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Preface 
 

 
 In November 2020, the Institute of Mathematics for Industry (IMI) of Kyushu University, 
SoftBank Corporation and MAMEZOU Corporation began joint research on the realization of 
a "data rating" system that will use mathematical theory to objectively determine the quality 
of various types of digital data ("data") accumulated by companies, local governments, 
educational and research institutions, etc. The three parties will use the "data rating" system 
to clarify the quality of data held by industry, government, and academia. By clarifying the 
quality of data held by industry, government, and academia through "data rating," the three 
parties aim to promote the mutual use of data and revitalize the data distribution market. 

This IMI Workshop of the Joint Usage Research Projects “Construction of Mathematical 
Basis for Realizing Data Rating Service” held on September 21st and 22, 2022.  And this 
workshop was held jointly with the following international workshop. 
  
The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical and 
Quantum Algorithms for Optimization and Machine Learning 
 
RIKEN, IMI, The Institute of Statistical Mathematics (ISM), the National University of 
Singapore (NUS), the Zuse Institute Berlin (ZIB), and the NHR Center at ZIB hold the sixth 
workshop on mathematical optimization and related fields. This workshop was held at the 
University of Tokyo from September 16 to 19 and at Kyushu University from September 21 to 
22, 2022. The workshop also discussed methodologies for establishing a new mathematical 
foundation (algorithm) for "data rating," building theory, and conducting empirical 
experiments. This lecture note contains the materials of the lectures given at the workshop, 
and the Japanese-language lectures were edited in a separate volume. For more information 
about this workshop, please refer to the website below 1. 
 
November 2022. 

Editors 
Katsuki Fujisawa, Shizuo Kaji   (Kyushu University) 
Toru Ishihara   (Nagoya University) 
Masaaki Kondo   (Keio University)  
Yuji Shinano   (Zuse Institute Berlin) 
Takuji Tanigawa   (SoftBank Corp.) 
Naoko Nakayama   (MAMEZOU Corp.) 
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参加にあたっては、下記の参加申込をお願いします
URL:https://forms.gle/H3rA1D7EmHMGKQtC6

最新情報は、下記のホームページをご覧ください
URL：https://sites.google.com/view/
6th-riken-imi-ism-zib-workshop/program
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 Program

09:30‒11:30 Session 13
　　Thorsten Koch （ZIB）

　　João Doriguello （NUS）

　　Ralf Borndörfer （ZIB）

11:00‒11:20 Coffee Break

11:20‒12:20 Session 14
　　Pierre-Louis Poirion （RIKEN）

　　Akifumi Okuno （ISM / RIKEN）

12:20‒13:50 Lunch Break

13:50‒15:10 Session 15
　　Niels Lindner （ZIB）

　　Inci Yüksel-Ergün （ZIB）

　　Jaap Pedersen （ZIB）

15:10‒15:30 Break

15:30‒16:50 Session 16
　　Uwe Gotzes （Open Grid Europe GmbH）

　　Ying Chen （NUS）

　　Osamu Saeki （IMI）

　　Katsuki Fujisawa （IMI）

■9月21日（水） ■9月22日（木）
10:30‒11:10
　　株式会社豆蔵 執行役員 C.D.O．（DX事業推進統括）

　　安井 昌男　　　　　　
11:15‒12:00
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　　平岡 卓爾

12:00-13:30 昼休憩

13:30‒14:00
　　株式会社豆蔵 デジタル戦略支援事業 AI-Techチーム コンサルタント

　　林 沛萱

14:15‒15:00
　　立教大学 大学院人工知能科学研究科 特任准教授
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　　デジタル戦略支援事業 AI-Techチームリーダー チーフ・コンサルタント

　　石川 真之介

15:15‒16:00
　　横河電機株式会社 常務執行役員（CIO）
　　デジタル戦略本部長 兼 デジタルソリューション本部 DX－Platformセンター長

　　舩生 幸宏

16:15‒16:50
　　株式会社豆蔵　チーフ・コンサルタント

　　中山 尚子

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 
on Advances in Classical and Quantum Algorithms for 
Optimization and Machine Learning
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Program 

September 17th 
09:20--11:30 Session 01 

⚫  09:20--09:30 Akiko Takeda (RIKEN / Univ Tokyo) "Opening Remarks" 
⚫  09:30--10:00 Masashi Sugiyama (RIKEN / Univ Tokyo) "Recent Advances in Machine 

Learning from Noisy Labels" 
⚫  10:00--10:30 Patrick Gelß (ZIB) "Low-rank tensor representations of quantum circuits" 
⚫  10:30--11:00 Shintaro Momose (NEC) "Aurora Vector Annealing to Solve Social Issues 

and Acceleration by NEC's Supercomputer, SX-Aurora TSUBASA" 
11:00--11:20 Coffee Break 
11:20--12:20 Session 02 

⚫  11:20--11:50 Kazuma Tsuji (MUFG Bank) "Pairwise Conditional Gradients without 
Swap Steps and Sparser Kernel Herding" 

⚫  11:50--12:20 Christoph Spiegel (ZIB) "Proofs in Extremal Combinatorics through 
Optimization" 

⚫  12:20--13:50 Lunch Break 
⚫  13:50--15:20 Ice Breaking 

15:20--16:20 Session 03 
⚫  15:20--15:50 Yuji Shinano (ZIB) "The UG framework version 1.0: An update" 
⚫  15:50--16:20 Junko Hosoda (Hitachi) "A parallel algorithm combining relaxation and 

heuristic for the integrated long-haul and local vehicle routing problem on an adaptive 
transportation network" 

16:20--16:40 Break 
16:40--17:40 Session 04 

⚫  16:40--17:10 Koichi Fujii (NTT DATA MSI) "Solving Large Scale QAPs by Massively 
Parallel DNN-based Branch-and-bound Method" 

⚫  17:10--17:40 Elias Wirth (ZIB) "Approximate Vanishing Ideal Computations at Scale" 
 

  

September 18th 
09:30--11:30 Session 05 

⚫  09:30--10:00 Katsuki Fujisawa (Kyushu Univ) "Mobility Optimization Engine and its 
Real-world Applications" 

⚫  10:00--10:30 Hiroki Ishikura (Kyushu Univ) "Towards an optimal operation of 
automated storage and retrieval system with multiple machines" 

⚫  10:30--11:00 Nozomi Hata (Kyushu Univ) "Theoretical Analysis for Representation 
Learning Methods of Graph-Structured Data" 

11:00--11:20 Coffee Break 
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11:20--12:20 Session 06 
⚫  11:20--11:50 Mark Turner (TU Berlin) "Adaptive Cut Selection in Mixed-Integer 

Linear Programming" 
⚫  11:50--12:20 Ryohei Yokoyama (Osaka Metro Univ) "A Quadratic Programming 

Approach for Performance Analysis of Energy Systems" 
12:20--13:50 Lunch Break 
13:50--15:50 Ice Breaking 
15:50--16:50 Session 07 

⚫  15:50--16:20 Shizuo Kaji (Kyushu Univ) "Geometric Learning of Ranking 
Distributions" 

⚫  16:20--16:50 Akiko Takeda (RIKEN / Univ Tokyo) "Bilevel Optimization for 
Machine Learning Problems" 

 

  

September 19th 
09:30--11:30 Session 08 

⚫  09:30--10:00 Sebastian Pokutta (ZIB) "Convex integer optimization with 
Frank-Wolfe methods" 

⚫  10:00--10:30 Shota Takahashi (SOKENDAI / ISM) "Bregman Proximal DC 
Algorithms and Their Application to Blind Deconvolution with Nonsmooth 
Regularization" 

⚫  10:30--11:00 Akira Tanaka (NICT) "Port Set Clustering for Internet-Wide Scanner" 
11:00--11:20 Coffee Break 
11:20--12:20 Session 09 

⚫  11:20--11:50 Atsushi Miyauchi (Univ Tokyo) "Finding densest k-connected 
subgraphs" 

⚫  11:50--12:20 Antoine Deza (McMaster Univ) "Worst-case constructions for linear 
optimization" 

12:20--13:50 Lunch Break 
13:50--15:20 Session 10 

⚫  13:50--14:20 Xun Shen (Tokyo Inst Tech) "Approximate Methods for Solving 
Chance Constrained Linear Programs in Probability Measure Space" 

⚫  14:20--14:50 Jun-ya Gotoh (Chuo Univ) "Knot Selection of B-Spline Regression via 
Trimmed Regularizer" 

⚫  14:50--15:20 Keisuke Yano (ISM) "Minimum information dependence modeling 
and its application" 

15:20--15:40 Break 
15:40--17:10 Session 11 

⚫  15:40--16:10 Naoki Marumo (NTT / Univ Tokyo) "A generalized 
Levenberg–Marquardt method for large-scale composite minimization" 

⚫  16:10--16:40 Shunji Umetani (Osaka Univ) "BIPSOL: A metaheuristic solver for 
large-scale binary integer programs" 
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⚫  16:40--17:10 Masahiro Nakao (RIKEN) "Performance of the supercomputer 
Fugaku for Graph500 benchmark" 

 

  

September 21st 
09:30--11:30 Session 12 

⚫  09:30--10:00 Thorsten Koch (ZIB) "Notes on Solving QUBOs and Quantum 
Computing" 

⚫  10:00--10:30 João Doriguello (NUS) "Quantum algorithm for stochastic optimal 
stopping problems with applications in finance" 

⚫  10:30--11:00 Ralf Borndörfer (ZIB) "Multicriteria Shortest Path Algorithms" 
11:00--11:20 Coffee Break 
11:20--12:20 Session 13 

⚫  11:20--11:50 Pierre-Louis Poirion (RIKEN) "Randomized subspace regularized 
Newton method for unconstrained non-convex optimization" 

⚫  11:50--12:20 Akifumi Okuno (ISM / RIKEN) "Minimax Analysis for Inverse Risk in 
Nonparametric Invertible Regression" 

12:20--13:50 Lunch Break 
13:50--15:10 Session 14 

⚫  13:50--14:20 Niels Lindner (ZIB) "On the geometry of periodic timetables in public 
transport" 

⚫  14:20--14:50 Inci Yüksel-Ergün (ZIB) "Improving data quality in the presence of 
superhuman complexity in data errors" 

⚫  14:50--15:10 Jaap Pedersen (ZIB) "Optimal discrete pipe sizing for tree-shaped 
CO2 networks" 

15:10--15:30 Break 
15:30--16:50 Session 15 

⚫  15:30--16:00 Uwe Gotzes (OGE) "Spotlights on success stories of public-private 
partnership" 

⚫  16:00--16:30 Ying Chen (NUS) "Deep Switching State Space Model (DS3M) for 
Nonlinear Time Series Forecasting with Regime Switching" 

⚫  16:30--16:40 Osamu Saeki (Kyushu Univ) "Institute of Mathematics for Industry: 
its uniqueness, strength and prospects" 

⚫  16:40--16:50 Katsuki Fujisawa (Kyushu Univ) "Closing Remarks" 
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Recent Advances in Machine Learning 
from Noisy Labels 

Masashi SUGIYAMA 
RIKEN Center for Advanced Intelligence Project/ 

Graduate School of Frontier Sciences, The University of Tokyo. 
sugi@k.u-tokyo.ac.jp 

 
 
Supervised learning from noisy output is one of the classical problems in machine 
learning. While this task is relatively straightforward in regression since independent 
additive noise cancels with big data, classification from noisy labels is still a challenging 
research topic. Recently, it has been shown that when the noise transition matrix which 
specifies the label flipping probability is available, the bias caused by label noise can be 
canceled by appropriately correcting the loss function. However, when the noise 
transition matrix is unknown, which is often the case in practice, its estimation only from 
noisy labels is not straightforward due to its non-identifiability. In this talk, I will give 
an overview of recent advances in classification from noisy labels, including joint 
estimation of the noise transition matrix and a classifier, analysis of identifiability 
conditions, and extension to instance-dependent noise. 
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RIKEN-AIP
MEXT Advanced Intelligence Project (2016-2025):
 130 employed researchers (36% international, 23% female)
 200 visiting researchers, 100 domestic students
 140 international interns (total)
Missions:
 Develop new AI technology (ML, Opt, math)
 Accelerate scientific research (cancer, material, genomics)
 Solve socially critical problems (disaster, elderly healthcare)
 Study of ELSI in AI (ethical guidelines, personal data)
 Human resource development (researchers, engineers)
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: Loss

Standard Supervised Learning
Goal: Learn a predictor              from

input-output training data                .                 

Approach: Training error minimization
(a.k.a. empirical risk minimization or
maximum likelihood estimation)

3

: Input : Output

Without Output Noise
Suppose there is no noise in output:

Training error minimization
is statistically consistent:
 When             ,    converges to true   .

Big data helps!
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Regression Classification
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With Output Noise
Output     is often corrupted by noise:

 Due to sensor errors, human errors, etc.

 In the noisy case, does big data still help?
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Regression Classification
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Noisy-Output Regression
Standard noise assumptions:

 Additive:
 Input-independent:
 Zero-mean:

Noisy training error minimization is 
still statistically consistent.

Naïve use of big data still helps!

6

Input

O
ut

pu
t 

True function

Learned function

4



Noisy-Output Classification
Standard assumptions:

 Class-conditional noise (input-independent flip):

Noisy training error minimization is
not always statistically consistent:

Need to explicitly remove
the influence of label noise in learning!

7

Generic Approach (1)
Unsupervised noisy data removal:
 Hotelling’s T2 statistics
 k-means clustering
 local outlier factor (LOF)

Easy to use, but this is
completely heuristic and no supervision is used.
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Breunig et al. (SIGMOD2000)

https://en.wikipedia.org/wiki/Harold_Hotelling

https://en.wikipedia.org/wiki/Local_outlier_factor

LOF scores
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Generic Approach (2)
Regularization: keeping the norm of the model 

parameters small for preventing overfitting.
 Tikhonov regularization

Nice theory, but smoothing is
not enough to cope with strong label noise.
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https://en.wikipedia.org/wiki/
Andrey_Nikolayevich_Tikhonov

https://en.wikipedia.org/wiki/Overfitting

Non-Regularized
Regularized

Space of model parameters

ℓ2-norm ball

Generic Approach (3)
Robust statistics: suppressing the influence

of noisy data by a gentle loss.
 Huber loss
 Ramp loss

Nice theory for regression (additive noise), but
not very robust in classification (flipping noise).

10

https://en.wikipedia.org
/wiki/Peter_J._Huber Classification margin

Huber
hinge loss

Squared
hinge loss

Ramp 
loss

Training with 
ramp loss

Noisy data
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Goal of Noisy-Label Classification 

These generic approaches were not 
specifically designed for handling label noise.

 In this talk, I review recent advances
in noisy-label multi-class classification
that explicitly handle noisy supervision:
 Forward/backward loss correction.
 Noise transition estimation.
 Coping with non-identifiability.
 Input-dependent label noise.

11

Contents

1. Introduction
2. Technical background
3. Single-step approach
4. Beyond anchor points
5. Further challenges
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Formulation
Clean training data:
Noisy training data:

Probabilistic classifier in simplex:
 Each element approximates

the class-posterior probability.

Loss: 

13

：Input instance
：Clean class label
：Noisy class label

Class 1 Class 2

Boundary

Class 3

Modeling Class-Conditional Noise
Noise transition matrix:

 Probability of flipping     to    .
We may encode human-cognitive bias:

Visualization as a simplex:

14

1 0 0
0.1 0.8 0.1
0.5 0.5 0

Han, Yao, Niu, Zhou, Tsang,
Zhang & Sugiyama (NeurIPS2018)

Zhang, Niu & Sugiyama (ICML2021)
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Loss Correction
Forward correction: Add noise by     



Backward correction: Remove noise by        


 If     is given, consistency can be guaranteed!

15
Patrini, Rozza, Menon, Nock & Qu (CVPR2017)

Classifier-consistency

Classifier-consistency

Risk-consistency

Identifiability of Noise Transition
 In practice, we need to estimate    

from noisy training data                     .

However,      is non-identifiable in general:
 can be decomposed as                   ,

where             are some transition matrices.
 Then

Let’s use anchor points (100%-certain samples):

16
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Estimation of Noise Transition
with Anchor Points
Given anchor points                                    ,

can be naïvely estimated as

 is a probabilistic classifier learned
from noisy training data                        .

Even if anchor points are unknown,
as long as they exist in noisy training data,
we may find them as                                       .

17

Further Improvements

We typically use deep learning to obtain         :
 Then it is often over-confident and unreliable.

Estimated     is revised during classifier training:

 Instead of explicitly finding anchor points,
latent labels are utilized:

18

Xia, Liu, Wang, Han, Gong, Niu & Sugiyama (NeurIPS2019)

Zhang, Niu & Sugiyama
(ICML2021)

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (NeurIPS2020)
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Contents

1. Introduction
2. Technical background
3. Single-step approach
4. Beyond anchor points
5. Further challenges
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Challenge

Current approaches are in two-step:
1. Estimate transition matrix    .
2. Use estimated      to train a classifier          .

Step 1 is done without regard to Step 2:
 Estimation error of      in Step 1

can be magnified in Step 2. 

We want to estimate     and         
simultaneously in one-step.

20
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Naïve Solution
Naively, we may learn the noise transition and 

classifier at the same time as 

However, the solution is not unique:
 With any invertible transition matrix     ,

any                                              are solutions.

We need a certain constraint to obtain
the right solution:

21

Total Variation Regularization

Noise transition                       is contraction
in total variation distance:

 Cleaner class-posteriors have
a larger total variation distance!

Let’s use this knowledge as a regularizer:

 Under the anchor point assumption,
the empirical solution has statistical consistency.

22

Zhang, Niu & Sugiyama (ICML2021)
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Challenges

To overcome the non-identifiability of     :
 Anchor points are explicitly used.

This condition has been relaxed to:
 Only the existence of anchor points is assumed

Can we further relax this assumption?

24
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Non-identifiability of T
 can be visualized as a simplex,

containing all training data.
Generally, such a simplex is not unique.
Anchor points are vertices of the true simplex.

 Explicitly using anchor points naively recovers     .

25

Non-identifiability of T (cont.)
Only the existence of anchor points still 

guarantees the identifiability of     .
Even without anchor points, “sufficiently 

scattered” training data can guarantee the 
consisntency (with the next algorithm).

26
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Volume Minimization

Under the “sufficiently scattered” assumption, 
minimizing the volume of the transition matrix 
guarantees consistency!

27

Li, Liu, Han, Niu & Sugiyama (ICML2021)

Contents

1. Introduction
2. Technical background
3. Single-step approach
4. Beyond anchor points
5. Further challenges
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Beyond Class-Conditional Noise
 Instance-independence

in class-conditional noise
is restrictive.

 Instance-dependent noise:
 Extremely challenging problem!

Various heuristic solutions:
 Parts-based estimation
 Use of additional confidence scores
 Manifold regularization

29

Xia, Liu, Han, Wang,
Gong, Liu, Niu, Tao

& Sugiyama (NeurIPS2020)

Cheng, Liu, Ning, Wang, Han, Niu, 
Gao & Sugiyama (CVPR2022)

Class-conditional Instance-dependent

Berthon, Han,Niu, Liu
& Sugiyama (ICML2021)

Co-teaching
Memorization of neural nets:
 Stochastic gradient descent fits clean data faster.
 However, naïve early stopping does not work well.

 “Co-teaching” between two neural nets:
 Teach small-loss data each other.

 Teach only disagreed data.

 Gradient ascent for large-loss data.

 No theory but very robust in experiments:
 Works well even if 50% random label flipping!

30

Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurIPS2018)

Arpit et al. (ICML2017)
Zhang et al. (ICLR2017)

Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)

Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020)
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Summary
 Classification requires explicit treatment of label noise:

 Loss correction by noise transition is promising.

 However, noise transition is
generally non-identifiable.
 Recent development allows its consistent

estimation under mild assumptions.

 Real-world noise is often instance-dependent:
 Heuristic solutions have been developed.

 Super-robustness by co-teaching:
 Heuristic solutions have been developed.

31
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Quantum computing is arguably one of the most revolutionary and disruptive 
technologies of this century. Due to the ever-increasing number of potential applications 
as well as the continuing rise in complexity, the development, simulation, optimization, 
and physical realization of quantum circuits is of utmost importance for designing novel 
algorithms. We show how matrix product states (MPSs) and matrix product operators 
(MPOs) can be used to express not only the state of the system but also quantum gates 
and entire quantum circuits as low-rank tensors. This allows us to analyze and simulate 
complex quantum circuits on classical computers and to gain insight into the underlying 
structure of the system. We present different examples to demonstrate the advantages of 
MPO formulations and provide a new perspective on the construction of quantum 
algorithms. 
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Motivation Tensor Decomposition Quantum Circuits Results

MOTIVATION

QUANTUM SIMULATION

• tensor product representation
already been used

• in particular, MPS/TT format
• reduce storage consumption

and computational effort

• AIM: construct compact
expressions of quantum
circuits in form of MPOs

• MPS-MPO contraction to
represent wave functions

• direct insight into
network structure

• reduce CPU time for
quantum simulations on
classical computers

: towards QOPT, QML ...

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 01
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Motivation Tensor Decomposition Quantum Circuits Results

TENSORS

1
0
1
1

1 0 1
0 1 1
1 1 0
1 0 1

1 0 1 1
1 0 0 0
0 1 1 0

0 1 1 0
1 0 0 1
1 1 1 1

1 1 0 1
0 1 1 0
1 0 0 1

• tensor: T œ CD = Cd1◊d2◊···◊dn

¶ (T + U)x1,...,xn
= Tx1,...,xn + Ux1,...,xn

¶ (– · T)x1,...,xn
= – · Tx1,...,xn

• tensor operator: L œ CD◊D = Cd1◊···◊dn◊d1◊···◊dn

¶ (L · T)x1,...,xn
=

ÿ

y1,...,yn

Lx1,...xn,y1,...,yn · Ty1,...,yn

Z
_____̂

_____\

CD is the linear
space of tensors with
modes d1, . . . , dn

Z
_____̂

_____\

CD◊D is the space
of linear maps from
CD to CD

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 02

Motivation Tensor Decomposition Quantum Circuits Results

TENSOR PRODUCT

• given tensors T œ Cd1◊···◊dn and U œ CdÕ
1◊···◊dÕ

m , the tensor product T ¢ U
is defined by

(T ¢ U)x1,...,xn,y1,...,ym
= Tx1,...,xc · Uy1,...,yd

u1
...

um

¢
v1
...

vn

=
u1 · v1 · · · u1 · vn

...
...

um · v1 · · · um · vn

M ¢
v1
...

vn

= M · vn

M · v1

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 03
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Motivation Tensor Decomposition Quantum Circuits Results

TENSOR PRODUCT

1 1 1
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1 1 11 0 1
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1 0 11 1 1
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=
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=

u
wv

S
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RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 04

Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

chemical reaction networks and catalytic systems

system identification

image classification

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 05
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Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

DEFINITION AFFLECK, 1987 / OSELEDETS, 2009

A tensor TœCd1◊···◊dn is said to be in the MPS/TT format if

T =
r0ÿ

k0=1

r1ÿ

k1=1
· · ·

rnÿ

kd=1
T(1)

k0,:,k1
¢ T(2)

k1,:,k2
¢ · · · ¢ T(n)

kn≠1,:,kn

The tensors T(1), . . . , T(n) with T(i) œ Cri≠1◊di◊ri are called cores and the num-
bers ri are bond dimensions or ranks. It holds that r0 = rn = 1 and ri Ø 1 for
i = 1, . . . , n ≠ 1.

Idea: represent high-dimensional systems, e.g., quantum registers,
in MPS/TT format in order to mitigate the curse of dimensionality

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 06

Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

• explicit notation

T =
r0ÿ

k0=1

r1ÿ

k1=1
· · ·

rnÿ

kn=1
T(1)

k0,:,k1
¢ T(2)

k1,:,k2
¢ · · · ¢ T(n)

kn≠1,:,kn

≈∆

Tx1,x2,...,xn = T(1)
:,x1,: · . . . · T(n)

:,xn,:

• core notation

r
T(1)

1,:,1 · · · T(1)
1,:,r1

z
¢

u
wwv

T(2)
1,:,1 · · · T(2)

1,:,r2
...

...

T(2)
r1,:,1 · · · T(2)

r1,:,r2

}
��~ ¢ · · · ¢

u
wwv

T(n≠1)
1,:,1 · · · T(n≠1)

1,:,rn≠1
...

...

T(n≠1)
rn≠2,:,1 · · · T(n≠1)

rn≠2,:,rn≠1

}
��~ ¢

u
wwv

T(n)
1,:,1
...

T(n)
rn≠1,:,1

}
��~

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 07
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Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

• graphical notation

¶ depict a tensor T œ Rd1◊···◊dn as a circle with n arms:

···

¶ tensor contraction:

matrix · vector : · =

matrix · matrix : · =

TT core · TT core : · =

¶ tensor-train representation:

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 08

Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

• conversion into TT format

Initial tensor
d1 d2 · · · dn≠1 dn

Isolate first mode
d1 d2 · . . . · dn

Apply SVD (M = U�V T )
d1 d2 · . . . · dn

Isolate second mode
d1 d2 d3 · . . . · dn

Apply SVD
d1 d2 d3 · . . . · dn...

...

Tensor-train approximation
d1 d2 dn≠1 dn

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 09
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Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

• examples

¶ |Φ±Í = 1Ô
2 (|00Í ± |11Í) = 1Ô

2

r
|0Í ±|1Í

z
¢

t
|0Í
|1Í

|

¶ |Ψ±Í = 1Ô
2 (|01Í ± |10Í) = 1Ô

2

r
|0Í ±|1Í

z
¢

t
|1Í
|0Í

|

¶ |GHZÍ = 1Ô
2 (|0 . . . 0Í + |1 . . . 1Í)

= 1Ô
2

r
|0Í |1Í

z
¢

t
|0Í

|1Í

|
¢ · · · ¢

t
|0Í

|1Í

|
¢

t
|1Í
|0Í

|

¶ |WÍ = 1Ô
n

(|10 . . . 0Í + · · · + |0 . . . 01Í)

= 1Ô
n

r
|1Í |0Í

z
¢

t
|0Í
|1Í |0Í

|
¢ · · · ¢

t
|0Í
|1Í |0Í

|
¢

t
|0Í
|1Í

|

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 10

Motivation Tensor Decomposition Quantum Circuits Results

MATRIX PRODUCT STATES AKA TENSOR TRAINS

• generative sampling FERRIS ET AL., 2012 / HAN ET AL., 2018

¶ suppose the wave function is given in form of an MPS � œ C2◊n
, then it is possible to

directly sample from the probability distribution given by Px1,...,xn =
--�x1,...,xn

--2
/Z

¶ Px1,...,xn = �x1,...,xn�x1,...,xn ≈∆ P = diag(�)�

¶ conditional probabilities for sampling: P ik =
q

xik+1 ,...,xim
PI

yi1 ,...,yik≠1 , : ,xik+1,...,xim

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 11
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Motivation Tensor Decomposition Quantum Circuits Results

QUANTUM CIRCUITS IN MPO FORMAT

• Q: How to represent quantum gates and circuits?

• A: Express them as matrix product operators.

T(i) œ Cri≠1◊di◊ri

¿
G(i) œ Cri≠1◊di◊di◊ri

u
wwv

G(i)
1,:,:,1 · · · G(i)

1,:,:,ri
...

...

G(i)
ri≠1,:,:,1 · · · G(i)

ri≠1,:,:,ri

}
��~

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 12

Motivation Tensor Decomposition Quantum Circuits Results

QUANTUM CIRCUITS IN MPO FORMAT

• MPO representations of controlled gates

¶ controlled NOT gate (CNOT):

CNOT =

S

WWWU

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

T

XXXV
≥=

C
1 0
0 0

D
¢ I +

C
0 0
0 1

D
¢ ‡x = I¢2 + C ¢ (‡x ≠ I) =

r
I C

z
¢

t
I

‡x ≠ I

|

¶ controlled-controlled NOT gate (CCNOT):

CCNOT =

S

WWWWWWWWWWWWU

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

T

XXXXXXXXXXXXV

≥= I¢3 + C ¢ C ¢ (‡x ≠ I) =
r

I C
z

¢
t

I

C

|
¢

t
I

‡x ≠ I

|

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 13
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Motivation Tensor Decomposition Quantum Circuits Results

QUANTUM CIRCUITS IN MPO FORMAT

• MPO representations for multi-qubit systems

¶ single-qubit gates (acting on n-qubit system):

¶ controlled gates (e.g., CPHASE, CNOT):

¶ controlled-controlled gates (e.g., CCNOT):

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 14

Motivation Tensor Decomposition Quantum Circuits Results

QUANTUM CIRCUITS IN MPO FORMAT

• Simon’s algorithm

¶ determine hidden bitstring b with f(x) = f(y) … x = y ü b

¶ G =
r

A B
z

¢
t

I

I

|
¢

t
A B

A B

|
¢

u
wwwv

I

‡x

I

‡x

}
���~ ¢

t
A B

B A

|
¢

t
I

‡x

|
¢

r
A B

z
¢

t
I

‡x

|
with A = 1

2

C
1 1
1 1

D
and B = 1

2

C
1 ≠1

≠1 1

D

¶ G|0Í = 1
4

r
|+Í |≠Í

z
¢

t
|0Í

|0Í

|
¢

t
|+Í |≠Í

|+Í |≠Í

|
¢

u
wwwv

|0Í
|1Í

|0Í
|1Í

}
���~ ¢

t
|+Í |≠Í
|≠Í |+Í

|
¢

t
|0Í
|1Í

|
¢

r
|+Í |≠Í

z
¢

t
|0Í
|1Í

|
∆ b = 1010

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 15
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Motivation Tensor Decomposition Quantum Circuits Results

QUANTUM CIRCUITS IN MPO FORMAT

• Quantum full adder

¶ adds input qubits |AÍ, |BÍ, |CinÍ, produces sum |SÍ and carry-out qubit |CoutÍ

¶ G =
r

‡xC0 I ‡xC1

z
¢

u
wv

C0 C1 0 0
0 C0 C1 0
0 0 C0 C1

}
�~ ¢

u
wwwv

C1 0
C0 0
0 C1
0 C0

}
���~ ¢

t
I

‡x

|

with C0 =
C

1 0
0 0

D
and C1 = C =

C
0 0
0 1

D

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 16

Motivation Tensor Decomposition Quantum Circuits Results

NUMERICAL RESULTS

• open-source tensor-train library for Python using NumPy and SciPy

• simulation and analysis of systems with high-dimensional state spaces

• reduce memory consumption and computational costs

• includes model building, tensor-based solvers, and data-driven methods

• possible application areas: Markovian master equations, nearest-neighbor
interactions, nonlinear dynamical systems, quantum simulation, etc.

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 17
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Motivation Tensor Decomposition Quantum Circuits Results

NUMERICAL RESULTS

• Quantum full adder network

• construct network of quantum full adders by
concatenating MPOs:

G =
r
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z
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r
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• define initial quantum state:
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• compute final probability distribution of
|S1, . . . , Sn, CoutÍ by generative sampling
on MPSs
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Motivation Tensor Decomposition Quantum Circuits Results

NUMERICAL RESULTS

• compute 106 samples of the output
for different numbers of QFAs in
the network

• same distributions as obtained
with Qiskit

• CPU time of MPO-based approach
depends only linearly on the
number of QFAs

• for instance, for nQFA = 100, the
MPO simulation needs about 30 s only

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gelß // Low-rank tensor decompositions of quantum circuits // 19
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Motivation Tensor Decomposition Quantum Circuits Results

NUMERICAL RESULTS

• Quantum Fourier transform

¶ map quantum states between computational and Fourier basis

Gi = 1Ô
2

r
I¢(i≠1)

z
¢

tC
1 1
0 0

D C
0 0
1 ≠1

D|

¢
t

I 0
0 R2

|
¢ · · · ¢

t
I 0
0 Rn≠i

|
¢

t
I

Rn≠i+1

|
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Motivation Tensor Decomposition Quantum Circuits Results

NUMERICAL RESULTS

• Shor’s algorithm

• given M œ N, choose 1 < a < M (coprime)

• initialize input register with 2n qubits and target
register with n qubits, where 2n > M

• apply Hadamard gates and modular exponen-
tiation circuit Uf with f(x) = ax mod M

• use inverse QFT to calculate period of f and
find factors of M

• consider M = 15, a œ {2, 4, 7, 8, 11, 13, 14}:

¶ Uf can be constructed as MPO with ranks
bounded by either 2 or 4

¶ orthonormalize MPO cores between
applications of QFT≠1 gate groups

a y p (M1, M2)

2, 7, 8, 13

0 1 ?
64 4 (3, 5)
128 2 (3, 1)
192 4 (3, 5)

4, 11, 14 0 1 ?
128 2 (3, 1)
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Thanks for your attention

Links

Scikit-TT on GitHub: http://github.com/PGelss/scikit_tt

Collaborations

Dr. Stefan Klus, Department of Mathematics, University of Surrey

Zarin Shakibaei, Telekom Innovation Laboratories, TU Berlin

Prof. Sebastian Pokutta, AI in Society, Science, and Technology, ZIB

Publications

P. Gelß, S. Klus, Z. Shakibaei, S. Pokutta. Low-rank tensor decompositions of quantum circuits, in submission

F. Nüske, P. Gelß, S. Klus, C. Clementi. Tensor-based computation of metastable and coherent sets, Physica D, 2021

P. Gelß, S. Klus, J. Eisert, C. Schütte. Multidimensional approximation of nonlinear dynamical systems, J. Comput. Nonlinear Dynam., 2019

S. Klus, P. Gelß, S. Peitz, C. Schütte. Tensor-based dynamic mode decomposition, Nonlinearity, 2018

P. Gelß, S. Klus, S. Matera, C. Schütte. Nearest-neighbor interaction systems in the tensor-train format, J. Comput. Phys., 2017
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NEC’s Quantum Computing 
Technologies 

Shintaro MOMOSE 
Quantum Computing Business Department 

Advanced Platform Division 
NEC Corporation 

s-momoseak@nec.com 
 
 

This presentation consists of two parts, discussing SX-Aurora TSUBASA vector 
supercomputer and introducing digital annealer working on SX-Aurora TSUBASA 
called Aurora Vector Annealer. The first half of the presentation shows the vector 
architecture of SX-Aurora TSUBASA, especially its latest vector processors having the 
highest-level memory bandwidth. Sustained performance and power efficiency are also 
discussed, as well as NEC's future plans and roadmap. The second half of the 
presentation shows NEC's quantum computing strategies and their products to provide 
higher sustained performance in the annealing/optimization fields. NEC developed the 
Aurora Vector Annealer as a digital annealer and has a strong business relationship with 
D-Wave providing a quantum annealer. NEC aims at solving various social issues by 
using the quantum/digital annealing technologies and by developing a hybrid platform 
with supercomputer and quantum/digital annealer to provide much higher sustained 
performance. 
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NEC’s Quantum Computing Technologies

© NEC Corporation 2021

Shintaro MOMOSE, Ph.D. (Director)

Quantum Computing Business Department
Advanced Platform Division
NEC Corporation

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
September 17th, 2022. Tokyo Japan
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Contents
 NEC’s Strategy for Quantum Computing
 Vector Annealing on SX-Aurora TSUBASA
 Case Study
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Architecture of SX-Aurora TSUBASA

APP

Controlling Processing

VE
library

SX-Aurora TSUBASA

VE
OS

Linux
OS

Library

Tools

X86
CPU

-Vector Processor
-1.5TB/s Memory Access
-Low Power 200WStandard

X86/Linux
Server

Vector
Engine

VE
tools

Vector
compiler

Vector
CPU

© NEC Corporation 2022

VE20 Processor

core core
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M

2 
I/

F
H
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M

2 
I/

F
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M

2 
I/

F
H

B
M

2 
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HBM2

HBM2

HBM2
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C
 8

M
B
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C
 8

M
B

H
B
M

2 
I/

F

H
B
M

2 
I/

F

HBM2 core core HBM2

Processor Version Type 20A Type 20B

Cores/processor 10 8

Core performance 307GF (DP)
614GF (SP)

Processor
performance

3.07TF (DP)
6.14TF (SP)

2.45TF (DP)
4.91TF (SP)

Cache capacity 16MB

Cache bandwidth 3TB/s

Cache Function Software Controllable

Memory capacity 48GB

Memory bandwidth 1.53TB/s

Power ~300W (TDP)
~200W (Application)

VE20 Specifications
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step3step2

 Both HPC and Quantum technologies will be used for higher sustained performance
 NEC develops HPC, Simulated Annealing on Aurora, Quantum Annealer and Quantum Gate

Why is NEC Focusing on Quantum Computing?

For higher sustained performance,
NEC continuously combine HPC and
new cutting edge technologies

 Step1: Annealing on HPC resource
 Vector Annealing on SX-Aurora TSUBASA
 Using Quantum Annealer to accelerate

 Step2: HPC/QC Hybrid Computing
 Tight coupled HPC/QC hybrid system to reach higher 

sustained performance in scientific/industrial fields
 Step3: Introducing “QC Gate” as new era

 NISC type: Around 2030
 FTQC type: Around 2050

Sy
st

em
 S

us
ta

in
ed

 P
er

fo
rm

an
ce

step1
2022 2030

SX-Aurora TSUBASA

Tight coupling of HPC and QC
to provide higher sustained performance

QCHPC

2050

NISQ
Noisy Intermediate-Scale QC
FTQC
Fault Tolerant QC

© NEC Corporation 20227

NEC’s Initiative in Quantum Computing
Since succeeding in the world’s first demonstration of solid -state qubit operation, 
NEC has been working towards the social implementation of quantum computing.

1999
2020-2021

2030

2040～

※2

2023

Demonstrated
solid-state qubit 
operation

(Published in Nature*1)

World’s 1st  Collaboration with D-Wave
 Aurora Vector Annealing

on SX-Aurora TSUBASA

Aim to obtain extraordinary
long coherence time on  
quantum annealing machine

*1: Y. Nakamura et al., Nature 398, 786 (1999)
*2; Based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

Aiming to provide models for solving 
issues using quantum annealing and 
quantum gate

MOONSHOT program to achieve 
practical application of gate-based 
method
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Superconducting quantum annealing machine (mockup)

NEC is leading the development of quantum annealing
devices to enable practical use of superconducting

quantum annealing machine in 2023

NEDO

Support Participating organizations

～ K
mK

～ mK (≒-273℃)

Normal temperature

Controlled input Read out

* Based on results obtained from a project commissioned by
the New Energy and Industrial Technology Development Organization (NEDO).

External
device

External
device

NEC (Deputy rep. facilities responsible for operationalization and practical application)
AIST (Rep.), Tokyo Institute of Technology, Waseda Univ., 

Yokohama National Univ., and others

Quantum annealing device that 
NEC has been working on 

(The heart part of the machine)

© NEC Corporation 20229

In addition to focusing on the quantum annealing method to address 
society’s optimization needs, NEC is also promoting research and 

development toward practical application of the gate-based method.

*Based on NEC’s survey. （Due to limited space, not all institutions are covered.)

Quantum gate method
Performs calculations by replacing 
classical computer bits with qubits

IntelRigettiGoogleIBMRIKEN
UTokyo

Annealing method, etc.
Solves combinatorial optimization problems by means of 

the Ising model or other statistical physics model 

Fujitsu ToshibaHitachiAISTD-Wave

Optical 
Parametric 
Oscillator

Digital Circuits
Quantum Annealing 

Superconducting 
Circuits

Quantum Computing
(Broadly defined to include quantum behavior)

NTT

9 © NEC Corporation 2021

product productR&D R&D
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Vector Annealing on SX-Aurora TSUBASA

© NEC Corporation 202213

NEC Vector Annealing
VA Performance is provided by:
Matrix operation acceleration by VE, large and fast memory, and optimized algorithm for VE

Avoiding Redundant Search and
Optimized algorithm for VE

Vector operation on VE
Energy calculation is matrix operation 

for(i=0; i<numSpins; i++)
DeltaEnergy +=  

Qij[FlipSpin][i] x SpinState[i]

Qij

SpinState

x x x

+ 0 or 1Effect from neighbor spin

Full connect 100k qbits/VE and
high memory bandwidth

48GB memory capacity and 
1.5TB/s memory bandwidth

Multi card supports larger number 
of qbits (100k qbits x n)1/2

be
tt
er

Problem

Formalize

Search

Check constraint

Formalize

Problem

Search considering 
constraint

Co
ns

tra
in

t

Violation
→try again

Existing search VA search
Including constraint violations skip constraint violations

computational complexity 
reduction
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Case Study

© NEC Corporation 202217

Solving Social Issues Using Quantum Computing
NEC is trying to apply QC technologies for practical use with partners

Development with Co-creation Partners
SMBC Group/ JRI / NEC Platforms / NEC Fielding etc.

※研究中、顧客実証～実用に至るものが含まれています

Manufacturing

• Production plan

• Parts ordering plan

Traffic/Logistics

• Crew shift

• Delivery plan

• Load placement

Financial

• Card fraud
detection

• Monte Carlo
simulation

• Risk calculation

Material/Drug

• Screening

• Experimental

• parameter search

Advertisement
Infrastructure

• Matching/
Recommendation

• Com. base station

• Surveillance sensor

Leap Quantum Cloud 
Service

NEC Vector Annealing
Service
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Real Time TSUNAMI Disaster Simulation &
Real Time Proposing Optimal Evacuation Routes

“Next Generation Supercomputing Platform assisted by Quantum Annealing”
R&D with Tohoku University

Information Science
Prof. Kobayashi, Prof. Ozeki

Disaster Science
Prof. Koshimura
Associate Prof. Erick

Associate Prof. Ota

Tohoku University

Riken

Evacuation Route (Annealing)

earthquake Tsunami simulation Disaster simulation Evacuation route

Supercomputing Annealing

© NEC Corporation 202223

Use Case: Production Planning Optimization
Optimizing complex planning for multi-product manufacturing lines

Higher versatile processing equipment needs
highly optimized product planning for higher efficiency

• Switching processed product makes idling time of equipment
• Production planning can reduce the idling time and also reduce human 

resources

G D D→E E FE→F

Line
1

Line
2

A B

GD F→G

Line
1

Line
2

A CA→C C→B BCA→C C→B

FD→E E E→F G→D

C & E use same tool

Independent
processing

Processing
using same tool switching

Not only shorter processing time,
but also reduce human resources

Overlapping setup time
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Use Case: Delivery Route and Schedule Optimization
for reducing costs, time, energy, CO2, etc.

Delivery of parts and 
dispatch of Engineers
• Parts are delivered by truck
• Engineers move by car/train
• Have to consider skills of each engineer

EX.

9:00

13:15

10:00

14:30

Arrive at 8:50

Arrive at
9:50

Arrive at
14:00

Arrive at
13:00

Office

Factory

Customer

delivery schedule

delivery route
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Pairwise Conditional 
Gradients without Swap Steps and 

Sparser Kernel Herding 

Kazuma Tsuji 
MUFG Bank, Ltd., Tokyo,  Japan 

takahashi.shota@ism.ac.jp 
 
 
 The Pairwise Conditional Gradients (PCG) algorithm [1] is a powerful extension of the Frank-
Wolfe algorithm leading to particularly sparse solutions, which makes PCG very appealing for 
problems such as sparse signal recovery, sparse regression, and kernel herding. Unfortunately, 
PCG exhibits so-called swap steps that might not provide sufficient primal progress. The 
number of these bad steps is bounded by a function in the dimension and as such known 
guarantees do not generalize to the infinite-dimensional case, which would be needed for 
kernel herding. We propose a new variant of PCG, the so-called Blended Pairwise Conditional 
Gradients (BPCG) which is a combination of Blended Conditional Gradients [2] and PCG, and 
BPCG does not exhibit swap steps. The convergence rate of BPCG is basically that of PCG if 
no drop steps would occur and as such is no worse than PCG but improves and provides new 
rates in many cases. Moreover, we observe in the numerical experiments that BPCG’s solutions 
are much sparser than those of PCG. We apply BPCG to the kernel herding setting, where we 
derive nice quadrature rules and provide numerical results demonstrating the performance of 
our method. 

 
 
 

 

References 
[1] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In 

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural 
Information Processing Systems 28, pages 496–504. Curran Associates, Inc., 2015. URL 
http://papers.nips.cc/paper/ 5925-on-the-global-linear-convergence-of-frank-wolfe-optimi pdf.  

[2] G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of 
conditional gradients. In Proceedings of the 36th International Conference on Machine Learning (PMLR), 
volume 97, pages 735–743, 2019.  
 

43



Pairwise Conditional Gradients without Swap Steps
and Sparser Kernel Herding

Kazuma Tsuji (MUFG bank)

Coresearchers:
Ken’ichiro Tanaka (The University of Tokyo, PRESTO)

Sebastian Pokutta (AISST, ZIB)

2022/09/17

Outline of today’s talk

The main topic of today’s talk is Conditional Gradients methods.

We propose a new variant of Conditional Gradients which is called
Blended Pairwise Conditional Gradients (BPCG).

BPCG algorithm works well in high dimensional cases and outputs
highly sparse solutions practically.

The contents of today’s talk are written in Tsuji et al. (2022) in detail.

2 / 28
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CG algorithm

Conditional Gradients (Levitin and Polyak, 1966) are in an important class
of first-order methods for constrained convex minimization, i.e., solving

min
xœC

f(x) (f : convex, C µ Rd : convex compact region).

CG algorithm is an iterative first-order method.
The solution of CG algorithm is represented as a convex combination
of the vertices of C:

›t =
nÿ

i=1
civi

A

{vi}n
i=1 µ VC , C = conv(VC),

nÿ

i=1
ci = 1

B

.

3 / 28

Algorithm
1 wi = argmaxvœVC

È≠Òf(›i), vÍ (C = conv(VC))
2 determine the step-size –i (0 Æ –i Æ 1)
3 ›i+1 = ›i + –i(wi ≠ ›i) = (1 ≠ –i)›i + –iwi

Figure: CG Algorithm

4 / 28
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Variants of CG algorithm

There are many variants of CG algorithm to achieve better performance
(faster convergence, computational efficiency, sparser solutions, etc.).

We explain the following two variants of CG algorithm:
Pairwise CG algorithm (Lacoste-Julien and Jaggi, 2015)
Blended CG algorithm (Braun et al., 2019)

5 / 28

Pairwise CG method
Pairwise CG method (Lacoste-Julien and Jaggi, 2015) uses the direction
wt ≠ at instead of wt ≠ ›t for the update of current solutions:

dt = (wt ≠ ›t)¸ ˚˙ ˝
FW

+ (›t ≠ at)¸ ˚˙ ˝
Away

= wt ≠ at (Pairwise direction)

›t+1 = ›t + –tdt
A

wt = argmaxvœVC
Èv, ≠Òf(›t)Í

at = argminvœSt
Èv, ≠Òf(›t)Í (›t œ conv(St) µ VC)

St : vertices set that construct the convex combination of ›t

B

Figure: Pairwise CG 6 / 28
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Blended CG
Blended Conditional Gradients (Braun, Pokutta, Tu, and Wright, 2019)

›t =
qk

i=1 civi (
qk

i=1 ci = 1, c1, . . . , ck Ø 0, St = {vi}k
i=1 µ VC).

at Ω argminvœSt
È≠Òf(›t), vÍ , st Ω argmaxvœSt

È≠Òf(›t), vÍ
wt Ω argmaxvœVC

È≠Òf(›t), vÍ

A = ÈÒf(›t), at ≠ stÍ (local pairwise gap) : upper bound of lo-
cal error f(›t) ≠ minxœconv(St) f(x)
B = ÈÒf(›t), ›t ≠ wtÍ (dual gap) : upper bound of global error
f(›t) ≠ minxœC f(x)

Algorithm
1. A Ø B
optimize the convex coefficients {ci}k

i=1 by SiGD which is an optimiza-
tion method on a simplex.
2. A < B
›t+1 = ›t + –t(wt ≠ ›t), St+1 Ω St fi {wt} (vanilla CG update).

7 / 28

Algorithm Blended Conditional Gradients
for t = 0 to T ≠ 1 do

at Ω argminvœSt
È≠Òf(›t), vÍ

st Ω argmaxvœSt
È≠Òf(›t), vÍ

wt Ω argmaxvœVC
È≠Òf(›t), vÍ

if ÈÒf(›t), at ≠ stÍ Ø ÈÒf(›t), ›t ≠ wtÍ then
optimize the convex coefficients {ci}k

i=1.
else

›t+1 = ›t + –t(wt ≠ ›t) {FW step}
end if

end for

By the structure of algorithm, new vertices are added only when
convex coefficients are sufficiently optimized. Therefore, BCG outputs
highly sparse solutions.

8 / 28
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Convergence speed of PCG and BCG

PCG and BCG achieve faster convergence rates than CG algorithm:

Table: Theoretical convergence rates (finite-dimensional cases)

L-smooth Strongly convex and polytope
CG O( 1

T ) O( 1
T )

PCG O( 1
T ) exp(≠cPT )

BCG O( 1
T ) exp(≠cBT )

However, both algorithms suffer in high-dimensional cases. In particular, we
cannot guarantee convergence in infinite-dimensional cases !

9 / 28

Bottleneck of BCG and PCG

PCG
Swap Step:

Swap Step means the step in which at is swapped by wt.
Swap steps affect theoretical analysis and a dimension-dependent
constant appears in convergence rates.

BCG
Simplex Gradient Descent (SiGD):

SiGD is the coefficients optimization method in BCG.
SiGD is the optimization method on the simplex

I
(c1, . . . , ck) œ Rk

-----

kÿ

i=1
ci = 1, ci Ø 0

J
.

The convergence rate of SiGD includes the dimension of polytope and
therefore BCG includes a dimension-dependent term in convergence rate.

10 / 28
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BPCG algorithm (proposed algorithm)
We propose the following BPCG algorithm. The framework uses that of
BCG and the difference is the local Pairwise step.

Algorithm Blended Pairwise Conditional Gradients
for t = 0 to T ≠ 1 do

at Ω argminvœSt
È≠Òf(›t), vÍ

st Ω argmaxvœSt
È≠Òf(›t), vÍ

wt Ω argmaxvœVC
È≠Òf(›t), vÍ

if ÈÒf(›t), at ≠ stÍ Ø ÈÒf(›t), ›t ≠ wtÍ then
›t+1 = ›t + –t(st ≠ at) {local pairwise step}

else
›t+1 = ›t + –t(wt ≠ ›t) {FW step}

end if
end for

The moving direction of BPCG is dt = st ≠ at or dt = wt ≠ ›t.
11 / 28

Local pairwise steps

In local Pairwise steps, the direcion

dt = st ≠ at
A

at = argmin
vœSt

È≠Òf(›t), vÍ , st = argmax
vœSt

È≠Òf(›t), vÍ
B

is used.

Properties of local pairwise steps:
By the definition of st and at, local pairwise updates are equivalent to
the implementation of the PCG over St.
Only the two coefficients that correspond to st and at are changed.
We do not mind swap steps in local pairwise steps.

12 / 28
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Analysis of BPCG for L-smooth functions

Roughly speaking, for L-smooth convex functions, we have

ht ≠ ht+1 Ø ÈÒf(›t), dtÍ2

2LD2 ,

where ht = f(›t) ≠ f(›ú) and dt is the moving direction of BPCG.
Case(A) ÈÒf(›t), at ≠ stÍ Ø ÈÒf(›t), ›t ≠ vtÍ

ht≠ht+1 Ø ÈÒf(›t), st ≠ atÍ2

2LD2 Ø ÈÒf(›t), ›t ≠ vtÍ2

2LD2 Ø h2
t

2LD2

Case(B) ÈÒf(›t), at ≠ stÍ Æ ÈÒf(›t), ›t ≠ vtÍ

ht ≠ ht+1 Ø ÈÒf(›t), ›t ≠ vtÍ2

2LD2 Ø h2
t

2LD2

13 / 28

Theoretical analysis: general smooth case

Theorem

P : convex feasible domain with diameter D (dim P can be Œ)
f : convex and L-smooth.
Let {›i}T

i=0 µ P be the sequence given by the BPCG algorithm. Then, it
holds that

f(›T ) ≠ f(›ú) Æ 4LD2

T
.

Since the constant factor 4LD2 does not depend on the dimension of the
domain, we can apply this result to infinite-dimensional cases!

14 / 28
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Analysis of BPCG for strongly convex functions

Roughly speaking, for L-smooth convex functions, we have

ht ≠ ht+1 Ø ÈÒf(›t), dtÍ2

2LD2

. We use the following two Lemmas:

Lemma (Lacoste-Julien and Jaggi (2015), Inequalities (23) and (28) )

Assume that f is µ-strongly convex and P is a polytope with pyramidal
width ”. Then,

ht Æ ÈÒf(›t), at ≠ wtÍ2

2µ”2 .

Lemma

For each step t, an inequality 2ÈÒf(›t), dtÍ Ø ÈÒf(›t), at ≠ wtÍ holds.

15 / 28

Theoretical analysis: polytopes and strongly convex case

Theorem

P : finite-dimensional polytope with pyramidal width ” and diameter D
f : µ-strongly convex and L-smooth
Consider the sequence {›i}T

i=0 µ P obtained by the BPCG algorithm. Then,
it holds that

f(›T ) ≠ f(›ú) Æ (f(›0) ≠ f(›ú)) exp (≠cf,P T ) ,

where cf,P := 1
2 min{1

2 , µ”2

4LD2 }.

16 / 28
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Compare the constant factor in convergece rate

The convergence rate for finite-dimensional polytope case:
BPCG

exp(≠cf T )

cf = 1
2 min{1

2 ,
µ”2

4LD2 }

PCG

exp(≠ck(T ))
k(T ) Ø T/(3|VC |! + 1)

BPCG bounds the constant factor better than PCG.

17 / 28

Compare BPCG to other variants

BPCG ensures O( 1
T ) convergence in infinite-dimensional cases.

BPCG ensures linear convergence for strongly convex and polytope
cases.
Moreover, BPCG outputs highly sparse solutions since BPCG inherits
the framewrok of BCG.

Table: Theoretical convergence rate

L-smooth Strongly convex,
infinite-dimensional domain finite-dimensional polytope

CG O( 1
T ) O( 1

T )
PCG 7 exp(≠cPT )
BCG 7 exp(≠cBT )

BPCG O( 1
T ) exp(≠cBPT )

18 / 28
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Lazified Version of BPCG

In BPCG, we need to compute the dual gap

max
vœVC

ÈÒf(›t), ›t ≠ vÍ

in each iteration and we need |VC | times access.

To reduce computational cost, we employ the lazification techique (Braun
et al., 2017).

The lazification means the follwoing estimation

Φt ¥ max
vœVC

ÈÒf(›t), ›t ≠ vÍ

19 / 28

Lazified Version of BPCG

Algorithm Lazified Blended Pairwise Conditional Gradients
for t = 0 to T ≠ 1 do

at Ω argminvœSt
È≠Òf(›t), vÍ

st Ω argmaxvœSt
È≠Òf(›t), vÍ

wt Ω argmaxvœVC
È≠Òf(›t), vÍ

if ÈÒf(›t), at ≠ stÍ Ø Φt then
›t+1 = ›t + –t(st ≠ at) {local Pairwise step}

else
if ÈÒf(›t), ›t ≠ wtÍ Ø Φt/J then

›t+1 = ›t + –t(wt ≠ ›t) {FW step}
else

Φt+1 = Φt/2
end if

end if
end for

20 / 28
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Theoretical analysis: general smooth case

Theorem
P : convex feasible domain with diameter D
f : convex and L-smooth.
{›i}T

i=0 µ P : output of the Lazified BPCG algorithm .
Case (A) If f is µ-strongly convex and P is a polytope with pyramidal

width ” > 0, we have

f(›t) ≠ f(›ú) = O (exp (≠c T )) (T æ Œ)

for a constant c > 0 independent of T .
Case (B) If f is only convex and L-smooth, we have

f(›T ) ≠ f(›ú) = O

3 1
T

4
(T æ Œ).

21 / 28

Numerical experiments for finite-dimensional problems
We confirm the effectiveness of BPCG through numerical experiments.
BPCG and Lazified BPCG are compared with CG, ACG(Wolfe, 1970) and
PCG.

Problem 1 : Convex optimization over probability simplex
min
xœRn

Îx ≠ x0Î2
2

s.t. x œ ∆(n),
Here, ∆(n) := {x œ Rn |

qn
i=1 xi = 1, xi Ø 0 (i = 1, . . . , n)} and

x0 œ ∆(n).

Problem 2 : ¸p norm ball
min
xœRn

Îx ≠ x0Î2
2

s.t. ÎxÎp Æ 1
Î · Îp means the p norm.

22 / 28
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Problem 1 (n = 200) : iterations and computational time

Figure: Problem 1 (x-axis: left: iterations , right: computational time
y-axis: top: primal gap, bottom: dual gap)

Convergence speed of BPCG
Iterations: Competitive with PCG.

Computational time: BPCG is the fastest. 23 / 28

Problem 1 (n = 500) : sparsity of solutions

Figure: Problem 1: Convergence of the primal gap for the number of vertices that
are the members of convex combination of a solution.

BPCG and Lazified BPCG output sparse solutions.

24 / 28
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Problem 2 (p = 5, n = 1000) : sparsity of solutions

Figure: Problem 2: Convergence of primal gap for the number of vertices that are
the members of convex combination of a solution.

BPCG and Lazified BPCG output much sparser solutions.

25 / 28

Numerical experiments (Kernel Herding)

P(Ω) : all probability measures on Ω œ d

MMD(·, ·) : distance between probability measures measured in a
Reproducing Kernel Hilbert Space (RKHS) on Ω

Kernel Herding solves the following minimization problem over
infinite-dimensional domain P(Ω) using a CG manner:

argmin
›œP(�)

MMD2(µ, ›) (µ œ P(Ω)).

The output of Kernel Herding is a discrete measure

› =
nÿ

i=1
Êi”xi ({Êi}n

i=1 µ R, {xi}d
i=1 µ Rd).

Using an efficient CG method, we want to derive › that approximates µ with
small number of nodes n. That is, we want to derive nice sparse soltions.

26 / 28
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BPCG for kernel herding

Domain : Ω = [≠1, 1]2, Kernel : Matérn kernel with ‹ = 3
2 , 5

2 .
Optimal rates of the convergence of MMD is n≠ 5

4 , n≠ 7
4 , respectively.

Figure: Matérn kernel (‹ = 3/2) (left) and Matérn kernel (‹ = 5/2) (right)

27 / 28

Summary

To overcome the difficulties of PCG and BCG, we proposed the BPCG
algorithm.
We showed that for BPCG we can ensure O( 1

T ) convergence even if
the dimension of convex constraints is infinite. For strongly convex and
polytope cases, we can guarantee the linear rate.
Through numerical experiments, we showed the practical effectiveness
of BPCG. In particular, sparsity of solutions is notable.

28 / 28
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We present a fully computer-assisted proof system for solving a particular family of 
problems in Extremal Combinatorics. Existing techniques using Flag Algebras have 
proven powerful in the past, but have so far lacked a computational counterpart to derive 
matching constructive bounds. We demonstrate that common search heuristics are 
capable of finding constructions far beyond the reach of human intuition. Additionally, 
the most obvious downside of such heuristics, namely a missing guarantee of global 
optimality, can often be fully eliminated in this case through lower bounds and stability 
results coming from the Flag Algebra approach. 
 
To illustrate the potential of this approach, we study two related and well-known 
problems in Extremal Graph Theory that go back to questions of Erdős from the 60s. 
Most notably, we present the first major improvement in the upper bound of the Ramsey 
multiplicity of K₄ in 25 years, precisely determine the first off-diagonal Ramsey 
multiplicity number, and settle the minimum number of independent sets of size four in 
graphs with clique number strictly less than five. 
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Freie Universität Berlin

Research partially funded through Math+ project EF1-12

60



Proofs in Combinatorics through Optimization

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Flag Algebras for Lower Bounds

4. A Related Problem

1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity of triangles
Theorem (Ramsey 1930)

For any t œ N there exists R(t) œ N such that any 2-edge-coloring of the complete
graph of order at least R(t) contains a monochromatic clique of size t.

A well-known question: Can we determine R(t)?
A related question: How many cliques do we need to have? That means, letting
kt(G) denote the fraction of all possible t-cliques in G , what is

ct = lim
næŒ

min{kt(G) + kt(G) : G graph of order n}?

Theorem (Goodman 1959)

c3 = 1/4.
æ Same as Erdős-Rényi

random graph! æ
Conjecture (Erdős 1962)

ct = 21≠(t

2).
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1. The Ramsey Multiplicity Problem

Ramsey Multiplicity beyond triangles

Theorem (Thomason 1989 / 1997)

c4 Æ 0.970 · 2≠5 and c5 Æ 0.881 · 2≠9.
Theorem (Even-Zohar and Linial ’15)

c4 Æ 0.969 · 2≠5.

Erdős conjecture was false! But what about lower bounds?

Theorem (Giraud 1976)

c4 Ø 0.695 · 2≠5.
Theorem (Sperfeld / Nieß’11)

c4 Ø 0.914 · 2≠5.
Theorem (Grzesik et al. ’20)

c4 Ø 0.947 · 2≠5.

Both the best upper and lower bounds heavily rely on computer-assistence!

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c4 Æ 0.964 · 2≠5 and 0.780 · 2≠9 Æ c5 Æ 0.874 · 2≠9.

How can we use Optimization to formulate mathematical proofs?

Proofs in Combinatorics through Optimization

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Flag Algebras for Lower Bounds

4. A Related Problem
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2. Search Heuristics for Upper Bounds

Graph blow-ups
We want constructive bounds that are ‘finitely describable’. Random graphs are one
source for such constructions. Another natural deterministic one are graph blow-ups.

Definition
The m-fold blow-up C [m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.

Using blow-ups, we can derive an upper bounds for ct from any graph C through

ct Æ lim
mæŒ

kt

!
C [m]

"
+ kt

!
C [m]

"
. (1)

This is in fact efficiently computable since

lim
mæŒ

kt(C [m]) = nt kt(C) /nt and lim
mæŒ

kt(C [m]) =
tÿ

j=1
S(t, j)nj kj(C)/nt . (2)

2. Search Heuristics for Upper Bounds

Constructing graphs through search heuristics

For fixed n and s œ {0, 1}(n

2) let Cs =
1
[n],

)
ij : i < j, s(j≠1

2 )+i
= 1

*2
and consider

min
sœ{0,1}(

n

2)

sÿ

j=1

S(t, j)nj kj(Cs)
nt

+ nt kt(Cs)
nt

.

So we have found our optimization problem! How to solve it?

For n / 40 we can use Search Heuristics.

Unfortunately even n = 40 is much too small for c4 and c5, barely disproving Erdős’
original conjecture. Can we use combinatorial insights to bias the search space?
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2. Search Heuristics for Upper Bounds

Constructing Cayley graphs through search heuristics
Thomason’s constructions are based on computing the values of XOR-graph-products.
The results are in fact Cayley graphs in C◊2

3 ◊ C◊5
2 and C3 ◊ C◊6

2 .

Definition
Given an abelian group G and set S ™ Gı satisfying S≠1 = S, the associated Cayley
graph has vertex set G and g1, g2 œ G are adjacent if and only if g≠1

1 g2 œ S.

Idea. Why not directly search Cayley graph constructions?
The binary vector s now represents the generating set S. Since |G |/2 < |S| < |G | the
number of variables is therefore linear (instead of quadratic) in the number of vertices!

The groups C3 ◊ C◊8
2 and C3 ◊ C◊6

2 give the improved upper bounds for c4 and c5.

Proofs in Combinatorics through Optimization

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Flag Algebras for Lower Bounds

4. A Related Problem
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3. Flag Algebras for Lower Bounds

A trivial computational lower bound

The Flag Algebra SDP approach can be seen as (i) a formalized Cauchy-Schwarz-type
argument and (ii) an improvement over a trivial computational lower bound.

Let dH(G) denote the probability that v(H) vertices chosen uniformly at random in G
induce a copy of H. Writing ct(G) = kt(G) + kt(G), basic double counting gives us

ct(G) =
ÿ

H graph
v(H)=N

dH(G) ct(H) (3)

for t Æ N Æ v(G). For any N Ø t this implies a trivial lower bound of

ct Ø min
H graph
v(H)=N

ct(H). (4)

3. Flag Algebras for Lower Bounds

The Flag Algebras SDP approach
Razborov (2007) introduced Flag Algebras in order to study this type of problem. One
important observation is that for any Q ≤ 0 the coefficients aH = ÈQ, DHÍ satisfy

ÿ

H graph
v(H)=N

dH(G) aH Æ O(1/v(G)) (5)

for any graph G . Through (3) this implies the (hopefully improved) bound

ct Ø min
H graph
v(H)=N

ct(H) ≠ aH . (6)

This approach gives the best current lower bounds for c4 and c5. The biggest
bottleneck for further improvements consists of finding Q for larger N.
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4. A Related Problem

O�-diagonal Ramsey Multiplicity
Question. Determining c3 is easy, but even c4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

cs,t = lim
næŒ

min{ks(G) + kt(G) : |G | = n}?

A famous result of Reiher from 2016 implies that c2,t = 1/(t ≠ 1).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c3,4 = 689 · 3≠8 and any large enough graph G admits a strong homomorphism into
the Schläfli graph after changing at most O(k3(G) + k4(G) ≠ c3,4) v(G)2 edges.

The fact that we can show stability proves that the search heuristic found
a unique global optimum over all graphs of order 27!
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Thank you for your attention!
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The Ubiquity Generator Framework (UG) version 1.0 was released last year. It was 
designed to parallelize powerful state-of-the-art branch-and-bound based solvers 
externally in order to exploit their powerful performance. We call the underlying solvers 
``base solvers''; originally, a base solver is a branch-and-bound based solver, but in the 
current release, it is redefined as any solver that is being parallelized by UG, since, in 
version 1.0, it was generalized to be a software framework for high-level task 
parallelization. In this talk, we present the concept of high-level task parallelization and 
its flexibility. We will show a few recent success stories of the instantiated parallel 
solvers by UG version 1.0. 
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Commodity consolidation and vehicle route coordination are fundamental features of 
the logistics problem. This problem is called the supply chain service network design 
problem (SCSNDP); the SCSNDP includes three problems: the warehouse 
consolidation problem (WCP), the service network design problem (SNDP), and the 
pickup and delivery problem (PDP). To obtain high-quality solutions, a combined 
relaxation and heuristic algorithm is proposed[1]. The relaxation solver sets the 
boundaries of the solution space by considering the trend of the solution space. The 
heuristic solver finds a high-quality solution that satisfies all the constraints within the 
bounded solution space; using the UG framework, the relaxation and heuristic solvers 
are executed in parallel. The results show that the parallel execution of the relaxation 
and heuristic influences the quality of the SCSNDP solution. 
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We report our progress on the project for solving large scale quadratic assignment 
problems (QAPs). Our main approach to solve QAPs is a parallel branch-and-bound 
method efficiently implemented on a powerful computer system, using the Ubiquity 
Generator Framework (UG) which can utilize more than 100,000 cores ([1]). Newton-
bracketing method, the method we utilize to solve Lagrangian doubly nonnegative 
(DNN) relaxation of subproblems of QAPs, gives strong lower bounds, but it requires 
more computational time ([2]) which makes difficult to scale in parallelization. We have 
added some new features to UG such as Enhanced Checkpoint or Huge Checkpoint File 
Split to overcome these obstacles. In this talk, we describe the details of new features of 
UG for solving QAPs and present some preliminary numerical results of solving large 
QAPs on supercomputers ([3]). 
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Various efforts have been made to realize a so-called super-smart society recently. 
Our project team builds services to create new industries and other services through 
corporate collaboration [1,2,3]. We have utilized large-scale computing infrastructures 
and developed the Cyber-Physical System Mobility Optimization Engine (CPS-MOE) 
that provides various functions, including creating new industries. It can reduce cost and 
industrial waste and constructing services to calculate the optimum control schedule of 
transportation agencies. The latest research results and industry-academia collaborative 
projects using CPS-MOE will be presented in this talk. 
 
 

 

References 
[1] Akihiro Yoshida, Tatsuru Higurashi, Masaki Maruishi, Nariaki Tateiwa, Nozomi Hata, Akira 

Tanaka, Takashi Wakamatsu, Kenichi Nagamatsu, Akira Tajima, and Katsuki Fujisawa, “New 
Performance Index “Attractiveness Factor” for Evaluating Websites via Obtaining Transition of 
Users’ Interests”, Data Science and Engineering, Volume 5, Issue 1, pp. 48-64, March 2020, 
https://doi.org/10.1007/s41019-019-00112-1  

[2] Akihiro Yoshida, Yosuke Yatsushiro, Nozomi Hata, Tatsuru Higurashi, Nariaki Tateiwa, Takashi 
Wakamatsu, Akira Tanaka, Kenichi Nagamatsu, and Katsuki Fujisawa, “Practical End-to-End 
Repositioning Algorithm for Managing Bike-Sharing System”, The proceedings of the IEEE 
BigData2019, 2019, https://doi.org/10.1109/BigData47090.2019.9005986  

[3] Nozomi Hata, Takashi Nakayama, Akira Tanaka, Takashi Wakamatsu, Akihiro Yoshida, Nariaki 
Tateiwa, Yuri Nishikawa, Jun Ozawa, and Katsuki Fujisawa, “Mobility Optimization on Cyber 
Physical System via Multiple Object Tracking and Mathematical Programming”, the Fifth 
International Workshop on High Performance Big Graph Data Management, Analysis, and 
Mining (BigGraphs 2018), to be held in conjunction with the 2018 IEEE International 
Conference on Big Data (IEEE BigData 2018), 2018, 
https://doi.org/10.1109/BigData.2018.8622146 
 

137



138



139



140



141



142



143



144



145



146



147



148



149



150



151





The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on 

Advances in Classical and Quantum Algorithms for 

Optimization and Machine Learning 
September 16th - 19th, 2022, Tokyo (The university of Tokyo), Japan, 

and September 21st  - 22nd, 2022, Fukuoka (Kyushu University), Japan 
 

 
 

Towards an optimal operation of 
automated storage and retrieval system 

with multiple machines 

Hiroki ISHIKURA 

Kyushu University, Japan 
tomomi_ishikura@kyudai.jp 

 
 

We aim to improve the efficiency of a new type of automated storage and retrieval systems 
(AS/RSs) called multi-control automated storage and retrieval systems (MC-AS/RSs). MC-AS/RSs 
have multiple storage/retrieval (S/R) machines that operate independently according to storage and 
retrieval requests. Consequently, MC-AS/RSs can transport loads farther without using human labor, 
thereby requiring fewer human resources than conventional AS/RSs. However, the structure and 
control method of AS/RSs are complex because multiple S/R machines must be controlled 
simultaneously. Therefore, when operating an MC-AS/RS, many factors must be considered, such as 
the sequence and transport timing. We propose an optimization method using a time-expanded 
network (TEN) to solve these problems and generate optimal operational methods. First, our method 
models an AS/RS with a TEN to calculate the optimal sequence and conveyance timing while 
considering the movements of multiple S/R machines. Second, we formulate the operational efficiency 
of the MC-AS/RS as a problem of minimizing the sum of execution times of requests on the TEN. 
Finally, we generate the request order necessary for practical use based on the results. The mechanisms 
implemented to achieve include a generator, optimizer, and scheduler. Our experiments confirm that 
this method reduces the total execution time of requests compared with other rule-based methods. This 
method enables us to propose an efficient operation method for AS/RSs with a complex structure of 
multiple carriers. 
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Cut selection is a subroutine used in all modern mixed-integer linear programming 
solvers with the goal of selecting a subset of generated cuts that induce optimal solver 
performance. These solvers have millions of parameter combinations, and so are 
excellent candidates for parameter tuning. Cut selection scoring rules are usually 
weighted sums of different measurements, where the weights are parameters. We 
present a parametric family of mixed-integer linear programs together with infinitely 
many family-wide valid cuts. Some of these cuts can induce integer optimal solutions 
directly after being applied, while others fail to do so even if an infinite amount are 
applied. We show for a specific cut selection rule, that any finite grid search of the 
parameter space will always miss all parameter values, which select integer optimal 
inducing cuts in an infinite amount of our problems. We propose a variation on the 
design of existing graph convolutional neural networks, adapting them to learn cut 
selection rule parameters. We present a reinforcement learning framework for selecting 
cuts, and train our design using said framework over MIPLIB 2017. Our framework and 
design show that adaptive cut selection does substantially improve performance over a 
diverse set of instances, but that finding a single function describing such a rule is 
difficult. 
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Adaptive Cut Selection in Mixed-Integer Linear

Programming

M. Turner
T. Koch, F. Serrano, M. Winkler

18.09.22

6th RIKEN-IMI-ISM-NUS-ZIB-
MODAL-NHR Workshop – Tokyo

The definition of a MILP

This is a Mixed-Integer Linear Program (MILP):

argmin
x

{c|x | Ax  b, l  x  u, x 2 Z|J | ⇥ Rn−|J |}

I c 2 Rn - Objective coefficient vector

I A 2 Rm⇥n - Constraint matrix

I b 2 Rm - RHS constraint vector

I l,u 2 {R,−1,1}n - Lower and upper
variable bound vectors

I J ✓ {1, . . . , n} - Set of indices of
integer variables

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 1
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The definition of a cut

A cut is a constraint that does not remove any feasible solutions when added.
We restrict ourselves to linear cuts.
A cut ↵ = (↵0, · · · , ↵n) 2 Rn+1 is valid, where the set of feasible solutions is IX and:

nX

i=1

↵ixi  ↵0, 8x 2 IX , where x = (x1, · · · , xn)

x
LP

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 2

Cut selection

The purpose of cuts is to tighten the linear programming (LP) relaxation.
Cuts sometimes called separators, as they’re often generated by separating specific
points (xLP).

nX

i=1

↵ix
LP
i > ↵0, where x

LP = (xLP1 , . . . , xLPn )

Given the set of generated cuts S 0 = {↵1, · · · ,↵|S0|}, find a subset S ✓ S 0 to add to
the formulation. That is the cut selection subproblem.

Con of adding all cuts: Large computational burden when solving larger LPs at each node
Con of adding no cuts: Substantially more nodes needed to solve to optimality

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 3
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Existing literature for cut selection

Older comprehensive computational experiments on cut selection:

I Constraint integer programming - Achterberg, 2007, PhD Thesis

I Embedding {0, 1/2}-Cuts in a Branch-and-Cut Framework: A Computational Study -

Giuseppe et al, 2007, doi 10.1287/ijoc.1050.0162

I Implementing cutting plane management and selection techniques - Wesselmann et al, 2011

Summary: Cut selection best as cheap heuristic. Filtering parallel cuts is most important.
Recent machine learning experiments on cut selection:

I Reinforcement learning for integer programming: Learning to cut - Y. Tang et al, 2020, MLR Press

I Learning to Select Cuts for E�cient Mixed-Integer Programming - Z. Huang et al, 2021,

https://doi.org/10.1016/j.patcog.2021.108353

I Adaptive Cut Selection in Mixed-Integer Linear Programming - M. Turner et al, 2022

Summary: Improvement is possible, but non-trivial and difficult to generalise.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 4

Cut selection rule in SCIP

Cuts are scored as a weighted sum of measurements.
Efficacy - Distance between cut and x

LP .
Directed cuto↵ distance - Distance between cut and x

LP in the direction of some primal
solution x̂.
Integer support - Ratio of non-zero coefficients that are for integer valued variables.
Objective parallelism - Absolute cosine similarity measure between cut and objective.

λ1 ⇤ eff+ λ2 ⇤ dcd+ λ3 ⇤ isp+ λ4 ⇤ obp, λ1 + λ2 + λ3 + λ4 = 1,

λi ≥ 0 8i 2 {1, 2, 3, 4}, λ = [λ1, λ2, λ3, λ4]

Algorithmic Idea: Add highest scoring cut. Filter all parallel cuts. Repeat until no cuts.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 5
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Example of worst-case performance

Questions:

I Can a grid-search of the parameter space miss all cut selector parameter values that
would quickly solve an instance?

I Can this be extended to an infinite family of instances, all of which only solve
quickly for values outside the grid-search?

I Can this infinite family be made to, no matter the grid-search, have an infinite
subset of instances that do not solve quickly?

Answer: Yes. By choosing a simplified cut selection rule, and disabling all other solver
settings (e.g. branching), we manage to prove this.

Is this useful: It’s incredibly cool. It motivates the need for adaptive cut selection if these
fringe cases are to be handled. Modern solvers are so interconnected however, that
proving this for practical solving processes is impossible.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 6

Learn mapping from MILP instances to λ

That is, can we learn a function that outputs values {λ1, λ2, λ3, λ4}, which induce
optimal solver performance for the input instance.

Computational setup:

I Force 50 rounds of cuts

I Select exactly 10 cuts per round

I Stop solve process after the 50 rounds of cuts

I Enable all cut generators

I Test-set MIPLIB 2017. Filter out all numerically troubling instances. Root solve
must take at most 20s and be non-optimal with standard parameters.

I Use MIPLIB solution as primal

Default constant SCIP 8.0 parameters: [1.0, 0.0, 0.1, 0.1] (eff, dcd, isp, obp)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 7
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Parameter sweep (Experiment)

Improvement measure: Relative improvement of gap closed compared to run using
standard cut selector parameters.
Experiment: Get the best improvement per instance with parameters from the following
grid-search:

4X

i=1

λi = 1, where λi =
βi

10
, βi 2 N, 8i 2 {1, 2, 3, 4}

Aim: Provide a lower bound on the potential improvement gain. In a perfect world, our
learnt function will be at-least as good as a grid-search approach.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 8

Parameter sweep (Results)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 9
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Phrase problem using reinforcement learning

We formulate our problem as a single step Markov decision process.

Initial state: MILP instance post-presolve, but before any cuts are added.
Terminal state: MILP instance after 50 rounds of cuts.
Action: Decision of cut selector parameter values followed by applying 50 round of cuts.
Reward: Relative gap improvement compared to standard cut selector parameter values.

Additional Info:

I Actions drawn from a normal distribution, modelled as a graph neural network.

I Only use static features. All information is available before first LP solver.

I Approximate instance distribution using sample average approximation on MIPLIB.

I Evaluate trained network using mean of distribution.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 10

One model per instance (Overfitting results)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 11
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Single model for all instances (Results)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 12

Thanks for listening!

If interested and would like more details, please feel free to email me at turner@zib.de or
read the paper this presentation was based on:

Adaptive Cut Selection in Mixed-Integer Linear Programming, 2022
M. Turner, T. Koch, F. Serrano, M. Winkler
Preprint: https://arxiv.org/abs/2202.10962

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 13
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Outlook / Future Research

I Explore non-linear cut selection rules

I Explore di↵erent set of cut measurements

I Directly rank cuts with learned model

I Learn additional parameters in combination with cut selector parameters

I Define better standards of improved solver performance

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 14
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The optimization of energy systems for their design and operation necessitates the 
analysis of their performances under many different conditions. To analyze static 
(steady) and dynamic (unsteady) performances, it is necessary to solve nonlinear 
algebraic equations and nonlinear differential algebraic equations, respectively [1, 2]. 
Nonlinear equations have been solved conventionally by the Newton-Raphson method, 
where the solution of linearized equations is repeated until convergence. On one hand, 
however, the Jacobian matrices may not be regular because of network structures and 
operating conditions of systems. On the other hand, they may not be calculated because 
of violated restrictions on variables used for equations. It is a burden for analysts to take 
account of avoiding these situations in modeling systems. Thus, an alternative approach 
is necessary to reduce the burden. The singular value decomposition approach, which 
derives least squares and minimum norm solutions, can resolve the former situation, but 
cannot resolve the latter situation. In this work, a quadratic programming approach will 
be proposed to derive least squares and minimum norm solutions under restrictions on 
variables. Some examples will be presented to show the effectiveness of the proposed 
approach. 
 
 

 

References 
[1] Ryohei Yokoyama, Shinsuke Takeuchi, and Koichi Ito, “Thermoeconomic Analysis and 

Optimization of a Gas Turbine Cogeneration Unit by a Systems Approach,” Proceedings of the 
ASME Turbo Expo 2005, Paper No. GT2005-68392, pp. 1-7, 2005, 
https://doi.org/10.1115/GT2005-68392 

[2] Ryohei Yokoyama, “Performance Analysis and Optimization of a CO2 Heat Pump Water 
Heating System,” Xin-Rong Zhang and Hiroshi Yamaguchi (Eds.), Transcritical CO2 Heat Pump: 
Fundamentals and Applications, Chapter 9, pp. 249-282, 2021, John Wiley & Sons, 
https://doi.org/10.1002/9781118380055.ch9 
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Given a finite set X of n items, a complete order (permutation) of the items is called 
a ranking of X. A ranking distribution over X is a collection of rankings of X. Most 
existing models are classified into two groups; distance based and utility based. The 
former assumes the probability of a ranking depends on the distance from the central 
ranking, while the latter assumes the existence of the global utility value for each item 
which is independent of raters. We introduce a high-fidelity model of a ranking 
distribution utilising a novel geometric idea based on the hyperplane arrangement. We 
will also discuss efficient learning and sampling algorithms ([1]). 
 
 

 

References 
[1] Shizuo Kaji, Akira Horiguchi, Takuro Abe, Yohsuke Watanabe, “A Hyper-surface Arrangement Model of 

Ranking Distributions”, KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge 
Discovery & Data Mining, 796--804, 2021, https://doi.org/10.1145/3447548.3467253 
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Modelling Preference
with

Hyperplane Arrangement

Shizuo Kaji

joint with A. Horiguchi, T. Abe, Y. Watanabe

Summary

> >

>>

,

judges partial orders on items

Ranking data

Objective: construct a geometric representation of ranking data 

vs a > b > ca > c > b

b > c > a

c > a > b

c > b > a

b > a > c

Decision boundary

metric space 
(M,d)

b
c

a

An embedding of items into a metric space M defines equidistant hyper-surfaces, which divide M into cells. 
We find such an embedding, where the volume of each cell is proportional to the probability of the corresponding ranking.

Uniform sampling from the distribution 
= Uniform sampling from M

ba c

Challenge
• The distribution over complete rankings on n items is n! dimensional
• Each judge may provide only a partial ranking (not a full ranking)

a

c

b

vs 

b

a

vs c

: items

Fatty tuna Sea urchindata

model

Many people rank Fatty tuna first or high. People love or hate Sea urchin.

Complex, multi-modal 
distribution of the 

data is captured well 
by the model

Histogram of ranked positions

SUSHI3-2016 dataset consists 
of rankings by 5000 judges on 

10 sushi items.

Our model visualises some 
characteristics of the 

population’s preference.

Idea

Application to real world data

Representation capacity of our model
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Preference

◦ Each judge has his or her own preference
◦ A judge may not know (or reveal) preference among some items

judge

> >

>>

,

preference of items

More formally,

◦ Preference among the set of items can be modelled by an order on B
◦ An order can be partial; 

e.g., in the second case above, we do not know if egg > tuna or tuna < egg
◦ Preference depends on judges

(A judge is not necessarily a human but a criterion such as price and nutrition)
◦ Ranking data consists of rankings by many judges 

B: a set of items

egg

salmon
tuna

cucumber

A complete ranking of B

salmon tuna egg cucumber> > >

A partial ranking of B

salmon tunaegg cucumber> >,
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Definition of Order (Ranking)
◦A partial order on a set B satisfies
◦a < b and b > a do not occur at the same time
◦a < b and b < c imply a < c
◦A total order on B further satisfies
◦a > b or b > a or a = b for any a,b ∈ B
◦An order is described by a set of pairwise comparisons

ex. { a>b, b>c, a>d }
◦ remark: a partial order = transitive closure of an acyclic directed graph

In this talk:
complete (or full) ranking = total order

incomplete (or partial) ranking = partial order

Ranking data given by 
a collection of pairwise comparisons

judge higher lower

0 a b
0 b d
0 a c
1 d b
1 d a
2 c a
2 b c

Ranking data 
=
rankings by many judges 
=
Pairwise comparisons
associated with judges
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Remark: Various problems occur as 
special instances of ranking inference

Classification

Input Output

Penguin > Puffin > Pigeon > … > Cat  

Probability/confidence

Classifier + Data give rise to a ranking data

MODELLING
RANKING 

DISTRIBUTION

199



Goal Today

Assumptions:
◦ Judges are indistinguishable (i.e., the data is just a set of partial rankings)
◦ Each incomplete ranking can be completed

(i.e., each judge has an unknown complete ranking)
These mean that the data is represented by a probability distribution over 
the permutation group Sn of n items (|B|=n). 
We call such a distribution a ranking distribution on n items

Constructing a geometric model for ranking data (a set of partial rankings)

Two main difficulties:
(1)A probability distribution over Sn is (n!-1) dimensional!
(2)How can we complete an incomplete ranking?

Existing models for ranking distribution

◦Mallows’ φ model
◦ ! " ∝ exp −()! ","" " ∈ ,#
◦ Parameters: ( > 0, "" ∈ ,#
◦ )! is a distance on Sn (e.g. the Kendal tau distance) 

It has the mode at !" and the 
probability decrease as the 
distance from !" increases.

◦Plackett-Luce’s model
◦! " ∝ ∏!"#$ %('!)

∑"#!$%& %('")
" ∈ &$

◦ Parameters: /: 1 → 3$"

Each item has a utility value 
and selected one by one 

according to the value

Two popular and basic models are

Reference: Marden, Analyzing and Modeling Rank Data, 1996
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Geometric model in general
◦Representation learning is a field of research to find a 
representation of (implicitly) structured objects.
◦ The representation space often admits geometric structures.
(e.g., Euclidean space and other metric spaces)

objects

image

graph

representation

vector

Points in a metric space

Ex. Graph representation translates a combinatorial structure (adjacency)
to a geometric one (metric)  

word

Equidistant Line Arrangement on plane

a vs b

b vs c

c vs a

a > b > c

a > c > b

b > c > a
c > a > b

c > b > a

b > a > c

Decision boundary

R2

b

c

a

• Each compartment corresponds to a 
total ordering

• They are subdivision of Voronoi cells
• A partial ordering corresponds to the 

union of compartments
(e.g., the Voronoi of a = {a>b and a>c})
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Equidistant Hyper-surface Arrangement

a vs b

b vs c

c vs a

a > b > ca > c > b

b > c > a

c > a > b

c > b > a

b > a > c

Decision boundary

Riemannian 
manifold M

b
c

a

Our model is an equidistant hyper-surface arrangement such that 
the volume of each cell is proportional to the probability of the corresponding ranking.

Uniform sampling from the distribution 
=

Uniform sampling from M

Learning Algorithm

Triplet loss

Coulomb’s potential

Optimising coordinates in M of 
both judges and items by minimising

"% = $
&∈(

$
)!$")#

max() **, , − ) *+, , , −.)

", =$
*-.

1
) ,*, ,+

/

Target function: " = "% + 2 3 ",
First, place judges in the right cells by "%
Later, adjust volume by ", 90 judges prefer item 0, 10 judges item 1

M = disk
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Dimension constraints

◦ This gives a clue on the choice of the embedding dimension m.
◦Note that the dimension of the representation space is mn.

Theorem
An equidistant arrangement in Dm of (generic) 
n points, we have n! cells if and only if n-2 < m.

Not all arrangements can be realised as equidistant arrangement.
(e.g., three equidistant lines of a triangle meet at the circumcentre)

EXPERIMENTS
WITH SUSHI DATASET
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The SUSHI3-2016 dataset
◦Consists of complete rankings of 10 items by 5000 judges
◦Collected by T. Kamishima et al.
◦Available at http://www.kamishima.net/sushi/

Learning the model
◦We chose 4 = 50 as the metric space.
◦ The theorem suggests dim =|B|-1.
◦ The results was almost same for ! = #$%

◦ It took about two hours on Ryzen 2990WX.
◦ Visualisation was interpretable:
◦ Fatty tuna has a large Voronoi region
◦ Egg and Cucumber are similar and not 

popular 
◦ Sea urchin and Salmon roe are similar and 

distinctive

PCA projection of D9
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Representation capacity: ranking position

Fatty tuna Sea urchin

data

model

Many people rank Fatty tuna first or high. People love or hate Sea urchin.

Complex, multi-modal distribution is captured well by the model

Representation capacity: conditional probability
data

model

rank of eel
for judges with egg > tuna for judges with tuna > egg

The ranked position of eel (non-raw) depends heavily on 
judges’ preference between tuna and egg,

which the model successfully captures. 
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Input: Each judge reveals his or her ranking of, say, four items.
Output: The distribution for all ten items

Generalisation capacity
Experimental setting

Judge u: a > c > b > d 

Judge v: e > g > d > b 

…

The probability of a>b>c>d>e>f>g>h>i>j is 0.01

The probability of b>f>e>i>j>a>g>h>d>c is 0.02

…

This can be used for prediction:
For example, “what is the conditional probability of
g being ranked in the first by a judge with a>c>b?”

Not necessarily top-4

input
output

Each judge revealed a partial ranking among 6 items out of 10. 
Evaluated for the top-4 ranking with
◦Correlation of probability (higher is better)
◦ symmetrised KL-divergence (lower is better)
◦Wasserstein distance (lower is better)

↵ 2 4 6 8 10

Corr 0.165 0.795 0.840 0.868 0.886
sKL 0.370 0.154 0.150 0.142 0.121
W 2.502 0.832 0.770 0.666 0.457

↵ 2 4 6 8 10

Corr 0.546 0.893 0.922 0.940 0.960
sKL 0.106 0.023 0.019 0.016 0.011
W 0.965 0.305 0.287 0.247 0.157

Table 3: Model performance for learning partial in-
formation. (top) for top-4 ranking (bottom) for sub-
ranking for five labels 0, 4, 5, 7, and 9.

Figure 5: Visualisation of the SUSHI dataset. (left)
model learned with ↵ = 4. (right) model learned with
↵ = 6.

in the real-world data as we see in our experiments with the
SUSHI dataset.

While keeping a reasonable degree of fidelity to the data,
our model achieves a drastic reduction in the dimension from
the factorial of the number of labels to roughly the square of
it. Still, the use of our model should be limited to the case
when the number of labels is relatively low (less than a few
dozens) since the embedding dimension required for fidelity
increases linearly with the number of labels. On the other
hand, our model can handle a large number of judges.

The geometric nature of our model enables intuitive inter-
pretation and visualisation of the data, as well as an e�cient
sampling. A limitation is that we have not considered a sam-
pling method for rankings conditioned by a given partial
ranking, e.g., b1 > b2 > b3. Conditional sampling can be
performed by a standard rejection method; first sampling
unconditionally and throwing away samples inconsistent with
the given partial ranking. However, this method may not be
very e�cient. The problem of conditional sampling is reduced
to a geometric problem of sampling from the intersection of
half-spaces, and it will be discussed in the future.

A APPENDIX

A.1 Proof of Theorem 5.1

We prove the theorem using the theory of hyper-plane ar-
rangements in Rm. The case for M = D

m easily follows

by scaling. Consider n-points B = {b1, . . . , bn} ⇢ Rm that
correspond to labels. For 1  i < j  n, let Hij denote the
mid-hyper-plane of bi and bj defined as a hyper-plane con-
taining the mid-point of bi and bj and whose normal vector
is bibj . The set of hyper-planes {Hij}1i<jn is denoted by
Am,n.

A chamber of Am,n is a connected component of Rm
\

[H2Am,nH, and the set of all chambers is denoted by C(Am,n).
Note that p(w) > 0 for w 2 Sn if and only if there is a cham-
ber corresponding to w. Hence, we have am,n = |C(Am,n)|.

We have to show that am,n ≥ n! if and only ifm ≥ n−1 and
B is generic. If B is generic, then am,n = n! () m+1 ≥ n

follows immediately from Corollary in page 40 in [13]. In
the following, we show that am,n < n! if B is not generic.
Recall that am,n coincides with the total Betti number of
the complexified complement U := (Rm

\ [H2Am,nH)⌦C of
Am,n (see, for example, [24]). In other words,

am,n =

mX

i=0

dimC H
i(U,C) = dimC H

⇤(U,C),

where H⇤(U,C) is the cohomology ring of U with the complex
coe�cients. By the Brieskorn-Orlik-Solomon’s theorem (see,
for example, [24, §3]), we have a ring isomorphism

H
⇤(U,C) ' E/Im,n.

Here, E is the exterior algebra over C generated by the formal
basis {eH}H2Am,n , and Im,n is the ideal of E generated by
{
V

H2B(eH) | B 2 Sm,n}, where

Sm,n := {B ⇢ Am,n | \H2BH = ;, or |B| > codim(\B)}.

It follows that am,n is smaller if the ideal Im,n is larger. By the
construction, it is clear that Im,n is larger if the hyperplane
in Am,n has more non-normal crossing intersections, which
occurs if B is not generic. This completes the proof.

A.2 Proof of Theorem 5.2

By [13, Theorem 3], we have the following recursion formula
when B is generic:

am,n = (n− 1)am−1,n−1 + am,n−1.

A direct computation with the formula proves the statement
for k  4. Assume that k ≥ 5. We prove by induction on

successfully captures the characteristics of the data that fatty
tuna is generally preferred while sea urchin is controversial.

model Uniform Plackett-Luce Ours

Corr 0.025(±0.058) 0.436 0.886
sKL 0.388(±0.001) 0.283 0.121
W 2.51(±0.110) 2.03 0.457

model Uniform Plackett-Luce Ours

Corr 0.012(±0.041) 0.779 0.960
sKL 0.166(±0.001) 0.073 0.011
W 1.894(±0.023) 0.891 0.157

Table 2: The fidelity of fitted models to the SUSHI
dataset. (top) for top-4 ranking (bottom) for sub-
ranking for five labels {0, 4, 5, 7, 9}. The metrics are
introduced in §3.

Figure 3: Distribution of ranking positions of (left)
7: fatty tuna (right) 4: sea urchin. Blue bars on the
left indicate the data and orange bars on the right
indicate the fitted model. The plots show that fatty
tuna is generally preferred, whereas sea urchin has
judges divided. Our model captures both cases well.

6.3 Prediction

We consider prediction tasks that are closely related to rec-
ommendation; say we have a customer whose preference is
b1 > b2 > b3, but we do not know whether b4 > b5 or
b5 > b4 for new items b4 and b5. The conditional probabil-
ity estimated from the model by Ab4>b5^b1>b2>b3/Ab1>b2>b3

provides a clue which of b4 and b5 to recommend to this
customer. We perform the following two experiments that
are in this line with the SUSHI dataset.

(i) The model is used to predict the ranking position of
sea eel (1) depending on judges’ preference between egg
(6) to tuna (2).

(ii) Let ↵ 2 {2, 4, 6, 8, 10}. From a complete dataset, each
judge reveals a partial ranking of randomly chosen ↵

labels (↵ = 10 means the complete ranking). The chosen
labels may di↵er for each judge. We train our model by
using this simulated incomplete dataset and evaluate
the resulting distribution for all 10 labels.

In these experiments, the embedding dimension is set to
m = 9.

With the former experiments, we would like to see if our
model can capture the dependence of the preference of sea
eel on that of egg versus tuna. The result is shown in Figure
4. Note that both sea eel and egg are non-raw options. This
is reflected in the di↵erence in the histograms. This result
demonstrates that the conditional probability is well captured
by our model.

The latter experiment is evaluated in the same way as
the representation capacity (see Table 3). It should be noted
that only a single pairwise comparison is revealed for each
judge when ↵ = 2. This means, knowing b1 > b2 provides no
information on the ranking of another label b3. Therefore,
the condition ↵ ≥ 3 is necessary to capture the correlations
among labels. This explains why the performance is consid-
erably worse when ↵ = 2. Note also that the number of
pairwise comparisons among ↵ labels is ↵(↵− 1)/2. Hence,
for example, the amount of information for ↵ = 8 (respec-
tively, ↵ = 6) compared to that of ↵ = 10 in terms of the
number of pairwise comparisons is 28/45 ⇡ 0.62 (respectively,
15/45 ⇡ 0.33). Considering the fact that the amount of in-
formation in the training data is proportional to the square
of ↵, our model retains reasonable performance even when
trained with a small ↵ (a large reduction in data) in terms
of the evaluation metrics. To support this observation, we
produce the visualisation of the model (Figure 5) for ↵ = 4
and 6. Comparing with Figure 2 trained with the complete
rankings, we observe that our model successfully captures
general characteristics of the data even when learned with
partial information.

Figure 4: Conditional distribution of ranking posi-
tions of sea eel (left) when egg is preferred to tuna
(right) when tuna is preferred to egg. Blue bars
on the left indicate the data and orange bars on
the right indicate the fitted model. The plots indi-
cate that the preference of sea eel (non-raw option)
depends on the preference between egg (non-raw)
and tuna (raw). Our model successfully captures the
characteristics of the data.

7 CONCLUSION

In this paper, we introduce a geometric representation of
ranking distributions that can be learned with data consisting
of pairwise comparisons. Our model does not assume the
existence of central ranking(s) as in (mixed) Mallows models,
and can allow heterogeneous distributions with any number
of modes. Thus, it has a rich capacity to capture complexity

Comparison target: α = 10Our model Evaluation metrics for top-4 rankings

How to interpret:
If you are given the ranking of $ = 4

random items from each judge 
(the choice of four items varies for 

each judge), you can tell the 
population’s top-4 ranking 

distribution fairly well (corr = 0.795).
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Conclusion
A model for ranking data which
◦has high representation capacity
◦utilises a geometric structure as regularisation
◦ is relatively low dimensional
◦ is easy to sample from
◦ is mathematically interesting
◦comes with an implementation: 
https://github.com/shizuo-kaji/rankLearning

Open problem
◦ Parametrisation of arrangements
◦ Efficient sampling under a condition
◦ Stricter bounds for embedding dimension
◦ Choice of the ambient manifold
◦ Combinatorics of arrangement as a topological invariant

(c.f. the homotopy type of the configuration space 
can sometimes distinguish homeo types)
◦ Optimal transport on Sn 

(e.g., how the combinatorics helps computation?)
◦ Generalisation to partial rankings
◦ Evaluation by myself by eating a lot of sushi Toy example of  S1

1

3

2

123 321

213

312

231

132

Always antipodal
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What is this talk about?
Introduction

A mixed-integer convex optimization method

based on conditional gradients.

Why? Conditional gradients generate sparse iterates, leading to lower fractionality, and hence
less branching.

Today: A brief overview of approach and solver.

Outline
• Recap: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Mixed-Integer Conditional Gradients
• Julia Package Boscia.jl

(Hyperlinked) References are not exhaustive; check references contained therein.
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Conditional Gradients

a.k.a. the Frank-Wolfe algorithm

—The Basics—
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:

min
x2P

f (x) (baseProblem)

Source: [Jaggi, 2013]
) Complexity of convex optimization relative to LO/FO oracle
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x2P

f (x) (baseProblem)

Source: [Jaggi, 2013]

1. Very versatile model
2. Can use various types of information about both f and P

3. Works very well in (continuous) real-world applications
4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)
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Interlude: why LMOs?
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

LMO model has many advantages.

1. Includes explicit formulation via constraints
2. Some problems do not posess ‘small’ formulations but have efficient LMOs.

Example: Matching Polytope [Rothvoss, 2014, Braun and Pokutta, 2015a,b, Braun et al., 2015, 2017a]

3. Allows modeling of compact convex constraints as long as we have an LMO.
Example: SDP cone

4. Often much faster than projection.
Example: nuclear norm. Largest singular vector (Lanczos method) vs. full SVD

5. LMO is a black box for the algorithms
6. For many LMOs of interest close form solutions available.

Example: ✓1-ball for LASSO regression.
For an overview see: [Combettes and Pokutta, 2021]

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 4 / 23

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : Rn ! R be a differentiable function.

Definition (Convexity)
For all x , y it holds:

f (y) − f (x) ≥ hrf (x), y − xi .

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x , y it holds:

f (y) − f (x)  hrf (x), y − xi + L

2
ky − xk2.
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The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 2 P

2: for t = 0 to T − 1 do

3: vt  argmin
v2P

hrf (xt ), vi
4: xt+1  xt + ✏t (vt − xt )
5: end for

xt

vt

−rf (xt )

x
⇤

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle.
• Sparsity: optimal solution is a convex combination of (usually) vertices.

Disadvantages:
• Suboptimal convergence rate of O(1/T )

) Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 6 / 23
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice ✏t ⌘ 2

t+3 :

f (xt ) − f (x⇤)  2LD
2

t + 3
.

Proof Sketch.
By smoothness:

f (xt+1) − f (xt )  hrf (xt ), xt+1 − xti +
L

2
kxt+1 − xt k2 = ✏t hrf (xt ), vt − xti +

L✏2
t

2
kvt − xt k2 .

LP maximality and convexity: hrf (xt ), vt − xti  hrf (xt ), x⇤ − xti  f (x⇤) − f (xt ). Moreover, kvt − xt k  D.

Thus:

f (xt+1) − f (x⇤)  (1 − ✏t )(f (xt ) − f (x⇤)) + ✏2
t

LD
2

2
.

By Induction (plugging in the guarantee + definition of ✏t ):

f (xt+1) − f (x⇤) 
✓
1 − 2

t + 3

◆
2LD

2

t + 3
+ 4

(t + 3)2 · LD
2

2
=

2LD
2(t + 2)

(t + 3)2  2LD
2

t + 4
,

by (t + 2)(t + 4)  (t + 3)2.

⇤
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LD
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2
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f (xt+1) − f (x⇤) 
✓
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t + 3

◆
2LD

2
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+ 4

(t + 3)2 · LD
2

2
=

2LD
2(t + 2)

(t + 3)2  2LD
2

t + 4
,

by (t + 2)(t + 4)  (t + 3)2.

⇤
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm
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Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015, Lan and Zhou, 2016, Garber and Meshi, 2016]

2. Non-convex case [Lacoste-Julien, 2016]

3. Online case [Hazan and Kale, 2012]

4. Stochastic variants and adaptive gradients [Hazan and Luo, 2016, Reddi et al., 2016, Combettes et al., 2020]

5. Sharp functions and sharp regions [Kerdreux et al., 2019, 2021a,b]

6. Acceleration [Diakonikolas et al., 2020, Bach, 2020, Carderera et al., 2021]

7. Specialized variants [Freund et al., 2017, Braun et al., 2017b, 2019b,a]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see our survey! [Braun et al., 2022]
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Mixed-Integer Conditional Gradients

—The Framework—
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Problem setting
Mixed-Integer Conditional Gradients

Basically. Smooth convex objective over MIPs.

Slightly more general:

min
x ,y

f (x , y)

s.t. x 2 X
xj 2 Z 8j 2 J

y 2 Y

with LMO over (X \ bounds) ⇥ Y.
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Three main algorithmic frameworks for MINLPs
Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

NLP

node bound

Standard BnB framework on top
of NLP relaxations.

LP-based MINLP frameworks
and outer approximations

Our approach. Linearized models solved as MIPs
within the Frank-Wolfe algorithm on top of which

we branch

Tree of trees or forest ! Boscia (Corsican) = Forest.

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 11 / 23

Three main algorithmic frameworks for MINLPs
Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

NLP

node bound

Standard BnB framework on top
of NLP relaxations.

BnB

LP NLP

node

bound

fixings

solution

LP-based MINLP frameworks
and outer approximations

Our approach. Linearized models solved as MIPs
within the Frank-Wolfe algorithm on top of which

we branch

Tree of trees or forest ! Boscia (Corsican) = Forest.

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 11 / 23

228



Three main algorithmic frameworks for MINLPs
Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

NLP

node bound

Standard BnB framework on top
of NLP relaxations.

BnB

LP NLP

node

bound

fixings

solution

LP-based MINLP frameworks
and outer approximations

BnB

NLP

node bound

gradient direction

MIP

Our approach. Linearized models solved as MIPs
within the Frank-Wolfe algorithm on top of which

we branch

Tree of trees or forest ! Boscia (Corsican) = Forest.

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 11 / 23

Branching: continuous relaxation (usual approach)
Mixed-Integer Conditional Gradients

x̃

Open question.
Can we define adaptive criteria to choose relaxation?
(E.g., geometry of the feasible set, conditioning of the function)
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Reducing number of MIP oracle calls
Mixed-Integer Conditional Gradients

We use Blended Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]

• Lazification. aggressively reuse old solutions
• Blending. perform local steps for sparsity ! low fractionality
• Active set. branching means simply splitting convex combination
• Discarded set. reuse solutions from previous nodes
• Incomplete resolution and warmstarts. Less work per node

Does it help?

On average something like 7 to 10 sub-MIPs per node.
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On average something like 7 to 10 sub-MIPs per node.
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Reducing cost for each MIP
Mixed-Integer Conditional Gradients

Subproblems are MIPs. Leverage MIP advances:

• Cutting-planes
• Domain propagation
• Presolving
• Primal heuristics
• etc.

Moreover, we can reuse information across solves heavily:

• MIP solver called with different objectives within node
• Identical polyhedron with updated bounds solved across nodes
• All found primal solutions are valid for main problem

Question of MIP reoptimization: [Gamrath et al., 2015]

Which information should be (conditionally) transferred across instances?
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Boscia.jl

—The Code—

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 16 / 23

The package
Boscia.jl

• Julia package
• Based on Bonobo.jl (BnB package) and FrankWolfe.jl (our FW package)
• Via MOI can use basically any MIP solver; some features specific to SCIP
• Includes other features such as hybrid branching
• Available under MIT license

Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 17 / 23
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Example: Code
Boscia.jl ⌥ ⌅

using Boscia

using FrankWolfe

using Random

using SCIP

using LinearAlgebra

import MathOptInterface

const MOI = MathOptInterface

n = 6

const diffw = 0.5 * ones(n)

o = SCIP.Optimizer()

MOI.set(o, MOI.Silent(), true)

x = MOI.add_variables(o, n)

for xi in x

MOI.add_constraint(o, xi, MOI.GreaterThan(0.0))

MOI.add_constraint(o, xi, MOI.LessThan(1.0))

MOI.add_constraint(o, xi, MOI.ZeroOne())

end

lmo = FrankWolfe.MathOptLMO(o)

function f(x)

return sum(0.5*(x.-diffw).ˆ2)

end

function grad!(storage, x)

@. storage = x-diffw

end

x, _, result = Boscia.solve(f, grad!, lmo, verbose = true)⌃ ⇧
Sebastian Pokutta · Boscia: Mixed-Integer Conditional Gradients 18 / 23

Example: planted solution in high-dimensional space
Boscia.jl

julia> include("examples/low_dim_in_high_dim.jl")

Boscia Algorithm.

Parameter settings.

Tree traversal strategy: Move best bound

Branching strategy: Most infeasible

Absolute dual gap tolerance: 1.000000e-06

Relative dual gap tolerance: 1.000000e-02

Frank-Wolfe subproblem tolerance: 1.000000e-05

Total number of varibales: 12

Number of integer variables: 0

Number of binary variables: 12

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Iteration Open Bound Incumbent Gap (abs) Gap (rel) Time (s) Nodes/sec FW (ms) LMO (ms) LMO (calls c) FW (Its) #ActiveSet Discarded

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* 1 2 -2.297891e+03 -1.977958e+03 3.199328e+02 1.617490e-01 9.150000e-01 3.278689e+00 758 3 11 10001 1 0

* 2 3 -2.297891e+03 -2.238338e+03 5.955322e+01 2.660600e-02 1.442000e+00 3.467406e+00 526 11 46 10001 17 0

* 4 5 -2.292074e+03 -2.239976e+03 5.209869e+01 2.325860e-02 2.500000e+00 3.600000e+00 531 6 101 10001 11 0

* 5 6 -2.292074e+03 -2.242301e+03 4.977302e+01 2.219729e-02 3.024000e+00 3.637566e+00 523 10 133 10001 12 0

* 6 7 -2.292074e+03 -2.242301e+03 4.977302e+01 2.219729e-02 3.544000e+00 3.668172e+00 519 11 164 10001 4 0

* 16 17 -2.282246e+03 -2.243023e+03 3.922226e+01 1.748634e-02 8.726000e+00 3.781802e+00 524 8 439 10001 6 2

* 21 22 -2.280549e+03 -2.243325e+03 3.722381e+01 1.659314e-02 1.131100e+01 3.801609e+00 514 5 564 10001 7 1

* 29 30 -2.279719e+03 -2.244814e+03 3.490433e+01 1.554887e-02 1.544900e+01 3.819017e+00 522 8 761 10001 3 1

* 66 67 -2.271953e+03 -2.245231e+03 2.672273e+01 1.190200e-02 3.451800e+01 3.853062e+00 517 8 1616 10001 1 2

100 101 -2.268603e+03 -2.245231e+03 2.337210e+01 1.040967e-02 5.204200e+01 3.862265e+00 516 6 2357 10001 2 1

119 120 -2.267387e+03 -2.245231e+03 2.215595e+01 9.868008e-03 6.184900e+01 3.864250e+00 530 6 2778 10001 4 0

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Solution Statistics.

Solution Status: Optimal (tolerance reached)

Primal Objective: -2245.23067557406

Dual Bound: -2267.3866295644566

Dual Gap (relative): 0.009868007876175864

Search Statistics.

Total number of nodes processed: 239

Total number of lmo calls: 2782

Total time (s): 61.853

LMO calls / sec: 44.9776082000873

Nodes / sec: 3.8640001293389163

LMO calls / node: 11.640167364016737
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Example: computational results: Sparse Regression
Boscia.jl
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Thank you!

Preprint: arxiv.org/abs/2208.11010,
Convex integer optimization with FW methods [Hendrych et al., 2022]
Package available at github.com/ZIB-IOL/Boscia.jl

In a nutshell. Minimize smooth convex objective over any MIP. Applications in engineering, sparse prediction models,
statistics, and relaxation of combinatorial problems.
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Blind deconvolution is a technique to recover an original signal without knowing a 
convolving filter. It is naturally formulated as a minimization of a quartic objective 
function under some assumption. Because its differentiable part does not have a 
Lipschitz continuous gradient, existing first-order methods are not theoretically 
supported. In this presentation, we reformulate the objective function as a difference of 
convex (DC) functions and add nonsmooth regularization. Then, we apply the Bregman 
proximal DC algorithm (BPDCA) and the BPDCA with extrapolation (BPDCAe), 
whose convergences are theoretically guaranteed under the L-smooth adaptable (L-
smad) property. BPDCAe outperformed other existing algorithms in image deburring 
applications. This talk is based on [1] and [2]. 
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Di↵erence of convex functions (DC) optimization

Definition (DC optimization problem with a regularization term)

Given convex functions F1,F2,G : Rd ! (−1,+1], consider the following DC optimizaion problem:

min
z2clC

F1(z)− F2(z) + G (z), (1)

where F1 is C1
, and C ⇢ Rd

is a nonempty open convex set.

Exisiting algorithms (⇠k 2 @F2(zk
) is a subgradient of F2 at zk

):

• DC algorithm (DCA): zk+1 2 argminz2clC{F1(z)− h⇠k , zi+ G (z)}.
• Its subproblem is computationally demanding unless F1 and G have simple structures.

• Proximal DCA: zk+1
= argminz2clC{hrF1(zk

)− ⇠k , zi+ G (z) + 1
2λkz − zkk22}, λ 2 (0, 1

L ).

• To guarantee its global convergence, it requires F1 is L-smooth (rF1 is Lipschitz continuous).

• When F1 is not L-smooth (L cannot be defined), it is not practical.

• Bregman proximal gradient (BPG): zk+1
= argminz2clC{hrF (zk

), zi+ G (z) + 1
λDH(z , zk

)}.
• The Bregman distance DH(z ,w) := H(z)− H(w)− hrH(w), z − wi, where H is C1 and convex.

• Does not require L-smoothness of F = F1 − F2 (when F2 is also C
1).

1 / 14
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Today’s contents

Definition (DC optimization problem)

Given convex functions F1,F2,G : Rd ! (−1,+1], consider the following DC optimizaion problem:

min
z2clC

F1(z)− F2(z) + G (z), (1)

where F1 is C1
, and C ⇢ Rd

is a nonempty open convex set.

Overview

• Introduce proximal DCA using the Bregman distance.

• The Bregman distance DH(z ,w) := H(z)− H(w)− hrH(w), z − wi, where H is C1 and convex.

• The proposed methods converge to a stationary point of (1) under the L-smooth adaptable

property instead of L-smoothness.

• Application to blind deconvolution.

• For BPG, finding an appropriate H for F is di�cult. Using DC decoposition, it is easier.

2 / 14

Proposed method: Bregman proximal DC algorithm

Bregman proximal DC algorithm (BPDCA) [Takahashi et al., 2022]

Input: z0 2 C , λ > 0, and a convex and C1
function H.

for k = 0, 1, 2, . . . , :

Compute ⇠k 2 @F2(zk
) and

zk+1
= argmin

z2clC

⇢
hrF1(zk

)− ⇠k , zi+ G (z) +
1

λ
DH(z , zk

)

�
. (2)

BPDCA is a method combined with BPG [Bolte et al., 2018] and proximal DCA [Wen et al., 2017].

• Minimizes a first-order approximation of the objective function,

F1(z)− F2(z) + G (z) ' hrF1(zk
)− ⇠k , z − zki+ F1(zk

)− F2(zk
)| {z }

const.

+G (z), (3)

with the Bregman proximality
1
λDH(z , zk

) =
1
λ

�
H(z)− H(zk

)− hrH(zk
), z − zki

�
as (2).

• Does not require the di↵erentiability of G .

• When G has a sufficiently simple structure, such as G = k · k1, (2) is solved in a closed form.

3 / 14
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Proposed method: BPDCA with extraporation

The accelerated version of BPDCA.

BPDCA with extrapolation (BPDCAe) [Takahashi et al., 2022]

Input: z−1
= z0 2 C , λ > 0, t−1 = t0 = 1, and a convex and C1

function H.

for k = 0, 1, 2, . . . , :

Set w k
= zk

+
tk�1−1

tk
(zk − zk−1

) and tk+1 =
1+
p

1+4t2k
2 .

Compute ⇠k 2 @F2(zk
) and

zk+1
= argmin

z2clC

⇢
hrF1(w k

)− ⇠k , zi+ G (z) +
1

λ
DH(z ,w k

)

�
. (4)

Reset tk−1 = tk = 1 and w k
= zk

if either of the following conditions holds:

• k ⌘ 0 (mod N), N 2 N is given.

• DH(zk ,w k
) > ⇢DH(zk−1, zk

), where ⇢ 2 [0, 1) is given.

• w k /2 C .

4 / 14

Convergence analysis: Decreasing property

Definition (L-smooth adaptable (L-smad) [Bolte et al., 2018])

Let F ,H : Rd ! (−1,+1] be C1
and H be convex. The pair (F ,H) is called L-smooth adaptable

(L-smad) if there exists L > 0 such that LH − F and LH + F are convex.

The L-smad property is a generalization of L-smoothness.

When H =
1
2k · k

2
2, the L-smad property corresponds to L-smoothness.

If the pair (F1,H) is L-smad, the sequence of the objective function value  := F1 − F2 + G

generated by BPDCA is decreasing.

Lemma (Decreasing property [Takahashi et al., 2022])

Let {zk}k be a sequence generated by BPDCA. Then, it holds that

λ (zk+1
)  λ (zk

)− (1− λL)DH(zk+1, zk
). (5)

In particular, the decreasing property in the objective function value  is ensured with 0 < λL < 1.

5 / 14
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Convergence analysis: Global convergence

When the objective function is a Kurdyka- Lojasiewicz (KL) function, the following theorems holds.

Theorem (Global convergence [Takahashi et al., 2022])

Let {zk}k be a sequence generated by BPDCA. Assume that the objective function is a KL function.

Then, {zk}k converges to a stationary point z̃ .

Theorem (Rate of convergence [Takahashi et al., 2022])

Let {zk}k be a sequence generated by BPDCA and assume that {zk}k converges to a stationary

point z̃ . Assume that the objective function is a KL function with φ(s) = cs1−✓
for some ✓ 2 [0, 1)

and c > 0. Then, the following statements hold:

• If ✓ = 0, there exists k0 > 0 such that zk
is constant for k > k0 (finite);

• If ✓ 2 (0, 1
2 ], there exist c1, k1 > 0, and ⌘ 2 (0, 1) such that kzk − z̃k2 < c1⌘

k
for k > k1 (linear);

• If ✓ 2 (
1
2 , 1), there exist c2 > 0 and k2 > 0 such that kzk − z̃k2 < c2k

− 1�✓
2✓�1 for k > k2 (sublinear).

For BPDCAe, similar convergence results hold.

6 / 14

Blind deconvolution

Definition (Blind deconvolution)

Consider the convolution of a filter f 2 Rm
and a signal g 2 Rm

, given by

ỹ = f ⇤ g , (6)

where ⇤ denotes the convolution. Our goal is to recover g from ỹ without knowing f .

• Non-blind deconvolution: Recover g with known f .
• Blind deconvolution: Recover g and f simultaneously. It is a charenging problem.

Application: Astronomy, communication engineering, and image processing.

Figure 1: Recover the original image g from the blurred image ỹ by removing the blurring kernel f .

7 / 14
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Optimization problem for blind deconvolution

For the linear operators B̃ and Ã, assume that there exist the true (h◦, x◦
) 2 Rd1 ⇥Rd2 such that

f = B̃h◦, g = Ãx◦. (7)

Applying the discrete Fourier transform
p
mF 2 Cm⇥m

to both sides of ỹ = f ⇤ g ,

y = Bh◦ � Ax◦, (8)

where y :=
1p
m
F ỹ , B := FB̃, and A := FÃ, and � denotes the Hadamard (elementwise) product,

and ·̄ denotes the complex conjugate.

Definition (Optimization problem for blind deconvolution)

min
(h,x)2clC

1

2
kBh � Ax − yk22

| {z }
=:F (h,x)

+G (h, x). (9)

• F is nonconvex and not L-smooth.

• G : Rd1 ⇥Rd2 ! (−1,+1] is convex and non-smooth (not di↵erentiable) as a sparse regularizer.

• Use sparse regularization (for example, `1 norm) when h or x have sparse structures.

• [Li et al., 2019] used a smooth G using `2 norm.

8 / 14

DC decomposition for blind deconvolution

Because F has a bilinear term 2RehBh�Ax , yi, it is difficult to find H satisfying the L-smad property.

! BPG [Bolte et al., 2018] is not applicable.

DC decomposition for blind deconvolution

Our optimization problem for blind deconvolution:

min
(h,x)2clC

1

2
kBh � Ax − yk22

| {z }
=:F (h,x)

+G (h, x), (9)

F has a DC decomposition F = F1 − F2 for two convex functions F1 and F2:

F1(h, x) =
1

4
kBhk44 +

1

4
kAxk44 +

1

2
(kBh � Axk22 + ky � Bhk22 + kAxk22 + kyk22),

F2(h, x) =
1

4
kBhk44 +

1

4
kAxk44 +

1

2
kȳ � Bh + Axk22.

Problem (9) is equivalent to the following DC optimization problem:

min
(h,x)2clC

F1(h, x)− F2(h, x) + G (h, x). (10)

9 / 14
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L-smad property for blind deconvolution

Consider the L-smad property of (F1,H) to apply BPDCA(e).

Theorem (L-smad property [Takahashi et al., 2023])

Let H be defined by

H(h, x) =
1

4

�
khk22 + kxk22

�2
+

1

2

�
khk22 + kxk22

�
. (11)

By denoting bj and aj be the jth column vectors of BH
and AH

, respectively, then for any L

satisfying

L ≥
mX

j=1

�
3kbjk42 + 3kajk42 + kbjk22kajk22 + |yj |2kbjk22 + kajk22

�
, (12)

the pair (F1,H) is L-smad.

BPDCA(e) converges to a stationary point of (9).

Adjuste L in our numerical experiments.

Backtracking can be applied to BPDCA(e) but its calculations are sometimes expensive.

10 / 14

Numerical experiments: Blind deconvolution

Setting

• The blurring kernel h 2 Rd1 has its elements in
p
d1 ⇥

p
d1 pixels (

p
d1 = 48).

• The wavelet coefficients x 2 Rd2 (d2 = 256
2
).

• B̃ is an operator reshaping h, and Ã is an inverse discrete wavelet transform operator.

• Therefore, f = B̃h◦, g = Ãx◦. The pixcels of the original image is 512⇥ 512.

• The regularizer G (h, x) = ✓khk1.
• The feasible region clC = {(h, x) 2 Rd1 ⇥Rd2 | h ≥ 0, x ≥ 0}.

Figure 2: Recover (h◦
, x◦) from y = 1p

m
F ỹ .

11 / 14

247



Comparisons of algorithms

Algorithms

• BPDCAe [Takahashi et al., 2022]: The accelerated version of BPDCA.

• BPDCA [Takahashi et al., 2022]

• FISTA [Beck and Teboulle, 2009]: Adjusts the step size by backtracking.

• Alternating minimization (AM): Minimizes  with respect to h and x alternately (its

subproblems are solved by FISTA (10 iterations); the number of the maximum iteration is 3,000).

•  (h, x) = 1
2kBh � Ax − yk22 + ✓khk1.

• (h◦, x◦
) is the ground truth,  

◦
=  (h◦, x◦

).

• ✓ = 0.01.

12 / 14

Comparisons of the recovered images

(a) Ground truth (b) Intial point (c) BPDCAe (d) BPDCA (e) FISTA (f) AM

Figure 3: The upper row: the recovered hs. The lower row: the recovered xs.

13 / 14
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Summary and future work

Summary

• Introduce BPDCA(e) for solving a DC optimization problem without L-smoothness.

• Reformulate blind deconvolution as a DC optimization problem with non-smooth regularization

and apply it to BPDCA(e).

Future work

• How to choose the Bregman distance DH .

• Application to self-calibration in radio interferometric imaging.

Takahashi, S., Fukuda, M., and Tanaka, M. (2022).

New Bregman proximal type algorithms for solving DC optimization problems.

Computational Optimization and Applications, online.

Takahashi, S., Tanaka, M., and Ikeda, S. (2023).

Blind deconvolution with non-smooth regularization via Bregman proximal DCAs.

Signal Processing, 202:108734.
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Graph-structured data is one of the representative discrete data structures, while 
continuous data is usually represented as vectors. Continuous representation of graph-
structured data refers to the assignment of vectors to nodes in the graph-structured data 
so that the relationship between two nodes can be recovered using these vectors. By 
representing graph-structured data in continuous space, we can apply various algorithms 
in continuous space to real-world applications such as link prediction, attribute 
prediction, information retrieval, and question answering while preserving 
combinatorial characteristics of graph-structured data. In this presentation, we focus on 
the theoretical representational power of representation methods. Some representation 
methods, such as [1] or [2], can represent any inputs accurately. Such a property is called 
full expressiveness. We theoretically proved that some representation methods which 
are not fully expressive are, in fact, almost fully expressive. This presentation introduces 
almost fully expressive models and shows numerical results for link prediction tasks. 
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Indiscriminate IoT attacks have increased in recent years. Adversaries confirm if 
vulnerable destination ports are open as a preliminary step of the attack, and this 
procedure is called port scan. The darknet, also known as a network telescope, is used 
for observing such port scan activities. It passively monitors network traffic with an 
unreachable dark IP address block; thus, it receives not regular network traffic but 
Internet-wide scans for attack or investigation. Our goal is to specify scan activities for 
attack purposes by focusing on the destination ports of packets collected from a darknet. 
We treat each source IP address as a multiset made from the pairs of the destination port 
and the number of packets. We create a distance on the multisets and perform clustering 
using the distance. Multisets contribute to more fine clustering than clustering using port 
sets or the number of packets. We also propose the speedup technique for clustering 
based on the property of the distance. 
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Dense subgraph discovery is an important graph-mining primitive with a variety of real-
world applications. One of the most well-studied optimization problems for dense 
subgraph discovery is the densest subgraph problem, where given an edge-weighted 
undirected graph, we are asked to find a subgraph that maximizes the average degree. 
Although this problem can be solved exactly in polynomial time and well-approximately 
in almost linear time, a densest subgraph has a structural drawback, namely, the 
subgraph may be disconnected by removing only a few vertices/edges within it. In this 
talk, we propose an algorithmic framework to find a dense subgraph that is well-
connected in terms of vertex/edge connectivity. This talk is based on joint work [1] with 
Francesco Bonchi (CENTAI), David García-Soriano (ISI Foundation), and 
Charalampos E. Tsourakakis (Boston University). 
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Dense subgraph discovery

Dense subgraphs in real-world:
• social groups

in friendship networks

• communities & spam link farms
in Web graphs

• molecular complexes
in protein interaction networks

Dense subgraph discovery is a fundamental task in graph mining

3 / 26

How to detect dense subgraphs

The most common way is to utilize optimization theory:

Step 1: Introduce a quality function
Step 2: Define an optimization model (with or without constraints)
Step 3: Solve the model exactly or approximately

Many optimization models and algorithms have been developed

4 / 26
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Densest subgraph problem

Let G = (V ,E ,w) be an edge-weighted graph (w : E → Q>0)

Problem (Densest subgraph)

Input: G = (V ,E ,w)

Output: S ⊆ V that maximizes d(S) :=
w(S)

|S| (density)

w(S): sum of edge weights in the induced subgraph G[S]

• Polynomial-time exact algorithms
• LP-based algorithm [Charikar ’00]
• flow-based algorithm [Goldberg ’84]

• Almost-linear-time 1/2-approximation algorithm [Charikar ’00]

An optimal solution is referred to as a densest subgraph

5 / 26

Drawback of densest subgraphs

Densest subgraphs are not necessarily well-connected

Barbell graph

• The entire graph is the densest subgraph
• Removing only one edge or two vertices separates it

Densest subgraphs may not be robust to vertex/edge failure

6 / 26
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Not only in theory...
Densest subgraphs in real-world Web graphs:

web-BerkStan web-Google

web-NotreDame web-Stanford 7 / 26

Terminology

Let G = (V ,E) be a graph

• S ⊂ V is called a vertex separator if its removal divides G into at
least two nonempty subgraphs between which there are no edges

• The vertex connectivity κ(G) is the smallest cardinality of a
vertex separator of G if G is not a clique and |V | − 1 otherwise

• G is said to be k -vertex-connected if κ(G) ≥ k

Table: Statistics of the four densest subgraphs SDS ⊆ V

Graph |SDS| |E(SDS)| d(S) κ(G[SDS]) min-deg(G[SDS])

web-BerkStan 392 40,535 103.41 12 201
web-Google 123 3,449 28.04 30 30
web-NotreDame 1,367 107,526 78.66 1 155
web-Stanford 597 35,456 59.39 60 60

Note: κ(G[SDS]) ≤ min-deg(G[SDS])

8 / 26
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Our contribution

Problem (Densest k -vertex-connected subgraph)

Input: G = (V ,E ,w) and k ∈ Z>0

Output: S ⊆ V that maximizes d(S) =
w(S)

|S| under κ(G[S]) ≥ k

• Generalization of Mader’s theorem
• Algorithm for finding a Mader subgraph
• Bicriteria approximation algorithm
• Approximation algorithm

The edge-connectivity counterparts are obtained but omitted

9 / 26

Mader’s theorem & Mader subgraph

10 / 26
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Mader’s theorem

Theorem [Mader ’72]

Let G = (V ,E) be a graph and let d ∈ Z>0

If d(V ) ≥ d , then G has a (�d/2�+ 1)-vertex-connected subgraph
whose minimum degree of vertices is greater than d

This theorem says that
• dense graphs contain well-connected subgraphs
• (although dense graphs are not necessarily well-connected)

11 / 26

Generalization to edge-weighted graphs

Theorem [This work]

Let G = (V ,E ,w) be an edge-weighted graph and let d ∈ R>0

If d(V ) ≥ d , then G has a (��d/wmax�/2�+ 1)-vertex-connected
subgraph whose minimum weighted degree of vertices is greater
than d

Proof strategy is the same as that of the original theorem

A subgraph whose existence is guaranteed by our theorem is
referred to as a Mader subgraph

12 / 26
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Algorithm for finding Mader subgraph

Let G∗ be a Mader subgraph of G = (V ,E ,w)

Strategy
• Our algorithm keeps a family H of subgraphs of G
• Exactly one subgraph in H contains G∗ as its subgraph
• In each iteration, our algorithm tests whether a subgraph in H is

a Mader subgraph or not
YES: Output the subgraph
NO: Divide the subgraph into strictly smaller pieces

This is based on the algorithm for finding the most highly connected
subgraph in terms of vertex connectivity [Matula ’78]

13 / 26

Algorithm for finding Mader subgraph
An important subprocedure:

Peel(G, d)

Input: G = (V ,E ,w) and d ∈ R>0

Output: G[S] or Null
S ← V ;
while S �= ∅

vmin ← argminv∈S degS(v);
// degS(v) is the weighted degree of v in G[S]

if degS(vmin) > d then return G[S];
S ← S \ {vmin};

return Null;

• Often used for dense subgraph discovery (e.g., [Charikar ’00])
• This algorithm runs in O(|E |+ |V | log |V |) time

14 / 26
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Algorithm for finding Mader subgraph

Mader subgraph(G)

Input: G = (V ,E ,w)
Output: G[S]

H ← Peel(G, d(V ));
τ ←

⌊
�d(V )/wmax�

2

⌋
+ 1; // vertex connectivity guaranteed by our theorem

H ← family of the connected components of H that have at least τ + 1 vertices;
if there exists a clique K in H then return K ;

while True
H ′ ← an arbitrary element of H;
C ← the minimum vertex separator of H ′;
if |C| ≥ τ then return H ′;
S ← family of the connected components of G[V (H ′) \ C];

// V (H′) denotes the vertex set of H′

H′ ← ∅;
for each S ∈ S

if T := Peel(G[S ∪ C], d(V )) has at least τ + 1 vertices then H′ ← H′ ∪ {T};
if there exists a clique K in H′ then return K ;
H ← (H \ {H ′}) ∪H′;

15 / 26

Algorithm for finding Mader subgraph

Mader subgraph(G)

Input: G = (V ,E ,w)
Output: G[S]

H ← Peel(G, d(V ));
τ ←

⌊
�d(V )/wmax�

2

⌋
+ 1; // vertex connectivity guaranteed by our theorem

H ← family of the connected components of H that have at least τ + 1 vertices;
if there exists a clique K in H then return K ;
while True

H ′ ← an arbitrary element of H;
C ← the minimum vertex separator of H ′;
if |C| ≥ τ then return H ′;
S ← family of the connected components of G[V (H ′) \ C];

// V (H′) denotes the vertex set of H′

H′ ← ∅;
for each S ∈ S

if T := Peel(G[S ∪ C], d(V )) has at least τ + 1 vertices then H′ ← H′ ∪ {T};
if there exists a clique K in H′ then return K ;
H ← (H \ {H ′}) ∪H′;

15 / 26
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Analysis

Theorem
Mader subgraph(G) outputs a Mader subgraph of G in poly time

Proof (sketch):
• It suffices to show the while-loop terminates in polynomial time
• The time complexity of each iteration is dominated by computing

the minimum vertex separator (i.e., polynomial)
• The number of iterations is bounded by |V |

Note: The actual time complexity is O(|V |19/4)

16 / 26

Bicriteria approximation algorithm

17 / 26
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Algorithm (with parameter γ ∈ [1, 2])

Input: G = (V ,E ,w) and k ∈ Z>0

Output: S ⊆ V or INFEASIBLE
Find the family of maximal k -vertex-connected subgraphs
{G[S1], . . . ,G[Sp]}; // Use the algorithm by [Makino ’88]
if there is no k -vertex-connected subgraph found then

return INFEASIBLE;
for i = 1, . . . , p

S∗
i ← Si ;

Find a densest subgraph SDS
i (without any constraint) in G[Si ];

if k ≤ γ

(⌊
�d(SDS

i )/wmax�
2

⌋
+ 1

)
then

S∗
i ← The vertex set of Mader subgraph(G[SDS

i ]);
return S ∈ argmaxS∈{S∗

1 ,...,S
∗
p } d(S);

18 / 26

Analysis

Theorem

Our algorithm is a polynomial-time
(
γ
4 · wmin

wmax
, 1/γ

)
-bicriteria

approximation algorithm (∀γ ∈ [1, 2])

Let S ⊆ V be the output
• d(S) ≥ γ

4 · wmin
wmax

· OPT (OPT: optimal value of the original problem)
• G[S] is (k/γ)-vertex-connected

Note:
• We can get

(
1
4 · wmin

wmax

)
-approximation by setting γ = 1

• The time complexity is O(|V |(|V |19/4 + TDS))

(TDS: time complexity of computing a densest subgraph in G)

19 / 26
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Analysis

Theorem

Our algorithm is a polynomial-time
(
γ
4 · wmin

wmax
, 1/γ

)
-bicriteria

approximation algorithm (∀γ ∈ [1, 2])

Proof (sketch): Let S ⊆ V be the output
• G[S] is (k/γ)-vertex-connected

• It suffices to show G[S∗
i ] is (k/γ)-vertex-connected (∀i = 1, . . . , p)

• If k ≤ γ
(⌊

�d(SDS
i )/wmax�

2

⌋
+ 1

)
does not hold, S∗

i is given by Si ; so OK

• Otherwise S∗
i is the vertex set of Mader subgraph(G[SDS

i ])

• Apply the generalized Mader’s theorem:

S∗
i is

(⌊
�d(SDS

i )/wmax�
2

⌋
+ 1

)
-vertex-connected; so k

γ -vertex-connected

20 / 26

Analysis
Theorem

Our algorithm is a polynomial-time
(
γ
4 · wmin

wmax
, 1/γ

)
-bicriteria

approximation algorithm (∀γ ∈ [1, 2])

• d(S) ≥ γ
4 · wmin

wmax
· OPT

• Let OPTi be the optimal value of the original problem on G[Si ]

• It suffices to show d(S∗
i ) ≥

γ
4 · wmin

wmax
· OPTi

• If k ≤ γ
(⌊

�d(SDS
i )/wmax�

2

⌋
+ 1

)
does not hold, S∗

i is given by Si ;

so every vertex in G[S∗
i ] has weighted degree of at least

wmink > · · · > γ
2 · wmin

wmax
· OPTi , implying d(G[S∗

i ]) ≥
γ
4 · wmin

wmax
· OPTi

• Otherwise S∗
i is the vertex set of Mader subgraph(G[SDS

i ])

• Apply the generalized Mader’s theorem:
S∗

i has the minimum weighted degree of at least d(SDS
i );

so d(S∗
i ) ≥ d(SDS

i )/2 ≥ OPTi/2 (irrespective of edge weights)
20 / 26
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Approximation algorithm

21 / 26

Algorithm

Input: G = (V ,E ,w) and k ∈ Z>0

Output: S ⊆ V or INFEASIBLE
S ← argmax{κ(G[S]) | S ⊆ V}; // Use the algorithm by [Matula ’78]
if κ(G[S]) ≥ k then return S;
return INFEASIBLE;

This runs in O(|V |2(κ(G)2 ·min{|V |3/4, κ(G)3/2}+ κ(G)|V |)) time

22 / 26
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Analysis

Theorem

Our algorithm is a polynomial-time
(

6
19 · wmin

wmax

)
-approximation

algorithm

Note: This is better than the previous
(

1
4 · wmin

wmax

)
-approximation

Proof (sketch):
• Theorem by [Bernshteyn & Kostochka ’16]:

Let G = (V ,E) be a graph and t ∈ Z with t ≥ 2
If G satisfies |V | ≥ 5

2 t and |E | > 19
12 t(|V | − t), then G has a

(t + 1)-vertex-connected subgraph
• Use the theorem as in the analysis of the bicriteria approximation

23 / 26

Conclusion

24 / 26
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Summary

Problem (Densest k -vertex-connected subgraph)

Input: G = (V ,E ,w)

Output: S ⊆ V that maximizes d(S) under κ(G[S]) ≥ k

• Generalization of Mader’s theorem
• Algorithm for finding a Mader subgraph

•
(
γ
4 · wmin

wmax
, 1/γ

)
-bicriteria approximation algorithm (γ ∈ [1, 2])

•
(

6
19 · wmin

wmax

)
-approximation algorithm

The edge-connectivity counterparts are obtained but omitted

25 / 26

Future work

• Design better (bicriteria or ordinary) approximation algorithms
• Conduct experiments to investigate practical performance
• Analyze the computational complexity (NP-hardness etc.)

Thank you!

26 / 26
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Worst-case constructions for linear 
optimization  
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Worst-case constructions have helped providing a deeper understanding of how the 
structural properties of the input affect the computational performance of linear 
optimization. Recent examples include the construction of Allamigeon et al. for which 
the interior point method performs an exponential number of iterations, and thus is not 
strongly polynomial. In a similar spirit, recent lower bounds on the number of simplex 
pivots required in the worst-case to perform linear optimization over a lattice polytope 
will be presented, as well as the first worst-case instances for geometric scaling methods 
that solve integer optimization problems by primal augmentation steps.  
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Chance Constrained Linear Programs 

in Probability Measure Space 
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Many risk-aware decision-making problems can be formulated as a chance 
constrained linear program in probability measure space, which is NP-hard and 
unsolvable directly. In this talk, we introduce approximate methods to address this NP-
hard problem. In the proposed methods, the original problem is approximated by two 
kinds of solvable optimization problems in finite-dimension space. We show the 
convergence of the approximations and give numerical experiments including a 
stochastic control problem for validation. Two numerical examples are presented to 
show the effectiveness of the proposed method. 
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We propose a new generalized Levenberg–Marquardt method for minimizing the sum 
of a smooth composite function and a convex function. The method enjoys three 
theoretical guarantees: iteration complexity bound, oracle complexity bound, and local 
convergence under an error bound condition [1]. Numerical results show that the 
proposed method performs well for some large-scale problems. 
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A generalized Levenberg–Marquardt method
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joint work with Takayuki Okuno and Akiko Takeda

Outline: Problem setting & contribution 2/18

Composite minimization

min
x∈Rd

g(x) + h(c(x))

• g : Rd → R ∪ {+∞}: convex
c : Rd → Rn: smooth (Lipschitz Jacobian)

h : Rn → R: convex & smooth (Lipschitz gradient)

• Nonconvex optimization problem with many applications

• Levenberg–Marquardt (LM) method: efficient and widely used

(e.g., implemented in MATLAB and SciPy)

• We propose a new LM method with both an oracle complexity bound

and a local quadratic convergence guarantee �
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Application: Empirical risk minimization in ML 3/18

min
x∈Rd

1

N

N∑

i=1

�(φx(ai), bi)

• (ai, bi) ∈ Rp × Rq: training data (i = 1, . . . , N)

• φx : Rp → Rq: machine learning model with parameter x

• � : Rq × Rq → R: loss function

• c(x) = (φx(a1), . . . , φx(aN )) ∈ Rq×N

• h(y) = h(y1, . . . , yN ) =
1

N

N∑
i=1

�(yi, bi)

min
x∈Rd

h(c(x))

Levenberg–Marquardt (LM) method 4/18

• Iterative method that uses the composite structure of the problem

• Construct a subproblem for the k-th iterate xk.

Set xk+1 to be an (approximate) solution to the subproblem

Subproblem for LM

min
x∈Rd

g(x) + h
(
c(xk) +∇c(xk)(x− xk)

linear approx. of c(x) )
+

µ

2
‖x− xk‖22

damping term (µ > 0)

cf. original problem

min
x∈Rd

g(x) + h(c(x))

• ∇c(xk) ∈ Rn×d: Jacobian matrix

• The subproblem is strongly convex and much easier than the original
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Levenberg–Marquardt (LM) method 5/18

• Introduced for least-squares problems (g(·) = 0, h(·) = 1
2‖·‖

2
2)

[Levenberg, 1944, Marquardt, 1963]

• Extended to general g, h

[Nesterov, 2007, Lewis and Wright, 2016, Drusvyatskiy and Lewis, 2018]

• Many other LM methods

[Osborne, 1976, Yamashita and Fukushima, 2001, Dan et al., 2002, Kanzow

et al., 2004, Ueda and Yamashita, 2010, Behling and Fischer, 2012,

Drusvyatskiy and Paquette, 2019, Bergou et al., 2020, Marumo et al., 2020]...

Main differences between LMs 6/18

Assumptions on g, h

→ g: convex, h: smooth convex. Not restricted to least squares

How to set the damping parameter µ

→ Adaptively

Algorithm for subproblems

→ Accelerated proximal gradient with a particular termination cond.

Theoretical guarantees

→ Iteration complexity, oracle complexity,
local quadratic convergence (under additional assumptions)

First LM to achieve both oracle complexity and local quadratic conv.
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Features of our LM 6/18

Assumptions on g, h

→ g: convex, h: smooth convex. Not restricted to least squares

How to set the damping parameter µ

→ Adaptively

Algorithm for subproblems

→ Accelerated proximal gradient with a particular termination cond.

Theoretical guarantees

→ Iteration complexity, oracle complexity,
local quadratic convergence (under additional assumptions)

First LM to achieve both oracle complexity and local quadratic conv.

cf.: iteration and oracle complexity 7/18

Iteration complexity

The number of iterations required to find an ε-stationary point

• Used when we, at each iteration,

1 compute the Jacobian ∇c(xk) ∈ Rn×d and

2 solve the subproblem using it,

and the cost of 1 is dominant

• Then,

(Tocal cost) � (Iteration complexity) × (Cost for ∇c(xk))

• Mainly for small- or medium-scale problems (d, n � 103)
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cf.: iteration and oracle complexity 8/18

Oracle complexity

The number of oracle calls required to find an ε-stationary point

Oracles assumed in this work

• c(x), ∇c(x)u, ∇c(x)�v (x, u ∈ Rd, v ∈ Rn)

• h(y), ∇h(y) (y ∈ Rn)

• proxηg(x) := argmin
z∈Rd

{
ηg(z) + 1

2‖x− z‖2
}

(x ∈ Rd, η > 0)

• Used when we, at each iteration,

• do not compute ∇c(xk) ∈ Rn×d explicitly and

• solve the subproblem using ∇c(xk)u, ∇c(xk)�v

• Mainly for medium- or large-scale problems (d, n � 103)

Comparison of theoretical guarantees 9/18

General g, h #Iteration #Oracle Local

Existing LM 1
[Yamashita and Fukushima, 2001]

�

2
[Ueda and Yamashita, 2010]

O
(√

∆κ
)

3
[Marumo et al., 2020]

O
(√

∆κ
)

O
(√

∆κ
)

4
[Marumo et al., 2020]

O
(√

∆κ
)

�

5
[Drusvyatskiy and Paquette, 2019]

� O
(
Kh

)
Õ
(
Kh

√
κ′
)

Our LM �� O
(√

∆
)

Õ
(√

∆
√
κ
)

�
cf.: Prox. grad. 1 � O

(
Khκ

′) O
(
Khκ

′)

2 �� O
(√

∆κ
)

O
(√

∆κ
)

• κ, κ′ ≥ 1: constants like a condition number

• Kh, Lh: Lipschitz constants of h,∇h. Normalized to Lh = 1

• ∆ := g(x0) + h(c(x0))−
(
min
x∈Rd

g(x) + min
y∈Rn

h(y)
)
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Numerical example: Rosenbrock function 10/18

min
(x,y)∈R2

(x− 1)2 + 100(x2 − y)2

°0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x

°0.2

0.0
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0.6

0.8

1.0

1.2

y

Ours
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Iteration
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e

Ours

DL

GD

Our LM converges faster than existing LM and Gradient Descent �

Previous parts of this talk:

• Problem setting

• LM method

• Our contribution & comparison with existing work

Remaining parts:

• Details of the proposed LM and theoretical guarantees

• Numerical experiments with large-scale problems
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Proposed LM method 12/18

k-th iteration of our LM

1 µk := ρ
√
F (xk)− (g∗ + h∗) (ρ: constant)

2 xk+1 ∈
{
x ∈ Rd

∣∣∣ ω̄k,µk
(x) ≤ µk

2
‖x− xk‖2

}

• F (x) := g(x) + h(c(x)), g∗ := min
x∈Rd

g(x), h∗ := min
y∈Rn

h(y)

• ω̄k,µk
(x): (sub)gradient norm for the subproblem

• 2 is computed by accelerated proximal gradient

Key point of the proposed LM method 13/18

k-th iteration of our LM

1 µk := ρ
√
F (xk)− (g∗ + h∗) (ρ: constant)

2 xk+1 ∈
{
x ∈ Rd

∣∣∣ ω̄k,µk
(x) ≤ µk

2
‖x− xk‖2

}

Difficulty on µ:

• small µ → worsen cond. number of subproblem → increase #oracle

• large µ → fail quadratic convergence

Difficulty on the accuracy of subproblem’s solution:

• accurate → increase costs per iteration → increase #oracle

• inaccurate → fail quadratic convergence & increase #iteration

1 and 2 strike a good balance!
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Theoretical guarantee: Complexity (Main result 1) 14/18

Complexity for an ε-stationary point

• Iteration complexity: O
(
Lc

√
Lh∆
ε2

(F (x0)− F ∗)
)

• Oracle per iteration: O(
√
κ log κ)

• Oracle complexity: O
(
Lc

√
Lh∆
ε2

(F (x0)− F ∗)
√
κ log κ

)

• ε-stationary point: a point x ∈ Rd s.t. ω(x) ≤ ε

ω(x) := min
p∈∂g(x)

∥∥p+∇c(x)�∇h(c(x))
∥∥
2

• Lc, Lh: Lipschitz constants of ∇c,∇h, κ := 1+
√
Lh

Lc

√
∆
sup
k∈N

‖∇c(xk)‖2op

• ∆ := F (x0)− (g∗ + h∗), F ∗ := min
x∈Rd

F (x)

Theoretical guarantee: Local quad. conv. (Main result 2) 15/18

Assume:

• Zero-residual: F (x∗) = g∗ + h∗ for some x∗ ∈ Rd,

• x0 is sufficiently close to x∗,

• Error bound condition.

Then, (F (xk)) converges to F∞ := g∗ + h∗. Futhermore, for some C > 0,

F (xk+1)− F∞ ≤ C
(
F (xk)− F∞

)2
, ∀k ≥ 0.

Def.: Error bound condition

For some γ > 0,
γ

2
dist(xk, X∗)2 ≤ F (xk)− (g∗ + h∗), ∀k ≥ 0.

• dist(xk, X∗): distance between xk and the optimal solution set X∗

• Weaker than strong convexity
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Numerical result 1: Classification with NN (MNIST) 16/18
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min
x∈Rd

− 1

N

N∑

i=1

〈bi,LogSoftmax(φx(ai))〉

• (ai, bi) ∈ [0, 1]784 × {0, 1}10: training data. Pair of image and label

• φx : R784 → R10: neural network with parameter x

• d = 104,938, n = 10N = 60,000

Numerical result 2: Nonneg. Matrix Factr. (MovieLens) 17/18
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PG(10°3)

min
U∈Rp×r

+ , V ∈Rq×r
+

1

|Ω|
∑

(i,j,s)∈Ω

(
〈ui, vj〉 − s

)2
+ λ

(
‖U‖2F + ‖V ‖2F

)

• Ω: training dataset. (i, j, s) ∈ Ω: user i rated movie j as s ∈ {1, . . . , 5}
• λ = 10−10: regularization parameter

• d = pr + qr = 1,312,500, n = |Ω| = 80,000
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Conclusion 18/18

min
x∈Rd

g(x) + h(c(x))

Our LM has iteration and oracle complexity bounds and a local
quadratic convergence guarantee

k-th iteration of our LM

1 µk := ρ
√
F (xk)− (g∗ + h∗) (ρ: constant)

2 xk+1 ∈
{
x ∈ Rd

∣∣∣ ω̄k,µk
(x) ≤ µk

2
‖x− xk‖2

}

• Subproblems are solved by an accelerated proximal gradient method

• Parameter µ and the accuracy of subproblem’s solution are carefully set

• Our LM is practical for large-scale problems (d � 105–106)

Appendix: Lemmas for complexity bounds 19/18

Iteration complexity is derived from Lemma 1, and
oracle complexity is derived from Lemmas 1 and 2

Lemma 1 (this work)

F (xk+1) ≤ F (xk)− µk

4
‖xk+1 − xk‖22, ∀k ≥ 0

Lemma 2 (this work)

Oracle complexity for 2 is

O(
√
κk log κk), κk := 1 +

Lh

µk
‖∇c(xk)‖2op
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Appendix: Example of zero-residual problem 20/18

• f : Rd → Rn: given smooth & nonlinear function, n < d

• x∗ ∈ Rd: unknown signal, sparse

• y := f(x∗): observation

Goal: Recover the sparse signal x∗ from the low-dimensional observation y

Nonlinear compressed sensing

min
x∈Rd

‖y − f(x)‖22, s.t. ‖x‖1 ≤ r

• The constraint ‖x‖1 ≤ r enhances the sparsity of x

• This problem is composite minimization and zero-residual
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Metaheuristics have proven to a comprehensive approach to attain good solutions for 
hard combinatorial optimization problems. However, they are usually based on specific 
characteristics of the problem to be solved, which makes them hard to develop efficient 
general purpose solvers for such as the mixed integer programs (MIPs) and the constraint 
satisfaction problems (CSPs). In designing metaheuristics for combinatorial optimization 
problems, the quality of solutions typically improves if larger and sophisticated 
neighborhoods are used, while computation time of searching the neighborhood also 
increases rapidly. BIPSOL is a metaheuristic solver for large-scale binary integer 
programs (BIPs) that introduces a generalized technique of the neighbor-list used for 
traveling salesman problem (TSP) to generate smaller and structured neighborhoods 
automatically [1,2]. We incorporate an efficient incremental evaluation of solutions and 
a dynamic control mechanisms of penalty weights into BIPSOL. In this talk, we show 
some progress of development in BIPSOL and future directions. 
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We present the performance of the supercomputer Fugaku for breadth-first search 
(BFS) in the Graph500 benchmark, which is known as a ranking benchmark used to 
evaluate large-scale graph processing performance on supercomputer systems. Fugaku 
is a huge-scale Japanese exascale supercomputer that consists of 158,976 nodes. We 
evaluate the BFS performance for a large-scale graph consisting of about 2.2 trillion 
vertices and 35.2 trillion edges using the whole Fugaku system, and achieve 102,955 
giga-traversed edges per second, resulting in the first position of Graph500 BFS 
ranking[1, 2]. 
 

 

References 
[1] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, Mitsuhisa Sato. ``Performance 

of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark.'', ISC 2021, Jun. 
2021, https://doi.org/10.1007/978-3-030-78713-4_20 

[2] https://graph500.org 

377



Performance of the supercomputer Fugaku for 
Graph500 benchmark

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop

Masahiro Nakao   
Joint work with Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, Mitsuhisa Sato

RIKEN Center for Computational Science 
Fixstars Corporation

Institute of Mathematics for Industry, Kyushu University

†

†
‡

‡ * † †

*

Background

2

http://opt.imi.kyushu-u.ac.jp/lab/jp/activities.html

in supercomputers

378



[1] Koji Ueno et al: Efficient breadth-first 
search on massively parallel and 
distributed-memory machines. 
Data Science and Engineering, 2016

[2] Masahiro Nakao et al: Performance of the 
Supercomputer Fugaku for Breadth-First 
Search in Graph500 Benchmark.'' ISC 2021

3

Parallelize BFS and SSSP algorithms on supercomputers

Parallelize fundamental graph algorithms on supercomputers
Breadth First Search (BFS) in cooperation with IMI
Single-Source Shortest Path (SSSP) in cooperation with ZIB and IMI

Large scale supercomputers
Graph algorithm that runs efficiently on such systems is a challenging research

The K computer : 82,944 nodes[1] Supercomputer Fugaku : 158,976 nodes[2]

2012- 2019 2020 -

4

Graph500

Graph500 is a competition for evaluating performance of large-scale graph processing
The performance unit is a traversed edges per second (TEPS)

1GTEPS : Search 1 billion edges per second
Graph500 list is updated twice a year (June and November in ISC and SC)

BFS : The K computer ranked first 10 times from 2014 to 2019
BFS : Supercomputer Fugaku ranks first from 2020 to now
SSSP : Supercomputer Fugaku ranks 2nd in June 2022

In graph500, an artificial graph called the “Kronecker graph” is used
Some vertices are connected to many other vertices while numerous others are 
connected to only a few vertices
Social network is known to have a similar property

https://graph500.org
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Objective

This presentation describes the performance tuning of BFS for the Graph500 
submission and experimental evaluation results conducted on Fugaku

Summary
Use a large-graph with 2.2 trillion vertices and 35.2 trillion edges (SCALE=41)
Archive 102,955 GTEPS
The performance of Fugaku is 3.3 times better than that of the K computer

6

Outline

BFS in Graph500 Benchmark
The supercomputer Fugaku
Tuning BFS on the supercomputer Fugaku
Full node evaluation
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Overview of BFS in Graph500

BFS

Input : Kronecker graph and root vertex Output : BFS tree

Repeat BFS 64 times from different root vertex
The harmonic mean of the performance in 64 trials is used as the final performance

8

Hybrid-BFS [Beamer, 2012] Scott Beamer et al. Direction-optimizing breadth-first search

Search for unvisited vertices 
from visited vertices

Search for visited vertices
from unvisited vertices

Hybrid-BFS runs while switching between Top-down and Bottom-up

In the middle of BFS, the number of vertices being visited increases explosively, 
so it is inefficient in only Top-down
Hybrid-BFS switches between Top-down and Bottom-up on the situation
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Number of vertex checks

SCALE = 26
Graph with 2^{SCALE} vertices and 2^{SCALE+4} edges
67.1 million vertices and 1.1 billion edges

Top-down Bottom-up Hybrid-BFS

0 2 2,103,840,895 2
1 66,206 1,766,587,029 66,206
2 346,918,235 52,667,691 52,667,691
3 1,727,195,615 12,820,854 12,820,854
4 29,557,400 103,184 103,184
5 82,357 21,467 21,467
6 221 21,240 221

Total 2,103,820,036 3,936,062,360 65,679,625
Rate 100.00% 187.09% 3.12%

Hybrid-BFS decides when to 
switch between Top-down and 
Bottom-up from information 
such as the number of 
vertices being searched.

10

2D Hybrid-BFS

Adjacency matrix is distributed to a 2D process grid (R x C)

Communication only within the column processes and row processes
Allgatherv, Alltoallv, point-to-point (isend/irecv/wait)

The closer the R and C values are, the smaller the total communication size
Based on this 2D Hybrid-BFS, we implemented BFS with various ideas to 
improve performance[1]

[Beamer, 2013] Scott Beamer, et. al. Distributed Memory Breadth-First 
Search Revisited: Enabling Bottom-Up Search. IPDPSW '13.

[1] Koji Ueno et al: Efficient breadth-first search on massively parallel and 
distributed-memory machines.  Data Science and Engineering, (2016)
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Outline

BFS in Graph500 Benchmark
The supercomputer Fugaku
Tuning BFS on the supercomputer Fugaku
Full node evaluation

12

The supercomputer Fugaku

The supercomputer Fugaku, which is developed jointly by RIKEN and Fujitsu Limited 
based on Arm technology
Located in RIKEN Center for Computational Science in Kobe, Hyogo, Japan
158,976 compute nodes
Start sharing in March 2021
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Specification of Computer Node

Each node has a single CPU
Each CPU has 48 compute cores and 2/4 assistant 
cores. The assistant cores handle the interrupts OS and 
communication
2.0 GHz or 2.2 GHz for each job
Each CPU consists of 4 CMGs

Each CMG consists of 12 + 1 cores and 8GiB HBM2
It is recommended that the number of processes 
per CPU is a divisor of 4

Each CPU has 10 network cables

CPU (A64FX)

CMG : Core Memory Group
NOC : Network on Chip
TNI: Tofu Network Interface

L2 Cache Coherent control between CMGs

14

Network topology of Fugaku

https://pr.fujitsu.com/jp/news/2020/04/28.html

6D mesh/torus : XYZabc-axis
The size of abc is (2,3,2) 
The size of XYZ is (24,23,24)
so it has 24*23*24*2*3*2 = 158,976 nodes

Process Mapping
Discrete assignment
1D torus or mesh
2D torus or mesh
3D torus or mesh

R

C

Node 12 nodes
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Outline

BFS in Graph500 Benchmark
The supercomputer Fugaku
Tuning BFS on the supercomputer Fugaku
Full node evaluation

16

Number of processes per node (1/2)

Process per node (ppn)
1 process 48 threads per node (1ppn) 
2 processes 24threads per node (2ppn)
4 processes 12threads per node (4ppn)
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4,000

512 1,024 4,096 16,384

1ppn

2ppn

4ppn
1.75

1.50

1.25

1.00

R
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pp
n

2ppn

4ppn

The larger the number of nodes, the smaller the performance difference 
Number of nodes Number of nodes

Performance Performance Ratio with 1ppn

B
etter

0
2,048 8,192 512 1,024 4,096 16,3842,048 8,192

B
etter

The result of 16,384 nodes for 2ppn could not 
be measured due to a system malfunction.

1ppn

In the cases of 1ppn and 2ppn, the cache hit 
rate decreases because the memory accesses 
by threads cross the CMG.
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Number of processes per node (2/2)

As the number of nodes increases, the rate of communication increases
1ppn has a smaller rate of communication than 4ppn
If the number of nodes is increased further, the communication ratio will increase. 
Thus, we select 1ppn, which can bring out the full communication performance

512 1,024 4,096 16,384

Number of nodes
2,048 8,192 512 1,024 4,096 16,3842,048 8,192

Number of nodes

1ppn 4ppn
imbalance
point-to-point

alltoallv

allgatherv
calculation

Comm.

18

Use of Eager method (1/2)

In the point-to-point communication of most MPI implementations, the Eager and 
Rendezvous methods are implemented
Although most MPI implementations switch the Eager and Rendezvous methods 
automatically depending on message size, optimal message size depends on application

Asynchronous communication that 
can start/end the message sending 
process regardless of the state of 
the sending/receiving processes

Synchronous communication to 
send/receive messages after both MPI 
processes are ready to communicate

Eager Rendezvous
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Use of Eager method (2/2)

In the default setting, Rendezvous was selected for all send/recv communication of BFS
Fujitsu MPI library on Fugaku can set the threshold for switching between Eager and 
Rendezvous methods

We change the threshold to 512 Kbytes from default value to use Eager method
Since Fugaku's compute node has 32 Gbytes memory, the buffer size is relatively small
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512 1,024 4,096 16,3842,048 8,192

imbalance
point-to-point

alltoallv

allgather

calculation

Achieved a performance
improvement of 2.3%Number of nodes 16,384 nodes

User can specify CPU frequency for each job
Normal mode : 2.0 GHz
Boost mode : 2.2 GHz

Eco mode : Two floating-point arithmetic pipelines of A64FX are limited to one, and 
power control is performed according to the maximum power

Since BFS does not perform floating-point arithmetic, the use of Eco mode can be 
expected to reduce power consumption without affecting performance

20

Power management (1/2)

Normal : 
Boost : 
Normal Eco : 
Boost Eco : 

2.0 GHz, two floating-point arithmetic pipelines (in previous evaluations) 
2.2 GHz, two floating-point arithmetic pipelines
2.0 GHz, one floating-point arithmetic pipeline
2.2 GHz, one floating-point arithmetic pipeline

387



21

Power management (2/2)
Performance (TEPS) ratio Power Efficiency (TEPS/W) ratio

Boost Eco mode has a good balance between performance and power efficiency
The performance in Boost Eco mode is 3.6 % better than that in Normal mode
The power efficiency in Boost Eco mode is 27.2 % better than that in Normal mode
The results of Boost Eco mode for 16,384 nodes are 18,607 GTEPS and 1,408 kW
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Outline

BFS in Graph500 Benchmark
The supercomputer Fugaku
Tuning BFS on the supercomputer Fugaku
Full node evaluation
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Six-dimensional process mapping (1/2)

The size of six axes in Fugaku network is (X, Y, Z, a, b, c) = (23, 24, 23, 2, 3, 2)
It is desirable that the values of R and C process grid of BFS are close
We assign the processes to (R, C) = (XY, Zabc) = (552, 288)
Since neighborhood communication occurs in BFS, we assign the processes 
physically next to each other in row/column dimension

R

C

Node 12 nodes

24

Six-dimensional process mapping (2/2)

We evaluate the BFS performance for a large-scale graph consisting of about 2.2 
trillion vertices and 35.2 trillion edges using the whole Fugaku system (158,976 nodes)
Boost Eco mode
Performance: 102,956 GTEPS, Power: 14,961 kW,  Efficiency: 6.9 MTEPS/W

Performance is 3.3 times that 
of the K computer (82,944 
nodes), and power efficiency 
is 1.9 times that of IBM 
Sequoia (Blue Gene/Q)
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33.2
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Number of nodes

The K computer did not measure 
power. At IBM Sequoia, the graph 
is the same size as Fugaku.
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Summary

Tune performance of BFS in Graph500 on Fugaku
We evaluate the BFS performance for a large-scale 
graph consisting of about 2.2 trillion vertices and 35.2 
trillion edges using the whole Fugaku system
Achieve 102,955 GTEPS, resulting in the first position 
of Graph500 lists in from 2020 to now

Future works
Develop SSSP in cooperation with ZIB and IMI
Some ideas to improve performance of BFS
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It is regularly claimed that quantum computers will bring breakthrough progress in 

solving challenging combinatorial optimization problems relevant in practice. In particular, 
Quadratic Unconstraint Binary Optimization (QUBO) problems are said to be the model of 
choice for use in (adiabatic) quantum systems. Combinatorial Optimization searches for an 
optimum object in a finite but usually vast collection of objects. This approach can be used 
for many practical purposes, like efficient allocation of limited resources, network planning, 
and hundreds of other applications in almost all fields, e.g., finance, production, scheduling, 
and inventory control. However, many combinatorial optimization problems are known to 
be NP-hard. This theoretical statement about worst-case runtime complexity is often 
translated simplistically as "intractable"; however, the practical side looks different. In many 
cases, it is possible to solve such problems to proven global optimality. We explain some of 
the meaning and implications, review the state of affairs, the potential of quantum 
computing, and give new computational results regarding solving OUBOs. 
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Intelligence Methods

News: The Ministry of Defence has procured the government’s first quantum computer. 

https://quantumzeitgeist.com/british-ministry-of-defence-procures-governments-first-quantum-computer

They’ll work with Orca Computing, a British company, to investigate and 
apply quantum technology in military defense. 
Quantum computer manufacturers claim their devices can solve complex 
problems that classical computers cannot solve.  

About Orca I find there: British Quantum Computing Firm ORCA, Claims 
Breakthrough in Quantum Computers
https://quantumzeitgeist.com/british-quantum-computing-firm-orca-claims-breakthrough-in-quantum-computers
The major challenge identified by one of the UK’s leading quantum 
computing experts Prof Morton, was the ability of the Orca computer to 
scale up quickly. 

“Scaling up is very important for the computer to be able to serve its purpose 
by performing complex, highly scientific and experimental tasks such as 
combating climate changes, accelerating artificial intelligence, ship 
navigation or even drug development. 
These tasks require millions of qubits to be successful when in reality, the
Orca computer has just four qubits which is very far from ideal. “
However, the company assured that they will scale up in the next two years. 

Looking at the Orca Webpage I found then:
https://www.orcacomputing.com/news/orca-computing-provides-uk-mod-with-first-quantum-computer-j6pns-rzbhh

ORCA discovers new algorithm for solving QUBO problems with near-term, 
‘shallow’ quantum computers
On the webpage Orca claims to solve binary knapsack problems with 70 
variables faster than any other QC and classical methods.

As a reference to the conclusions a scientific article published by the Orca 
scientists was given: https://arxiv.org/abs/2112.09766

Unfortunately, there is nothing about knapsacks, but:

2.8. Scalability and other challenges. 
How plausible is it to scale the presented variational method?
The first problem the reader can point out is the fact that despite the parity 
map effectively coarse graining the measurement results of an M-mode 
circuit it is not a sustainable strategy since the size of an M-qubit Hilbert 
space grows exponentially. […]  
But here we tacitly assume that the measurement outcomes are uniform 
which is not the case. We observed that randomly chosen parameters of the 
studied shallow circuits typically result in a small set of measurement 
patterns to have high probability enabling it to be sampled with confidence 
with a bounded number of repeated measurements. 
The caveat is, of course, that even if this trend continues as M grows it 
inevitably means that the ratio of such reliably estimated measurements 
with respect to all possible patterns decreases exponentially. 
On the one hand, this still enables us to use the proposed variational 
algorithm. However, the odds of getting stuck in a local minimum most likely 
increase. How exactly it affects the ability to reach a global solution is a 
matter of a more detailed study.

Notes on Solving QUBOs and Quantum Computing                                  Thorsten Koch                                  TU Berlin / Zuse Institute Berlin (ZIB)    2
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patterns to have high probability enabling it to be sampled with confidence 
with a bounded number of repeated measurements. 
The caveat is, of course, that even if this trend continues as M grows it 
inevitably means that the ratio of such reliably estimated measurements 
with respect to all possible patterns decreases exponentially. 
On the one hand, this still enables us to use the proposed variational 
algorithm. However, the odds of getting stuck in a local minimum most likely 
increase. How exactly it affects the ability to reach a global solution is a 
matter of a more detailed study.
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“In theory, there is no difference between theory and practice; 
but in practice, there is.”

― unknown (not Einstein, or Feynman)
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What does “solving” an NP-hard problem typically mean?

Being able to …

Theoretical 
Computer Scientist

… compute proven optimal solutions to every instance of this problem 
class with at most this effort

Applied Discrete 
Mathematician

… practically compute within numerical tolerances proven optimal 
solutions to these particular (relevant) instances of the problem class in 
reasonable time

Physicist, Quantum 
Computing Researcher

… compute reasonably good solutions to these (selected) particular 
instances of the problem class in very short time

Notes on Solving QUBOs and Quantum Computing                                  Thorsten Koch                                  TU Berlin / Zuse Institute Berlin (ZIB)    8

“Insanity Is Doing the Same Thing Over and Over Again 
and Expecting Different Results.”

― unknown

An algorithm is deterministic, if given a particular input, it will always produce the same output, with 
the underlying machine always passing through the same sequence of states. https://en.wikipedia.org/wiki/Deterministic_algorithm

A deterministic algorithm computes a mathematical function; a function has a unique value for any input 
in its domain, and the algorithm is a process that produces this particular value as output. 

Non-determinism can result, for example, from:

▷ use of an external state other than the input, such as a hardware timer value.

▷ if multiple processors writing to the same data at the same time. In this case, the precise order in 
which each processor writes its data will affect the result.

While digital computers are thought of being deterministic, 
Quantum computers a probabilistic, i.e., non-deterministic by definition.

Being Deterministic
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Disclaimer 

For the rest of this talk, 
unless noted otherwise, 

everything I say,
will refer (only) to 

Combinatorial Optimization Problems. 
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Setting the stage

“Combinatorial Optimization searches for an optimum object in a finite collection of objects. Typically, 
the collection has a concise representation, while the number of objects is huge --- more precisely, grows 
exponentially in the size of the representation. So scanning all objects one by one and selecting the best 

one is not an option.” 

― Alexander Schrijver, Combinatorial Optimization, 2003, Page 1.

mmiinn!∈# $(&) with ( = &, +, ,, - ∈ ℤ$ ∶ 1 & ≤ +, , ≤ & ≤ 3-

For the rest of the talk, we assume: !: # → ℤ is a linear or quadratic function, i.e., 
! & = (!& + &!*&, ( ∈ ℤ", * ∈ ℤ"×",  and -: # → ℤ" is a linear function, i.e., g & = .&, . ∈ ℤ"×".
Note: argmin !(&) = argmax−!(&) and - & + : = ;, : ≥ 0 ⟺ - & ≤ 0, and similar for ≥.

We defined everything using integer numbers. If we would use rational numbers, we could then scale 
them by the least common multiple of all denominators to make everything integer.     
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Complexity classes

Integer factorization is in NP. 
Current assumption: it is not in P and not NP-hard => not NP-complete. 

Integer Programming/Optimization is in NP.
Proven to be NP-hard and therefore NP-complete

A proof of P=NP might not be constructive and include a huge constant.
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P
“easy”

Solvable in polynomial time. A running time of 
10!" # $#""" for input size $ is poly time.

NP “Yes” answer can be checked in poly time. It does 
not matter where the answer comes from.

NP-Complete Hardest problems in NP. If you could solve one of 
them in poly time, then you can solve them all.

NP-Hard
“intractable”

As least as hard as the hardest problems in NP. 
Need not to be in NP.

Open

The Bigger (complexity) Picture

BQP is bounded-error quantum 
polynomial time. A quantum model 
of computation uses an 
arrangement of quantum circuits (in 
the gate model) operating on qubits. 
These problems can be solved by a 
quantum computer in polynomial 
time with an error probability of at 
most 1/3. 
QMA stands for Quantum Merlin-
Arthur. This is the set of decision 
problems for which yes-instances 
can be verified by a quantum 
computer in polynomial time, and 
no-instances rejected in polynomial 
time, with error probability at most 
1/3. This is the quantum analog of 
NP, related to BQP as NP is related 
to P. QMAC is the set of complete 
problems for this class. 
QCMA stands for Quantum-classical 
Merlin-Arthur. This class is similar to
QMA but the witness for a yes-
instance must be a classical string. 
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An Inconvenient Truth
If we set aside NP-complete problems, there just aren’t that 
many compelling candidates left for exponential quantum 

speedups! (And for many of those, we do have exponential speedups, 
and for many of the rest we have polynomial ones)

P

NP

NP-complete
NP-hard

BQP
(Quantum P)Fa

ct
or

in
g

Gra
ph Is

o

Qua
nt

um
 

Sim

3SAT

Lattice 
Problems

P≠BQP, NPËBQP: 
Plausible conjectures, 

which we have no 
hope of proving given 

the current state of 
complexity theory 

Slide by Scott Aaronson: https://www.scottaaronson.com/talks/speedup.ppt

Quantum Supremacy

https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002

In 2012, I proposed the term “quantum supremacy” to describe the point where quantum computers 
can do things that classical computers can’t, regardless of whether those tasks are useful.

https://scottaaronson.blog/?p=4317
Scott’s Supreme Quantum Supremacy FAQ!

Q1. What is quantum computational supremacy?
Often abbreviated to just “quantum supremacy,” the term refers to the use of a quantum computer to 
solve some well-defined set of problems that would take orders of magnitude longer to solve with any 
currently known algorithms running on existing classical computers—and not for incidental reasons, but 
for reasons of asymptotic quantum complexity. The emphasis here is on being as sure as possible that 
the problem really was solved quantumly and really is classically intractable, and ideally achieving the 
speedup soon (with the noisy, non-universal QCs of the present or very near future). If the problem is 
also useful for something, then so much the better, but that’s not at all necessary. The Wright Flyer and 
the Fermi pile weren’t useful in themselves.
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https://arxiv.org/abs/2111.03011

Solving the sampling problem of the Sycamore quantum supremacy circuits
Feng Pan, Keyang Chen, Pan Zhang

We study the problem of generating independent samples from the output distribution of Google's 
Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical 
supercomputers and has been used to demonstrate quantum supremacy. We propose a new method to 
classically solve this problem by contracting the corresponding tensor network just once, and is 
massively more efficient than existing methods in obtaining a large number of uncorrelated samples with 
a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have 
generated one million uncorrelated bitstrings {s} which are sampled from a distribution Pˆ(s)=|ψˆ(s)|2, 
where the approximate state ψˆ has fidelity F≈0.0037. The whole computation has cost about 15 hours 
on a computational cluster with 512 GPUs. The obtained one million samples, the contraction code and 
contraction order are made public. If our algorithm could be implemented with high efficiency on a 
modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost 
a few dozens of seconds, which is faster than Google's quantum hardware.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.090502
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Integer Linear Program (ILP)

mmiinn!∈# $(&) with ( = & ∈ ℤ$ ∶ 4& ≤ +, , ≤ & ≤ 3- , $ & = 5%&

Solving this problem is in general NP-hard, even if have & ∈ 0,1 . However, is important to note that 
without the integrality requirement, i.e., for & ∈ ℝ" the problem can be solved in polynomial time. 

What does NP-hard mean: 
(1) If we get some %, we can check in polynomial time whether it belongs to & and compute ' % .

(2) Finding the minimum % might, in the worst case, be as difficult to solve as any other problem in NP.

(3) As of today, no algorithm is known that has better than exponential worst case runtime complexity to do so. 
And there is little hope to find one. Note: Integer factorization is not NP-hard!

What does NP-hard not necessarily mean: 
(1) Finding some % ∈ & is difficult. Might be difficult, but doesn’t have to. 

(2) Finding the minimum % ∈ & is difficult. 
Finding it might actually be easy, proving it is the minimum is the hard part. 

(3) Large size instances of NP-hard problems are intractable or unsolvable in principle.
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Problem classes
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CP
Constraint 

Programming

MINLP

CIP

MILP

LP

SAT

ILP

Constraint Integer 
Programming

Mixed Integer Non-linear
Programming

Integer Linear
Programming

Linear
Programming

Mixed Integer 
Linear ProgrammingSatisfiability

SAT is NP-complete, so is ILP and
everything that encompasses it.

That a class of problems is NP-complete should
not stop you from solving instances 

of this class to proven optimality

Stephen Cook (1971)
The Complexity of Theorem Proving Procedures

doi:10.1145/800157.805047

Richard M. Karp (1972)
Reducibility Among Combinatorial Problems

doi:10.1007/978-1-4684-2001-2_9

Leo Liberti (2019) 
Undecidability and Hardness in MINLP

https://doi.org/10.1051/ro/2018036

Matthias Köppe (2010) 
On the complexity of nonlinear mixed-integer optimization

arXiv:1006.4895v1

Symboldarstellung
Räume sind nicht größenmäßig 
korrekt dargestellt.

QUBO = ILP

Notes on NP-hard

Subset-sum: Given & ∈ ℤ" and ; ∈ ℤ exists a subset B ⊆ {1,… , F} such that ∑$∈& &$ = ;,
Subset-sum is NP-hard (even with &$ ∈ ℕ )

However: Subset-sum bounded by a constant J > &$ ∈ ℕ is in P

On a Computer &$ is always bounded if we restrict ourselves to, say 64-bit integers. 

For a mathematician nearly all numbers are larger than 2'(. (there are only finite many exceptions)

But in real-life even the US dept in pennies is just 100 M 30 M 10)*
2'( = 18.446.744.073.709.551.616

3 M 10)+ =           3.000.000.000.000.000

Adding numbers up to this is O(1)

NP-hard problems are extremely difficult as a class and in theory. In practice, it depends. 
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What O = Order of means: both pictures are equally correct
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Examples for finding some ! ∈ # is difficult. Might be, but doesn’t have to.  

We can write our problem as a decision problem (and minimize by binary search):

(& ≠ ∅ ? with (& = & ∈ ℤ$: 4& ≤ +, , ≤ & ≤ 3- ∧ 5%& = :
In this case finding some ! is equivalent to solving the problem.

Or, using some suitable big constant $, we can move the constraints into the objective:

mmiinn!∈# $(&) with ( = & ∈ ℤ$: , ≤ & ≤ 3- , $ & = 5%& +<(+ − %&)
now it is obviously trivial to find some ! ∈ #.

Note: To solve an ILP, i.e., to optimality two things must be done:

(1) ∃ :Find the minimum &∗ ∈ #. 

(2) ∀ :Prove there exists no &∗ ∈ # with ! & < !(&∗) . 
This is equivalent to showing: U ∈ ℤ-: VU ≤ W, X ≤ U ≤ YZ ∧ \(U) < \(U∗) = ∅

Notes on Solving QUBOs and Quantum Computing                                  Thorsten Koch                                  TU Berlin / Zuse Institute Berlin (ZIB)    21

This difference in difficulty 
is one reason why people 

believe ^ ≠ `^
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https://arxiv.org/abs/2207.13630

Copositive programming for mixed-binary quadratic optimization via Ising solvers

Robin Brown, David E. Bernal Neira, Davide Venturelli, Marco Pavone
Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately 
searching for the ground state of Ising spin Hamiltonians. 

The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred 
an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing 
approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization 
algorithms. Due to the heuristic and black-box nature of the underlying Ising solvers, many such approaches have 
limited optimality guarantees. 

While some hybrid algorithms may converge to global optima, their underlying classical algorithms typically rely on 
exhaustive search, making it unclear if such algorithmic scaffolds are primed to take advantage of speed-ups that the 
Ising solver may offer. 

In this paper, we propose a framework for solving mixed-binary quadratic programs (MBQP) to global optimality 
using black-box and heuristic Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, 
which we propose to solve via a hybrid quantum-classical cutting-plane algorithm. The classical portion of this hybrid 
framework is guaranteed to be polynomial time, suggesting that when applied to NP-hard problems, the complexity of 
the solution is shifted onto the subroutine handled by the Ising solver.
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What are QUBOs?

QUBO : Quadratic Unconstraint Binary Optimization 
UBQP : Unconstrained Binary Quadratic Program 
(BIQ : Binary Integer Quadratic problem)

min(∈ ),+ ) $
,%$

▷ & is a vector of binary variables, * is a square F×F matrix of constants 
▷ Since QUBOs are unconstraint, any 0/1 vector is a feasible solution

▷ All QUBOs can be brought to the form where * is symmetric or upper triangular 

▷ Solving QUBO (in general) is NP-hard 

▷ Since & is binary, &! = &!" holds ⟹ The coefficients of the linear terms of the objective function 
correspond to the diagonal entries of *
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Ising Hamiltonian

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 34

Linear terms (biases, 
local fields)

Quadratic terms 
(couplers) Spins

• A Quadratic Unconstrained Binary Optimization (QUBO) problem can be transformed 
into an Ising Hamiltonian with a simple algebraic manipulation:

xi =
si + 1

2

si 2 {−1, 1}
xTQx HIsing

s0

s1

s2

s3

s4

h0

h1

h2

h3

h4

J02

J 1
2

J13

J
23

J
3
4

HIsing =
X

i2V

hisi +
X

{i,j}2E

Jijsisj , si 2 {−1,+1}

• Quantum annealing is a special-purpose device that finds the minimum energy of an 
Ising Hamiltonian heuristically
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From QUBO transformation, E. Rodríguez-Heck, Gurobi Days Digital May 03,2022 

BIP to QUBO 

BIP
min'∈ (,* # >

+?

s.t. C? ≤ D
QUBO

min'∈ (,* # >
+?,+ E C? + FG − D +(C? + FG − D)

=>
min-∈ (,* # ?

+H?

where * ∈ ℝ$×$ and symmetric
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BIPs can be reformulated as QUBOs by 
putting the constraints into the objective 
with a penalty term *.  The penalty should be 
zero if and only if the constraint is fulfilled. 

Glover, Kochenberger, Du (2019): 
A Tutorial on Formulating and Using QUBO Models 

arXiv:1811.11538 
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Independent (stable) Set

Given a graph c = (d, e), find the maximum size independent set of nodes

max&⊆( |B|with g, h ∈ B ⟹ (g, h) ∉ e

Binary Linear Programing formulation:

max
)∈ +,- |%|j

.∈(
&. subject to &/ + &. ≤ 1 for all (g, h) ∈ e

Unconstraint Quadratic Binary Programing formulation:

min
)∈ +,- |%|−j

.∈(
&." + ^ M j

(/,.)∈2
&/ M &.
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= 0

Max-Cut 

Binary Linear Programing formulation:

maxj
!3-

$
j
43-

$
t!4u!4

u!4 ≤ &! + &4
u!4 ≤ 2 − (&! + &4)

&5 ∈ 0,1
u!4 ∈ {0,1}
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Binary Quadratic Programing formulation:

max)∈ +,- &j
!3-

$
j
43-

$
t!4(&! + &4 − 2&!4)

Can be written as:
min

!∈ #,% ! !&0!

Graph formulation c = d, e,t

max&,6 j
!∈&,4∈6

t!4 with B ⊂ d, w ⊂ d, B ∩ w = ∅, B ∪ w = d

Ising formulation

max
1
4
j
!3-

$
j
43-

$
t!4 1 − &!&4 , &5 ∈ 1,−1 for { ∈ {1,… , F}

&! = &4 = 0 ⇒ u!4 = 0

&! = &4 = 1 ⇒ u!4 = 0
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Transformations

Modelling a linear relationship quadratic:
& = &", & ∈ 0,1

Modelling multiplication of binary variables } = &- M &" = &- ∧ &", for &-, &" ∈ 0,1 :
} ≤ &-
} ≤ &"
} ≥ &- + &" − 1
} ∈ {0,1}

Modelling general Integer variables from Binary variables:

j
!3+

$7-
2!&! ≤ `, &! ∈ 0,1 ⟺ u ∈ {0,… ,min(2$ − 1,`)}

Alternatively:

j
!3-

8
~ M &! = u and j

!3-

8
&! = 1 for &! ∈ 0,1 , u ∈ 1,… ,`
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Some more notes on QUBOs

▷ In theory possible to model all ILP and SAT, but  not MILP 

▷ Number of constraints is not important, 
only the number of Variables!

▷ Constraint with large support result in dense Q, 
cardinality constraint is worst

▷ While most available software works on dense instances 
this limits the problem size dramatically

▷ General ^ .& − ; 6(.& − ;). Beware numerical trouble!

▷ QUBO is unconstraint and pure binary, nearly all heuristic 
ideas work nicely

▷ Preprocessing is limited compared to ILP/SAT
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Glover, Kochenberger, Du (2019): 
A Tutorial on Formulating and Using QUBO Models 

arXiv:1811.11538 

▷ Impossible to distinguish between feasibility and optimization. When to stop? 
▷ Best for problems where there is some “natural” quadratic formulation. (But, e.g., QAP is dense)

▷ On the primal side hard to win against problem specific heuristic approaches

▷ How to get good lower bounds? (LP/SDP/Newton-Bracket)
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Reminder

Solving an optimization problem means 

mmiinn9∈: \(U) with Ä = U, W, X, Z ∈ ℤ; ∶ Ç U ≤ W, X ≤ U ≤ YZ
(1) finding a feasible solution (often trivial, but not always)

(2) Proving it is the best one

Solving a decision (feasibility) Problem means

Ä ≠ ∅⟺ mmiinn9∈: É with Ä = U, W, X, Z ∈ ℤ; ∶ Ç U ≤ W, X ≤ U ≤ YZ
(1) Finding a solution

A QUBO by definition is an unconstraint optimization problem
mmiinn9∈ <,= ' U>ÑU

i.e., finding a solution is absolutely trivial (e.g., & = 0)

We can transform between the 3, so be careful what is done exactly and how a solution translates back.
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Once upon a time 
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Best solutions so far
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! = ###

ICONG(2)

min u

+
()*

%*( = 2 for all . (1)

+
()*

%(* = 2 for all . (2)

'+*( ≤ 0
# %*( for all 1, . ≠ 4 (3)

+
()*

'+*( − +
()*

'+*( = 6*+ for all i, 1 (4)

+
+

'+*( ≤ 8 for all . ≠ 4 (5)

'+*( ≥ 0 for all 1, . ≠ 4 (6)

%*( ∈ {0,1} for all . ≠ 4 (7)

Notes on Solving QUBOs and Quantum Computing                                  Thorsten Koch                                  TU Berlin / Zuse Institute Berlin (ZIB)    37

s.t.

Root relaxation objective:  30.28571
dano3mip root relaxation : 576.2316

Best known solution:       665.5714

1, ., 4 ∈ {1,… , 24}

30.28571 95.4%
350.63706 47.3%
425.04748 36.1%
436.46971 34.4%

Gurobi 9.5.1 root cuts 439.96568 33.9%

original model 577.82468      _
with some cuts removed 577.88492      _

Best know solution
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Transforming ICONG(2) into a QUBU (so we can solve on a QC)

Todo:

1. Make it all integer
2. Make it equality (C? = D)
3. Make it binary
4. Put the constraints into the objective
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Make it all integer

min u

+
()*

%*( = 2 for all .

+
()*

%(* = 2 for all .

'+*( ≤ 0 # %*( for all 1, . ≠ 4

+
()*

'+*( − +
()*

'+*( = >??? # 6*+ for all i, 1

+
+

'+*( ≤ 8 for all . ≠ 4

'+*( ∈ {?,… , >???} for all 1, . ≠ 4
%*( ∈ {0,1} for all . ≠ 4
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s.t.

Scale by 1000 for 3 decimal digits

Root relaxation objective 3028.571
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Transforming an ILP to a system of equations

Notes on Solving QUBOs and Quantum Computing                                  Thorsten Koch                                  TU Berlin / Zuse Institute Berlin (ZIB)    41

min,∈ℤ −2%# − %! subject to

80%# − 10%! ≤ −7
%# + 20%! ≤ 120

−5%# − 20%! ≤ −32
7%# + 2%! ≤ 48

−2%# + 2%! ≤ −7
3%# + 4%! ≥ 5
3%# + 4%! ≤ 5

% ≤ O
% ≥ P

min,∈ℤ −2%# − %! subject to

80%# − 10%! + 6# = −7
%# + 20%! + 6! = 120

5%# + 20%! − 6/ = 2
7%# + 2%! + 60 = 48
2%# − 2%! − 61 = 7
3%# + 4%! = 5

O ≤ % ≤ P
6 ≥ 0

min 1&!
s.t. 5! ≤ 7

l ≤ ! ≤ 9
! ∈ ℤ'

min 1&!
s.t. 5! + <'= = 7

l ≤ ! ≤ 9
! ∈ ℤ'
= ≥ 0
= ∈ ℝ'. ∈ ℝ?×$, ( ∈ ℝ$, ;, Ö, g ∈ ℝ?

⟺

⟺

Converting to 
equation form 

adds m variables.

Making it binary

Modelling general Integer variables u ∈ 0,… ,` using Binary variables &! ∈ 0,1 :
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j
!3-

8
&! Q(S) representation is not unique

j
!3-

8
~ M &! ∧ j

!3-

8
&! ≤ 1 Q(S)

we need an extra constraint, which quadratic 
looks like ∑*,(∈ #,…4 ,*)( %* # %(, and is dense

j
!3-

$≔ 8
~ M &! + j

!3-,!∈A5

$7-
~ M &$B! Q( S) representation is not unique

j
!3+

$≔ CDE6 8
2! M &! + j

!3-,"7∈A6

$7-
2! M &$B! ` Q(log! S)

switching from 28 − 1 to 28 changes all involved 
variables, only unique for powers of 2

with "! ≔ $ ∈ 1,… , ) − 1 ∑"∈$ $ = - − ∑"%!
&≔ ( $ ∧ " minimal}, ") ≔ $ ∈ 1,… , ) − 1 ∑"∈$ $ = - − ∑"%!

&≔ *+,! ( 2" ∧ " minimal}
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Putting the constraints into the objective

min I

6
-."
7"- = 2 for all $

6
-."
7-" = 2 for all $

8/"- + :/"- −; < 7"- = 0 for all >, $ ≠ @

6
-."
8/"- −6

-."
8/"- −; < :"/ = 0 for all i, >

6
/
8/"- + :"- − A = 0 for all $ ≠ @

7"- ∈ {0,1} for all $ ≠ @

8/"- ∈ {0,… ,;} for all >, $ ≠ @

:/"- ∈ {0,… ,;} for all >, $ ≠ @

:"- ∈ {0,… ,;} for all $ ≠ @
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s.t.
min

9∈ ",# 0 X:%!+ * Y% + Z6 − [ :(Y% + Z6 − [)

Nodes, commodities: 1, ., 4 ∈ {1, … , 24}
Integer to binary: 0 = 666 → log! 666 + 4 = 13
for all . ≠ 4 → 24×23 = 552
for all 1, . ≠ 4 → 24×552 = 13248
Binary variables total:

552 + 13× 13248 + 13248 + 552 = 352,176
⟹ ` ∈ ℤ/1!#;<×/1!#;<

i.e., we need at least 352,176 qubits

The range of the coefficients in ` is at least up to 

666/ = 295,408,296
And ` will not be particular sparse!

Faster than a Quantum computer

MAX-Reaper: 
An exact solver for QUBO and Max-Cut

Faster exact solution of sparse MaxCut and QUBO problems
Daniel Rehfeldt, Thorsten Koch, Yuji Shinano

doi: 10.48550/arXiv.2202.02305
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Branch-and-cut algorithm for sparse QUBO and Max-Cut problems

Main components: 

▷ Presolving

▷ Simple Domain Propagation

▷ Problem-specific cutting planes (optimized implementation)
▷ Primal heuristics

▷ Parallel branch-and-bound search via UG framework 
(still experimental). 

About 15,000 lines of code + 1M lines for SCIP and LP solver.

Already faster than existing QUBO/Max-Cut solvers on sparse 
QUBO and Max-Cut benchmarks in many cases. 
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Overall Architecture

The final code will be able to completely utilize existing HPC resources:
Run multicore on many nodes employing GPU accelerators in parallel. 
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UG Framework for massive parallelization

SCIP Constraint Integer Programming Framework

Max-Cut Specialization

Cutting planes Preprocessing

Heuristics Conflict analysis

LP 
SolverGPU based 

primal heuristic
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Selected Benchmarks (there are more)

Name # |V| |E| Description

DIMACS 4 512-3375 1,536-10,125 Instances from 7th DIMACS Challenge

IsingChain 30 100-300 4,950-44,850 Max-Cut instances from physics applications

QBLIB 22 120-1,225 602-34,876 QUBOs from QPLIB instances

Mannino 4 48-487 1,128-8,511 Frequency assignment problems

l64-dwave 80 2,049 8,064 Max-Cut instances from D-Wave Chimera graphs

Paintshop 30 10-1,000 22-2,498 QUBO Instances modelling the binary paintshop probnlem

Torus 18 100-343 200-1,029 Max-Cut instances from physics applications

Kernel 14 33-2,888 91-2,981 Instances from various sources

GKAa-d 35 20-125 204-7,788 Randomly generated
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|V|: Number of vertices (Max-Cut), or F of matrix * ∈ ℝ $×$ (QUBO). 
|E|: Number of edges (Max-Cut), or number of non-zero entries in * (QUBO) 

Preprocessing
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Whenever one tries to solve real-world (and other) problem instances, the first thing to do is to 
implement some preprocessing. We found some new techniques to improve performance.

As one can see, the IsingChain and the K64-chimera instances practically vanish.

413



Comparison of the new solver MAX-Reaper (new) and Gurobi 9.5 MIQP (Grb) 
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Time limit: 1 h , single-threaded, Intel Xeon Gold 5122 3.60 GHz, 96 GB,  Sep. 2022 

M. Jünger, E. Lobe, P. Mutzel, G. Reinelt, F. Rendl, G., T. Stollenwerk. 2021. 
ACM J. Exp. Algorithmics 26, Article 1.9, doi: 10.1145/3459606 

This is paper makes a very detailed and precise comparison with the following conclusion:

“However, we should stress the fact that exact optimization requires a lot of time to 
prove optimality, and thus it is not fair to compare their times with the heuristic 
times, but even with this additional burden, the exact algorithms are faster than 
D-Wave on a large portion of the sample. 

[…]

It may well be (and we hope) that the exciting new quantum computer technology will 
make leaps in the future, but in our experiments, we have certainly not observed 
superior performance of quantum annealing in comparison to “classical” methods.” 

Quantum Annealing versus Digital Computing: An Experimental Comparison
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Comparing to Mc-Sparse 

MS data from: Charfreitag, Jünger, Mallach, Mutzel, ALENEX 2022, doi:10.1137/1.9781611977042.5 
Mc-Sparse: Exact solutions of sparse maximum cut and sparse unconstrained binary quadratic optimization problems.
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MC was used in the 
comparison with the 
Quantum Annealers
On the previous slide.

We see still substantial 
room for performance 
improvement on solving 
QUBOs on digital 
computers.

Experience shows that this 
improvement will happen 
esp. on those instances 
who are now difficult.

Running Parallel

Results with non-negated 
weights for torusg3/pm3

88 core E7-8880v4@2.20GHz 
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https://blogs.nvidia.com/blog/2021/11/09/cuquantum-world-record/

NVIDIA Sets World Record for Quantum Computing Simulation With cuQuantum Running on DGX SuperPOD

Driving toward that future, NVIDIA created the largest ever simulation of a quantum algorithm for 
solving the MaxCut problem using cuQuantum, our SDK for accelerating quantum circuit simulations on a 
GPU.
In the math world, MaxCut is often cited as an example of an optimization problem no known computer 
can solve efficiently. MaxCut algorithms are used to design large computer networks, find the optimal 
layout of chips with billions of silicon pathways and explore the field of statistical physics.

[...]

We used the cuTensorNet library in cuQuantum running on NVIDIA’s in-house supercomputer, Selene, to 
simulate a quantum algorithm to solve the MaxCut problem. Using 896 GPUs to simulate 1,688 qubits, 
we were able to solve a graph with a whopping 3,375 vertices. That’s 8x more qubits than the previous 
largest quantum simulation.

Our solution was also highly accurate, reaching 96% of the best-known answer. We set this new record 
with an algorithm developed by NVIDIA researchers and an open-source framework.
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https://blogs.nvidia.com/blog/2021/11/09/cuquantum-world-record/

NVIDIA Sets World Record for Quantum Computing Simulation With cuQuantum Running on DGX SuperPOD

Driving toward that future, NVIDIA created the largest ever simulation of a quantum algorithm for 
solving the MaxCut problem using cuQuantum, our SDK for accelerating quantum circuit simulations on a 
GPU.
In the math world, MaxCut is often cited as an example of an optimization problem no known computer 
can solve efficiently. MaxCut algorithms are used to design large computer networks, find the optimal 
layout of chips with billions of silicon pathways and explore the field of statistical physics.

[...]

We used the cuTensorNet library in cuQuantum running on NVIDIA’s in-house supercomputer, Selene, to 
simulate a quantum algorithm to solve the MaxCut problem. Using 896 GPUs to simulate 1,688 qubits, 
we were able to solve a graph with a whopping 3,375 vertices. That’s 8x more qubits than the previous 
largest quantum simulation.

Our solution was also highly accurate, reaching 96% of the best-known answer. We set this new record 
with an algorithm developed by NVIDIA researchers and an open-source framework.
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Not the optimal solution.
We need 0.2 s on a workstation to 

find this quality solution. 
2 days to find the optimal solution, 

3 more days to prove optimality.

Theoretical computer scientist 
mean something different by 

“efficiently” 
+ by this definition just  finding 

a solution is not ”solving” it.
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There is still a lot missing (or waiting to come)

SCIP-Jack is faster than problem specific state-of-the-art solvers for several well-known Steiner problem 
variants. Example: The Rooted Prize-Collecting Steiner-Tree-Problem (RPC-STP is NP-hard)

Given an undirected graph c = (d, e), a root Ü ∈ d, edge-weights ( ∶ e → ℚJ+ , and
node-weights à ∶ d → ℚJ+, a tree B = (d&, e_B) in c is required such that Ü ∈ B and

^ B ≔ j
K∈2>

(K + j
.∈(\M>

à.

is minimized.

DIMACS fiber network instances, hard instances (>20,000 edges):

▷ first publication (Ljubic ’04):  > 4,000 s*

▷ SCIP-Jack at DIMACS (1st )         > 100 s

▷ best other solver: > 300 s
▷ current SCIP-Jack:    < 1 s
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Rehfeldt, Koch (2021)

Implications, conflicts, and reductions for Steiner trees

doi: 10.1007/978-3-030-73879-2_33

Looking back

What people through about computers in the early 1960s

The Thinking machines  (MIT 1961)
https://www.youtube.com/watch?v=aygSMgK3BEM

https://www.youtube.com/watch?v=5YBIrc-6G-0

If you check the movie, you will find, that many of the ideas mentioned became true. 
Only in the movie they mention “within 10 years” while in practice its now 60 years later.

Current state in Quantum Computing

▷ Still trying to figure out how to build a QC
▷ Doing gate level algorithms

This is comparable to digital computers in the 50s
▷ QC is about where the Wright bros were with planes. 

Getting a 747 took 67 more years.
▷ There is much to be done in Quantum computing. 

It will take time and effort.
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Looking forward

“We tend to be too optimistic about the short run, too pessimistic about the long run.”
― J. Preskill

▷ Practical MILP solving on digital computers got arguably faster at least 42% every year 
(combined hard+software) during the last 40 years. This is an exponential speed-up.
Progress in Mathematical Programming Solvers from 2001 to 2020, K., Berthold, Pedersen, Vanaret, ZR-21-20

▷ Regarding our QUBO solver, there are still plenty algorithmic improvements possible. Additionally, we will add GPU-
based heuristics and distributed memory parallelization to able to run up to 1 million cores.

▷ QC likely will evolve for some very specific applications, first likely around Quantum Simulation. This is the original 
application of QC. It has some strong inherit advantage compared to classical computers.

Recommended further Reading:
NP-complete Problems and Physical Reality, Scott Aaronson, https://arxiv.org/abs/quant-ph/0502072
An Introduction to Quantum Computing, without the Physics, Giacomo Nannicini, https://arxiv.org/abs/1708.03684
https://www.scientificamerican.com/article/will-quantum-computing-ever-live-up-to-its-hype
https://www.linkedin.com/pulse/quantum-computing-hype-bad-science-victor-galitski-1c?trk=public_post-content_share-article_title
https://www.scottaaronson.com/talks/speedup.ppt
https://scottaaronson.blog/?p=5387 (and the rest of his Quantum blog entries)
https://physicsworld.com/a/conquering-the-challenge-of-quantum-optimization
https://m-malinowski.github.io/2022/03/11/forecasting-future-of-qc.html
https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem
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https://physicsworld.com/a/conquering-the-challenge-of-quantum-optimization

Quantum computers are often touted as the solution to all our problems. They are expected to cure 
disease, alleviate world hunger and even help mitigate the effects of climate change. Fuelled by this 
enthusiasm, a number of quantum computing firms have started joining established markets. However, 
despite this interest, there is still a lot of uncertainty around the near-term uses of quantum computers. 
A crucial question facing quantum researchers today, in both academia and industry, is a pretty 
fundamental one: what problems are best solved with these devices?

[…]

There is, nevertheless, one point on which everyone seems to agree: it is very likely that some problems 
exist where quantum optimization is provably superior to classical methods, but these problems will 
likely occur in the realm of physics and not in finance or industrial operations. “Nature is quantum. If 
nature can solve a problem, so should quantum computers,” says França, who is confident about 
problems involving molecules or quantum materials like superconductors. “The strongest case for 
variational algorithms,” Aaronson says, “seems to be on problems that are themselves quantum.”

Training Variational Quantum Algorithms Is NP-Hard

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.120502
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More Links

Twenty Questions for Donald Knuth

17. Andrew Binstock, Dr. Dobb's: At the ACM Turing Centennial in 2012, you stated that you were 
becoming convinced that P = N P. Would you be kind enough to explain your current thinking on this 
question, how you came to it, and whether this growing conviction came as a surprise to you?

https://www.informit.com/articles/article.aspx?p=2213858&WT.mc_id=Author_Knuth_20Questions
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3 reasons why a question in industrial optimization might be difficult to answer

1. The question is not well defined, 
i.e., the modeling is intricate. Very often, in industry, problems are involved and multi-layered. 
Determining a precise definition of the problem, the input and output data, and mapping this to a 
mathematically well-defined computable optimization problem can be challenging. 

2. The data needed to solve the problem is not fully available. 
Many companies struggle hard to consolidate their IT. Getting out precise numbers is often 
surprisingly hard. One fundamental reason is decomposition, which has been necessary, at least in 
the past, to counter complexity. As a result, everyone only sees either a very little or very simplified 
part of the whole picture, and it is very hard to impossible to collect and the data into a coherent set.

3. The resulting problem is computationally hard to solve. 
Since the complexity class of discrete optimization problems often is NP-hard, this is not surprising. 
However, experience shows, that solving particular instances works surprisingly well and that usually, 
the main reason for the inability to solve a problem is its size. For example, the likes of SAP, Amazon, 
Google, Huawei all have extremely large-scale supply-chain-type problems at hand. But not so many 
others. And there are surprisingly few small challenging real-world problems unless the time allowed 
for solving is very short. 
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on 

Advances in Classical and Quantum Algorithms for 

Optimization and Machine Learning 
September 16th - 19th, 2022, Tokyo (The university of Tokyo), Japan, 

and September 21st  - 22nd, 2022, Fukuoka (Kyushu University), Japan 
 

 
 

Quantum algorithm for stochastic 
optimal stopping problems with 

applications in finance 

João F. DORIGUELLO 
Centre for Quantum Technologies, National University of 

Singapore, Singapore 
joaofd@nus.edu.sg 

 
 

The famous least squares Monte Carlo (LSM) algorithm [1,2,3] combines linear least 
square regression with Monte Carlo simulation to approximately solve problems in 
stochastic optimal stopping theory. In this work, we propose a quantum LSM based on 
quantum access to a stochastic process, on quantum circuits for computing the optimal 
stopping times, and on quantum techniques for Monte Carlo. For this algorithm, we 
elucidate the intricate interplay of function approximation and quantum algorithms for 
Monte Carlo. Our algorithm achieves a nearly quadratic speedup in the runtime 
compared to the LSM algorithm under some mild assumptions. Specifically, our 
quantum algorithm can be applied to American option pricing and we analyze a case 
study for the common situation of Brownian motion and geometric Brownian motion 
processes. 
 
 

 

References 
[1] F. A. Longstaff and E. S. Schwartz. “Valuing American options by simulation: a simple least-

squares approach”. In: The review of financial studies 14.1 (2001), pp. 113–147. 
https://doi.org/10.1093/rfs/14.1.113 

[2] E. Clément, D. Lamberton, and P. Protter. “An analysis of a least squares regression method for 
American option pricing”. In: Finance and Stochastics 6.4 (2002), pp. 449–471. 
https://doi.org/10.1007/s007800200071 

[3] D. Z. Zanger. “Convergence of a least-squares Monte Carlo algorithm for bounded 
approximating sets”. In: Applied Mathematical Finance 16.2 (2009), pp. 123–150. 
https://doi.org/10.1080/13504860802516881 
 

421



422



423



424



425



426



max{S − K , } K S

427



(⌦,F ,P)
(Xt)

T
t=

(E , E) E ✓ Rd

X = x

zt 2 L (E , ⇢t) (Zt)
T
t=

Zt = zt(Xt)

(Xt)
T
t= (Zt)

T
t=

428



⌧ : ⌦ ! { , , . . . ,T}
⌧ Z⌧ (!) := Z⌧(!)(!)

" >

sup
⌧

E[Z⌧ ]

"

sup
⌧

E[Z⌧ ] = E[Z⌧ ] = max{Z ,E[Z⌧ ]}.

⇢
⌧T = T ,

⌧t = t {Zt ≥ E[Z⌧t+ |Xt ]}+ ⌧t+ {Zt < E[Z⌧t+ |Xt ]},  t  T − .

E[Z⌧t+ |Xt ]

429



⇢
⌧T = T ,

⌧t = t {Zt ≥ E[Z⌧t+ |Xt ]}+ ⌧t+ {Zt < E[Z⌧t+ |Xt ]},  t  T − .

E[Z⌧t+ |Xt ]

430



Ht ✓ L (E , ⇢t) t 2 { , . . . ,T}
E[Z⌧t+ |Xt ] ft 2 Ht

ft

{ek : E ! R}mk= m
Ht = {ek : E ! R}mk=

E[Z⌧t+ |Xt ] ⇡ ↵t · ~e(Xt) =

nX

j=

(↵t)jej(Xt),

~e(·) := (e (·), . . . , em(·))>

↵t = arg min
a2Rm

E
⇥
(Z⌧t+ − a · ~e(Xt))

⇤
.

{ek : E ! R}mk= ↵t

↵t = A−
t bt bt = E[Z⌧t+ ~e(Xt)]

At 2 Rm⇥m

(At)k,l = E[ek(Xt)el(Xt)].

431



ft

N (X
( )
t )

T
t= , . . . , (X

(N)
t )

T
t=

Z
(n)
t = zt(X

(n)
t )

N

⌧
(n)
t

E[Z⌧t+ |Xt ] ⇡ ↵t · ~e(Xt)

↵t = arg min
a2Rm N

NX

n=

�
Z

(n)

⌧
(n)
t+

− a · ~e(X (n)
t )

�
.

↵t = A−
t bt bt =

N

NX

n=

Z
(n)

⌧
(n)
t+

~e(X
(n)
t )

At 2 Rm⇥m

(At)k,l =
N

NX

n=

ek(X
(n)
t )el(X

(n)
t ).

{⌧ (n)}Nn=
sup⌧ E[Z⌧ ] = max{Z ,E[Z⌧ ]}

U = max

(
Z ,

N

NX

n=

Z
(n)

⌧
(n)

)
.

432



N (X
( )
t , . . . ,X

(N)
t )

T
t=

(Z
( )
t , . . . ,Z

(N)
t )

T
t=

(ek(X
( )
t ), . . . , ek(X

(N)
t ))t2[T ],k2[m]

{At}T−
t= {A−

t }T−
t=

⌧
(n)
T = T n 2 [N]

t = T −
↵t = A−

t N

PN
n= Z

(n)

⌧
(n)
t+

~e(X
(n)
t )

n 2 [N]

⌧
(n)
t = t {Z (n)

t ≥ ↵t · ~e(X (n)
t )}+ ⌧

(n)
t+ {Z (n)

t < ↵t · ~e(X (n)
t )}

U := max

n
Z , N

PN
n= Z

(n)

⌧
(n)

o

433



bt = E[Z⌧t+ ~e(Xt)] At = E[~e(Xt)~e(Xt)
>
]

" 2 ( , ) X µ = E[X ]

Var(X )  σ
eO(σ/") eµ |eµ− µ|  "

(Xt)
T
t=

UP|~i =
X

x2ET

p
p(x)|xi

p(x) = P[X = x ]
QT−

t= P[Xt+ = xt+ |Xt = xt ]

h : E ! R

Vh|xi|~i = |xi|h(x)i.

434



bt = E[Z⌧t+ ~e(Xt)]

At = E[~e(Xt)~e(Xt)
>
]

↵t = A−
t bt m

⌧t

⌧t
⌧u t +  u  T

⌧u t +  u  T
⌧t

⌧t

C
(k)
t t 2 [T ] k 2 [m]

C
(k)
t |xi|~i = |xi|z⌧t(x)ek(xt− )i.

↵t Wt

(
Wt |xi|⌧t+ (x)i|~i = |xi|⌧t+ (x)i|⌧t(x)i t 6= T ,

Wt |xi|~i = |xi|T i t = T .

V
(k)
t

V
(k)
t |xi|⌧t(x)i|~i = |xi|⌧t(x)i|z⌧t(x)ek(xt− )i

C
(k)
t := W †

T . . .W †
t+ W †

t V
(k)
t WtWt+ . . .WT .

⌧t (x) = t {zt (xt ) � ↵t · ~e(xt )} + ⌧t+ (x) {zt (xt ) < ↵t · ~e(xt )}

435



{At}T−
t=

{A−
t }T−

t=

WT : |xi| i 7! |xi|T i
t = T
t 6= T

Wt : |xi|⌧t+ (x)i| i 7! |xi|⌧t+ (x)i|⌧t(x)i

V
(k)
t : |xi|⌧t(x)i| i 7! |xi|⌧t(x)i|z⌧t(x)ek(xt− )i

k 2 [m]

bt− W †
T . . .W †

t V
(k)
t Wt . . .WT

k 2 [m] bt− = E[Z⌧t~e(Xt− )]

↵t− = A−
t− bt−

W : |xi|⌧ (x)i| i 7! |xi|⌧ (x)i|⌧ (x)i
V : |xi|⌧ (x)i| i 7! |xi|⌧ (x)i|z⌧ (x)i

E[Z⌧ ] W †
T . . .W †V W . . .WT

U := max
�
Z ,E[Z⌧ ]

 

" 2 ( , ) σmin  mint2[T− ] σmin(At) N = ⇥
�

m
" σmin

�

U

|U − E[Z⌧ ]|  T

✓
"+ max

t<T
min
a2Rm

ka · ~e(Xt)− E[Z⌧t+ |Xt ]kL (⇢t)

◆

eO
⇣

Tm
" σmin

⌘
eO
⇣
T m
"σmin

⌘

436



|U − E[Z⌧ ]|  T

✓
"+ max

t<T
min
a2Rm

ka · ~e(Xt)− E[Z⌧t+ |Xt ]kL (⇢t)

◆

"

max t<T mina2Rm ka · ~e(Xt)− E[Z⌧t+ |Xt ]kL (⇢t)

eO
⇣

Tm
" σmin

⌘
eO
⇣
T m
"σmin

⌘

σmin

Ht = q

437



T

438



The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on 

Advances in Classical and Quantum Algorithms for 

Optimization and Machine Learning 
September 16th - 19th, 2022, Tokyo (The university of Tokyo), Japan, 

and September 21st  - 22nd, 2022, Fukuoka (Kyushu University), Japan 
 

 
 

Multicriteria Shortest Path Algorithms 

Ralf BORNDÖRFER 
Zuse Institute Berlin & Freie Universität Berlin, Berlin, Germany 

borndoerfer@zib.de 
 
 

The optimization of paths subject to different criteria such as length, duration, cost, 
etc. comes up in all kinds of route planning applications; they lead to the Multiobjective 
Shortest Path Problem (MOSP) of computing the Pareto front of efficient solutions. We 
propose a new “Multiobjective Dijkstra” label-setting algorithm [1,2] that computes a 
minimum complete set of Pareto optimal paths; it is based on a lexicographic 
organization of the label exploration process. In this way, the main data structure, a 
priority queue, can be kept small, holding at most one label per node of the underlying 
graph, and all extracted labels are guaranteed to be efficient. The resulting algorithm 
improves the best know complexity bounds in this area. It gives rise to an FPTAS 
approximation variant [3], it can be generalized to a time dependent setting (in the FIFO 
case), it is parallelizable, and it works in practical implementations for more than two 
objectives. 
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The Time-dependent 2D Flight Planning Problem

Definition (Time-dependent 2D Flight Planning Problem).

Input:

▪ Directed graph 𝐷𝐷 = (𝑉𝑉, 𝐴𝐴) (embedded on the Earth)
▪ Source and target nodes 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉
▪ Departure time 𝜏𝜏0
▪ Travel time functions (TTFs) 𝑡𝑡𝑎𝑎:ℝ≥0 → ℝ≥0 for each arc 𝑎𝑎 ∈ 𝐴𝐴, 

mapping starting time 𝜏𝜏 to traversal time 𝑡𝑡𝑎𝑎(𝜏𝜏)

Output:

▪ 𝑠𝑠𝑠𝑠-path path 𝑝𝑝 = 𝑣𝑣0,… , 𝑣𝑣𝑛𝑛 minimizing
𝑡𝑡(𝑝𝑝) ≔ σ𝑖𝑖=0

𝑛𝑛−1 𝑡𝑡(𝑣𝑣𝑖𝑖,𝑣𝑣𝑖𝑖+1) 𝜏𝜏𝑖𝑖 s.t. 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑖𝑖−1 + 𝑡𝑡(𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑖𝑖)(𝜏𝜏𝑖𝑖−1)
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FRA-SFO: Min. Fuel vs Min. Distance Track

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 5

441



FRA-MRS: MFT vs. Min. Overflight Cost Track
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The Static 2D Flight Planning Problem

Definition (Static 2D Flight Planning Problem).

Input:

▪ Directed graph 𝐷𝐷 = (𝑉𝑉, 𝐴𝐴) (embedded on the Earth)
▪ Source and target nodes 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉
▪ Departure time 𝜏𝜏0
▪ Cost 𝑐𝑐𝑎𝑎 ∈ ℕ0 for each arc 𝑎𝑎 ∈ 𝐴𝐴

Geben Sie hier eine Formel ein.

Output:

▪ 𝑠𝑠𝑠𝑠-path path 𝑝𝑝 = 𝑣𝑣0,… , 𝑣𝑣𝑛𝑛 minimizing

𝑐𝑐(𝑝𝑝) ≔ ෍
𝑖𝑖=0

𝑛𝑛−1

𝑐𝑐(𝑣𝑣𝑖𝑖,𝑣𝑣𝑖𝑖+1)
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The Multiobjective Shortest Path Problem
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The Multiobjective Shortest Path Problem
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The Multiobjective Shortest Path Problem

Definition (Dominance). Let 𝑝𝑝, 𝑟𝑟 be 𝑠𝑠𝑠𝑠-paths in 𝐷𝐷 = (𝑉𝑉, 𝐴𝐴), 𝑐𝑐 ∈
ℝ≥0
𝐴𝐴×𝑑𝑑. Then 𝑝𝑝 dominates 𝑟𝑟 ∶⟺ 𝑝𝑝 ≼ 𝑟𝑟:⟺ 𝑐𝑐 𝑝𝑝 ≨ 𝑐𝑐 𝑟𝑟 .

Definition (Efficiency). An undominated 𝑠𝑠𝑠𝑠-path is efficient. 
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The Multiobjective Shortest Path Problem

Definition (Multiobjective Shortest Path Problem (MOSP)). 
Input: Digraph 𝐷𝐷 = 𝑉𝑉, 𝐴𝐴, 𝑐𝑐 , 𝑐𝑐 ∈ ℕ0

𝐴𝐴×𝑑𝑑, 𝑠𝑠 ∈ 𝑉𝑉.
Output: "Minimally complete" set of efficient 𝑠𝑠𝑠𝑠-paths for all 𝑣𝑣 ∈ 𝑉𝑉.
Note: Only one path for each multidimensional objective. 
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The Intractability of MOSP

Example & Observation (Intractability of MOSP, Hansen  

[1979]). Even for only two objectives, a MOSP can have an 
exponential number of efficient paths. 
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Multiobjective Shortest Path Algorithms

Definition (Explored & Permanent Paths). Let 𝑝𝑝 be an 𝑠𝑠𝑠𝑠-path in a 
digraph 𝐷𝐷 𝑉𝑉, 𝐴𝐴, 𝑐𝑐 , 𝑐𝑐 ∈ ℕ0

𝑑𝑑, s, 𝑣𝑣 ∈ 𝑉𝑉.
a) 𝑝𝑝 explored ∶⟺ 𝑝𝑝 has been seen but is not known to be efficient
b) 𝑝𝑝 permanent ∶⟺ 𝑝𝑝 is guaranteed to be (and remain) efficient
Explored 𝑠𝑠𝑠𝑠-paths are stored in a priority queue 𝑄𝑄, and permanent 
𝑠𝑠𝑠𝑠-paths in a set 𝑃𝑃𝑣𝑣.
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Multiobjective Shortest Path Algorithms

Definition (Lexicographic Order). Let 𝑝𝑝, 𝑞𝑞 be 𝑠𝑠𝑠𝑠-paths in 𝐷𝐷 = (𝑉𝑉, 𝐴𝐴), 
𝑐𝑐 ∈ ℕ0

𝐴𝐴×𝑑𝑑. Then 
𝑝𝑝 ≺𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞 ∶⟺ 𝑐𝑐𝑖𝑖 𝑝𝑝 < 𝑐𝑐𝑖𝑖(𝑞𝑞) for the first 𝑖𝑖 ∈ [𝑑𝑑] s.t. 𝑐𝑐𝑖𝑖 𝑝𝑝 ≠ 𝑐𝑐𝑖𝑖(𝑞𝑞).
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𝑝𝑝 ≺𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞

Martins's Algorithm (Martins [1984])
Input: MOSP 𝐷𝐷, 𝑐𝑐, 𝑠𝑠
Output: 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
1. forall 𝑣𝑣 ∈ 𝑉𝑉 do 𝑃𝑃𝑣𝑣 ← ∅ endforall
2. 𝑝𝑝init ← 𝑠𝑠 , 𝑄𝑄 ← {𝑝𝑝init}
3. while 𝑄𝑄 ≠ ∅ do
4. 𝑝𝑝 ← 𝑄𝑄. extract_min(), 𝑣𝑣 ← head 𝑝𝑝
5. 𝑃𝑃𝑣𝑣 ← 𝑃𝑃𝑣𝑣 ∪ 𝑝𝑝
6. forall 𝑤𝑤 ∈ 𝛿𝛿+(𝑣𝑣) do
7. if 𝑃𝑃𝑤𝑤 ⋠ (𝑝𝑝,𝑤𝑤) then
8. 𝑄𝑄 ← 𝑄𝑄 ∪ 𝑝𝑝,𝑤𝑤
9. 𝑄𝑄 ← clean_heap
10. endif
11. endwhile
12. return 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
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Martins's Algorithm
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Martins's Algorithm
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Martins's Algorithm

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 22

𝑠𝑠 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5
(4,4) 7,8

(6,9)
(5,10)

priority queue 𝑄𝑄

𝑣𝑣4 𝑣𝑣5

𝑠𝑠 𝑣𝑣3

(1,1)

(3,3)

(4
,4
)

(3
,6
)

𝑣𝑣1

𝑣𝑣2

Martins's Algorithm

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 23

𝑠𝑠 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5
(5,5)

priority queue 𝑄𝑄

𝑣𝑣4 𝑣𝑣5

𝑠𝑠 𝑣𝑣3

(1,1)

(3,3)

(4
,4
)

(3
,6
)

𝑣𝑣1

𝑣𝑣2

450



Martins's Algorithm

Input: MOSP 𝐷𝐷, 𝑐𝑐, 𝑠𝑠
Output: 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
1. forall 𝑣𝑣 ∈ 𝑉𝑉 do 𝑃𝑃𝑣𝑣 ← ∅ endforall
2. 𝑝𝑝init ← 𝑠𝑠 , 𝑄𝑄 ← {𝑝𝑝init}
3. while 𝑄𝑄 ≠ ∅ do
4. 𝑝𝑝𝑣𝑣∗ ← 𝑄𝑄. extract_min(), 𝑣𝑣 ← head 𝑝𝑝𝑣𝑣∗

5. 𝑃𝑃𝑣𝑣 ← 𝑃𝑃𝑣𝑣 ∪ 𝑝𝑝𝑣𝑣∗

6. forall 𝑤𝑤 ∈ 𝛿𝛿+(𝑣𝑣) do
7. if 𝑃𝑃𝑤𝑤 ⋠ (𝑝𝑝𝑣𝑣∗, 𝑤𝑤) then
8. 𝑄𝑄 ← 𝑄𝑄 ∪ 𝑝𝑝𝑣𝑣∗, 𝑤𝑤
9. 𝑄𝑄 ← clean_heap
10. endif
11. endwhile
12. return 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉

a) 𝑄𝑄 can contain exponentially 
many 𝑠𝑠𝑠𝑠-paths for any 𝑣𝑣 ∈ 𝑉𝑉.

b) clean_heap must access 
them all and remove the 
dominated ones.

c) Heap properties have to be 
restored after deletions.
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Multiobjective Dijkstra Algorithm (BKMS [2021])
Input: MOSP 𝐷𝐷, 𝑐𝑐, 𝑠𝑠
Output: 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
1. forall 𝑣𝑣 ∈ 𝑉𝑉 do 𝑃𝑃𝑣𝑣 ← ∅ endforall
2. 𝑝𝑝init ← 𝑠𝑠 , 𝑄𝑄 ← {𝑝𝑝init}
3. while 𝑄𝑄 ≠ ∅ do
4. 𝑝𝑝𝑣𝑣∗ ← 𝑄𝑄. extract_min(), 𝑣𝑣 ← head 𝑝𝑝𝑣𝑣∗

5. 𝑃𝑃𝑣𝑣 ← 𝑃𝑃𝑣𝑣 ∪ 𝑝𝑝𝑣𝑣∗

6. 𝑝𝑝𝑣𝑣new ← arglexmin𝑝𝑝𝑢𝑢∈𝑃𝑃𝑢𝑢:𝑢𝑢∈𝛿𝛿−(𝑣𝑣) 𝑝𝑝𝑢𝑢, 𝑣𝑣 : 𝑃𝑃𝑣𝑣 ⋠ 𝑝𝑝𝑢𝑢, 𝑣𝑣 // next cand. label
7. if 𝑝𝑝𝑣𝑣new ≠ nil then 𝑄𝑄 ← 𝑄𝑄 ∪ {𝑝𝑝𝑣𝑣new} endif
8. forall 𝑤𝑤 ∈ 𝛿𝛿+(𝑣𝑣) do
9. if 𝑃𝑃𝑤𝑤 ⋠ (𝑝𝑝𝑣𝑣∗, 𝑤𝑤) and 𝑝𝑝𝑣𝑣∗, 𝑤𝑤 ≺lex 𝑄𝑄. 𝑤𝑤 then 𝑄𝑄. decrease_key 𝑄𝑄,𝑤𝑤, 𝑝𝑝𝑣𝑣∗, 𝑤𝑤 endif
10. endforall
11. endwhile
12. return 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
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a) Paths extracted from 𝑄𝑄 are  
efficient.

b) 𝑄𝑄 contains at most one path  
per node: the lex-smallest 
undominated path at 𝑃𝑃𝑣𝑣.
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Multiobjective Dijkstra Algorithm
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Multiobjective Dijkstra Algorithm
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Multiobjective Dijkstra Algorithm

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 30

𝑠𝑠 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5
(4,4) (5,10)

priority queue 𝑄𝑄

𝑣𝑣4 𝑣𝑣5

𝑠𝑠 𝑣𝑣3

(1,1)

(3,3)

(4
,4
)

(3
,6
)

𝑣𝑣1

𝑣𝑣2

Multiobjective Dijkstra Algorithm

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 31

𝑠𝑠 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4 𝑣𝑣5
(5,5)

priority queue 𝑄𝑄

𝑣𝑣4 𝑣𝑣5

𝑠𝑠 𝑣𝑣3

(1,1)

(3,3)

(4
,4
)

(3
,6
)

𝑣𝑣1

𝑣𝑣2

454



Multiobjective Dijkstra Algorithm
Theorem (Complexity of the MDA). Let (𝐷𝐷, 𝑐𝑐, 𝑠𝑠) be a MOSP and let
▪ 𝑛𝑛 number of nodes
▪ 𝑚𝑚 number of arcs
▪ 𝑁𝑁 total number of efficient paths
▪ 𝑁𝑁max maximal number of efficient paths at a single node.
Then the complexities of Martins's Algorithm and the MDA are

Proof (Sketch): 
a) 𝑁𝑁 log 𝑛𝑛 = # iterations × complexity of extract_min.
b) 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

2 𝑚𝑚 = complexity of building paths and checking dominance
Note: 𝑃𝑃𝑣𝑣 ≼ 𝑝𝑝 takes 𝑂𝑂 𝑑𝑑 𝑃𝑃𝑣𝑣 ≤ 𝑂𝑂 𝑑𝑑 𝑁𝑁max .
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Algorithm Martins's Algorithm MDA
Run time 𝑂𝑂(𝑑𝑑𝑁𝑁2𝑛𝑛) 𝑂𝑂 𝑑𝑑𝑑𝑑 log 𝑛𝑛 + 𝑑𝑑𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

2 𝑚𝑚 .
Breugem et. al. [2017]

Many efficient flight paths exist (time vs fuel).
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Approximating the Set of Efficient Solutions
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𝑐𝑐2

𝑐𝑐1

Approximating the Set of Efficient Solutions

Definition (𝝐𝝐-Dominance). Let 𝑝𝑝, 𝑞𝑞 be 𝑠𝑠𝑠𝑠-paths, 𝜖𝜖 > 0. Then
𝑝𝑝 𝝐𝝐-dominates 𝑞𝑞 ∶⟺ 𝑝𝑝 ≼𝜖𝜖 𝑞𝑞 ∶⟺ 𝑐𝑐 𝑝𝑝 ≤ 1 + 𝜖𝜖 𝑐𝑐 𝑞𝑞 .

Definition (𝝐𝝐-Cover). 𝑃𝑃𝜖𝜖 is an 𝝐𝝐-cover for a MOSP (𝐷𝐷, 𝑐𝑐, 𝑠𝑠) if for 
every 𝑠𝑠𝑠𝑠-path 𝑝𝑝 there is an 𝑠𝑠𝑠𝑠-path 𝑝𝑝′ ∈ 𝑃𝑃𝜖𝜖 s.t. 𝑝𝑝𝑝 ≼𝜖𝜖 𝑝𝑝.
Definition (FPTAS). An FTPAS computes for any 𝜖𝜖 > 0 and any 
MOSP (𝐷𝐷, 𝑐𝑐, 𝑠𝑠) an 𝜖𝜖-cover in time polynomial in ⟨𝐷𝐷, 𝑐𝑐, 𝑠𝑠⟩ and Τ1 𝜖𝜖 .
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𝑐𝑐2

𝑐𝑐1

𝑐𝑐(𝑝𝑝)

1
1 + 𝜖𝜖 𝑐𝑐(𝑝𝑝)

𝑐𝑐(𝑞𝑞)
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Definition (𝐩𝐩𝐩𝐩𝐩𝐩-function, Tsaggouris & Zaroliagis [2006]). The 
lower left corner of the cell of path 𝑝𝑝 is assigned grid coordinates

pos𝑖𝑖 𝑝𝑝 ≔ ൞
0, 𝑐𝑐𝑖𝑖 𝑝𝑝 = 0,

1 +
log 𝑐𝑐𝑖𝑖 𝑝𝑝
log 𝑟𝑟

, 𝑐𝑐𝑖𝑖 𝑝𝑝 ≠ 0, 𝑖𝑖 ∈ 𝑑𝑑 , 𝑟𝑟 = 1 + 𝜖𝜖
1

𝑛𝑛−1.

Approximating the Set of Efficient Solutions
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𝑐𝑐2 (log scale)

𝑐𝑐1 (log scale)

Observation (Cells and Coverage). Let 𝑝𝑝, 𝑞𝑞 be 𝑠𝑠𝑠𝑠-paths. Then 
pos 𝑝𝑝 ≤ pos 𝑞𝑞 ⟹ 𝑝𝑝 ≼𝜖𝜖 𝑞𝑞.

Approximating the Set of Efficient Solutions
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𝑐𝑐2 (log scale)

𝑐𝑐1 (log scale)
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Approx. Multiobjective Dijkstra Alg. (BKMS [2021])
Input: MOSP 𝐷𝐷, 𝑐𝑐, 𝑠𝑠
Output: 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉
1. forall 𝑣𝑣 ∈ 𝑉𝑉 do 𝑃𝑃𝑣𝑣 ← ∅ endforall
2. 𝑝𝑝init ← 𝑠𝑠 , 𝑄𝑄 ← {𝑝𝑝init}
3. while 𝑄𝑄 ≠ ∅ do
4. 𝑝𝑝𝑣𝑣∗ ← 𝑄𝑄. extract_min(), 𝑣𝑣 ← head 𝑝𝑝𝑣𝑣∗

5. 𝑃𝑃𝑣𝑣 ← 𝑃𝑃𝑣𝑣 ∪ 𝑝𝑝𝑣𝑣∗

6. 𝑝𝑝𝑣𝑣new ← arglexmi𝑛𝑛𝑝𝑝𝑢𝑢∈𝑃𝑃𝑢𝑢:𝑢𝑢∈𝛿𝛿−(𝑣𝑣) 𝑝𝑝𝑢𝑢, 𝑣𝑣 : 𝑃𝑃𝑣𝑣 ⋠𝜖𝜖 𝑝𝑝𝑢𝑢, 𝑣𝑣
7. if 𝑝𝑝𝑣𝑣new ≠ nil then 𝑄𝑄 ← 𝑄𝑄 ∪ {𝑝𝑝𝑣𝑣new} endif
8. forall 𝑤𝑤 ∈ 𝛿𝛿+(𝑣𝑣) do
9. if 𝑃𝑃𝑤𝑤 ⋠𝜖𝜖 (𝑝𝑝𝑣𝑣∗, 𝑤𝑤) and 𝑝𝑝𝑣𝑣∗, 𝑤𝑤 ≺lex 𝑄𝑄. 𝑤𝑤 then 𝑄𝑄. decrease_key 𝑄𝑄,𝑤𝑤, 𝑝𝑝𝑣𝑣∗, 𝑤𝑤 endif
10. endforall
11. endwhile
12. return 𝑃𝑃𝑣𝑣, 𝑣𝑣 ∈ 𝑉𝑉

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 38

Approximative Multiobjective Dijkstra Algorithm
Lemma (Correctness of the Approximate MDA). Let 𝑝𝑝 be an 
efficient 𝑠𝑠𝑠𝑠-path with 𝑘𝑘 arcs. Then the output of the Approximate 
MDA contains an 𝑠𝑠𝑠𝑠-path 𝑝𝑝𝑝 s.t.

𝑐𝑐 𝑝𝑝′ ≤ 𝑟𝑟𝑘𝑘𝑐𝑐 𝑝𝑝 .

Corollary (Correctness of the Approximate MDA). Under the 
conditions of the above Lemma, 

𝑐𝑐 𝑝𝑝′ ≤ (1 + 𝜖𝜖)𝑐𝑐 𝑝𝑝 .

Proof. 𝑘𝑘 ≤ 𝑛𝑛 − 1 and 𝑟𝑟 = 1 + 𝜖𝜖
1

𝑛𝑛−1.

Corollary (𝝐𝝐-Cover). The Approximate MDA computes an 𝜖𝜖-cover.
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Approximative Multiobjective Dijkstra Algorithm

Theorem (Complexity of the Approximate MDA). The run time 
of the Approximate MDA is

𝑂𝑂(𝑑𝑑𝒞𝒞𝑛𝑛 log 𝑛𝑛 + 𝑑𝑑𝒞𝒞2𝑚𝑚),

where 𝐶𝐶 ≔ max
𝑖𝑖∈ 𝑑𝑑 ,𝑎𝑎∈𝐴𝐴

𝑐𝑐𝑖𝑖 𝑎𝑎 .

Proof. The pos-function takes at most

𝒞𝒞 ≔
𝑛𝑛
𝜖𝜖 log 𝑛𝑛𝑛𝑛

𝑑𝑑

values. Hence, every node can have a path in at most 𝒞𝒞 cells, and the 
number of output paths is at most 𝑛𝑛𝑛𝑛. As 

𝑂𝑂 𝑑𝑑𝑑𝑑 log 𝑛𝑛 + 𝑑𝑑𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
2 𝑚𝑚 ≤

𝑁𝑁≤𝑛𝑛𝑁𝑁max
𝑂𝑂 𝑑𝑑𝑁𝑁max𝑛𝑛 log 𝑛𝑛 + 𝑑𝑑𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

2 𝑚𝑚 ,

the claim follows from 𝑁𝑁max = 𝒞𝒞.

Corollary (FPATS). The Approximate MDA is an FPTAS for MOSP.
Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 40

Computational Results on Exponential Graphs

Orange: MDA, Blue: Martins
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Computational Results on Grid Graphs

Orange: MDA, Blue: Martins
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Back to the 2D Flight Planning Problem

Definition (Time-dependent 2D Flight Planning Problem).

Input:

▪ Directed graph 𝐷𝐷 = (𝑉𝑉, 𝐴𝐴) (embedded on the Earth)
▪ Source and target nodes 𝑠𝑠, 𝑡𝑡 ∈ 𝑉𝑉
▪ Travel time functions (TTFs) 𝑡𝑡𝑎𝑎:ℝ≥0 → ℝ≥0 for each arc 𝑎𝑎 ∈ 𝐴𝐴, 

mapping starting time 𝜏𝜏 to traversal time 𝑡𝑡𝑎𝑎(𝜏𝜏)
▪ Departure time 𝜏𝜏0

Output:

▪ 𝑠𝑠𝑠𝑠-path path 𝑝𝑝 = 𝑣𝑣0,… , 𝑣𝑣𝑛𝑛 minimizing
𝑡𝑡(𝑝𝑝) ≔ σ𝑖𝑖=0

𝑛𝑛−1 𝑡𝑡(𝑣𝑣𝑖𝑖,𝑣𝑣𝑖𝑖+1) 𝜏𝜏𝑖𝑖 s.t. 𝜏𝜏𝑖𝑖 = 𝜏𝜏𝑖𝑖−1 + 𝑡𝑡(𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑖𝑖)(𝜏𝜏𝑖𝑖−1)
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Back to the 2D Flight Planning Problem

Observation (Dynamic Arc Costs). Let 𝑐𝑐: 𝐴𝐴 × ℝ≥0
𝑑𝑑 → ℝ≥0

𝑑𝑑 be a 
dynamic arc cost function. Then the cost of an 𝑠𝑠𝑠𝑠-path (𝑝𝑝, 𝑎𝑎) is 
defined recursively as

𝑐𝑐 𝑠𝑠 ≔ 0, 𝑐𝑐 𝑝𝑝, 𝑎𝑎 ≔ 𝑐𝑐 𝑝𝑝 + 𝑐𝑐 𝑎𝑎, 𝑐𝑐 𝑝𝑝 .

Proposition & Definition (Dynamic MDA & FIFO Property). If a 
dynamic arc cost function satisfies the FIFO property

𝑥𝑥 ≤ 𝑦𝑦 ⟹ 𝑥𝑥 + 𝑐𝑐 𝑎𝑎, 𝑥𝑥 ≤ 𝑦𝑦 + 𝑐𝑐 𝑎𝑎, 𝑦𝑦 ∀𝑥𝑥, 𝑦𝑦, 𝑎𝑎,

MDA s.t. dynamic arc costs is correct.

Proposition (Dynamic FPTAS). If a dynamic arc cost function is 
piecewise linear with positive intercepts, the Approximate MDA is 
correct. 
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Back to the 2D Flight Planning Problem

Labels saved by Dynamic FPTAS on 2D flight planning instances.
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Back to the 2D Flight Planning Problem

Time saved by Dynamic FPTAS on 2D flight planning instances.
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Summary and 注目してくれてありがとう

▪ Dynamic and Static 2D Flight Planning Problem
▪ Multiobjective Shortest Path Problem (MOSP)
▪ Martins's Algorithm
▪ Multiobjective Dijkstra Algorithm (MDA)
▪ Approximate MDA (FPTAS)
▪ Dynamic Arc Cost Versions
▪ A* Versions
▪ Papers @ https://www.zib.de/projects/flight-trajectory-optimization-airway-networks
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Randomized subspace regularized 
Newton method for unconstrained 

non-convex optimization 

Pierre-Louis POIRION 
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In this talk we present a randomized subspace regularized Newton method for a non-
convex function. We show that our method has global convergence under appropriate 
assumptions and its convergence rate is the same as that of the full regularized Newton 
method. Furthermore, we can obtain a local linear convergence rate,  under some 
additional assumptions, and prove that this rate is the best we can hope when using  
random subspace. 
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Randomized Subspace Newton Method for
Unconstrained Non-Convex Optimization

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop

Pierre-Louis Poirion (RIKEN-AIP)

joint work with Terunari Fuji and Akiko Takeda
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Overview

1 Introduction
2 Global convergence
3 Local convergence
4 Numerical experiments
5 Summary
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The gist

Non-convex unconstrained minimization

min
x2Rn

f (x),

where f : Rn ! R is twice di↵erentiable

Subspace optimization

min
u2Rs

f (x + P>u),

where P 2 Rs⇥n
is a random matrix.

Can we speed up the computation time?

Global and local convergence properties?
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The gist

Non-convex unconstrained minimization

min
x2Rn

f (x),

where f : Rn ! R is twice di↵erentiable

Subspace optimization

min
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f (x + P>u),

where P 2 Rs⇥n
is a random matrix.

Can we speed up the computation time?

Global and local convergence properties?
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Previous works

Random Subspace Newton (RSN) [Gower et al., 2019](f is convex)

By computing the Newton direction on the function u 7! f (xk + P>
k uk),

we obtain uk = −(Pkr2f (xk)P
>
k )

−1Pkrf (xk), hence

xk+1 = xk − tkP
>
k (Pkr2f (xk)P

>
k )

−1Pkrf (xk).

They prove global sub-linear convergence and local linear convergence if f
is strongly convex.

[Hanzely et al., 2020]: Cubically-regularized subspace Newton

method.

[Kovalev et al., 2020]: random subspace version of the BFGS method.

[Roberts and Royer, 2022]: probabilistic direct-search method in

reduced random spaces (non-convex problems). The authors prove

sub-linear convergence.

November 2, 2022 4 / 23
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Previous works

Random Subspace Newton (RSN) [Gower et al., 2019](f is convex)

By computing the Newton direction on the function u 7! f (xk + P>
k uk),

we obtain uk = −(Pkr2f (xk)P
>
k )

−1Pkrf (xk), hence

xk+1 = xk − tkP
>
k (Pkr2f (xk)P

>
k )

−1Pkrf (xk).

They prove global sub-linear convergence and local linear convergence if f
is strongly convex.

[Hanzely et al., 2020]: Cubically-regularized subspace Newton

method.

[Kovalev et al., 2020]: random subspace version of the BFGS method.

[Roberts and Royer, 2022]: probabilistic direct-search method in

reduced random spaces (non-convex problems). The authors prove

sub-linear convergence.

November 2, 2022 4 / 23

Our work

Based on regularized Newton method (RNM) for the unconstrained

non-convex optimization [Ueda and Yamashita, 2010], we propose the

randomized subspace regularized Newton method (RS-RNM):

dk = −P>
k (Pkr2f (xk)P

>
k + ⌘k Is)

−1Pkrf (xk),

xk+1 = xk + tkdk ,

where ⌘k is defined to ensure Pkr2f (xk)P
>
k + ⌘k Is � 0 and tk satisfies

Armijo’s rule.

In [Ueda and Yamashita, 2010] the authors prove global sub-linear

convergence and local quadratic convergence under local-error bound

condition.

Can we extend these results to the random subspace setting ?
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What is Random Projection

X

s = O
⇣
log |X |
"2

⌘

n-dimensional

s-dimensional

November 2, 2022 6 / 23
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Random Projection

Lemma JLL

Let P 2 Rd⇥n,Pij ⇠ N(0, 1/s), i.i.d..
Then for any x 2 Rn

and " 2 (0, 1), we have

Prob [(1− ")kxk22  kPxk22  (1 + ")kxk22] ≥ 1− 2 exp(−C"2s),

where C is an absolute constant.

X

s = O
⇣
log |X |
"2

⌘

n-dimensional

s-dimensional
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Algorithm 1 Randomized subspace regularized Newton method (RS-RNM)

input: x0 2 Rn
, γ ≥ 0, c1 > 1, c2 > 0, ↵, β 2 (0, 1)

1: k  0

2: repeat

3: sample a random matrix: Pk ⇠ Gaussian matrix N (0, 1/s)s⇥n

4: compute the regularized sketched hessian:

Mk = Pkr2f (xk)P
>
k + c1⇤k Is + c2krf (xk)kγ Is , where ⇤k =

max(0,−λmin(Pkr2f (xk)P
>
k ))

5: compute the search direction: dk = −P>
k M−1

k Pkrf (xk)
6: apply the backtracking line search with Armijo’s to compute lk ≥ 0

such that (1) holds. Set tk = βlk , xk+1 = xk + tkdk and k  k + 1

7: until the stopping criteria is satisfied

8: return the last iterate xk

f (xk)− f (xk + βlkdk) ≥ −↵βlkg>
k dk . (1)

November 2, 2022 8 / 23
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Global convergence

Assumption (1)

The level set of f at the initial point x0 is compact, i.e.,
⌦ := {Rn

: f (x)  f (x0)} is compact.

Assumption (2)

1 γ  1/2,

2 ↵  1/2,

3 There exists LH > 0 such that

kr2f (x)−r2f (y)k  LHkx − yk, 8x , y 2 ⌦+ B(0, r1),

where r1 :=
CU1−γ

g n

c2s
, and krf (xk)k  Ug .
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Global convergence
Let

tmin = min

 
1,

βc22 s
2

C2LHU
1−2γ
g n2

!

Theorem

Suppose that Assumptions (1) and (2) hold. Let

p =
↵tmin

2C(1 + c1)
n
sUH + 2c2U

γ
g
.

Then, with probability at least 1− 2m
⇣
exp(−C0

4 s)− exp(−s)
⌘
, we have

s
f (x0)− f ⇤

mp
≥ min

k=0,1,...,m−1
krf (xk)k.

This global O("−2
) complexity is the same as that obtained in

[Ueda and Yamashita, 2010] for the regularized Newton method.November 2, 2022 10 / 23

Local convergence

Assume that {xk} converge to a strict local minima x̄ . We show that

the sequence {f (xk)} converges locally linearly to f (x̄)

when f is strongly convex, we cannot aim at local super-linear

convergence using random subspace.

November 2, 2022 11 / 23
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Local convergence: assumptions

Assumption (2’)

In a neighborhood of x̄ , we have

kr2f (x)−r2f (y)k  LHkx − yk.

Assumption (3)

We have that s = o(n), that is, lim
n!+1

s
n = 0.

Assumption (4)

We assume that

1 There exists σ 2 (0, 1) such that r = rank(r2f (x̄)) ≥ σn

2 There exists ⇢ 2 (0, 3) and C̃ such that in a neighborhood of x̄ ,
f (xk)− f (x̄) ≥ C̃kxk − x̄k⇢ holds.
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Proposition 1

Let 0 < "0 < 1. Then under Assumptions (3) and (4.1) there exists

n0 2 N (which depends only on "0 and σ) and a neighborhood B⇤ ✓ B̄
such that if n ≥ n0, for any x 2 B⇤

,

Pr2f (x)P> ⌫ (1− "0)
2n

2s
σ2λ̄Is

holds with probability at least 1− 6 exp(−s).

Proposition 2

Under Assumptions (1),(2’) and (4). there exists 0 <  < 1, k0 2 N,
n0 2 N, and C̄ > 0 such that if n ≥ n0, k ≥ k0, we have with probability

1− 6(exp(−s) + exp(−C0
4 s)):

f (xk)−min
u

f (xk + P>
k u) ≥ C̄ (f (xk)− f (x̄)).
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Local convergence: Theorem 1

Theorem

Under Assumptions (1),(2’),(3) and (4), there exists 0 <  < 1, k0 2 N,
and n0 2 N such that if n ≥ n0, k ≥ k0, then

f (xk+1)− f (x̄)  (f (xk)− f (x̄)).

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)).

November 2, 2022 14 / 23

Super-linear convergence?

Assumption (5)

We assume that
(C + 2)

2s < n.

Theorem

Under Assumptions (2’) and (5), if f is locally strongly convex around x̄ .
There exists a constant c > 0 such that for k large enough,

kxk+1 − x̄k ≥ ckxk − x̄k

holds with probability at least 1− 2 exp(−C0
4 )− 2 exp(−s).

We deduce from the theorem and the assumptions that there exists a

constant c 0 such that

f (xk+1)− f (x̄) ≥ c 0(f (xk)− f (x̄)),

with probability at least 1− 2 exp(−C0
4 )− 2 exp(−s).

November 2, 2022 15 / 23
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Numerical experiments: Support vector regression
Data: 8i  m, (xi , yi ) 2 Rn ⇥ {0, 1}, we aim minimizing sum of a loss

function and a regularizer

f (w) =
1

m

mX

i=1

`(yi − x>i w) + λkwk2.

Internet advertisements dataset from UCI

repository[Dua and Gra↵, 2017] processed so that the number of

instances is m = 600 and and n = 1500.

Comparison with Gradient Descent (GD) and Regularized Newton

Method (RNM)

Step sizes are all determined by Armijo backtracking line search

The parameters are fixed as follows:

c1 = 2, c2 = 1, γ = 0.5, ↵ = 0.3, β = 0.5, s 2 {100, 200, 400}.

November 2, 2022 16 / 23

Loss function

`(t) =
2t2

t2 + 4

t

`(t)

O−1 1

1

Figure: The robust loss functions.
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Figure: iterations versus f (w) (log10-scale)
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Figure: iterations versus krf (w)k (log10-scale)).
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Figure: computation time versus krf (w)k (log10-scale).
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Future work

Can we find a second order subspace algorithm with local superlinear

convergence ? Full paper: ”T. Fuji, P.L. Poirion, A. Takeda, Randomized

subspace regularized Newton method for unconstrained non-convex

optimization. arXiv:2209.04170, (2022)”

November 2, 2022 21 / 23
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Minimax Analysis for Inverse Risk in 
Nonparametric Invertible Regression 

Akifumi OKUNO 
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okuno@ism.ac.jp 
 

 
 
Learning invertibility from data and exploiting an invertible estimator are used in many 
domains, such as statistics, econometrics, and machine learning. Although the 
consistency and universality of invertible estimators have been well investigated, 
analysis on the efficiency of these methods is still under development. In this study, we 
study a minimax risk for estimating invertible functions. We first introduce an inverse 
L2-risk to evaluate an estimator which preserves invertibility. Then, we derive lower 
and upper rates for a minimax inverse risk by exploiting a representation of invertible 
functions using level-sets. To obtain an upper bound, we develop an estimator 
asymptotically almost everywhere invertible, whose risk attains the derived minimax 
lower rate up to logarithmic factors. This work is a joint work with M. Imaizumi (U. 
Tokyo), and is based on a preprint of ours [1].  
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On the geometry of periodic timetables 
in public transport 

Niels LINDNER 
Zuse Institute Berlin, Germany 

lindner@zib.de 
 
 

What rhythm is to music, is the timetable to a public transportation system. Many public 
transportation networks are operated periodically, and therefore the computation and 
optimization of periodic timetables is a frequent and important task. The mathematical 
foundation of periodic timetabling is the Periodic Event Scheduling Problem [1], which is 
easy to formulate, has a rich theory, but is notoriously hard to solve. In order to obtain a 
better understanding of how to solve periodic timetabling problems, we analyze the 
geometry of periodic timetables, and discover surprising connections to tropical and discrete 
geometry that are beyond the scope of the standard toolbox of combinatorial optimization 
[2]. We outline how tropical neighborhood search, a new heuristic developed from these 
geometric insights, helped to compute new incumbent solutions for instances of the 
timetabling benchmarking library PESPlib [3]. 
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Public Transport...

... is often operated periodically
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Public Transport...

... is often operated periodically
! Periodic Timetable Optimization

Images: MaedaAkihiko and Trouper3000, CC-BY-SA 4.0; Rolf Heinrich, Köln, CC-BY 3.0; all via commons.wikimedia.org
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Public Transport Planning Cycle

Periodic Timetable
Optimization

Network Design

Line Planning

Timetabling

Vehicle Scheduling

Duty Scheduling

Crew Scheduling

Real-Time Management

strategic
long-term

many decision makers

operational
short-term

few decision makers

Bussieck et al.: Discrete optimization in public rail transport, 1997
Liebchen: Periodic timetable optimization in public transport, 2006
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A Line Network: Tokyo Subway

Tokyo Metro Co., Ltd.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 5 / 26

From Line Networks to Event-Activity Networks

Line Plan: 3 bidirectional lines, same frequency

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 6 / 26
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From Line Networks to Event-Activity Networks

Event-Activity Network: directed graph G

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 6 / 26

Periodic Timetable Optimization

Event-Activity Network: directed graph G

Events:
• arrival
◦ departure

Activities:
! drive, dwell, turn
! transfer

. . .

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 7 / 26
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Periodic Timetable Optimization

[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753[23, 28], 753

(G, T, `, u,w)

Bounds [`, u]
I driving times
I minimum transfer times
I maximum dwell times
I minimum headway times
I . . .

Weightsw:
I passenger load
I turnaround penalties
I . . .

Period time T :
I e.g., T = 60 for 1 hour,

resolution of 1 minute

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 8 / 26

Periodic Event Scheduling Problem (PESP)
Given
G = (V , A) event-activity network,
T 2 N period time,
` 2 RA lower bounds,
u 2 RA upper bounds,
w 2 RA

≥0 weights,

find
⇡ 2 RV periodic timetable,
x 2 RA periodic tension

such that
(1) ⇡j − ⇡i ⌘ xij mod T for all ij 2 A,
(2) `  x  u,
(3) w>x is minimum,
or decide that no such (⇡, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize w>x
s.t. ⇡j − ⇡i = xij − Tpij, ij 2 A,

`ij  xij  uij, ij 2 A,

p 2 ZA periodic offsets

(Nachtigall, 1994, Liebchen, 2006)

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 9 / 26
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s.t. ⇡j − ⇡i = xij − Tpij, ij 2 A,

`ij  xij  uij, ij 2 A,
⇡i 2 R, i 2 V ,
pij 2 Z, ij 2 A.

p 2 ZA periodic offsets

Assumptions after preprocessing:
I G is weakly (2-)connected
I G has no arc a 2 Awith `a = ua
I 0  ` < T and 0  u− ` < T

(Nachtigall, 1994, Liebchen, 2006)
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Periodic Event Scheduling Problem (PESP)
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`ij  xij  uij, ij 2 A,
⇡i 2 R, i 2 V ,
pij 2 Z, ij 2 A.

p 2 ZA periodic offsets

Symmetry breaking:
I could impose 0  ⇡i < T and

pij 2 {0, 1, 2}

Redundancy among periodic offsets p:
I could set pij = 0 along spanning tree

(Nachtigall, 1994, Liebchen, 2006)Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 9 / 26

Hardness of PESP

Theory
I NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)

I NP-hard for Gwith fixed treewidth≥ 2
(in particular for planar G) (L. and Reisch, 2022)

I NP-hard cutting plane separation
(cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

I LP relaxation has trivial solution
⇡⇤

= 0, x⇤ = `, p⇤ = `/T

Practice
I rich literature on algorithms:

MIP techniques, CP, SAT (also MaxSAT and SAT+ML), modulo network simplex,
matching, merging, maximum cuts, graph partitioning, . . .

I several success stories (Berlin, Copenhagen, Netherlands, Switzerland, . . . )

Summary: primal: dual:
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Hardness of PESP

Theory
I NP-hard for fixed T ≥ 3 (Odijk, 1994, Nachtigall, 1996)

I NP-hard for Gwith fixed treewidth≥ 2
(in particular for planar G) (L. and Reisch, 2022)

I NP-hard cutting plane separation
(cycle, change-cycle, flip) (Borndörfer et al., 2020, L. and Liebchen, 2020)

I LP relaxation has trivial solution
⇡⇤

= 0, x⇤ = `, p⇤ = `/T
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PESPlib

http://num.math.uni-goettingen.de/ m.goerigk/pesplib/

I benchmarking library, est. 2012 by Goerigk
I 22 hard to extremely hard PESP instances
I smallest instance!MIP with 2722 (general) integer variables
I no instance has been solved to optimality so far
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ConcurrentPESP
Concurrent Framework for Periodic Timetable Optimization

Improving Heuristics
Modulo Network Simplex

Multi-Node Cuts
Maximum Cuts

Solution Pool

Exact Methods
Branch & Cut

Gurobi/CPLEX/SCIP interface
several MIP formulations
dynamic cutting planes

Starting Heuristics
SAT Solver

Network Strategies
Preprocessing

Shrinking Heuristics
Graph Partitioning

for each network

...trades off by far more than just concurrency
...holds primal and dual records for all 22 PESPlib instances

(Borndörfer, L., Roth, 2020)
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Periodic Timetabling Spaces

Question
Can we get more insight by studying the geometry of periodic timetables?

Timetabling Spaces

mixed-integer set of feasible solutions
{(⇡, x, p) 2 RV ⇥ RA ⇥ ZA | 8ij 2 A : ⇡j − ⇡i = xij − Tpij, `ij  xij  uij}
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{(⇡, x, p) 2 RV ⇥ RA ⇥ ZA | 8ij 2 A : ⇡j − ⇡i = xij − Tpij, `ij  xij  uij}

x-space X ⇡-space⇧ p-space P

full MIP toolbox this talk Benders decomposition

project project project

convex hull
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Gallery of Timetabling Spaces

v0

v1

v2
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, 1
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[2, 10]

PESP instance with n = 3,m = 3, T = 10
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⇧/R1 is periodically tiled by polyt(r)opes
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Decomposing the Space of Periodic Timetables

Decomposition
The space of feasible periodic timetables is

⇧ := {⇡ 2 RV | 9p 2 ZA : 8ij 2 A : `ij  ⇡j − ⇡i + Tpij  uij}.
The space⇧ decomposes into polyhedral regions:

⇧ =

[

p2ZA
R(p), where R(p) := {⇡ 2 RV | 8ij 2 A : `ij − Tpij  ⇡j − ⇡i  uij − Tpij}.

Due to the preprocessing assumption 0  u− ` < T , the union is disjoint.

Weighted Digraph Polyhedra
Add a reverse copy a of each arc a. This produces a new graph G = (V , A)with V = V .
If we set (p)a := ua − Tpa and (p)a := −`a + Tpa, then

R(p) = {⇡ 2 RV | ⇡j − ⇡i  (p)ij for all ij 2 A}.
This means that R(p) is theweighted digraph polyhedron (Joswig, Loho, 2016)
associated to (G, (p)). In combinatorial optimization terms, R(p) is the polyhedron
of feasible potentials in Gw.r.t. the arc costs (p).
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Decomposing the Space of Periodic Timetables

A First Symmetry
If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):
I The recession cone of R(p) isR1.
I The quotient R(p)/R1 is a polytope.

Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable ⇡ can be fixed at one event v0 2 V to ⇡v0 := 0 without affecting feasiblity
or optimality.

Polytropes
A polytrope is the convex hull of finitely many points, both in the ordinary and the
tropical sense:

tconv(x1, . . . , xn) :=

(
nM

i=1

�i � xi

������1, . . . , �n 2 R

)
=

⇢
n

min
i=1

(�i + xi)
�����1, . . . , �n 2 R

�
.

Polytropes are exactly the quotients of weighted digraph polyhedra of strongly
connected digraphs byR1 (Joswig, Kulas, 2010).
Corollary: ⇧/R1 decomposes into the disjoint union of the polytropes R(p)/R1.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 16 / 26

515



Decomposing the Space of Periodic Timetables

A First Symmetry
If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):
I The recession cone of R(p) isR1.
I The quotient R(p)/R1 is a polytope.

Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable ⇡ can be fixed at one event v0 2 V to ⇡v0 := 0 without affecting feasiblity
or optimality.

Polytropes
A polytrope is the convex hull of finitely many points, both in the ordinary and the
tropical sense:

tconv(x1, . . . , xn) :=

(
nM

i=1

�i � xi

������1, . . . , �n 2 R

)
=

⇢
n

min
i=1

(�i + xi)
�����1, . . . , �n 2 R

�
.

Polytropes are exactly the quotients of weighted digraph polyhedra of strongly
connected digraphs byR1 (Joswig, Kulas, 2010).

Corollary: ⇧/R1 decomposes into the disjoint union of the polytropes R(p)/R1.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 16 / 26

Decomposing the Space of Periodic Timetables

A First Symmetry
If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):
I The recession cone of R(p) isR1.
I The quotient R(p)/R1 is a polytope.

Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable ⇡ can be fixed at one event v0 2 V to ⇡v0 := 0 without affecting feasiblity
or optimality.

Polytropes
A polytrope is the convex hull of finitely many points, both in the ordinary and the
tropical sense:

tconv(x1, . . . , xn) :=

(
nM

i=1

�i � xi

������1, . . . , �n 2 R

)
=

⇢
n

min
i=1

(�i + xi)
�����1, . . . , �n 2 R

�
.

Polytropes are exactly the quotients of weighted digraph polyhedra of strongly
connected digraphs byR1 (Joswig, Kulas, 2010).
Corollary: ⇧/R1 decomposes into the disjoint union of the polytropes R(p)/R1.
Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 16 / 26

516



The Periodic Timetabling Torus
Periodicity: If ⇡ 2 ⇧, then ⇡ + Tq 2 ⇧ for all
q 2 ZV .  Consider the space of timetables
inside the (|V | − 1)-dimensional torus

T := (RV/(TZ)V )/R1.

Redundancy of periodic offsets: Let Γ be the
cycle matrix of an integral cycle basis B of G.
Then R(p) ⌘ R(p0) on T iff Γp = Γp0. We can
hence denote R(p) modulo T by R(z), where
z := Γp 2 ZB.

Running example:

z =
Γx
T


�
12− 2+ 13

10

⌫
= 2,

z =
Γx
T

≥
⇠
3− 10+ 4

10

⇡
= 0,

 at most R(0),R(1),R(2) are in T .

00 0 -1 0 1

0 1 1 -1 1 2

0 0 1

-1 0 2

1 0 0

0 -1 0 -1 -1 1
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0 -1 11 -1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
�1
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7

8
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10
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12

13
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More on Timetabling Polytropes

Dimension
I R(p) = ; if and only if G contains a negative weight directed cycle w.r.t. (p).
I The dimension of R(p)/R1 is the number of connected components of the

equality graph of (G, (p))minus 1 (Joswig, Loho, 2016).

Vertices
I Every vertex of R(p)/R1 corresponds to a unique spanning subgraph of G.
I For each i 2 V , the i-th tropical vertex of R(p)/R1 corresponds to a shortest

path tree of (G, (p)) rooted at i (Joswig, Kulas, 2010).

Relation to the Periodic Tension Polytope (aka conv(X))
I Themapmp : ⇡ 7! (⇡j − ⇡i + Tpij)ij2A embeds R(p)/R1 into conv(X).
I conv(X) = conv{im(mp) | p 2 ZA}.
I im(mp) is the intersection of the affine space im(B>) + Tpwith the LP relaxation

polytope XLP =
Q

a2A[`a, ua], where B denotes the incidence matrix of G.
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Tropical Neighborhood Search

Polytropes in the Limit Instance
Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R0(p)/R1 a of the
“limit” instance where u := `+ T . The union of the polytropes is then no longer
disjoint and covers all ofRV/R1.
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Tropical Neighborhood Search

Polytropes in the Limit Instance
Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R0(p)/R1 a of the
“limit” instance where u := `+ T . The union of the polytropes is then no longer
disjoint and covers all ofRV/R1.

Observation
The R0(p) induce a polyt(r)opal subdivision ofRV/R1.

Neighbors
We call R(p)/R1 and R(p0)/R1 neighbors if R0(p)/R1 and R0(p0)/R1 intersect in a
common facet.
If R(p)/R1 and R(p0)/R1 are both neighbors, then p = p0 ± ea for some arc a 2 A.

Tropical Neighborhood Search (Baseline)
Given a non-empty polytrope R(p)/R1, solve PESP on R(p)/R1 (this is a linear
program, and dual to uncapacitated min cost flow). While there is an improving
neighbor of R(p)/R1: Go to the best neighboring polytrope, and repeat.
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program, and dual to uncapacitated min cost flow). While there is an improving
neighbor of R(p)/R1: Go to the best neighboring polytrope, and repeat.
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Polytropes in the Limit Instance
Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R0(p)/R1 a of the
“limit” instance where u := `+ T . The union of the polytropes is then no longer
disjoint and covers all ofRV/R1.

Observation
The R0(p) induce a polyt(r)opal subdivision ofRV/R1.

Neighbors
We call R(p)/R1 and R(p0)/R1 neighbors if R0(p)/R1 and R0(p0)/R1 intersect in a
common facet.
If R(p)/R1 and R(p0)/R1 are both neighbors, then p = p0 ± ea for some arc a 2 A.

Tropical Neighborhood Search (Baseline)
Given a non-empty polytrope R(p)/R1, solve PESP on R(p)/R1 (this is a linear
program, and dual to uncapacitated min cost flow). While there is an improving
neighbor of R(p)/R1: Go to the best neighboring polytrope, and repeat.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 19 / 26

Tropical Neighborhood Search

modulo network simplex search space
colored by objective value

squares are local non-global optima

tropical neighborhood search space
colored by objective value
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Algorithm Tuning
I work on the torus T :

use R(z) instead of R(p)/R1

I LP formulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on
the instance and not on z

I selection of neighbors:
do not explore all possible neighbors, only those the computed optimal vertex
of R(z) is neighboring
(best case: 2|A| vs. |V | − 1 neighbors, but we trade speed for quality)

I sorting of neighbors:
changing the order does affect the outcome, but unpredictably
(we tried several strategies including “pseudocost branching”)

I stopping criterion:
quality-first rule measured by relative improvement of the objective value
(again trading speed for quality)

I prevent cycling:
hashing visited R(z) showed only negligible effects
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Performance of Tropical Neighborhood Search
Set-up
I 8 PESPlib instances
I 32 parameter configurations per instance
I 3 concurrency configurations for ConcurrentPESP
I 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

General Results
I Tropical Neighborhood Search can escape local optima
I slow in the beginning, but becomes important in the late game

New PESPlib Incumbents
Instance New Value Old Value Time (s)
BL3 6 675 098 6 999 313 25 732
R1L1v 42 591 141 42 667 746 9 110
R3L3 40 483 617 40 849 585 3 547
R4L4 36 703 391 36 728 402 11 122
R4L4v 61 968 380 64 327 217 3 625

found new incumbents for 5
out of 8 instances!

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 22 / 26

Performance of Tropical Neighborhood Search
Set-up
I 8 PESPlib instances
I 32 parameter configurations per instance
I 3 concurrency configurations for ConcurrentPESP
I 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

General Results
I Tropical Neighborhood Search can escape local optima
I slow in the beginning, but becomes important in the late game

New PESPlib Incumbents
Instance New Value Old Value Time (s)
BL3 6 675 098 6 999 313 25 732
R1L1v 42 591 141 42 667 746 9 110
R3L3 40 483 617 40 849 585 3 547
R4L4 36 703 391 36 728 402 11 122
R4L4v 61 968 380 64 327 217 3 625

found new incumbents for 5
out of 8 instances!

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 22 / 26

526



Performance of Tropical Neighborhood Search
Set-up
I 8 PESPlib instances
I 32 parameter configurations per instance
I 3 concurrency configurations for ConcurrentPESP
I 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

General Results
I Tropical Neighborhood Search can escape local optima
I slow in the beginning, but becomes important in the late game

New PESPlib Incumbents
Instance New Value Old Value Time (s)
BL3 6 675 098 6 999 313 25 732
R1L1v 42 591 141 42 667 746 9 110
R3L3 40 483 617 40 849 585 3 547
R4L4 36 703 391 36 728 402 11 122
R4L4v 61 968 380 64 327 217 3 625

found new incumbents for 5
out of 8 instances!

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 22 / 26

Tropical Neighborhood Search vs. Other Heuristics

contribution of algorithms in ConcurrentPESP to overall improvement:
tropical neighborhood search, modulo network simplex, maximum cut, reflow, MIP

(8 parameter choices on R1L1)
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Selection of Neighbors: All vs. Vertex-Tight

selecting only polytropes neighboring at an optimal vertex is an advantage in the
beginning
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Final Slide

Conclusion
Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.

Further Geometric Questions
I Can we devise more heuristics from the polytropal

decomposition of the timetable space?
I Can we extract dual information from the periodic

timetabling torus?
I Can we exploit the duality relations between the⇧-

and P-spaces? ( cycle offset zonotopes)

References
I E. Bortoletto, N. Lindner, B. Masing. The Tropical and Zonotopal Geometry of Periodic Timetables.

arXiv:2204.13501
I E. Bortoletto, N. Lindner, B. Masing. Tropical Neighbourhood Search: A New Heuristic for Periodic

Timetabling. ATMOS 2022 Best Paper Award.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 25 / 26

528



Final Slide

Conclusion
Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.

Further Geometric Questions
I Can we devise more heuristics from the polytropal

decomposition of the timetable space?
I Can we extract dual information from the periodic

timetabling torus?
I Can we exploit the duality relations between the⇧-

and P-spaces? ( cycle offset zonotopes)

References
I E. Bortoletto, N. Lindner, B. Masing. The Tropical and Zonotopal Geometry of Periodic Timetables.

arXiv:2204.13501
I E. Bortoletto, N. Lindner, B. Masing. Tropical Neighbourhood Search: A New Heuristic for Periodic

Timetabling. ATMOS 2022 Best Paper Award.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 25 / 26

Final Slide

Conclusion
Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.

Further Geometric Questions
I Can we devise more heuristics from the polytropal

decomposition of the timetable space?
I Can we extract dual information from the periodic

timetabling torus?
I Can we exploit the duality relations between the⇧-

and P-spaces? ( cycle offset zonotopes)

References
I E. Bortoletto, N. Lindner, B. Masing. The Tropical and Zonotopal Geometry of Periodic Timetables.

arXiv:2204.13501
I E. Bortoletto, N. Lindner, B. Masing. Tropical Neighbourhood Search: A New Heuristic for Periodic

Timetabling. ATMOS 2022 Best Paper Award.
Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 25 / 26

529



On the geometry of periodic timetables
in public transport

Niels Lindner, Enrico Bortoletto, Berenike Masing

MobilityLab
Department Network Optimization
Zuse Institute Berlin

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop

September 21, 2022

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHRWorkshop 26 / 26

530



The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on 

Advances in Classical and Quantum Algorithms for 

Optimization and Machine Learning 
September 16th - 19th, 2022, Tokyo (The university of Tokyo), Japan, 

and September 21st  - 22nd, 2022, Fukuoka (Kyushu University), Japan 
 

 
 

Improving Data Quality in the Presence 

 of Superhuman Complexity in Data  

Errors 
Inci YÜKSEL-ERGÜN 

 Applied Algorithmic Intelligence Methods, Zuse Institute 
Berlin, Germany 

yueksel-erguen@zib.de 
 
In our studies to analyze gas network systems, we study building public research data 
sets from incomplete data scattered around various data sources. These data sources may 
not be consistent with each other or accurate. Thus, during these studies, we use our 
domain-specific mathematical modeling know-how to eliminate the data errors by 
filling missing data, or fixing inconsistencies. However, when working with the 
resulting highly-connected data, we encountered several cases where our analysis 
detected data errors that were too complex for humans to understand. Examples are 
irreducible infeasible subsystems (IIS) of large mixed-integer programs (MIP) or 
bottlenecks in the pressure-coupled pipeline network that is non-linear. While detecting 
these errors is a significant achievement, removing such errors is extremely difficult. 
Hence, quantifying the data quality is also a key enabler in this study to tell whether the 
data is of sufficient quality for the aimed analysis. We present our studies on data quality 
improvement in the presence of superhuman complexity in data errors, and explain the 
challenges. We report our results on the German high-pressure gas transport network 
data set. 
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Introduction 

• Highly-connected data in industrial applications 

- provided by industrial partners
- consolidated from public data sources 
- generated using mathematical models

• Data errors too complex for humans to understand detected by analysis tools, i.e., 

- irreducible infeasible subsystems (IIS) of large mixed-integer programs
- bottlenecks in the pressure-coupled pipeline network that is non-linear

• Detection and correction of such errors are extremely difficult

2I. Yüksel Ergün| ZIB | 21.09.2022
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Supply Infrastructures

• Transport power, gas, water, data, goods from suppliers to customers
• Consist of complex networks
• Digitization of planning and operation of such networks is essential for vital problems, i.e., 

- Security of supply of energy, supply chain management, energy transition, decarbonization, etc.

High quality data à Reliable analysis results  

High quality data is incredibly costly to obtain both in commercial and public applications, since 
supply infrastructures
• have complex network structures
• were mostly built before digitization age
• consist of layered and connected structures that may be operated by different parties
• include complex facilities with intricate structures that can be handled by detailed mathematical 

models 

3I. Yüksel Ergün| ZIB | 21.09.2022

Example: The European Gas Transport Network 

4

European gas transport network in numbers:
• 42 member, 10 associated partner, 2 observer 
TSOs
• > 200 interconnection points, > 170 storages 
• ≈ 200,000 km transmission pipelines (EU+UK)

I. Yüksel Ergün| ZIB | 21.09.2022

[1] ENTSOG. Transmission Capacity Map. Retrieved 
from https://www.entsog.eu/maps#transmission-
capacity-map-2021. Accessed on 31.10.2022
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Example: The European and Germany Gas Transport 

Network 

5I. Yüksel Ergün| ZIB | 21.09.2022

German gas transport network in numbers:
• 16TSOs
• 44interconnection points, 60storages 
• ≈ 31K km transmission pipelines (in total >500K 

km)

[1] ENTSOG. Transmission Capacity Map. Retrieved 
from https://www.entsog.eu/maps#transmission-
capacity-map-2021. Accessed on 31.10.2022

Example: Gas Transport Network Data

6

• ≈70 entry & ≈900 exit points

• ≈1650 inner nodes

• ≈1770 pipes

• ≈95 control valves 

• 58 compressor stations 

• 129 compressors & drivers

• 200 valves

M1 M2

I. Yüksel Ergün| ZIB | 21.09.2022

Compressor station data: .cs file (>54K lines)

Network topology data: .net file (>34K lines; >28K data attributes) 
Germany Gas Transport Network: 

Topology & Complex facilities
Gas Data Files: Technical propertiesEuropean Gas Transport 

Network: Interconnections

Compressor station characteristic diagrams

M1 M2

Alternative compressor machine configurations

[1] ENTSOG. Transmission Capacity Map. Retrieved from 
https://www.entsog.eu/maps#transmission-capacity-map-2021. 
Accessed on 31.10.2022

[1] ENTSOG. Transmission Capacity Map. Retrieved from 
https://www.entsog.eu/maps#transmission-capacity-map-2021. 
Accessed on 31.10.2022

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal 
pan-European energy system including an integrated analysis of 
electricity and gas transport. Technical Report 22-17. Zuse Institute 
Berlin, Takustr. 7, 14195 Berlin, 2022.
[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector 
Data for Modeling the German System (Version 1.0.0), 2017. 
https://doi.org/10.5281/zenodo.1044463. 
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Gas Transport Network – Data Error Example 1

7

Missing node

.net file should be corrected by:
• adding the missing node
• updating end node of existing pipes
• adding two pipes between the end nodes of the existing pipes and the added node

I. Yüksel Ergün| ZIB | 21.09.2022

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European 
energy system including an integrated analysis of electricity and gas transport. 
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling 
the German System (Version 1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463. 

Gas Transport Network – Data Error Example 2

8

Coupled pipes

.net file should be corrected by: 
• deleting the node
• deleting two of the existing pipes
• updating end nodes of the two pipes 

I. Yüksel Ergün| ZIB | 21.09.2022

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European 
energy system including an integrated analysis of electricity and gas transport. 
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling 
the German System (Version 1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463. 
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Gas Transport Network – Data Error Example 3 

9

Missing pipe

.net file should be corrected: 
• adding missing pipe 
or, 
• deleting the disconnected part

I. Yüksel Ergün| ZIB | 21.09.2022

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European 
energy system including an integrated analysis of electricity and gas transport. 
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling 
the German System (Version 1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463. 

Gas Transport Network – Data Error Example 4 

10

Compressor Station Configuration Definition

I. Yüksel Ergün| ZIB | 21.09.2022

M1 M2 M1 M2

M1 M2

All probable configurations of compressors in a compressor machine with a two 
compressor machines: 

M1 M2

Conf. 1: 

Conf. 2: 

Conf. 3: 

Conf. 4: 

.cs file should be corrected by: 
• updating the probable configuration(s)

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European 
energy system including an integrated analysis of electricity and gas transport. 
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling 
the German System (Version 1.0.0), 2017. https://doi.org/10.5281/zenodo.1044463. 
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Gas Transport Network – Data Error Example 5 

11

Compressor Station Gas Flow Direction

.net file should be corrected by: 
• updating valve(s)
• updating end nodes of the pipe(s)

I. Yüksel Ergün| ZIB | 21.09.2022

Probable gas directions through a bi-directional compressor in two-pipeline connection case: 
• It is operationally possible for the gas flow from pipe 1 to pipe 2 and vice versa. 
• The direction is controlled by valves. 

CS →P1 P2 CS →P1 P2

Gas direction:  pipeline 1 to pipeline 2 Gas direction:  pipeline 2 to pipeline 2[2] Yueksel-Erguen et al. Modeling the transition of the multimodal 
pan-European energy system including an integrated analysis of 
electricity and gas transport. Technical Report 22-17. Zuse Institute 
Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data Set: Electricity, Heat, and Gas Sector 
Data for Modeling the German System (Version 1.0.0), 2017. 
https://doi.org/10.5281/zenodo.1044463. 

Modeling Infrastructure Networks in Industrial 

Applications

Infrastructure network data consists of 
• Tabular data: technical bounds, physical properties, etc. 
• Spatial data: network topology
• Complex components: often induce non-linear relations of data elements 

It is challenging to detect and correct data errors: 
• Highly connected 
• Requires subject matter expertise to explain errors 
• Optimization is actively exploiting errors 

12I. Yüksel Ergün| ZIB | 21.09.2022
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Validity

Uniqueness Timeliness

Consistency

Dimensions of Data Quality

13I. Yüksel Ergün| ZIB | 21.09.2022

Accuracy

Accuracy is the ability to reflect reality, i.e., to be 
able to correctly describe real world objects

Consistency means conflict-free data, i.e., 
attributes of data entities addressing the 
same physical attribute should be consistent

Completeness is existence of all required 
data in the data set, comprehensiveness 

Uniqueness means representing each 
real world object in the data set 

exactly once

Validity is conformance to 
predetermined type, range and 

format

Timeliness shows whether data is up-to-date 
data depending on the analysis context

Completeness

Data 
Quality

[4] Askham et al. The six primary dimensions for data quality assessment. Technical Report, 2013, DAMA UK.

Validity

Uniqueness Timeliness

Consistency

Data Errors: Non-conformances to data quality

14I. Yüksel Ergün| ZIB | 21.09.2022

Accuracy

Accuracy is the ability to reflect reality, i.e., to be 
able to correctly describe real world objects

Consistency means conflict-free data, i.e., 
attributes of data entities addressing the 
same physical attribute should be consistent

Completeness is existence of all required 
data in the data set, comprehensiveness 

Uniqueness means representing each 
real world object in the data set 

exactly once

Validity is conformance to predetermined 
type, range and format

Timeliness shows whether data is up-to-date 
data depending on the analysis context

Completeness

Data 
Quality

• Insufficient detail 
à cumulative capacities

• Wrong modeling assumptions 
à flow capacity computation

• Data preprocessing/integration issues 
à erroneous node coupling

• Missing attributes à missing pipes, valves, etc.
• Missing entities à missing pipe maximum 

pressure values, node height values, etc.

• Conflicts in the data sets 
à node pressure vs. pipe pressure bounds

(may be induced by data set integration or data preprocessing 
assumptions)

• Untimely data à wrongly forecasted infrastructure related 
data for future extensions due to limited information

• Typos in names/non-conformance 
to bounds (mostly data entry 
related issues)

• Repeated use of object names
[4] Askham et al. The six primary dimensions for data quality assessment. Technical Report, 2013, DAMA UK.
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Data Error Detection and Correction

15I. Yüksel Ergün| ZIB | 21.09.2022

Uniqueness
Validity

Easier to detect and correct non-conformance using 
automated systems like schema validation, i.e., GasLib
format (www.gaslib.zib.de)

Accuracy
Completeness
Consistency
Timeliness

Manual detection or correction is often not possible

Correction of non-conformance often requires subject matter 
expertise and human interaction  

Eliminating Data Errors
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Data Improvement Method Related Data Quality Dimension Error

Schema validation
Uniqueness
Validity

Format mismatch
Nonconformance to bounds

Data augmentation
Completeness
Accuracy

Insufficient detail
Missing entries/attributes

Data generation
Completeness
Accuracy

Insufficient detail
Missing entries/attributes

Error diagnosis
and correction

Consistency 
check 
heuristics

Consistency
Accuracy

Conflicts in the data set
Wrong modeling assumptions
Data preprocessing errors

Extensive 
scenario 
analysis 

Accuracy 
Consistency
Timeliness

Conflicts in the data set
Wrong modeling assumptions
Data preprocessing errors
Untimely data

Examples for consistency check heuristics: [5] Inci Yueksel-Erguen, J. Zittel, Y. Wang, F. Hennings, T. Koch. Lessons learned from gas network data preprocessing. Technical 
Report 20-13. Zuse Institute Berlin, Takustr. 7, 14195 Berlin: ZIB, 2020.

540



Extensive Scenario Analysis 
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Utilize mathematical 
modeling methods 
to detect infeasibility

Can we relate 
infeasibility to data 
(errors)? 

Generate practically 
valid scenarios using 
historical flow data 

Analyze 
Infeasibility

Improve Network 
Topology Data

Generate 
Flow 

Scenario

An Example Analysis Set-up – Gas Network Data
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Related Data Sets
ENTSOG IP data set
GIE Storage data set

Related Data Sets
DE network topology data set
Node pressure data from TSOs

Resulting data
DE gas network
CS data

Cumulative gas in-/out- flow 
of Germany based on IPs

Gas in-/out- flow of Germany 
based on physical entry/exit 
nodes

M1: High-level Pan-European 
Gas Network Model 

M2: German Gas Transport 
Network Model (Linear)

M3: German Gas Transport 
Network Model (Nonlinear)

• Parameters related to 
gas properties

Historical 
flow data

Source: 
ENTSOG Security of 
Supply Report Scenarios

• Estimated pipeline 
capacities 

• ENTSOG IP- DE network 
associations 

Details for the models: [2] I. Yueksel-Erguen, D. Most, L. Wyrwoll, C. Schmitt,  J. Zittel. Modeling the transition of the multimodal 
pan-European energy system including an integrated analysis of electricity and gas transport. Technical Report 22-17. Zuse
Institute Berlin, Takustr. 7, 14195 Berlin, 2022.
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Mathematical Modeling Methods for Infeasibility Analysis

Slack Formulations 
• Different aspects of the formulations can be relaxed with slack variables

• The objective is to minimize the deviation from the original model à zero objective function

• The smallest distance from the feasibility

(Minimum) Irreducible Infeasible Subsystems (IIS)
• Isolates the infeasibility by variables and constraints

• Not an explicit reason why a IIS is infeasible

• Long computation times for large-scale MIPs 

• A trivial IIS is not informative
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ns1158817 from 
MIPLIB 2010* Constraints Variables NZ

Problem 68,455 1,804,022 2,842,044

IIS 2,003 6,002 12,002
*[6] Koch et al. MIPLIB 2010. Math. Prog. Comp. 3, 103 (2011). https://doi.org/10.1007/s12532-011-0025-9

Scenario Analysis – Infeasibility Analysis Method 
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S1. Initiate scenario analysis: 
relax all non-linear constraints in the slack formulation
if there is at least one scenario in the scenario set S, select a scenario s from the scenario set and go to S2, else go to S5

S2. Solve the mathematical model
If feasible save the solution, delete the scenario s from the scenario set S and go to S1; else go to S3

S3. Solve the slack formulation
if infeasible go to S4
if feasible with non-zero slack: correct the scenario and turn to S3
if feasible with a zero objective function value, tighten one set of the nonlinear constraints in the slack formulation if available and turn 
to S3, else save the solution and scenario correction, delete the scenario s from the scenario set S and go to S1; 

S4. Find the minIIS using the LP minIIS model
if feasible, save the minIIS solution for the scenario, rescale the scenario by 0.95, and go to S4
if infeasible go to S1.

S5. Analyze the saved minIISs
to detect the frequency of existence of network components and constraint types in the minIIS and correct data set, and go to S1.
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Automated Infeasibility Analysis Method 
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S0. Initiate data set:
restore the scenario set: S:=S0; reset the data rating DR:=0

S1. Initiate scenario analysis: 
relax all non-linear constraints in the slack formulation
if there is at least one scenario in the scenario set S, select a scenario s from the scenario set and go to S2, else go to S5

S2. Solve the mathematical model
If feasible save the solution and the scenario neighborhood scale association with the scenario, delete the scenario s from the scenario 
set S and go to S1; else go to S3

S3. Solve the slack formulation
if infeasible go to S4
if feasible with non-zero slack: correct the scenario and turn to S3
if feasible with a zero objective function value, tighten one set of the nonlinear constraints in the slack formulation if available and turn 
to S3, else update the scenario neighborhood scale and go to S2

S4. Find the minIIS using the LP minIIS model
if feasible, save the minIIS solution for the scenario, rescale the scenario by 0.95, and go to S4
if infeasible go to S1.

S5. Analyze the saved minIISs
to detect the frequency of existence of network components and constraint types in the minIIS, correct data set, 

S6. Measure the data quality
If data quality is not sufficient, got to S1, else terminate.

Data Quality Rating

Quality of data can be measured by its ability to represent the addressed entities

We need a data rating measure to facilitate the automated improvement by enabling us to

• understand whether the improved data set is of sufficient quality level for the aimed analysis
• compare the performance of alternative improvements 

.. and also lead us/the search to the potential errors and error sources…

Example: Number of scenarios generated from the historical data that the data set finds a feasible routing

• Not informative enough 

• Especially in the very beginning of the improvement process – we may get 0 for all scenario sets

22I. Yüksel Ergün| ZIB | 21.09.2022
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Data Quality Rating of Infrastructure Network Data - 1

An infrastructure network is an engineered system that is operational: 

• Designed to meet certain quality of service requirements given operational requirements
• Robust against uncontrollable factors in the working environment 

So, what does it mean from data perspective?

• The network is designed to find feasible routings to scenarios within the operational concept
• The network is designed to eliminate systematic errors
• The network has random errors that cannot be totally eliminated by the design process, so the network 

should provide alternative routing solutions for changes in the scenarios 

• The amount of the change depends on (robustness of) the network

If a scenario gives a feasible result with the data set, 
then a set of scenarios in its neighborhood is expected to be feasible. 
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Data Quality Rating of Infrastructure Network Data - 2

Operational scenarios of an infrastructure network have two main measurable characteristics: 
• The amount of commodity that can be routed
• The distribution of the commodity in the network 

I. Yüksel Ergün| ZIB | 21.09.2022

Source node

Sink node

M
ain

 flo
w 

dir
ec

tio
n

Main flow 

direction

Small changes in demand and supply without changing the 
total flow and the main flow direction:

Commodity 
distribution 2

Commodity 
distribution 1

Demand and supply are equally 
distributed among sink and source 
nodes, resp. (node sizes are proportional 
to the amount of flow):

Change 
commodity 
distribution
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Future Outlook: Automated Data Improvement 

Using Extensive Scenario Analysis 1
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Raw tabular 
data

Raw spatial 
data (ie from 

OSM)

Run 
mathemati
cal model

Data 
wranglin

g 

Traditional analysis

Future Outlook: Automated Data Improvement 

Using Extensive Scenario Analysis 2

• …
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Initial network 
data set

Feasible
?

Raw tabular 
data

Raw spatial 
data (ie from 

OSM)

Historical 
commodity 
flow data 

(supply and 
demand)

Run 
mathemati
cal model

Feasible 
supply/deman

d scenarios

Measure 
and classify 
infeasibility 

Update 
performance 

measure

Update 
improvement 
suggestions

For each scenario 

Evaluate 
Results

Is 
data 

quality 
OK?

Yes

Yes

No

No

Update 
network 
data set

Updated 
network 
data set

Data quality;
Data 

modifications

Data 
modifications

Updated network 
data set

Generate 
scenarios

Data 
wranglin

g 

Envisioned Analysis
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Many energy-intensive industries, like the steel industry, plan to switch to renewable 
energy sources. Other industries, such as the cement industry, have to rely on carbon 
capture utilization and storage (CCUS) technologies to reduce their production 
processes' inevitable carbon dioxide (CO2) emissions. However, a new transport 
infrastructure needs to be established to connect the point of capture and the point of 
storage or utilization. Given a tree-shaped network transporting captured CO2 from 
multiple sources to a single sink, we investigate how to select optimal pipeline diameters 
from a discrete set of diameters. The general problem of optimizing arc capacities in 
potential-based fluid networks is already a challenging mixed-integer nonlinear 
optimization problem. Adding the highly sensitive and nonlinear behavior of CO2 
regarding temperature and pressure changes the problem becomes even harder. We 
propose an iterative algorithm that splits the problem into two parts: a) the pipe-sizing 
problem under a fixed supply scenario and temperature distribution and b) the 
thermophysical modeling, including mixing effects, the Joule-Thomson effect, and the 
heat exchange with the surrounding environment. We show the effectiveness of our 
approach by applying our algorithm to a real-world network planning problem for a CO2 
network in Germany. 
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Motivation - Net-zero by 2050

Global greenhouse gas emissions (GHG) in 2018 [IEA, 2020]

I Decarbonization of industry, e.g, by shifting

towards renewables

I 8 % of global GHG from cement industry

I CO2 emissions from chemical process itself

I Carbon Capture and Storage (CCS) or

Utilization (CCU)

I New infrastructure to transport CO2 from

point of capture to storage/utilization

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 1
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How to transport CO2? - Goal

I CO2 is transported in liquid or supercritical state

I Supercritical: State in which the liquid and gaseous phases cannot be distinguished

I Pipeline networks are most cost efficient

I Network planning involves finding the cost-optimal pipeline diameters

Goal
Determine the cost-optimal pipeline diameters

from a discrete set of diameters

I in a tree-shaped CO2 network

I with multiple sources and a single sink

I for a given supply scenario

I transport CO2 in liquid or supercritical state

=) no transition into gaseous phase

Own figure, data from [Bell et al., 2014]

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 2

Background

I Problem of finding optimal pipeline diameters is a

common problem in real-world applications, e.g.,

in water, natural gas, and hydrogen networks

[D’Ambrosio et al., 2015, Lenz and Becker, 2022, Robinius et al., 2019]

I Discrete decision variables w.r.t. diameter size of

pipelines

I Non-convex physics describing flow in pipelines

I Physical properties of CO2 are sensitive against

changes in pressure and temperature

=) Mixed Integer NonLinear Program; hard to solve

Own figure, data from [Bell et al., 2014]

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 3
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Solution approach

I Iterative algorithm

I Decouple finding optimal pipe

diameters and thermophysical

modeling

I Exploit the benefits of tree

structure to reduce complexity

I In each iteration update

parameters w.r.t to pressure p and

temperature T

I Stop algorithm if diameters and

pressure levels converge

Initialization

Determine optimal pipe diameters
and pressure levels

Diameters and
pressure converged? END

Compute temperature distribution

Update parameters w.r.t to p and T

k=1

YesNo

k + 1
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Determine optimal pipe diameters - Notation
Initialization

Determine optimal pipe diameters
and pressure levels

Diameters and
pressure converged? END

Compute temperature distribution

Update parameters w.r.t to p and T

k=1

YesNo

k + 1

G = (V ,A) Directed tree with set of vertices V
and arcs A; arcs orientated from

leafs to root

V+
, V−

, V 0
Set of entry, exit and inner nodes

Api
, Apu

Set of pipes and pumps

Da Set of pipe diameters for a 2 Api

bv 2 R Inflow/Outflow of vertex v 2 V
pv 2 [pv , pv ] Pressure of vertex v 2 V
qa 2 R≥0 Flow over arc a 2 A
da 2 Da Diameter of pipe a 2 Api

xa,d 2 {0, 1} Choice of da 2 Da for a 2 Api

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 5
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Determine optimal pipe diameters - Notation

Incoming and outgoing arcs:

δ−(v) = {a 2 A | a = (u, v)}
δ+(v) = {a 2 A | a = (v , u)}

Intermediate nodes:

Vm
:= {v 2 V | |δ−(v)| = |δ+(v)| = 1 ^ δ−(v) [ δ+(v) 2 Api ^

|Da=(u,v)| > 1 ^ |Da=(v ,w)| > 1}.

Note: Node v /2 Vm
if junction node, tail or head node of pump, tail or head node of pipeline with

a fixed diameter

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 6

Determine optimal pipe diameters - Network elements

I Pipelines are main type of element to transport CO2

I In general, fluid flows from higher pressure to lower pressure

I Pressure change in a pipeline

pv − pu = φa(da, qa) qa|qa|| {z }
friction term

− (H0
v − H0

u )⇢g| {z }
elevation di↵erence

8a = (v , u) 2 Api

I Friction loss coefficient φa(da, qa) is highly nonlinear

I Pumps can be used to increase pressure of fluid

pu ≥ pv 8a = (v , u) 2 Apu

H
0
v : height of v ; ⇢: density of fluid, g : gravitational constant

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 7
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Determine optimal pipe diameters - Model

min
x,q,p

X

a2Api

X

d2Da

ca,dxa,d

s.t.

X

a2�+(v)

qa −
X

a2��(v)

qa = bv 8v 2 V ,

pv − pu =

X

d2Da

xa,dφa(d , qa) qa|qa| − (H0
v − H0

u )⇢g 8a = (v , u) 2 Api,

pu ≥ pv 8a = (v , u) 2 Apu,

pv  pv  pv 8v 2 V ,
X

d2Da

xa,d = 1 8a 2 Api,

X

d2D(u,v)

x(u,v),d d =

X

d2D(v,w)

x(v ,w),d d 8v 2 Vm,

xa,d 2 {0, 1} 8a 2 Api, 8d 2 Da.

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 8

Initialization - Reduce complexity

Initialization

Determine optimal pipe diameters
and pressure levels

Diameters and
pressure converged? END

Compute temperature distribution

Update parameters w.r.t to p and T

k=1

YesNo

k + 1

I Reduce complexity by precomputing unique flow values

and friction loss coefficients

I We have an in-tree graph rooted at a single exit node

and a given inflow scenario, i.e., all inflow are known

I Recursively determine arc flow values starting at leaf

nodes towards the exit node

I For each pipeline a 2 A and each possible diameter

d 2 Da determine friction loss coefficient φa(d , qa)

Assume constant physical parameters, e.g., ⇢ = const, the model to determine optimal pipe

diameters becomes a tractable mixed integer linear program (MILP)

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 9
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Thermophysical modeling

I Physical properties are nonlinear functions of

pressure and temperature, e.g.:

Density ⇢ = ⇢(p,T )

Viscosity ⌫ = ⌫(p,T )

Heat capacity cp = cp(p,T )

Thermal conductivity f =f(p,T )

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 10

Thermophysical modeling

Initialization

Determine optimal pipe diameters
and pressure levels

Diameters and
pressure converged? END

Compute temperature

distribution

Update parameters w.r.t to p and T

k=1

YesNo

k + 1

E↵ects on the temperature in the network

I Temperature Tv at a junction node v due to mixing

Tv =

P
a2��(v) cp,aqaT

out
aP

a2��(v) cp,aqa

I Temperature change along a pipeline

T out
= T in

+ µJT(p
out − pin)| {z }

Joule-Thomson e↵ect

− 1

qacp
kL∆Tln

| {z }
Heat exchange with

surrounding

I For given flow values and pressure distribution,

calculate temperature distribution similar to

computing flow values

T out: Outlet temperature of pipe; T in: Inlet temperature of pipe; qa: Mass flow over pipe; cp: Heat capacity of fluid; µJT:
Joule-Thomson coefficient; k: Heat transmission rate; ∆Tln: Logarithmic temperature di↵erence with surrounding

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 11
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Algorithm

Initialization:
Flow and Friction Factor

Determine optimal pipe diameters
and pressure levels

Diameters and

pressure converged?
END

Compute temperature distribution

Update parameters w.r.t to p and T

k=1

YesNo

k + 1
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Case study - Network data

Connect four cement plants to harbour in North-Western Germany by tree-shaped network

Set |V−| |V+| |V 0| |Vm| |Api| |Apu| |Da|
N 1 4 1661 1652 1662 3 12

D P S B

Inflow in kg/s 16 8 8 8

Temperature in
◦
C 50 60 20 30

Max Pressure in bar 95 105 88 88

Minimal pressure at exit: 80 bar

Network consists of: ⇠830 km pipelines

Length of each pipe segment: 500m

Sections 1 and 17: Fixed to 300mm

Surrounding temperature: 10
◦
C

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 13
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Case study - Results

Pressure Temperature Phase state
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Case study - Results
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Conclusion

I We presented an iterative algorithm for finding optimal pipeline diameters in a tree-shaped

multi-source single-sink network for CO2 transport

I To account for the complex thermophysical behavior of CO2, we split the problem into

a) Finding optimal pipe diameters by solving a tractable MILP
b) modeling the thermophysical e↵ects in the network, including mixing, heat exchange with the

surrounding and the Joule-Thomson e↵ect

I In each iteration we update physical parameters w.r.t. pressure and temperature levels

I We showed Proof-of-Concept by applying our method to a real-world planning instance

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 16

Outlook

I Verify coarse solution of optimization with results by a simulator

I Robustness of method by applying method to multiple instances and scenarios

I Extend method to handling CO2-rich fluids =) change of phase envelope, i.e., more complex

pressure bounds

I Extend method to demand-based components, e.g., hydrogen or ammonia as energy carrier

=) single-source multiple-sink network

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 17
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Thank You For Your Attention!

Any Questions?
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Additional Slides
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Determine optimal pipe diameters - Pipeline

Pressure change in a pipeline

pv − pu = φa(da, qa) qa|qa|| {z }
friction term

− (H0
v − H0

u )⇢g| {z }
elevation di↵erence

8a = (v , u) 2 Api

Friction loss coefficient φa using Weymouth equation

φa(da, qa) =
8La

⇡2⇢d5
a

λa(da, qa)

Darcy friction factor λa using implicit Colebrook-White equation

1p
λa

= −2 log10

✓
"

3.7da
+

2.51

Re
p
λa

◆
with Re =

daqa
Aa⌫

H0
v : height of v ; ⇢: density of fluid, g : gravitational constant; La: length of pipe; ": roughness of pipe; Re: Reynold’s

number; ⌫: dynamic viscosity of fluid; Aa: cross section of pipe
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Heat exchange with surrounding in buried pipe1

Determine heat transmission factor ↵

Pr = Pr(⌫, f, cp) =
⌫

f/cp
=

cp⌫

f

Re = Re(⌫, d , q) =
dq

A⌫

Nu =
↵d

f
() ↵ =

Nuf

d

Nu =
(⇣/8)Re Pr

1 + 12.7
p

⇣/8(Pr 2/3 � 1)

"
1 +

✓
d

L

◆2/3
#

⇣ = (1.8 log10 Re � 1.5)�2

Heat exchange

∆Q = LQc = kL∆Tln

∆Tln =
T

in
� T

out

log T in�T s

T out�T s

k =
2⇡

2
↵d

+ 1
p

log do
d
+ 1

s
log 4s

d

Start with initial guess T
out,0

, using mean

temperature Tm = (T in + T
out,i�1)/2 and

pressure pm = (pin + p
out)/2

cp(pm,Tm), ⌫(pm,Tm), f(pm,Tm), µJT(pm,Tm)

T
out,i = T

in + µJT(p
out

� p
in)�

1

qcp
kL∆T

i�1
ln

1VDI Wärmeatlas, berlin, Heidelberg: Springer, 2013.
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Compute flow values

I Let G = (V ,A) be directed in-tree graph rooted at a single exit node

I Let V (u) := {v 2 V : (u, v) 2 A _ (v , u) 2 A} be the set of nodes adjacent to node u

I Let L := {v 2 V : |V (v)| = 1 ^ v /2 V−} be the set of leafs in the tree G

I For each v 2 L set the flow of the unique outgoing arc a 2 δ+(v) to qa = bv and update

bu := bu + qa for each neighbor u 2 V (v)

I Let V = V \L and A = A\
S

v2L δ
+
(v), update L

I Iterate until A is empty

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 23
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Compute temperature distribution

I Let G = (V ,A) be a directed in-tree graph with given flow value qa for each a 2 A and

pressure level pv for each v 2 V .

I Let L := {v 2 V : |V (v)| = 1 ^ v /2 V−} be the set of leafs in the tree G

I Let V (u) := {v 2 V : (u, v) 2 A _ (v , u) 2 A} be the set of nodes adjacent to node u

I For each v 2 V+
, an inflow temperature Tv = T in

is given.

I For each v 2 L, set the inlet temperature of the unique outgoing arc a 2 δ+(v) to T in
a = Tv .

I If a 2 Api
, the outlet temperature T out

a is determined by solving correlations for buried pipelines

I If a 2 Apu
, set T out

a = T in
a .

I Then, for each node u 2
S

v2L V (v), compute its mixing temperature Tu

I Let V = V \L and A = A\
S

v2L δ
+
(v)

I Update L, and iterate until A is empty

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO2 networks 24

Results
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The Zuse Institute Berlin [1] and OGE, Germany's largest natural gas transmission 
system operator [2], have been cooperating for more than a decade in a variety of 
application-oriented research projects [3]. In my talk I will briefly go through the history 
of the projects and the collaboration. A more recent project addressing telecom-
munication network design by the application of ZIB’s SCIP-Jack and SCIP [4][5] will 
be presented in detail. 
 
 

 

References 
[1] https://www.zib.de/ 
[2] https://oge.net/en 
[3] https://www.zib.de/features/research-campus-modal 
[4] https://scipjack.zib.de/ 
[5] https://www.scipopt.org/ 

561



2022/11/15

1

Spotlights on success stories of 
public-private partnership

Uwe GOTZES

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop – 21 September 2022

Shortened and annotated version of the presentation slides

1

Started in 2010

Originated from E.ON Ruhrgas having 
a history going back more than 80 
years

Headquartered in Essen

1450 employees

Plans, constructs, operates and 
monitors one of Europe’s largest
natural gas transmission systems

Total length of about 12,000 km, 
around 30 compressor stations with 
about 100 units

Hundreds of metering and pressure 
regulating plants

450 energy suppliers obtain gas over
1000 Exit points

Annual offtake:
~ 300 TWh (DSO and industry)
~ 880 TWh total offtake incl. other TSO

2
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2

We offer…
¡ the transmission of natural gas through our network

¡ the technical and commercial services to go with it

and we provide…
¡ commercial, technical and IT services for other companies

Capacity 
calculation

Capacity
marketing

Processing 
nominations and
offtake behavior

Technical and
non-technical

network operation

Quantity
determination and

billing

Related research projects with ZIB/MODAL

Project Forne Various forecasting
projects

Project OAD

Project Carp (Detailed presentation on the following slides)

3

The specially protected right of way strip contains cable
ducts with fiber optic cables for highspeed internet.
A subsidiary of OGE offers the capacities of this data
network to its customers. Another subsidiary of OGE
plans new routes to connect new customers according
to their enquiries. The project Carp delivers new
research driven software tools to support the planning.

A cross section through a pipeline route

4
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3

How does a customer enquiry look like?
Mathematically spoken, we are given an undirected weighted graph G.
The subset I consists of the green vertices that form our backbone
network in the cable ducts right next to the gas pipelines.
The k disjoint groups of n_k nodes are all hidden in the dark blue,
densely packed area in the lower left corner of the graph
(next slide is a zoom into this area).

5

B
ackbone netw

ork Backbone network

dark blue edges = potential new line constructions

6
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7

Approach to solve Task A
• Almost a Steiner Tree Problem…but not exactly

• It just so happens that Daniel Rehfeldt from ZIB has developed (one of) the best Steiner tree 
solvers in the world…so why not talk with him first?

Algorithm:

1. Replace all edges by an antiparallel pair of directed edges

2. Connect all vertices from I unidirectionally witch a ‘supernode’ i* at cost 0

3. Solve as many Steiner Aborescence Problems (SAP) as there are groups and consider 
vertices of other groups as already connected to the backbone network

After all SAP for all groups are solved, it might happen, that vertices of several groups are 
connected in a tree structure, but not yet to the backbone network. To overcome this flaw:

1. Set all edge costs of tree edges to 0

2. Solve ordinary Steiner Problem with all group nodes as terminals

8
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Example graph with euclidean
distance as edge weights

Backbone network (green) and 
three vertex groups (magenta, 
turquois and yellow)

9

Solution of the first SAP in the modified
graph according to the algorithm.
Important: choose a group node and 
not the supernode as root node (green
circle) for the SAP to make sure that
the group is connected in a tree
structure in the original graph.

10
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6

Solution edges of all three SAP in the
original graph.

All groups are connected by a tree
structure, but turqouis and magenta
groups are not yet connected to the
backbone network. To achieve this: 
Solve ordinary SPG with magenta, 
turqouis, yellow groups and supernode
as terminals.

11

Hooray, nice feasible solution found!

However, the method is a heuristic

1. How good is the heuristic?

2. How can the method be improved?

3. Example where the heuristic does
not yield the optimal solution?

12
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Real world example Task A)

13

Not discussed in detail here

14
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8

T1T0

T2

Nightly E-Mail ping-pong-session 
with Thorsten Koch to solve task D 
as follows:

1. Modify original graph as shown
here (now directed and new
vertex T_2)

2. Set up three shortest path
problems

3. Bundle all three shortest path
problems in one huge Three
ways round trip problem
containing three copies of the
modified graph

4. Add additional constraints to
forbid shortcuts via T_2

15

16
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9

T0 T1

T2

Solution of the
Three ways round trip problem.

This solution has a flaw, because it took
a shortcut via T_2 and hence is
not a circle in the original graph.

17

Modifications of the model in red. Effect: Shortcuts via 
T_2 are now forbidden. ¥overline{E} denotes the
edges of the original graph. ¥delta is Kronecker‘s
delta.

18
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T0 T1

T2
19

Shortest node disjoint circle
Real world example Task D)

Thank you!

20
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We propose a deep switching state space model (DS3M) for efficient inference and 
forecasting of nonlinear time series with irregularly switching among various regimes. 
The switching among regimes is captured by both discrete and continuous latent 
variables with recurrent neural networks. The model is estimated with variational 
inference using a reparameterization trick. We test the approach on a variety of 
simulated and real datasets. In all cases, DS3M achieves competitive performance 
compared to several state-of-the-art methods (e.g. GRU, SRNN, DSARF, SNLDS), with 
superior forecasting accuracy, convincing interpretability of the discrete latent variables, 
and powerful representation of the continuous latent variables for different kinds of time 
series. Specifically, the MAPE values increase by 0.09\% to 15.71\% against the second-
best performing alternative models. 

 

573

2



Deep Switching State Space Model (DS3M) for
Nonlinear Time Series Forecasting with Regime
Switching

Xiuqin XU
Ying CHEN

https://arxiv.org/abs/2106.02329
Institute of Data Science & Integrative Sciences and Engineering Programme
Department of Mathematics & Risk Management Institute & Asian Institute of
Digital Finance
National University of Singapore

Motivation 1-1
Nonlinear time series with regime switching

Figure: The U.S. monthly unemployment rate 2002 – 2021.

� The U.S. unemployment rate depends on (discrete)
unobservable economic status of booming or recession. It is
also influenced by some latent (continuous) variables, e.g.
elasticity of regional wage level and others, that in turn vary
with the discrete status.

� Deciphering these discrete and continuous latent variables can
gain insights.

DS3M
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Motivation 1-2

Technical challenges
� In many studies, researchers need to model and infer similar

type of time series that disobey traditional assumptions of e.g.
linearity, normality and stationarity in the statistical modeling,
but exhibit nonlinearity with stochastic regime switching
behaviours.

� Examples: health care (sleep apnea), economics
(unemployment rate), traffic and transportation (metro
passengers volume), meteorology (sea surface temperature),
energy (electricity demand), to name just a few.

� Two challenges:
I a severe modeling misspecification
I lack of interpretation on the stochastic regimes

DS3M

Motivation 1-3
Switching state space models (SSSM)
� The evolution of time series is assumed to be driven by hidden

factors switching among discrete regimes, see Bae et al.,
2014; Fox et al., 2009; François et al., 2014; Ghahramani
et al., 2000.

� The SSSM is a generalization of the Hidden Markov Models
(HMMs) and State Space Models (SSMs).

Figure: State Space Model

DS3M
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Motivation 1-4

Linear Gaussian State Space Model (LGSSM)
The dynamics in each regime are usually represented by simple
models that could be efficiently estimated even with a small sample
size (Durbin et al., 2012), and the switching among regimes is
controlled by hidden transition probabilities of a Markov chain.
� Transition function for the latent continuous variable zt :

(zt |zt≠1, xt) ≥ N(µt , Σz) (1)

where µt = Wzzt≠1 + Wxxt + bz and Σz is covariance.
� Emission function for the observation yt :

yt |zt ≥ N(mt , Σy ) (2)

where mt = Wy zt + by and Σy is covariance.
DS3M

Motivation 1-5
SSSMs and misspecification
� Hidden Markov Model (HMM): Baum et al. (1966), Linear

Gaussian State Space Model (LGSSM): Durbin et al. (2012),
� Non-linear and non-Gaussian SSM: Doucet et al. (2009),

Julier et al. (1997), and Smith et al. (1962)
� Non-stationary SSM: Ackerson et al. (1970), Chang et al.

(1978), Fox et al. (2009), Ghahramani et al. (2000), Hamilton
(1990), and Murphy (1998)

- By extending the local linear models with different regimes, the
resulting model approximates a globally nonlinear behaviour and is
expected to retain interpretation.

- The existing nonlinear models rely on pre-specified local parametric
forms that usually have simple structures, either linear or nonlinear,
which may not be comprehensive enough to describe the actual
patterns in the modern nonlinear time series, and thus easily lead to
model misspecification.

DS3M
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Motivation 1-6
Deep learning
Recurrent neural networks (RNN) have emerged as the new
benchmark to model nonlinear time series with highly complex
dependence.

� Gate structure alleviates gradient vanishing:
Long-Short Term Memory (LSTM,Hochreiter et al., 1997),
Gated recurrent unit (GRU,Chung et al., 2014), Transformers
(Li et al., 2019) and temporal convolution networks (Sen
et al., 2019)

DS3M

Motivation 1-7

Recurrent Neural Networks (RNN)

� Transition function for hidden states ht to encode past input
x1:t with a deterministic nonlinear function

ht = f (ht≠1, xt) (3)

f is commonly chosen as LSTM or GRU.
� Emission function for yt

yt |ht ≥ fi(yt ; „) (4)

„ = g(ht) (5)

g is often chosen to be a nonlinear function.

DS3M
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Motivation 1-8

Overparametrization and interpretation
� The classic DL models are deterministic and ignore the presence of

unobserved stochastic signals.

� The only randomness allowed appears in the conditional output
probability models, with either a simple unimodal distribution, e.g.
Gaussian (Salinas et al., 2020), or a mixture of simple unimodal
distributions, e.g. Gaussian Mixture models (Graves, 2013).

� It has to require a large number of parameters to ensure a
reasonable modeling accuracy (Zhang et al., 2005). This in turn
requires a large sample size to ensure estimation efficiency and to
avoid overfitting.

The relatively small sample size of real data, and more importantly, the
stochastic behaviors of regime switching make standard deep learning
approaches computationally infeasible and lack of interpretation on the
fitted models.
DS3M

Motivation 1-9

SSM and RNN

Figure: State Space Model Figure: Recurrent Neural Network

� SSM only allows for simple state structure or linear transitions;
RNN enables to represent complex dependence with richer
internal states and nonlinear transitions

� The latent variables in SSM are random;
The hidden states in RNNs are deterministic.

DS3M
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Motivation 1-10
Deep state space models (DSSM)
DSSM introduce continuous Gaussian latent variables at each
time-step and combine SSM and RNN/MLP.
� SRNNs (Fraccaro et al., 2016) incorporate the deterministic

dynamics of RNNs by interlacing them with SSM. The hidden states
do not depend on zt and transition is linear.

� STORNs (Bayer et al., 2014), VRNN (Chung et al., 2015) make the
transition equation non-linear via cutting the ties between the latent
states and connect them through the deterministic state of RNNs.

zt continuous.
Uneasy to inter-
pret

DS3M

Motivation 1-11

DSSM with discrete latent variable
While continuous latent variables has more expressive power,
discrete latent variables representing regime switching are natural.

� Johnson et al. (2016): emission function is a neural network.
� Dong et al. (2020): both the emission and transition functions

are nonlinear neural networks.
� Farnoosh et al. (2021): approximates high-dimensional time

series with a multiplication of latent factors and latent
weights, where the latent weights are modeled by a nonlinear
autoregressive model, switched by a Markov chain of discrete
latent variables.

The evolution of time series is purely driven by the discrete latent
variable only.
DS3M
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Motivation 1-12
Deep Switching State Space Model (DS3M)
� Incorporate both continuous and discrete latent into RNN and

prove consistency and stability:
I RNN + nonlinear SSSM: emission and transition governed by

a Markov chain of dt and parameterized by MLPs.
I discrete latent dt represents unknown regimes and influences

both Yt and continuous latent zt

I zt in the SSSM could use the long-term information embedded
in the RNN; the RNN is skip-connected to the observations to
further improve the forecasting.

� Develop efficient estimation based on an approximate
variational inference algorithm that can scale to large data sets

� DS3M can leverage the interpretability of discrete latent
variables, the powerful representation ability of continuous
latent variables, and the nonlinearity of deep learning models
compared to SOTA.

DS3M

Outline

1. Motivation X
2. SOTA
3. Model
4. Experiments
5. Conclusion

DS3M
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SOTA 2-13

Settings

� A time series of T observations as y1:T = {y1, y2, · · · , yT },
yt œ RD.

� A sequence of inputs as x1:T = {x1, x2, · · · , xT }, xt œ RU .
I In time series forecasting, xt can be one or multiple lagged

values of the time series, e.g. yt≠1 and higher orders
yt≠2, yt≠3, · · · .

I The inputs xt could also contain exogenous variables.
We are interested in modeling p(y1:T |x1:T ) and inferring the
predictive distributions for the one-step-ahead to · -step-ahead
observations {yT+1, · · · , yT+· } and the discrete latent states
{dT+1, · · · , dT+· }.

DS3M

SOTA 2-14

Switching linear dynamical system (SLDS)
� The dynamics of each regime is explained by a linear state

space model.

zt = W (dt )
z

zt≠1 + W (dt )
x

xt + b(dt )
z

+ et , et ≥ N(0, Σ(dt )
z

) (6)
yt = W (dt )

y
zt + b(dt )

y
+ ‘t , ‘t ≥ N(0, Σ(dt )

y
) (7)

� The discrete latent variables dt œ {1, 2, · · · , K} at each time
step t = 1, 2, · · · , T , follows a Markov chain, dt |dt≠1 follows a
transition matrix Γ œ RK◊K , where Γi ,j = p(dt = j |dt≠1 = i).

� The discrete latent variables dt have impact on both the
continuous latent variables zt œ RZ and yt

When K = 1, the model is also termed as the Linear Gaussian
State Space Model (LGSSM).

DS3M
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SOTA 2-15
SOTA
� GRU, SRNN (Fraccaro et al., 2016), DSARF (Farnoosh et al.,

2021) and SNLDS (Dong et al., 2020)

(a) DSARF (b) SNLDS

� Most of the extensions assumed that the discrete latent dt

only influences the transition of the continuous latent zt .
� SRNN can be viewed as DS3M model without discrete latent

variables.
DS3M
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Other alternative models
� Recurrent SLDS (rSLDS) by Becker-Ehmck et al. (2019) and

Linderman et al. (2017) which extends the open-loop Markov
dynamics and makes dt depending on the hidden state zt≠1.
Dong et al. (2020) extended the open-loop Markov dynamics
by making dt depends on last observations.

� Tree structure prior on the switching variables of rSLDS
(Nassar et al., 2018), deep Rao-Blackwellised Particle Filter
(Kurle et al., 2020)

� Sometimes can improve accuracy, but can also lead to
unnecessarily frequent state shifts in the estimated discrete
latent variables, making interpretations difficult.

DSARF has been shown to outperform several models such as
rSLDS, SLDS for time series forecasting (Farnoosh et al., 2021).
DS3M
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Model 3-17

Deep Switching State Space Model (DS3M)

� stack an RNN below the switching state space model
� design a direct connection of the RNN hidden state ht to the

time series yt inspired by the skip connection in ResNet,
Transformers and SRNN.

DS3M

Model 3-18

Formulation
1. Recurrent step:

ht = fh(ht≠1, xt)
fh is chosen as an LSTM or GRU

2. Switching step: p(dt |dt≠1) follows a Markovian transition
matrix Γ œ RK◊K

Γi ,j = p(dt = j |dt≠1 = i)

3. Transition step:

(zt |zt≠1, ht , dt = k) ≥ N(zt ; µ
(k)
t , Σ(k)

t )

µ
(k)
t = f (k)

1 (zt≠1, ht) , log Σ(k)
t = f (k)

2 (zt≠1, ht)

f (k)
1 ,f (k)

2 are parameterized by neural network models (MLP)
DS3M
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Model 3-19

Formulation (Con’t)
4. Output step:

yt |zt , ht , dt = k ≥ fi(Φ(k)
t ) (8)

Φ(k)
t = f (k)

o (zt , ht) (9)

f (k)
o is parameterized by neural network models (MLP)

fi can be chosen according to the stochastic nature of the
time series, e.g. Gaussian for bell-shaped data, Log-Gaussian
for data with asymmetry etc.

The DS3M includes all the parameters that parameterize the
following functions:

◊ = {fh, Γ, fo, {f (k)
1 }K

k=1, {f (k)
2 }K

k=1, {f (k)
o }K

k=1}

DS3M
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Estimation
The loglikelihood is

L(◊) = log p◊ (y1:T |x1:T )
p◊ (y1:T , z1:T , d1:T |x1:T ) =

r
T

t=1 p◊ (yt |zt , ht , dt) p◊ (zt |zt≠1, ht , dt) p◊ (dt |dt≠1)

� L(◊) can be obtained by averaging out z1:T and d1:T in above
joint probability. Intractable!

� Maximum likelihood method is not applicable!
� Use variational inference instead. Specifically, we design an

inference network with parameter „, i.e. using an
approximated posterior q„ (z1:T , d1:T |y1:T , x1:T ) for the true
posterior p◊(z1:T , d1:T |x1:T , y1:T ) and then optimize an
evidence lower bound ELBO(◊, „).

DS3M
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Model 3-21

Variational Inference

� For any approximated posterior q„ (z1:T , d1:T |y1:T , x1:T )
L(◊) Ø ELBO(◊, „)

=
⁄⁄

q„ (z1:T , d1:T |y1:T , x1:T ) log p◊ (y1:T , z1:T , d1:T |x1:T )
q„ (z1:T , d1:T |y1:T , x1:T )dz1:T dd1:T

= Eq„
[log p◊ (y1:T |z1:T , d1:T , x1:T )]

≠ KL (q„ (z1:T , d1:T |y1:T , x1:T ) Îp◊ (z1:T , d1:T |x1:T ))

� When q„ (z1:T , d1:T |y1:T , x1:T ) = p◊ (z1:T , d1:T |y1:T , x1:T )
(the true posterior), we have L(◊) = ELBO(◊, „).

DS3M
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How to choose q„ (z1:T , d1:T |y1:T , x1:T )?

� To achieve a tight ELBO, consider true posterior factorization
derived from the d-separation (Geiger et al., 1990):

p◊ (z1:T , d1:T |y1:T , x1:T ) =
Ÿ

t

p◊ (zt |zt≠1, dt , yt:T , ht:T ) p◊ (dt |dt≠1, yt:T , ht:T )

� We design the approximated posterior with the same form of
factorization:

q„ (z1:T , d1:T |y1:T , x1:T ) =
Ÿ

t

q„z
(zt |zt≠1, dt , At) q„d

(dt |dt≠1, At)

where At = g„A
(At+1, [yt , ht ]), „ = {„z , „d , „A}, and g„A is

parameterized as a backward RNN.

DS3M
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Model 3-23

Parameterization

� q„z
(zt |zt≠1, dt , At) is parameterized to be a Gaussian density:

zt |zt≠1, At , dt = k ≥ N(zt ; µ
(k)
t , Σ(k)

t )

µ
(k)
t = g (k)

1 (zt≠1, At) , log Σ(k)
t = g (k)

2 (zt≠1, At)

g (k)
1 , g (k)

2 is parameterized by neural network model (MLP)
� q„d

(dt |At , dt≠1) is parameterized to be a Categorical
distribution:

dt |At ,dt≠1=k ≥ Cat(softmax(W (k)At))

DS3M

Model 3-24
Inference Network

Figure: The graphical model which represents q„ (z1:T , d1:T |y1:T , x1:T ).

DS3M
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Model 3-25

How to estimate the parameters?

� Instead of maximizing L(◊) w.r.t ◊, we maximize a variational
evidence lower bound ELBO(◊, „) w.r.t ◊, „

� ˆELBO(◊,„)
ˆ◊ and ˆELBO(◊,„)

ˆ„

� Method: Stochastic gradient descent

DS3M

Model 3-26

Factorization of ELBO
� With the defined approximate posterior, the ELBO can be

rewritten as
ELBO(◊, „) = Eq„

[log p◊ (y1:T |z1:T , d1:T , h1:T )]
≠ KL (q„ (z1:T , d1:T |y1:T , h1:T ) Îp◊ (z1:T , d1:T |h1:T ))

� The factorization of the approximated posterior:

q„ (z1:T , d1:T |y1:T , x1:T ) =
Ÿ

t

q„z
(zt |zt≠1, dt , At) q„d

(dt |dt≠1, At)

� The factorization for the prior:

p◊ (z1:T , d1:T |x1:T ) = p◊ (z1:T , d1:T |h1:T ) = p(d1:T )p (z1:T |d1:T , h1:T )

=
Ÿ

t

p(dt |dt≠1)p (zt |zt≠1, dt , ht)

DS3M
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Model 3-27

Factorization of ELBO (Con’t)

ELBO(◊, „)

=
q

t

;
Eqú

„
(zt≠1,dt≠1)

q
dt

q„d
(dt)Eq„z

(zt) [log p◊ (yt |zt , dt , ht)] ≠

Eqú
„

(zt≠1,dt≠1)
q

dt
q„d

(dt)KL [q„z
(zt |zt≠1, dt , At) Îp◊ (zt |zt≠1, dt , ht)]

≠ Eqú
„

(dt≠2)
q

dt≠1 q„d
(dt≠1)KL [q„d

(dt |dt≠1, At) Îp◊(dt |dt≠1)]
<

,

� qú
„ (zt , dt) =

s
q„ (z1:t , d1:t |y1:T , x1:T ) dz1:t≠1dd1:t≠1

� qú
„ (dt) =

s
q„d

(d1:t |y1:T , x1:T ) dd1:t≠1.
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Approximate ELBO

We approximate the ELBO using a Monte Carlo method. We
sample (z(s)

t , d (s)
t ) for t = 1 · · · , T from qú

„ (zt , dt) using ancestral
sampling.

ELBO(◊, „)

¥
q

t

;q
dt

q„d
(dt) log p◊

1
yt |z(s)

t , dt , ht

2

≠
q

dt
q„d

(dt)KL
Ë
q„z

1
zt |z(s)

t≠1, dt , At

2
Îp◊

1
zt |z(s)

t≠1, dt , ht

2È

≠
q

dt≠1
q„d

(dt≠1)KL [q„d
(dt |dt≠1, At) Îp◊(dt |dt≠1)]

<
.
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Model 3-29

Gradient: ˆELBO(◊,„)
ˆ◊

The derivative of the ELBO(◊, „) with respect to ◊ can be
calculated as:

ˆELBO(◊, „)
ˆ◊

= Eq„(z1:T ,d1:T |y1:T ,x1:T )
ˆ log p◊ (y1:T , z1:T , d1:T |x1:T )

ˆ◊

=
Tÿ

t=1
Eq„

{ˆ log p◊ (yt |zt , dt , ht)
ˆ◊

+ ˆ log p◊ (zt |zt≠1, dt , ht)
ˆ◊

+ ˆ log p◊ (dt |dt≠1)
ˆ◊

}

¥
Tÿ

t=1
Eq„

{
ˆ log p◊

1
yt |z(s)

t , d(s)
t , ht

2

ˆ◊
+

ˆ log p◊

1
z(s)

t |z(s)
t≠1, d(s)

t , ht

2

ˆ◊
+

ˆ log p◊

1
d(s)

t |d(s)
t≠1

2

ˆ◊
}

(10)
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Gradient: ˆELBO(◊,„)
ˆ„

The derivative of the ELBO(◊, „) with respect to „ is more tricky
as „ appears in the expectation in ELBO(◊, „).
� Score function gradient estimator (Williams, 1992) can be

used but suffer from high variance.
� Reparameterization trick (Kingma et al., 2014; Rezende et al.,

2014) is often used instead, low variance gradient estimator
I z = g(‘; „)

ˆEq(z|x ;„) f (z)
ˆ„

= ˆE‘f (g(‘; „))
ˆ„

= E‘[
ˆf (g(‘; „))

ˆ„
] (11)

I e.g.
zt ≥ N(µt , Σt), ‘t ≥ N(0, 1), zt = g(‘; µt , Σt) = µt + ‘tΣt
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Model 3-31

Predictive distributions using Monte Carlo

� First make inference on the posterior distributions of
{zt , dt}T

t=1 and then generate samples of {z(s)
t , d (s)

t , y (s)
t }T+·

t=T
,

s = 1, · · · , S. S represents the number of Monte Carlo
samples.

� The predictive distributions for the one-step-ahead to
· -step-ahead observations {yT+1, · · · , yT+· } and the discrete
latent variables {dT+1, · · · , dT+· } are then approximated
with empirical distribution functions of the generated samples.

DS3M
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Stability in mean square

Theorem
Under regular conditions, for the neural networks f (k)

1 and f (k)
2 that

parameterize the mean µ
(k)
t and diagonal covariance matrix Σ(k)

t of
the latent state dynamics zt ≥ N(µ(k)

t , Σ(k)
t ) with arbitrary

activation function a, there exists an equivalent pointwise affine
map which ensures that the latent variable zt is globally stable in
mean-square.
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Experiments 4-33

Experiments

� Simulations
I Toy example
I Lorenz attractor

� Real data analysis
I Six datasets in Econ, Medicine, Traffic, Meteorology, Energy
I Sleep apnea, Hangzhou metro flow, Seattle traffic flow, Pacific

temperature, Unemployment rate, French electricity
I First four datasets are analyzed in Farnoosh et al. (2021); The

French electricity is analyzed in Xu et al. (2021), the
unemployment rate is selected to represent Econ data.
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Toy example

d0 ≥ Bernouli(0.5), z0 = 0

dt |dt≠1 ≥ Γ =
C
0.95 0.05
0.05 0.95

D

, dt œ {0, 1}

xt = yt≠1

zt|dt=0 = 0.6zt≠1 + 0.4 ◊ tanh(xt + zt≠1) + w (0)
t , w (0)

t ≥ N(0, 10)

zt|dt=1 = 0.1zt≠1 + 0.2 ◊ sin(xt + zt≠1) + w (1)
t , w (1)

t ≥ N(0, 1)

yt|dt=0 = 1.5zt + tanh(zt) + v (0)
t , v (0)

t ≥ N(0, 5)

yt|dt=1 = 0.5zt + sin(zt) + v (1)
t , v (1)

t ≥ N(0, 0.5)
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Experiments 4-35
Toy example (1- step-ahead forecasting)

Figure: Prediction for the toy example. The red color represents dt = 0
and the blue color for dt = 1

DS3M
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Toy example

Table: Summary of the simulation results (mean ± standard deviation)

Toy
DS3M SNLDS DSARF

Forecasting RMSE 14.572 ± 0.352 16.541 ± 0.024 15.244 ± 0.136
Duration for dt=1 7.509 ± 1.579 1.282 ± 0.001 3.946 ± 0.426
Duration for dt=0 7.634 ± 1.667 1.667 ± 0.012 3.274 ± 0.985
Accuracy (%) 0.788 ± 0.033 0.543 ± 0.001 0.765 ± 0.047
F1 score 0.778 ± 0.023 0.549 ± 0.001 0.757 ± 0.035

Inference Accuracy (%) 0.849 ± 0.004 0.692 ± 0.003 0.819 ± 0.044
F1 score 0.831 ± 0.005 0.544 ± 0.002 0.808 ± 0.039

DS3M

592



Experiments 4-37

Lorenz attractor
Lorenz attractor is a canoinal nolinear dynamical system with the
dynamics:

yt = Wzt + vt , where W œ R10◊3, vt ≥ N(0, 0.5I10).

dz
dt =

S

WU
– (z2 ≠ z1)

z1 (— ≠ z1) ≠ z2
z1z2 ≠ “z3

T

XV

� The latent variable zt = [zt,1, zt,2, zt,3]T . yt œ R10 is
observable.

� Simulated the time series with a length of 3 000 and transform
the time series into subsequences with a length of 5.

� Training: Validation: Testing = 1:1:1
DS3M
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Lorenz attractor forecasted switching variable

Figure: DS3M: The forecasted switching variable against the true zt .
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Lorenz attractor

Table: Summary of the simulation results (mean ± standard deviation)

Lorenz
DS3M SNLDS DSARF

Forecasting RMSE 0.168 ± 0.017 0.226 ± 0.065 0.030 ± 0.000
Accuracy (%) 0.882 ± 0.079 0.616 ± 0.065 0.788 ± 0.143
F1 score 0.837 ± 0.127 0.600 ± 0.100 0.775 ± 0.124

Inference Accuracy (%) 0.911 ± 0.068 0.744 ± 0.174 0.789 ± 0.146
F1 score 0.883 ± 0.103 0.680 ± 0.244 0.761 ± 0.113
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Real data

Table: Description of the datasets

Dataset Frequency Dimension T_train+T_valid T_test (time)
Sleep half a second 1 1000 1000 (500 seconds)
Unemployment month 1 639 240 (20 years)
Hangzhou 10 mins 80 2160 540 (5 days)
Seattle 5 mins 323 6624 1440 (5 days)
Pacific month 2520 336 60 (5 years)
Electricity half a hour 48 2601 320 (1 year)

� Short-term: 1-step-ahead forecast
� Long-term: make multiple forecasts simultaneously for all

T_test, standing at the end of the T_train+T_valid
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Experiments 4-41

Real data analysis
Table: Summary of forecastes on testing data. The best models are in
bold. “-" indicates the model forecasts diverge to unreasonable values
and are omitted.

RMSE MAPE (%)
Datasets DS3M SNLDS DSARF SRNN GRU DS3M SNLDS DSARF SRNN GRU

Short-term

Sleep 1201 2789 1557 1806 1264 15.46 88.06 39.25 50.8 31.17
Unemployment 0.75 1.59 1.06 2.01 1.05 4.53 16.13 8.11 23.15 5.13

Hangzhou 32.53 36.67 34.81 33.80 38.42 24.04 23.90 29.73 25.40 30.48
Seattle 4.16 4.18 4.44 4.17 4.18 5.81 5.85 7.27 6.00 6.89
Pacific 0.57 15.78 0.53 0.58 0.56 1.69 58.01 1.57 1.74 1.68

Electricity 2971 5133 8805 3642 4784 4.58 7.79 18.64 5.34 6.60

Long-term

Hangzhou 47.50 42.83 42.28 60.89 73.18 38.20 50.6 43.65 82.81 86.61
Seattle 4.17 4.19 - 4.17 16.93 5.81 5.86 - 5.81 27.95
Pacific 0.72 - 0.73 0.98 0.76 2.15 - 2.29 2.99 2.22

� Long-term forecasting is only achievable for time series with
regular patterns (Farnoosh et al., 2021). Thus, we exclude
some datasets for long-term forecasting.
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Short-term forecasts

(a) Sleep apnea (measured at 2 Hz)

(b) US unemployment rate
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Experiments 4-42

Short-term forecasts II

(c) Hangzhou metro station 0 (d) Seattle tra�c loop 0

(e) Pacific location 0 (f) French Electricity 0:00

DS3M
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Conclusion

� Proposed a deep switching state space model (DS3M) for
forecasting nonlinear time series with regime switching.

� The switching among regimes is modeled by both discrete and
continuous latent variables with recurrent neural networks.

� Developed an e�cient scalable inference and learning
method

� The DS3M achieved competitive performance against several
state-of-the-art methods for a variety of simulated and real
datasets.

� Code and data are available at https://github.com/Sherry-Xu.
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in 
Classical and Quantum Algorithms for Optimization and Machine Learning

September 21, 2022

MEXT Joint Use / Research Center
Joint Research Center for Advanced and 
Fundamental Mathematics-for-Industry

Unparalleled industrial mathematics research institute with 
a foundation in diverse mathematical research

Research Achievements
First in the world ranking in the Graph500 

benchmark test using the supercomputer Fugaku
(total of 15 terms, 5 consecutive victories).

Education

Industrial 
Collaboration

Research

International 
Collaboration

Joint researches with Industry 
and social implementations
Joint

Research
Commissioned 

research

25 15

International Activities
IMI Australia Branch

Asia-Pacific Consortium 
of Mathematics for 

Industry

Forum “Math-for-Industry” 

Joint Use / Research Center

・・ Workshops (I),(II)

・・ Short-term joint 
research
・・ Short-term 
visiting researcher

・・ General Research
・・ Project Research
・・ International   
Project Research
・・ Young Researcher
・・ Female Researcher

××

Joint Use 
Center

International Journal of 
Mathematics for Industry

Springer Series Mathematics 
for Industry

Education

Long-term research internship（2006--）
Study Group Workshops （2010--）

Publications

31 volumes 
published

12 volumes
published

Graduate School of Mathematics

Math-for-Industry: A new area of research in mathematics that is valuable as mathematics 
itself as well, responding to the demands of society and industry, by reorganizing pure and 
applied mathematics. 

Participation from industry is essential.

2021

Graduate Program of 
Mathematics for Innovation

Since 2011
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International Activities of IMI

IMI Australia Branch at Melbourne

Forum “Math-for-Industry” 2008－

Since October 2014

The most important graduate program of Kyushu University

Graduate Program of Mathematics for Innovation
RIKEN, ISM, 
NUS, ZIB also 
participate in 
this WISE 
Program!

WISE Program supported by 
MEXT, Japan
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