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Basics on Lattices

• For linearly independent 𝐛1, … , 𝐛𝑛 ∈ ℤ𝑛, 

𝐿 = ℒ 𝐛1,… , 𝐛𝑛 ∶= 

𝑖=1

𝑛

𝑥𝑖𝐛𝑖 | 𝑥𝑖 ∈ ℤ

is a (full-rank) lattice of dimension 𝑛

– 𝐁 = (𝐛1, … , 𝐛𝑛): a basis of 𝐿
• Regard it as the 𝑛 × 𝑛 matrix

– Infinitely many bases if 𝑛 ≥ 2
• If 𝐁1 and 𝐁2 span the same lattice, 

• then ∃𝐕 ∈ GL𝑛(ℤ) such that 𝐁1 = 𝐁2𝐕

– vol 𝐿 = det 𝐁 :  the volume of 𝐿
• Independent of the choice of bases

– 𝜆1(𝐿): the first successive minimum of 𝐿
• The length of a shortest non-zero vector in  𝐿
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𝐛2

𝐛1

Integral combination

A lattice of dimension 𝑛 = 2



Lattices in Cryptography

• Post-Quantum Cryptography (PQC) Standardization
– Since 2015, National Institute of  Standards and Technology (NIST) has 

proceeded a standardization project for PQC

– In July 2020, NIST selected 7 Finalists and 8 Alternates

• 7 lattice-based schemes had been evaluated at the 3rd round
– 5 Finalists (Kyber, NTRU, SABER, Dilithium, Falcon)

– 2 Alternates (FrodoKEM, NTRUprime)

– In July 2022, NIST has selected the first algorithms to be standardized
• NISTIR 8413: https://csrc.nist.gov/publications/detail/nistir/8413/final
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https://csrc.nist.gov/publications/detail/nistir/8413/final


Lattice Problems

• Algorithmic problems for lattices

– SVP (Shortest Vector Problem)
• Given a basis 𝐁 = (𝐛1, … , 𝐛𝑛) of a lattice 𝐿

• Find a non-zero shortest vector in 𝐿

– CVP (Closest Vector Problem)

– LWE (Learning with Errors)

– NTRU, etc.

• Relationship with cryptography

– The security of lattice-based cryptography is 
based on the hardness of lattice problems

– Most lattice problems can be reduced to 
(approximate) SVP and CVP
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𝐛2

𝐛1
𝐯

SVP in a two-dimensional lattice

• Given linearly independent 𝐛1, 𝐛2

• Find a non-zero shortest vector 

𝐯 = 𝑎1𝐛1 + 𝑎2𝐛2 for some 𝑎1, 𝑎2 ∈ ℤ



Lattice Basis Reduction

• Strong tool for solving lattice problems

– Find a basis 𝐁 = (𝐛1, … , 𝐛𝑛) with short and nearly orthogonal vectors
• Such a basis is called “good” or “reduced”

• Some basis vectors 𝐛𝑖’s are very short

– Consist of basic unimodular transformations
① Multiply by (-1): 𝐛𝑖 ← −𝐛𝑖

② Swap 𝐛𝑖 and 𝐛𝑗

③ Multiply (by integer)-Add: 𝐛𝑖 ← 𝐛𝑖+a𝐛𝑗 (𝑎 ∈ ℤ)
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𝐛2

𝐛1

Good basis

short
nearly

orthogonal

𝐛2

𝐛1

Bad basis

long
nearly

parallel

Unimodular
Transformation

𝐛1
𝐛2
⋮
𝐛𝑛

→ ⋯ → ⋯ →

𝐛1
𝐛2
⋮
𝐛𝑛

Basic unimodular  
transformations

Input basis
(Bad basis)

Output basis
(Good basis)



LLL (1/3): 

Definition and Properties

• Lenstra-Lenstra-Lovász (LLL)-reduction [LLL82]

– 𝐁 = (𝐛1, … , 𝐛𝑛) is δ-LLL-reduced if it satisfies two conditions

① Size-reduced: 𝜇𝑖𝑗 ≤ 1

2
for all 1 ≤ 𝑗 < 𝑖 ≤ 𝑛

② Lovász’ condition: 𝐛𝑘
∗ 2 ≥ 𝛿 − 𝜇𝑘,𝑘−1

2 𝐛𝑘−1
∗ 2

– 1

4
< 𝛿 < 1: reduction parameter (e.g., 𝛿 = 0.99 for practice)

– 𝐁∗ = (𝐛1
∗ , … , 𝐛𝑛

∗ ), 𝜇 = (𝜇𝑖𝑗): Gram-Schmidt information of 𝐁: 

𝐛1
∗ = 𝐛1, 𝐛𝑖

∗ = 𝐛𝑖 − σ𝑗=1
𝑖−1 𝜇𝑖𝑗𝐛𝑗

∗ , 𝜇𝑖𝑗 =
⟨𝐛𝑖, 𝐛𝑗

∗⟩

𝐛𝑗
∗

2

– Every LLL-reduced basis 𝐁 = (𝐛1, … , 𝐛𝑛) of a lattice 𝐿 satisfies

• 𝐛1 ≤ 𝛼
𝑛−1

2 𝜆1(𝐿), where 𝛼 =
4

4𝛿−1
>

4

3

• 𝐛1 ≤ 𝛼
𝑛−1

4 vol 𝐿
1

𝑛
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[LLL82] A.K. Lenstra, H.W. Lenstra and L. Lovász, “Factoring polynomials with rational coefficients”, 
Mathematische Annalen 261 (4): 515—534 (1982).  



LLL (2/3): 

Basic Algorithm
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①

• It consists of two procedures to find an LLL-reduced basis 
① Size-reduction: 𝐛𝑘 ← 𝐛𝑘 − 𝑞𝐛𝑗 with 𝑞 = ⌊𝜇𝑘,𝑗⌉

② Swap adjacent vectors: 𝐛𝑘−1 ↔ 𝐛𝑘 if they do not satisfy Lovász’ condition

A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

②

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15


LLL (3/3): 

Sage Code
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Please use
Sage Cell Server 
(sagemath.org)

https://sagecell.sagemath.org/


Enumeration (1/3):

Basic Idea

• Enumerate all vectors 𝐬 = σ𝒗𝒊𝐛𝒊 ∈ 𝓛(𝐁) such that 𝐬 ≤ 𝑹

– 𝑅 > 0: search radius (e.g., 𝑅 = 1.05GH(𝐿))

– With Gram-Schmidt information, write 

𝐬 =

𝑗=1

𝑛

𝑣𝑗 + 

𝑖=𝑗+1

𝑛

𝜇𝑖𝑗𝑣𝑖 𝐛𝑗
∗

– By the orthogonality of Gram-Schmidt vectors, 

𝜋𝑘 𝐬 2 = 

𝑗=𝑘

𝑛

𝑣𝑗 + 

𝑖=𝑗+1

𝑛

𝜇𝑖𝑗𝑣𝑖

2

𝐛𝑗
∗ 2

for 1 ≤ 𝑘 ≤ 𝑛, where 𝜋𝑘 denotes the projection map to 𝐛𝑘
∗ , … , 𝐛𝑛

∗
ℝ

– Consider 𝑛 inequalities 𝜋𝑘 𝐬 2 ≤ 𝑅2 for 1 ≤ 𝑘 ≤ 𝑛: 

𝑣𝑛
2 ≤ ൗ𝑅2

𝐛𝑛
∗ 2

𝑣𝑛−1 + 𝜇𝑛,𝑛−1𝑣𝑛
2
≤ ൘
𝑅2 − 𝑣𝑛

2 𝐛𝑛
∗ 2

𝐛𝑛−1
∗ 2

⋮ 9

𝐛2

𝐛1
𝐯



Enumeration (2/3):
Basic Algorithm
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A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

⋯

𝑣𝑛
𝑣𝑛−1

𝑣1

⋯ ⋯
⋯ ⋯
⋯ ⋯

• Enumerate lattice vectors
𝐬 = σ𝑣𝑖𝐛𝑖 ∈ 𝐿

such that 𝐬 ≤ 𝑅
• Built an enumeration tree 

to find integral 
combinations (𝑣1, … , 𝑣𝑛)

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15


Enumeration (3/3):

Sage Code
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BKZ (1/3):

Definition and Properties

• Block Korkine-Zolotarev (BKZ)-reduction
– A blockwise generalization of LLL with blocksize 𝛽

– 𝐁 = (𝐛1, … , 𝐛𝑛) is 𝜷-BKZ-reduced if it satisfies two conditions

① It is size-reduced (same as LLL)

② The k-th Gram-Schmidt vector 𝐛𝑘
∗ is shortest in 𝐿[𝑘, ℓ] with ℓ =

min(𝑘 + 𝛽 − 1, 𝑛) for all 1 ≤ 𝑘 < 𝑛

– Every 𝛽-BKZ-reduced basis 𝐁 = (𝐛1, … , 𝐛𝑛) of a lattice 𝐿 satisfies 

𝐛1 ≤ 𝛾
𝛽

𝑛−1
𝛽−1

𝜆1(𝐿)

• 𝛾𝛽: Hermite’s constant of dimension 𝛽, i.e., 𝛾𝛽 = sup
𝐿

ൗ𝜆1 𝐿 2

vol 𝐿 2/𝑛

• As 𝛽 increases, 𝛾𝛽
1/(𝛽−1)

decreases and thus 𝐛1 can be shorter 12



BKZ (2/3):

Basic Algorithm

13A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge | SpringerLink

• It consists of LLL and ENUM:

– Call ENUM to find a non-zero shortest vector in 𝐿[𝑘, ℓ]

– Call LLL to reduce a projected block basis of 𝐿[𝑘, ℓ]

𝐁 =

𝐛1
𝐛2
⋮
⋮
⋮
𝐛𝑛

Block of 
size β

※ As reference, 
please look at 
BKZ-60 – YouTube
by Martin Albrecht

https://link.springer.com/chapter/10.1007/978-981-15-5191-8_15
https://www.youtube.com/watch?v=cNNLrmbWsa4


BKZ (3/3): 

Sage Code
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Log-Lengths of Gram-Schmidt 

Vectors of Reduced Bases 
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• Geometric Series Assumption (GSA)

– Log-lengths log 𝐛𝑖
∗ 2of Gram-Schmidt 

vectors of a reduced basis (𝐛1, … , 𝐛𝑛) 
for a “random” lattice are roughly on a 
straight line



The LWE Problem 

and Its Reduction (1/2)

• Search-LWE problem with (n, q, σ, m)

– A kind of solving a system of linear approximate equations

– Given (𝐀, 𝐛) with 𝐛 ≡ 𝐀𝑇𝐬 + 𝐞 mod 𝑞, find 𝐬
• 𝐀 = 𝑎𝑖𝑗 , 𝐬 = (𝑠𝑖): uniform over ℤ𝑞

• 𝐞 = (𝑒𝑖): Gaussian distributed with σ

(small error vector)

16

𝑏1
⋮
𝑏𝑚

≡

𝑎11 ⋯ 𝑎𝑛1
⋮ ⋱ ⋮

𝑎1𝑚 ⋯ 𝑎𝑛𝑚

𝑠1
⋮
𝑠𝑛

+

𝑒1
⋮
𝑒𝑚

mod 𝑞

• Approaches for solving LWE[BBG+17]

– We shall describe reduction of LWE to 
BDD in the next slide 

[BBG+17] N. Bindel, J. Buchmann, F. Gopfert and M. Schmidt, “Estimation of 
the hardness of the learning with errors problem with a restricted number of 
samples," IACR ePrint 2017/140, available at https://eprint.iacr.org/2017/140. 

𝐬 = 0, 13, 9, 11 ∈ 𝔽17



The LWE Problem 

and Its Reduction (2/2)

• Reduction to BDD

– BDD = Bounded Distance Decoding
• A particular case of CVP

– Find a vector 𝐀𝑇𝐬 ∈ Λ close to the target 𝐛

• Λ = {𝐲 ∈ ℤ𝑑 ∶ ∃𝐬 ∈ ℤ𝑛 s.t  𝐲 ≡ 𝐀𝑇𝐬 (mod 𝑞)}: q-ary lattice of dimension 𝑑

• Distance 𝐛 − 𝐀𝑇𝐬 = 𝐞 is guaranteed to be small (e.g., 𝐞 < 3𝜎√𝑑)

• Transformation of BDD to (unique-)SVP

– E.g., Kannan’s embedding technique[Kan87]

① From a basis 𝐁 of Λ, generate a matrix ഥ𝐁 =
𝐁 𝟎
𝐛 1

to define a lattice 

ത𝐿 = ℒ(ഥ𝐁), spanned by rows of ഥ𝐁

② Find a short vector 𝐯 = 𝐞, 1 ∈ ത𝐿

• If 𝑑 is large enough (e.g., 𝑑 > 2𝑛), then 𝐯 is the shortest in ത𝐿

• It is extremely short for most LWE instances

17

Search-LWE

• (𝐀, 𝐛)：public
• (𝐬, 𝐞)：secret

𝐛 ≡ 𝐀𝑇𝐬 + 𝐞 mod 𝑞

[Kan87] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathmatics of operations research,12(3):415-440,1987.  



Solving the LWE problem

Sage Code 
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ഥ𝐁 =
𝐁 𝟎
𝐛 1

𝐯 = 𝐞, 1 ∈ ℒ( ത𝐁)

Applying 
LLL/BKZ



Extension of Embedding for 

Ring-Based LWE (1/5)

• Ring-based LWE[CIV16]

– A general framework containing Ring-LWE and Poly-LWE

• Given ring-based samples (𝑎𝑖 𝑥 , 𝑡𝑖(𝑥)) over 𝑅𝑞 = ℤ𝑞 𝑥 /(𝑥𝑛 + 1)

• Find a secret 𝑠 𝑥 ∈ 𝑅𝑞 (or equivalently, small errors 𝑒𝑖 𝑥 )

19

Given samples 

(𝑎𝑖 𝑥 , 𝑡𝑖(𝑥))
with

Find a secret

𝑠(𝑥)
(or errors 𝑒𝑖 𝑥 )

[CIV16] W. Castryck, I. Iliashenko, and F. Vercauteren, On error distributions in ring-based LWE, 

LMS Journal of Computation and Mathematics19(A), 130–145 (2016)

• Coefficient representation and rotations
– Coefficient representation: 𝑓 𝑥 = 𝑓0 + 𝑓1𝑥 + ⋯+ 𝑓𝑛−1𝑥

𝑛−1 ↦ 𝐟 = 𝑓0, 𝑓1, … , 𝑓𝑛−1
• This representation can reduce ring-based LWE to standard LWE

– Rotation: rot 𝒇 ≔ −𝑓𝑛−1, 𝑓0, 𝑓1, … , 𝑓𝑛−2
• It is the coefficient vector of 𝑥𝑓(𝑥) for any 𝑓 𝑥 ∈ 𝑅 since 𝑥𝑛 = −1



Extension of embedding for 

Ring-Based LWE (2/5)

• Extended Kannan’s embedding[NY21]

– Add rotated targets rot𝑖−1( ǁ𝐭) for 1 ≤ 𝑖 ≤ 𝑘 to Kannan’s lattice
• The case k=1 is the same as original Kannan’s embedding

– It includes 𝒌 short lattice vectors with norm 𝐞 2 + 𝜂2

• Remark that rot𝑖 𝐞 ≡ rot𝑖 ǁ𝐭 − rot𝑖 𝐬 ෩𝐀 for 1 ≤ 𝑖 ≤ 𝑘

• However, the dimension increases: dim𝐿𝑘 = 𝑑 + 𝑘

（𝐿𝑘 = ℒ(𝐁): the extended lattice）
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Add 𝒌 rotated targets 𝒌 short vectors in 𝑳𝒌 = 𝓛(𝐁)
(with the same norm)

[NY21] S. Nakamura and M. Yasuda, “An extension of Kannan’s embedding for solving ring-based LWE problems,” 

IMA Cryptography and Coding (IMACC2021) 



Extension of embedding for 

Ring-Based LWE (3/5)

• Recovering rotated targets 𝐯 = 𝐫𝐨𝐭𝒉 ത𝐞 ∈ 𝑳𝒌 by BKZ
① Find its projection 𝜋𝑖(𝐯) by enumeration over the projected lattice 

ℒ(𝐁[𝑖:𝑑+𝑘]) in the procedure of BKZ

② Lift to the whole vector 𝐯 by enumeration over other projected lattices

21

• Trade-offs

– It could increase the probability 
to recover rotated targets

• Since there are 𝑘 short targets

– It could also increase the 
running time of BKZ

• Since the dimension increases



Extension of embedding for 

Ring-Based LWE (4/5)

• Experimental results
– Transition of success probabilities by blocksizes of BKZ

– k=2 or 3 gives the highest success probability for most β
• Cf., the running time of BKZ increases slightly for k = 2 and 3

22



Extension of embedding for 

Ring-Based LWE (5/5)
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The NTRU Problem 

and Its Extension (1/3)

• NTRU problem

– Given ℎ = 𝑔 ⋅ 𝑓−1 ∈ 𝑅𝑞, find 𝑓 or 𝑔 ∈ 𝑅𝑞
• 𝑅 = ℤ/𝑞ℤ 𝑥 /(𝜙) with 𝜙 = 𝑥𝑁 ± 1

• 𝑓, 𝑔 ∈ 𝑅𝑞 have small coefficients (e.g., ±1) s.t. 𝑓 is invertible in 𝑅𝑞

• NTRU lattice 𝑳 = 𝓛(𝐁)

– ℎ = ℎ0 + ℎ1𝑥 +⋯+ ℎ𝑁−1𝑥
𝑁−1 ↦ 𝒉 = (ℎ0, ℎ1, … , ℎ𝑁−1): public

– 𝐁 =
𝑞𝐈𝑁×𝑁 𝟎𝑁×𝑁
𝐇 𝐈𝑁×𝑁

, 𝐇 =

𝒉
rot(𝒉)

⋮
rot𝑁−1(𝒉)

– 𝑁 short lattice vectors rot𝑖(𝒈) rot𝑖(𝒇)) ∈ 𝐿 for 0 ≤ 𝑖 ≤ 𝑁 − 1

• Write 𝑔 𝑥 = 𝑓 𝑥 ℎ 𝑥 + 𝑞 ⋅ 𝑟(𝑥), ∃𝑟 𝑥 ∈ 𝑅(𝑥)

• 𝒈 𝒇) =(𝒇𝐇 − 𝑞𝒓 𝒇 = −𝒓 𝒇)
𝑞𝐈𝑁×𝑁 𝟎𝑁×𝑁
𝐇 𝐈𝑁×𝑁

∈ 𝐿 24



The NTRU Problem 

and Its Extension (2/3)

• Extended NTRU lattice 𝑳𝒌 = 𝓛(𝐁𝑘)

– Add 𝑘 rotated vectors rot𝑖 (𝒉)

– (𝑘 + 1)𝑁 short vectors in 𝐿𝑘 of form 

rot𝑖 𝒈 𝟎𝑖 | 𝒇 | 𝟎𝑘−𝑖 ) and its rotations

• Experimental results

– The success probability for recovering a 
secret vector 𝒇, 𝒈, or its rotations

– We used BKZ with 𝛽 = 60

– 𝒌 = 𝟏 gives the highest success 
probability for most instances

(cf., k=0: the original NTRU lattice) 25

𝐁𝑘 =
𝑞𝐈𝑁×𝑁 𝟎𝑁×𝑁+𝑘
𝐇𝐤 𝐈𝑁+𝑘×𝑁+𝑘

, 𝐇𝑘 =

𝐇
𝒉

rot(𝒉)
⋮

rot𝑘−1(𝒉)



The NTRU Problem 

and Its Extension (3/3)
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