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1. AAEE (SRAY) ELEETORSESIE BEREHE) LOWT

(On mathematical modeling (reality and mathematics) in industrial research and development)
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The speaker had been engaged in the application of mathematics in the manufacturing industry for 27 years
and at about the same time, has been involved in research on pure mathematics related to the Abelian
theory of functions for 20 years, exploring the mathematical description of objects in the real world from
the standpoint of pure mathematics as well. The problems that arise when describing real-world objects
mathematically are a subject that the late philosopher Husserl addressed in his later years. The various issues
that Husserl pointed out also appear in the application of mathematics to reality in industrial research and
development. In his youth, Husserl’s knowledge of optics, which was outstanding, helped him understand
the limitations of applying mathematics to reality through the optics of telescopes, and he studied the
frontiers of mathematics in the XIX-th century, such as Abelian function theory and variational problems,
under Weierstrass, before pursuing his philosophical studies. Based on these experiences, he seemed to have
developed a philosophical consideration of reality and mathematics. Casimir, a researcher in mathematical
physics who published a number of deeply fascinating results related to the nature of mathematics, also
spent time as an engineer at Phillips after the age of 33 and presented a crisis in the latter half of the 20th
century regarding the relationship between academia and industrial research and development, including
mathematics. In Japan, where our society does not tolerate changing professions in academia and industry,
compared to Europe and the U.S., the essential problems in the relation between mathematics, science, and
the real world, as indicated by Husser]l and Casimir, are rarely addressed in mathematics and science-related
academia. The speaker believes that one of the reasons for the stagnation of Japanese industry over the
past 20 years may lie in this relation and this situation. The speaker believes that the problem in the use of
mathematics in industrial settings is the problem of “mathematics as a language,” which is also an aspect of
the problem presented by Husserl. By recognizing “mathematics as a language” properly, the speaker believes
that “handling the correspondence between mathematics and reality well” will lead to the development of
the industry. At the same time, he also considers that “handling it well” is itself a profound problem; what

”handling it well” means.



2. JMAKRTF (RPKFE) BFEORRFEEEMNHR

(Phenomenology of mathematics and the theory of expertise)
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Mathematics is a formal science. However, those who have performed mathematics know that performing
mathematics not only means following formal rules, but it also involves something that can be called intuition.
Then, what is mathematical intuition involved when one performs mathematics? The modern philosophy of
mathematics has not addressed this kind of question seriously. Husserl’s phenomenology makes it possible to
consider mathematical intuition philosophically.

Within the framework of phenomenology, founded by Husserl, we are able to talk about grasping mathematical
objects in an analogy with external perception.

Moreover, the phenomenological framework allows us to discuss the “origins” of mathematical objects.
Husserl’ s thoughts on geometry in his later years describe how geometrical concepts arise from the technique
of geodesy.

Finally, the framework for analyzing mathematical objects can be applied to an analysis of the expertise
that experts are supposed to have in various fields. We can use this as an important tool for considering the
expertise of science and technology.

3. BHEHEEH (AUBILIKE) AV IFITAIAXEST/ AT—IViTBREEDERES

(Case studies of informatics-aided nanoscale materials simulation)

AR, FHMIARCEEROKRL BGHICBEWTHRE (1 v 743714 7 A) HifiBEEHRHINTWS. K
IHRIRIZ OB CIE, 51 oRF TEERBY), 5652 oRlF MHGmBY, 53 oY EHRENY Tk,
AT OB H 2 TG U T2 AR - HlEmMH T2, REOMECHEE2BRT Y, 7— XK
a7 Tu—F 2 BT 58 4 ORF [7—-28%) MEHINTWS., AEERTIE, MFEHEET — 2 X—
AMEA L, Tholfb) , TPHIET V] 2F—U—R& LT, BRZ2HWTERTAZI VYV IART A7 RAEF I A
= VPRGBS 2 BN T B

Recently, techniques of information science (informatics) are widely used in various situations in academia
and industry. Especially in the field of materials science, following “empirical science” as the first paradigm,
“theoretical science” as the second paradigm, and “computational science” as the third paradigm, “data-
driven science” as the fourth paradigm is drawing much attention, which develops data-driven approaches
such as extracting new findings and information, and searching for unknown materials and structures with
utilizing statistical and machine-learning techniques. In this presentation, I will introduce research examples
that combined informatics and nanoscale materials simulation, which are used for different purposes, with
the keywords “utilization of crystal structure database ” , “optimization”, and “prediction model”.



4. BFETF, BBEX (Bt (K) RtEIICEF2MEREAORBIRAEFTRAM OBERESG

(Applying mathematical analysis to material science in Kyocera)
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We introduce six topics related to simulations for material science that our company has been working on.

A molecular explanation of thermal phase transition phenomena using principal component analysis, which
is one of the coordinate transformation methods of linear algebra, is presented. We show an example of
the phase transition phenomena between a-silica and B -silica. Next, we introduce an example in which we
regarded the D-Wave quantum annealing machine as an isolated many-body physical machine to calculate
the thermalization phenomena of integrable and non-integrable systems.

A chemical solution can generally be described as an undirected graph, but a solution mainly composed of
hydrogen bonds can be described as a directed graph. From this point of view, we introduce an example of
improving the reaction efficiency by controlling the hydrogen-bonding network of molecules in the solvent,
and discuss the water cluster splitting problem. We also report two application examples of data analysis in
Kyocera: the optimization of our products using machine learning and multi-objective optimization, and the
search method for important parameters to improve product characteristics. Finally, we touch on how we are
promoting mathematics in Kyocera.
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1. FEE#} (BE[AX—H—) Clifford RE% RV KRRFORNI-WTEDER)
(Interpretation of the hidden symmetry of hydrogen atoms using Clifford algebra) KZEJ{ 1% x4 & U 74
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Researches on hydrogen atoms have played an important role in the development of theoretical physics. The
development of quantum mechanics and quantum field theory are good examples. Apart from the major
developments in theoretical physics, interesting mathematical structures have been found in hydrogen atoms
by incorporating findings from various mathematical fields. One such mathematical structure is “hidden
symmetry”. Hydrogen atoms are known to be highly degenerate under the non-relativistic approximation.
This high degree of degeneracy cannot be explained by the three-dimensional rotational symmetry, which
is easily assumed from the potential shape of hydrogen atoms, but can only be explained using a larger
symmetry, four-dimensional rotational symmetry. Such a high degree of symmetry is often referred to as
a hidden symmetry or a dynamical symmetry. In this talk, the interpretation of the hidden symmetry of
hydrogen atoms using Clifford algebra will be discussed. In general, Lie groups and Lie algebras are the
most famous tools to describe such symmetries and in comparison, interpretations using Clifford algebras are
minor. However, I found some useful points in this interpretation, therefore I will present it.

2. REHH (BEHEXE) —RAEEEHREZAVCHEORMZMNBEDRRICDOWVT
(General topological approach to geometric patterns of matters)

Characteristic geometrical patterns of matters in solid and liquid states, such as the graphic structure of
polymers, the clusterized structure of molecular liquids, or the dendritic structure in solidifications, have
been hugely studied from the viewpoint of disordered physics [1,2]. To investigate geometric patterns, several
mathematical methods using topological concept, e.g., persistent homology theory [3], have been also devel-
oped. In my talk, the studies about characterizing geometric patterns based on general topology (point-set
topology) are reviewed and the recent results of this topological approach are introduced [4,5].

The geometric patterns can be discussed in the context of continuum theory, which is one of the field of
general topology [6]. A topological space is called a continuum if it is a connected compact Hausdorff-space,
and a geometric pattern is specified by a continuum or a direct sum of continua.

For instance, a geometric pattern with dendritic structure is described as a topological dendrite that is a
locally-connected continuum (a Peano-continuum) without simple closed curve. These continua correspond-
ing to the geometric patterns can be represented universally based on a set of equivalence classes for a
specific topological space X. In the present talk, adapting a Cantor cube ({0,1}*,78") as X, the universally
representations of continua are shown and their geometrical relations are discussed.

[1] J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).

[2] N. E. Cusack, The Physics of Structurally Disordered Matter: An Introduction (University Sussex Press,
Brighton, 1987).

3] Y. Hiraoka, T. Nakamura, A. Hirata, E. G. Escolar, K. Matsue, and Y. Nishiura, PNAS. 113, 7035 (2016).
4] A. Kitada, S. Ohmori, and T. Yamamoto, J. Phys. Soc. Jpn. 85, 045001 (2016).
5] S. Ohmori, Y. Yamazaki, T. Yamamoto, and A. Kitada, Phys. Scr. 94, 105213 (2019).

]

[
[
[
[6] S. B. Nadler Jr., Continuum Theory (Marcel Dekker, New York, 1992).
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(Topological multiferroics induced by local/quantum symmetry breaking via lattice/electron defects)
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Realization of ultrasmall ferroics with nontrivial topological field textures such as vortices, skyrmions, and
merons holds promise in novel technological paradigms. Such nontrivial ferroelectric orders and their func-
tionalities, however, inevitably disappear below a critical size of several nanometers. In addition, very few
topological structures can exist in ferroelectrics due to the lack of non-collinear interaction among electric
dipoles, unlike the Dzyaloshinskii-Moriya interaction among spins in ferromagnetics. Here, we demonstrate
from first-principles that “Atomic-scale Multiferroics” and “Polar Skyrmions and Merons” can be formed
by engineering lattice defects and electron defects (i.e., polarons) in heterostructures of perovskite oxides.
Doped (excess) electrons are localized and form a polaronic state in the heterostructures (surfaces and grain
boundaries), and give rise to skyrmionic and meronic dipole moments around the polaron formation sites
due to the cooperative symmetry breaking of polarons and heterostructures. We further show that the topo-
logical number of polaronic state can be tailored by applied mechanical strain, i.e., strain engineering for
polar topologies. Our discovery overcomes physical limitations of the critical size of 3-10 nm where ferro-
electricity disappears and the inability to form topological field (skyrmions, merons) of polarization due to
absence of chiral interaction among electric dipoles, and realizes unique polar topological orders at ultimately
electron(polaron)-scale. The clarified mechanism that local symmetry breaking via polaron formation coupled
with heterostructures provides a novel approach to realize ultimate miniaturization of ferroic materials and
opens up new fields to create the polar topological objects. Our result therefore adds a new class of functional
polaron families as “Topological Polarons”.

4. REHR (GE#HKXZF) Polyacetylene: past and present

Polyacetylene (CoHs),, has attracted attention of chemists, physicists and mathematicians since its synthesis
in 1970s due to its characteristic behaviors. It was eventually awarded the Nobel Prize in Chemistry in 2000.

In my talk, I will start with a short review of the Su-Schrieffer-Heeger model of polyacetylene [1,2]. Then
show that the SSH model has two phases characterized by different topological indices [3].

[1] W. P. Su, J. R. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979),
doi:10.1103/PhysRevlett.42.1698.

[2] W. P. Su, J. R. Schrieffer and A. J. Heeger, Soliton excitations in polyacetylene, Phys. Rev. B 22, 2099
(1980), doi:10.1103/PhysRevB.22.2099.

[3] R. Shankar, Topological Insulators — A review, arXiv:1804.06471,
https://doi.org/10.48550/arXiv.1804.06471.
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The present study shows theoretical and numerical analysis of quantum transport phenomena in nanostruc-
tures with curvature. In nanoscale thin films with curvature, effective scalar potentials arise due to geometric
curvature. Nanoscale materials with twisted atomic structures also give rise to effective vector potentials
due to geometric torsion. These effective potentials indicate that the transport properties of electrons and
other materials with geometric curvature and torsion change significantly from flat systems. In this study, we
clarify what kind of properties are manifested by these geometric effects. Specifically, we focus on deformed
nanocylinders and twisted quantum rings, and show that the spatial profile of the wavefunction changes and
that a quantum phase shift due to torsion occurs. We report in particular the peculiar quantum transport
phenomena induced by the quantum phase shift due to torsion.

6. BLIE (BHEXRE) 1 XRaMHEEEEZE T2 77— LY RIT—OHFLYELZFE

(Novel physicochemical properties of 1D periodic uneven structured Cgg Polymer)
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We have reported that electron-beam-irradiation (3-7 keV) of a Cgo film results in formation of a 1D Cgg
polymer with a concavo-convex periodic curved structure [1], and the polymer exhibits physical properties
arising from 1D metal [2]. The behavior of the free electrons on the curved surface is given by the Hamilton
operator of the following equation (quantum mechanics of submanihold).

. o1 &K 0 0
H=—-——" |- ij 2 _
o |77 2 o0 (Vas" s ) + 02 =)

3,=1

Here, g = det[g;;] represents the metric tensor. The first term is an operator of the kinetic energy of electrons,
and the second term consisting of the mean curvature h and the Gaussian curvature k appears like a scalar
potential (the second term does not appear in the 1D plane surface). So far, it has been a mystery whether or
not this curvature term affects the behavior of electrons since 1950s. We theoretically predict the effect of the
geometric curvature term on the electronic behavior of the above 1D Cgg polymer [3] and then experimentally
demonstrate it [4]. In this symposium, I will introduce novel physicochemical properties [5, 6] emerged by
the quantum mechanics of submanihold of the 1D Cgy polymer.



[1] H. Masuda, H. Yasuda, and J. Onoe, Carbon 96, 316 (2016).
[

]
2] H. Shima and J. Onoe, “The Role of Topology in Materials ” (S. Gupta and A. Saxena eds.), Springer,
Chap. 3, pp. 53-84 (2018) and references therein.

[3] H. Shima, H. Yoshioka, and J. Onoe, Phys. Rev. B 79, 201401 (R) (2009).

[4] J. Onoe, T. Ito, H. Shima, H. Yoshioka, and S. Kimura, Europhys. Lett. 98, 27001 (2012)
[5] S. Ryuzaki and J. Onoe, Appl. Phys. Lett. 104, 113301 (2014).

[6] M. Nakaya et al., Adv. Sustain. Sys. 5, 2000156 (2021). [Press release]
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1. Karel Svadlenka (REAZF) BEMBOBBEMEHOESNT TO—FICLDETI VY
(Variational approach to modeling of elastoplastic deformation of structured materials)
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Structured materials, such as metallic alloys with atomic-scale layers, show peculiar deformation patterns,
which may have significant implications on material properties. In this talk, we discuss one possible approach
to modeling and understanding of this kind of pattern formation through the so-called rate-independent
evolution in the variational setting of finite-strain elastoplasticity. Besides mentioning connections to ho-
mogenization via Gamma-convergence, we present the underlying mathematical theory and show numerical
simulations in comparison to experimental measurements.

2. A+E— (bK) BB L VEBREWRICSITD I VY LABREDHELICOVT

(On homogenization of random media in static and quasi-static electromagnetic fields)

In this talk, we consider the homogenization of materials with fine structure such as soft magnetic composite
(SMC), multi-turn coil and Litz wire. It is shown that the classical Ollendorff formula for static fields, which
is equivalent to Clausius-Mossotti relation and Maxwell-Garnett formula, can be extended for magneto-quasi-
static fields by introducing complex permeability. We show experimental validations for this method. We
also show that this method does not work well for a dense medium. In the latter half of this talk, we present
a homogenization method for SMC that is a random-dense medium by using discrete element method for
dynamical simulation of iron particles and finite element method for evaluation of electromagnetic properties.
From experimental results, we conjecture that the homogenized permeability of random media is higher than
that of periodic media.

3. LEREEE (REBKRF) BMELICEIESIHRTDER

(Application of continued fraction to homogenization method in numerical analysis of the electromagnetic
fields)

In the numerical analysis of the electromagnetic fields, the materials such as magnetic steel sheets, coils,
and soft magnetic composites are sometimes modeled as bulk materials to reduce the number of unknowns
and computational costs. Since this kind of modeling loses information about the field distribution in the
materials, it is difficult to compute the losses in the material. The homogenization method aims at obtaining
the macroscopic property of such materials to calculate the losses. In some cases, the analytical expression
of the macroscopic property is obtained from the analytical solution of Maxwell ~ s equations, which is the
frequency-dependent complex function. The continued fraction expansion of the macroscopic property leads
to the Cauer equivalent circuit. The continued fraction expansion can be formulated more generally through
orthogonal basis generation of the solution space. The error of the equivalent circuit is obtained by considering
the geometrical relationship between the dual formulation of Maxwell * s equations.
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4. BAER (BMNKFE) ORT 1 VX0 6H# T 2HE T 8@

(Controllable surfaces challenging from robotics)
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Surfaces can model the outer layers of objects at various scales, such as buildings, clothing, epidermis, and
vesicles. In each of these fields, the ability to control its shape is expected to be one of the research topics in
the future, and the technology of controllable surfaces will be helpful. This technology includes, for example,
active materials that are controllable by temperature and magnetic fields, and the number of researches in
robotics is steadily increasing. However, as in computer graphics, scenarios in which the spatial position of
a surface point can be directly manipulated are limited. From a robotics perspective, the robot’s shape and
the position of points must be calculated from the robot’s state or control variables. This corresponds to
recovering the surface shape from its first and second fundamental quantities or from the elongations of lines
along the surface, which is not an easy calculation. To solve this problem, we should not only develop the
robot’s mechanism but also based on mathematical concepts. In particular, we focus on the idea that the
theory of robotic surfaces can be simplified by assuming conformality in its local coordinate system. In this
talk, we will introduce two types of robots and one model developed in Actuated Differentiable Manifold
Laboratory: an S-isothermic surface robot, a boundary-controlled robotic surface that mechanically solves
Plateau’s problem, and a piecewise constant mean curvature surface model. We also touch on the Willmore
flow described by mean curvature half-density, which is expected to be utilized as a feedback control theory
for the robotic surface.

5. BKE— (KIRKZ) Y—<VERELOBMEERE ZDIGA

(Theory of elasticity on Riemannian manifolds and its applications)

MR MG AR DS R T 2R % AT B BROBCEN 2 R I S T h 5. X DIIZES LV — 7Tk, Zh
F TR OB AN R AZ KD -7 )y REM2RS ) - VERIEA—RIET 22251, Boh
7RG A BB RANER T H5 2 812 & o T, BEIGHITE o TRENZLTEY 7 M~ T 7LD SRR
Mrz#EdTE7, KHFETIE, V—<UZiE Lo & Materials Point Method (2 & 2 #UEE B IEDH
AGDORIZ DOV 2 L 51T, ThEHWTT - Y O TEREMTHIZ DWW TN T 5

The theory of elasticity is the mathematical basis for analyzing the mechanical properties of materials and
structures. Recently, our research group has generalized the theory from Euclidean spaces to Riemannian
manifolds and then implemented it into the numerical analysis. Elasticity on the Riemannian manifold
enables us to analyze the mechanical property of soft materials whose morphology is controlled by residual
stresses. In this study, we present a brief overview of the elasticity theory, implementation of the material
point method, and some examples including plant morphology analyses.
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6. IAFEE (KIRKZF) &2 2THROERENZ : MORAFEEEDERICED CHEFE

(Continuum mechanics of crystals with dislocations: differential geometry and numerical analysis based on
calculus of variations)

& AR R OFRALIZ AR IS E R > 2 T RIETH D, MBRIOBUERPHRE L ZEBRIZEbL2 Z Mo h
TWb. T35 LB, AL OBMFRRECM B O 71 2R AN D &L EIZE H U 2R T H
NTE. HEHRAAWARIEII D ULZHAD—D2TH Y, BMAZEOPRERELOT VY IVIGE LU TRAS
Z & CHEGA S E T A~ RIEREE 2B AT 2D TH B, 1950 F£EHIZ Kondo, Bilby 5, Kroner (2 & > THAL
IREINZOHGRIZHFHOERRE, TSN TH VR oEMNEEL L WS —RIPELREE
SO B HWT, MRS 2 E A2 ANTZBRAIDRATH D, Zs DI MAIEZE DHE Amari
WZEkoTH—TaRIcE D oNz. HARREIL Riemann FH&E & 7 7 « VEREMA 2B S PR EEKTH S
—fiZ 3 IRIT Euclid ZEIANEEMIZHEHDIAD Z 2 IZTERVWEWIRHMEELTE Y, HEDOHRED 1
REBIZ Z D ERIRFED 3 KT Euclid ZEHINDHEDAAIZ L >TRDOLND. Z5 btéfm X DEDIZETK
ECHERE U —/T. BEOR M CBi% éh%?ﬁ"ﬁ&ﬁzhﬁ?ﬁ&iﬁbf ZOHRNREE BEERET S I &3
L\, RAFZETIE, EfoMisfiam e BEoiEcEIK 7 7u—Fi2 & ), EEOBASAIZN L THEDHR
4)?%%9%ETZ>$(£%%§EL/7’:. ZOFEITHBWTIE, Cartan O —HEiE R & Helmholtz 43 % 243 [
DREDBEIZHNT WA, D HRREIZZ DL FHIEOMEN S BHRET 2 I LN TES. T THFEL
f:*”‘%ﬂ&@%%ﬁ%*ﬁ?ﬁ?ék&), WL DD DAL AT T B EAEFI R 217 o 7. A1 %2 B LHEED 7R
RIL, BUEFEIZ L o THEONAZERIREE 3 ¥t Euclid ZHAEORAL I L TEHAETLH I LN TE .

Dislocations in crystalline materials are linear lattice defects that play a central role in the plastic deformations
and the strength of materials. Various studies have been conducted focusing on the geometrical characteristics
of dislocations and their influence on the mechanical properties of materials. The theory of continuous
distribution of dislocations is one such attempt to introduce defect structures into continuum mechanics
analysis by considering dislocations as tensor fields on smooth manifolds. This theory, proposed independently
by Kondo, Bilby et al. and Kroner in the 1950s, was the first attempt to incorporate differential geometry
into continuum mechanics to describe the natural state of a crystal, a seemingly contradictory state that is
stress-free but contains dislocations. Amari subsequently brought these independent studies together in a
unified manner, focusing on the theory of distant parallelism. The natural state is described as a smooth
manifold with a Riemann metric and an affine connection, but it is generally characterized by the fact that
it cannot be isometrically embedded in three-dimensional Euclidean space. The state of a real crystal with
internal stress is obtained by embedding this natural state in the Euclidean space. While such attempts have
been greatly advanced in subsequent studies, it is difficult to directly determine this natural state for the
complex dislocation distribution observed in real crystals.

In this study, we developed a method for determining the natural state of crystals for arbitrary dislocation
distributions using an approach based on continuous distribution dislocation theory and the calculus of
variations. In this method, Cartan ’ s first structure equation and Helmholtz decomposition are used in the
construction of the variational problem. The natural state of the crystal can be calculated directly from the
solution to this problem. To verify the validity of the framework developed here, we performed numerical
analyses for several dislocation distributions. The mechanical state of the crystal including dislocations can be
calculated by embedding the natural state obtained from the numerical calculations into a three-dimensional
Euclidean space.
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7. BIE— (RAHE) RRAZRZRIIENZHERFMS PHSBIRREME : HROERAITILESIFA T
(Mathematical research on real-world problems is an educational program for doctorate course students in

FMSP (Leading Graduate Course Frontiers of Mathematical Science and Physics) of the University of Tokyo:
Coordination sequences of crystals are of quasi-polynomial type)

AL RS L, RO R PR AR A AR OB 7 0 > 7« 7 REBE (FMSP) O LR —2
EOHEETV T T LD0EDE LT, EERPHRTE T IHETH U, &EOBUAAIR XK 72 B DA
BIZE D, WEROBFENISH ZBA 5582175 28 2HME LTWS, 2018 4ERZIZHIRR U 7z H AR Dt 2
W [T XA TV RAZB W EHFAM /) R=Yay] TR, HEMFERO—ERE U THRIBE SRR
Mz R LTV 5,

T, MEROEMBIIORELIHRMEIZOWTHIE L TW\Wb, fEMmOEMERE I, SREFICEEES 2 H 10
W RIHEANBAZETH S, WABH &, MERZETHON T W SEAE Z LR L 7S TH O, nfl
DFRFREEICEDZE VBT BHTOEE sn LBV LD BRBEITH S ., G OEANEFNIZE T 5 EE R
BE LT [FERORMBINETDRENE A THELIHAIZ R0 E 557 (2 OBEENMEE IFEL IHAM »
FINTWD) ] &S Grosse-Kunstleve & Brunner, Sloane 12 & % F4 ([GKBS96]) 23H 5, AIFZEIZH W
T,. ZOFPREGEMHRT S Z DB TE7 ([NSMN21)), FEHTEELRAFICRLDIE. ARAERE /1
FOMEZMS Z & THoT, —KhH. BEOMFH TR, ELHANI LIV ELDGEATHEINS, £Z
T, YD &S BECENGEMN 25T ISELIHARPELIHAUT 2 502 D0W T, RECROBGR & 75 7 B
& B BUHRH A DM A S AL TE D, TOEHZMNT 5.

Mathematical research on real-world problems is an educational program for doctorate course students in
FMSP (Leading Graduate Course Frontiers of Mathematical Science and Physics) of the University of Tokyo.
The academic-Industry collaboration Program ‘Mathematical Innovation in Data Science’ has started
up in April 2018 provided Nippon Steel Corporation with funds, affiliated with the Graduate School of
Mathematical Science, the University of Tokyo has proposed themes for the program, and provided several
themes for doctoral students who mainly major in algebra or geometry.

The coordination sequences of periodic graphs are predicted to be of quasi-polynomial type by Grosse-
Kunstleve et al. (1996). After that, various mathematical methods to calculate coordination sequences have
been developed and they are actually calculated in many specific cases as in the work of Conway & Sloane
(1997), Eon (2002, 2012), Goodman-Strauss & Sloane (2019), O’ Keeffe (1995, 1998), Shutov & Maleev (2018,
2019, 2020). And, we were able to give the affirmative answer [NSMN21] to the question posed by Grosse-
Kunstleve et al. [GKBS96] using monoid theory. On the other hand, Crystals in real world are observed to
be quasi-polynomial in many cases. In SGW2022, we hope to study that what mathematical conditions on
quasi-polynomial type make it quasi-polynomial, in the view points of mathematics and numerical calculation
in graph theory.

[GKBS96] R. W Grosse-Kunstleve, G. O Brunner, and N. J. A Sloane, Algebraic description of coordination
sequences and exact topologicaldensities for zeolites, Acta Cryst. A 52 (1996), no. 6, 879-889.

[NSMN] Y. Nakamura, R. Sakamoto, T. Mase, J. Nakagawa, Coordination sequences of crystals are of quasi-
polynomial type, Acta Cryst. (2021). A77, 138-148
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