

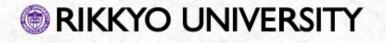
® RIKKYO UNIVERSITY

九大IMI共同利用研究集会 "Design and Evaluation for New-generation Cryptography" 「新世代暗号の設計・評価」

Introduction to lattice basis reduction and its massive parallelization (格子基底簡約とその大規模並列化の紹介)

Masaya Yasuda (Rikkyo University) November 16, 2021 15:40 - 16:40

Basics on Lattices



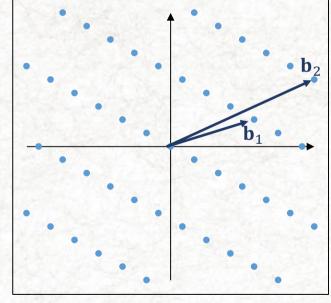
Integral combination

$$L = \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n) := \left\{ \sum_{i=1}^n x_i \mathbf{\tilde{b}}_i \mid x_i \in \mathbb{Z} \right\}$$

is a (full-rank) lattice of dimension n

For linearly independent $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{Z}^n$,

- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: a **basis** of *L*
 - Regard it as the $n \times n$ matrix
- Infinitely many bases if $n \ge 2$
 - If B₁ and B₂ span the same lattice,
 - then $\exists \mathbf{V} \in \operatorname{GL}_n(\mathbb{Z})$ such that $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{V}$
- $\operatorname{vol}(L) = |\operatorname{det}(\mathbf{B})| : \text{ the volume of } L$
 - Independent of the choice of bases



A lattice of dimension n = 2

Lattices in Cryptography INIVERSITY

- Post-Quantum Cryptography (PQC) Standardization
 - Since 2015, National Institute of Standards and Technology (NIST) has proceeded a standardization project for PQC
 - To standardize quantum-resistant public-key cryptographic algorithms
 - <u>Post-Quantum Cryptography | CSRC (nist.gov)</u>
 - In July 2020, NIST selected 7 Finalists and 8 Alternates
 - 7 lattice-based schemes are now in evaluation at the 3rd round
 - 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)

	Signatures		KEM/Encryption		Overall				Finalists	Alternates
	Rd 1	Rd 2	Rd 1	Rd 2	Rd 1	Rd 2		KEMs/Encryption	Kyber NTRU	Bike FrodoKEM
Lattice-based	5	3	21	9	26	12	1	KEMS/ Elici yption	SABER Classic McEliece	HQC NTRUprime
Code-based	2		17	7	19	7				SIKE
Multi-variate	7	4	2		9	4		Signatures	Dilithium	GeMSS
Hash/Symmetric	3	2			3	2		Signatures	Falcon Rainbow	Picnic SPHINCS+
Other	2		5	1	7	1		NICT Status	Update on the 3rd R	ound (PDF) 3
Total	19	10	45	16	64	26		INIST Status	opuale on the Sturk	<u>ounu</u> (FDF) 5

- 2 Alternates (FrodoKEM, NTRUprime)

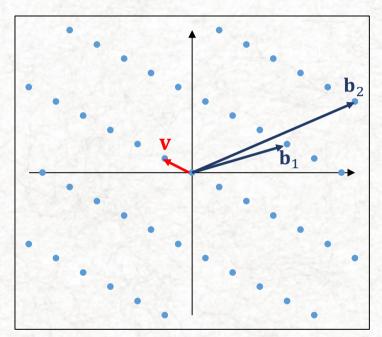
Lattice Problems

Algorithmic problems for lattices

- SVP (Shortest Vector Problem) Our focus
 - Given a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L
 - Find a non-zero shortest vector in L
- CVP (Closest Vector Problem)
- LWE (Learning with Errors)
- NTRU, etc.

Relationship with cryptography

- The security of lattice-based cryptography is based on the hardness of lattice problems
- In particular, the hardness of SVP and CVP supports the security of most schemes



SVP in a two-dimensional lattice

- Given linearly independent $\mathbf{b}_1, \mathbf{b}_2$
- Find a non-zero shortest vector

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2$ for some $a_1, a_2 \in \mathbb{Z}$

Known Results for $\lambda_1(L)$ **RIKKYO UNIVERSITY**

The first successive minimum

- Define $\lambda_1(L)$ as the length of a non-zero shortest vector in a lattice L
- SVP is the problem that finds $\mathbf{s} \in L$ such that $||\mathbf{s}|| = \lambda_1(L)$
- Theoretical results
 - Minkowski's convex body theorem implies

$$\lambda_1(L) \le 2\omega_n^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}}$$

for any lattice L of dimension n (ω_n : the volume of the unit ball in \mathbb{R}^n)

- Heuristic results
 - The Gaussian Heuristic implies

$$\lambda_1(L) \approx \omega_n^{-\frac{1}{n}} \operatorname{vol}(L)^{\frac{1}{n}} \sim \sqrt{n/2\pi e} \operatorname{vol}(L)^{\frac{1}{n}} =: \operatorname{GH}(L)$$

- The Gaussian Heuristic: The number of vectors in L ∩ S is roughly equal to vol(S)/vol(L) for a measurable set S in ℝⁿ
- It holds in practice for "random" lattices in high dimensions $n \ge 50$

SVP Challenge



The Darmstadt SVP challenge

- Sample bases $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ are presented for dimensions $40 \le n \le 198$
- Any vector $\mathbf{v} \in L = \mathcal{L}(\mathbf{B})$ of length $\|\mathbf{v}\| < 1.05 \text{GH}(L) \approx 1.05 \lambda_1(L)$ can be submitted to the hall of fame
 - That is, approximate SVP with factor 1.05
- The current highest dimension to be solved is n = 180 (141.pdf (iacr.org))
 - It took about 51.6 days on a server with 4 NVIDIA Turing GPUs with 1.5 TB RAM
 - But the record must be not the shortest (since its approximation factor is about 1.04)

SVP CHALLENGE INTRODUCTION SUBMISSION This page presents sample lattices for testing algorithms that solve the shortest vector problem (SVP) in euclidean lattices. The SVP challenge helps assessing the strength of SVP algorithms, and serves to compare different types of algorithms, like sieving and DOWNLOAD enumeration. The lattices presented here are random lattices in the sense of Goldstein and Generate online Maver Generator PARTICIPATION How to participate: You can either (generated with seed=0) download a sample lattice on the right side, or 40 47 44 50 52 54 56 58 use the generator online to produce a lattice with (integer) seeds of your choice, or 60 62 download the generator and install it with an NTL older than NTL 9.4 (necessary since 70 72 NTL 9.4 and later versions use a different pseudorandom number generator) to create challenges on your local machine 90 92 How to enter the Hall of Fame: 100 102 104 106 108 To enter the hall of fame, you have to submit a vector with Higher dimension and Euclidean norm less than 130 132 134 136 138 $\Gamma(n/2+1)^{1/2}$ $\cdot (\det \mathcal{L})^{1/n}$ 140 142 144 146 148 150 152 154 156 158 (which is an estimation of the length of a shortest vector in the lattice), or 160 162 164 166 168 A shorter vector than a previous one in the same dimension (with possibly different seed) 180 182 184 186 188 Acknowledgment: 190 192 194 196 198 Special thanks to Yuntao Wang and Junpei Yamaguchi for pointing out the change in the NTL pseudorandom generator and to Yuntao Wang for helping with the online version of the Download all generator. HALL OF FAME LINKS Euclidean Position Dimension Seed Contestant Solution norm L. Ducas, M. Stevens, W. van 1 180 3509 vec Woerder L. Ducas, M. Stevens, W. van 178 3447 vec Woerden L. Ducas, M. Stevens, W. van 176 3487 vec Woerden

L. Ducas, M. Stevens, W. van

Woerden

Sho Hasegawa, Yuntao Wang, Eiichiro

Futisak

SVP Challenge (latticechallenge.org)

vec

CONTACT

6

170

158

5

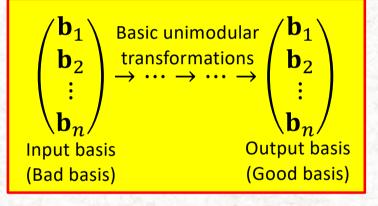
3438

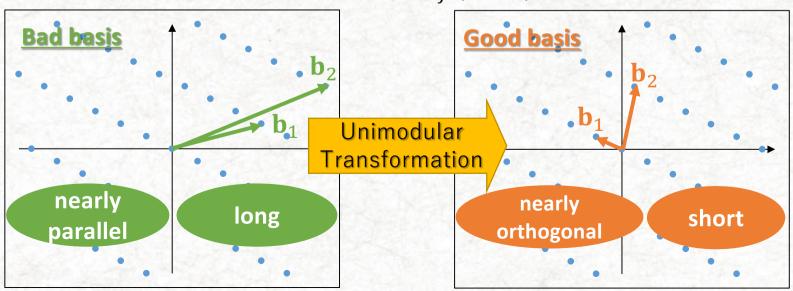
3240

Lattice Basis Reduction

- Strong tool for solving lattice problems including SVP
 - Find a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ with short and nearly orthogonal vectors
 - Such a basis is called "good" or "reduced"
 - Some basis vectors **b**_i's are very short
 - Consist of basic unimodular transformations
 - (1) Multiply by (-1): $\mathbf{b}_i \leftarrow -\mathbf{b}_i$
 - (2) Swap \mathbf{b}_i and \mathbf{b}_j

③ Multiply (by integer)-Add: $\mathbf{b}_i \leftarrow \mathbf{b}_i + a\mathbf{b}_j \ (a \in \mathbb{Z})$





LLL (1/3): Definition and Properties **RIKKYO UNIVERSITY**

- Lenstra-Lenstra-Lovász (LLL)-reduction [LLL82]
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is **\delta-LLL-reduced** if it satisfies two conditions
 - **1** Size-reduced: $|\mu_{ij}| \le \frac{1}{2}$ for all $1 \le j < i \le n$

2 Lovász' condition: $\|\mathbf{b}_k^*\|^2 \ge (\delta - \mu_{k,k-1}^2) \|\mathbf{b}_{k-1}^*\|^2$

 $-\frac{1}{4} < \delta < 1$: reduction parameter (e.g., $\delta = 0.99$ for practice)

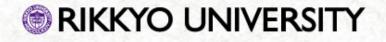
-
$$\mathbf{B}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*), \mu = (\mu_{ij})$$
: Gram-Schmidt information of **B**:

$$\mathbf{b}_{1}^{*} = \mathbf{b}_{1}, \ \mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} \mathbf{b}_{j}^{*}, \ \mu_{ij} = \frac{\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \rangle}{\left\| \mathbf{b}_{j}^{*} \right\|^{2}}$$

- Every LLL-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies
 - $\|\mathbf{b}_1\| \le \alpha^{\frac{n-1}{2}} \lambda_1(L)$, where $\alpha = \frac{4}{4\delta 1} > \frac{4}{3}$
 - $\|\mathbf{b}_1\| \le \alpha^{\frac{n-1}{4}} \operatorname{vol}(L)^{\frac{1}{n}}$

[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovász, "Factoring polynomials with rational coefficients", Mathematische Annalen 261 (4): 515–534 (1982).

LLL (2/3): Basic Algorithm



It consists of two procedures to find an LLL-reduced basis

- **1** Size-reduction: $\mathbf{b}_k \leftarrow \mathbf{b}_k q\mathbf{b}_j$ with $q = \lfloor \mu_{k,j} \rfloor$
- **2** Swap adjacent vectors: $\mathbf{b}_{k-1} \leftrightarrow \mathbf{b}_k$ if they do not satisfy Lovász' condition

Algorithm: The basic LLL Lenstra et al. (1982)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice *L*, and a reduction parameter $\frac{1}{4} < \delta < 1$ **Output:** A δ -LLL-reduced basis **B** of *L*

1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of the input basis **B** 2: $k \leftarrow 2$

3: while $k \leq n$ do

4: Size-reduce $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ // At each k, we recursively change $\mathbf{b}_k \leftarrow \mathbf{b}_k - \lfloor \mu_{k,j} \rceil \mathbf{b}_j$ for $1 \le j \le k - 1$ (e.g., see Galbraith 2012, Algorithm 24)

- 5: **if** $(\mathbf{b}_{k-1}, \mathbf{b}_k)$ satisfies Lovász' condition **then** 6: $k \leftarrow k+1$
 - 7: else

(2) 8: Swap \mathbf{b}_k with \mathbf{b}_{k-1} , and update Gram–Schmidt information of **B**

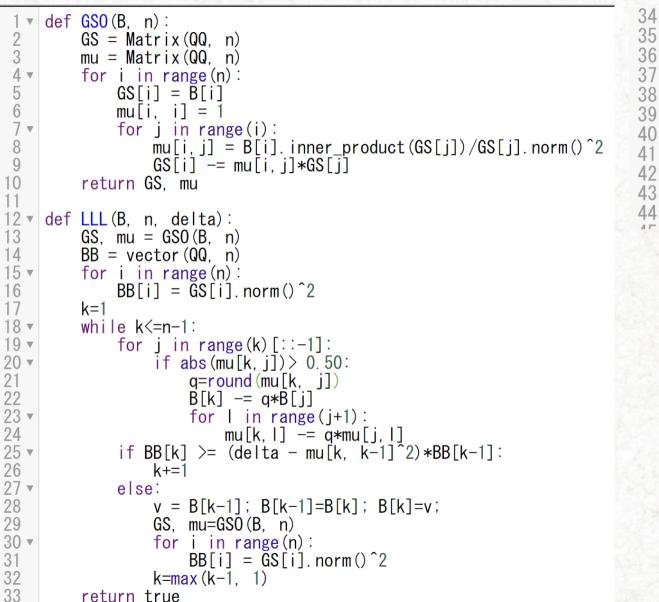
$$b: \quad k \leftarrow \max(k-1,2)$$

10: end if

11: end while

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

LLL (3/3): Sage Code



35 n = 10; d = 10000036 B = Matrix(ZZ, n)37 • for i in range(0, n): 38 B[i, i] = 139 B[i, 0] = randint(-d, d)40 print("Input basis") show(B) 41 42 LLL (B. n. 0.99) 43 print("¥nOutput basis") 44 show(B)

> Please use Sage Cell Server (sagemath.org)

Enumeration (1/3): Basic Idea

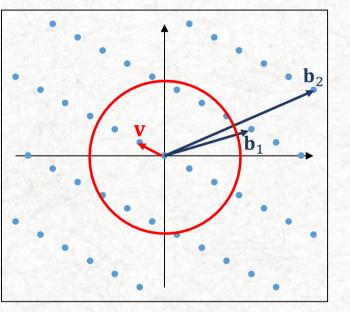
® RIKKYO UNIVERSITY

- Enumerate all vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{s}\| \leq \mathbf{R}$
 - -R > 0: search radius (e.g., R = 1.05GH(L))
 - With Gram-Schmidt information, write

$$\mathbf{s} = \sum_{j=1}^{n} \left(v_j + \sum_{i=j+1}^{n} \mu_{ij} v_i \right) \mathbf{b}_j^*$$

By the orthogonality of Gram-Schmidt vectors,

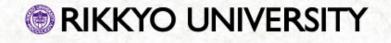
$$\|\pi_k(\mathbf{s})\|^2 = \sum_{j=k}^n \left(v_j + \sum_{i=j+1}^n \mu_{ij} v_i \right)^2 \|\mathbf{b}_j^*\|^2$$



for $1 \le k \le n$, where π_k denotes the projection map to $\langle \mathbf{b}_k^*, ..., \mathbf{b}_n^* \rangle_{\mathbb{R}}$ - Consider *n* inequalities $\|\pi_k(\mathbf{s})\|^2 \le R^2$ for $1 \le k \le n$:

$$\begin{cases} v_n^2 \leq \frac{R^2}{\|\mathbf{b}_n^*\|^2} \\ \left(v_{n-1} + \mu_{n,n-1}v_n\right)^2 \leq \frac{R^2 - v_n^2 \|\mathbf{b}_n^*\|^2}{\|\mathbf{b}_{n-1}^*\|^2} \end{cases}$$

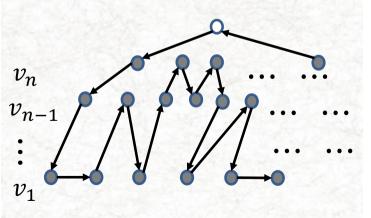
Enumeration (2/3): Basic Algorithm



Algorithm: The basic Schnorr–Euchner enumeration Schnorr and Euchner (1994)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L and a radius R with $\lambda_1(L) \leq R$ **Output:** The shortest non-zero vector $\mathbf{s} = \sum_{i=1}^{n} v_i \mathbf{b}_i$ in L 1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of **B** 2: $(\rho_1, \ldots, \rho_{n+1}) = \mathbf{0}, (v_1, \ldots, v_n) = (1, 0, \ldots, 0), (c_1, \ldots, c_n) = \mathbf{0}, (w_1, \ldots, w_n) =$ A 3: k = 1, last_nonzero = 1 // largest *i* for which $v_i \neq 0$ 4: while true do $\rho_k \leftarrow \rho_{k+1} + (v_k - c_k)^2 \cdot \|\mathbf{b}_k^*\|^2 // \rho_k = \|\pi_k(\mathbf{s})\|^2$ if $\rho_k < R^2$ then 6: if k = 1 then $R^2 \leftarrow \rho_k$, $\mathbf{s} \leftarrow \sum_{i=1}^n v_i \mathbf{b}_i$; // update the squared radius 7: else $k \leftarrow k-1, c_k \leftarrow -\sum_{i=k+1}^n \mu_{i,k} v_i, v_k \leftarrow \lfloor c_k \rceil, w_k \leftarrow 1;$ 8: else 9: $k \leftarrow k + 1$ // going up the tree 10: if k = n + 1 then return s; 11: if $k \geq last_nonzero$ then last_nonzero $\leftarrow k, v_k \leftarrow v_k + 1$; 12: else 13: if $v_k > c_k$ then $v_k \leftarrow v_k - w_k$; else $v_k \leftarrow v_k + w_k$; // zig-zag search 14: $w_k \leftarrow w_k + 1$ 15: end if 16: end if 17: 18: end while

- Enumerate lattice vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in L$ such that $\|\mathbf{s}\| \leq R$
- Built an enumeration tree to find integral combinations (v₁, ..., v_n)



Enumeration (3/3): Sage Code

® RIKKYO UNIVERSITY

```
1 ▼ def <u>GSO</u>(B, n):
          GS = Matrix(QQ, n)
          mu = Matrix(QQ, n)
          for i in range(n):
 4
 5
               GS[i] = B[i]
 6
               mu[i, i] = 1
               for i in range(i):
 8
                    mu[i, j] = B[i].inner_product(GS[j])/GS[j].norm()^2
 9
                    GS[i] -= mu[i, j]*GS[j]
10
          return GS. mu
11
     def ENUM(B, n, R):
12 -
          GS, mu = GSO(B, n)
13
14
          BB = vector(QQ, n)
          for i in range(n):
BB[i] = GS[i].norm()^2
sigma = Matrix(QQ, n+1, n)
15 •
16
17
18
          r = vector(ZZ, n+1)
          rho = vector (00, n+1)
19
          v = vector(ZZ, n)

c = vector(QQ, n)

w = vector(ZZ, n)
20
21
22
23 •
24
25
26
27
28 •
29
30 •
31 •
          for i in range(n+1):
               r[i] = i
          v[0] = 1
          last_nonzero = 1
          k = 1
          while (1):
               rho[k-1] = rho[k] + (v[k-1] - c[k-1])^{2*BB[k-1]}
               if \overline{RR}(rho[k-1]) \le RR(\overline{R}):
                    if k==1:
32
33
34
35
                         print("Solution found"); return v
                    k = k-1
                    r[k-1] = max(r[k-1], r[k])
                    for i in range(k+1, r[k]+1)[::-1]:
                         sigma[i-1, k-1] = sigma[i, k-1] + mu[i-1, k-1]*v[i-1]
36
37
                    c[k-1] = -sigma[k, k-1]
                    v[k-1] = round(c[k-1])
w[k-1] = 1
38
39
40 •
               else:
41
                    k = k+1
42 •
                    if k==n+1:
                         print("No solution"); return false
43
44
                    r[k-1] = k
45 •
                    if k>=last_nonzero:
46
                         last_nonzero = k
47
                         v[k-1] = v[k-1] + 1
48 •
                    else:
49 -
                         if RR(v[k-1]) > RR(c[k-1]):
50
                              v[k-1] = v[k-1] - w[k-1]
51
52
53
                         else:
                              v[k-1] = v[k-1] + w[k-1]
                         w[k-1] = w[k-1] + 1
```

```
55
    #Main
56
    n = 20
57
    B = random_matrix(ZZ, n, x=0, y = 30)
    BIII ()
    print("LLL-reduced basis =¥n", B)
    R = 0.99 * RR(B[0], norm()^2)
60
61
  • while (1):
62
         v = vector(ZZ, n)
         v = ENUM(B, n, R)
63
         if v != false:
64 •
65
             vec = v[0] * B[0]
66 •
             for i in range(1, n):
67
                  vec += v[i]*B[i]
             R = 0.99 * RR (vec. norm()^2)
68
             print("Norm=", RR(vec.norm()), ", Vector=", vec)
69
70
         else:
71
             break
72
    print("End")
```

BKZ (1/3): Definition and Properties **©**RIKKYO UNIVERSITY

- Block Korkine-Zolotarev (BKZ)-reduction
 - A blockwise generalization of LLL with blocksize β
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is β -BKZ-reduced if it satisfies two conditions
 - 1 It is size-reduced (same as LLL)
 - 2 The k-th Gram-Schmidt vector \mathbf{b}_k^* is shortest in $L_{[k,\ell]}$ with $\ell = \min(k + \beta 1, n)$ for all $1 \le k < n$ $L_{[1,\beta]}: \mathbf{b}_1 \cdots \mathbf{b}_{\beta}$ $L_{[2,\beta+1]}: \pi_2(\mathbf{b}_2) \cdots \pi_2(\mathbf{b}_{\beta+1})$

 $L_{[n-\beta+1, n]}$: $\pi_{n-\beta+1}(\mathbf{b}_{n-\beta+1})$ \cdots $\pi_{n-\beta+1}(\mathbf{b}_n)$

- Every β -BKZ-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies $\|\mathbf{b}_1\| \le \gamma_{\beta}^{\frac{n-1}{\beta-1}} \lambda_1(L)$

• γ_{β} : Hermite's constant of dimension β , i.e., $\gamma_{\beta} = \sup_{r} \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$

• As β increases, $\gamma_{\beta}^{1/(\beta-1)}$ decreases and thus \mathbf{b}_1 can be shorter

BKZ (2/3): Basic Algorithm

RIKKYO UNIVERSITY

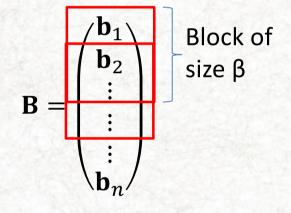
It consists of LLL and ENUM:

- Call ENUM to find a non-zero shortest vector in $L_{[k, \ell]}$
- Call LLL to reduce a projected block basis of $L_{[k, \ell]}$

Algorithm: The basic BKZ Schnorr and Euchner (1994)

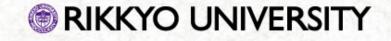
Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L, a blocksize $2 \le \beta \le n$, and a reduction parameter $\frac{1}{4} < \delta < 1$ of LLL **Output:** A β -DeepBKZ-reduced basis \mathbf{B} of L1: $\mathbf{B} \leftarrow \text{LLL}(\mathbf{B}, \delta)$ // Compute $\mu_{i,j}$ and $\|\mathbf{b}_j^*\|^2$ of the new basis \mathbf{B} together 2: $z \leftarrow 0, j \leftarrow 0$ 3: while z < n - 1 do 4: $j \leftarrow (j \mod (n - 1)) + 1, k \leftarrow \min(j + \beta - 1, n), h \leftarrow \min(k + 1, n)$ 5: Find $\mathbf{v} \in L$ such that $\|\pi_j(\mathbf{v})\| = \lambda_1(L_{[j,k]})$ by enumeration or sieve 6: $\mathbf{if} \|\pi_j(\mathbf{v})\|^2 < \|\mathbf{b}_j^*\|^2$ then 7: $z \leftarrow 0$ and call LLL($(\mathbf{b}_1, \dots, \mathbf{b}_{j-1}, \mathbf{v}, \mathbf{b}_j, \dots, \mathbf{b}_h), \delta$) // Insert $\mathbf{v} \in L$ and remove the linear dependency to obtain a new basis 8: else 9: $z \leftarrow z + 1$ and call LLL($(\mathbf{b}_1, \dots, \mathbf{b}_h), \delta$)

- 10: end if
- 11: end while



As reference,
please look at
BKZ-60 – YouTube
by Martin Albrecht

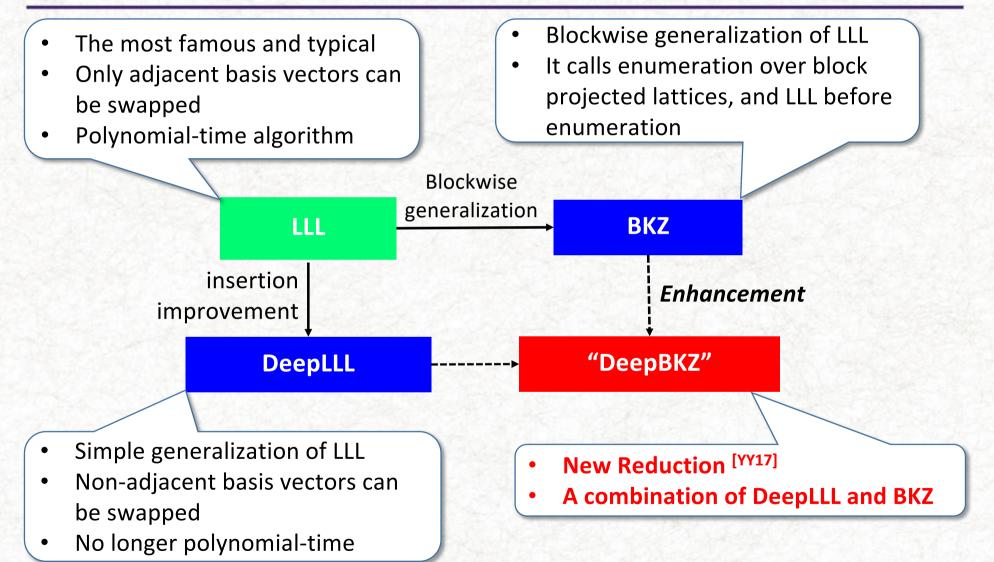
BKZ (3/3): Sage Code



2	def ENUM(B, n, R, g, h):	200	67	def BKZ(B, n, block):
3	BB, $U = GSO(B, n)$		68	B.LLL()
1	Bnn = vector(QQ, n)		69	BB, U = GSO(B, n)
	for i in range(n):			
	$Bnn[i] = BB[i].norm()^2$		70	Bnn = vector(QQ, n)
7	BB, U = GSO(B, n)		71	for i in range(n):
3	sigma = Matrix (QQ, $n+1$, n)		72	$Bnn[i] = BB[i].norm()^2$
3	r = vector(ZZ, n+1)		73	z = 0
,	rho = vector(QQ, n+1)		74	k = -1
	v = vector(ZZ, n)		75	while z < n-1:
>	c = vector(QQ, n)		76	k = lift(mod(k+1, n-2))
~ ~	w = vector(ZZ, n)		77	
1	for i in range (n+1):			$l = \min(k+block-1, n-1)$
	r[i] = i		78	h = min(l+1, n-1)
5	v[q] = 1		79	print("(k, l, h) = ", k, l, h)
7	last nonzero = 1		80	
>	k = q + 1		81	R = 0.99*Bnn[k]
2	f = 0		82	$\mathbf{v} = 0$
>	v1 = vector(ZZ, n)		83	v = ENUM(B, n, R, k, 1)
	while (1):		84	if v != 0:
			85	z = 0
2	$rho[k-1] = rho[k] + (v[k-1] - c[k-1])^2*Bnn[k-1]$			
5	if $rho[k-1] \leq R$:		86	C = Matrix(ZZ, h+1, n)
±	if $k=g+1$:		87	for i in range(k):
2	R = 0.99 * rho[k-1]		88	C[i] = B[i]
2	flag += 1		89	C[k] = v
(for i in range(n):		90	for i in range(k+1, h+1):
	v1[i] = v[i]		91	C[i] = B[i-1]
1	k = k - 1		92	C = C.LLL()
	r[k-1] = max(r[k-1], r[k])		93	
L	for i in range(k+1, r[k]+1)[::-1]:			for i in range(1, h+1):
2	sigma[i-1, k-1] = sigma[i, k-1] + U[i-1, k-1]*v[i-1]		94	B[i-1] = C[i]
3	c[k-1] = -sigma[k, k-1]		95	BB, $U = GSO(B, n)$
± -	v[k-1] = round(c[k-1])		96	Bnn = vector(QQ, n)
)	w[k-1] = 1		97	for i in range(n):
2	else:		98	$Bnn[i] = BB[i].norm()^2$
	k = k+1		99	else:
	if k==h+1:		100	z += 1
2	if flag == 0:		101	B = B.LLL()
	return False		102	BB, U = GSO(B, n)
L	else:			
2	vv = v1[g] *B[g]		103	Bnn = vector(QQ, n)
5	for i in range(g+1, h+1):		104	for i in range(n):
± -	vv += v1[i]*B[i]		105	$Bnn[i] = BB[i].norm()^2$
2	return vv		106	
2	r[k-1] = k		107	n = 20; d = 1000000
	if k>=last_nonzero:		108	B = Matrix(ZZ, n)
	$last_nonzero = k$		109	for i in range(0, n):
2	v[k-1] = v[k-1] + 1		110	B[i, i] = 1
)	else:		111	B[i, 0] = randint(-d, d)
L	if $v[k-1] > c[k-1]$:			
2	v[k-1] = v[k-1] - w[k-1]		112	show(B)
	else:			
t	v[k-1] = v[k-1] + w[k-1]		114	BKZ(B, n, 10)
)	w[k-1] = w[k-1] + 1		115	show(B)

DeepBKZ (1/6): New Reduction

® RIKKYO UNIVERSITY



[YY17] J. Yamaguchi and M. Yasuda, Explicit formula for Gram-Schmidt vectors in LLL with deep insertions and its applications, in: NuTMiC 2017, Lecture Notes in Computer Science 10737, Springer, pp. 142–160, 2017.

DeepBKZ (2/6): Basic Construction

® RIKKYO UNIVERSITY

Forward tours Enhancement of BKZ b_{12} b11 b_{1n} Call DeepLLL as a subroutine in BKZ b_{22} b_{21} Local block DeepLLL is a straightforward bases (dim= β) generalization of LLL b_{n1} b_{nn} It is called before every SVP oracle over A) DeepLLL in global a β-dimensional lattice B) SVP oracle over local blocks DeepLLL LLL Non-adjacent basis vectors can be changed Only adjacent basis vectors are swapped \Rightarrow shorter basis vectors can be found $\mathbf{B} \leftarrow (\mathbf{b}_1, \dots, \mathbf{b}_{i+1}, \mathbf{b}_i, \dots, \mathbf{b}_n)$ $\mathbf{B} \leftarrow (\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{b}_i, \dots, \mathbf{b}_{k-1}, \mathbf{b}_{k+1}, \dots, \mathbf{b}_n)$ New basis swap deep insertion

• Features

- Even small β can find a very short lattice vector
- DeepLLL is somewhat costly
- But for $\beta \ge 30$, SVP-calls are dominant and the cost is same as BKZ 18

DeepBKZ (3/6): Gram-Schmidt Formula



insert

Complex basis transformation (general form) •

$$- \mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \to \mathbf{C} = (\mathbf{b}_1, \dots, \mathbf{b}_{k-1}, \mathbf{v}, \mathbf{b}_k, \dots, \mathbf{b}_{n-1})$$

•
$$\mathbf{v} = \sum_{i=1}^{n} x_i \mathbf{b}_i = \sum_{i=1}^{n} v_i \mathbf{b}_i^*$$
 for some $x_i \in \mathbb{Z}$ with $x_n = \pm 1$

- **Gram-Schmidt formula in DeepLLL**^[YY+15, YY17] •
 - This enables to make DeepLLL practical like LLL

Proposition: Gram-Schmidt orthogonalization $[\mathbf{c}_1^*, \ldots, \mathbf{c}_n^*]$ of **C**

Set $m = \max \{k \le i \le n \mid \nu_i \ne 0\}$. Then we have

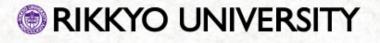
$$\mathbf{c}_{j}^{*} = \begin{cases} \sum_{i=k}^{m} \nu_{i} \mathbf{b}_{i}^{*} & \text{for } j = k, \\ \frac{D_{j}}{D_{j-1}} \mathbf{b}_{j-1}^{*} - \sum_{i=j}^{m} \frac{\nu_{i} \nu_{j-1} \|\mathbf{b}_{j-1}^{*}\|^{2}}{D_{j-1}} \mathbf{b}_{i}^{*} & \text{for } k+1 \leq j \leq m+1, \\ \mathbf{b}_{j-1}^{*} & \text{for } m+2 \leq j \leq n+1, \end{cases}$$

where $D_{\ell} = \sum_{i=\ell}^{m} \nu_i^2 \|\mathbf{b}_i^*\|^2$ for $1 \leq \ell \leq m$. In particular, $\mathbf{c}_{m+1}^* = \mathbf{0}$. For k + 1 < i < m, we have

$$\|\mathbf{c}_{j}^{*}\|^{2} = \frac{D_{j}}{D_{j-1}} \|\mathbf{b}_{j-1}^{*}\|^{2}$$

[YY+15] M. Yasuda, K. Yokoyama et al. Analysis of decreasing squared-sum of Gram-Schmidt lengths for short lattice vectors, 19 Journal of Mathematical Cryptology, Vol. 11, No. 1, pp. 1–24 (2015).

DeepBKZ (4/6): Properties of Reduction



- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: DeepBKZ-reduced (1) δ -DeepLLL-reduced (1/4< δ <1)
 - Size-reduced
 - $\delta \|\mathbf{b}_i^*\|^2 \le \|\pi_i(\mathbf{b}_k)\|^2$ for all i < k
 - ② β -BKZ-reduced (2 $\leq \beta \leq n$)
 - $\|\mathbf{b}_i^*\| = \lambda_1(\pi_i(L))$ for all $1 \le i \le n$ (π_i is the orthogonal projection)
- Then we have

$$\delta \|\mathbf{b}_{1}\|^{2} \leq \|\mathbf{b}_{\beta+1}\|^{2} \leq \|\mathbf{b}_{\beta+1}^{*}\|^{2} + \frac{1}{4} \sum_{j=1}^{\beta} \|\mathbf{b}_{j}^{*}\|^{2}$$
$$\left(\delta - \frac{1}{4}\right) \frac{\|\mathbf{b}_{1}\|^{2}}{\|\mathbf{b}_{\beta+1}^{*}\|^{2}} \leq 1 + \frac{1}{4} \sum_{j=2}^{\beta} \frac{\|\mathbf{b}_{j}^{*}\|^{2}}{\|\mathbf{b}_{\beta+1}^{*}\|^{2}} \leq 1 + \frac{C_{\beta}}{4},$$
$$\text{where } C_{\beta} = \max \sum_{i=1}^{\beta-1} \frac{\|\mathbf{b}_{i}^{*}\|^{2}}{\|\mathbf{b}_{\beta}^{*}\|^{2}} \text{ over all HKZ-reduced } (\mathbf{b}_{1}, \dots, \mathbf{b}_{\beta})$$

DeepBKZ (5/6): Provable Output Quality

® RIKKYO UNIVERSITY

Lemma^[YNY20]

- Every DeepBKZ-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ satisfies

$$\frac{\|\mathbf{b}_{1}\|^{2}}{\|\mathbf{b}_{i\beta+1}^{*}\|^{2}} \leq \alpha \left(1 + \frac{C_{\beta}}{4}\right) \left\{1 + \frac{\alpha (1 + C_{\beta})}{4}\right\}^{l-1}$$

for $i \geq 1$, where $\alpha = \frac{4}{4\delta - 1} > \frac{4}{3}$

- **B** = (**b**₁, ..., **b**_n): (δ , β)-DeepBKZ-reduced basis of L
- Assume *n* is divisible by β with $p = \frac{n}{\beta} \ge 2$
- Then we have

V

$$\frac{\|\mathbf{b}_1\|}{\operatorname{vol}(L)^{1/n}} \leq \sqrt{\gamma_{\beta}} \left\{ \alpha \left(1 + \frac{C_{\beta}}{4}\right) \right\}^{\frac{\beta(p-1)}{2n}} \left\{ 1 + \frac{\alpha \left(1 + C_{\beta}\right)}{4} \right\}^{\frac{\beta(p-1)(p-2)}{4n}}$$

where γ_{β} is Hermite's constant of dimension β

[YNY20] M. Yasuda, S. Nakamura and J. Yamaguchi, Analysis of DeepBKZ reduction for finding short lattice vectors, Design, Codes and Cryptography, Vol. 88, No. 19, pp. 2077—2100 (2020).

DeepBKZ(6/6) : Practical Output Quality

® RIKKYO UNIVERSITY

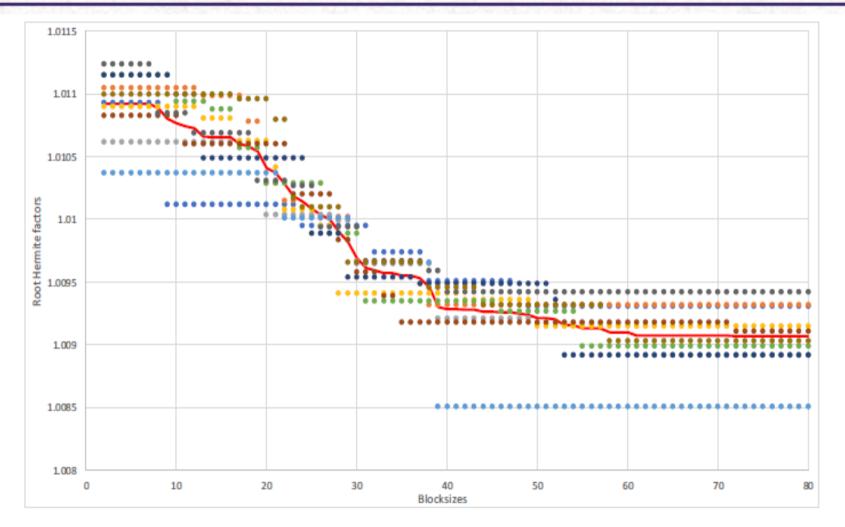


Fig. 1 The root Hermite factor of DeepBKZ with blocksizes $2 \le \beta \le 80$ for the SVP challenge in dimension n = 115 with seeds 0–9 (Each dot denotes the root Hermite factor for some seed, and the polygonal line denotes the average.)

New SVP Solutions by (Parallel) DeepBKZ

DeepBKZ found many new solutions for the SVP challenge

- In most dimensions up to n = 128
- We used blocksizes $\beta = 30-45$
- Our solutions are the shortest or very close to it
 - Since their approximation factors are close to 1.0 (0.98470 for n = 128)
- For n = 128, it took about 57.5
 hours by massive parallel
 computation using 24,576 cores

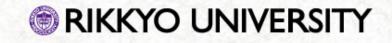
RIKKYO UNIVERSITY

	_		_		_		_	
67	130	3025	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 11-15	1.04787
68	129	2818	1	Yuga Miyagi and Eiichiro Fujisaki	vec	Sieving	2019- 04-11	0.98161
69	129	2855	0	Yuga Miyagi, Tomohiro Sekiguchi, Eiichiro Fujisaki	vec	Sieving	2019- 03-26	0.99172
70	129	2875	0	Martin Albrecht, Leo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite, Marc Stevens	vec	Sieving	2018- 08-30	0.99878
71	129	2988	0	Martin R. Albrecht, Leo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn Postlethwaite and Marc Ste	vec	Sieving	2018- 08-30	1.03813
72	128	2812	1	N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. <mark>Yasuda</mark> , K. Fujisawa	vec	BKZ	2021- 10-16	0.98470
73	128	2882	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 07-9	1.00477
74	128	2948	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 06-20	1.02755
75	128	2974	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2018- 05-9	1.03665
76	128	2984	0	Kenji Kashiwabara and Masaharu fukase	vec	Other	2013- 09-23	1.04017
77	128	2992	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 09-19	1.04313
78	127	2790	3	N. Tateiwa, Y. Shinano, A. Yoshida, S. Nakamura, S. Kaji, M. <mark>Yasuda</mark> , Y. Aono, K. Fujisawa	vec	ENUM,BKZ,Other	2020- 06-7	0.97573
79	127	2890	1	Yuga Miyagi and Eiichiro Fujisaki	vec	Sieving	2019- 04-11	1.01429
80	127	2898	0	Yuga Miyagi, Tomohiro Sekiguchi, Eiichiro Fujisaki	vec	Sieving	2019- 03-25	1.01626
81	127	2932	2	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	Other	2018- 01-12	1.02804
82	126	2812	0	Tadanori TERUYA	vec	Sieving,Other	2019- 04-2	0.99052
83	126	2855	0	Yoshinori Aono and Phong Nguyen	vec	ENUM, BKZ	2014- 09-9	1.00556
84	126	2897	0	Kenji KASHIWABARA and Tadanori TERUYA	vec	Other	2014- 08-27	1.02051
85	126	2906	0	Yoshinori Aono	vec	ENUM, BKZ	2014- 07-14	1.02357
86	126	2944	0	Kenji Kashiwabara and Masaharu Fukase	vec	Other	2013- 09-4	1.03679
87	126	2969	42	Yuanmi Chen and Phong Nguyen	vec	ENUM, BKZ	2013- 04-12	1.04356
88	125	2806	3	Jim Johnson	vec	Sieving	2021- 10-22	0.99077
89	125	2834	0	Tadanori TERUYA	vec	Sieving,Other	2019- 04-2	1.00341
90	125	2907	3	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	Other	2017- 11-20	1.02649
91	125	2922	8	Junpei Yamaguchi, Masaya <mark>Yasuda</mark> and Takuya Hayashi	vec	ENUM,Other	2017- 10-15	1.03203
		S VITE						

23

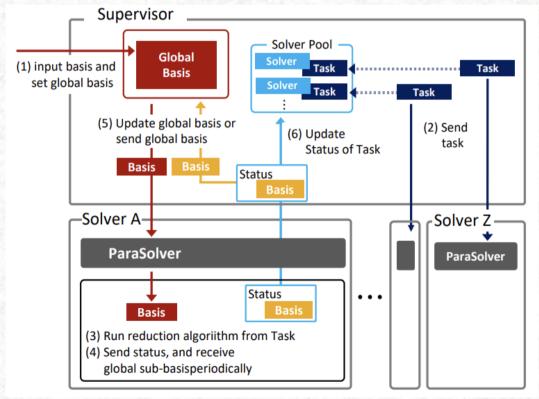
SVP Challenge (latticechallenge.org)

Massive Parallelization of DeepBKZ(1/5)



Parallel sharing DeepBKZ

- Distributed and asynchronous system using randomization and DeepBKZ
- Using CMAP-LAP^[TS+21], a general framework for lattice algorithms



Supervisor-Solvers Style

- Every solver runs DeepBKZ on a randomized basis independently
- Supervisor collects short basis vectors from solvers, and distributes them to solvers
- Every solver uses distributed vectors to accelerate its reduction process (See [TS+20] for sharing a shortest basis vector)

[TS+20] N. Tateiwa, Y. Shinano, S. Nakamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, Massive Parallelization for Finding Shortest Lattice Vectors Based on Ubiquity General Framework, High Performance Computing, Networking, Storage, and Analysis (SC 20).
 [TS+21] N. Tateiwa, Y. Shinano, K. Yamamura, A. Yoshida, S. Kaji, M. Yasuda and K. Fujisawa, CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems, ZIB-Report 21-16 (to appear in High Performance Computing, HiPC 2021)

Massive Parallelization of DeepBKZ(2/5)

Efficacy of parallel sharing DeepBKZ

Sharing k = 16 short basis vectors among solvers for dimension d = 120

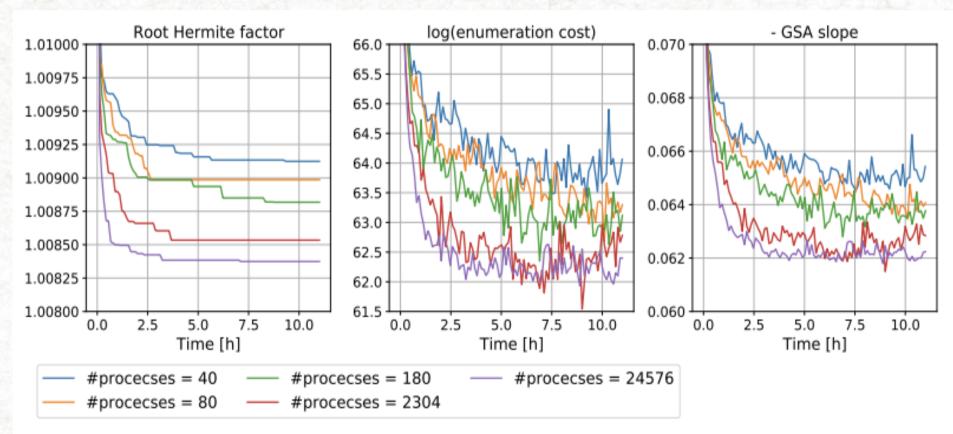


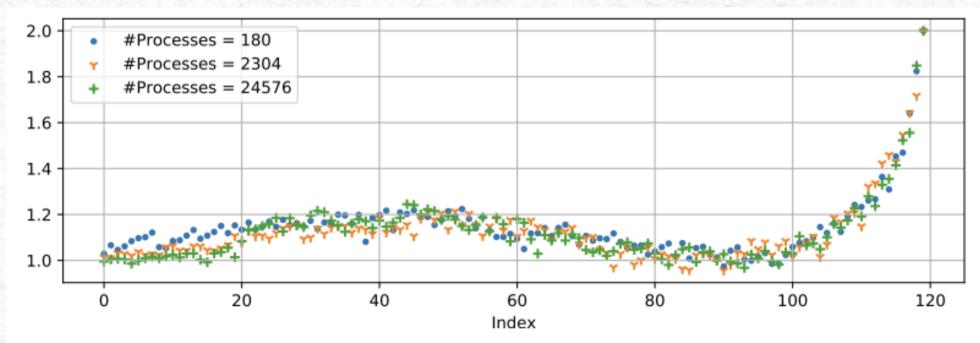
Fig. 11 Same as Figure 7, but the dimension is d = 120 and lines in each metric represent difference by different numbers of processes (We used k = 16 as the number of shares) 25

Massive Parallelization of DeepBKZ(3/5)

Output quality of parallel sharing DeepBKZ

- For an output basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of parallel sharing DeepBKZ,
- Gaps $\frac{\|\mathbf{b}_i^*\|}{GH(\pi_i(L))}$ are shown in the below Figure

 \Rightarrow First k = 16 basis vectors are close to the shortest in projected lattices



Massive Parallelization of DeepBKZ(4/5)

RIKKYO UNIVERSITY

Large-scale experiments

- A very short lattice vector in a lattice of dimension around d = 130 can be found within 100 hours on supercomputers
 - Without using the sub-sieve strategy
- Small blocksizes $\beta = 30-40$ are enough for parallel sharing DeepBKZ

Table 1 Computing platforms, operating systems, compilers and libraries

Machine	Memory / node	CPU	CPU frequency	# nodes	# cores
Lisa	384 GB	Xeon Platinum 9242	2.30 GHz	1,080	103,680
Emmy	384 GB	Xeon Platinum 9242	2.30 GHz	128	12,288
ITO	192 GB	Xeon Gold 6154	3.00 GHz	128	4,608
CAL A	256 GB	Xeon CPU E5-2640 v3	$2.60 \mathrm{GHz}$	4	64
CAL A	256 GB	Xeon CPU E5-2650 v3	$2.30 \mathrm{GHz}$	4	80
CAL C	32 GB	Xeon CPU E3-1284L v3	$1.80 \mathrm{GHz}$	45	180

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO [Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO [icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304, impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS v0.3.7, fplll v5.2.1.

Table 5 Large-scale experimental results of CMAP-DeepBKZ for SVP instances in dimensions d = 128, 130 and 132 (b₁ denotes a shortest basis vector of all solver's bases, and "Updated time" is wall time to update final shortest vectors found)

SVP Instance		# of	Updated	Norm	Approx.	Root Hermite	Machine*
Dim. Seed		cores*	time [h]	of \mathbf{b}_1	factor $\frac{\ \mathbf{b}_1\ }{\mathrm{GH}(L)}$	factor $\gamma^{1/d}$	(Table 1)
128	1†	24,576	57.5	2812.00	0.98470	1.00796	Emmy
120	2	24,576	37.1	$2947,\!45$	1.02808	1.00830	Emmy
130		103,680	81.1	2968.73	1.03001	1.00825	Lisa
130	7	$103,\!680$	39.4	2914.22	1.01236	1.00811	Lisa
132	1	24,576	34.6	2968.05	1.02260	1.00812	Emmy
152	2	24,576	56.5	2899.90	0.99662	1.00818	Emmy

[†] a new solution for the Darmstadt SVP challenge [26] in dimension 128 (see also Table 6 for other dimensions). * We list the maximum number of cores and machines used for executions, including restarts, and the wall time for the updated time.

Massive Parallelization of DeepBKZ(5/5)

- Future Work: Use of our CMAP-LAP framework^[TS+21]
 - Supervisor-Worker parallelization type
 - Heterogeneous execution of lattice algorithms (Reduction, ENUM, Sieve)
 - Acceleration by asynchronously sharing lattice vectors via vector pool
 - ⇒ We will embed optimal algorithms (e.g., pruned ENUM, sieve) in our framework for solving high-dimensional lattice problems

