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ture Note Series has published the notes of lectures organized under the following two 
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Required by Industry,” adopted as a Support Program for Improving Graduate School 
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Artificial Intelligence has led to a paradigm shift in investigation in Materials Science, with Machine 
Learning allowing informatics-based systematic calculations, predictions and discovery based on 
material databases pushing beyond the intrinsic limitations of first-principles calculations. 
However, the successful application requires development of novel methodologies inspired by 
the frontends of materials development in close synergy between physical science and 
Information Technology.  
 
For example, demand is growing for functional molecules capable of performing specific work 
cycles such as assembly and transportation of molecules, cyclization and cycloreversion. These 
specific functionalities require the design and customization of molecular architectures at the 
atomistic level. This is a task which requires quantum chemistry modeling (so that chemical and 
physical properties are computed as the result of the atomic composition of the architecture) and 
inverse design (so that the atomic composition→ property mapping can be effectively inverted). 
Nowadays, complex numerical platforms blending first-principle computations, genetic algorithms 
for the exploration of high-dimensional chemical spaces, machine learning models for regression 
and classification over large pools of molecules and bioinformatics techniques for the digitalization 
and codification of molecular formulas have been largely exploited for the discovery of dielectric 
materials, perovskites, nanoparticles and more. However, outstanding questions remain 
unexplored, such as the coordination of nano- and meso- scale optimization programs, the 
identification of effective molecular descriptors capable of passing on relevant information to train 
machine learning models, the definition of suitable surrogate models and optimization strategies 
and many more. 
 
The purpose of this conference was to gather an international group of scientists and researchers 
in industry and academia bringing their own distinct perspectives on problems at the intersection 
of Materials Physics and Information Technology, two areas where interdisciplinary collaborations 
both at the academic and industrial level are crucial and yet to date in their early phases.  
 
Despite the conference was held in on-line version, the 3 days were rich in discussions and saw 
the participation of approximately 50 participants including from North America and China. Among 
topics covered were the exploitation of supervised learning techniques for high-throughput 
chemical calculations, regression methods to discover relations among meso-scale phenomena 
and nano/micro properties, genetic algorithms, materials characterization, data-driven 
approaches to dynamical systems, design of materials with Artificial Intelligence techniques.  

The conference was organized as an IMI joint usage Research Seminar 1 and co-sponsored by 
the MOZES program. The conference consisted of 12 invited lectures and a students’ session 
which saw 11 students’ talks. We hope this note and the material contained herein remain as a 
reference and a guide for researchers operating at the overlap of these areas.  
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Combining Machine Learning and 
Density Functional Theory to Predict 
the Oxygen Atom Chemisorption on 

Platinum Nanoparticles 

David Samuel RIVERA ROCABADO 
Graduate School of Advanced Science and Engineering, 

Hiroshima University, Japan 
 
INTRODUCTION 
 
Predicting the performance of a catalyst based on theoretical models is crucial for faster and 
less expensive design of materials with specific catalytic functions and increased lifetime. 
When the strong interaction between the catalyst and adsorbate scales to the catalyst reactivity, 
it is essential to elucidate the variables that can suitably describe the energetics of the 
adsorbent-adsorbate interaction.1,2 For polymer electrolyte fuel cells (PEFCs), the energies of 
the O atom and OH adsorption onto various metals exhibit a linear scaling relationship with 
the limiting potential.3 To such extent that experimental and density functional theory (DFT) 
results suggest that a surface capable of binding the O atom up to 0.4 eV less stable than 
Pt(111) should exhibit enhanced activity for the oxygen reduction reaction (ORR), leading to 
an increased performance of the PEFC.4,5 During the ORR, O2 is activated by proton and 
electron transfer to form OOH before O-O bond dissociation can occur. Following the OOH 
dissociation, the electrocatalyst should bind O and OH with moderate strength for ensuing the 
H2O formation and desorption to be rapid; otherwise, the active sites will be covered by these 
species and will become inactive for O2 dissociation, henceforth decreasing the output power 
density of the PEFC. First-principles computational modeling methods can help provide 
insight into the atomic structure, morphology, electronic properties, etc., hence would provide 
valuable information on crucial parameters in catalyst design. Among the theoretical 
approaches, the Hammer-Nørskov model,6 linearly scales the d-band center with the 
adsorption energy displaying interesting linear correlations between the adsorption energies 
of atoms and small molecules on various metal surfaces.7,8 Oppositely, the d-band center fails 
to account for the effect of low coordinated atoms, such as those located at the vertices and 
ridges of nanoparticles, especially in small cluster particles.9,10 Different descriptors of the 
adsorption energy, such as the generalized coordination number (GCN), showed to be more 
appropriate for describing the O atom, O2, OOH, H2O, and H2O2 adsorption on the top site of 
Pt nanoparticles.11 A similar limitation to the interaction on only the top site was reported for 
the energetics decomposition of the CO adsorption on platinum nanoparticles via machine 
learning.12 On the other hand, more robust and complete models have been proposed using 
supervised learning to describe the adsorption energy between NO and 4d- and 5d-transitions 
metals,13 and O atoms, and bimetallic nanoparticles with a Pt skin configuration,14 considering 
all the adsorption sites. 
Herein, DFT calculations were used to quantify the O atom interaction on Pt nanoparticles. 
Next, multiple linear regression analysis was used to describe the O atom binding energy on 
Pt nanoparticles based on a linear combination of five structural and electronic properties of 
the nanoparticles before the O atom interaction, which have been reported elsewhere.15 The 
predicted O atom binding energy exhibits a significant linear correlation with the DFT-
calculated one. From the model validation analysis, it was corroborated the accuracy and 
robustness of the model. This is the first model that describes and estimates the O binding 
energy on Pt nanoparticles considering for the first time the nanoparticle size effect and all the 
adsorption sites of the nanoparticles.  
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COMPUTATIONAL DETAILS 
 
DFT calculations 
All calculations performed in this study were based on the plane wave DFT method 
implemented in the Vienna ab initio Simulation Package (VASP 5.3.5).16-18 
Perdew−Burke−Ernzerhof parametrization under generalized gradient approximation was 
employed as the exchange-correlation functional together with the projector-augmented wave 
method.19 Spin-polarized calculations were performed throughout the study with a plane wave 
cutoff energy of 400 eV. The convergence criteria for all calculations were set as the point at 
which the difference in the total energy between the two ionic steps was less than 10-4 
eV/atom, and 10-5 eV/atom for self-consistent field iterations. Pt nanoparticles of varying sizes 
containing 13, 55, 201, and 405 atoms were modeled and optimized until reaching 
convergence. To avoid interactions between periodic images, the minimum distance between 
the cell boundaries and Pt atoms was set to 6 Å, that is, a minimum of 12 Å between 
neighboring image Pt nanoparticles. Nanoparticle optimization was performed at the Γ point 
in reciprocal space, owing to the significant spatial extent of the systems, wherein all the Pt 
atoms were allowed to relax.  
The binding energy between O and isolated Pt nanoparticles (𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛), 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, was calculated as: 
 

𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛+𝑂𝑂𝑂𝑂 − 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛 − 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂 (1) 
 
where 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛+𝑂𝑂𝑂𝑂 , 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛 , and 𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂  denote the total energy of O atom interaction with the Pt 
nanoparticle, that of the isolated Pt nanoparticles, and of the isolated O atom, respectively. 
Using this definition of the binding energy, negative values denote a more stable interaction 
between the O atom and the Pt nanoparticles. The O atom interaction was calculated on the 
symmetric sites and all their possible combinations for each Pt nanoparticle. The Pt 
nanoparticles models and the symmetric adsorption sites of each nanoparticle are shown in 
Figure 1a. During the geometry optimization of the O binding to Pt nanoparticles, the same 
constraints were set for the Pt atoms motion as in the case of the isolated nanoparticles; all 
atoms were allowed to relax. Charge and bond orders analyses were performed using the 6th 
generation density-derived electrostatic and chemical (DDEC6) method.20 
 
 
 
 
 
 
 
 
 
Figure 1. (a) models of the Pt nanoparticles and their symmetric adsorption sites are shown with 
white “x”s and (b) exemplification of the NN and 2nd NN of the adsorption site. 
 
Multiple linear regression analysis 
In this study, the model describing the O atom binding to Pt nanoparticles is obtained from 
linear combinations of the geometrical and electronic properties of isolated nanoparticles 
before their interaction with the O atom. The descriptors associated with the O atom binding 
energy were selected from among 20 descriptors related to the geometrical features and 
electronic properties of the nearest neighbors (NN) and second nearest neighbors (2nd NN) of 
the adsorption site. The definitions of NN and NN + 2nd NN of the adsorption site are shown 
in Figure 1b. Various combinations of descriptors were tested to estimate the O binding. Two 
criteria were carefully considered in constructing our models. The first one is the absence of 
multicollinearity; the highly correlated descriptors are not considered in the model. The 
second one is to omit the combinations of variables that do not significantly contribute to the 
R2 value. Thus, descriptors with p-values above 0.05 were rejected because they were not 
statistically significant. Because multiple competing models can be considered, the Akaike’s 
information criterion (AIC) is used to estimate the relative amount of information lost and 
simplicity of the model by including a penalty for each descriptor used to estimate a dependent 
variable.21 Thus, the lower the AIC, the proposed model is simpler and closer to the optimal 
model, which is free of multicollinearity.22 When the ratio between the data sample and the 
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number of descriptors is less than 40, the AIC may become inaccurate,23 and the corrected 
AIC (AICC) should be used that is defined as follows:24 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 = 2𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛 �
∑ [𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 − 𝐸𝐸𝐸𝐸�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖(𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏)]2𝑏𝑏𝑏𝑏
𝑏𝑏𝑏𝑏=1

𝑛𝑛𝑛𝑛
�+

2𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 + 1)
𝑛𝑛𝑛𝑛 − 𝑘𝑘𝑘𝑘 − 1

 
(2) 

 
where 𝑘𝑘𝑘𝑘, 𝑛𝑛𝑛𝑛, 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖, and 𝐸𝐸𝐸𝐸�𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥𝑥𝑥𝑏𝑏𝑏𝑏) are the number of descriptors in the model, the total number 
of samples, DFT-calculated, and predicted values of the O binding energy, respectively.  
The model validation was performed using the holdout method, wherein the data sample was 
randomly divided into 3/4 of the data points for the training set and the remaining 1/4 for the 
test set. Multiple regression analysis was performed on the training set, and the prediction 
model was used to estimate and validate the test set values. Ten different training and test sets 
were randomly selected. To check the accuracy of the prediction, the descriptors were kept 
fixed during the validation process. The degree of discrepancy between the predicted and 
observed values was approximated by the mean absolute error (MAE). 
 
RESULTS AND DISCUSSION 
 
As the nanoparticle size increases, the strength of the O atom interaction decreases. The O 
atom chemisorption is thermodynamically more stable at the bridge sites, followed by 3-fold 
(3F) coordinated sites (FCC and HCP), and then the top sites of the Pt nanoparticles. For the 
same size Pt nanoparticles, the O atom interaction is more stable on under-coordinated atoms. 
For example, for the O atom binding on the top sites of Pt201, the O binding energy decreases 
in the order: top of the {111} facet (-3.18 eV) > top of the {100} facet (-3.43 eV) > top of the 
ridge atoms (-3.92 eV) > top of a vertex atom (-4.13 eV). Such correlation between binding 
energy and adsorption site becomes difficult when considering the nanoparticle size effect 
because as the nanoparticle size increases, new adsorption sites comprised of atoms with 
different coordination numbers become available. All the configurations corresponding to the 
O atom chemisorption on Pt nanoparticles are summarized elsewhere.25 When the d-band 
center or the GCN were used to describe and predict the O atom interaction to each adsorption 
site (top, bridge, and 3F) of the Pt nanoparticles, both the d-band center and GCN exhibited 
coefficients of determinations (R2) larger than 0.50, and up to 0.88.25 However, when all the 
adsorption sites were considered together, the d-band center and the GCN as sole descriptors 
of the O-Pt interaction, led to low coefficients of determination (R2) of 0.33 and 0.50 and high 
MAEs, 0.31 and 0.29 eV.25 Thus, the d-band center and the GCN cannot be used as the unique 
descriptor of the O atom binding energy on Pt nanoparticles.25 To overcome this limitation, 
the O atom binding energy is described as a linear combination of five descriptors; the average 
NN Pt-Pt distance, GCN, the sum of NN bond orders and their coordinating atoms, the sum 
of NN + 2nd NN bond orders and their coordinating atoms, and the d-band centers of the atoms 
at the adsorption site. In general, as the nanoparticle size increases, the interatomic distance 
increases proportionally to the effective nanoparticle radius.26 For the ORR, the activity 
improves with increasing Pt nanoparticle size because the interaction of oxygenated species 
becomes less stable with increasing the nanoparticle size.9,27 Because the GCN considers 
information about the coordination number of the 2nd NN, the GCN can account for the 
changes in the adsorption sites and the nanoparticle size effect. Bond orders can provide 
valuable information regarding stability and activity trends. The sum of bond orders accounts 
for the interaction of all the atoms in the coordination sphere of the adsorption site, including 
those of the 3rd and 4th NNs. In the case of the d-band center, as the Pt nanoparticle size 
increases, the d-band center of the entire nanoparticle decreases toward the bulk Pt value.15 
Thus, the selected descriptors and their combination account for the changes in nanoparticle 
size and the different adsorption sites. Based on these five descriptors, the model for predicting 
the binding energy of O atom on Pt nanoparticles is defined as: 

𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏 = −6.681 − 0.197𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 0.521𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺 + 0.226𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.058𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 0.427𝜀𝜀𝜀𝜀𝑏𝑏𝑏𝑏  (4) 

where 𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , 𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺 , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁+2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , and 𝜀𝜀𝜀𝜀𝑏𝑏𝑏𝑏  are the interatomic Pt-Pt distance, the 
GCN, the sum of NN bond orders, the sum of NN + 2nd NN bond orders, and the averaged d-
band center of the NN of the adsorption site, respectively. Figure 2 illustrates the DFT-
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calculated and predicted O atom binding energy relationship. The high R2 (0.93) and low MAE 
(0.11 eV) values indicate an excellent correlation between the predicted and DFT-calculated 
O binding energies. From the model validation, the R2 values for the test sets ranged from 
0.847 to 0.969, and the MAEs from 0.085 to 0.167 eV, which confirm that the model is robust 
and appropriate for describing and predicting the O atom binding energy on Pt nanoparticles. 
This is the first model that can describe the O atom binding energy taking into consideration 
the Pt nanoparticle size effect and all the possible adsorption sites.  
 

 
 
 
Figure 2. Relationship between the DFT-calculated 
and predicted O atom binding energies on Pt 
nanoparticles. The linear regression line, the 
coefficient of determination, and the mean absolute 
value are shown. 
 
 
 
 
 

 
 
SUMMARY 
 
Multiple regression analysis was performed to describe the O atom binding energy on all the 
possible adsorption sites of Pt nanoparticles of different sizes. The proposed model that 
describes and predicts the O atom binding on Pt nanoparticles employs a linear combination 
of the Pt nanoparticles' structural and electronic properties. The model provided an excellent 
correlation with the DFT-calculated adsorption energies. Model validation confirmed its 
accuracy and robustness in estimating the O atom binding energy. 
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The elementary machine learning activities of Daicel was presented from the perspective of 
chemical industrial R&D stage. The four examples related to new molecular / process design
problem upon novel material development were shown in this presentation.
Daicel corporation established at September 8-th of 1919. We celebrated its 100-th 

anniversary at 2019. Starting from celluloid, “Dainippon Celluloid Co. Ltd.” was founded 
through the merger of eight celluloid manufacturing companies. The term of celluloid is 
same as cellulose nitrate. Although celluloid was an easy-to-process plastic with excellent 
physical properties, the flammability of this nitrified cotton product presented a hazard. In 
order to overcome this disadvantage with a noncombustible formula, the Company developed 
an acetate plastic made from acetate cotton. In 1933, we decided to enter the cellulose acetate 
business. We adopted the major policy of becoming self-sufficient in production of the raw 
materials of acetic acid and other products through integrated production from carbide and to 
develop related chemicals. This represents the origins of our current organic chemicals 
business. Daicel also planned to enter the photographic film business as a new venture 
intended to complement the existing celluloid business. In order to ensure that photographic 
film would eventually become a major product, Fuji Photo Film Co., Ltd. (currently, 
FUJIFILM Corporation) was established in 1934 as a comprehensive photography industry 
company. In 1960s, we started engineering plastics business and established Polyplastics Co. 
Ltd, which has been manufacturing polyacetal resin. In 2000s, the integrated production 
center was established in Abosh plant and began the integrated operation method known as 
“Production Innovations the Daicel way”. 

The new R&D base called “Innovation Park” was made in 2017, integrating with central 
research center and Himeji technology head office. Its function is for creation of new 
products and development of innovative process technologies and promotes technological 
innovation throughout Daicel group. Many kinds of technological field people are gathered in 
one site. It is not so easy to corporate one issue with different kinds of people, since those 
points of view are too different. Specially, the machine learning technology is quite new. In 
order to show its effectiveness and extend the application range, we needed to have a clear 
objective of machine learning methods with their applications. The machine learning toward 
material development can be used for optimization of experimental parameters by tuning of 
controllable parameters or used for chemical material search, as reported everywhere. The 
first one can be achieved by material blending ratio variation or temperature alternation. The 
other one can be a difficult part, since it includes chemical material search via new chemical 
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synthesis. The shortest way to find new materials is an elucidation of what kinds of chemical 
functional group are needed to express a certain function. It requires many chemical analysis, 
hypothesis creation and computer chemistry simulation. If only data analysis of chemical 
compounds by machine learning can solve those difficulties in a very short time, it is 
expected to reduce many efforts. Therefore, the objective has been set as material search via 
machine learning methods. 
There was no example at the starting period of this activity. A proof of its effectiveness was 

a problem to convince experimental researcher of using machine learning. The nature of a 
chemical compound must be originated from chemical structure itself. It consists of atoms 
and chemical bindings with specific meanings. For example, cellulose has a glucose 
repeating units. There are hydrophilic functional group which enables to form hydrogen bond. 
This hydroxyl group can be used as alternation of cellulose as seen in our company history, 
celluloid to cellulose acetate. As another example, propylene glychol diacetate (PGDA) is a
neutral and small compound which behaves hydrophobic nature. It is used for ink solution or 
cleaner. But it is weakly polarized due to ester groups. Then, it can solve in water or ethanol 
solution too. Therefore, functional groups have meaning and determine the nature of 
chemical compound. From cheminformatics side, there are many studies to investigate 
chemical nature by functional group. The famous library known as RDkit [1] can decompose 
the chemical structure into numbers of arrays known as fingerprint, chemical descriptor. 
Each element of array indicates the existence of certain functional group. This classical 
representation method is used as a descriptor to perform machine learning studies in this 
presentation. During the talk, the four examples were explained. 

The first one was a solvent material search example. Some specific solid catalyst requires a
suitable solvent. Depending on solvent choices, the reaction rate and its magnitudes of 
biproduct suppression was changed. Identification of an effective solvent was difficult 
because a common functional group character could not be guessed in the human point of 
view. The catalyst reaction takes place on the solid catalyst surface. At the reaction event, 
there would be solvent-agent interaction on the catalyst surface. Solvent effect of reactivity 
and suppression of biproducts are hard to be determined from simple quantum chemical 
calculations due to lack of the knowledge of surface information. However, there would be 
effective substructures of solvent. The effective substructures can be decomposed in parts by 
the usage of fingerprint and can be extracted through machine learning. The prediction model 
was made from a ridge regressor using Morgan fingerprints.  Then we obtained the
contributing factors of a solvent’s chemical structure to reactivity and biproduct suppression.
The contribution of each functional group was visualized in a picture. It was found that the 
ester group would enhance reactivity. This could not be found from even exert engineers 
because the compound including ester group showed poor behavior in some cases. The 
candidate solvent was tested experimentally and was found to be superior to others. Within 2 
weeks, the one of candidate solvents was shown as PGDA, which is easy to be obtained in 
Daicel, since it is our product, CELTOL® (Fig.1).
The next example was also related to the molecular design. The concept of thermosetting 
oligomer is consisted of cross-linking functional group and engineering plastic region. Due to 
the cross linker, it is easy to mold the resin in any shape with heating. The machine learning 
method was applied to the engineering plastic region’s molecular design for having lower 
dielectric dispersion and higher heat resistance. All the data was used for training until 
experimental analysis report could meet the prediction result of candidates. The evaluation 
cycle consisted of data gathering, machine learning, prediction, chemical synthesis, and 
evaluation. It took three cycles to be completed. At the final stage of cycle, the dielectric loss 
tangent prediction model by support vector regressor and Layered fingerprint can predict the 
experimental data of new compounds. Also, other physical value prediction models from the 
oligomer series data were created to draw a physical value map to find its application range. 
Even a material of new concept such as our oligomer, physical value blending with internal 
values, less than 50 points and outside values, about hundreds can be used for the specific
prediction. 
As shown above two examples, a simple model can tell undiscovered functional group 
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identification from small amount of data. Therefore, we imagine that such model making 
could lead innovative knowledge within short period. Most of chemists tends to do many 
experiments and gathering evidences and making their own hypothesis other than mathematic 
modeling. If machine learning can be used casually without programing, R&D cycle can be 
shortened. PyCaret [2] is known as a low-code machine learning library. The library defines 
test, training and validation datasets automatically. It performs model comparison, tuning, 
and evaluation. The autoML function returns the best model of all models created in the 
active environment base on the metric defined as optimize parameter.
Next two example was performed by the usage of PyCaret. The organic functional products 
are used in a wide range of industrial fields such as coating, plastic modification, and 
electronic materials. One of those is a monomer like alicyclic epoxy compounds, 
CEL2021P®. It produces highly heat resistant cured polymer. Heat and UV cation can 
produce rapid polymerization. Almost no chlorine derived from the manufacturing method 
gives wide range usage. But sometimes, the epoxy group inclusion can be a cause of 
mutagenicity. The mutagenicity is defined as capacity of a chemical or physical agent to 
cause permanent genetic alterations. Every chemical compound should be tested to estimate 
mutagenicity. The AMES test report must be attached as a result of hazard investigation. The 
AMES assay is defined as a test for identifying potential carcinogens by studying their 
mutagenic effect on bacteria. Our past results indicate that all the epoxy compound will not 
cause such symptoms. Its prediction in R&D stage could be used for molecular design, 
avoiding unworthy chemical synthesis. The mutagenicity database was obtained from 
Berlin’s machine learning group’s website [3]. Usage of PyCaret’s auto ML, the 
classification model was constructed from published data and our inhouse data using Morgan 
fingerprint. The model performance metric of 10-fold cross validation result was chosen as 
Area Under the Curve, in short, AUC. When the value of AUC is close to one, it could be a 
good model. The AUC is about 0.9, so it shows moderate predictor performance (Fig. 2) The 
confusion matrix of test data in Fig.2 shows reasonable behavior with internal data. It can be 
used for raking of candidate compound synthesis. Having inhouse data is an advantage of this 
prediction construction, since the predictor behaves better performance than only public data.

Then, material of suspected toxicity can be avoided from molecular design stage. However, 
all the developed material will be tested in the point of function and toxicity in experiment.
The prediction performance is almost same as published result [4], although our code is quite 
simple without using deep learning technique. When database would be updated by users, 
users can make new prediction model easily, changing database file name.
The final example is cellulosic derivatives. Daicel has developed cellulosic derivative since

1919. It is focused and considered as sustainable material. The substituent functional group 
and degree of substitution per glucose (DS) are important factors of functional alternation. 
The glass transition temperature, Tg can be changed by such alternation. We prepared 
published polymer data and gathering Daicel’s Cellulosic derivative data about 30 points.
Then, we constructed a predictor by the usage of PyCaret. We changed the functional group 
largely and set DS range from two to three. We draw the population of Tg along temperature 
and DS in Fig.3. As DS reaches to 3.0, Tg peak locates around 100 Celsius degree. On the 
other hand, as DS reaches to 2.0, its peak located around ninety to 120-130 Celsius degree. 
Therefore, As DS increases, the average Tg gets lower. The reason is not so obvious, but in 
the point of hydrogen bond formation, lower contents of hydroxyl group might give weaker 
interaction between cellulose chains. Also, Tg can be changes largely as R functional group 
changes. Such understanding of physical function is very important knowledge to determine 
the substitution methods.

The simple machine learning method is quite useful in the case that one could make a 
reasonable model in a short time period. It should be noted that there is a limitation to use 
simple RDkit fingerprint only. Usage of Pycaret library enables of non-experts of machine 
learning to use predictors. Thanks to this simplification, rapid trial can be done inside the 
R&D sections. In the next step, we will expand its application area toward process 
engineering for suitable and rapid business plan construction. 
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Figures 

Fig.1. Result of example 1

Fig.2. AMES prediction result including our epoxy compounds

Fig.3. Population analysis of predicted Tg and DS for the candidate cellulose substitution 
series.
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1. Introduction: Machine Learning with Discrete Structures

The current machine learning (ML) is grounded on a statistical principle, where
we basically assume that data take a spreadsheet-like tabular form and each datapoint
is regarded as a multidimensional random vector x ∈ Rd drawn from an unknown
probability distribution. However, the practical data in chemistry often come with
non-tabular and non-numeric information such as point sets of different sizes, chemical
structures, reaction formulas, monomer sequences, and reaction networks. In particu-
lar, discrete structures, i.e., combinatorial or algebraic structures such as sets, groups,
permutations, combinations, sequences, trees, and graphs are the most frequent and
versatile data forms. However, it is technically challenging to leverage this discrete
combinatorial information in statistical ML because we need to effectively fuse two
different aspects of the continuous nature of statistical ML and the discrete nature of
structural and combinatorial chemical information.

Here we briefly give a quick overview of how ML with discrete structures is im-
portant and promising for handling molecular datasets in chemistry-related fields.
Molecules clearly have a combinatorial aspect. First, a molecule is a set of atoms
and bonds and made up of combining small building blocks such as functional groups
or any substituents like LEGO bricks. In this sense, it has clear modularity, composi-
tionality, and hierarchy as we might see in natural language processing: We combine
words in our vocabulary to make any complicated sentences, while chemists combine
basic building blocks (atoms, bonds, scaffolds, functional groups, and substituents) to
make any complex molecules. Chemical reactions between compounds are the main
player in chemistry converting compounds to another and can be seen as a recom-
bination pattern of bonds for the set of atoms. Second, a very interesting point for
computer scientists is that the underlying rules that actually determine the combi-
nations are (largely) governed by many-body quantum chemistry of electrons, which
has deductive first principles requiring approximation in any case. In contrast, ML is
learning from examples, which is totally an inductive principle.

2. The Dark Side and Light Side of Machine Learning

For a start, we first summarize practical insights and implications from machine
learning research over past years. Leo Breiman’s influential paper [5] published 20 years
ago [1] introduces the “algorithmic modeling” to the statistics community, and now we
see it is more dominating as ML than traditional statistical methods. The paper was
very influential, but also somewhat controversial at that moment since “algorithmic
modelling” encourages the use of black-box algorithms such as neural networks and

11



tree ensembles, which are basically task-agnostic, and contrastively different from the
traditional “data modelling” approach in statistics. Interestingly, after 20 years we still
see this conflict between two cultures of “algorithmic modelling” and “data modelling”
in modern ML. Interestingly, “the three lessons” by iconic names discussed in Breiman’s
paper would be still valid when we think of applying ML in natural sciences:

• Rashomon: the multiplicity of good models;
• Occam: the conflict between simplicity and accuracy;
• Bellman: dimensionality—curse or blessing.

2.1. Rashomon. As we see in many papers or ML competitions, we typically can have
many good but different ML/AI models having the same level of prediction capability
for a given dataset. Breiman called this situation as the Rashomon effect named
for a classic Japanese film Rashomon where we see contradictory interpretations or
descriptions by the individuals involved but still all seem equally possible.

One of the reasons behind this would be underspecification. The current ML models
are overrepresented and have a huge representation capability with an incredibly large
number (several hundred million or several hundred billion) of parameters. Hence
both in theory and practice, they are very data-hungry and require large data for
them to work. But in reality, we can have finite, limited, noisy, and biased data
at hand, and it’s way smaller than these numbers in many cases. This would also
mean that most data in daily cases are insufficient to fully specify the optimal model
representing the true underlying mechanism even if any. Even most cases including so-
called “big data” scenarios at commercial levels [7] might simply lack enough data, and
often underspecify the model, which further exacerbates the Rashomon effect. ML is
grounded on interpolatively capturing multidimensional correlations in the given data,
and this fact makes any causal inference or learning challenging [23].

2.2. Occam. Overrepresentation and underspecification also cause interpretability prob-
lems in practice. Many ML models are too complicated for us to interpret what’s going
on inside. If we expect interpretability, we need to compromise on model complexity
within the scope of our (very limited) recognition capability. Meanwhile, we use ML
because we do not fully understand the target phenomena, which implies that the
mechanism of the target phenomena is not simple, and is expected to be very compli-
cated. That’s why we need large-capacity ML models and large-scale datasets to realize
successful applications. For example, the current ML models have too high expressive
power and can have zero training error on random labels [13, 24].

2.3. Bellman. We tend to use many input variables because ML is completely unaware
of any information not in the input variables. Missing relevant factors merely results in
capturing spurious correlation. In the situations where deep learning works, we often
use direct raw observations for input as it is. Typical cases are pixel values of images.
An 100 × 100 RGB image corresponds to 30 thousand variables, and 1000 × 1000 to
3 million variables. This means that we’re fitting a function model with hundreds
million parameters in a several million dimensional space. Curiously, this shouldn’t
work in theory, but it sometimes works in practice. If we assume a mild continuity
just imposing similar outputs for similar inputs, the required number of samples for
sufficient fitting is of exponential order with respect to the number of input variables [4].
On any high-dimensional (> 100) dataset, the probability that a sample falls inside the
given dataset’s convex hull is zero [12], which challenges our concept of interpolation.
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3. Molecular and Geometric Representation Learning

All three aspects of Rashomon, Occam, and Bellman suggest that ML is not trying
to describe an underlying reality, and “essentially, all models are wrong, but some are
useful.” It is not guaranteed that ML captures any meaningful and insightful patterns
in data, and we always have a risk of being trapped by spurious correlation [25].
We need to further constrain the model complexity not to unintentionally represent
any chemically invalid functions, and that’s exactly why additional considerations of
discrete structures such as graphs and combinations [15] as well as physics-derived
heuristics, assumptions, or first-principle theories [19, 22, 9, 20, 10, 17] are needed.

3.1. Molecular and Geometric Graphs. One of the most difficult problems is how
to bettter represent a molecule for ML. We need to represent a molecule in a computer-
readable form and input it to ML. For this purpose, the long history in chemoinfor-
matics and computational chemistry has been devoted to develop several thousands
of hand-crafted molecular descriptors [26]. However, we need to carefully choose de-
scriptors for individual problems and targets, and here is why representation learning
by deep architectures [6] is deemed as promising. For molecules, a general form repre-
senting all related information is graphs that, in molecular tasks, are roughly divided
into two types: molecular graphs and geometric graphs. Molecular graphs are a graph,
nodes for atoms and edges for bonds, with node and edge feature vectors encoding
relevant information. Geometric graphs are molecular graphs embedded in Euclidean
space, and each atom comes with the corresponding xyz coordinates in 3D. For ex-
ample, standard 2D molecular graphs would be useful for drug screening for complex
properties such as toxicity, efficacy, and potency, whereas 3D geometric graphs would
be a good fit for DFT approximation, ML potentials, and ML force fields.

3.2. Representation Learning with Graph Neural Networks. In this direction,
geometric deep learning (GDL) [14] is one of the recent hottest topics in ML. In partic-
ular, any geometric objects should be invariant under rotations, translations, and some
local symmetries. In geometry, symmetry is all about the invariance of objects under
transformations or group actions. Considering this general symmetry in representation
learning is one of the big open issues as “the Erlangen Programme of ML”[14].

For DGL or molecular representation learning, one of the current fundamental meth-
ods are graph neural networks (GNNs) [27, 8, 14]. GNNs are one of the general modules
in ML that directly takes graphs as inputs and outputs graphs or vectors. They are
already used in various applications from travel time estimation in Google Maps or
Baidu Maps to Siri triggering in Apple’s iPhone to knowledge collection at Amazon,
and also they are the technical core to consider ML for combinatorial optimization and
reasoning [15]. Also, GNNs are tightly related to Transformers that is a core module
that revolutionized natural language processing and computer visions, and Transform-
ers can be seen as a special case of GNNs. Much research is now going on to fuse or
redesign GNNs and Transformers more effectively and efficiently.

GNNs are both applicable to molecular graphs and geometric graphs [11] as well as
other discrete structures such as sets, groups, trees, and graphs. An interesting usage
is to generate molecular structures [16] that are similar to a given dataset and navigate
the generation towards a desireble direction, for example, molecules having a specific
property. Also, it can be useful to design ML potentials or ML force fields [2, 3] , or
even ML density functionals [18, 21].
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Electrical circuits and other device components have undergone remarkable diminution over 
the last several decades. It is astonishing to think that a computer from 20 years ago could be 
embedded into the circuitry of a modern smartphone several times over. Yet this diminution 
cannot continue indefinitely, as there are physical limits to how small transistors, capacitors, 
conducting channels and other device components can be.

Pushing this diminution to its extreme requires that device components be built from 
individual molecules. In materials chemistry, the idea of constructing devices by sticking 
molecules together like Lego blocks is referred to as bottom-up device fabrication. Bottom-
up device fabrication cannot be carried out with existing industrial or laboratory processes, 
because modern equipment cannot manipulate individual molecules with precision. However, 
nature provides us with a potential indirect route which does not require any special 
equipment at all: on-surface molecular self-assembly. On-surface molecular self-assembly is 
a natural phenomenon in which molecules adsorbed on a surface spontaneously assemble 
into an ordered structure. On-surface molecular self-assembly has been reported a vast 
number of times and has been the subject of intense research (see [1] and [2] for recent 
reviews). In terms of bottom-up device fabrication, molecular self-assembly sounds absurdly 
simple. Providing that the molecules and surface have been selected properly, all one needs to 
do is deposit the molecules onto the surface and leave it to nature to build the desired 
structures. However, if molecular self-assembly is indeed so simple, where then are our self-
assembled electronics? Behind this question lies two serious problems.

The first problem arises from the spontaneous nature of molecular self-assembly. The only 
control that a scientist has over the molecular self-assembly process is in the choice of 
molecules and certain parameters such as surface type or temperature. As soon as these 
choices are made and the molecules have been deposited onto the surface, the self-assembly 
process begins and cannot be affected thereafter. As a methodology for creating device 
components, molecular self-assembly therefore has a trial-and-error quality, in which 
different candidate molecules must be tested in the hopes of finding ones which assemble as 
desired. This problem is exacerbated by our inability to predict the outcome of the self-
assembly process for a given molecule, which prevents us from narrowing the list of 
candidates in order to expedite the search.

The second problem arises from the physical requirements for a self-assembled structure to 
serve as a component for a device. As a component of an electrical device, the self-assembled 
structure should possess physical properties such as electrical conductivity or magnetic order. 
These physical properties are collective in the sense that they are the result of the collective 
interactions between molecules within the structure, and are not present in any of the 
molecules when they are isolated. Yet, the vast majority of self-assembled structures reported 
so far are nothing more than aggregates of molecules and lack any collective properties at all. 
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Unfortunately, guidelines for choosing molecules which assemble into structures showing 
novel collective properties are lacking.

This talk summarises recent efforts by collaborators and myself to address these problems. 
For the first problem, we have been working on computational methods for predicting the 
outcome of the molecular self-assembly process for a given type of molecule. These methods 
use simple models with atomistic detail embedded into their parameters via machine learning. 
Novel methods combining annealing, genetic algorithms, and Markov chain Monte Carlo are 
then use to obtain predictions from these models. For the second problem, we have been 
exploring the use of metal

Figure 1. Illustation of the model. One MnPc and two FeFPc molecules are adsorbed on a gold surface. A 
segment of the grid is shown by the red-orange mesh. Yellow spheres = gold atoms, grey spheres = carbon 
atoms, blue spheres = nitrogen atoms, white spheres = hydrogen atoms, teal spheres = fluorine atoms, orange
spheres = iron atoms, purple sphere = manganese atom.

ion-containing organic molecules for building self-assembled structures with magnetic 
ordering. The following is a summary of our results so far, which will appear later as a full 
publication.

1. Model construction with machine learning

Our model for a system of surface-adsorbed molecules is summarized in Figure 1. In brief, it 
considers an infinite grid on top of which a finite number of molecules reside. n1 of these 
molecules are of one type, and the remaining n2 are of another type. At each grid point the 
molecules may take on one of a finite number of orientations. The molecules are treated as 
rigid objects. The energy of the system is defined as

(1)

the second sum runs over all unique pairs of molecules. In equation (1), uk is interpreted as 
the energy arising from the interaction between molecule k and the surface, and vij is
interpreted as the energy arising from the interaction between molecules i and j. The 
formation probability is defined as

17



, (2)

where C > 0 is a constant, kB is the Boltzmann constant, and T > 0 is the temperature. 
Predictions are made from the model by sampling configurations (that is, assignments of grid 
points and orientations to each molecule) according to the probability distribution p.

In the present study, the interaction parameters uk and vij are set using a procedure which 
combines density functional theory (DFT) with machine learning. DFT is a technique from 
computational physics which computes energies and other physical properties for molecules 
according to the equations of quantum mechanics. Using DFT, the parameters uk can be 
computed from an atomistic model of the surface and an appropriately placed molecule. Due 
to the translation symmetry of the surface, the range of potential values for uk is finite. DFT 
calculations can therefore be performed for every potential value of uk and the results 
tabulated for future reference. The parameters vij can also be computed according to DFT 
using atomistic models of two interacting molecules. However, compared to uk, the range of 
potential values for vij is immensely large, and it is difficult to compute every possibility and 
tabulate the results. We therefore adopt a machine learning procedure, in which a sample of 
around 9000 potential values for vij are computed from DFT and the results used to train a 
Gaussian process regression (GPR) model. Using this GPR model, the other potential values 
for vij can be computed at negligible computation cost. The combination of pre-tabulated 
values for uk and the GPR model for assigning values of vij therefore completes the 
specification of the model in (1) for the specific molecules and surface under study. Similar 
techniques were used in reference [3], as well as in work by other research groups [4, 5].

2. Model predictions using genetic algorithms and Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a standard method for sampling from probability 
distributions such as the one in equation (2). In essence, MCMC involves simulating a 
random walk (a Markov chain) on the configuration space of the model in such a way that, 
over a sufficiently long computation time, the fraction of visits to a specific configuration 
converges to the probability p in equation (2). While the convergence properties of MCMC 
are well established, in practice this convergence may require impractical computational 
times to achieve, especially when the configuration space is infinitely large and high 
dimensional. Efficient computational performance therefore requires that an initial 
configuration which is close to the mode of the distribution.

We developed a genetic algorithm which can generate a suitable initial configuration for 
MCMC for the model described in the previous section. In this genetic algorithm, the 
molecules in the model are partitioned into subsets. Within each these subset, each molecule 
is undergoing a non-negligible interaction with at least one other molecule from the subset, 
and undergoes negligible interactions with all molecules belonging to other subsets. The 
genetic algorithm starts by generating a population of so-called chromosomes, which are sets 
of these subsets, and proceeds by mutating the subsets and exchanging them between 
chromosomes in a stochastic manner. Coupled with a bias towards energy minimization, our 
genetic algorithm arrives at a configuration which is close to the mode of the distribution in 
(2).

3. Model predictions

Figure 2 shows the result of our MCMC sampling procedure, as carried out using four iron 
fluoro-phthalocyanine (FeFPc) molecules, four manganese phthalocyane (MnPc) molecules, 
a gold(111) surface, and a temperature T of 300 K are shown in Figure 2. Here, the t-
distributed stochastic neighborhood embedding (t-SNE) method was used to visualise the 
MCMC sample. Each point corresponds to one configuration, and points which are close 
together in the plot are similar according to a similarity metric. It can be seen that the MCMC 
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sample concentrates mainly into two clusters, which contain configurations in which the 
molecules are compactly and regularly assembled. These assemblies strongly resemble the 
ones observed by high-resolution scanning tunneling microscopy studies reported by other 
authors [6]. In one of these clusters the molecules are condensed into square-shaped 
assemblies, and in the other cluster the molecules are condensed into rectangular assemblies. 
On the right-hand side of the t-SNE plot a small group of points can be seen, which 
correspond loosely packed configurations which appear to be intermediates to the ones 
described above. These results suggest that at 300 K, there exists two compact assemblies in 
equilibrium, with transitions between assemblies involving the intermediate configurations 
(refer to the green arrows in Figure 2).

Figure 2. Summary of the results of MCMC sampling from the probability distribution in equation (2) for a 
gold surface, four MnPc and FePc molecules, and temperature 300 K. Each point corresponds to one 
configuration from the sample. Three representative configurations are shown in the surrounding inserts.

The metal ions (Fe and Mn) of the FeFPc and MnPc molecules possess unpaired electrons, 
which can interact via the surface-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) 
interaction. In agreement with the experimental results of [6], our predicted assemblies show 
an antiferromagnetic ordering, in which the electrons of neighboring molecules point in 
opposite directions. This antiferromagnetic ordering is ‘collective’ in the sense that it arises 
from the interaction between molecules, and means that these assemblies could be used as 
components for ultra-high density memory devices or spintronics.

With the computational method presented above, we have made significant headway towards 
solving problem (1) described in the introduction. However, at present this method demands 
huge overheads which must be overcome in order to assist the development of self-assembled 
materials. These overheads arise from the need to perform many DFT calculations before 
setting the model parameters in equation (1). An important next step is therefore to develop 
highly general machine-learned models on the basis of rich datasets which can make 
predictions for a wide range of molecules and surfaces. These models would not need to be 
re-trained whenever a new molecule or surface is under consideration, and would permit us 
to immediately proceed to the prediction phase of the calculation using MCMC sampling. In 
addition to problem (1), we have made headway towards solving problem (2) by 
demonstrating how molecular assemblies with RKKY-interaction-induced magnetic ordering 
can be predicted. As a next step, we need to use this computational method to explore how 
magnetic order depends upon molecule structure, and hence deduce strategies for realizing 
molecular assemblies with desired magnetic orderings for device fabrication.
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Analysis and prediction of dynamic processes using data are fundamental in a va-
riety of scientific and industrial problems, and have been discussed actively in several
fields including machine learning. Recently, operator-theoretic analysis of dynamical
systems, in particular analysis with Koopman operator [16, 2, 19], has attracted much
attention due to the generality, the connection to physical concepts [24, 18, 25], and
advances of estimation methods such as dynamic mode decomposition (DMD), which
was first proposed in the field of fluids [21, 22, 3].

In this talk, I first overview the basics of this research topics, focusing on spec-
tral analysis of dynamical systems with Koopman operator. Then, I describe several
recently-proposed related algorithms based on machine learning [15, 29, 30, 28, 27,
17, 5, 26, 10, 33, 14, 34], the ones for prediction based on those [4, 12, 32, 1, 6, 31],
and the application to control and reinforcement learning [13, 20, 35]. In the talk, I
occasionally show several applications of these method to several real-world data, with
a focus on the ones we have worked on [7, 9, 8, 23, 11].
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We propose a novel data-driven approach for analyzing the synchrotron X-ray 
microdiffraction scans based on machine learning algorithms. The basic architecture and 
major components of the method are formulated mathematically. We demonstrate it through 
the typical examples including polycrystalline solids, multiphase phase transforming alloys 
and finely twinned martensite. The computational pipeline is implemented for the Beamline 
12.3.2 at the Advanced Light Source, Lawrence Berkeley National Lab. The conventional 
analysis of X-ray diffraction is based on the crystallographic study and the pattern-by-pattern 
indexing processing. This work underlies a new way of X-ray diffraction analysis 
independent of the indexing results. It motivates further studies of X-ray diffraction patterns 
from the prospective of machine learning for suitable feature extraction, clustering and 
labeling algorithms. 
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(joint work with Kenji Kajiwara)

Log-aesthetic curves (LAC) constitute a family of planar spirals including the loga-
rithmic spiral, Nielsen’s spiral, Cornu spiral, and the circle involute, among others.
This family is defined to best represent the properties observed by T. Harada et al. in
a quantitative study of aesthetically pleasing curves used in industrial design. Many
works have been written since then, mainly focused on the construction of the LAC for
given constraints. In this work, as a first step to approximate a planar curve segment
by Log-aesthetic curves, we show how to identify the parameters that uniquely define
a LAC segment.

1. Introduction

In 1994, T. Harada et al. set up an experiment to quantitatively analyze a curve’s
character from the viewpoint of the observer (see [3], in Japanese). Their main result
may be described as follows: the curves that car designers regard as aesthetic have
the common property that the frequency histogram of the radius of curvature follows
a piecewise linear relation in a log-log scale. In 2006, K. T. Miura et al. in [5], and
N. Yoshida and T. Saito in [6] provided an analytic formulation of the work by T.
Harada, defining what will later be coined as log-aesthetic curves (LAC). Several other
works have been written regarding the implementation and construction of LAC for
fixed boundary conditions, motivated for their application in design with computer-
aided design (CAD) softwares, see for example [1, 2, 7]. In this work, we emphasize
the reverse engineering side of the problem, by providing tools that help characterize
a general curve segment by LAC.

2. Log-aesthetic curves

Let γ(s) ∈ R2 (s: arc length) be an arc length parameterized plane curve, the
tangent and normal vectors are T (s) = γ′(s) and N(s) = Rπ/2 T (s), where Rπ/2 is a
π/2 rotation matrix and ′ = d/ ds. Denote as θ(s) and κ(s) to the angle and curvature
function, respectively.

Given a curve γ(s) parameterized by arc length s ∈ [0, 1], define R(s) := log ρ(s),
where ρ(s) is the radius of curvature. By taking the continuous limit of the logarithmic
curvature histogram, it can be seen[5] that

(1) log

(
ds

dR

)
= αR− logA,
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holds for some α ∈ R and A > 0. Assuming that functions are well behaved, we

have ds
dR

= ρ/ρ′, and the previous equation can be rewritten as

(2) ρ′ρ(α−1) = A,

or equivalently, by talking the derivative of (2), as

(3) ρρ′′ + (α− 1)(ρ′)2 = 0.

Equation (3), in terms of the curvature, is what we consider as the defining equation
for log-aesthetic curves.

Definition 2.1 (Log-aesthetic curve). An arc length parameterized curve γ(s) with
strictly monotonic radius of curvature is called a log-aesthetic curve (LAC) if its cur-
vature satisfies

(4) κκ′′ − (α + 1) (κ′)
2
= 0

for some constant α ∈ R.

Note that, for a given LAC, its slope α is invariant under similarity transformations
and reflections. Indeed, knowing that the curvature of a planar curve is invariant under
rotations and translations, we only check invariance under scales and reflections. For
the scale transformations, consider the arc length parameterized LAC γ(s) satisfying
(4), for some α ∈ R, and define γ̃(s̃) := Sγ(s̃/S), where S > 0. Then, we have
κ̃(s̃) = S−1κ(s̃/S) which satisfies the equivalent differential equation (4) for κ̃(s̃). For
the reflections, note that interchanging x and y in the curve is equivalent to changing
the sign of the curvature, and (4) is invariant under that change.

Definition 2.2. Let ξα(s) be an LAC defined over an open interval I ⊂ R, such that
{0} ∈ I, and satisfying

(5)




κ′(s) = −(κ(s))(α+1) < 0, ∀s ∈ I,

κ(0) = 1,

θ(0) = 0,

ξα(0) = 0.

We call ξα(s) a basic LAC with slope α.

Let us see a more explicit expression for the basic LAC and its related quantities.
In what follows, we use the sub-index ξα, as for example κξα , to denote those quantities
related to their respective basic LAC. Taking the initial condition into consideration,
the explicit equation for the curvature is

(6) κξα(s) =

{
exp(−s), α = 0,

(1 + αs)−1/α, α �= 0.

26



Then, the turning angle is obtained from the curvature by (θξα)
′ = κξα ,

(7) θξα(s) =




1− exp(−s), α = 0,

log(s+ 1), α = 1,

(1+αs)
α−1
α −1

α−1
, α �= 0, 1.

Finally, the position vector can be obtained from the tangent vector as

(8) ξα(s) =

∫ s

0

(
cos θξα(s̄)
sin θξα(s̄)

)
ds̄.

Although it is not used in this work, we note that the position vector can be expressed
in terms of the incomplete gamma function, see for example [7]. For simplicity we
consider the case in which 1 + αs > 0. In this case, the maximal interval Iα ⊂ R on
which the basic LAC can be defined is

Iα =




(−∞,−1/α) , α < 0,

(−∞,∞) , α = 0,

(−1/α,∞) , α > 0.

In all cases, the image of κξα is κξα [Iα] = (0,∞).

Proposition 2.3. Any LAC with α �= 1 and positive and decreasing curvature can
be expressed as a basic LAC after applying similarity transformations. In particular,
if γ(s), s ∈ [0, L], is an LAC of length L, there exist unique γ0 ∈ R2, φ ∈ [0, 2π),
S ∈ R\{0}, and s0 ∈ R, such that

(9) γ(s) = γ0 + S Rφ ξ
α(s/S + s0), s ∈ [0, L],

where ξα(s) is a basic LAC of length l := L/S.

In consideration of the later proposition, we denote as ξp the LAC segment uniquely
defined by the parameters

p = (α, S, s0, l, φ, x0, y0),

where γ0 = (x0, y0). With this notation, note that ξp = ξα in the case that p =
(α, 1, s0, l, 0, 0, 0) for some s0 and l satisfying that (s0, s0 + l) ⊂ Iα.

Proof of Proposition 2.3. For a given LAC γ(s), s ∈ [0, L] with α �= 1 and positive
and decreasing curvature, from Definition 2.1 its curvature satisfies (4), which can be
integrated once to obtain

κ′(s) = −A(κ(s))(α+1),

for some A > 0. Next, we consider the curve γ̄(s̄) := S−1γ(s̄S), s̄ ∈ [0, L/S], and we
set S = A1/(α−1). We see that its curvature satisfies
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(10)

{
κ̄′(s̄) = −(κ̄(s̄))(α+1),

κ̄(0) = A1/(α−1)κ(0),

which can be integrated to obtain

(11) κ̄(s̄) =



exp(−(s̄− log κ̄(0))), α = 0,(
1 + α

(
s̄+ (κ̄(0))−α−1

α

))−1/α

, α �= 0.

By comparing κ̄ with κξα (6) there exists a unique s0 ∈ R such that κ̄(s̄) = κξα(s̄+s0),
hence the curves γ̄ and ξα are congruent up to rigid transformations, i.e.

γ̄(s̄) = γ̄0 + Rφ ξ
α(s̄+ s0), s̄ ∈ [0, L/S],

for some γ̄0 ∈ R2 and φ ∈ [0, 2π). Finally, we use that γ(s) = Sγ̄(s/S) to obtain (9)
with γ0 := Sγ̄0. �

Remark 2.4. Let us denote by X to the reflection X : R2 → R2/(x, y) �→ (y, x). Then,
if γ(s), s ∈ [0, L], is an LAC then also are

(12)




γ(1)(s) := γ(L− s),

γ(2)(s) := Xγ(s),

γ(3)(s) := Xγ(L− s),

and their respective curvature satisfies that


κ(1)(s) = −κ(L− s),

κ(2)(s) = −κ(s),

κ(3)(s) = κ(L− s).

This allows as to use the previous proposition for those cases in which the curvature is
not positive and decreasing, by applying one of the previous transformations.

2.1. Recovering the parameters of an LAC segment. We focus our attention to
the problem of finding the parameters that uniquely identify a given LAC segment.
We proceed in three steps, where we solve several linear equations in the least squares
sense, with the objective of constructing an algorithm that can be applied to general
curves.

Given an LAC segment γ(s), s ∈ [0, L], by possibly applying one of the transforma-
tions (12), we assume that its curvature is positive and strictly monotonic decreasing.
From Proposition 2.3, there exists p = (α, S, s0, l, φ, x0, y0) such that γ(s) = ξp(s),
s ∈ [0, L]. We further define s1 := L/S + s0 and assume that α �= 0, 1. From (9),

γ(s) =

(
x0

y0

)
+ S Rφ ξ

α(s/S + s0), s ∈ [0, L],
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implies that

(13) κ(s) = S−1κξα(s/S + s0).

Recall that R = − log κ, hence R(s) = logS + Rξα(s/S + s0) and using (5) we have
that logR′

ξα + αRξα = 0, thus we obtain

(14) logR′ + αR = (α− 1) logS.

Step 1 — Let c1 := α and c0 := (α − 1) logS. Then, from (14), in the least squares
sense we have

(c0, c1) = argmin
(c̄0,c̄1)

{
1

2

∫ L

0

(logR′ + c̄1R− c̄0)
2 ds

}
,

which leads to

(15) c1 =
L
∫ L

0
R logR′ ds−

∫ L

0
R ds

∫ L

0
logR′ ds

(
∫ L

0
R ds)2 − L

∫ L

0
R2 ds

,

and

(16) c0 =
1

L

∫ L

0

(logR′ − c1R) ds.

Then, α = c1 and S = exp(c0/(c1 − 1)).

Step 2 — From (6) and (13), we have that κ(s) = S−1(1 + α(s/S + s0))
−1/α, which

allows us to isolate the parameter s0 as

s0 =
(Sκ(s))−α

α
− 1

α
− s

S
.

Then,

s0 := argmin
s̄0

{
1

2

∫ L

0

(
1

αSακ(s)α
− 1

α
− s

S
− s̄0

)2

ds

}

gives

(17) s0 =
1

αLSα

∫ L

0

(κ(s))−α ds− 1

α
− 1

LS

∫ L

0

s ds.

Similarly, we compute s1 := L/S+s0 from κ(3)(s) = κ(L−s) = S−1(1+α(s1−s/S))−1/α.
In the least squares sense, we obtain

(18) s1 =
1

αLSα

∫ L

0

(κ(L− s))−α ds− 1

α
+

1

LS

∫ L

0

s ds,

equivalently,
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(19) s1 = s0 +
2

LS

∫ L

0

s ds.

Then, l = s1 − s0.

Step 3— At this point, we are left with finding the rotation and translation parameters.
For the former, note that the angle function of γ and ξα differ only by a constant φ, as

θ(s) = φ+ θξα(s/S + s0).

Thus, in the least squares sense we obtain

(20) φ =
1

L

∫ L

0

(θ(s)− θξα(s/S + s0)) ds.

Finally, for the translation (x0, y0) we solve (9)c in the least squares sense,

(21)

(
x0

y0

)
=

1

L

∫ L

0

(γ(s)− S Rφ ξ
α(s/S + s0)) ds.

3. Follow-up work: Approximation by LAC

If time permits, we will show how to incorporate this algorithm as the initial guess
of an approximation process, in which a planar curve is given as an input and we seek
to find a Log-aesthetic curve that is the closest in a L2-distance sense.
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1. Introduction

The term nematic liquid crystal (LC) indicates an intermediate state of matter
which exhibits liquid-like and crystalline properties at the same time [12], [28], [10],
[20], [13], [3], [14], [1]. Indeed, similarly to fluids, nematic LC mesophases have no
positional orders and are not capable of supporting shear. These mesophases have
however orientational order as well as some crystalline properties such as anysotropic
response to electrical, optical and magnetic stimuli. In a typical nematic mesophase
molecules are, locally, aligned along a common direction identified by a unit vector
named director and denoted with n ∈ S2. In most situations, nematic liquid crystal
molecules exhibit order states [12] which can be described in terms of an order tensor,
which is a 3× 3, symmetric matrix.

1.1. LC Models. We recall the three main theories on liquid crystals available in the
literature which are characterized through a symmetric 3 × 3 matrix in the sets QFr

(Frank tensor model [18]), QU (Ericksen uniaxial tensor model [15]), QB (de Gennes
biaxial tensor model [12]), respectively. We have

QFr ⊂ QU ⊂ QB

with QB being a compact and convex set, while QU and QFr are non-convex and
compact sets. Observe 0 ∈ QU (and consequently, also in QU) and the zero matrix
denotes the state of perfect optical isotropy. Frank set QFr is that of tensors with
eigenvalues identically equal to {2/3,−1/3,−1/3}. Frank model describes the local
directions of the molecules through the eigenvectors of the tensor Q. This is suitable
to describe perfectly ordered molecules, that is, systems where molecules are perfectly
aligned along the director n ∈ S2. On the other hand, Ericksen and de Gennes models
can be interpreted as generalization of Frank theory, in the sense that they allow the
description of disordered systems, that is when the eigenvalue of Q are allowed to devi-
ate from {2/3,−1/3,−1/3} (perfect order) and possibly approach {0, 0, 0} (isotropy).
The connection of Frank model to the one of de Gennes is that the director n represents
one distinguished eigenvector of the order tensor Q.
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In what follows, we adopt Ericksen’s parameterization of Q [15], that is,

Q = s

(
n⊗ n− 1

3
I

)
(1)

where s ∈ [−1/2, 1] is the degree of order. Observe Frank’s tensor can be recovered by
assuming s ≡ 1 in (1).

1.2. The model. In this proceeding we present a novel strongly coupled model for
the evolution of the order-director physics in a system of of uniaxially nematic liquid
crystals with variable degree of orientation. We consider a 2-dimensional setting and
parametrize the director n = (cosφ, sinφ) with φ ∈ [0, π], leaving the full 3D version
of the model as well as full analysis for a forthcoming paper [31].

The system of partial differential equations for the Ericksen model read [15], [9],
[29]

st =
(
k1∆s − k2s|∇φ|2 −W ′(s)

)
,(2)

s2φt = k3div(s
2∇φ),

In a nutshell, model (2) establishes a complicate interplay between order and director.
Indeed, n can even be discontinuous with little energy involved provided s vanishes
when ∇n jumps and provided s2|∇φ|2 is controlled. When s is bounded away from
zero and φ is smooth, essentially (2) shows reaction-diffusion type behavior, with the
non-convex function W acting as Landau de Gennes potential condensation potential
[12].

Based on the recent development of Alber and Zhu, [2] [27], we introduce a modified
system of equations characterized by a strongly no-linear driving force for the variable
s. To keep our notation concise, we write the system of time-space evolution equations

st =
(
k1∆s − k2s|∇φ|2 −W ′(s)

)
α(x, t),(3)

s2φt = k3div(s
2∇φ),(4)

which must be satisfied in Qte = Ω× (0, te), with the initial value condition

s(x, 0) = s0(x), (x, t) ∈ Ω,(5)

φ(x, 0) = φ0(x), (x, t) ∈ Ω,(6)

and periodic boundary conditions on s, φ on ∂Ω. We implement our new version of the
model by setting α(x, t) = |∇s| while we recover Ericksen model by setting α(x, t) ≡ 1
in (3).

1.2.1. Phase-field model. To overcome singularities and degeneracy for vanishing s in
(3) and (4), we introduce the modified system of equations

st =
(
k1∆s − k2s|∇φ|2 −W ′(s)

)
α(x, t),(7)

(s2 + ε2)φt = k3div((s
2 + ε2)∇φ)(8)

s(x, 0) = s0(x), (x, t) ∈ Ω,(9)

φ(x, 0) = φ0(x), (x, t) ∈ Ω,(10)
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for ε > 0 and periodic boundary conditions for both variables on ∂Ω.

2. Numerical computations

Figure 1. Profiles of the initial condition φo(x) for three sets (1), (2)
and (3) of numerical computations.

3 5 7

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Figure 2. dashed line: mean value of the an-
gle φo(x) over Ω for our three different initial
simulations (label: 3 stands for the 9-square
chessboard, label: 5 stands for the 25-square
chessboard,) label: 7 stands for the 49-square
chessboard). Circles (stars) correspond to the
average of φ(x) over Ω at the final time step of
each of the three simulations for the Ericksen
(novel) model, respectively.
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Figure 3. Evolution of profiles for the oder parameter s for the Ericksen
model, Simulation (1).
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Figure 4. Evolution of profiles for the angle φ, Ericksen model, Simu-
lation (1).
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Figure 5. Evolution of profiles for the angle φ, novel model, Simulation (1).
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Figure 6. Evolution of profiles for the oder parameter s for the Ericksen
model, Simulation (2).
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Figure 7. Evolution of profiles for the angle φ, Ericksen model, Simu-
lation (2).

3. Numerical simulations

We solve ε-regularized versions of equations (3)-(4) both for the classical model of
Ericksen as well as for our ε-regularized novel version of the nematic liquid crystal
model, for three different initial conditions. The Ericksen model is obtained by setting
α ≡ 1 in (3) while our novel version corresponds to taking α ≡ |∇s|.

To emphasize the differences and peculiarities of the classical Ericksen model and
our novel version, we impose constant initial condition for the order parameter, that
is, limt→0+ s(x, t) =: s(x, 0) ≡ so, ∀x ∈ Ω. Here so is the (unique) minimizer of the
Landau de Gennes potential (see caption to Fig. 3.1) Consequently, we implement
three realizations of numerical experiments for different shapes of the initial condition
φ0 (see, illustrated in Fig. 1). To drive the dynamics for the pair (s(x, t), φ(x, t))
we prescribe discontinuous initial conditions φo(x) := limt→0+ φ(x, t). In this way, on
one hand, we test stability of our implementation of the differential equations of the
system in the presence of jumps of the solution resulting in singular gradients. On the
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Figure 8. Evolution of profiles for the angle φ, novel model, bottom
panel, Simulation (2).

other hand, presence of with steep gradients of φ is useful in testing the order-director
coupling via strong, non-liner, coupling with the evolution equation for the variable
s(x, t).

3.1. Numerical parameters. We report all numerical parameters of the simulation
in Table 1. In our simulations, implemented in Matlab environment, the domain of
the problem is a unit square. The parameters at the bottom of Table 3.1 indicate the
discretization of the domain and the time step.

3.2. Discussion. Figs. 3-11 display solutions for variables s(x, t) and φ(x, t) for vari-
ous time steps, for both LC models under consideration and for the three initial con-
ditions.

3.2.1. Order parameter. As the initial condition for s(x, t) is constant over Ω and equal
to so = 0.7, we observe s(x, t) remains constant, both in space and time, for the novel
model (7), (8) obtained for α ≡ |∇s|. Indeed, observe in Eq. (7) for α ≡ |sx| one
has, for t = 0, the value of st is equal to zero and consequently the dynamics for s
is frozen. Consequently, the solutions obtained for this novel model coincide with the
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Figure 9. Evolution of profiles for the oder parameter s for the Ericksen
model, Simulation (3).

solutions for classical Frank model obtained by setting s(x, t) ≡ 1 for every t ≥ 0 and
x ∈ Ω. Instead, in the classical Ericksen model, the evolution for s(x, t) is driven by
the non-negative right hand side of Eq. (7). Fig. 3 shows time-evolution of the order
parameter s(x, t) at four different time steps for the classical Ericksen model. We can
see s(x, t) tends to a constant value close to so for large time. Similar behavior is
observed for the remaining two simulations, see Figs. 6, 9.

3.2.2. Director. Plots of the solution for the angle φ(x, t) show no significant qualitative
difference for the two available models, see Figs. 4, 5, 7, 8, 10 and 11. Observe for large
values of t, the solution φ(x, t) tends to the average value of φo(x, t) over Ω). We show
this behavior in the plot of Fig. 2. The average value of φo in our three experiments
depends on the number of squares of the chessboards.
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Figure 10. Evolution of profiles for the angle φ, Ericksen model, bot-
tom panel, Simulation (3).

Parameter Values

A 0.21/2
B −1/3
C 1/4
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Figure 11. Evolution of profiles for the angle φ, novel model, bottom
panel, Simulation (3).
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Method and Model

Phase-Filed Method

Although phase-field method is a ”young” method, studied
from 1980s, they have a wide range of applications.

Phase-field method combines phase-field variables with other
field variables (such as stress field, temperature field, etc.) to
describe the formation and evolution of microstructure. Phase-field
variables can describe the system interface implicitly at various
scales, and are coupled with other variables to achieve a unified
description of the system, which makes up for the defects of the
sharp interface model.

Phase-field model has become a powerful tool for meso-scopic
simulation of microstructure evolution such as solidification,
precipitation growth and coarsening, solid-solid phase
transformation, and crack propagation of various materials.
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Method and Model

The quasi-static equations

ṡ =

(
div

{
∂W1

∂∇s

}
− ∂W1

∂s
−W ′(s)

)
· α(s) (1)

β(s) · ṅ× n =

(
div

{
∂W

∂∇n

}
− ∂W

∇n

)
× n (2)

|n|2 = 1 (3)

� s(x, t) ∈ R (the order parameter) characterizes the averaged
orientation of molecules compared to the unit vector n(x, t)
(the director).

� W1(s,∇s,∇n) = k1
2 |∇s|2 + k2

2 s
2|∇n|2.

Solutions to a new strongly coupled phase-field model for nematic liquid crystals with variable degree of orientation

Method and Model

The phase-field model for nematic liquid crystal

st = −(W ′(s)− k1∆xs− k2φ)|∇xs|, (x, t) ∈ QT

φt = k3 div(s2∇xφ), (x, t) ∈ QT

s(x, 0) = s0(x), φ(x, 0) = φ0(x), x ∈ Ω,

s(x, t) = 0, φ(x, t) = 0. (x, t) ∈ ∂Ω× (0, T ),

� Ω ⊂ Rd, d = 1, 2, 3. QT := Ω× (0, T ).

� k1, k2, k3 = const > 0.

� W (s) ∈ C2(R, [0,∞)) is a double-well potential which has at
least two minimum points, and one maximum point in-between.
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Difficulties and Results

Difficulties

� The liquid crystal model is strongly coupled and degenerate
nonlinear parabolic equations;

� W ′(s) is the partial derivative of W (s) respect to s and without
exact function expression;

� The degradation and high-nonlinearity of the equations make
numerical calculations difficult.

Solutions to a new strongly coupled phase-field model for nematic liquid crystals with variable degree of orientation

Difficulties and Results

Results (1-D)

Model I

st =
(
k1sxx − k2s|φx|2 −W ′(s)

)
|sx|,

(s2 + ε2)φt = k3((s
2 + ε2)φx)x.

Model II

st = k1sxx − k2s|φx|2 −W ′(s),

(s2 + ε2)φt = k3((s
2 + ε2)φx)x.
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Difficulties and Results

Fig1. Relation between the chemical free energy density function and

order parameter (left); the derivative of the chemical free energy density

function and order parameter (right).

Solutions to a new strongly coupled phase-field model for nematic liquid crystals with variable degree of orientation

Difficulties and Results

Conclusion

� The evolutionary process of two models is similar;

� The directivity of nematic liquid crystal will be different due to
the odd and even difference of the number of discontinuities
contained in the initial value;

� The more discontinuities the nematic liquid crystal contains,
the greater the change of the total energy during evolution.
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1, Introduction: 
 Reducing the dependence on fossil fuels requires more efficient Solid Oxide 
Fuel Cells (SOFCs). One of the determining factors of SOFCs’ efficiency is how fast 
can electrolyte conduct oxygen. Each electrolyte material has different oxygen 
conductivity because of varying interactions between oxygen and surroundings ions. 
Most oxygen conducting materials need dopants, but those dopants hinder oxygen 
conduction. Understanding how oxygen interacts with these ions can guide the choice 
of electrolyte material and so we need accurate models of oxygen diffusion. 
 There are currently two models of oxygen diffusion – the classical ionic model 
and the partial covalent conduction model. The conventional model assumes that all 
ions in the lattice are fully ionized, and oxygen conduction is hindered by steric 
hindrance from cations and electrostatic interactions. According to this model, the 
most favorable scenario is oxygen travelling through cations with small radius and 
small positive charge. The classical theory completely ignores oxygen-cation 
electronic interactions but not all electrolyte materials are fully ionized. The partial 
covalent model, however, involves partially ionized atom with partial covalent bonds. 
This partial covalent theory considers electronic interactions along with steric 
hindrance and electrostatic force. Including these partial covalent bonds is likely to 
produce very different conclusions to those of the conventional model. Recent 
investigation on cathode materials is supporting this partial covalent theory.1,2 
 We examined the effect of partial covalent interactions on oxygen migration, 
activation energy and electron density of all possible migration pathways were 
calculated using plane wave-DFT in this research.  
 The most common electrolyte materials are oxides with fluorite structure. This 
research focuses on investigating three materials: Y doped ZrO2, Y doped CeO2, δ-Bi2O3. 
ZrO2 and CeO2 are conventionally used for electrolytes in SOFCs, and the four valent ions 
(Zr, Ce) need to be substituted with two trivalent ions like Y to generate one oxygen 
vacancy and allow oxygen diffusion. δ-Bi2O3 is a less commonly used material because of 
its instability under 730oC, but it has intrinsic oxygen vacancies and is the best oxygen 
conducting oxide reported. 
 This research will explore how electronic interactions affect the oxygen 
diffusion in these three common fluorite lattices using plane-wave density functional 
method. Then, this research will suggest how machine learning can further explore this 
issue. 
 The diffusion of O inside a lattice can be considered as random jumps between 
adjacent sites. The diffusion coefficient indicates how easy oxygen diffuse in a material, 
and can be calculated using Einstein relation in the form of equation (1):3 

𝐷𝐷 =
𝑛𝑛!
2𝑑𝑑 𝑙𝑙

"Γ						(1) 
Where D (cm2s-1) is the diffusion coefficient, 𝑛𝑛!	is the number of jump sites available, d is 
the dimension of lattice, l (cm) is the jumped distance, and Γ (s-1) is the frequency of jumps. 
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The frequency of jumps can be calculated using Arrhenius-like equation: 

Γ = 𝑣𝑣∗𝑒𝑒
$%!
&"' 				(2) 

Here 𝐸𝐸( (eV) is the activation energy of oxygen diffusion, T (K) is temperature, 𝑘𝑘) is the 
Boltzmann constant, in this case 𝑘𝑘) = 8.617 × 10$*  (eV𝐾𝐾$+ ). 𝑣𝑣∗	(𝐻𝐻𝐻𝐻) is the attempt 
frequency. In solid state system, Vineyard’s harmonic transition state theory is suitable for 
calculating 𝑣𝑣∗: 4 

𝑣𝑣∗ =
∏ 𝑣𝑣,-.
,/+

∏ 𝑣𝑣01.$+
0/+

	(3) 

The numerator is the product of all vibrational frequencies of the normal modes of the 
ground state. The denominator is the product of all vibrational frequencies of the normal 
modes of the transition state, excluding one imaginary frequency. 
 
2. Methods: 
 Linear Combination of Atomic Orbitals Density Functional Theory (LCAO-
DFT) calculations were performed using Quantum ATK software. The SCAN-
metaGGA functional and Pseudodojo pseudopotential with Medium basis set was 
applied for all atoms. The calculations were performed with 4 × 4 × 3 k points for Y 
doped ZrO2 and δ-Bi2O3, 5 × 5 × 3	k point for Y doped CeO2. The valence electron 
configuration is 4s24p64d25s2 for Zr, 4s24p64d15s2 for Y, 4f15s25p65d16s2 for Ce, 
5d106s26p3 for Bi, 2s22p4 for O. Lattice were optimized with 0.05 eV/Å force tolerance 
and LBFGS optimizer method. Density mesh cut off is set at 125 Hartree. The electronic 
energies were converged to 10$2 eV with the Gaussian smearing method. 
 The activation energy and transition state geometry of vacancy-mediated oxygen 
transport data were optimized using climbing-image nudge elastic band (CI-NEB) method 
with 0.03 eV/Å force tolerance. A varying number of intermediate images were used, 
depending on different pathway. The intermediate images were created by interpolating the 
position of initial and final states that were optimized. 
 The vibrational frequencies of normal modes of initial and transition state were 
calculated by combining dynamical matrix and vibrational mode calculation of Quantum 
ATK. Initial and transition geometry were converged to 10-8 eV to ensure that the 
vibrational frequency calculation yield proper results. Each ion in the cell is then displaced 
by ±0.015 Å in all direction of cartesian vector, then construct a Hessian matrix from the 
force. Force derivative tolerance is set to 10-3 eV/Å. Once the normal mode vibrational 
frequencies of system were obtained, multiplying all data (excluding the imaginary one) 
and divide the data of initial to transition frequency to get attempt frequency. 
 
3. Results and discussion: 
 
 Activation energy, attempt frequency, and diffusion coefficient were calculated 
and shown in Table 1. The smaller Ea and larger D value indicates better oxygen 
conductivity. Results show δ-Bi2O3 is the best oxygen conducting material, follows by 
oxygen migrating through Zr rich edge in ZrO2, then oxygen migrating through CeO2, 
and oxygen migrating through Y rich edge of ZrO2. The trend of variation in activation 
energy is the opposite of that in D, which is desirable, while attempt frequency has 
minor effect on value of D. Thus, this research will focus on investigating only 
activation energy value. 
 In the lattice Zr14O31Y2 and Ce14O31Y2 (one oxygen vacancy), there are five possible 
oxygen migration pathways in total: two yttrium ions in the adjacent tetrahedral (model 1), 
one yttrium ion in the adjacent tetrahedral (model 2), no yttrium ion nearby (model 3), two 
yttrium ions in the common edge (model 4), and one yttrium ion in the common edge 
(model 5). All pathways were constructed from the same Zr14O31Y2 and Ce14O31Y2 models 
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with varying oxygen vacancy position. 
This paper considered oxygen migration 
pathways in <100>, <010>, <001> 
direction to cover all possible oxygen 
migration configuration. The oxygen 
migration pathways with the 
corresponding activation energy and 
electron density data will be 
schematically shown in Fig. 1. (in 
Zr14O31Y2 lattice) and Fig. 2. (in 
Ce14O31Y2 lattice). 
 Activation energy and electron 
density maps of all possible oxygen 
migration pathways were explored.  
Electron density map offers an 
intuitive understanding of electronic 
interaction. The degree of electronic 
interaction from electron density map 
is shown as blue numbers in the below 
figures. Larger number means more 
partial covalent interaction between 
atoms and vice versa.  

3.1 Oxygen migration in Y doped ZrO2: 
 There were five oxygen migration pathways in Y doped ZrO2. Pathways 1, 2, 

and 3 have the same transition state configuration, and the increment of Ea from 
pathway 1 to 3 is attributed to different degrees of electron density overlap at the 
initial state. The interaction of oxygen with Zr strength increase from path 1 to 2 to 3, 
corresponding with lower initial energy, higher bond-breaking penalty, and higher Ea. 
Paths 3, 4, and 5 have the same initial configuration and different transition state 
configuration, and the diversity of Ea is attributed to different degrees of electron 
density overlap at the transition state. Zr has more overlapping with oxygen than Y, 
leading to a more stabilized transition state and lowered Ea in paths 3 and 5 compared 
to path 4. 
 
 
3.2 Oxygen migration in Y doped CeO2: 

Table 1. Summarized data of activation 
energy, attempt frequency and diffusion 
coefficient 

Figure 1. Possible pathways of oxygen diffusion in ZrO2 dope Y with corresponding 
electron density results and activation energy results  
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Generally, activation energy of oxygen moving in Y doped CeO2 lattice is higher than 
that of Y doped ZrO2. The notable point is when oxygen is moving through the same 
yttrium ions transition state in ceria and zirconia, the activation energy is different (Fig. 

2.). The activation of 
that in ceria is lower 
than zirconia because 
the Ce-O interactions at 
the initial state is weaker 
than the Zr-O 
interactions at the initial 
state. 
3.3 Oxygen migration in 
δ-Bi2O3: 
 Oxygen 
migration in δ-Bi2O3 
completed in two steps 
and has the activation 

energy of only 0.4 eV. The energy diagram in this case is shown in Fig. 3. It is worth 
to mention that the oxygen in δ-Bi2O3 has curved migration trajectory. Oxygen also 
migrated in this curved trajectory in Y doped ZrO2 in both step 1 (Fig. 4.) and step 2 
(Fig. 5.). From the electron density data, it can be concluded that oxygen moved in 
curve pathways because they prefer to maximize interaction with bismuth cations, 

rather than avoiding the 
cations as expected. 

 
3.4 
Application of 
machine 
learning: 
 As the experimental 
results and computational 
results have shown, adding 
dopants are necessary, but 

the presence of dopant can hinder oxygen transportation. Mixing suitable dopants might 
mitigate the trapping effect of dopant. However, it is time consuming trying to find the 

suitable mixing ratio of dopants with experiments or with density functional theory. Therefore, 

Figure 3. Energy diagram for two steps oxygen migration 
in δ-Bi2O3 

Figure 4. Migration pathway and corresponding activation energy of step 1 

Figure 2. Oxygen diffusion in Y doped ZrO2 and Y doped 
CeO2 with corresponding electron density results, activation 
energy results. 

Figure 5. Migration pathway and corresponding activation energy of step 2 

53



machine learning can be used to find such desirable combinations. We have seen a 
relationship between having strong partial covalent interactions at the transition state and 
relatively weak partial covalent interactions at the initial state, and low oxygen migration 
activation barrier. We can use this relationship and machine learning to predict possible good 
oxygen conducting dopants ratio. First, we need to generate activation energy calculations and 
electron density of as many as possible dopant combination that were reported before in 
experiments. This can be used for input data and use image analyzing algorithm to identify 
the strong partial covalent bond at the transition state and relatively weak partial covalent 
bond at initial state from the electron density images. Then we can use machine learning to 
predict possible combination and test the results using DFT and experiments. However, 
generating DFT results for the initial input will take time, and might not give a large enough 
input set. 
 
4. Conclusion: 
 
 In conclusion, this research has investigated oxygen migration in three fluorite 
materials: Y doped ZrO2, Y doped CeO2, and δ-Bi2O3. This research has suggested a 
connection between partial covalent interactions and oxygen diffusion activation energy. 
Partial covalent interaction stabilizes transition state energy and lowers activation 
energy. Strong partial covalent interaction at initial state increases activation energy due 
to increased bond breaking energy penalty. Maximizing partial covalent interaction with 
cations and be in their vicinity is preferable for oxygen migration. Machine learning can 
offer great help to save time and energy for finding better dopants combination in 
oxygen conducting materials. 
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The circadian clock is a cell autonomous oscillator that coordinates daily rhythms 
of many living organisms1,2.  Daily rhythms in mammalian behavior and physiology are 
a significant biological clock of life on Earth3,4. This characteristic has developed 
throughout the series of evolution process on this planet in accordance with periodic 
variation of environmental factors like the 24-hour day and night cycle. This 24-hour 
circadian cycles are controlled by internal autonomous oscillator, circadian clocks. In 
mammals, the principle pacemaker which generates a regular rhythm with an 
approximate 24-h period is situated in the suprachiasmatic nucleus (SCN)5. 

In this context, the rhythmic functions in human’s circadian pacemaker are one of 
the important areas of research6. In the 24-hour cycle of a day, specific biological 
functions in human body are critically controlled where the different gene activities in 
human tissues varies with a daily rhythm. Some of them are active in day light time 
while some others are active in dark time (Figure 1). Human organ-specific 
understanding of biological pathways and its temporal organization is a topic of great 
importance for circadian based optimal drug administration time from a clinical 
perspective7.  

 

55



 
Figure 1: Outline of rhythmic functions in human circadian pacemaker over the 24-
h cycle 

 

Vision is an automatic rhythmic function which is critically influenced by the 
light intensity occurring over the 24-hour day8. Human retina plays major role to 
both the vision and non-vision specific functions with a comparatively less complex 
cellular population than the brain9 (Figure 2). The interplay of cellular and molecular 
processes within the retina are harmonized to the Earth's day and night cycle8. A 
network of circadian systems in the eye mainly involves a light input pathway, 
circadian oscillator, and multiple output pathways for the fine-tune detection and 
processing of light information over the 24-hour period10. The recent high 
throughput studies with systematic analyses showed that several clock genes 
expression in the retina indicating at specific functions or pathways under circadian 
control11. The retinal endogenous circadian clock controls many physiological 
processes within the neural retina to regulate the visual sensitivity to ambient light 
levels10,11. However, the involvement of specific clock genes is poorly understood. 
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Figure 2: Human eye with a schematic enlargement of retina 

Our main interests here to deal with macular degeneration from both basic scientific 
and the clinical therapeutic point of view12. Age related macular degeneration (AMD) is 
a common threat to vision which leads to the progressive and irreversible loss of central 
vision in eyes13. It happens when aging causes destruction of the macula in the retina 
which controls sharp, straight-ahead vision. The macula is the dense collection of light-
sensitive tissue at the back of the eye contributes to the central vision10. 

To address the AMD under the human circadian clock14, we need to recognize the 
optical retina genomes whose activities varies with a daily rhythm15. Because the proper 
detection of the circadian clock genomes could guide us to improve the dosing time of 
day for many existing drugs of AMD16. An important advantage of this approach is that 
some selective tissue can be readily targetable while avoiding injury to normal tissue in 
practice. This promising clinical principle commonly termed as circadian therapeutics is 
emerged into wound healing drug delivery formulation in recent days12. 

The Machine Learning (ML) approach to ophthalmological circadian therapeutics 
from retina transcriptome datasets is quite interesting. To understand this, we have 
applied the machine learning approach for the cyclic genes extraction and understanding 
of this rhythmicity. This on-going project was conducted with the collaboration with 
Prof. Namasivayam Ganesh Pandian and Prof. Daniel Packwood Labs in ICEMS, Kyoto 
University. First, we have collected the 659 cyclic genes from 30 samples (17 female & 
13 male) with known daily oscillatory features time (Figure 3). We know that it’s just 
impractical and dangerous to take samples from an individual around the clock to 
monitor how gene activity in a specific cell type varies. In this regard, machine learning 
approaches have shown promising results in determining the clock genes from retinal 
transcriptomes datasets17. 

 
Figure 3: Stepwise process for the Samples collection and extraction of the retinal cyclic 
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genes 

From the bulk transcriptomes datasets for the human retina18–21, we have taken four 
publicly available datasets which are related to human retinal transcriptome. Here, n 
is the no of samples. Then we have used the ML algorithm called cyclops22 to 
estimate the rhythmic phases of gene by using experimental seed genes. By using 
this ML algorithm, we able to extract the cyclic genes from the datasets and make a 
comparison of this rhythmicity (Figure 4). 

 
Figure 4: The modelled machine learning workflow from four publicly available 
datasets to identify the clock genes and their rhythmicity. 

We have used the four-different sets of macular samples which is defined here as 
SS-1, SS-2, SS-3 and SS-4 in our studies. SS-1 is control state of sample while the SS-2, 
SS-3 and SS-4 are corresponding to the 2nd , 3rd and 4th  are the different states of macular 
samples. In cyclops, the 24 hour of a day is presented into 0 to 2π time scale phase4,22. 
From the cyclops predicted results, we have noticed that the oscillatory nature of the 
optical retina genes are gradually decreased from the central macular sample SS-1 to SS-
4. This also indicates that circadian behavior of the retinal transcriptome is significant in 
control state of dataset rather than the other more disease datasets. We have extracted 
around 34 clock genes by applying the cyclops algorithm22 which follow the circadian 
rhythmicity. Based on the results, we aim to create a reliable map of the human retinal 
diurnal transcriptome map by light and dark cycle of earth's day explaining the temporal 
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organization of biological pathways in our ongoing projects. We believe that such a 
diurnal atlas on the human retina will be an essential resource for the researchers bent on 
exploring the principles of circadian therapeutics in ophthalmology. Our present research 
work is going in this direction. 

Machine Learning Methods 

The CYCLOPS (Unsupervised Learning) autoencoder and downstream analysis22 were 
implemented in Julia 0.3.10. The associated files are available for download on GitHub. 
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Ideally, hydrogen should be produced by electrolysis of water using renewable energy, 
and some Organisation for Economic Cooperation and Development (OECD) countries, 
such as Japan and Germany, have already begun demonstration experiments[1] [2] . On 
the other hand, there are many technical challenges to make it economically self-
sustaining, and only the above countries have introduced hydrogen-based economies in 
the OECD, and none in the non-OECD [3] [4]. The introduction of a hydrogen-based 
economy to the non-OECD is a major challenge for us to build a sustainable society on 
a global scale, given that energy demand growth is expected to be much higher in the 
future than in the OECD [5, 6]. As a means to successfully meet this challenge, a 
system combining biogas and fuel cells, shown in Fig. 1, has been attracting much 
attention in recent years [7, 8]. This system uses organic waste from agriculture and 
aquaculture as biomass. This biomass is converted into biogas through anaerobic 
wastewater treatment (methane fermentation), and the methane in it is used as an energy 
carrier for hydrogen, which can be used to extract electrical energy from methane using 
solid oxide fuel cells. As a reaction process to extract hydrogen from methane, hydrogen 
is produced by methane and carbon dioxide according to the reforming reaction shown 
in reaction equations (1) and (2) [7, 8]. The hydrogen reacts with oxide ions from the 
cathode side according to the reaction equation (3) on the anode side of the solid oxide 
fuel cell, and electrical energy can be extracted to the outside [9]. In this case, the oxide 
ions are supplied by oxygen on the cathode side. 

CH4 + H2O ⇆ CO + 3H2 (1) 
CH4 + CO2 ⇆ 2CO + 2H2 (2) 

H2 + O2- ⇆ H2O (3) 
The carbon monoxide produced by the reaction equation (1) reacts with oxygen in the 
air and is released into the atmosphere as carbon dioxide. Since biogas is derived from 
the waste, biogas-based power generation is a clean way to generate electricity, 
considering that the carbon dioxide emitted by this reaction is released back into the 
atmosphere[10-12]. A system combining biomass-derived biogas and fuel cells has 
already been demonstrated. Shiratori et al. fermented biomass derived from shrimp 
farms in Vietnam to generate biogas, which was then used in solid oxide fuel cells to 
generate electricity. This effort is one of the attempts to introduce a hydrogen-based 
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economy to developing countries with thriving primary industries by utilizing methane 
as an energy carrier for hydrogen [10-12]. 
 To efficiently run a system combining biogas and solid oxide fuel cells, it is essential 
to make the fuel cells more efficient in generating electricity. Ideally, only methane, 
carbon dioxide, and water, as shown in reaction equations (1) and (2), should be used as 
feedstock for this purpose, but actual biogas contains trace amounts of hydrogen sulfide 
[13] [14] [15]. Hydrogen sulfide is known to enter the biogas during the process of 
anaerobic digestion of biodegradable materials[16]. Although this amount is reported to 
be as low as 1 ppm, hydrogen sulfide is known to degrade the metal materials in fuel 
cells[17] as well as reduce the efficiency of power generation. Even if the amount is 
reduced to 0.001 ppm, the power generation efficiency of solid oxide fuel cells is 
reported to decrease, and hydrogen sulfide is recognized as a substance that should be 
removed as much as possible[18-22]. 
 Nanocarbons, with their high specific surface area, pore structure, and surface 
functionality, have recently attracted attention as a material capable of removing 
hydrogen sulfide in a wide temperature range from room temperature to 900°C[23-28]. 
Since nanocarbons can be utilized as catalysts without metal-based active sites, they are 
expected to avoid degradation of catalytic performance due to hydrogen sulfide 
poisoning. The reaction to remove hydrogen sulfide on nanocarbons is the dissociation 
reaction shown in equation (5), followed by the reaction of HS- with oxygen radicals as 
shown in reaction equation (6), where sulfur is recovered. 

H2S → H+ + HS− (5) 
HS− + O* → S + OH− (6) 

O* in the above reaction equation is the oxygen radical [29]. 
 Recently, Shiyan et al. conducted comparative experiments on the effects of nitrogen 
and oxygen doped in nanocarbons on the oxidation reaction of H2S. The results showed 
that the structure called pyridinic N, in which nitrogen is doped in nanocarbons and 
hydrogen is attached to the nitrogen as a terminal atom, promotes the oxidation reaction 
of H2S the most. The structure called oxidized N, in which an oxygen atom is substituted 
for the hydrogen bonded next to the nitrogen atom of pyridinic N, was shown to promote 
the oxidation reaction of H2S the least in the comparison experiments. Furthermore, Li 
et al. attempted to explain the above experimental results using density functional theory 
[30]. However, the crystal model targeted by this density functional theory was 
structurally optimized by placing only HS- on the carbon atoms of pyridinic N and 
oxidized N, which is insufficient to explain the actual oxidation reaction of hydrogen 
sulfide. 
 Therefore, we believe that it is not appropriate to focus on HS- to explain the adsorption 
properties of hydrogen sulfide on pyridinic N and oxidized N, and that we should focus 
on H2S, which is the preliminary step of the reaction equation (6), and use density 
functional theory to clarify the difference in adsorption properties of H2S on pyridinic 
N and oxidized N. This is the purpose of this study.  
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Fig. 1 Conceptual diagram of the demonstration experiment of energy circulation using 
biomass being conducted in Vietnam 
 

All DFT calculations were performed using the Vienna Ab initio simulation package 
(VASP) [31-33]. The Perdew-Burke-Ernzerhof (PBE) [34] exchange-correlation functional 
was employed based on the projector-augmented wave (PAW) method [33]. The cutoff 
energy for the plane wave basis was set to 400 eV, referring to previous studies[35]. Firstly, 
4×4 graphene sheet was constructed and optimized using 5×5×1 Monkhorst-Pack k-points 
meshes, respectively. Also, the spin polarization was considered. For Projector Augmented 
Wave (PAW) method, pseudopotentials with valence states of C (2s2, 2p2), N (2s2, 2p3), S 
(3s2, 3p4), O (2s2, 2p4), and H (1s) were used for all calculations. All ionic positions were 
optimized by a conjugate gradient method until the forces on each ion were below 10−2 eV/Å2. 
Electronic energy was converged to 10−4 eV and ion positions were converged to forces of 
10−2 eV/Å2. Cell parameters were converged to stress of 10-2 eV/Å. 
 Next, to introduce nitrogen and oxygen atoms into the graphene structure, we prepared 
two graphene optimized by the above method and made a vacuum slab by making the 
c-axis direction of the unit cell 15 Å in size. The six-membered ring structure consisting 
of six carbons was then removed from graphene, and hydrogen was introduced at the 
ends of the remaining carbon atoms. It has been reported that the terminations of 
graphene are bonded with hydrogen atoms. Subsequently, some carbon sites were 
replaced with N only in Fig. 2(a) and with nitrogen and oxygen in Fig. 2(b) to create 
pyridinic N and oxidized N. Hydrogen sulfide molecules were placed on these pyridinic 
N and oxidized N. The absorptivity of hydrogen sulfide was evaluated by the magnitude 
of the interaction energy (Eint), which is shown in Equation 7 below [36]. 

𝐸𝐸!"# = 𝐸𝐸$!%&	()*+,-"- – ( 𝐸𝐸()*+,-"- + 𝐸𝐸$!% )     (7) 
𝐸𝐸$!%&	()*+,-"-, 𝐸𝐸()*+,-"-, and 𝐸𝐸$!% are the electrostatic potential of hydrogen sulfide 
molecules adsorbed with pyridinic N /oxidized N, the electrostatic potential of pyridinic 
N /oxidized N, and the electrostatic potential of a single hydrogen sulfide molecule, 
respectively.  The interaction energies shown above are -0.13 eV for hydrogen sulfide 
adsorbed on pyridinic and -0.11 eV for oxidized N, as shown in Fig 3. This indicates 
that pyridinic N is a more favorable material for adsorbing hydrogen sulfide than 
oxidized N, a trend that is consistent with the experimental results shown by Shiyan et 
al. in their previous study[37]. 
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Fig. 2 Geometry optimized structure of H2S on pyridinic N (a) and oxidized N (b). Red, 
brown, yellow, gray, white balls indicate oxygen, carbon, sulfur, nitrogen, and hydrogen.  
 
 

 
Fig. 3 The result of interaction energy between pyridinic N / oxidized N and H2S 
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Abstract
The ensemble effect due to variation of Pd content in Pd-Au alloys have been widely investigated for 
several important reactions, including CO2 reduction reaction (CO2RR), however, identifying the 
stable Pd arrangements on the alloyed surface and picking out the active sites are still challenging. 
Here we use a machine-learning (ML)-based approach coupled with density functional theory (DFT) 
calculations to efficiently find the low-energy configurations of Pd-Au(111) surface alloys and the 
potentially active sites for CO2RR, fully covering the Pd content from 0 to 100%. The ML model is 
actively learning process to improve the predicting accuracy for the configuration formation energy 
and to find the stable Pd-Au(111) alloyed surfaces, respectively. The local surface properties of 
adsorption sites are classified into two classes by the K-means clustering approach, which are closely 
related to the Pd content on Au surface. The classification is reflected in the variation of adsorption 
energy of CO and H: In the low Pd content range (0 - 60 %) the adsorption energies over the surface 
alloys can be tuned significantly, and in the medium Pd content (37 - 68%), the catalytic activity of 
surface alloys for CO2RR can be increased by increase the Pd content and attributed to the meta-
stable active site over the surface. The results demonstrated that the combination of DFT and 
machine-learning (supervised and unsupervised) approaches are feasible to understand the surface-
related properties.
Keywords: Ensemble effect, Machine-learning, DFT calculations, CO2RR, K-means 
clustering
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