (𝐛!, … , 𝐛") of a lattice 𝐿 satisfies

• 𝐛! ≤ 𝛼
./%
& 𝜆!(𝐿), where 𝛼 = ,

,-'!
> ,

.

• 𝐛! ≤ 𝛼
./%
0 vol 𝐿

%
.

8[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovász, “Factoring polynomials with rational coefficients”, 
Mathematische Annalen 261 (4): 515—534 (1982).  



LLL (2/3): 
Basic Algorithm
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①

• It consists of two procedures to find an LLL-reduced basis 
① Size-reduction: 𝐛, ← 𝐛, − 𝑞𝐛- with 𝑞 = ⌊𝜇,,-⌉
② Swap adjacent vectors: 𝐛,.* ↔ 𝐛, if they do not satisfy Lovász’ condition

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

②

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15


LLL (3/3): 
Sage Code
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Please use
Sage Cell Server 
(sagemath.org)

https://sagecell.sagemath.org/


Enumeration (1/3):
Basic Idea
• Enumerate all vectors 𝐬 = ∑𝒗𝒊𝐛𝒊 ∈ 𝓛(𝐁) such that 𝐬 ≤ 𝑹

– 𝑅 > 0: search radius (e.g., 𝑅 = 1.05GH(𝐿))
– With Gram-Schmidt information, write 

𝐬 = 1
!"#

$

𝑣! + 1
%"!&#

$

𝜇%!𝑣% 𝐛!∗

– By the orthogonality of Gram-Schmidt vectors, 

𝜋( 𝐬 ) = 1
!"(

$

𝑣! + 1
%"!&#

$

𝜇%!𝑣%

)

𝐛!∗
)

for 1 ≤ 𝑘 ≤ 𝑛, where 𝜋) denotes the projection map to 𝐛)∗ , … , 𝐛"∗ ℝ
– Consider 𝑛 inequalities 𝜋) 𝐬 % ≤ 𝑅% for 1 ≤ 𝑘 ≤ 𝑛: 

𝑣$) ≤ 9𝑅)
𝐛$∗ )

𝑣$*# + 𝜇$,$*#𝑣$
)
≤ ;𝑅) − 𝑣$) 𝐛$∗ )

𝐛$*#∗ )

⋮ 11

𝐛!

𝐛"
𝐯



Enumeration (2/3):
Basic Algorithm

12A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

⋯

𝑣"
𝑣")!

𝑣!

⋯ ⋯
⋯ ⋯
⋯ ⋯

• Enumerate lattice vectors
𝐬 = ∑𝑣#𝐛# ∈ 𝐿

such that 𝐬 ≤ 𝑅
• Built an enumeration tree 

to find integral 
combinations (𝑣!, … , 𝑣")

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15


Enumeration (3/3):
Sage Code
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BKZ (1/3):
Definition and Properties
• Block Korkine-Zolotarev (BKZ)-reduction

– A blockwise generalization of LLL with blocksize 𝛽
– 𝐁 = (𝐛!, … , 𝐛") is 𝜷-BKZ-reduced if it satisfies two conditions
① It is size-reduced (same as LLL)
② The k-th Gram-Schmidt vector 𝐛)∗ is shortest in 𝐿[), ℓ] with ℓ =

min(𝑘 + 𝛽 − 1, 𝑛) for all 1 ≤ 𝑘 < 𝑛

– Every 𝛽-BKZ-reduced basis 𝐁 = (𝐛!, … , 𝐛") of a lattice 𝐿 satisfies 

𝐛! ≤ 𝛾A

"'!
A'!𝜆!(𝐿)

• 𝛾1: Hermite’s constant of dimension 𝛽, i.e., 𝛾1 = sup
2

J3# 2 (

456 2 (/*

• As 𝛽 increases, 𝛾1
!/(1)!) decreases and thus 𝐛! can be shorter 14



BKZ (2/3):
Basic Algorithm

15A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

• It consists of LLL and ENUM:
– Call ENUM to find a non-zero shortest vector in 𝐿[), ℓ]
– Call LLL to reduce a projected block basis of 𝐿[), ℓ]

𝐁 =

𝐛*
𝐛)
⋮
⋮
⋮
𝐛+

Block of 
size β

※ As reference, 
please look at 
BKZ-60 – YouTube
by Martin Albrecht

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15
https://www.youtube.com/watch?v=cNNLrmbWsa4


BKZ (3/3): 
Sage Code

16



DeepBKZ (1/6): 
New Reduction 
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LLL

DeepLLL “DeepBKZ”

BKZ

insertion 
improvement

Blockwise
generalization

Enhancement

• The most famous and typical
• Only adjacent basis vectors can 

be swapped
• Polynomial-time algorithm 

• Simple generalization of LLL
• Non-adjacent basis vectors can 

be swapped
• No longer polynomial-time

• Blockwise generalization of LLL
• It calls enumeration over block 

projected lattices, and LLL before 
enumeration

• New Reduction [YY17]
• A combination of DeepLLL and BKZ

[YY17] J. Yamaguchi and M. Yasuda, Explicit formula for Gram-Schmidt vectors in LLL with deep insertions and its applications, 
in: NuTMiC 2017, Lecture Notes in Computer Science 10737, Springer, pp. 142–160, 2017.



DeepBKZ (2/6):
Basic Construction
• Enhancement of BKZ

– Call DeepLLL as a subroutine in BKZ
• DeepLLL is a straightforward 

generalization of LLL
• It is called before every SVP oracle over 

a β-dimensional lattice

18

• Features
– Even small β can find a very short lattice vector
– DeepLLL is somewhat costly
– But for β≧30, SVP-calls are dominant and the cost is same as BKZ



DeepBKZ (3/6):
Gram-Schmidt Formula
• Complex basis transformation (general form)

– 𝐁 = (𝐛!, … , 𝐛")→ 𝐂 = (𝐛!, … , 𝐛)'!, 𝐯, 𝐛), … , 𝐛"'!)
• 𝐯 = ∑#(!" 𝑥#𝐛# =∑#(!" 𝜈#𝐛#∗ for some 𝑥# ∈ ℤ with 𝑥" = ±1

• Gram-Schmidt formula in DeepLLL[YY+15, YY17]

– This enables to make DeepLLL practical like LLL

19

insert

[YY+15] M. Yasuda, K. Yokoyama et al. Analysis of decreasing squared-sum of Gram-Schmidt lengths for short lattice vectors, 
Journal of Mathematical Cryptology, Vol. 11, No. 1, pp. 1—24 (2015). 



DeepBKZ (4/6): 
Properties of Reduction
• 𝐁 = (𝐛!, … , 𝐛"): DeepBKZ-reduced
① δ-DeepLLL-reduced (1/4<δ<1)

• Size-reduced
• 𝛿 𝐛#∗ : ≤ 𝜋# 𝐛; : for all 𝑖 < 𝑘

② β-BKZ-reduced (2≦β≦n)
• 𝐛#

∗ = 𝜆!(𝜋#(𝐿)) for all 1 ≤ 𝑖 ≤ 𝑛
(𝜋# is the orthogonal projection)

• Then we have 

20

𝛿 𝐛! : ≤ 𝐛1<!
:
≤ 𝐛1<!

∗ :
+
1
4
U
$(!

1

𝐛$∗
:

𝛿 −
1
4

𝐛! :

𝐛1<!
∗ : ≤ 1 +

1
4
U
$(:

1
𝐛$∗

:

𝐛1<!
∗ : ≤ 1 +

𝐶1
4
,

where 𝐶1 = max∑#(!
1)! 𝐛%

∗ (

𝐛+
∗ ( over all HKZ-reduced (𝐛!, … , 𝐛1)



DeepBKZ (5/6): 
Provable Output Quality
• Lemma[YNY20]

– Every DeepBKZ-reduced basis 𝐁 = (𝐛!, … , 𝐛") satisfies 
𝐛! :

𝐛#1<!
∗ : ≤ 𝛼 1 +

𝐶1
4

1 +
𝛼 1 + 𝐶1

4

#)!

for 𝑖 ≥ 1, where 𝛼 = ,
,-'!

> ,
.

• Theorem[YNY20]

– 𝐁 = (𝐛!, … , 𝐛"): (δ, β)-DeepBKZ-reduced basis of 𝐿
– Assume 𝑛 is divisible by 𝛽 with 𝑝 = "

A
≥ 2

– Then we have 

𝐛!
vol 𝐿 !/" ≤ 𝛾1 𝛼 1 +

𝐶1
4

1 =)!
:"

1 +
𝛼 1 + 𝐶1

4

1(=)!)(=):)
>"

where 𝛾A is Hermite’s constant of dimension β

21[YNY20] M. Yasuda, S. Nakamura and J. Yamaguchi, Analysis of DeepBKZ reduction for finding short lattice vectors, 
Design, Codes and Cryptography, Vol. 88, No. 19, pp. 2077—2100 (2020).  



DeepBKZ（6/6）：
Practical Output Quality

22



New SVP Solutions
by (Parallel) DeepBKZ

• DeepBKZ found many new 
solutions for the SVP challenge
– In most dimensions up to n = 128
– We used blocksizes β = 30--45 
– Our solutions are the shortest or 

very close to it
• Since their approximation factors are 

close to 1.0 (0.98470 for n = 128)

– For n = 128, it took about 57.5 
hours by massive parallel 
computation using 24,576 cores

23SVP Challenge (latticechallenge.org)

https://www.latticechallenge.org/svp-challenge/halloffame.php


Massive Parallelization 
of DeepBKZ（1/5）

• Parallel sharing DeepBKZ
– Distributed and asynchronous system using randomization and DeepBKZ
– Using CMAP-LAP[TS+21], a general framework for lattice algorithms

24

[TS+20] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, Massive Parallelization for Finding Shortest Lattice 
Vectors Based on Ubiquity General Framework, High Performance Computing, Networking, Storage, and Analysis (SC 20). 

[TS+21] N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, CMAP-LAP: Configurable Massively Parallel Solver for 
Lattice Problems, ZIB-Report 21-16 (to appear in High Performance Computing, HiPC 2021)

Supervisor-Solvers Style
• Every solver runs DeepBKZ on a randomized 

basis independently
• Supervisor collects short basis vectors from 

solvers, and distributes them to solvers
• Every solver uses distributed vectors to 

accelerate its reduction process
（See [TS+20] for sharing a shortest basis vector）



Massive Parallelization 
of DeepBKZ（2/5）
• Efficacy of parallel sharing DeepBKZ

– Sharing k = 16 short basis vectors among solvers for dimension d = 120 

25



Massive Parallelization 
of DeepBKZ（3/5）

• Output quality of parallel sharing DeepBKZ
– For an output basis 𝐁 = (𝐛!, … , 𝐛") of parallel sharing DeepBKZ, 

– Gaps 𝐛?
∗

@A(B?(C))
are shown in the below Figure

⇒ First k = 16 basis vectors are close to the shortest in projected lattices
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Massive Parallelization 
of DeepBKZ（4/5）

• Large-scale experiments
– A very short lattice vector in a lattice of 

dimension around d = 130 can be found 
within 100 hours on supercomputers
• Without using the sub-sieve strategy

– Small blocksizes β = 30—40 are enough 
for parallel sharing DeepBKZ

27



Massive Parallelization 
of DeepBKZ（5/5）
• Future Work: Use of our CMAP-LAP framework[TS+21]

– Supervisor-Worker parallelization type
– Heterogeneous execution of lattice algorithms (Reduction, ENUM, Sieve)
– Acceleration by asynchronously sharing lattice vectors via vector pool
⇒ We will embed optimal algorithms (e.g., pruned ENUM, sieve) in our 
framework for solving high-dimensional lattice problems
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