

九州大学IMI研究集会 「耐量子計算機暗号と量子情報 の数理」 (ハイブリッド開催)

PROIDEO

格子基底簡約と LWE/NTRU問題に対する格子攻撃

2022年8月3日(水) 9:30~10:30 安田雅哉(立教大学)

Basics on Lattices

• For linearly independent $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{Z}^n$, Integral combination

$$L = \mathcal{L}(\mathbf{b}_1, \dots, \mathbf{b}_n) := \left\{ \sum_{i=1}^n x_i \mathbf{b}_i \mid x_i \in \mathbb{Z} \right\}$$

- is a (full-rank) lattice of dimension n
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$: a **basis** of L
 - Regard it as the $n \times n$ matrix
- Infinitely many bases if $n \ge 2$
 - If **B**₁ and **B**₂ span the same lattice,
 - then $\exists \mathbf{V} \in \operatorname{GL}_n(\mathbb{Z})$ such that $\mathbf{B}_1 = \mathbf{B}_2 \mathbf{V}$
- $\operatorname{vol}(L) = |\operatorname{det}(\mathbf{B})| : \operatorname{the volume of } L$
 - Independent of the choice of bases
- $\lambda_1(L)$: the **first successive minimum** of *L*
 - The length of a shortest non-zero vector in L

A lattice of dimension n = 2

Lattices in Cryptography

- Post-Quantum Cryptography (PQC) Standardization
 - Since 2015, National Institute of Standards and Technology (NIST) has proceeded a standardization project for PQC
 - In July 2020, NIST selected 7 Finalists and 8 Alternates
 - 7 lattice-based schemes had been evaluated at the 3rd round
 - 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)
 - 2 Alternates (FrodoKEM, NTRUprime)
 - In July 2022, NIST has selected the first algorithms to be standardized
 - NISTIR 8413: <u>https://csrc.nist.gov/publications/detail/nistir/8413/final</u>

	Finalists	Alternates	
KEMs/Encryption	Kyber NTRU SABER Classic McEliece	Bike FrodoKEM HQC NTRUprime SIKE	
Signatures	Dilithium Falcon Rainbow	GeMSS Picnic SPHINCS+	

Lattice Problems

Algorithmic problems for lattices

- SVP (Shortest Vector Problem)
 - Given a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L
 - Find a non-zero shortest vector in L
- CVP (Closest Vector Problem)
- LWE (Learning with Errors)
- NTRU, etc.

Relationship with cryptography

- The security of lattice-based cryptography is based on the hardness of lattice problems
- Most lattice problems can be reduced to (approximate) SVP and CVP

SVP in a two-dimensional lattice

- Given linearly independent **b**₁, **b**₂
- Find a non-zero shortest vector

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2$ for some $a_1, a_2 \in \mathbb{Z}$

Lattice Basis Reduction

Strong tool for solving lattice problems •

- Find a basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ with short and nearly orthogonal vectors
 - Such a basis is called "good" or "reduced"
 - Some basis vectors b_i's are very short
- Consist of basic unimodular transformations
 - Multiply by (-1): $\mathbf{b}_i \leftarrow -\mathbf{b}_i$ (1)
 - 2 Swap \mathbf{b}_i and \mathbf{b}_i

3 Multiply (by integer)-Add: $\mathbf{b}_i \leftarrow \mathbf{b}_i + a\mathbf{b}_i \ (a \in \mathbb{Z})$

LLL (1/3): Definition and Properties

- Lenstra-Lenstra-Lovász (LLL)-reduction [LLL82]
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is **\delta-LLL-reduced** if it satisfies two conditions
 - **1** Size-reduced: $|\mu_{ij}| \le \frac{1}{2}$ for all $1 \le j < i \le n$
 - **2** Lovász' condition: $\|\mathbf{b}_k^*\|^2 \ge (\delta \mu_{k,k-1}^2) \|\mathbf{b}_{k-1}^*\|^2$
 - $\frac{1}{4} < \delta < 1$: reduction parameter (e.g., $\delta = 0.99$ for practice)

-
$$\mathbf{B}^* = (\mathbf{b}_1^*, \dots, \mathbf{b}_n^*), \mu = (\mu_{ij})$$
: Gram-Schmidt information of **B**:

$$\mathbf{b}_{1}^{*} = \mathbf{b}_{1}, \ \mathbf{b}_{i}^{*} = \mathbf{b}_{i} - \sum_{j=1}^{i-1} \mu_{ij} \mathbf{b}_{j}^{*}, \ \mu_{ij} = \frac{\langle \mathbf{b}_{i}, \mathbf{b}_{j}^{*} \rangle}{\left\| \mathbf{b}_{j}^{*} \right\|^{2}}$$

- Every LLL-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies
 - $\|\mathbf{b}_1\| \le \alpha^{\frac{n-1}{2}} \lambda_1(L)$, where $\alpha = \frac{4}{4\delta 1} > \frac{4}{3}$
 - $\|\mathbf{b}_1\| \le \alpha^{\frac{n-1}{4}} \operatorname{vol}(L)^{\frac{1}{n}}$

[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovász, "Factoring polynomials with rational coefficients", Mathematische Annalen 261 (4): 515—534 (1982).

LLL (2/3): **Basic Algorithm**

It consists of two procedures to find an LLL-reduced basis ٠

Size-reduction: $\mathbf{b}_k \leftarrow \mathbf{b}_k - q\mathbf{b}_i$ with $q = \lfloor \mu_{k,i} \rfloor$ $(\mathbf{1})$

2 Swap adjacent vectors: $\mathbf{b}_{k-1} \leftrightarrow \mathbf{b}_k$ if they do not satisfy Lovász' condition

Algorithm: The basic LLL Lenstra et al. (1982)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice *L*, and a reduction parameter $\frac{1}{4} < \delta < 1$ **Output:** A δ -LLL-reduced basis **B** of L

1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of the input basis **B** 2: $k \leftarrow 2$

3: while $k \leq n$ do

1 4: Size-reduce $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ // At each k, we recursively change $\mathbf{b}_k \leftarrow \mathbf{b}_k$ – $\lfloor \mu_{k,j} \rceil \mathbf{b}_j$ for $1 \le j \le k - 1$ (e.g., see Galbraith 2012, Algorithm 24)

if $(\mathbf{b}_{k-1}, \mathbf{b}_k)$ satisfies Lovász' condition then

$$6: \quad k \leftarrow k+1$$

28: 9: Swap \mathbf{b}_k with \mathbf{b}_{k-1} , and update Gram–Schmidt information of **B**

- $k \leftarrow \max(k-1,2)$
- end if 10:
- 11: end while

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

LLL (3/3): Sage Code


```
def GSO(B, n):
  2
         GS = Matrix(QQ, n)
 3
         mu = Matrix(QQ, n)
 4 •
         for i in range(n):
              GS[i] = B[i]
 5
6
              mu[i. i] = 1
 7 •
              for i in range(i):
 8
                  mu[i, j] = B[i]. inner_product(GS[j])/GS[j].norm()^2
 9
                  GS[i] -= mu[i, i] * GS[i]
10
         return GS, mu
11
    def LLL(B, n, delta):
12 •
13
         GS. mu = GSO(B, n)
14
         BB = vector(QQ, n)
15 •
         for i in range(n):
16
              BB[i] = GS[i]. norm()^2
17
         k=1
         while k \le n-1:
18 •
19 •
              for j in range(k) [::-1]:
20 •
                   if abs(mu[k, j]) > 0.50:
21
22
                       q=round (mu[k, j])
                       B[k] -= a*B[i]
23 •
                       for I in range(j+1):
24
                           mu[k, l] -= q*mu[j, l]
25 •
              if BB[k] \geq (delta - mu[k, k-1]<sup>2</sup>)*BB[k-1]:
26
                  k+=1
27 •
              else:
28
                  v = B[k-1]; B[k-1]=B[k]; B[k]=v;
29
                  GS. mu=GSO(B, n)
30 •
                  for i in range(n):
31
                       BB[i] = \overline{GS}[i]. norm()<sup>2</sup>
32
                  k=max(k-1, 1)
33
         return true
```

34 35 n = 10; d = 10000036 B = Matrix(ZZ, n)37 ▼ for i in range(0, n): B[i, i] = 138 B[i, 0] = randint(-d, d)39 40 print("Input basis") 41 show(B) 42 LLL (B, n, 0.99) print("¥nOutput basis") 43 44 show(B)

> Please use <u>Sage Cell Server</u> (sagemath.org)

Enumeration (1/3): Basic Idea

• Enumerate all vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{s}\| \leq \mathbf{R}$

- R > 0: search radius (e.g., R = 1.05GH(L))
- With Gram-Schmidt information, write

$$\mathbf{s} = \sum_{j=1}^{n} \left(v_j + \sum_{i=j+1}^{n} \mu_{ij} v_i \right) \mathbf{b}_j^*$$

By the orthogonality of Gram-Schmidt vectors,

$$\|\pi_k(\mathbf{s})\|^2 = \sum_{j=k}^n \left(v_j + \sum_{i=j+1}^n \mu_{ij} v_i \right)^2 \|\mathbf{b}_j^*\|^2$$

for $1 \le k \le n$, where π_k denotes the projection map to $\langle \mathbf{b}_k^*, \dots, \mathbf{b}_n^* \rangle_{\mathbb{R}}$ - Consider *n* inequalities $\|\pi_k(\mathbf{s})\|^2 \le R^2$ for $1 \le k \le n$:

$$\begin{cases} v_n^2 \leq \frac{R^2}{\|\mathbf{b}_n^*\|^2} \\ \left(v_{n-1} + \mu_{n,n-1}v_n\right)^2 \leq \frac{R^2 - v_n^2 \|\mathbf{b}_n^*\|^2}{\|\mathbf{b}_{n-1}^*\|^2} \\ \vdots \end{cases}$$

Enumeration (2/3): Basic Algorithm

Algorithm: The basic Schnorr–Euchner enumeration Schnorr and Euchner (1994)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L and a radius R with $\lambda_1(L) \leq R$ **Output:** The shortest non-zero vector $\mathbf{s} = \sum_{i=1}^{n} v_i \mathbf{b}_i$ in L 1: Compute Gram–Schmidt information $\mu_{i,j}$ and $\|\mathbf{b}_i^*\|^2$ of **B** 2: $(\rho_1, \ldots, \rho_{n+1}) = \mathbf{0}, (v_1, \ldots, v_n) = (1, 0, \ldots, 0), (c_1, \ldots, c_n) = \mathbf{0}, (w_1, \ldots, w_n) =$ 0 3: k = 1, last_nonzero = 1 // largest *i* for which $v_i \neq 0$ 4: while true do $\rho_k \leftarrow \rho_{k+1} + (v_k - c_k)^2 \cdot \|\mathbf{b}_k^*\|^2 // \rho_k = \|\pi_k(\mathbf{s})\|^2$ 5: if $\rho_k \leq R^2$ then 6: if k = 1 then $R^2 \leftarrow \rho_k$, $\mathbf{s} \leftarrow \sum_{i=1}^n v_i \mathbf{b}_i$; // update the squared radius 7: else $k \leftarrow k-1, c_k \leftarrow -\sum_{i=k+1}^n \mu_{i,k} v_i, v_k \leftarrow \lfloor c_k \rceil, w_k \leftarrow 1;$ 8: else 9: $k \leftarrow k + 1$ // going up the tree 10: if k = n + 1 then return s; 11: if $k \geq last_nonzero$ then last_nonzero $\leftarrow k, v_k \leftarrow v_k + 1$; 12: 13: else if $v_k > c_k$ then $v_k \leftarrow v_k - w_k$; else $v_k \leftarrow v_k + w_k$; // zig-zag search 14: $w_k \leftarrow w_k + 1$ 15: end if 16: end if 17:

18: end while

- Enumerate lattice vectors $\mathbf{s} = \sum v_i \mathbf{b}_i \in L$ such that $\|\mathbf{s}\| \leq R$
- Built an enumeration tree to find integral combinations (v₁, ..., v_n)

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

Enumeration (3/3): Sage Code


```
v def GSO(B, n):
          GS = Matrix(QQ, n)
 3
          mu = Matrix(QQ, n)
 4 •
          for i in range(n):
 5
               GS[i] = B[i]
               mu[i, i] = 1
 6
               for j in range(i):
                    mu[i, j] = B[i].inner_product(GS[j])/GS[j].norm()^2
 8
 9
                    GS[i] -= mu[i, j]*GS[i]
10
          return GS, mu
11
12 ▼ def ENUM(B, n, R):
13
          GS, mu = GSO(B, n)
          BB = vector(QQ, n)
14
          for i in range(n):
BB[i] = GS[i].norm()^2
sigma = Matrix(QQ, n+1, n)
r = vector(ZZ, n+1)
rho = vector(QQ, n+1)|
15 •
16
17
18
19
20
          v = vector(ZZ, n)
          c = vector(QQ, n)
21
22
          w = vector(ZZ, n)
23 •
24
25
26
27
          for i in range(n+1):
               r[i] = i
          v[0] = 1
          last_nonzero = 1
          k = 1
28 •
          while (1):
29
30 •
               rho[k-1] = rho[k] + (v[k-1] - c[k-1])^{2*BB[k-1]}
               if \overline{RR}(rho[k-1]) <= RR(\overline{R}) :
31 ▼
32
33
34
35 ▼
36
37
38
39
                    if k==1:
                         print("Solution found"); return v
                    k = k - 1
                    r[k-1] = max(r[k-1], r[k])
                    for i in range(k+1, r[k]+1)[::-1]:
                         sigma[i-1, k-1] = sigma[i, k-1] + mu[i-1, k-1]*v[i-1]
                    c[k-1] = -sigma[k, k-1]
v[k-1] = round(c[k-1])
                    w[k-1] = 1
40 •
               else:
41
                    k = k+1
42 •
                    if k==n+1:
43
44
                         print("No solution"); return false
                    r[k-1] = k
45 •
                     if k>=last_nonzero:
46
                         last nonzero = k
47
                         v[k-1] = v[k-1] + 1
48 •
                    else:
49 •
                          if RR(v[k-1]) > RR(c[k-1]):
50
                              v[k-1] = v[k-1] - w[k-1]
51 ▼
52
53
                         else:
                              v[k-1] = v[k-1] + w[k-1]
                         w[k-1] = w[k-1] + 1
```

```
55
    #Main
56
    n = 20
57
    B = random_matrix(ZZ, n, x=0, y = 30)
58
    B. LLL ()
59
    print("LLL-reduced basis =¥n", B)
    R = 0.99 * RR (B[0]. norm()^2)
60
61 •
    while (1):
62
         v = vector(ZZ, n)
63
         v = ENUM(B, n, R)
         if v != false:
64 •
65
             vec = v[0] * B[0]
             for i in range(1, n):
66 •
67
                  vec += v[i]*B[i]
             R = 0.99 * RR (vec. norm()^2)
68
69
             print("Norm=", RR(vec.norm()), ", Vector=", vec)
70 •
         else:
71
             break
72
    print("End")
```

BKZ (1/3): Definition and Properties

- Block Korkine-Zolotarev (BKZ)-reduction
 - A blockwise generalization of LLL with blocksize β
 - $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ is β -BKZ-reduced if it satisfies two conditions
 - ① It is size-reduced (same as LLL)
 - 2 The k-th Gram-Schmidt vector \mathbf{b}_k^* is shortest in $L_{[k,\ell]}$ with $\ell = \min(k + \beta 1, n)$ for all $1 \le k < n$

- Every β -BKZ-reduced basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L satisfies $\|\mathbf{b}_1\| \le \gamma_{\beta}^{\frac{n-1}{\beta-1}} \lambda_1(L)$

• γ_{β} : Hermite's constant of dimension β , i.e., $\gamma_{\beta} = \sup_{L} \frac{\lambda_1(L)^2}{\operatorname{vol}(L)^{2/n}}$

• As β increases, $\gamma_{\beta}^{1/(\beta-1)}$ decreases and thus \mathbf{b}_1 can be shorter

BKZ (2/3): Basic Algorithm

• It consists of LLL and ENUM:

- Call ENUM to find a non-zero shortest vector in $L_{[k, \ell]}$
- Call LLL to reduce a projected block basis of $L_{[k, \ell]}$

Algorithm: The basic BKZ Schnorr and Euchner (1994)

Input: A basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ of a lattice L, a blocksize $2 \le \beta \le n$, and a reduction parameter $\frac{1}{4} < \delta < 1$ of LLL **Output:** A β -DeepBKZ-reduced basis **B** of L 1: $\mathbf{B} \leftarrow \text{LLL}(\mathbf{B}, \delta)$ // Compute $\mu_{i,j}$ and $\|\mathbf{b}_{i}^{*}\|^{2}$ of the new basis **B** together 2: $z \leftarrow 0, j \leftarrow 0$ 3: while z < n - 1 do $j \leftarrow (j \mod (n-1)) + 1, k \leftarrow \min(j+\beta-1, n), h \leftarrow \min(k+1, n)$ Find $\mathbf{v} \in L$ such that $\|\pi_i(\mathbf{v})\| = \lambda_1(L_{[i,k]})$ by enumeration or sieve 5: if $\|\pi_j(\mathbf{v})\|^2 < \|\mathbf{b}_i^*\|^2$ then 6: $z \leftarrow 0$ and call LLL($(\mathbf{b}_1, \ldots, \mathbf{b}_{j-1}, \mathbf{v}, \mathbf{b}_j, \ldots, \mathbf{b}_h), \delta$) // Insert $\mathbf{v} \in L$ and 7: remove the linear dependency to obtain a new basis 8: else $z \leftarrow z + 1$ and call LLL(($\mathbf{b}_1, \ldots, \mathbf{b}_h$), δ) 9: end if 10:

11: end while

<sup>As reference,
please look at
BKZ-60 – YouTube
by Martin Albrecht</sup>

BKZ (3/3): Sage Code

1.0		00	1 5	
12	der ENUM(B, n, K, g, n):	67	def	BKZ(B, n, block):
13	BB, U = GSO(B, n)	68		B.LLL()
14	Bnn = vector(QQ, n)	69		BB, $U = GSO(B, n)$
15	for 1 in range (n):	70		Bnn = vector(QQ, n)
16	$Bnn[1] = BB[1] \cdot norm()^{-2}$	71		for i in range(n):
1/	BB, U = GSO(B, n)	72		$Bnn[i] = BB[i].norm()^2$
18	sigma = Matrix(QQ, n+1, n)	73		z = 0
19	r = vector(ZZ, n+1)	7.0		2 - 0
20	rho = vector(QQ, n+1)	74		K = -1
21	v = vector(ZZ, n)	15		while z < n-1:
22	c = vector(QQ, n)	76		k = lift(mod(k+1, n-2))
23	w = vector(ZZ, n)	77		l = min(k+block-1, n-1)
24	for 1 in range (n+1):	78		h = min(l+1, n-1)
25	r[i] = i	79		print("(k, l, h) = ", k, l, h)
26	v[g] = 1	80		
27	last_nonzero = 1	81		$B = 0.99 \times Bnn[k]$
28	$\mathbf{k} = \mathbf{g} + 1$	01		K = 0.55 Bint[K]
29	flag = 0	02		V = 0
30	v1 = vector(ZZ, n)	83		V = ENUM(B, n, R, K, I)
31	while (1):	84		if v != 0:
32	$rho[k-1] = rho[k] + (v[k-1] - c[k-1])^{2*Bnn[k-1]}$	85		z = 0
33	if $rho[k-1] \leq R$:	86		C = Matrix(ZZ, h+1, n)
34	if k==g+1:	87		for i in range(k):
35	R = 0.99 * rho [k-1]	88		C[i] = B[i]
36	flag += 1	89		C[k] = v
37	for i in range(n):	00		$f_{\text{or}} = v$
38	v1[i] = v[i]	90		IOI I III Ialige (K+I, II+I):
39	k = k - 1	91		C[1] = B[1-1]
40	r[k-1] = max(r[k-1], r[k])	92		C = C.LLL()
41	for i in range(k+1, r[k]+1)[::-1]:	93		for i in range(1, h+1):
42	sigma[i-1, k-1] = sigma[i, k-1] + U[i-1, k-1]*v[i-1]	94		B[i-1] = C[i]
43	c[k-1] = -sigma[k, k-1]	95		BB, $U = GSO(B, n)$
44	v[k-1] = round(c[k-1])	96		Bnn = vector(00, n)
45	w[k-1] = 1	97		for i in range(n):
46	else:	00		$Pnp[i] = PD[i] porm()^{2}$
47	k = k+1	90		DINI[I] - DD[I].NOIM() Z
48	if $k=h+1$:	99		else:
49	if flag == 0:	100		z += 1
50	return False	101		B = B.LLL()
51	else:	102		BB, $U = GSO(B, n)$
52	vv = v1[g] *B[g]	103		Bnn = vector(QQ, n)
53	for i in range(g+1, h+1):	104		for i in range (n):
54	vv += v1[i]*B[i]	105		$Bnn[i] = BB[i] norm()^2$
55	return vv	106		Dim[1] DD[1].norm() 2
56	r[k-1] = k	100		100000
57	if k>=last nonzero:	107	n =	20; d = 1000000
58	last nonzero = k	108	B =	Matrix(ZZ, n)
59	v[k-1] = v[k-1] + 1	109	for	i in range(0, n):
60	else:	110		B[i, i] = 1
61	if $v[k-1] > c[k-1]$:	111		B[i, 0] = randint(-d, d)
62	v[k-1] = v[k-1] - w[k-1]	112	sho	w (B)
63	else:	113	B =	B LLL()
64	v[k-1] = v[k-1] + w[k-1]	111	סעיז	(P - 10)
65	w[k-1] = w[k-1] + 1	115	DRG	
		112	Snot	

14

Log-Lengths of Gram-Schmidt Vectors of Reduced Bases

from sage.modules.free module integer import IntegerLattice from fpylll import * 4 def MGSO(B, n): a = Matrix (RR, n); qq = Matrix (RR, n) r = Matrix(RR, n); mu = Matrix(RR, n) BB = vector(RR, n)for k in range(n): 8 9 $\cdot qq[k] \cdot = \cdot B[k]$ for j in range(k): 11r[j, k] = qq[j].inner_product(qq[k]) $\cdots qq[k] \cdot -= \cdot r[j, \cdot k] * qq[j]$ $\cdots r[k, k] = qq[k] .norm()$ 14 $\cdot qq[k] \cdot /= \cdot r[k, \cdot k]$ ••• for i in range(n): 16 $\cdots \cdots mu[i, i] = 1.0$ 17 \cdots BB[i] = r[i, i] **2 for j in range(i): 19 \cdots mu[i, \cdot j] = r[j, \cdot i]/r[j, \cdot j] 20 $\cdots a = r.transpose()$ $\cdot \cdot \cdot \mathbf{r} \cdot = \cdot \mathbf{a}$ ··· return BB, mu 22 23 2.4 $d \cdot = \cdot 100$ BB = 2**(6*d)L = sage.crypto.gen lattice(type='random', n=1, m=d, q=BB, lattice=True) 27 $A \cdot = \cdot L \cdot LLL()$ 28 29 B = IntegerMatrix(d, d)for i in range(d): ••• for j in range (d): \cdots $B[i, \cdot j] \cdot = A[i, \cdot j]$ par = BKZ.Param(50, strategies=BKZ.DEFAULT STRATEGY, max loops = 2) B = BKZ.reduction(B, par) 34 C = Matrix(ZZ, d, d)36 for i in range(d): for j in range(d): $\cdots \cdots C[i, \cdot j] = B[i, \cdot j]$ 39 BB, \cdot mu \cdot = \cdot MGSO (C, \cdot d) list = [] 40 for i in range(d): 41 list.append(RR(log(BB[i]))) 43 show(list plot(list))

Geometric Series Assumption (GSA)

Log-lengths log || b_i^{*} ||² of Gram-Schmidt vectors of a reduced basis (b₁, ..., b_n) for a "random" lattice are roughly on a straight line

The LWE Problem and Its Reduction (1/2)

Search-LWE problem with (n, q, σ, m)

- A kind of solving a system of linear approximate equations
- Given (\mathbf{A}, \mathbf{b}) with $\mathbf{b} \equiv \mathbf{A}^T \mathbf{s} + \mathbf{e} \mod q$, find \mathbf{s}
 - $\mathbf{A} = (a_{ij}), \mathbf{s} = (s_i)$: uniform over \mathbb{Z}_q
 - $\mathbf{e} = (e_i)$: Gaussian distributed with σ (small error vector)

$$\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \equiv \begin{pmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{1m} & \cdots & a_{nm} \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_m \end{pmatrix} \mod q$$

• Approaches for solving LWE^[BBG+17]

 We shall describe reduction of LWE to BDD in the next slide

[BBG+17] N. Bindel, J. Buchmann, F. Gopfert and M. Schmidt, "Estimation of the hardness of the learning with errors problem with a restricted number of samples," IACR ePrint 2017/140, available at https://eprint.iacr.org/2017/140.

The LWE Problem and Its Reduction (2/2)

Reduction to BDD

- BDD = Bounded Distance Decoding
 - A particular case of CVP
- Find a vector $\mathbf{A}^T \mathbf{s} \in \Lambda$ close to the target \mathbf{b}
 - $\Lambda = \{ \mathbf{y} \in \mathbb{Z}^d : \exists \mathbf{s} \in \mathbb{Z}^n \text{ s.t } \mathbf{y} \equiv \mathbf{A}^T \mathbf{s} \pmod{q} \}$: **q-ary lattice** of dimension d
 - Distance $\|\mathbf{b} \mathbf{A}^T \mathbf{s}\| = \|\mathbf{e}\|$ is guaranteed to be small (e.g., $\|\mathbf{e}\| < 3\sigma\sqrt{d}$)

Transformation of BDD to (unique-)SVP

- E.g., Kannan's embedding technique^[Kan87]
 - (1) From a basis **B** of Λ , generate a matrix $\overline{\mathbf{B}} = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{b} & 1 \end{pmatrix}$ to define a lattice $\overline{L} = \mathcal{L}(\overline{\mathbf{B}})$, spanned by rows of $\overline{\mathbf{B}}$
 - (2) Find a short vector $\mathbf{v} = (\mathbf{e}, 1) \in \overline{L}$
 - If d is large enough (e.g., d > 2n), then **v** is the shortest in \overline{L}
 - It is extremely short for most LWE instances

RIKKYO UNIVERSITY

Solving the LWE problem Sage Code

36

print(); print(BB[0])

from sage.crypto.lwe import LWE from sage.stats.distributions.discrete gaussian integer import DiscreteGaussianDistributionIntegerSampler 2 3 n = 30; q = next prime(500)4 D = DiscreteGaussianDistributionIntegerSampler(2.0) $lwe \cdot = \cdot LWE (n, \cdot q, \cdot D \cdot = \cdot D)$ print(lwe) Search-LWE 8 9 $d \cdot = \cdot 80$ $\mathbf{b} \equiv \mathbf{A}^T \mathbf{s} + \mathbf{e} \mod q$ A = Matrix(ZZ, d, n); b = vector(ZZ, d)11 for i in range(d): 12 \cdots sample = \cdot lwe() (A, b): public •••• for j · in · range (n): 13 (s, e): secret $\cdot \cdot \cdot \cdot A[i, \cdot j] \cdot = \cdot (sample[0])[j]$ 14 $\cdots b[i] = sample[1]$ 15 16 17 $C = Matrix(ZZ, \cdot n+d, \cdot d)$ 18 AT = A.transpose() 19 for i in range(n): 20 for j in range (d): $\cdots \cdot C[i, \cdot j] \cdot = \cdot AT[i, \cdot j]$ 21 $\overline{\mathbf{B}} =$ for i in range(d): 22 \cdots C[i+n, \cdot i] $\cdot = \cdot q$ 23 24 $C \cdot = \cdot C \cdot LLL()$ 25 Applying 26 BB = Matrix (ZZ, d+1, d+1) 27 for i in range (d): LLL/BKZ 28 •••• for j in range (d): 29 $\cdots BB[i, j] = C[i+n, j]$ 30 for j in range(d): $\mathbf{v} = (\mathbf{e}, 1) \in \mathcal{L}(\bar{\mathbf{B}})$ 31 $\cdots BB[d, \cdot j] \cdot = \cdot b[j]$ $BB[d, \cdot d] \cdot = \cdot 1$ print(); print(BB) 34 $BB = BB \cdot LLL()$

Extension of Embedding for Ring-Based LWE (1/5)

- Ring-based LWE^[CIV16]
 - A general framework containing Ring-LWE and Poly-LWE
 - Given ring-based samples $(a_i(x), t_i(x))$ over $R_q = \mathbb{Z}_q[x]/(x^n + 1)$
 - Find a secret $s(x) \in R_q$ (or equivalently, small errors $e_i(x)$)

Coefficient representation and rotations

- Coefficient representation: $f(x) = f_0 + f_1 x + \dots + f_{n-1} x^{n-1} \mapsto \mathbf{f} = (f_0, f_1, \dots, f_{n-1})$
 - This representation can reduce ring-based LWE to standard LWE
- **Rotation**: $rot(f) := (-f_{n-1}, f_0, f_1, ..., f_{n-2})$
 - It is the coefficient vector of xf(x) for any $f(x) \in R$ since $x^n = -1$

[CIV16] W. Castryck, I. Iliashenko, and F. Vercauteren, On error distributions in ring-based LWE, LMS Journal of Computation and Mathematics19(A), 130–145 (2016)

Extension of embedding for Ring-Based LWE (2/5)

- Extended Kannan's embedding^[NY21]
 - Add rotated targets $rot^{i-1}(\tilde{\mathbf{t}})$ for $1 \le i \le k$ to Kannan's lattice
 - The case k=1 is the same as original Kannan's embedding
 - It includes **k** short lattice vectors with norm $\sqrt{\|\tilde{\mathbf{e}}\|^2 + \eta^2}$
 - Remark that $\operatorname{rot}^{i}(\tilde{\mathbf{e}}) \equiv \operatorname{rot}^{i}(\tilde{\mathbf{t}}) \operatorname{rot}^{i}(\tilde{\mathbf{s}})\widetilde{\mathbf{A}}$ for $1 \leq i \leq k$
 - However, the dimension increases: $\dim L_k = d + k$

 $(L_k = \mathcal{L}(\mathbf{B}):$ the extended lattice)

[NY21] S. Nakamura and M. Yasuda, "An extension of Kannan's embedding for solving ring-based LWE problems," IMA Cryptography and Coding (IMACC2021)

Extension of embedding for Ring-Based LWE (3/5)

• Recovering rotated targets $\mathbf{v} = \operatorname{rot}^h(\overline{\mathbf{e}}) \in L_k$ by BKZ

- 1 Find its projection $\pi_i(\mathbf{v})$ by enumeration over the projected lattice $\mathcal{L}(\mathbf{B}_{[i:d+k]})$ in the procedure of BKZ
- (2) Lift to the whole vector \mathbf{v} by enumeration over other projected lattices

Trade-offs

- It could increase the probability to recover rotated targets
 - Since there are k short targets
- It could also increase the running time of BKZ
 - Since the dimension increases

Extension of embedding for Ring-Based LWE (4/5)

- Experimental results
 - Transition of success probabilities by blocksizes of BKZ
 - k=2 or 3 gives the highest success probability for most β
 - Cf., the running time of BKZ increases slightly for k = 2 and 3

Extension of embedding for Ring-Based LWE (5/5)

RIKKYO UNIVERSITY

1 from sage.crypto.lwe import RingLWE

 $\rightarrow C \cdot = \cdot C \cdot LLL ()$

56

from sage.crypto.lwe import DiscreteGaussianDistributionPolynomialSampler, RingLWE, RingLWEConverter

from sage.stats.distributions.discrete gaussian polynomial import DiscreteGaussianDistributionPolynomialSampler from fpvlll import * 4 # Extended Kannan's embedding 6 # Rotation 60 7 def rot $(v, \cdot 1)$: \rightarrow B = Matrix(ZZ, d+k, d+k) $\longrightarrow W \cdot = \cdot \operatorname{copy}(v)$ 62 \rightarrow for i in range (d): \longrightarrow for i in range (1, 1): 63 \rightarrow for $j \cdot in \cdot range (d):$ 10 \longrightarrow w[i] $\cdot = \cdot v[i-1]$ \rightarrow B[i, j] = C[i+n, j]64 \longrightarrow w [0] $\cdot = \cdot - v [1-1]$ \rightarrow for i in range(k): —→return w \longrightarrow # · B[d+i, · d+i] · = · 1 67 \longrightarrow B[d+i, d+i] = t 14 # Setting of parameters \rightarrow for i in range (m): $\rightarrow \rightarrow v = copy(b[j])$ 16 $n \cdot = \cdot 64; \cdot N \cdot = \cdot 2 * n \cdot \cdot \longrightarrow \# \cdot security \cdot parameter$ \rightarrow for l in range (n): 17 $q \cdot = \cdot 1153 \longrightarrow \cdot \longrightarrow \# \cdot modulus \cdot parameter$ \rightarrow \rightarrow $B[d+i, \cdot n*j \cdot + \cdot 1] \cdot = \cdot v[1]$ 18 sigma = 4.0> + standard deviation of the discrete Gaussian distribution \rightarrow \rightarrow b[j] = rot(b[j], n)19 $m = 2 \longrightarrow \# number of ring-LWE samples$ \rightarrow # · print ("B · = · ", · B) 20 $d := \cdot m * n \rightarrow \longrightarrow \# \cdot number \cdot of \cdot LWE \cdot samples$ 74 $\rightarrow \# \cdot \text{print}("b \in ", \cdot b)$ $k = 5 \longrightarrow \longrightarrow \#$ extension parameter for Kannan's embedding 22 $\# \cdot t \cdot = \cdot 1$ #_____ $\# \cdot t \cdot = \cdot \text{ round (sigma)}$ \rightarrow # Lattice basis reduction 24 $t = \cdot 2 * round (sigma)$ __>#_____= $\rightarrow \# \cdot B \cdot = \cdot B \cdot LLL$ () $26 \quad \text{success} \cdot = \cdot 0$ \rightarrow # · print("B[0] · = · ", · B[0]) for s in range (100): # BB = B.BKZ(block size=30, prune=10, fp='fp') >flags = BKZ.AUTO ABORT|BKZ.MAX LOOPS|BKZ.GH BND >par = BKZ.Param(55, strategies=BKZ.DEFAULT_STRATEGY, max_loops=4, flags=flags) →# Generation of ring-LWE samples 84 $\rightarrow A = \cdot \text{IntegerMatrix}(d+k, \cdot d+k)$ D = DiscreteGaussianDistributionPolynomialSampler(ZZ['x'], euler phi(N), sigma) \rightarrow for i in range (d+k): —>ringlwe = RingLWE (N, q, D, secret dist='uniform') \rightarrow a = Matrix (m, n) \rightarrow for j in range (d+k): \rightarrow $A[i, \cdot j] \cdot = \cdot B[i, \cdot j]$ 34 \rightarrow b = Matrix (m, n) $\rightarrow \# \cdot \text{print}("A \cdot = \cdot ", \cdot A)$ \longrightarrow for i in range(m): BB = BKZ.reduction (A, par) \rightarrow Sample \rightarrow sample () \rightarrow a[i] ·= · copy (Sample[0]) $\rightarrow tmp \cdot = \cdot 0$ b[i] = copy(Sample[1]) \rightarrow if BB[0].norm() >= 1.2*sigma*sqrt(d): 94 \rightarrow tmp · = · 1 40 #_____ 41 + Contruction of a q-ary lattice \rightarrow \rightarrow $v \cdot = \cdot BB[0]$ 42 97 \rightarrow for i in range (d): 43 $\rightarrow A = Matrix(n, d)$ \rightarrow if abs(v[i]) > 4*sigma: 44 \rightarrow for i in range (m): 99 $\rightarrow \rightarrow tmp \cdot = \cdot 1$ 45 $\rightarrow \rightarrow v \cdot = \cdot \operatorname{copy}(a[i])$ 100 \longrightarrow if \cdot tmp $\cdot == \cdot 0$: 46 \rightarrow for j in range(n): 101 \longrightarrow print ("Success: ", BB[0]) 47 \rightarrow for l in range(n): 102 \rightarrow success = success + 1 48 \rightarrow $A[j, \cdot n \star i \cdot + \cdot 1] \cdot = \cdot v[1]$ 103 \longrightarrow else: 49 $\rightarrow \rightarrow v = v \operatorname{rot}(v, \cdot n)$ 104 print("Failure") \longrightarrow C = Matrix (n+d, d) 106 print ("k = ", k) \rightarrow for i in range(n): 107 print("The number of success = ", success) \rightarrow \rightarrow C[i] $\cdot = \cdot \operatorname{copy}(A[i])$ 54 \rightarrow for i in range(d): 23 \rightarrow C[i+n, ·i]·=·q

The NTRU Problem and Its Extension (1/3)

NTRU problem

- Given $h = g \cdot f^{-1} \in R_q$, find f or $g \in R_q$
 - $R = \mathbb{Z}/q\mathbb{Z}[x]/(\phi)$ with $\phi = x^N \pm 1$
 - $f, g \in R_q$ have small coefficients (e.g., ± 1) s.t. f is invertible in R_q
- NTRU lattice $L = \mathcal{L}(B)$

-
$$h = h_0 + h_1 x + \dots + h_{N-1} x^{N-1} \mapsto \mathbf{h} = (h_0, h_1, \dots, h_{N-1})$$
: public

-
$$\mathbf{B} = \begin{pmatrix} q \mathbf{I}_{N \times N} & \mathbf{0}_{N \times N} \\ \mathbf{H} & \mathbf{I}_{N \times N} \end{pmatrix}, \mathbf{H} = \begin{pmatrix} \mathbf{h} \\ \operatorname{rot}(\mathbf{h}) \\ \vdots \\ \operatorname{rot}^{N-1}(\mathbf{h}) \end{pmatrix}$$

- N short lattice vectors $(\operatorname{rot}^{i}(\boldsymbol{g}) | \operatorname{rot}^{i}(\boldsymbol{f})) \in L$ for $0 \leq i \leq N 1$
 - Write $g(x) = f(x)h(x) + q \cdot r(x), \exists r(x) \in R(x)$
 - $(\boldsymbol{g} \mid \boldsymbol{f}) = (\boldsymbol{f}\mathbf{H} q\boldsymbol{r} \mid \boldsymbol{f}) = (-\boldsymbol{r} \mid \boldsymbol{f}) \begin{pmatrix} q\mathbf{I}_{N \times N} & \mathbf{0}_{N \times N} \\ \mathbf{H} & \mathbf{I}_{N \times N} \end{pmatrix} \in L$

The NTRU Problem and Its Extension (2/3)

• Extended NTRU lattice $L_k = \mathcal{L}(\mathbf{B}_k)$

- Add k rotated vectors rot^i (**h**)

$$\mathbf{B}_{k} = \begin{pmatrix} q \mathbf{I}_{N \times N} & \mathbf{0}_{N \times N+k} \\ \mathbf{H}_{k} & \mathbf{I}_{N+k \times N+k} \end{pmatrix}, \mathbf{H}_{k} = \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}$$

- (k + 1)N short vectors in L_k of form $(\operatorname{rot}^i(\boldsymbol{g}) | \boldsymbol{0}_i | \boldsymbol{f} | \boldsymbol{0}_{k-i})$ and its rotations

Experimental results

- The success probability for recovering a secret vector f, g, or its rotations
- We used BKZ with $\beta = 60$
- *k* = 1 gives the highest success probability for most instances
 (cf., k=0: the original NTRU lattice)

/ П \	
h h	
rot(h)	
$\operatorname{vot}^{k-1}(h)/$	

TT

表 1: 拡張 NTRU 格子 <i>L</i> _k に対する格子攻撃の成功確率								
$(\beta = 60 \text{ o BKZ } 2.0 \text{ coeff}, k = 0 は元の \text{ NTRU 格子})$								
NTRU パラメータ	拡張パラメータ							
$(N,q,d)^*$	k = 0	k = 1	k=2	k = 3				
(64, 31, 18)	31%	36%	32%	31%				
(64, 41, 23)	46%	52%	38%	42%				
(64, 53, 28)	65%	71%	78%	67%				
(72, 31, 14)	71%	78%	68%	74%				
(72, 41, 19)	52%	58%	48%	51%				
(72, 53, 27)	18%	15%	13%	21%				
(80, 67, 25)	41%	48%	42%	45%				
(80, 89, 31)	69%	80%	75%	70%				
(80, 101, 36)	66%	74%	62%	69%				

25

The NTRU Problem and Its Extension (3/3)

® RIKKYO UNIVERSITY

from fpylll import * 3 N = -64; q = -31; d = -18; k = -0R.<x> = PolynomialRing(ZZ) 4 Rq. < x > = PolynomialRing(GF(q))6 $I = R.ideal([x^N-1])$ 7 $Iq = Rq.ideal([x^N-1])$ S = R.quotient ring(I, 'x')9 Sq = Rq.quotient ring(Iq, 'x') 10 def invertible sample(N, o, mo): 11 12 $\forall v \cdot = \cdot [0] * (N+1)$ 13 $v[0] \cdot = \cdot -1; \cdot v[N] \cdot = \cdot 1$ 14 $F \cdot = \cdot Rq(v)$ 15 while(1): 16 s = [1] * o + [-1] * mo + [0] * (N - o - mo)17 shuffle(s); res = Rq(s).qcd(F)18 if res == 1: 19 →break 20 return S(s), Sq(s) 21 def sample(N, o, mo): 23 s = (1] * o + (-1] * mo + (0] * (N-o-mo)24 shuffle(s) 25 return S(s), Sq(s) 2.6 27 $total \cdot = \cdot 0$ for l in range (100): 29 f, fq = invertible sample(N, d+1, d) q, qq = sample(N, d, d)31 hq = gq*(fq)^-1 H = Matrix (ZZ, N+k, N+k); F = hqfor i in range (N+k): 34 for j in range(N): \rightarrow H[i, \cdot j] $\cdot = \cdot$ F[j] 36 $F \cdot * = \cdot x$ B = Matrix(ZZ, 2*N+2*k, 2*N+k)39 for i in range (N+k): 40 $B[i, \cdot i] \cdot = \cdot 1$ 41 for j in range(N): 42 $B[i, \cdot j+N+k] = H[i, \cdot j]$ 43 for i in range(N): 44 $B[i+N+k, \cdot i+N+k] \cdot = \cdot q$ 45 for i in range(k): 46 $B[i+2*N+k, \cdot i] \cdot = \cdot 1$ 47 B[i+2*N+k, N+i] = -148 $B \cdot = \cdot B \cdot LLL()$

49

C·=·IntegerMatrix(2*N+k,·2*N+k) for i in range(2*N+k): for j in range(2*N+k): $C[i, \cdot j] \cdot = B[i+k, \cdot j]$ 54 flags = BKZ.AUTO ABORT | BKZ.MAX LOOPS | BKZ.GH BND par = BKZ.Param(60, strategies=BKZ.DEFAULT STRATEGY, max loops=2, flags=flags) 56 C = BKZ.reduction(C, par) $ff \cdot = \cdot 0$ 59 for i in range(N): 60 $G = \left[0\right] * (N); h = 0; flag = 0$ 61 for j in range(N): 62 G[j] = C[i, j+N+k]63 if abs(G[j]) <=1: 64 h += abs(G[j]) 65 else: 66 $fla\sigma = 1$ 67 if flag = 0 and h = 2*d: 68 $F \cdot = \cdot [0] * (N+k)$ 69 for j in range (N+k): F[i] = C[i, i]71 $F \cdot = \cdot Sq(F); \cdot G \cdot = \cdot Sq(G)$ 72 $if \cdot F * hq \cdot == \cdot G$: print("Success") 74 print("G = '', G) $ff \cdot = \cdot 1$ 76 total += 1 break $if \cdot ff \cdot == \cdot 0$: 79 print("Failure") print("k = ..., k)print("total = ", total)