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Application of Gaussian Process Regression to
Koopman Mode Decomposition for Noisy Dynamic Data∗

Akitoshi Masuda†, Yoshihiko Susuki‡, Manel Mart́ınez-Ramón§

Andrea Mammoli¶, and Atsushi Ishigame∥

Abstract

Koopman Mode Decomposition (KMD) is a technique of nonlinear time-series analysis
that originates from point spectrum of the Koopman operator defined for an underlying
nonlinear dynamical system. We present a numerical algorithm of KMD based on Gaus-
sian process regression that is capable of handling noisy finite-time data. The algorithm
is applied to short-term swing dynamics of a multi-machine power grid in order to esti-
mate oscillatory modes embedded in the dynamics, and thereby the effectiveness of the
algorithm is evaluated.

1 Introduction

Koopman Mode Decomposition (KMD) is a novel technique of nonlinear time-series analysis
based on spectral properties of the linear but infinite-dimensional composition operator, called
the Koopman operator [1, 2]. The main advantage of KMD is that it is dynamics-oriented,
implying that it has a solid mathematical foundation in operator theory of nonlinear dynam-
ical systems. Hence, it has been applied to data-driven method of analysis and control of
complex systems (see [3] and references therein) such as power grids, which include stability
analysis [4] and stabilizing control [5].

A numerical method of KMD is generally called the Dynamic Mode Decomposition
(DMD) and provides a finite-dimensional approximation of the Koopman operator directly
from finite time-series data: see [3, 6, 7]. Many variants of the DMD are reported. Arnoldi-
type (Companion-based) [2] and Prony-based DMD [8] use the idea of Krylov subspace to
fit observed current data, which is spanned by past time-series data. The so-called Extended
DMD (EDMD) was proposed by William et al. [9] as a generalization of the standard DMD.
In EDMD, we utilize a finite-dimensional space spanned by finite linearly-independent func-
tions, on which the Koopman operator acts, and approximate its action through a technique
of linear regression based on available time-series data. An application of kernel method to
EDMD was also proposed by William et al. [10], and its formulation in Reproducing Kernel
Hilbert Space (RKHS) was proposed by Kawahara [11] and Fujii and Kawahara [12].

∗Archived as Preprint arXiv:1910.011343
†Osaka Prefecture University
‡Osaka Prefecture University and JST, PRESTO
§The University of New Mexico
¶The University of New Mexico
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In this report, following [13, 14], we address the application of Gaussian Process (GP)
regression [15, 16] to Arnoldi-type DMD. GP regression is a powerful approach to Bayesian
machine learning and is a method using a probabilistic model to predict output from input.
In [13, 14], we used the GP regression to estimate a finite-dimensional approximation of
the action of a Koopman operator directly from time-series data, which is an extension of
EDMD. This type of extension is also reported in [17]. In this report, we use the multi-task
GP regression [16] to derive a new variant of Arnoldi-type (Companion-type) DMD. A multi-
task GP is a framework of multi-task learning in the content of GPs and is capable of handing
multiple related tasks. In connection with KMD, vector-valued time-series from a nonlinear
system can be considered to be outputs of latent functions that follow probability functions.
This will provide a robust approach to the projection of noisy data onto the Krylov subspace,
which is inevitable in real-world applications such as the mode estimation of power grids
directly from data [4]. In this report, we first present a formulation for conducting the GP
regression directly from time-series data to compute the Koopman eigenvalues and Koopman
modes. We then apply the GP regression-based algorithm to short-term swing dynamics in
the New England 39-bus test grid (NE grid). The NE grid is a widely-used benchmark for
transient stability studies of multi-machine power grids [18] and exhibits coupled swings of
the ten synchronous generators operating onto it [4, 5, 19], which we refer to as the coupled
swing dynamics.

The rest of this report is organized as follows: in Section 2 we provide the brief in-
troduction to KMD. In Section 3, we propose a numerical algorithm for KMD using GP
regression. In Section 4, we apply the proposed algorithm to simulation data of the NE grid
with observation noise.

2 Introduction to Koopman Mode Decomposition

In this section, based on [1,2,20], we introduce the Koopman operator for nonlinear dynamical
systems. KMD is a nonlinear time-series analysis based on point spectrum of the Koopman
operator. Now, consider the following finite-dimensional, discrete-time dynamical system:
for discrete time k ∈ Z and state x ∈ Rm,

xk+1 = F(xk) (1)

where F : Rm → Rm is a nonlinear continuous map. To introduce the Koopman operator, we
here consider the so-called observable f : Rm → C as a scalar-valued function defined on the
state space Rm. Below, we will denote by F a (Banach) space of observables. The Koopman
operator U : F → F is then defined as a map of f ∈ F into a new function by

Uf := f ◦ F. (2)

An important point of it is that even if the original system (1) is nonlinear, the Koopman
operator is linear. Thus, our idea is to investigate dynamics described by the nonlinear system
(1) through the linear operator U .

Here, we introduce the KMD. To do this, consider a vector-valued (multi-task) observable
f = [f1, . . . , fM ]⊤ : Rm → CM (fi ∈ F) where ⊤ stands for the transpose operation. Let
ψj ∈ F \ {0} be the j-th eigenfunction of U with associated Koopman Eigenvalue (KE)
λj ∈ C:

Uψj = λjψj . (3)
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The KE exists for a wide class of nonlinear systems, and the cardinality of all KEs can
be countably infinite [20]. If each observable fi lies in the subspace spanned by all the
eigenfunctions, then as in [2], it can be expanded as follows:

fi =
∞∑

j=1

ψjvij (4)

where vij are complex-valued constants for the expansion. Using (1) and (3), the time
evolution f(xk) is expanded as

f(xk) = Ukf(x0) =
∞∑

j=1

λkjψj(x0)vj (5)

where Ukf := [Ukf1, . . . , UkfM ]⊤ and vj := [v1j , . . . , vMj ]⊤ ∈ CM . The expansion (5) implies
that the multi-task observables yk = f(xk) of (1) is decomposed into an infinite sum of modes
oscillating with single frequencies. KE λj ∈ C characterizes the frequency and Growth Rate
(GR) of each mode. The constant vector vj ∈ CM , called Koopman Mode (KM), represents
the modal contribution to every task in the component of yk. This type of time-series analysis
is coined by Rowley et al. [2] as the KMD (Koopman Mode Decomposition).

3 Application of Gaussian Process Regression to Koopman
Mode Decomposition

This section presents the main contribution of this report: we provide a numerical algorithm
of KMD based on GP regression in order to KEs and KMs directly from time-series data.

Consider a finite-length sequence ofN+1 multi-task observations of (1) as {y0,y1, . . . ,yN}
where yk ∈ RM . For the application of GP regression, we need input/output data as a train-
ing dataset. It is here recalled that GP regression has been used in the context of dynamical
modeling: see, e.g., [21,22]. Following this, in order to handle the dynamics, we suppose that
the k-th snapshot yk as output is determined by the p past snapshots {yk−p, . . . ,yk−1} as in-
put, where p is a positive constant. We denote the input by zk := [y⊤

k−p, . . . ,y
⊤
k−1]

⊤ ∈ RM ·p.
Then, N − p+ 1 training samples are available for the current GP regression:

{(zp,yp), (zp+1,yp+1), . . . , (zN ,yN )} .

Here, we use the formulation of multi-task GP regression in [16]. We consider latent
functions g = [g1, . . . , gM ]⊤ : RM ·p → RM which derive a latent distribution g(zk) in terms of
real (noisy) output yk. We also consider a GP prior over the latent functions g and assume
that GPs possess zero mean and covariance given by

cov(gi(zk), gj(zl)) := [Kg]ijκ(zk, zl) (6)

where κ : RM ·p × RM ·p → R is a covariance (kernel) function over input z and Kg ∈ RM×M

is a positive semi-definite matrix specifying inter-task similarities. By assuming additive
independent Gaussian noise with variance σ2i for each task i, the prior distribution of the
observations (multi-task outputs) possesses the following covariance:

cov([yk]i, [yl]j) = [Kg]ijκ(zk, zl) + σ2i δijδkl (7)
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where [yk]i stands for the i-th element of vector yk and δij is the Kronecker delta.
We define the complete set of training outputs for M tasks as y := [y⊤

p , . . . ,y
⊤
N ]⊤ ∈

RM ·(N−p+1) and the GP predictive values g(zN+1), which are associated with the multi-
task observables of (1). By assuming that both the outputs and predictive values obey the
following prior distributions, they are described as follows:

[
y

g(zN+1)

]
∼ N

(
0,

[
K(z, z)⊗Kg + I⊗D κ(z, zN+1)⊗Kg

κ(zN+1, z)⊗Kg κ(zN+1, zN+1)⊗Kg

])
(8)

where N denotes the normal distribution and ⊗ the Kronecker product. z is the set of
N −p+1 inputs zp, . . . , zN , K(z, z) is the Gram matrix given by (κ(zk, zl))k,l=p,p+1,...,N , and
κ(z, zN+1) is the (N − p+ 1)× 1 vector of the covariances evaluated at all pairs of training
input and test input zN+1. D is an M × M diagonal matrix in which the (i, i)-th element
corresponds to σ2i . Then, according to [16], the predictive conditional distribution becomes

g(zN+1)|z,y, zN+1 ∼ N
(
g(zN+1), cov(g(zN+1))

)
, (9)

with

g(zN+1) =κ(zN+1, z)⊗Kg × [K(z, z)⊗Kg + I⊗D]−1y, (10a)

cov(g(zN+1)) =κ(zN+1, zN+1)⊗Kg − κ(zN+1, z)⊗Kg × [K(z, z)⊗Kg + I⊗D]−1

× κ(z, zN+1)⊗Kg. (10b)

Finally, we derive a decomposition formula similar to a finite truncation of (5). The
predictive mean values derived above become

g(zN+1) = Bκ(z, zN+1), (11)

with
B := KgH (12)

where H ∈ RM×(N−p+1) and

vec(H) := [K(z, z)⊗Kg + I⊗D]−1y. (13)

The above derivation is based on the following formula:

vec(XYZ) = (Z⊤ ⊗X)vec(Y), (14)

with

X = Kg, (15a)

Y = H, (15b)

Z = κ(z, zN+1), (15c)

Z⊤ = κ(zN+1, z). (15d)

In the same manner, the mean values of latent functions at zk are given by

g(zk) = Bκ(z, zk), k = p, p+ 1, . . . , N. (16)
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Here, we define GGP and cGP as

GGP :=
[
g(zp),g(zp+1), . . . ,g(zN )

]
= BK(z, z) ∈ RM×(N−p+1), (17a)

cGP :=K(z, z)−1κ(z, zN+1), (17b)

If K(z, z) is not regular, then we use the Moore-Penrose pseudo-inverse for computation.
Using (11) and (16), we have

UGGP =
[
g(zp+1),g(zp+2), . . . ,g(zN+1)

]
=: GGPCGP (18)

where CGP is the (N − p+ 1)-dimensional companion matrix defined as

CGP :=

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 cGP,0

1 0 0 cGP,1

0 1 0 cGP,2
...

. . .
...

0 0 · · · 1 cGP,N−p+1

⎤

⎥⎥⎥⎥⎥⎦
. (19)

TheGGP contains the mean values of latent functions that are derived by removing noise from
the training outputs. The cGP is considered to be the coefficient vector of linear regression
of the predictive mean’s values by the mean values of latent functions. Then, we locate the
N − p + 1 eigenvalues of CGP, called the Ritz values λ̃j (j = 1, 2, . . . , N − p + 1), and we
define the Vandermonde matrix TGP as follows:

TGP :=

⎡

⎢⎢⎢⎢⎣

1 λ̃1 λ̃21 · · · λ̃N−p
1

1 λ̃2 λ̃22 · · · λ̃N−p
2

...
...

...
. . .

...

1 λ̃N−p+1 λ̃2N−p+1 · · · λ̃N−p
N−p+1

⎤

⎥⎥⎥⎥⎦
. (20)

Here, the Ritz vectors ṽj are defined to be the columns of VGP := GGPT
−1
GP. By assuming

that the λj are distinct, then the following expansion of the output at time k + p holds:

yk+p =
N−p+1∑

j=1

λ̃kj ṽj + rk, k = 0, 1, . . . , N − p+ 1 (21)

where rk := yk+p−g(zk+p) corresponds to the error vector of GP regression due to the mean
values of latent functions.

4 Mode Estimation of Multi-Machine Power Grid

We apply the GP regression-based algorithm to analyze short-term swing dynamics exhibited
in the New England 39-bus test grid (NE grid). The NE grid is shown in Fig. 1 and contains
the ten generation units (equivalent ten synchronous generators, circled numbers in the fig-
ure), the 39 buses, and AC transmission lines. Most of the buses have constant active and
reactive power loads. The details of the system, such as unit rating, line data, and loading
conditions, are given in [18].
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Figure 1: New England 39-bus test grid (NE grid)

4.1 Nonlinear Swing Equations

First, we introduce the equations of motion of generators in the NE grid. Assume that bus 39
is the infinite bus [23]. The short-term electro-mechanical dynamics of generators 2–10 are
represented by the following nonlinear differential equations, called the classical model [23]:

dδi
dt

= ∆ωi

Hi

πfb

d∆ωi

dt
= Pmi −Di∆ωi − Pei

⎫
⎪⎪⎬

⎪⎪⎭
, (22)

with

Pei =
10∑

j=1

EiEj{Gijcos(δi − δj) +Bijsin(δi − δj)}

where the integer label i = 2, . . . , 10 denotes generator i. The variable δi is the angular
position of rotor in generator i with respect to bus 1 and is in radians [rad]. The variable ∆ωi

is the deviation of rotor speed in generator relative to that of bus 1 and is in radians per second
[rad/s]. We set the variable δ1 to a constant, because bus 39 is assumed to be the infinite bus.
The parameters Pmi, Ei, Gij and Bij are in per unit system, Hi and Di are in seconds [s], and
fb is in Hertz [Hz]. The mechanical input power Pmi to generator i and the internal voltage Ei

of generator i are normally constant in the short-term regime [23]. The parameter Hi is the
per unit time inertia constant of generator i, and Di its damping coefficient. The parameter
Gii is the internal conductance, and Gij + jBij is the transfer admittance of the (i, j)-th
element of the reduced admittance matrix of the grid. Any electrical loads are modeled as
passive impedances. Note that any model of exciter and controller is not included in the
model.

4.2 Numerical Simulation

The setting of numerical simulation is based on [24]. The voltages Ei at a stable equilibrium
(δ∗i ,∆ω

∗
i = 0) for generator i are fixed using power flow computation. The constants Hi are

the same as in [18], Pmi and power loads are half of the rating in [18]. The parameters Di are
fixed at 0.05s, and fb at 60Hz. The elements Gij and Bij are calculated using the data in [18]
and the power flow computation. All numerical simulations were performed using MATLAB:
the function ode45 was adopted for numerical integration of (22).
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Figure 2: Rotor speed deviations of generators 2–10 in the New England test grid. These are
the trajectories of (22) for the initial condition (23) and contain additive i.i.d. noise.

We present an example of short-term dynamics in the NE grid. Fig. 2 shows the time
responses of rotor speed deviations ∆ωi under the initial condition from [24]:

(δi(0),∆ωi(0)) =

{
(δ∗i + 1.5 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else.
(23)

The simulation contains i.i.d. noise N
(
0, 0.12

)
for each time-series as an observation noise,

which aims to evaluate the effectiveness of the GP-based algorithm. The initial condition
physically corresponds to a local disturbance at generator 8. The generators do not show
any stepping-out in the figure, that is, they do not show any loss of transient stability for
the selected disturbance. Generators 8 and 10 have swings of larger amplitudes than the
others, because the initial condition is localized at generator 8, and the two generators are
electrically close. Even for the additive noise, the swing dynamics of generators observed
here are the same as in [24].

4.3 Computation of Koopman Modes and Eigenvalues

Next, we compute the KEs and KMs (empirical Ritz values λ̃j and vectors ṽj) for the coupled
swing dynamics shown in Fig. 2. The computation is investigated in the two different manners.
One is to show a representative result of applying GP-based algorithm to the time-series
data. The other is to assess noise dependency of the result. For the computation, we need to
choose the observable f(δ,∆ω), where δ := [δ2, . . . , δ10]⊤ and ∆ω := [∆ω2, . . . ,∆ω10]⊤. In
this application, we use the rotor speed deviations ∆ω:

f(δ,∆ω) = ∆ω.

The sampling period T of the simulation output for the application is 1/(15Hz). The analysis
window is fixed at [0s, 4s], and thus the number of samples corresponds to N = 60.

4.3.1 Representative result

First, we apply the GP-based algorithm to the simulation output in Fig. 2. As training inputs
of GP, we take the past observations with p = 15, i.e., zk = [y⊤

k−15, . . . ,y
⊤
k−1]

⊤ ∈ R135. We
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Figure 3: Values of the Gaussian kernel κ(zp, zq) for the set of input data sampled from Fig. 2

also take yk ∈ R9 as the training output. The kernel function used in this report is the
well-known Gaussian kernel [15] given by

κ(zp, zq) := σ2f exp

{
− 1

2ℓ2

(
135∑

i=1

∣∣∣∣
[zp]i
si

− [zq]i
si

∣∣∣∣
2
)}

(24)

where the parameters σ2f and ℓ (and noise variance σ2i , too) are determined by Leave-One-
Out-Cross-Validation (LOO-CV) [15]. si is called the scaling parameter [21] corresponding
to max{[zk]i|; k = Np, Np + 1, . . . , N}, and the multi-task outputs yk are also scaled by
the parameters ssi corresponding to max{|[yk]i|; k = 0, 1, . . . , N}. Fig. 3 shows the values
of Gaussian kernel for the set of input data sampled from Fig. 2. The values quantify the
similarity between different two inputs in terms of the Gaussian kernel, that is, the inner
product inside the induced RKHS. Furthermore, we here set the intertask covariance Kg as
follows:

Kg = diag(ss−1
1 , ss−1

2 , . . . , ss−1
M ) (ssi ̸= 0). (25)

This setting is basically for tractable computation and implies that each of the normalized
tasks has the same variance of observation noise. Fig. 4 shows the result of GP regression, that
is, the GP predictive means and associated 95% confidence intervals. By using the means, we
compute the KEs and KMs. Now let us focus on KMs that have both large growth rates |λ̃j |
and large norms of ṽj . Such modes represent sustaining components for the time duration of
simulation output and have dominant magnitudes in the output. Table 1 shows the numerical
result on dominant KEs and KMs for Fig. 2, which we call Mode 1 to Mode 7. The norm for
Mode j is defined as the standard Euclidean norm ∥ṽj∥. Below, we pick up Mode 1 (period
0.67s) and Mode 2 (period 0.79s) with largest norms in Table 1. By observation of Fig. 2,
Mode 1 can be confirmed as a dominant swing component in generators 8 and 10, and Mode
2 can be confirmed in generators 2, 3, 6, 7, and 9.

4.4 Assessment of noise dependency

Here, we assess how the computed KE and KM are affected by the additive noise. In Fig. 5
we show the computational results on the two modes for 1000 samples of additive noise
obeying N

(
0, 0.12

)
. The trial number is labeled on the horizontal axis of the figure. Thus,
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Figure 4: GP predictive means and associated 95% confidence intervals

Table 1: Computational result on Koopman modes and eigenvalues for Fig. 2

Mode Norm Growth Period [s]
Rate

j ∥ṽj∥ |λ̃j | Tj := 2πT/Im[lnλ̃j ]
1 3.136 0.995 0.671
2 2.662 0.994 0.788
3 0.651 0.983 0.999
4 0.502 0.985 1.903
5 0.088 0.976 0.352
6 0.078 0.979 0.389
7 0.043 0.989 0.220

by considering the 95% intervals, we have the following estimation of magnitude of Mode 1
and Mode 2, namely GR (Growth Rate), and their periods:

|λ̃1| ∈ [0.9943− 0.0034, 0.9943 + 0.0034]
T1 ∈ [0.6750 s− 0.0036 s, 0.6750 s + 0.0036 s]

}
, (26)

and
|λ̃2| ∈ [0.9935− 0.0030, 0.9935 + 0.0030]
T2 ∈ [0.7902 s− 0.0048 s, 0.7902 s + 0.0048 s]

}
. (27)

Clearly, the maximum of GR is smaller than unity. The result on GR suggests that the GP-
based algorithm can work for the data-driven stability analysis [4] for the dominant modes
under additive observation noise.

In addition, we investigate the mode shapes for Mode 1 and Mode 2 by the amplitudes
Aji and the phases αji (with respect to generator 10) of each generator:

Aji := |ṽj,(i+8)|, i = 2, . . . , 10
αji := Im[ln(ṽj,(i+8)/ṽj,18)]

}
. (28)

In particular, the mean and standard deviation of Aji and αji (j = 1, 2 and i = 2, . . . , 10)
are evaluated for all the results of 1000 samples of additive noise. The evaluation is shown in
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Figure 6: Shapes of the two Koopman modes ṽj (j = 1, 2) in Table 1. The 95% confidence
intervals are shown with the error bars.

Fig. 6 where the blue (or yellow) bars are for Mode 1 (or Mode 2). The error bars denote the
95% confidence intervals in this analysis. The standard deviations of α1,2, α1,7, α1,9, α2,4,
and α2,5 are very large because the amplitudes A1,2, A1,7, A1,9, A2,4, and A2,5 are nearly zero,
and hence the associated values of phases are not tractable. The other standard deviations
are small, implying that the mode estimation is reliable. Mode 1 has a small amplitude other
than generators 8 and 10, and their phases α1,8 and α1,10 have opposite phases. This implies
that Mode 1 represents an inter-machine swing mode between generators 8 and 10. Also,
Mode 2 has a large amplitude other than generators 4 and 5, and their phases α2,8 and α2,10

are in phase and opposite phase to α2,2, α2,3, α2,6, α2,7 and α2,9. Mode 2 is regarded as an
inter-area swing mode between the group of generators 8 and 10 and the adjacent group of
generators 2, 3, 6, 7, and 9. As above, we show that the GP-based algorithm as the mode
estimation method for the New England test grid is robust against the additive observation
noise.

5 Conclusion

In this report, we derived a GP (Gaussian Process) regression-based algorithm of KMD
(Koopman Mode Decomposition) for noisy dynamic data. The use of GP regression is ex-
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pected to robustify the computation of KEs (Koopman Eigenvalues) and KMs (Koopman
Modes) under observation noise in the dynamic data. We applied the GP-based algorithm
to data on nonlinear dynamic simulations of the power grid benchmark model. This shows
that the algorithm is robust for mode estimation of the power grid against observation noise.

Our future works are to clarify a systematic way to identify hyper-parameters from a
dynamical system perspective and to reformulate the regression problem in this report for
approximating the action of Koopman operator.
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[4] Y. Susuki, I. Mezić, F. Raak, and T. Hikihara: Applied Koopman operator theory for
power systems technology; NOLTA, IEICE, Vol. 7, No. 4, pp. 430–459 (2016)
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