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Preface

In November 2020, the Institute of Mathematics for Industry (IMI) of Kyushu University,
SoftBank Corporation and MAMEZOU Corporation began joint research on the realization of
a "data rating" system that will use mathematical theory to objectively determine the quality
of various types of digital data ("data") accumulated by companies, local governments,
educational and research institutions, etc. The three parties will use the "data rating" system
to clarify the quality of data held by industry, government, and academia. By clarifying the
quality of data held by industry, government, and academia through "data rating," the three
parties aim to promote the mutual use of data and revitalize the data distribution market.

This IMI Workshop of the Joint Usage Research Projects “Construction of Mathematical
Basis for Realizing Data Rating Service” held on September 21st and 22, 2022. And this

workshop was held jointly with the following international workshop.

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical and

Quantum Algorithms for Optimization and Machine Learning

RIKEN, IMI, The Institute of Statistical Mathematics (ISM), the National University of
Singapore (NUS), the Zuse Institute Berlin (ZIB), and the NHR Center at ZIB hold the sixth
workshop on mathematical optimization and related fields. This workshop was held at the
University of Tokyo from September 16 to 19 and at Kyushu University from September 21 to
22, 2022. The workshop also discussed methodologies for establishing a new mathematical
foundation (algorithm) for "data rating,” building theory, and conducting empirical
experiments. This lecture note contains the materials of the lectures given at the workshop,
and the Japanese-language lectures were edited in a separate volume. For more information

about this workshop, please refer to the website below !.

November 2022.
Editors
Katsuki Fujisawa, Shizuo Kaji ~ (Kyushu University)
Toru Ishihara  (Nagoya University)
Masaaki Kondo (Keio University)
Yuji Shinano  (Zuse Institute Berlin)
Takuji Tanigawa  (SoftBank Corp.)
Naoko Nakayama (MAMEZOU Corp.)
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
on Advances in Classical and Quantum Algorithms for
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September 17th

09:20--11:30 Session 01
® (9:20--09:30 Akiko Takeda (RIKEN / Univ Tokyo) "Opening Remarks"
® (9:30--10:00 Masashi Sugiyama (RIKEN / Univ Tokyo) "Recent Advances in Machine
Learning from Noisy Labels"
® 10:00--10:30 Patrick GelB (ZIB) "Low-rank tensor representations of quantum circuits"
® 10:30--11:00 Shintaro Momose (NEC) "Aurora Vector Annealing to Solve Social Issues
and Acceleration by NEC's Supercomputer, SX-Aurora TSUBASA"
11:00--11:20 Coffee Break
11:20--12:20 Session 02
® 11:20--11:50 Kazuma Tsuji (MUFG Bank) "Pairwise Conditional Gradients without
Swap Steps and Sparser Kernel Herding"
® 11:50--12:20 Christoph Spiegel (ZIB) "Proofs in Extremal Combinatorics through
Optimization"
® 12:20--13:50 Lunch Break
® 13:50--15:20 Ice Breaking
15:20--16:20 Session 03
® 15:20--15:50 Yuji Shinano (ZIB) "The UG framework version 1.0: An update"
® 15:50--16:20 Junko Hosoda (Hitachi) "A parallel algorithm combining relaxation and
heuristic for the integrated long-haul and local vehicle routing problem on an adaptive
transportation network"
16:20--16:40 Break
16:40--17:40 Session 04
® 16:40--17:10 Koichi Fujii (NTT DATA MSI) "Solving Large Scale QAPs by Massively
Parallel DNN-based Branch-and-bound Method"
® 17:10--17:40 Elias Wirth (ZIB) "Approximate Vanishing ldeal Computations at Scale"

September 18th

09:30--11:30 Session 05
® (9:30--10:00 Katsuki Fujisawa (Kyushu Univ) "Mobility Optimization Engine and its
Real-world Applications"
® 10:00--10:30 Hiroki Ishikura (Kyushu Univ) "Towards an optimal operation of
automated storage and retrieval system with multiple machines"
® 10:30--11:00 Nozomi Hata (Kyushu Univ) "Theoretical Analysis for Representation
Learning Methods of Graph-Structured Data"
11:00--11:20 Coffee Break
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11:20--12:20 Session 06
® 11:20--11:50 Mark Turner (TU Berlin) "Adaptive Cut Selection in Mixed-Integer
Linear Programming"
® 11:50--12:20 Ryohei Yokoyama (Osaka Metro Univ) "A Quadratic Programming
Approach for Performance Analysis of Energy Systems"
12:20--13:50 Lunch Break
13:50--15:50 Ice Breaking
15:50--16:50 Session 07
® 15:50--16:20 Shizuo Kaji (Kyushu Univ) "Geometric Learning of Ranking
Distributions"
® 16:20--16:50 Akiko Takeda (RIKEN / Univ Tokyo) "Bilevel Optimization for

Machine Learning Problems"

September 19th

09:30--11:30 Session 08
® (9:30--10:00 Sebastian Pokutta (ZIB) "Convex integer optimization with
Frank-Wolfe methods"
® 10:00--10:30 Shota Takahashi (SOKENDAI / ISM) "Bregman Proximal DC
Algorithms and Their Application to Blind Deconvolution with Nonsmooth
Regularization"
® 10:30--11:00 Akira Tanaka (NICT) "Port Set Clustering for Internet-Wide Scanner"
11:00--11:20 Coffee Break
11:20--12:20 Session 09
® 11:20--11:50 Atsushi Miyauchi (Univ Tokyo) "Finding densest k-connected
subgraphs"
® 11:50--12:20 Antoine Deza (McMaster Univ) "Worst-case constructions for linear
optimization"
12:20--13:50 Lunch Break
13:50--15:20 Session 10
® 13:50--14:20 Xun Shen (Tokyo Inst Tech) "Approximate Methods for Solving
Chance Constrained Linear Programs in Probability Measure Space"
® 14:20--14:50 Jun-ya Gotoh (Chuo Univ) "Knot Selection of B-Spline Regression via
Trimmed Regularizer"
® 14:50--15:20 Keisuke Yano (ISM) "Minimum information dependence modeling
and its application"
15:20--15:40 Break
15:40--17:10 Session 11
® 15:40--16:10 Naoki Marumo (NTT / Univ Tokyo) "A generalized
Levenberg-Marquardt method for large-scale composite minimization"
® 16:10--16:40 Shunji Umetani (Osaka Univ) "BIPSOL: A metaheuristic solver for

large-scale binary integer programs"
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® 16:40--17:10 Masahiro Nakao (RIKEN) "Performance of the supercomputer
Fugaku for Graph500 benchmark"

September 21st

09:30--11:30 Session 12
® (9:30--10:00 Thorsten Koch (ZIB) "Notes on Solving QUBOs and Quantum
Computing"
® 10:00--10:30 Joao Doriguello (NUS) "Quantum algorithm for stochastic optimal
stopping problems with applications in finance"
® 10:30--11:00 Ralf Borndorfer (ZIB) "Multicriteria Shortest Path Algorithms"
11:00--11:20 Coffee Break
11:20--12:20 Session 13
® 11:20--11:50 Pierre-Louis Poirion (RIKEN) "Randomized subspace regularized
Newton method for unconstrained non-convex optimization"
® 11:50--12:20 Akifumi Okuno (ISM / RIKEN) "Minimax Analysis for Inverse Risk in
Nonparametric Invertible Regression"
12:20--13:50 Lunch Break
13:50--15:10 Session 14
® 13:50--14:20 Niels Lindner (ZIB) "On the geometry of periodic timetables in public
transport"
® 14:20--14:50 Inci Yuksel-Ergiin (ZIB) "Improving data quality in the presence of
superhuman complexity in data errors"
® 14:50--15:10 Jaap Pedersen (ZIB) "Optimal discrete pipe sizing for tree-shaped
CO2 networks"
15:10--15:30 Break
15:30--16:50 Session 15
® 15:30--16:00 Uwe Gotzes (OGE) "Spotlights on success stories of public-private
partnership"
® 16:00--16:30 Ying Chen (NUS) "Deep Switching State Space Model (DS3M) for
Nonlinear Time Series Forecasting with Regime Switching"
® 16:30--16:40 Osamu Saeki (Kyushu Univ) "Institute of Mathematics for Industry:
its uniqueness, strength and prospects"
® 16:40--16:50 Katsuki Fujisawa (Kyushu Univ) "Closing Remarks"
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The 6th RIKEN-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16 - 19, 2022, Tokyo (The University of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Recent Advances in Machine Learning
from Noisy Labels

Masashi SUGIYAMA

RIKEN Center for Advanced Intelligence Project/
Graduate School of Frontier Sciences, The University of Tokyo.
sugi@k.u-tokyo.ac.]jp

Supervised learning from noisy output is one of the classical problems in machine
learning. While this task is relatively straightforward in regression since independent
additive noise cancels with big data, classification from noisy labels is still a challenging
research topic. Recently, it has been shown that when the noise transition matrix which
specifies the label flipping probability is available, the bias caused by label noise can be
canceled by appropriately correcting the loss function. However, when the noise
transition matrix is unknown, which is often the case in practice, its estimation only from
noisy labels is not straightforward due to its non-identifiability. In this talk, I will give
an overview of recent advances in classification from noisy labels, including joint
estimation of the noise transition matrix and a classifier, analysis of identifiability
conditions, and extension to instance-dependent noise.

References

[1] Patrini, G., Rozza, A., Menon, A. K., Nock, R., & Qu, L. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR2017), pp. 1944-1952, 2017.

[2] Zhang, Y., Niu, G., & Sugiyama, M. Learning noise transition matrix from only noisy labels via
total variation regularization. In Proceedings of 38th International Conference on Machine
Learning (ICML2021), pp. 12501-12512, 2021.

[3] Li, X., Liu, T., Han, B., Niu, G., & Sugiyama, M. Provably end-to-end label-noise learning
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Information Processing Systems 33, pp. 7597-7610, 2020.
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Standard Supervised Learning

Goal: Learn a predictor y = f(z) from
input-output training data {(z:, v:)}i:.
xz e R?: Input Yy : Output

Approach: Training error minimization
(a.k.a. empirical risk minimization or
maximum likelihood estimation)

f = argmin [% Z g(y“ g(.’BJ)] (( ) Loss

g

=

g9(-) >

Yi >

f(yi,g(wi))

Without Output Noise

Suppose there is no noise in output: vi = f(x:)

Regression Yy € R Classification ¥ € {1, aeisss c}
\ Class 1 x X Class 2

SN ° x
) x %X

5 ° "o x

% . °” o X x

3 True function f () o Boundary

Input @

Training error minimization
is statistically consistent:
e When n — « , f converges to true f. {(zi,y:)}

Big data helps!

" l n
= argmin | — p( 539(T;
f H‘g!lllll]] l:'”' ; Yiy 9(;

))]

n
=l




With Output Noise 0

Output v: is often corrupted by noise:
e Due to sensor errors, human errors, etc.

Yi — Yi
Regression Classification

y Class 1 x Class 2
= | True function f () o T

v [ ] x X o
- o X
> o °® o o
% [ ] ° ° ° o x
O 13 o Boundary

Input @ °

In the noisy case, does big data still help?

Noisy-Output Regression 6

Standard noise assumptions:

o Additive: g = f(:) + & | True function f(2)
e Input-independent: x;lle; °
e Zero-mean: El[g;] =0

o °®
°®

L °

° ® ~

Te Learned function f ()

Output ¥

Input @
Noisy training error minimization is
still statistically consistent.

A R

= alg;mn [5 ;E(y,,g(mi))]

Naive use of big data still helps!




Noisy-Output Classification !

Standard assumptions:

e Class-conditional noise (input-independent flip):
(&
gi ~ p(le) = > p(ly = §)p(y = j|=)
J=1
Noisy training error minimization is
not always statistically consistent:

= algmm [ ZE(U,, (%) )]

Need to explicitly remove
the influence of label noise in learning!

Generic Approach (1) 8

Unsupervised noisy data removal:
e Hotelling’s TZ statistics

e k-means clustering

e local outlier factor (LOF)

Breunig et al. (SIGMOD2000)

LOF scores

https://en.wikipedia.org/wiki/Harold_Hotelling ; o
https://en.wikipedia.org/wiki/Local_outlier_factor

Easy to use, but this is
completely heuristic and no supervision is used.




Generic Approach (2) ?

Regularization: keeping the norm of the model
parameters small for preventing overfitting.

e Tikhonov regularization Regularized

Non-Regularized

https://en.wikipedia.org/wiki/ £2-norm ball

Andrey_Nikolayevich_Tikhonov

Nlce theory’ but Smoothlng iS https://en.wikipedia.org/wiki/Overfitting
not enough to cope with strong label noise.

Generic Approach (3) 10
Robust statistics: suppressing the influence
of noisy data by a gentle loss.
e Huber loss Training with
a & ramp loss
e Ramp loss bl ¥
1
.‘ Squared _ i % g ()
\ hinge | % Ore
“ \ ge loss . ! /
| W Rlamp ] § Noisy data
W hinge | i B
https://en.wikipedia.org 9.6. OS.S ’ - “1p " \o
Jwiki/Peter J. Huber Classification margin P X
o 20 0 20 40

Nice theory for regression (additive noise), but
not very robust in classification (flipping noise).




Goal of Noisy-Label Classification "

These generic approaches were not
specifically designed for handling label noise.

In this talk, | review recent advances
in noisy-label multi-class classification
that explicitly handle noisy supervision:
e Forward/backward loss correction.

e Noise transition estimation.

e Coping with non-identifiability.

e Input-dependent label noise.

0
Chy Contents 12

Introduction
Technical background
Single-step approach
Beyond anchor points
Further challenges




Formulation 13

Clean training data: {(z;,y:)}", "~" p(z,y)

2==1
ii.d.

Noisy training data: {(z;, %)}, "~ p(z, )

x € R%:Input instance
y € {1,...,c}:Clean class label
gy € {1,...,c}:Noisy class label

Probabilistic classifier in simplex: h(z) € A“™!

e Each element approximates  cjass 1
the class-posterior probability. . X

hy(z) ~ p(y|z) 0®
Loss: 4(y,h(z)) €R

x X Class 2

Boundary

Modeling Class-Conditional Noise

. he - s 0
Noise transition matrix: T, ; = p(9|y) y EO.S =
e Probability of flipping v to v . 05[05| 0

We may encode human-cognitive bias: Y

e, S Y, {, s Sy

Han, Yao, Niu, Zhou, Tsang,
Zhang & Sugiyama (NeurlPS2018)

(1) Column-d | b} Tri-diagonal fc) Block-dizgonal

Visualization as a simplex:  znang, niu & sugiyama (ICML2021)

Clean Symmetric Pairwise General

(1.0,0)7

(0,1,0) Io.n. il




Loss Correction 15

Patrini, Rozza, Menon, Nock & Qu (CVPR2017)

Forward correction: Add noise by T
o 7 (h(z) = 4T h(z)) & (h(x)) =Ly, h(z))

Classifier-consistency

argmin Ep(e,5) [ (v, h(=))] = argmin By [y, h(@)]

Backward correction: Remove noise by T~*
o £ (h(z)) = T~ '£(h(z))

Classifier-consistency

argmin By g) (6 (y, h(x))] = argmin By a y) [£(y, h(z))]

Risk-consistency

Ve, Epgle) [l (3, h())] = Epgyz) [€(y, h(z))]

If T" is given, consistency can be guaranteed!

|dentifiability of Noise Transition 1°

In practice, we need to estimate T
from noisy training data {(x;, ¥;) };—; -

However, T' is non-identifiable in general:

e T'can be decomposedas T'=UYV ,
where U,V are some transition matrices.

eThen p, =T 'p, Tya =P(@ly)
—Vv (U p,) [P.]g = D(7|x)
[Pz]y = p(y|x)

Let’'s use anchor points (100%-certain samples):
{z? [ p(yle’) = 1},




Estimation of Noise Transition 17

with Anchor Points

Given anchor points {z¥ | p(y|z¥) = 1}§ 1,
TG = (yly) can be naively estimated as

Ty = Z p(@Y )P/ |2¥) = p(gla¥) ~ hy(x)

° h(m) is a probablllstlc classifier Iearned
from noisy training data {(x;, ;) }i—

Even if anchor points are unknown,
as long as they exist in noisy training data,
we may find them as =¥ < x; s.t. hy(xz;) = 1.

Further Improvements 18

x¥  x; s.t. hy(x;) =~ 1
We typically use deep learning to obtain h(x):
° Then it is often over-confident and unreliable.

Zhang, Niu & Sugiyama
(ICML2021)

3 R
B %5
A b
- o >3
; 1?{ :
B 2 e
ot .
« E

Estimated T is revised durlng cIaSS|f|er training:

Xia, Liu, Wang, Han, Gong Nlu&Suglyama (NeurlPS2019)

lev

Neur: |N twork
gS mpl By
Lr Ar)I

J[i T me———

Instead of explicitly f|nd|ng anchor points,
latent labels are utilized: ¥; = argmax, h, (x;)

Yao, Liu, Han, Gong, Deng, Niu, Sugiyama & Tao (NeurlPS2020)

eun;os

10
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Introduction
Technical background
Single-step approach
Beyond anchor points
Further challenges

Challenge 20

Current approaches are in two-step:
1. Estimate transition matrix 1.
2. Use estimated T to train a classifier h(x).

Step 1 is done without regard to Step 2:

e Estimation error of T in Step 1
can be magnified in Step 2.

We want to estimate 7" and h(x)
simultaneously in one-step.

11




Naive Solution 21

Naively, we may learn the noise transition and
classifier at the same time as

However, the solution is not unique:

e With any invertible transition matrix @,
any (U,h) = (Q 'T, Q" p,,)are solutions.

Tyy =ply)  [Pzly = pylx)

We need a certain constraint to obtain
the right solution: (U, k) = (T, p,,)

Total Variation Regularization 22

Zhang, Niu & Sugiyama (ICML2021)

Noise transition p, — U ' p_, is contraction
in total variation distance:

U "py —U'pylli < |Ps — P lln

[Pzly = p(ylz)
e Cleaner class-posteriors have

a larger total variation distance!
Let’s use this knowledge as a regularizer:
min | Epa,5) (L5, U h(@))] ~ AEy(e) oo IR(@) — ()]

e Under the anchor point assumption, A=0
the empirical solution has statistical consistency.

12
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Introduction
Technical background
Single-step approach
Beyond anchor points
Further challenges

24

Challenges

{z¥ | p(ylz¥) = 1},

To overcome the non-identifiability of 7':
e Anchor points are explicitly used.

This condition has been relaxed to:
e Only the existence of anchor points is assumed

Can we further relax this assumption?

13




Non-identifiability of T 25
T can be visualized as a simplex,
containing all training data.
Generally, such a simplex is not unique.

Anchor points are vertices of the true simplex.
e Explicitly using anchor points naively recovers 1’.

p(y|x)

Non-identifiability of T (cont.) 26

Only the existence of anchor points still
guarantees the identifiability of T'.

Even without anchor points, “sufficiently
scattered” training data can guarantee the
consisntency (with the next algorithm).

14




Volume Minimization 27

Li, Liu, Han, Niu & Sugiyama (ICML2021)

Under the “sufficiently scattered” assumption,
minimizing the volume of the transition matrix
guarantees consistency!

i [Epa,) (€5, U h())] + Mogdet(U)] A > 0

%} Contents 28

Introduction
Technical background
Single-step approach
Beyond anchor points
Further challenges

15




Beyond Class-Conditional Noise %°

Class-conditional Instance-dependent

Instance-independence
in class-conditional noise

is restrictive.

Instance-dependent noise: Ty,g(x) = p(yly, )

e Extremely challenging problem!

Various heuristic solutions: Xia, Liu, Han, Wang,
Gong, Liu, Niu, Tao

e Parts-based estimation & Sugiyama (NeurlP$2020)

e . Berthon, Han,Niu, Li
e Use of additional confidence Scores & suyyama (om2021)

1 i H Cheng, Liu, Ning, Wang, Han, Niu,
e Manifold regularization o & Sugoms (CyPR302S)

Co-teaching 30
Memorization of neural nets: I ool (eLRo01)

e Stochastic gradient descent fits clean data faster. o o N

e However, naive early stopping does not work well. o 5 . x
o ®
“‘Co-teaching” between two neural nets: _____ -

e Teach small-loss data each other.
Han, Yao, Yu, Niu, Xu, Hu, Tsang & Sugiyama (NeurlPS2018)
e Teach only disagreed data.
Yu, Han, Yao, Niu, Tsang & Sugiyama (ICML2019)
e Gradient ascent for large-loss data.
Han, Niu, Yu, Yao, Xu, Tsang & Sugiyama (ICML2020)

No theory but very robust in experiments:  '[| =

anua s

e Works well even if 50% random label flipping! S ipi——

16




Summary 31

Classification requires explicit treatment of label noise:
e L oss correction by noise transition is promising.

. e Ty5 = p(yly)
However, noise transition is : - -
generally non-identifiable.

e Recent development allows its consistent
estimation under mild assumptions.

Real-world noise is often instance-dependent:
e Heuristic solutions have been developed.

17







The 6th RIKEN-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16™ - 19h, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 221, 2022, Fukuoka (Kyushu University), Japan

Low-Rank Tensor Representations of
Quantum Circuits

Patrick Gel3

Zuse Institute Berlin, Germany
gelss@zib.de

Quantum computing is arguably one of the most revolutionary and disruptive
technologies of this century. Due to the ever-increasing number of potential applications
as well as the continuing rise in complexity, the development, simulation, optimization,
and physical realization of quantum circuits is of utmost importance for designing novel
algorithms. We show how matrix product states (MPSs) and matrix product operators
(MPOs) can be used to express not only the state of the system but also quantum gates
and entire quantum circuits as low-rank tensors. This allows us to analyze and simulate
complex quantum circuits on classical computers and to gain insight into the underlying
structure of the system. We present different examples to demonstrate the advantages of
MPO formulations and provide a new perspective on the construction of quantum
algorithms.
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Low-rank tensor

decompositions of
quantum circuits

/ Zuse
| 21B) Institute
J  Berlin

Patrick GelB
joint work with Stefan Klus, Zarin Shakibaei, P 2.-
and Sebastian Pokutta University
of Surrey
Freie
Universitat

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop Berlin
Tokyo, Japan
September 17, 2022 G T i

| .'a i Universitat

Berlin

Motivation

MOTIVATION

QUANTUM SIMULATION
; ; T
0 {TH—— By (]
o — ] 7 —
o, —[F———. : L =]
10, : @ | : 7 —
o, —[7 T {0 ——F]
[0} : - : S +—7—
1 1
10, —{H}— T —{ (]
o, ; o ! g &=
e tensor product representation AIM: construct compact e direct insight into
already been used expressions of quantum network structure
e in particular, MPS/TT format circuits in form of MPOs e reduce CPU time for
e reduce storage consumption MPS-MPO contraction to quantum simulations on
and computational effort represent wave functions classical computers

- towards QOPT, QML ...

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gel3 // Low-rank tensor decompositions of quantum circuits // 01
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Tensor Decomposition
(]

TENSORS

= O
O = =
oo
= o

e tensor: T € CP = Cdixdexxdn ) )
CP is the linear

o (T+ U)zlmz" =To . an + Usyon space of tensors with
modes dy, . . ., dy,
° (a : T)Ip--qzn = Txl,m,zn
e tensor operator: L € CP*P = Cd1xXdnxdyx--xdn CP*P is the space
of linear maps from
© (L : T)zl,...,zn = Z Lzl,...zn,yl,m,yn . Tyl,“.,yn cb to cb
Y1s--5Yn

e JJessd

Tensor Decomposition
[ Jele]

TENSOR PRODUCT

. dy X---Xd d'xxd!
e given tensors T € C% n and U € C% m, the tensor product T @ U
is defined by

= Tzl,“.,zc . Uyl,.”,yd

e TNLYT e Ym

e J/esmD

21




Tensor Decomposition
(e Yo}

TENSOR PRODUCT

11 1
1 1 -
111 1 101 0
1 01} 1 B 0
o b o = 1 1l ® |0 + 000 ® |1
111 1 101 0
1 1 1 1 Lo
1 0 1 i i o
L ERRRNRERERREERRNE
= 1[@[0[@[0] + |0]|®@[|1]|®]|0] + |0]®]|0]® |1
LG L)) ) B
(1] [o] (1]
0 0 0
1] {1 1 0 1
= 1 0 ® -0 -3 ® i
1J Ll 0 1 0
1 0 1
o] 1] 0]

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 04

Tensor Decomposition
ooe

MATRIX PRODUCT STATES AKA TENSOR TRAINS

chemical reaction networks and catalytic systems

2 2 A 990 I

Al

2
I N I OJ.JOJ::)Q
( ~ . = 23, 993 09
Pp— s)—» 8) e o — (s, = 23 093 09
> N &) 5 23"203%

system identification

T Ty zq St

I
| EEEEE

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 05
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Tensor Decomposition
( 00000

MATRIX PRODUCT STATES AKA TENSOR TRAINS

[ AFFLECK, 1987 / OSELEDETS, 2009

DEFINITION

A tensor T e C% % *dn js sajd to be in the MPS/TT format if

0 7il ™
n)

(1) (2) (
T= Z Z N Z Tkoyiylﬂ ® Tk17¢,k2 ®-® Tkn_yi,kn
ko=1 k1=1  kg=1

The tensors T, ..., T™ with T € C"i-1*%*" are called cores and the num-
=r, = landr; > 1 for

bers r; are bond dimensions or ranks. It holds that r(

i=1,...,n—1.

Idea: represent high-dimensional systems, e.g., quantum registers,
in MPS/TT format in order to mitigate the curse of dimensionality

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 06

ntum Circuits

Tensor Decomposition
0000080000

MATRIX PRODUCT STATES AKA TENSOR TRAINS

[ ]
Sy o @) (n)
n
T= Z Z o Z Tko,hkq ® Tkl-,i-kz @ Tk‘rnfbhkn
k=1 k1=1 kn=1
<
1 ,
Trl,xz,.“.zn = T:(>(1?1_1 R T:(,ralz:)n,:
[ ]
2 2 (n—1) (n—1) (n)
T(l)l T( )rz Tl,:,l U Tl.,:,r,”_l Tlt’:‘l
[x, T Jef Do I 3
(2) (2) (n—=1) (n—1) (n)
T 51 "'Trl-i-fz TrZ_Q,:,l "'Trzfzdﬂ‘nfl Tp—1:51

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 07
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Tensor Decomposition
000000

MATRIX PRODUCT STATES AKA TENSOR TRAINS

e graphical notation

o depictatensor T € R%1**dn a5 g circle with n arms:

o tensor contraction:

matriz - vector —o— . —o0 = —0

matrix - matriz —o— . —— = —o0—
TT core - TT core : —T— . —?— = _;K_

o tensor-train representation:

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 08 'I

Tensor Decomposition
000800

MATRIX PRODUCT STATES AKA TENSOR TRAINS

e conversion into TT format

Initial tensor
di d2 T dn—1 dn,

Isolate first mode
di do - ... dn

Apply SVD (M = UV T)
dy do - ... -dp

Isolate second mode
dy da dz ... -dn

Apply SVD
d1 da dg ... -dn

Tensor-train approximation
dq do dp—1 dn

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 09 'I
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Tensor Decomposition
000080

MATRIX PRODUCT STATES AKA TENSOR TRAINS

e examples

1 ) |0)
o [@%) = 5(l00)£11) = ﬁﬂlm i1>ﬂ®ﬂ|l>ﬂ

S

o [wF) = Lo £0) = o) i1>ﬂ®|[|l>ﬂ

o |GHZ) = %(\0...0>+|1...1>)

- &[0 me]” |1>: e :0> | © :8
o W)y = ﬁ(uo .0)+---410...01))

o GO S i R (F i Y

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 10

Tensor Decomposition
000000

MATRIX PRODUCT STATES AKA TENSOR TRAINS

o generative Sampling [B FERRIS ET AL., 2012/ HAN ET AL., 2018

o suppose the wave function is given in form of an MPS ¥ ¢ (CQXH, then it is possible to

directly sample from the probability distribution given by Py, ., = }‘I’a;l,“.,;l:n \2 /Z
o Puyiin = CopnonWoyan <= P =diag(T)¥
*

o I
Yigo yik.717: IZA.+1 ..... @
[
(2) ()

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gel3 // Low-rank tensor decompositions of quantum circuits /11
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Quantum Circuits

®0000

QUANTUM CIRCUITS IN MPO FORMAT

° How to represent quantum gates and circuits?

B @ o

° Express them as matrix product operators.

T0) ¢ Cri—1xdixr; G(1L)1
1 :
G ¢ Cri—1Xdixd;xr; a®
Ti 155t

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 12

GY)

55Ty

L G

TP 1y

/[ @90

Motivation r De Quantum Circuits

0O®000

QUANTUM CIRCUITS IN MPO FORMAT

o controlled NOT gate (CNOT):

0 0
0

CNOT =

o = o

10
= ) I
RS

o o o =
= o o o
o = O O

o controlled-controlled NOT gate (CCNOT):

o
(=2
o = o o
o o o

f==]
o

CCNOT =

o= O O O
(=R
o o o O

o O = o
o
_

2B CRCR (0, —1)= HI CH@ |[I

oo oo
(=R -]
(=]
o o
[ R R

o O

o o

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 13

o, —1

®01:1®2+C@<(af]):[{1 C]]scﬂ ! ﬂ

N

[/ ©00
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Quantum Circuits
00800

QUANTUM CIRCUITS IN MPO FORMAT

o MPO representations for multi-qubit systems
o single-qubit gates (acting on n-qubit system):

G=I®rVeAI*" P =]..0I1® A AR -

posilion 3

o controlled gates (e.g., CPHASE, CNOT):
G = [¥" 4 =1

:[l/ﬂ;.,...;.-;/ﬂ;.;w-.;ﬂ’ /H

pasition pr

R c 3 [~v|.f -p r|-|‘_ [:\ _ /I 2 I-.i.-_.'-fq\

o controlled-controlled gates (e.g., CCNOT):

e cto| Joof" Jo[ o]

position p;

[ Jefalaletne-

position q

G=[I]e e
position p2

2 [1].

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 14

{/ ©50

Quantum Circuits
00080

QUANTUM CIRCUITS IN MPO FORMAT

e Simon’s algorithm

o determine hidden bitstring b with f(z) = f(y) @ 2=y ®b

)y 1A 0, i} : é : T : (] : =
0, ] —& : A
: : 0 —{E— ; T =

o—H, —E ——— | | - —
0 = 0, I - —O——
0) _B )y T TS T : T E}_
0 i T —U— =

n—A |53 ”— - e
o oepode] ] 144jWLJ¢%p4¢%M44m34H]

o1 e el

1

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 15

= b=1010

{/ e
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Quantum Circuits
0000

QUANTUM CIRCUITS IN MPO FORMAT

e Quantum full adder

o adds input qubits |A), | B), |Ci), produces sum |S) and carry-out qubit |Cou)

[Cln) P [S)
|4) |4)
|B) b &— |B)
[0) D ) [Cow)
ci 0
Co C; 0 0 Cl 0 ;
o G = [a;,;co I a,,l,cl]] ollo ¢ o ol el|° ®
0 0 C C 0 G e
0 1 0 G
00
with C[) = 0:| and Cl =C= 0 1:|

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 16

Results
°

NUMERICAL RESULTS

R I Y 2 I N
e L 1 % ) | L b

O

~
N\

«=++ Tensor-train computations in Python
F y

e open-source tensor-train library for Python using NumPy and SciPy

e simulation and analysis of systems with high-dimensional state spaces
e reduce memory consumption and computational costs

e includes model building, tensor-based solvers, and data-driven methods

e possible application areas: Markovian master equations, nearest-neighbor
interactions, nonlinear dynamical systems, quantum simulation, etc.

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 17
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Results
[ To)

NUMERICAL RESULTS

e Quantum full adder network

e construct network of quantum full adders by

Cin) — [51) concatenating MPOs:
|4;) — [41)
\B,) — QFA By G =[cGh] @ [ed] @ [66h] © [e4h] guru ®-- [l
0 ik ‘Meele [[G&’x]] ® [[G{;)A]] ® [[szﬁ*]] ® [[GEXA]] eUle: o]
) — — —— |52)
:/; : QFA ,, ne-sine [ogn] o [gu] o [odn] = [odn]
) 1£2)
[0) ———— — o define initial quantum state:
T e B
'y 1 1 N v R 4 R L1 T -4 B -2 B L1 O ev-4 B v
- n/ — |/ ny
. QFA )
|Bn) — [Bx) e compute final probability distribution of
[0) — |Cou) [S1, .-, Sn, Cout) by generative sampling

on MPSs

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 18 ”

Results
oe

NUMERICAL RESULTS

e compute 10% samples of the output

0.4
for different numbers of QFAs in s
the network ;Ev
02
(=8

e same distributions as obtained
with Qiskit 0.0

000 001 010 011 100 101 110
measurement

e CPU time of MPO-based approach

75
depends only linearly on the T | i g’s"“ E:AVP)S)
@ . iskit
number of QFAs E 50 —— Scikit-TT
[ =4
S
. S0 o
e forinstance, for ngea = 100, the g "
MPO simulation needs about 30's only 8 i = e S
2 4 6 8 10

number of full adders

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 19 ”
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Results
°

NUMERICAL RESULTS

e Quantum Fourier transform

o map quantum states between computational and Fourier basis

Uaant T 1] oo
e )
o] oo . 1
Tlo BT 0 Rasi|© [ Ruin

G G2 Gy Gy

n=106 n=232 n =064 n =128
o s=10? 0.07 £ 0.08 0.12+0.02 0.33 + 0,05 1.09 +0.11
% « =104 0.16 + 0.01 0.27 +0.03 0.57 % 0.05 1.57 +0.10
- 5= 10° 6.65 4 0.03 15.12 4 0.05 240,10 48.35 +0.11
": s=10% 0.04 + 0.00 0,15 + 0.00 0.59 + 0.00 2.31+£0.01
E s= 107 .07 +0.00 0.20 + 0.00 0.66 + (.00 243+ 0.1
3 5=10° 5.3440.15 7.82 40,18 11.51 + 0.16 20.39 + 0.20

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. GelB // Low-rank tensor decompositions of quantum circuits // 20

Results
°

NUMERICAL RESULTS

e Shor’s algorithm

e given M € N, choose 1 < a < M (coprime)

e initialize input register with 2n qubits and target

=1
aFl register with n qubits, where 2" > M

56

n:;, e apply Hadamard gates and modular exponen-
tiation circuit Uy with f(z) = a® mod M

)2 e use inverse QFT to calculate period of f and
find factors of M

e consider M = 15,a € {2,4,7,8,11,13,14}: a y p (My, My)
0 1 Z]
o Uy can be constructed as MPO with ranks 57813 64 4 (3,5)
bounded by either 2 or 4 T 128 2 (3,1)
192 4 (3,5)
o orthonormalize MPO cores between L1114 0 1 Iz}
applications of QFT ! gate groups 7 128 2 (3,1)

RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR // P. Gel3 // Low-rank tensor decompositions of quantum circuits // 21
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Thanks for your attention

Links

Scikit-TT on GitHub: http:/github.com/PGelss/scikit_tt

Collaborations

Dr. Stefan Klus, Department of Mathematics, University of Surrey
Zarin Shakibaei, Telekom Innovation Laboratories, TU Berlin

Prof. Sebastian Pokutta, Al in Society, Science, and Technology, ZIB

Publications

W W W W @

P. GelB, S. Klus, Z. Shakibaei, S. Pokutta. Low-rank tensor decompositions of quantum circuits, in submission

F. Nuske, P. GelB, S. Klus, C. Clementi. Tensor-based computation of metastable and coherent sets, Physica D, 2021

P. GelB, S. Klus, J. Eisert, C. Schutte. idir pproximation of i ical systems, J. Comput. Nonlinear Dynam., 2019

S. Klus, P. GelB, S. Peitz, C. Schitte. Tensor-based dynamic mode decomposition, Nonlinearity, 2018

P. GelB, S. Klus, S. Matera, C. Schiitte. N t-neighbor i ion systems in the te train format, J. Comput. Phys., 2017
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The 6th RIKEN—IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16™ - 19h, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 221, 2022, Fukuoka (Kyushu University), Japan

NEC’s Quantum Computing
Technologies

Shintaro MOMOSE

Quantum Computing Business Department

Advanced Platform Division
NEC Corporation
s-momoseak@nec.com

This presentation consists of two parts, discussing SX-Aurora TSUBASA vector
supercomputer and introducing digital annealer working on SX-Aurora TSUBASA
called Aurora Vector Annealer. The first half of the presentation shows the vector
architecture of SX-Aurora TSUBASA, especially its latest vector processors having the
highest-level memory bandwidth. Sustained performance and power efficiency are also
discussed, as well as NEC's future plans and roadmap. The second half of the
presentation shows NEC's quantum computing strategies and their products to provide
higher sustained performance in the annealing/optimization fields. NEC developed the
Aurora Vector Annealer as a digital annealer and has a strong business relationship with
D-Wave providing a quantum annealer. NEC aims at solving various social issues by
using the quantum/digital annealing technologies and by developing a hybrid platform
with supercomputer and quantum/digital annealer to provide much higher sustained
performance.
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
September 17th, 2022. Tokyo Japan

NEC’s Quantum Computing Technologies

@ //)3 —
«© :

Shintaro MOMOSE, Ph.D. (Director)
&

Advanced Platform Divisi@n
NEC Corpora’t‘l’on

NEC

Contents

B NEC’s Strategy for Quantum Computing
B Vector Annealing on SX-Aurora TSUBASA
B Case Study
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Architecture of SX-Aurora TSUBASA

SX-Aurora TSUBASA

-Vector Processor
-1.5TB/s Memory Access

Standard h -Low Power 200W
X86/Linux
Server

\Orchestrating a brighter warld

VE20 Processor

VE20 Specifications
Processor Vers| Type 20A Type 20B
Cores/processo 10 8

307GF (DP)
Core performa 614GF (SP)
Processor 3.07TF (DP) 2.45TF (DP)
performance 6.14TF (SP) 4.91TF (SP)

Cache capacity 16MB
Cache bandwid: 3TB/s

Cache Functio Software Controllable

LLC 8MB
LLC 8MB

Memory capaci 48GB
Memory band 1.53TB/s

~300W (TDP)

PovEl ~200W (Application)

\Orchestrating a brighter warld

35



Why is NEC Focusing on Quantum Computing?

B Both HPC and Quantum technologies will be used for higher sustained performance
B NEC develops HPC, Simulated Annealing on Aurora, Quantum Annealer and Quantum Gate

For higher sustained performance,

X ) Tight coupling of HPC and QC
NEC continuously combine HPC and

to provide higher sustained performance

new cutting edge technologies 6};@
':\@6‘
& Stepl: Annealing on HPC resource o a
W Vector Annealing on SX-Aurora TSUBASA -§
m Using Quantum Annealer to accelerate T
@ Step2: HPC/QC Hybrid Computing o 2
m Tight coupled HPC/QC hybrid system to reach higher 7 N\ﬂi"%\&ép%f—\ UE)
sustained performance in scientific/industrial fields \S\/N“'Ov 2
@ Step3: Introducing “QC Gate” as new era - S
: E_Il_SQCCttyyppe(;:/X?ouunnddZZ[);éJO E%E‘Me(med‘atersca‘e e SX-Aurora TSUBASA
Fault Tolerant QC . ‘ " ‘.
2022 2030 2050
6 \Orchestrating a brignter wod  INJIEAC

NEC’s Initiative in Quantum Computing

Since succeeding in the world’s first demonstration of solid-state qubit operation,
NEC has been working towards the social implementation of quantum computing.

2030

2020_2021 Aiming to_Drovide models for _solving
- issues using quantum annealing and
1 999 m Collaboration with D-Wave quantum gate
Demonstrated = Aurora Vector Annealing
solid-state qubit on SX-Aurora TSUBASA
operation

(Published in Nature*!)

nawre
&\ 2040~
o - MOONSHOT program to achieve
2023 practical application of gate-based
Aim to obtain extraordinary E meiiee
long coherence time on —

quantum annealing machine dxz & MQQNQILQ.T

*1: Y. Nakamura et al., Nature 398, 786 (1999)
*2; Based on results obtained from a project commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

7 "Orchastrating 3 brignter ward  [NJIEC
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NEC is leading the development of quantum annealing
devices to enable practical use of superconducting
gquantum annealing machine in 2023

Superconducting quantum annealing machine (mockup) Quantum annealing de.VICe izt
NEC has been working on
Ed\éfj:s_al Controlled,input Read out , External (The heart part of the machine)

device

NEDO)
Support i rganizations

NEC (Deputy rep. faciliti

ion and practical application)
NEDO AIST (Rep.), Tok

Orchestrating =

In addition to focusing on the quantum annealing method to address
society’s optimization needs, NEC is also promoting research and
development toward practical application of the gate-based method.

Quantum Computing

(Broadly defined to include quantum behavior)

Annealing method, etc.
Solves combinatorial optimization problems by means of
the Ising model or other statistical physics model

Quantum gate method

Performs calculations by replacing
classical computer bits with qubits

Optical
Digital Circuits Parametric
Circuits Oscillator
. - . RIKEN
D-Wave N« AIST [\N| S @ll Hitachi Fujitsu Toshiba NTT NEC UTokyo IBM Google Rigetti Intel
. — — —
product  R&D product R&D
) *Based on NEC's survey. (Due to limited space, not all institutions are covered.) ‘\Orehastrating 3 brignter word  [NJIEQC

37



Vector Annealing on SX-Aurora TSUBASA

Orchestrating abrigarwod INJIEC

NEC Vector Annealing

VA Performance is provided by:
Matrix operation acceleration by VE, large and fast memory, and

Avoiding Redundant Search and
Optimized algorithm for VE
Existing search VA search
Including constraint violations skip constraint violations

Vector operation on VE
Energy calculation is matrix operation

Qij

SpinState for(i=0; i<numSpins; i++)
DeltaEnergy +=
N\ Qij[FlipSpin][i] x SpinStateli] P

PR » W AY
1 e R Al "W

Full connect 100k gbits/VE and

better

high memory bandwidth Problem Problem =
t m 48GB memory capacity and FO::J'ZE For% g
(&)

5 8 1.5TB/s memory bandwidth Seailh Violation Search considering
# m \ulti card supports larger number o \D] “try again constraint

of gbits (100k gbits x n)1/2 Check constraint computational complexity
reduction

orchestrating s brignerword INJIEC
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Case Study

\rchesrating s biptar ot INJEC

Solving Social Issues Using Quantum Computing

NEC is trying to apply QC technologies for practical use with partners

Development with Co-creation Partners
SMBC Group/ JRI / NEC Platforms / NEC Fielding etc.

EE &2 L) %,

Advertisement : : o . : .
e et Manufacturing | Traffic/Logistics Financial Material/Drug

. ) + Card fraud
Matching/ . Crew shift detection - Screening

Recommendation . Production plan
P - Delivery plan - Monte Carlo - Experimental

+ Com. base station . parts ordering plan i ) G . )
- Surveillance sensor (er=le] (PRI SIEI . Risk calculation parameter searc

KHF. R~ RAICESEONEFNTNET

Leap Quantum Cloud NEC Vector Annealing
Service Service

17 \orehestrating 3 brignterword  [NJIEMC
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Real Time TSUNAMI Disaster Simulation &
Real Time Proposing Optimal Evacuation Routes

“Next Generation Supercomputing Platform assisted by Quantum Annealing”
R&D with Tohoku University

earthquake Tsunami simulation Disaster simulation Evacuation route

Supercomputing Annealing

[ Tohoku University

Information Science
Prof. Kobayashi, Prof. Ozeki

Disaster Science
Prof. Koshimura
Associate Prof. Erick

Riken

e, . B Associate Prof. Ota

Evacuation Route (Annealing)
18 \Orehestrating 3 brignerword  [NJIEMC

Use Case: Production Planning Optimization
Optimizing complex planning for multi-product manufacturing lines

n , - Higher versatile processing equipment needs
] @‘- highly optimized product planning for higher efficiency
A ==
—

« Switching processed product makes idling time of equipment
» Production planning can reduce the idling time and also reduce human
resources

\ndepend@nt _F’rocessing switching
processing using same tool

Overlapping setup time C & E use same tool Not only shorter processing time,

but also reduce human resources
"Orchastrating 3 brignter ward  [NJIEC

40




Use Case: Delivery Route and Schedule Optimization
for reducing costs, time, energy, CO,, etc.

delivery route

Customer
m * 9:00, Arrive at 8:50
Office ?
Arrive at
13:15 Arrive at 9:50
B .
\ 10:00
Factory
14:30 Arrive at
Delivery of parts and delivery schedule e
dispatch of Engineers ! S e o ==t Sl =l
- — - - - = =
» Parts are delivered by truck .-
« Engineers move by car/train EVET - P = _——
» Have to consider skills of each engineer == il S~ Ryl T
- e Em m s @ e W H -
- - - L B RS -

orchestratig a brigrinr word INJEEC
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for Optimization and
Machine Learning

September 16t - 19th, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Pairwise Conditional
Gradients without Swap Steps and
Sparser Kernel Herding

Kazuma Tsuji

MUFG Bank, Ltd., Tokyo, Japan
takahashi.shota@ism.ac.jp

The Pairwise Conditional Gradients (PCG) algorithm [1] is a powerful extension of the Frank-
Wolfe algorithm leading to particularly sparse solutions, which makes PCG very appealing for
problems such as sparse signal recovery, sparse regression, and kernel herding. Unfortunately,
PCG exhibits so-called swap steps that might not provide sufficient primal progress. The
number of these bad steps is bounded by a function in the dimension and as such known
guarantees do not generalize to the infinite-dimensional case, which would be needed for
kernel herding. We propose a new variant of PCG, the so-called Blended Pairwise Conditional
Gradients (BPCG) which is a combination of Blended Conditional Gradients [2] and PCG, and
BPCG does not exhibit swap steps. The convergence rate of BPCG is basically that of PCG if
no drop steps would occur and as such is no worse than PCG but improves and provides new
rates in many cases. Moreover, we observe in the numerical experiments that BPCG’s solutions
are much sparser than those of PCG. We apply BPCG to the kernel herding setting, where we
derive nice quadrature rules and provide numerical results demonstrating the performance of
our method.

References

[1] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural
Information Processing Systems 28, pages 496-504. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/ 5925-on-the-global-linear-convergence-of-frank-wolfe-optimi pdf.

[2] G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of
conditional gradients. In Proceedings of the 36th International Conference on Machine Learning (PMLR),
volume 97, pages 735-743, 2019.
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Pairwise Conditional Gradients without Swap Steps

and Sparser Kernel Herding

Kazuma Tsuji (MUFG bank)

Coresearchers:
Ken'ichiro Tanaka (The University of Tokyo, PRESTO)
Sebastian Pokutta (AISST, ZIB)

2022/09/17

Outline of today’s talk

@ The main topic of today’s talk is Conditional Gradients methods.

@ We propose a new variant of Conditional Gradients which is called
Blended Pairwise Conditional Gradients (BPCG).

e BPCG algorithm works well in high dimensional cases and outputs
highly sparse solutions practically.

The contents of today's talk are written in Tsuji et al. (2022) in detail.

2/28
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CG algorithm

Conditional Gradients (Levitin and Polyak, 1966) are in an important class
of first-order methods for constrained convex minimization, i.e., solving

miél f(z) (f : convex,C C R? : convex compact region).
Te

e CG algorithm is an iterative first-order method.

@ The solution of CG algorithm is represented as a convex combination
of the vertices of C:

&= civ; <{’UZ~}ZT-L:1 C Vo, C = conv(Ve), Y ¢ = 1>
=1

=1

3/28
Algorithm
Q@ w; = argmax,cy, (~Vf(&),v) (C=conv(Vp))
@ determine the step-size o; (0 < o; < 1)
Q i1 =& +ai(w; — &) = (1 — )& + aw;
,f"”- - \
/// \\
/// {i \
. ” V.
/ (. /
/- Y/ //
(\/\ f(fl) a /
\ - / Constraint: C
‘ /
X ] sz a}./ﬁ___/,//‘/
e
Figure: CG Algorithm
4/28
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Variants of CG algorithm

There are many variants of CG algorithm to achieve better performance
(faster convergence, computational efficiency, sparser solutions, etc.).

We explain the following two variants of CG algorithm:
e Pairwise CG algorithm (Lacoste-Julien and Jaggi, 2015)
@ Blended CG algorithm (Braun et al., 2019)

5/28

Pairwise CG method

Pairwise CG method (Lacoste-Julien and Jaggi, 2015) uses the direction
wy — ay instead of w; — & for the update of current solutions:

dy = (wr — &) + (& — ar) = wy — a; (Pairwise direction)
—_————  ——

FW Away
§t1 = & + oudy
wt = argmanEVC <’U, _vf(ft»
ar = argmin,cg, (v, =V f(&)) (& € conv(St) C Vo)
St : vertices set that construct the convex combination of &;
ag
&
W
A 6* Away
Wi Pairwise ¥
Figure: Pairwise CG 6/28
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Blended CG

- Blended Conditional Gradients (Braun, Pokutta, Tu, and Wright, 2019%

& = Z§:1 CiV; (Zle ci=1,¢1,...,¢c,>0,5 = {vi}le C Vo).
ay < argmin,c g, (=Vf(&),v), s argmax,cg, (=Vf(&),v)
wy < argmax, ey, (—V (&), v)

A = (Vf(&),ar — st) (local pairwise gap) : upper bound of lo-
cal error f(&) — mingeconv(s,) f(2)

B = (Vf(&),& — wy) (dual gap) : upper bound of global error
f(&) — mingec f(:L‘)

Algorithm

1. A>B

optimize the convex coefficients {c;}¥_; by SiGD which is an optimiza-
tion method on a simplex.

2. A<B

Eiv1 =& + aq(wy — &), Si1 < Sp U {w} (vanilla CG update).

7/29

Algorithm Blended Conditional Gradients
fort=0to1T —1 do
ay < argmin,eg, (=Vf(&),v)
s¢ — argmax,cg, (—Vf(&),v)
wy  argmax, ey, (~V/(&), )
if (V&) ar—se) 2 (Vf(&),& —wy) then
optimize the convex coefficients {¢; i?:l.
else
Eir1 =& +oy(wy — &)  {FW step}
end if
end for

@ By the structure of algorithm, new vertices are added only when
convex coefficients are sufficiently optimized. Therefore, BCG outputs
highly sparse solutions.

8 /28

47




Convergence speed of PCG and BCG

PCG and BCG achieve faster convergence rates than CG algorithm:

Table: Theoretical convergence rates (finite-dimensional cases)

L-smooth | Strongly convex and polytope
CG | O(p) O(z)
PCG O(7) exp(—cpT)
BCG | O(7) exp(—cpT)

However, both algorithms suffer in high-dimensional cases. In particular, we
cannot guarantee convergence in infinite-dimensional cases !

9/28

Bottleneck of BCG and PCG

PCG

@ Swap Step:
o Swap Step means the step in which a; is swapped by w;.
o Swap steps affect theoretical analysis and a dimension-dependent
constant appears in convergence rates.

BCG

@ Simplex Gradient Descent (SiGD):

o SiGD is the coefficients optimization method in BCG.
o SiGD is the optimization method on the simplex

k
261_1,6120}.

i=1

{(cl,...,ck)E]Rk

o The convergence rate of SiGD includes the dimension of polytope and
therefore BCG includes a dimension-dependent term in convergence rate.

10/28
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BPCG algorithm (proposed algorithm)

We propose the following BPCG algorithm. The framework uses that of
BCG and the difference is the local Pairwise step.

Algorithm Blended Pairwise Conditional Gradients

fort=0to7T —1do
a < argmin g, (=V f(&),v)
sy <— argmax,cg, (—Vf(&),v)
wy <= argmax ey, (—Vf(&),v)
if (Vf(&),at—st) > (Vf(&), & —we) then

01 =& +ay(se —ar)  {local pairwise step}
else
Eir1 =& +og(wy — &) {FW step}
end if
end for

The moving direction of BPCG is d; = s, — a; or dy = wy — &;.

11/28

Local pairwise steps

In local Pairwise steps, the direcion
di = 54 — ay

<at = argmin (—V f(&),v) , s = argmax (—V f(&), v>)

vE S vESE

is used.

Properties of local pairwise steps:

@ By the definition of s; and ay, local pairwise updates are equivalent to
the implementation of the PCG over S;.

@ Only the two coefficients that correspond to s; and a; are changed.

@ We do not mind swap steps in local pairwise steps.

12/28
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Analysis of BPCG for L-smooth functions

Roughly speaking, for L-smooth convex functions, we have
(Vf(&), dr)*
2LD2

where hy = f(&) — f(€*) and d; is the moving direction of BPCG.
Case(A) (Vf(&),ar — st) > (V (&) & — ve)

(Vf(&), st — ar)”
2L.D?

Case(B) (V (&) ar — s¢) < (V[(&), & — ve)

(Vf(&) & —v)* b
2L D? ~ 2LD?

hi = hig1 >

(Vf(&),& —vi)? S hi

By—hypq >
terl = 9L D? = 9LD?

>

hi — hig1 >

13 /28

Theoretical analysis: general smooth case

Theorem

P : convex feasible domain with diameter D (dim P can be o0)

f 1 convex and L-smooth.

Let {& iT:O C P be the sequence given by the BPCG algorithm. Then, it
holds that

41, D?

fler) - £(€7) < =

Since the constant factor 4LD? does not depend on the dimension of the
domain, we can apply this result to infinite-dimensional cases!

14 /28




Analysis of BPCG for strongly convex functions

Roughly speaking, for L-smooth convex functions, we have

(Vf(&),dy)?

_ >
ht — b1 =2 —5 703

. We use the following two Lemmas:

Lemma (Lacoste-Julien and Jaggi (2015), Inequalities (23) and (28) )

Assume that f is p-strongly convex and P is a polytope with pyramidal
width ¢. Then,

(Vf(&),ar — wy)”
he < 202 :

For each step t, an inequality 2(V f(&), di) > (V (&), ar — wy) holds.

15/28

Theoretical analysis: polytopes and strongly convex case

Theorem

P : finite-dimensional polytope with pyramidal width § and diameter D

f : p-strongly convex and L-smooth

Consider the sequence {&;}7_, C P obtained by the BPCG algorithm. Then,
it holds that

f&r) = F(&) < (f () = £(£7)) exp (=¢rpT),

) 52
where ¢ p := L min{}, £%5;}.

16 /28




Compare the constant factor in convergece rate

The convergence rate for finite-dimensional polytope case:

e BPCG
exp(—csT)
1 . .1 s
¢s = gminds, 37 pzt
e PCG

exp(—ck(T))
K(T) > T/(3|Ve|l + 1)

BPCG bounds the constant factor better than PCG.

17 /28

Compare BPCG to other variants

@ BPCG ensures O(7:) convergence in infinite-dimensional cases.

@ BPCG ensures linear convergence for strongly convex and polytope
cases.

@ Moreover, BPCG outputs highly sparse solutions since BPCG inherits
the framewrok of BCG.

Table: Theoretical convergence rate

L-smooth Strongly convex,
infinite-dimensional domain | finite-dimensional polytope
CG O(1) O(1)
PCG X exp(—cpT)
BCG X exp(—cpT)
BPCG O(7) exp(—cppT)
18 /28
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Lazified Version of BPCG

In BPCG, we need to compute the dual gap

max (Vf(&),& —v)

veVo

in each iteration and we need |V| times access.

To reduce computational cost, we employ the /azification techique (Braun
et al., 2017).

The lazification means the follwoing estimation

b, ~ zrjré%}c( (Vf(&),& —v)

19/ 28

Lazified Version of BPCG

Algorithm Lazified Blended Pairwise Conditional Gradients

fort=0to7T —1do
ag <— argmin, g, (=Vf(&),v)
S¢ ¢ argmax,cg, (=Vf(&),v)
Wy <= argmax,cy,, (—=Vf(&),v)
if (Vf(&),a;—s;) > P, then
Ei1 =& +ay(sy —ay)  {local Pairwise step}
else
if (Vf(&),& —wi) > @,/ J then
§ev1 =& +a(wy — &) {FW step}
else
Prig = 0y/2
end if
end if
end for

20 /28
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Theoretical analysis: general smooth case

P : convex feasible domain with diameter D
f : convex and L-smooth.
{&}E, C P : output of the Lazified BPCG algorithm .

Case (A) If f is p-strongly convex and P is a polytope with pyramidal
width § > 0, we have

f(&) = (&) = O(exp(—cT)) (T — o)

for a constant ¢ > 0 independent of T.

Case (B) If f is only convex and L-smooth, we have

1

fer) - 1€)=0(7) (@)

21/28

Numerical experiments for finite-dimensional problems

We confirm the effectiveness of BPCG through numerical experiments.
BPCG and Lazified BPCG are compared with CG, ACG(Wolfe, 1970) and
PCG.

Problem 1 : Convex optimization over probability simplex

. o 2
min ||z — ol

s.t. x € A(n),

Here, A(n) ={z e R" | >}z =1,2;, >0 (i=1,...,n)} and
xo € A(n).

Problem 2 : £, norm ball
. _ 2
min ||z — 2oz
s.t. [z, <1

| - ||, means the , norm.

22/28
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Problem 1 (n = 200) : iterations and computational time

10° 1 10°
= 10° 107° |
10710 - 10710

o 250 500 750 1000 00 25 50 7.5 100 125

Dual Gap

107° 107° F o
(o] 250 500 750 1000 0.0 2.5 5.0 7.5 10.0 12.5
Iterations Time

Figure: Problem 1 (z-axis: left: iterations , right: computational time
y-axis: top: primal gap, bottom: dual gap)

Convergence speed of BPCG
Iterations: Competitive with PCG.

Computational time: BPCG is the fastest. 23 /28

Problem 1 (n = 500) : sparsity of solutions

< 10 r
£
a
—CG
—ACG
_6 | |—PCG
10 © [|—BPCG
—BPCG_lazified

1 1 1 1 1 1
0 100 200 300 400 500
size of active set

Figure: Problem 1: Convergence of the primal gap for the number of vertices that
are the members of convex combination of a solution.

BPCG and Lazified BPCG output sparse solutions.

24 /28
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Problem 2 (p = 5,n = 1000) : sparsity of solutions

10° F —CG

— ACG
—PCG
—BPCG
—BPCG_lazified

5

£

a

10710 -
1 1 1

0 200 400 600
size of active set

Figure: Problem 2: Convergence of primal gap for the number of vertices that are
the members of convex combination of a solution.

BPCG and Lazified BPCG output much sparser solutions.

25 /28

Numerical experiments (Kernel Herding)

P(Q) : all probability measures on Q € R?

MMD(+, -) : distance between probability measures measured in a
Reproducing Kernel Hilbert Space (RKHS) on ©

Kernel Herding solves the following minimization problem over
infinite-dimensional domain P(£2) using a CG manner:

argmin MMD?(u, &) (1 € P(Q)).
£eP(9)

The output of Kernel Herding is a discrete measure
£=2 wiby, ({wilis) CR {a}, CRY).
i=1

Using an efficient CG method, we want to derive £ that approximates o with
small number of nodes n. That is, we want to derive nice sparse soltions.

26 /28
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BPCG for kernel herding

Domain : © = [—1,1]?, Kernel : Matérn kernel with v = 3, 5.
: . _5 _«1 .
Optimal rates of the convergence of MMD is n™4,n™ 4, respectively.
0%y : ! u . 10%5
[—CG ——Lazified-BPCG | [—ca Lazified-BPCG
:‘ e PCG (1) 5/4 | |—pCcG —-— ~(1/n) 714
\——BPCG | |——BPCG

J

80 100

-
number of nodes

20 40

0 20

the number of nodes

40 60 80 100

0
the
Figure: Matérn kernel (v = 3/2) (left) and Matérn kernel (v = 5/2) (right)

27/28

@ To overcome the difficulties of PCG and BCG, we proposed the BPCG
algorithm.

o We showed that for BPCG we can ensure O(%) convergence even if
the dimension of convex constraints is infinite. For strongly convex and
polytope cases, we can guarantee the linear rate.

@ Through numerical experiments, we showed the practical effectiveness
of BPCG. In particular, sparsity of solutions is notable.

28 /28
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Proofs in Extremal Combinatorics
through Optimization

Christoph SPIEGEL

Zuse Institute Berlin, Germany
spiegel@zib.de

We present a fully computer-assisted proof system for solving a particular family of
problems in Extremal Combinatorics. Existing techniques using Flag Algebras have
proven powerful in the past, but have so far lacked a computational counterpart to derive
matching constructive bounds. We demonstrate that common search heuristics are
capable of finding constructions far beyond the reach of human intuition. Additionally,
the most obvious downside of such heuristics, namely a missing guarantee of global
optimality, can often be fully eliminated in this case through lower bounds and stability
results coming from the Flag Algebra approach.

To illustrate the potential of this approach, we study two related and well-known
problems in Extremal Graph Theory that go back to questions of Erdds from the 60s.
Most notably, we present the first major improvement in the upper bound of the Ramsey
multiplicity of K, in 25 years, precisely determine the first off-diagonal Ramsey
multiplicity number, and settle the minimum number of independent sets of size four in
graphs with clique number strictly less than five.
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Proofs in Combinatorics through Optimization

].. The Ramsey Multiplicity Problem

1. The Ramsey Multiplicity Problem

./ The Ramsey Multiplicity of triangles

Theorem (Ramsey 1930)

For any t € N there exists R(t) € N such that any 2-edge-coloring of the complete
graph of order at least R(t) contains a monochromatic clique of size t.

A well-known question: Can we determine R(t)?

A related question: How many cliques do we need to have? That means, letting

k:(G) denote the fraction of all possible t-cliques in G, what is

ce = lim_ min{k:(G) + k:(G) : G graph of order n}?

Theorem (Goodman 1959) Same as Erd8s-Rényi Conjecture (Erdés 1962)

— t
¢ = 1/4. random graph! o= 21-(5)
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zuse 1. The Ramsey Multiplicity Problem

BERLIN Ramsey Multiplicity beyond triangles

Theorem (Thomason 1989 / 1997) Theorem (Even-Zohar and Linial '15)

¢ <0.970-275 and 5 < 0.881-27°. ¢y <0.969 275,

Erdds conjecture was false! But what about lower bounds?

Theorem (Giraud 1976) Theorem (Sperfeld / NieB'11) Theorem (Grzesik et al. '20)
s >0.695-27°. ca >0.914-27°, ca > 0.947-27°.

Both the best upper and lower bounds heavily rely on computer-assistence!

Theorem (Parczyk, Pokutta, S., and Szabé 2022+)

cs <0.964-27°and 0.780- 279 < ¢5 < 0.874 - 279,

‘ How can we use Optimization to formulate mathematical proofs?

y Proofs in Combinatorics through Optimization

2. Search Heuristics for Upper Bounds
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m‘fy 2. Search Heuristics for Upper Bounds
Graph blow-ups

We want constructive bounds that are ‘finitely describable’. Random graphs are one
source for such constructions. Another natural deterministic one are graph blow-ups.

Definition

The m-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.

Using blow-ups, we can derive an upper bounds for ¢; from any graph C through
ce < lim ke(C[m]) + ke(C[m]). (1)
This is in fact efficiently computable since

A@mkt(c[m]) = ntk(C) /n* and I|m k:(C[m]) = Xt: S(t,j)rt k;(C)/nt. (2)
Jj=1

use o 2. Search Heuristics for Upper Bounds
./ Constructing graphs through search heuristics

For fixed n and s € {0, 1}(2) let G = ([n], {ij-i <j,5(j—1)+,- = 1}) and consider
2

min i SN k(G) | nthk(G)

t t
56{0,1}(g) Jj=1 n n

So we have found our optimization problem! How to solve it?
For n < 40 we can use Search Heuristics.

Unfortunately even n = 40 is much too small for ¢4 and c5, barely disproving Erdés’
original conjecture. Can we use combinatorial insights to bias the search space?
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Constructing Cayley graphs through search heuristics

Thomason's constructions are based on computing the values of XOR-graph-products.
The results are in fact Cayley graphs in ;% x C;*® and C3 x C,°°.

Given an abelian group G and set S C G* satisfying S™! = S, the associated Cayley
graph has vertex set G and g1, 4> € G are adjacent if and only if gflgg €Ss.

Idea. Why not directly search Cayley graph constructions?

The binary vector s now represents the generating set S. Since |G|/2 < |S| < |G| the
number of variables is therefore linear (instead of quadratic) in the number of vertices!

The groups C3 x C;® and C3 x C;° give the improved upper bounds for ¢4 and cs.

y Proofs in Combinatorics through Optimization

3. Flag Algebras for Lower Bounds
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Il,yssy 3. Flag Algebras for Lower Bounds
A trivial computational lower bound

The Flag Algebra SDP approach can be seen as (i) a formalized Cauchy-Schwarz-typ
argument and (ii) an improvement over a trivial computational lower bound.

(0]

Let dy(G) denote the probability that v(H) vertices chosen uniformly at random in G

induce a copy of H. Writing ¢:(G) = k:(G) + k:(G), basic double counting gives us

a(G)= > du(G)c(H) ®3)

H graph
v(H)=N

for t < N < v(G). For any N > t this implies a trivial lower bound of

¢ > min ¢ (H). (4)
H graph
v(H)=N

2use 3. Flag Algebras for Lower Bounds
./ The Flag Algebras SDP approach

Razborov (2007) introduced Flag Algebras in order to study this type of problem. One
important observation is that for any Q@ > 0 the coefficients ay = (Q, Dy) satisfy

S du(G)an < O(1/v(G)) (5)
H oo

for any graph G. Through (3) this implies the (hopefully improved) bound

c > min ¢(H)— ay. (6)
H graph
v(H)=N

This approach gives the best current lower bounds for ¢4 and cs. The biggest
bottleneck for further improvements consists of finding Q for larger N.

65




i mbinatorics through Optimization

4. A Related Problem

4. A Related Problem
Off-diagonal Ramsey Multiplicity

2ZUSE
INSTITUTE
BERLIN

Question. Determining c3 is easy, but even ¢4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

Cst = nIme min{ks(G) + k:(G) : |G| = n}?

A famous result of Reiher from 2016 implies that ¢+ = 1/(t — 1).

Theorem (Parczyk, Pokutta, S., and Szabé 2022+)

c34 = 689 - 378 and any large enough graph G admits a strong homomorphism into
the Schlafli graph after changing at most O(k3(G) + ka(G) — c3.4) v(G)? edges.

The fact that we can show stability proves that the search heuristic found
a unique global optimum over all graphs of order 27!
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Thank you for your attention!
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The UG framework version 1.0:
An update

Yuji Shinano

Zuse Institute Berlin, Germany
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The Ubiquity Generator Framework (UG) version 1.0 was released last year. It was
designed to parallelize powerful state-of-the-art branch-and-bound based solvers
externally in order to exploit their powerful performance. We call the underlying solvers
*“base solvers"; originally, a base solver is a branch-and-bound based solver, but in the
current release, it is redefined as any solver that is being parallelized by UG, since, in
version 1.0, it was generalized to be a software framework for high-level task
parallelization. In this talk, we present the concept of high-level task parallelization and
its flexibility. We will show a few recent success stories of the instantiated parallel
solvers by UG version 1.0.
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What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:

uG ja generic framework to paralielize branch-and-bound based solvers|(e.g.. MIP, MINLP, EXactiF) In a distributed or shared memory

o “Generic’: written in C++
» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CPLEX, etc.
* Without the need for base solver parallelization

UG framework Parallel search tree generated by UG [  Base solver 1

Loads are coordinated by a specidd process or thread Base rolver | Base solver 2
/0 _ presolve

= Base solver 3

Base solver Base solver Base solver Bate solver 4

Bate solver 5

Using API to control Using AP ta contrel | Using APl 1o control
sulving dlgorithms ‘ | solving algorithms | selving algonithms
Base solver 6

Base solver 7

= )

Bate solver 8

- Base solver 9

3 " da Base solver 10
- ml - Base solver 11
o transferred node B eacosolver 12

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

Map over a target Computing environiment 1
———— |shavcd memarv distnbuted mml ==

» ug[Base salver, Communication libaray]

L\
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What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:
uG ja generic framework to parallelize branch-and-bound based solvari(e.g.. MIF, MINLP, ExactiP) In a distributed or shared memory

com “Generic’: written in C++
» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CFLEX, etc.
+ Without the need for base solver parallelization

Single controller: LoadCoordinator
Parallel search tree generated by UG [  Base solver 1

Loads are conedinated by a specal process of theead Base solver 2
Base solver 3
] Base solver Base solver Base solver Base solver 4

Using API to contrel Using API to contrel | Using AP to control =
solving algorithms | soling algorithms | solving algorithms Bate solver §
s 1 Base solver 6

Using MP1 o pthreads |Using MP1 or pthreads I._N'Unlumltm

for L \for i i {fer » Base solver 7

Base solver 8

" Map over a target Computing environiment } == . /‘ - Base solver 9
e —— [shared rwnorv distnbuted meml = = , L £
g Base solver 10
- m - Base solver 11
o :transferred node B eaesolver 12

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

« ug[Base salver, Communication libaray]
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What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:

uG ja generic framework to paralielize branch-and-bound based solvers{(e.g.. MIF. MINLF, ExactiP) In a distributed or shared memory

com “Generic”: written in C++ Parallelize Base solver externally
» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CPLEX, etc.
* Without the need for base solver parallelization

Single controller: LoadCoordinator

Parallel search tree generated by UG | Base solver 1
Base solver 2

Base solver 3
Base solver 4

Using APito contral | | Uising API to contral | Using API to control
solving algorithms siheing algorithms | solving algorithms

Base solver 5

Base solver &

Base solver 7

S e

o

i
o

Base solver 8

- Base solver 9

Base solver 10

-n |- Base solver 11
- o transferred node L Base solver 12

P target
—_— |shavad ipemary) dmnbutedmemcryl ==

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

» ug[Base salver, Communication libaray]

What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:

UG Is a generic framework o parallelize branch-and-bound based solvers (2.9.. MIP, MINLP, ExactiP) In a distributea or shared memory
computing environment.

+ Exploitgpowerful performance of state-of-the-art “base solversq such as SCIP, CPLEX, etc.
+ Without THE TTGED 10T DASE SOVET paranenZauon

Base solver: The latest algorithm implementation

ove =
UG M
Loads are coordinated by a specid process or thresd | Base solver 2
. presolve
—— = = Base solver 3
Base solver e Base solver o Base solver Base solver 4
Using API to contrel | Using AP to contrel { Using A91 10 cantrol
solving algorithms | solving algorithims | sutving algoriths Bate solver §
o Base solver 6
Using MP1 ce pthreads fwxm.uma u&mm«m
for L '_"L"' Base solver 7
l

Base solver 8

atargetc 1 - Base solver 9
- Iihavod MHOI‘V distributed memcql ——
Base solver 10

| ° &
m - Base solver 11
-B n m o transferred node B eacesolver 12

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

« ug[Base salver, Communication libaray]
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How UG initializes all solvers

[Initialization] Originalmin{c'z : Az < b,1 < z < u, for all r; € Z",jel}
min{c Tz : A'z’ <Vl <a' <o forallz'; € Z" ,jeI'}
LoadCoordinator
waiting: Base solver ’
running: /O, presolve
A: Original A’: Presolved
presolved presolved (sub-)problem (sub- )problem
instance instance N 8
N = SN

Solveri ~  Solver2 \_ Presolved instance is distributed /n

All Solvers keep the presolved instance

17.09.2022 The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Adval
7\ :09.2022 and Quantum Algorithms for Optimization and Machine Le

How UG does ramp-up (start with a single tree search)

[Normal Ramp-up] Originalmin{c'z : Az < b,1 < z < u, for all r; €2",jel}
min{c/Ta:/ AR <V <2 < forallz; e Z"/,j el'}

LoadCoordinator
waiting: ( i o ) Base solver
running: @p* ©’ 7 * I/O, presolve
presolv:ed presolved presolved presolved
instance instance instance instance
Presolve again with added
bound changes o000
v v
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

This procedure last until all solvers become busy

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advance:
and Quantum Algorithms
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How UG does ramp-up (start with a single tree search)

[Normal Ramp-up] Originaimin{c'z : Az <b,l <2 < u,for all z; € Z",j € I}
min{c Tz : Az’ <V, <2/ < forall 2/, € Z",j € '}

LoadCoordinator

waiting: Il Base solver

[running: (l i U ’) = I/O , presolve
presolved presolved presolved presolved
instance instance instance instance

Presolve again with added
bound changes 000
6. min{c’Tz" : A”2" <b",1" <2’ <’ for all z’; € Z"N,j el"}
50 ’ ’ { J
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

All transfer data need to be converted back for the presolved instance
All feasible solutions need to be converted back for the original instance

L\

17.09.2022 The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical

and Quantum Algorithms for Optimization and Machine Learning, Japan 7 | NG5/ et

Layered presolving

Originalmin{c'z : Az < b,1 < x < u, for all r; €L, jel}

A: Original A’: Presolved

(sub-)problem (sub-)problem
- g eennnn
. T Al /g / / /- n' - a1 Q\\;\ ' 3 :
min{c' ' 2" : A2’ <V <a' <o foralla’; € 2", jeI'}ie N St
4 S\ Raas  SwmoeY /o

A’: Original : Presolved
(sub-)problem (sub-)problem

min{c¢"Tx" : A"2" <V'1" <" < forall 2 € Z””,j el”}
UG causes algorithmic changes to

- the base solver
Global view of tree search

17.09.2022 The 6éth RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical 10 MODA'
el and Quantum Algorithms for Optimization and Machine Leaming, Japan
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How UG does ramp-up (start with multiple trees search)

[Ramp-up(Racing)]  Originalmin{c'z : Az < b,l <2 < u,for all z; € Z’/L,j el}
min{cTa': Az’ <V, <2/ <o/ foralla’; €Z™,j eI’}

LoadCoordinator
waiting: Base solver
running: I/O, presolve

e
S50

N — - \ J
Solver1  —Solver? — Solver3 Solver 4 Solver n

All Solvers start solving immediately, trying to generate different search trees
ug[SCIP,*]: work with distributed domain propagation

L\
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How UG does ramp-up (start with multiple trees search)

[Ramp-up(Racing)]  Originalmin{c'z : Az < b,l <z < u,for all z; € Z’?,j el}
min{c/Ta:/ A <V <2 < foralla'; eZ™ jel'}

LoadCoordinator

waiting: QOO0000 Base solver
. AR R [P

running: 006066 I/O , presolve

i
j )

N\ m— & -
Solver1  —Solver? —~  Solver3 Solver 4 Solver n

When the racing terminated without enough open nodes,
automatically the ramp-up is continued with normal ramp

17.09.2022 The 6th RIKEN-IMI-SM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
e and Quantum Algorithms for Optimization and Machine Learning, Japan
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How UG does ramp-up (start with multiple trees search)

[Ramp-up(Racing)]  Originalmin{c'z : Az < b,l <2 < u,for all z; € Z’/L,j el}
min{cTa': Az’ <V, <2/ <o/ foralla’; €Z™,j eI’}

LoadCoordinator

waiting: 0000000 Base solver

running: I/O, presolve

Winner
( X X )
N — i\ \ J
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

When the racing terminated without enough open nodes,

automatically the ramp-up is continued with normal ramp-up
7N Hl+VODAL

How UG does ramp-up (start with multiple trees search)

[Ramp-up(Racing)]  Originaimin{c'z : Az < b,1 < z < u, for all T € Z’?,j el}
min{c/Ta:/ A <V <2 < foralla'; eZ™ jel'}

LoadCoordinator
waiting: Base solver
/0, presolve

/
v T San

N\ m— & -
Solveri  —Solver? —  Solver3 Solver 4 Solver n

When the racing terminated without enough open nodes,
automatically the ramp-up is continued with normal ramp

17.09.2022 The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advc
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What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:
UG Is a generic framework [0 parallelize branch-and-bound basead solvers (e.g.. MIF, MINLF, ExactiP) In a distributed or shared memory
computing environment.

» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CPLEX, etc.
* Without the need for base solver parallelization

Parallel search tree generated by UG [  Base solver 1

UG framework

Base solver 6

Base solver 7

umnmanmu ﬁMMnanm« |1 Using MP1 or pthreacs
it :

Bate solver 8

- Base solver 9

Base solver 10

- Base solver 11

o transferred node B eacosolver 12

Map over a target Computing environiment
=L lsl\arcd manarv distnbuted memcrvl -

EY B

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

» ug[Base salver, Communication libaray]
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What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:
UG Is a generic framework (o parallelize branch-and-bound based solvers (e.g.. MIF, MINLP, ExactiP) In a distributed or shared memory
computing environment.

» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CFLEX, etc.
+ Without the need for base solver parallelization

UG framework S Base solver can be
Loads are coordinated by a specidd process or thread | .
’ e * Single threaded solver

Base solver ee Base solver 7 Base solver ° Multl threaded Solver
Using API to control Using API to contrel Using AP) 1o control .
solving algorktms | | solving atgorithms | solving algorithims . D|str|buted memory pa ra”el Solver
(umum«nmu ] xqmummw J._.@mm«m J
yk e
Maximum number of base solvers

Map over a target Computing environiment ‘

T ishared memory, ditrbuted memary]_—— parallelized so far:

-E n m]'.]. 103,584solvers(MPlprocesses)

on HLRN IV (Note: initial target was 10,000)

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiated by UG framework is named:

EIMODAL

« ug[Base salver, Communication libaray]

L\

p on Adv
4 Machine L

{ODAL-NHR
Optimizc

The 6th EN-IMI

17.09.2022

71




What is Ubiquity Generator (UG) Framework

» Current UG web page (https://ug.zib.de) says:
UG Is a generic framework (o paralielize branch-and-bound based solvers (2.9.. MIP, MINLP, ExactiP) In a distributea or shared memory
computing environment.

» Exploits powerful performance of state-oi-the-art "base solvers", such as SCIP, CPLEX, etc.

* Without the need for base solver parallelization

Provide a systematic way to develop a

— Wi amawork [ree | large scale distributed memory solver
: e 1 debugging base solver itself
Base solver e Base solver e Base solver .
UsirgAM toconrd | |UsingAPitoconwdl | |Using AW tocontra 2. debugging the shared memory
solving dlgorithms solving algorithms !snlw‘ algonithms version (u [Base Solver C++11]) on
[umm'qnm ]#MM'MH&"""'”“J bC g ’
‘ a
i 3. debugging the distributed memory
—_[sha memnrv sty memur_y .
version (ug[Base solver, MPI]) on a

-b n m“- PC cluster or on a supercomputer

UG framework is named:

Base solvers and communication libraries are abstracted within UG. A parallel solver instantiat
-wﬂm solver, Communication ibaray] | Solver and|Communication parts are abstracte

Instantiated parallel solvers by UG (B&B based)

Mixed Integer Programming
Problem(MIP) Solvers:
Keep solving open instances
using up to 103,680 cores

(103,584 MPI processes) Stochastic MIP Solver:  Traveling Salesman
ParaXpress potentially could handle  Potentially could handle  Problem (TSP) Solver
over a million CPU cores over a million CPU cores (Experimental)
Single thread Multi threaded ‘Base Solve

SCIP N
FiberSCIP: FiberXpress: = = - FiberConcorde:
ug[ = 5,C++11] ugl[ ,C++11] ug[ ,C++11]
ParaSCIP: ParaXpress: ParaConcorde:

ug[ , MPI] ug[ , MPI] ugl , MPI]

Experimental: Before UG 1.0 cannot handle the ‘base solver’, that is,
UG framework itself was modified to realize it
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What is ug[SCIP-**]-libraries

» SCIP (Solving Constraint Integer Programs)
e A software framework for LP based B&B algorithms
e plugin based design

(((((( Customized SCIP solvers (ex. SCIP-Jack)
LRy are developed as a set of plugins

Glue code - plus main function
Single thread
SCIP

Software libraries

ug[  ;,C++11] '

ParaSCIP: | Parallel Branch-and-Cut
ugl , MPI] framework is provided
UG (Ubiquity
Generator
Framework)

ug[SCIP-* *]-libraries are general
purpose parallel B&B libraries

Viera1cal piiaston an Ueta £na1s Loperores

Instantiated parallel solvers by UG (Non-B&B based)

» MAP-SVP: Massively Parallel Solver for Shortest Vector Problem (SVP)
e Lattices and SVP

OAn n-dimensional lattice is the discrete set

L(B) = {inb,-; X € z}

i=1
where B = (b, ..., b,) are linearly independent vectors. (This B is called a “basis”.)
OThe Shortest Vector Problem (SVP) asks to find a shortest non-zero vector in the lattice:

* minimize |[vI| the security of many cryptosystems is based on
* subjectto v € L(B)\ {0} the hardness of an approximate variant of the SVP

e Experimental: Before UG 1.0 cannot handle the ‘base solver’,
that is, UG framework itself was modified to realize it

» CMAP-LAP: Configurable Massively Parallel Solver Framework for
Lattice Problems
e This solver has developed on UG version 1.0 candidate

» UG version 1.0 is a generalized UG

L\
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Success stories - 1

» ParaSCIP = ug[SCIP, MPI]: Massively parallel solver for MIP

e Solved 21 previously unsolved MIP instances from MIPLIB for the
first fime by using up to 80,000 cores
(It is running using 103,680 cores on HLRN IV, currently)
Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch and M. Winkler,
"Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to

80,000 Cores," 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2016, pp. 770-779, doi: 10.1109/IPDPS.2016.56.

MIPLIB

- The Mixed Integer Programming Library

Number of Solved Instances

e hedduing 7 a8
problem
58 2 > =
s J d = 2
- B N s e N
2011 2012 2013 2014 2015 2016 2017 2018
Year
httpS//mIphb Zlb de/ B Not UG (commercial solvers and SCIP) uG

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
and Quantum Algorithms for Optimization and Machine Leaming, Japan
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Success stories - 2

» ug[SCIP-Jack,MPI]: Massively parallel solver for Steiner Tree
Problems in Graphs and their relatives

e Solved 5 open instances from SteinLib by using up to 43,000
cores

G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano, “SCIP-Jack—a solver for STP and variants
with parallelization extensions,”Mathematical Programming Computation, vol. 9, no. 2, pp. 231-296,2017.

Y. Shinano, D. Rehfeldt, and T. Koch, “Building optimal steiner trees on supercomputers by using up
to 43,000 cores,” in Integration of Constraint Programming, Artificial Intelligence, and Operations
Research.CPAIOR 2019, vol. 11494, 2019, pp. 529-539.
Y. Shinano, D. Rehfeldt, and T. Gally, “An easy way to build parallel state-of-the-art combinatorial
optimization problem solvers: A com-putational study on solving steiner tree problems and mixed integer
semidefinite programs by using ug[scip-*,*]-libraries,” in2019 IEEE International Parallel and Distributed
Processing Symposium Workshops(IPDPSW), 2019, pp. 530-541.

SteinLib Testdata Library

SteinLib is u collection of Steiner tree problems )
in graphs and variants, v

TN
The ebjective of this Bbrary 15 30 collect freely available frstances of Stemer troe problems in graphs md
Variants e provile IRSCCER0n SA0St Ibesr oELgins, soivahuey I chamoensiss.

ibrary (in bibiex. format), ur b

*http://steinlib.zib.de/steinlib.php

L\
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Success stories - 3

» ParaXpress = ug[Xpress, MPI]: Massively parallel solver for MIP
e Solved 3 previously unsolved MIP instances from MIPLIB for the
first time (2017, 2018, no paper, yet)
e Generated good feasible solutions for ITC 2021

£17C,  Organizaton Rules Format QA  Instances  Validation
¥

ITC 2021: International Timetabling Competition on Sports
Timetabling

Van Buick, D., Goossens, D., Beliégn, J. & Davari, M. | { Tir ling Competition 2021: Sports Timetabling —

wabsite. tc2021.ugentbe
Van Bulck, D., Goossans, D., Balién, J., and Davari, M, (2021), The Fifth International Timetabling Compatition (ITC 2021):
Sports Timetabling. Proceadings of MathSport International 2021 Conference, MathSport, pp. 117-122

« 5th place (236 points)
Team MODAL consisting of Thorsten Koch, Timo Berthold, and Yuji Shinano.

Research Campus MODAL, Zuse Institute Berlin

L\

The 6th RIKEN-IMI-ISM-NUS
and Quantum Algor

Success stories - 4

» ParaQapNB = ug[QapNB, MPI]: Massively parallel solver for
Quadratic Assignment Problem (QAP)
e Solved 3 previously unsolved QAP instances from QAPLIB
using up to 5,184 cores

Miguel Anjos, PhD, FCAE, FEUROPT, SMIEEE

Miguel.FAnjos@ed.ac.uk

Home  Bic  Events  Accognition Research Comsulting  Service Supervision «  Other

QAPLIB is & Quadratic Assgnment Problem Library.

Four previously unsolved QAPLIE nstances have been sohed mo;:umacr,y lnm:ml:uars: 21304 fose, tseco. : Tho40 was solved !
https://www.miguelanjos.com/qaplib

K. FUJII, N. ITO, S. KIM, M. KOJIMA, Y. SHINANO, AND K.-C. TOH, Solving

challenging large scale QAPs, Tech. Rep. 21-02, ZIB, Takustr. 7, 14195 Berlin,2021

Koichi Fuji,
Solving Large Scale Open QAPs by Massively Parallel
DNN-based Branch-and-bound Method

assical N
24

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Adv si
Japan

and Quantum Algorithms for Optimization and Machine L
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Success stories - 5

» MAP-SVP: Massively Parallel Solver for Shortest Vector Problem (SVP)

e Achieved new records for 104, 111, 121 and 127dimensions in
SVP Challenge using up to 103,680 cores
(Experimental)

N.Tateiwa, Y.Shinano, S.Nakamura, A.Yoshida, S.Kaji, M.Yasuda, and K.Fujisawa. Massive
parallelization for finding shortest lattice vectors based on ubiquity generator framework.

In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1-15. IEEE, 2020.

B Lattices and SVP
OAn n-dimensional lattice is the discrete set
n

L(B) = {z x;b; x; € Z}

i=1
where B = (b, ..., b,,) are linearly independent INTRODUCTION
vectors. (ThiS Bis called a “basis".) This page presents sample lattices for testing algorithms that solve the shortest vector
OThe Shortest Vector Problem (SVP) asks to find  probier
a shortest non-zero vector in the lattice: 5
* minimize ||v]| Mayer
* subjectto v € L(B)\ {0}

L\

Jckdean lattices. The SVP challenge heips assessing the strength of SVP

rves to comp s of slgorithms, like seving and

tion. The lattices presented here are random lattces in the serse of Goldstein and

17.09.2022 The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
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What is Ubiquity Generator (UG) Framework- Ver.1.0

» UG is a high-level task parallelization framework
e Can parallelize any kind of solver
» which needs to share some data among running solvers
» which needs to share them very flexibly
‘:> All experimental parallel solvers can be handled with
a single unified framework UG version 1.0

The framework was changed internally!

The 6th RIKEN-IMI-ISM-NI
and Quantum Algori

L\

MODAL-NHR Workshop on Advances
or Optimization and Machine Leaming, Japa

17.09.2022
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Classes hierarchy and source code directory organization

Released code in

SCIP Optimization Suite | UG Original UG !
: Base Classes Base classes !
Source directory organization !
src/ug : UG Base Classes ! % CoTTTTTT
src/ug_bb: B&B Base Classes !
src/ug_scip: UG-SCIP Classes | | |
Z B&B Base i CMAP-LAP
: Classes : Base Classes
CMAP-LAP T araleing LY paralel framework
https://github.com/nariaki3551/cmaplap ! Solver framework for lattice problem
| ue- UG- UG- UG- CMAP- || CMAP-
' MAP-SVP i | SCIP Xpress || QapNB || Concorde | | DeepBKZ | | Enum
! Classes | Classes || Classes Classes Classes Classes || Classes
SvP MIP MIP QAP TSP Svp SvP
Solver Solver Solver Solver Solver Solver Solver

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
and Quantum Algorithms for Optimization and Machine Leaming, Japan

L\
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What is Ubiquity Generator (UG) Framework- Ver.1.0

» UG is a high-level task parallelization framework
e Can parallelize any kind of solver
» which needs to share some data among running solvers
» which needs to share them very flexibly

i> All experimental parallel solvers can be handled with
a single unified framework UG version 1.0

The framework was changed internally!

Current status:

* ug[SCIP,*] : FiberSCIP and ParaSCIP - working on UG version 1.0
+ ug[SCIP-Jack,*] - working on UG version 1.0

* ug[Xpress, *] > working on UG version 1.0

* ug[gapNB, *] = working on UG version 1.0

+ ug[PIPS-SBB, MPI] - out of development

* ug[Concorde, *] = under development on UG version 1.0

* MAP-SVP-> out of development, moved to CMAP-LAP

* CMPAP-LAP - working on UG version 1.0

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical

7.09.2022
aniases and Quantum Algorithms for Optimization and Machine Learning, Japan

L\
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What is Ubiquity Generator (UG) Framework- Ver.1.0

» UG is a high-level task parallelization framework
e Can parallelize any kind of solver
» which needs to share some data among running solvers
* which needs to share them very flexibly
e Can parallelize Branch-and-bound based solvers,

e can parallelize
fully branch-and-cut-and-price programs
(Could not parallelize before, but ver. 1.0 can parallelize it)

* can customize parallelization mechanism depending on
— base solver used

— purpose to have a solution
(prove feasibility, prove optimality etc.)

17.09.2022

L\
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Concept of UG's high-level task parallelization framework

» Master-Worker paradigm : UG is NOT Master-Worker
e one of the most famous high-level task parallelization
e Task: represents an operation that is running on a Worker
e For parallel B&B, key message:

* (new) Task: a (sub-)problem representation and current best
incumbent value

« Result: the best incumbent solution and all open nodes

L\

~ 10 59 The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop o
17.09.2022 A e <

n Ad:
and Quantum Algorithms for Optimization and Machine

F
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Concept of UG's high-level task parallelization framework

> Master-Worker paradigm : UG is NOT Master-Worker

Master

waitingTasks: [ O[O [O [~ [O[O] [ [ | || Al open B&B nodes are
Runningmks:’ .l.].].] | .l .| .I .I .I managed by the Master

Task Result Task Result

The granularity of a Task:
Worker Worker controlled by a termination
criterion for a (sub-)problem
computation, such as the
number of open nodes
generated.

To reduce the number of open
nodes, usually depth-first search
is used in the Worker side.

The 6th RIKEN-IMI-ISM-| -ZIB-MODA
and Quantum Algorithms for Optimiza

Concept of UG's high-level task parallelization framework

» Supervisor-Worker paradigm: UG’s high-level task parallelization
e Can define a very flexible message passing protocol

e For parallel B&B, key message:

* (new) Task: a (sub-)problem representation, and it indicates the beginning
of the Task computation

« Status: the Task computation status and the notfification frequency to
Supervisor, which can be specified at run-time.

» Completion: the tfermination of the task computation

e In between the Task and Completion messages, any message
passing protocol can be defined, for example

« Solution : the best incumbent solution. Then, the solution can be shared
whenever a single Solver found a new one.

« InCollecting : indicates that the Supervisor needs new Tasks. This message
allows to collect (sub-)problems on demand.

« OuiCollecting : indicates that the Supervisor does not need new Tasks.
+ Interrupt : indicates the current executing Task can be interrupted
« efc.

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Worksh on
and Quantum Algorithms for Optimization and

17.09.2022
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Concept of UG's high-level task parallelization framework

> Supervisor-Worker paradigm: UG’s high-level task parallelization

Supervisor (LoadCoordinator)
* Waiting Task pool is

Waiting Task IO IO IO | |O| I a Just a temporary

Pool: buffer
. « Task can not be

Solver Pool: l ’| . ’ . I . | | . independent

Task / Completion Task Completion
Worker Worker “H Status
(Solver) (Solver) '

To do dynamic load balancing,
O Q e about 1% (at most 2%) of

®luie 7 L3 e o ¢ B&Bnodes are

) O O transferred to the other
DO OO solver during computation
O in general

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
and Quantum Algorithms for Optimization and Machine Learning, Japan

L\
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) (~mmmmmmm S
LoadCoordinator UG framework - I LoadCoordinator is abstracted :
Loads are coordinated by a special process or thread Base solver: Initiator A ettt -
ata shared by solvers 1/O . presolve
Base solver Base solver
Using AP to control Using AP to control Using AP to control Solver
. solving algorithms_ _ solving algorithms solving algorithms
\|
Using MPI or C++11 || Using MPI or C++11 Using MPI or C++11 }
for communications | for communications for communications

Parallel L ommunication methog
shared memory Solver distributed memory s Erimirafar data
ug[SCIP, C++11]: FiberSCIP Instantiation ug[SCIP, MPI]: ParaSCIP S i g
" . External .
- s parallelization
Run on PC Run on PC clusters and supercomputers

Allows to have data in LoadCoordinator(LC) that are shared by solvers,
depending on the base solver used

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Works|
and Quantum Algorithms for Optimization and

n Classical
Japan

L\

17.09.2022
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LoadCoordinator is abstracted in UG ver.1.0

) (T mm S
LoadCoordinator UG framework - I LoadCorrdinator is abstracted :
Loads are coordinated by a special process or thread Base solver: Initiator e -
Data shared by solvers 1/O . presolve Communication protocol
‘ ‘ T I ﬁH == can be defined depending
V.
Base solver oee Base solver oo Base solver on solvers used
Using API to control Using API to control Using API to control Solver
solving algorithms solving algorithms lving algorithm:
\|
Using MPI or C++11 || Using MPI or C++11 Using MPI or C++11 !
for communications for communications for communications

distributed memory
ug[SCIP, MPI]: ParaSCIP

Parallel
shared memory Solver
ug[SCIP, C++11]: FiberSCIP Instantiation

- . External
-

parallelization
Run on PC Run on PC clusters and supercomputers

Allows to have data in LoadCoordinator(LC) that are shared by solvers,
depending on the base solver used

Can communicate the data in LoadCoordinator flexibly,
by defining the communication protocol between LC and Solvers

L\
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LoadCoordinator UG framework - I LoadCoordinator is abstracted :

Loads are coordinated by a speciaIBrocess or thread Base solver: Initiator l A ettt -
Data can be share Communication protocol

d by solvers 1/O , presolve
i I H ‘ ‘ == can be defined depending

Base solver ey Base solver ooe Base solver on solvers used
Using AP to control Using AP to control Using AP to control Solver

. solving algorithms_ _ solving algorithms solving algorithms
. |
Using MPl or C++11 ||

for communications

Using MPl or C++11 ||
distributed memory

Using MPI or C++11

for communications for communications

Parallel
shared memory

" Solver X
ug[SCIP, C++11]: FiberSCIP Instantiation ug[SCIP, MPI]: ParaSCIP
. % External
- s parallelization
Run on PC Run on PC clusters and supercomputers

See below how flexibly the messages can be defined:

N. Tateiwa, et al., "CMAP-LAP: Configurable Massively Parallel Solver for Lattice
Problems," in 2021 IEEE 28th International Conference on High Performance
Computing, Data, and Analytics (HiPC), Bengaluru, India, 2021 pp. 42-52.
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Can define the communication protocols
in each layer

s eisees s Communication protocols
g;‘sf:‘;‘a':ss and parameter set
for UG base

.

SR — -

Communication protocols
and parameter set
for B&B base

BE&B Base
Classes

...................

Released code in

‘ I I SCIP Optimization Suite
"""""" UG- UG- UG- UG- Source directory organization
MAP-SVP SCIP Xpress || QapNB || Concorde uE.- - UG Base Classe
Classes || Classes || Classes || Classes || Classes Srepug bb: BB Base Classes
------------ J src/ug_scip: UG-SCIP Classes

SvP MipP MIP QAP TSP
Solver Solver Solver Solver Solver

The 6th RIKEN-IMI-HSM-N
and Quantum Algorithrr

Parallelization of the latest parallel QUBO solver

» Initial parallelization used ug|[SICIP-**]-libraries

Plugins for
QUBO solver

Glue code
. >> cloc ug/ug_scip_applications/QUB0/src/*
Single thread 1 text file.
1 unique file.
SCIP 0 files ignored.
github.com/AlDanial/cloc v 1.92 T=0.00 s (231.2 files/s, 39538.4 lines/s)
Ug[ ’C++11] Language files blank comment code-}
ParaSCIP: 1
C++ 1 22 36 113 :

ug[ = -, MPI]
uG
Faster exact solution of sparse MaxCut and QUBO problems

Daniel Rehfeldt, Thorsten Koch, Yuji Shinano
doi: 10.48550/arXiv.2202.02305
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Parallelization of the latest parallel QUBO solver

> The last slide in Daniel Rehfeldt’s talk at OR 2022

So how about Quantum annealers?

From the article
Quantum Annealing versus Digital Computing: An Experimental
Comparison, Jiinger et al., ACM J. Exp. Algorithmics, 2021:

“However, we should stress the fact that exact optimization requires a lot
of time to prove optimality, and thus it is not fair to compare their times
with the heuristic times, but even with this additional burden, the exact
algorithms are faster than D-Wave on a large portion of the sample”.

» McSparse is faster than the (sparse) solver used by Jinger et. al.
» Our solver is faster than McSparse

— If you need to solve a QUBO, better save the money for a
D-Wave machine and use our solver instead!

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical

2022 ~ o . -
2% and Quantum Algorithms for Opfimization and Machine Leaming, Japan
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Parallelization of the latest parallel QUBO solver

» A specialized parallel QUBO solver based on UG version 1.0

G high level task  LoadCoordinator : specialized to QUBO solver
Base Classes | Parallelization [ Hybrid parallel B&B + heuristics + Initiator
framework Base solver
4 o,
Parallel presolve
B&B Base B&B L icccccocceoen,
i
Classes Solver ! solve solve |}
framework sub- sub- |1
: solve problem problem : run run
UG-SCIP SCIP based ! L or || or |lheuristics| |heuristics
Base Classes | Parallel Solver jproblemi| run ||
I
framework : heuristics| |heuristics :
ZF : Solver 1 Solver 2 Solverk [Solverk+1 Solvern-1 Solvern
Parallel
QUSO solver NOTE: SCIP is also customized to work with UG efficiently
asses

(would NOT be included SCIP Optimization Suite)

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on Advances in Classical
and Quantum Algorithms for Optimization and Machine Learning, Japan
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What comes with UG ver.1.0

» Documentation

UG Doxygen Documentation s

UG Doxygen Documentation

Oiieitie

What is UG?

‘(l\fh‘l" ol Lv" ur‘”m rask pi What is UG?

UG is onginally a framework [0 parallelize state-of-the-art branch-and-bound based solvers to soe optimization problems such as

integer prog (CIPs} and integer (nan-) In partcular
* UG a d-intege {MIP) soiver as well as
stang {FAQ) = an LP based mixed-integer nonlinear (MINLP) solver, and
. isa for b Hrand- nc-price programs,
How to aad
) UG is & high-ievel 1ask thatis that means it can also handle both branch-and-bound-based and

How 10 run automated 12s1s with UG =
5 non-branch-and-baund based solvers starting from UG version 1.0. (see. @TODO)
Modules

See the web site Ug.zib de for more intormation about licensing and to downioad the recent release.

e Concept of UG's high-level task parallelization framework

One of the mos! fameus high-evel task paralielization frameworks would be one that follows the Master-Worker paradigm: A Task
fepresents an operation that is running on a Worker. In this context, the word high-level means thal the granuiarity of the Task s
coarse. The words Task and its granularity are generally used n the field of paraliel programming, where the granulanty indicates hoy
much computation (s needed 10 process one Task.

» Cmake build system

L\
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Summary

» UG version 1.0is a generalized UG
e a high level task parallelization framework
» can paradllelize any kind of “base solver” (not only B&B based)
» can pardllelize branch-and-cut-and-price programs

e can do special freatment for shared data and communication
protocol depending on the "base solver” used

Included in SCIP Optimization Suite 8.0

The 6th RIKEN-IMI-ISM-NI
and Quantum Algori

17.09.2022
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

A Parallel Algorithm Combining
Relaxatino and heuristic for the
integrated long-haul and local vehicle
routing problem

Junko HOSODA™, Stephen J. MAHER2,
Yuji SHINANO"3 and Honas Christoffer
VILLUMSEN™4

*1 Controls and Robotics Innovation Center, Hitachi Ltd.,
Japan
junko.hosoda.dp@hitachi.com

*2 University of Exeter, United Kingdom *3 Zuse Institute
Berlin, Germany *4 Hitachi Europe Ltd., Denmark

Commodity consolidation and vehicle route coordination are fundamental features of
the logistics problem. This problem is called the supply chain service network design
problem (SCSNDP); the SCSNDP includes three problems: the warehouse
consolidation problem (WCP), the service network design problem (SNDP), and the
pickup and delivery problem (PDP). To obtain high-quality solutions, a combined
relaxation and heuristic algorithm is proposed[1]. The relaxation solver sets the
boundaries of the solution space by considering the trend of the solution space. The
heuristic solver finds a high-quality solution that satisfies all the constraints within the
bounded solution space; using the UG framework, the relaxation and heuristic solvers
are executed in parallel. The results show that the parallel execution of the relaxation
and heuristic influences the quality of the SCSNDP solution.

References
[1] Junko Hosoda, Stepehn J. Maher, Yuji Shinano, and Jonas Christoffer Villumsen, “Location,
transshipment and routing: An adaptive transportation network integrating long-haul and local
vehicle routing”, EURO Journal on Transportation and Logistics, 100091, 2022,
https://doi.org/10.1016/j.€jt1.2022.100091
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A parallel branch-and-bound heuristic
for the integrated long-haul and local vehicle routing problem
on an adaptive transportation network
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1-1. Supply chain network TR,

[Target] Supply chain network for delivery business

- Commodities are picked up and delivered to.
- Commodities are delivered by land transportation.
- Commodities are delivered within 48 hours.

[;cgful A Region C:
ﬁ Warehouse
/\ Delivery route
Eons nhdatlon

-onsoildatmn / \. ’\ M

Q“ L@ , Region|B’
Example of supply chain network

@ Hitachi, Lid. 2022, All rights reserved. 3

93




1-2. Purpose and issues by in.
[Purpose]

Deliver all commodities on time at lower delivery costs

[Issues]

Design supply chain network and determine vehicle
routes to reduce delivery costs.

- Supply chain network design includes determining
- Number of Regions
- Warehouse included in each region
- Consolidation location for each region

- Vehicle routes are determined integrating long-haul
and local deliveries

@ Hitachi, Ltd, 2022, All rights reserved. 4
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2-1. Definition of the SCSNDP A AL

[SCSNDP]
The supply chain service network design problem

[Definition of the SCSNDP]

Given items: A collection of warehouses and
commodities to be distributed between warehouses

Decision items: Warehouse clusters and
consolidation locations

Objective: To minimise the cost of synchronised intra-
and inter-cluster routes

Constraints: To satisfy all pickup and delivery requests

@ Hitachi, Ltd, 2022, All ights reserved. 6

2-2. Aim of project Lol oh!

[Previous work]

Developed an iterative heuristic and multi-armed
bandit algorithm to find solutions to the SCSNDP.

[Aims]
- Develop a mathematical programming problem to
model the integrated SCSNDP
- Find lower bounds for the SCSNDP to assess solution
quality
- Using a mathematical programming-based approach,

develop a parallel algorithm that can find higher
quality solutions

& Hitachi, Ltd. 2022, All rights reserved. T

95




2-3. Mathematical modelling - WCP IACH]

The SCSNDP is the integration of three separate problems.
[Problems]
(a) Warehouse clustering problem (WCP)

Identify clusters of warehouses to minimise a
distance function

B Warehouse location
@ Consolidation location

el AN
m \| =] "

[}

@ Hitachi, Ltd, 2022, All rights reserved. 8

2-4. Mathematical modelling - SNDP Ak,

The SCSNDP is the integration of three separate problems.
[Problems]

(a) Warehouse clustering problem (WCP)
Identify clusters of warehouses to minimise a
distance function

(b) Service network design problem (SNDP)

Identify a transportation M Warehouse location
schedule on inter-cluster routes [ Consolidation location
=) )
I:'II."f : . \
mu .

N o
& Hitachi, Ltd. 2022, All dghts reserved. Y
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2-5. Mathematical modelling - PDP el

The SCSNDP is the integration of three separate problems.
[Problems]
(a) Warehouse clustering problem (WCP)

Identify clusters of warehouses to minimise a
distance function

(b) Service network design problem (SNDP)
Identify a transportation W Warehouse location
schedule on inter-cluster routes ™ consolidation location

(c) Pickup and delivery problem

(PDP) | e
Identify intra-cluster | -
vehicle routes. " m )

& Hitachi, I.m‘.;DZ;‘. -AII ;ghts rE-sel'\"e(l. i
2-6. Mathematical modelling - Integration TR,

The SCSNDP is the integration of three separate problems.

[Policies for problems integration]

- Unable to model the complete integrated problem
- Modelled a MIP relaxation of the SCSNDP

- Comprising: Complete WCP and SNDP, PDP relaxed to
a packing problem

- Relaxation is the basis of the parallel heuristic design.

@ Hitachi, Ltd. 2022, Al ights rasarved. 11
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2-7. MIP relaxation model — Decision variables H!TACHI

Complete WCP and SNDP, PDP relaxed to a packing problem

[Decision variables]
TY: Departure time from consolidation location i of vehicle v
TP: Arrival time at consolidation location i of vehicle v

uy,;: Binary variable
It is 1 if the pickup or delivery of commodity k is assigned to
vehicle v that departs from consolidation location

a;: Binary variable

Itis 1 if vehicle v departs from consolidation location
T7: Arrival time at location i of vehicle v

hy: Binary variable
It is 1 if vehicle v picks up commodity k

@ Hitachi, Ltd, 2022, All rights reserved. 12

2-8. MIP relaxation model — Arrival time e e

Complete WCP and SNDP, PDP relaxed to a packing problem
[Arrival time constraint]

[PDP] A:Paths
(T? + g; + ey )xl TP V(i,j) EAVvEV V:Vehlcles: '
g;:Processing time
TP <T' VjeN,YveV tt;j:Travel time
TV:Work time

[PDP relaxed to a packing problem]

T + Z fhaul, <77 VieN,vweV K :Commodities

= N:Locations
V:Vehicles
z ttyug; <T"af Vi€N,YvEV ft,:Shortest travel time

keK

@ Hitachi, Ltd. 2022, All ights reserved. 13

98




2-9. MIP relaxation model - Load capacity  HITACHL

Complete WCP and SNDP, PDP relaxed to a packing problem

[Load capacity constraint]
[PDP]

Q7 + Z qihy — Z qhk < Q7 V(,)) EAVvEV
keK,op=i keK,dj =i

0<Q/<Q' VieNVveV
A:Paths, V:Vehicles, g;:Weight

[PDP relaxed to a packing problem]

N:Locations
Z qrug; < Q%aj VIiEN,VVEV V:Vehicles
keK qi-Weight

QV:Load capacity

@ Hitachi, Ltd, 2022, All rights reserved. 14
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3-1. Solution algorithm HITACHI

Inspire the Next

Two algorithms are developed.

[Sequential algorithm]

- Solve relaxation as a MIP

- Using callback functions, execute iterative heuristic to
find feasible solutions to the SCSNDP

[Parallel algorithm - 2 modes]
- Racing mode - execute the sequential algorithm on
n solvers using different random seeds

- Parallel heuristic mode - solve the relaxation on one
or more solvers, execute heuristic on different

solvers
@ Hitachi, Ltd, 2022, All rights reserved. 16
3-2. lterative heuristic :;'Qﬂ%?ﬁ!t

Input: (partial) fixing of consolidation locations

Start

Solve WCP to find warehouse clustering

Iterate between SNDP and PDP to identify synchronised
intra- and inter-cluster routes.

@ Hitachi, Ltd, 2022, All rights reserved. 17
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3-3. Basic parallel architecture el

Each solver is fixed as Relaxation solver or Heuristic solver.

Load Coordinator —_— '?i”amfb, exint
. . generate instance object, whic
(mhented from UG B&B class) contains instance data file name)
F 3
SCSNDP Task or 1 B&B node (on demand) Solution Relaxation Solution
Relaxation Solution | } + (upper bound) | 4 (Consolidation locations) | [
Comm Point call back Message Comm Point call back | | Message
function () handler function () handler
l Iy
Relaxation Solver :
B&B node pool Callback
(execute =
heuristic e
or create
Branching rule task
Iterative Heuristic
MIP Solver
(SCIP, Gurobi, etc.)

Solver 1 (Relaxation solver) **“'* Solver k+1 (Heuristic solver) **'"
@ Hitachi, Ltd, 2022, All rights reserved. 18
3-4. Overview of implementation TR,

1. Relaxation is solved by Gurobi
2. WCP and SNDP are solved directly as MIP, using Gurobi
3. A purpose-built insertion algorithm used to solve the PDP

4. The UG framework is used to implement the parallel
architecture

4. UG framework

SCSNDP Task o BEE node {on demand) Solution Relaxation Solution
Relaxation Solution {upper bound) [Consolidation locations)
Comm Paint call back Message Comm Point call back | | Message
function () hanidle function () handler
. Sohver :
B&E nodle pool [ [7] Callback
(exnscute (ER
heuristic won _
e et | P 2. Gurobi
ranching rule tas! =
¥ I 3. Insertion
| 1. Gurobi | algorithm
Salver 1 (Relaxation solver) Sakver k Soher k+ 1 [Heuristic sohver) Solver n

@ Hitachi, Ltd. 2022, All ights raserved. 19
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3-5. Improved parallel architecture Lplsin.

A solver works as a Relaxation solver or Heuristic solver.

Initiator
(generate instance object, which
contains instance data file name)

Load Coordinator (inherited from UG B&B class)

k
SCSNDP task 1 Solution 1| scsnop task (contains
ardonstien {uppar bddng) B&Enode (upper bound) cluster centers)
or B&B node in the future)
Comm Point call back Message Comm Point call back Message
function () handler function () handler
T Fy * F 3
L ]
Relaxation Sdlver
B&B A Solver can work
- 3 i as a Relaxation Solver
Riodepon or a Heuristic Solver. s
. When B&B node is
Branching rule 5
received, the solver Heuristic Solver
: v works as a Relaxation
MIP Solver Solver.
(SCIP, Gurabi, etc.) When SCSNDP task is
received the Solver
ks H isti T
Solver 1 (Relaxation Solver) ;‘;Ol;eras s 5ida it Solver k (Heuristic Solver) Solver n

@ Hitachi, Ltd, 2022, All rights reserved. 20

3-6. Parallel architecture for 2 stages Lalhle 5ot

[Racing stage] [After racing stage]
Execute the sequential Solve the relaxation on one

algorithm on n solvers or more solvers, execute
using different random heuristic on different
seeds solvers

it
[Renerate instance chiect. whics
. 1

Load Cooedinator {inherited Inom UG BEE dassi Load Coardmatce (inhesited fram UG BRE class]

Racing stage e i 984 Tl ] | After Racing stage
" 1 Closter | : Sabutian
Solutaon“ B&B node Solutlon” B&B node . tes |Imm=-rw“~ l-.mmm.[ chhtva

Wessage Fomen ptallhack I[";“';‘: Comm pent call Back | [Memage Comm Point call back | | Message
|.I..u . T | i tunetion [ handie: hincton (1 frandier

BER Helasation sifer
(1)

H Wiinnee soben work
_s;s nade ponl 3 Ll
Wernbr [ = 5 Belasstion solvers
Soer o (%otn thit the winner
it can be muitple}

—id s ot | caback! SCENDP tacks are Faurkatic b

P crmc utic P P
{SCIP, Gurati, et} ISCIP, Gumb, evc | _| T sohver ealinace of the
(SCIP, Gurabi sic )

All solvers work Solvers work
as Racing solver. as Racing solver

or Heuristic solver.

@ Hitachi, Ltd. 2022, Al fights rasarved. 21
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4. Computational experiments

5. Conclusions
@ Hitachi, Ltd, 2022, All rights reserved. 22
4-1. Problem instances ﬂ.fl%?ﬂ!t

- A set of 135 randomly generated instances used for
computational experiments

- Instances referenced by (N,K,C).
N:Number of warehouses Ne {5,10,25}
K:Number of commodities Ke {N, 2N, 4N}
C:Number of subregions for N=5,Ce {1,2} for N=10,
Ce {1,2,3} for N=25,Ce {1,2,5}
- Homogeneous set of vehicle

Parameter Type | Description

Planning horizon 2 days.

Business hours 6:00 until 20:00 each day.

Warehouse locations Either randomly within a square or within subregions.

Pickup time window selected uniformly at random between 6:00 and 22:00, with
a length between 2 and 18 hours.
Delivery time window | selected uniformly at random between 6:00 and 44:00, with
a length between 2 and 18 hours.
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4-2. Computational conditions L LS

- Parallel algorithm uses 8 threads.

- Racing solvers are provided with different random seeds.

- Two parallel algorithms: Racing and Parallel heuristic.

- Racing terminates after all solvers execute 5 heuristics,
3 winners are selected in the Parallel heuristic algorithm.

- Benchmark is multi-armed bandit algorithm from
previous work.

- Multi-armed bandit, sequential and parallel algorithm
have a time limit of 7,200 seconds.

@ Hitachi, Ltd, 2022, All rights reserved. 24

4-3. Objective improvement HITACHI
— Sequential algorithm Insgtee the Next

10 — T

© I | i ; ; : ;

2

= | . . : :

9 I | i ; ; :

> 1 1 1 1 1 1

s 10 @ W i

E ] ! 1 ] ] 1 I

0 A [N T R R

B -20 A i Relaxation solutions

oy | : i 1 contribute to improve

Q 5 i objective value.

1.2 1.2 1.2 223 123 123 A28 225
(5,5)(5,10)(5,20)(10,10)(10,20)(10,40) (25,25) (25,50)
Instances @ Hitachi, Lid. 2022, All ights reserved. 25
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4-4. Lower bound HITACHI

— Sesuential algorithm Inspire the Next

£ i i i

= 70 ; ; :

'-g' | , I

o 60 : i :

g 1 1 '

% ; I l

> : ; :

& 40 , ,

= | f :

‘s 30 l i

‘9 ! I 1

® 20 As model is larger,

_g 10 lower bound is invalid

0

o,

-8 12 12 12 123 123 123 125 125

(5,5)(5,10)5,20X10,10)(10,20)(10,40) (25,25) (25,50)
Instances @ Hitachi, Ltd, 2022, All rights reserved. 26

4-5. Run time HITACHI

- Sequentia| al Ol"ithm Inspire the Next

Time to best is within 2,400 sec.

B Total run time !
7000 1 mmm Time to best
6000
|
1
| g | ]
% 5000 4 H
=
8 4000
m 1
m 1
| S—
g 3000 4
S |
C 2000+ -
s
o
1000 1
i
1
[P |
1 2 LR 1 2 1 2 1 2 1 2 1 28 125
(55 (5100 (5200 (10,10) (10,20) (10,40)  (25,25) (25,50)
Instance

@ Hitachi, Lid, 2022, All rights reservad. 27
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4-6. Objective improvement HITACHI
— Parallel racing algorithm Inspire the Nex

Racing finds better solution than Sequential algorithm

mm Parallel-Sequential
e Parallel-MAB
104
5
X
| M-
o .
= IT o= TH L
|,
[}
=
o -0
i
0
e}
=20
12 12 12 123 123 123 125 125
(5.5) (5,10} (5,20) (10.10) (10,20) (10,40) (25,25) (25,500
Instance sreserved, 28
4-7. Objective improvement HITACHI

Inspire the Next

__—Parallel heuristic algorithm

154 W Pal'ﬂlleI-Seduentiar
B Paraliel-MAB

10

husslit L Tl

Objective ratio [%]
1

-10
-15
-20
=25
12 12 12 123 123 12 125 125
(5.5) (510}  (5.20) (10,10) (10,20} (10,40) (25,25} (25,50)
Instance wved. 29
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4-8. Time to best

- Racing and Parallel heuristic algorithm

HITACHI

Inspire the Next

Parallel heuristic tends to be shorten time to best than Racing

Racing algorithm

Parallel heuristic algorithm

__7,000
) 7000 - Porullel | 1000 { g paraltel |
U B Sequential EER Sequential
C 6000 6000
o
O
QJ 5000 5000
S §
% 5
QJ 3000 Eswn
_D F
®) 2000 2000 |
4= I
m 10004 1000 ]l
,E o == [} " ‘,'L‘
= R BT AR i G e Mok s s EERTIES
Instances Instances
@ Hitachi, Ltd, 2022, All rights reserved. 30
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5. Conclusions ﬂgﬁgﬂft

- Investigate the combination of intra- and inter-cluster
transportation for movement of commodities between
warehouses

- Developed a mathematical programming model for
adaptive transportation network combining clustering,
transshipment and routing.

- Sequential and parallel algorithms developed to find high
quality solutions to the SCSNDP.

- Demonstrated the benefits of using a mathematical
programming approach for guiding the heuristic algorithm.

@ Hitachi, Ltd, 2022, All rights reserved. 32
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Solving Large Scale QAPs
by Massively Parallel DNN-based
Branch-and-bound Method

Koichi FUJII

NTT DATA Mathematical Systems Inc. Japan
fujii@msi.co.jp

We report our progress on the project for solving large scale quadratic assignment
problems (QAPs). Our main approach to solve QAPs is a parallel branch-and-bound
method efficiently implemented on a powerful computer system, using the Ubiquity
Generator Framework (UG) which can utilize more than 100,000 cores ([1]). Newton-
bracketing method, the method we utilize to solve Lagrangian doubly nonnegative
(DNN) relaxation of subproblems of QAPs, gives strong lower bounds, but it requires
more computational time ([2]) which makes difficult to scale in parallelization. We have
added some new features to UG such as Enhanced Checkpoint or Huge Checkpoint File
Split to overcome these obstacles. In this talk, we describe the details of new features of
UG for solving QAPs and present some preliminary numerical results of solving large
QAPs on supercomputers ([3]).
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The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop on NTTDAarta
Advances in Classical and Quantum Algorithms for NTT DATA Mathematical Systems Inc.
Optimization and Machine Learning

September 17 2022
Tokyo Japan

Solving Large Scale QAPs by Massively

Parallel DNN-based Branch-and-bound
Method

Koichi Fujii, Naoki Ito, Sunyoung Kim,
Masakazu Kojima, Hans Mittelmann,
Yuji Shinano, Kim-Chuan Toh

Summary: DNN-based Branch-and-bound for the Quadratic Assignment Problem

> Motivation

» Quadratic assignment problems (QAPs) remain

as one of the most difficult combinatorial problems
» Recent conic relaxation technique updates

the lower bounds of open QAP instances.

> Goal
» Solve all open instances of QAPLIB

> Our Results
» Our DNN-based branch-and-bound solver solved
three open instances(tai30a, sko42, tho40).

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
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B Overview

m QapNB:

Newton-bracketing method + branch-and-bound

W ParaQapNB :

Newton-bracketing method + parallelized branch-and-bound
B New features of UG for ParaQapNB

B Computational Results

2 NTT DATA Mathematical Systems Inc

Overview: Quadratic Assignment Problem

» Problem Description
> f; : flow from facility i to facility j 9
> dy: distance from location k to location /
» Assign each facility to each location to ‘ Y

minimize flow X distance cf D
n =4, Flow f; Distance dj Assignment
J ¢ i1l 2 %

4
k| ki ky ki ks
|

[
4 1 3 2

B WN |-
=N D O
oW o u|N
woNn BMw
o s OGNS
B WN - X
® ~N o O~
® o o ~|w
o ® o w s

2

6

0

9

6
min Zfijda-a- E> E n! feasible solutions
OESy L v 40! = 8.2e47 --- too large combination
L]

NTTDAT;

© 2022 NTT DATA Mathematical Systems Inc.
WTT DATA Mathamatical Systems ing

111




Overview: Quadratic Assignment Problem

QUBO formulation

) size = n?; 0(n*) physical qubits
min fijdaiaj [>
i,j

OESK -
mxin z Qi) DX (i, )X (kD)

. i,j,kl1=1
qubits K
"
|
{
10°) tho40?
105‘
104
3
° 7 o [aon]
102 B " "
oaeoone Quantum” Moore law
L)
10 [ se@Google Keisuke Fujii
“The Amazing Quantum Computer”(2020)
2014 16 18 20 22 24 26 28 30 32

© 2022 NTT DATA Mathematical Systems Inc.

Overview: DNN relaxation and Newton-bracketing method

QAP(01-QOP)

¢* := min {(B ®A, xx')

x € {0,1}"
(IeeT)x=(e"@x=e|’

4

Lagrangian DNN relaxation of QAP
Pyt =min {(@" X): X € KiNKy, (H’, X) =1 (X0 =1) }.

K; : semidefinite cone (1)
X5 > 0 (nonnegative)

Ky := {XeSttm: f } 2

? { N = K=Y, @)

© 2022 NTT DATA Mathematical Systems Inc.
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Overview: DNN relaxation and Newton-bracketing method

® (* : The optimal value of QAP
® y*: The optimal value of Lagrangian DNN relaxation; y* < (*.

Newton-bracketing method
Lagrangian DNN relaxation problem
can be regarded as minimization prob-
lem of convex function g : R — R. a(y)

® Newton method (+ secant
method)
7 =y oy g |

* (Valid) lower bound Ty '
le---ge’SIZ'“ py*

yr e [l v —#) 30

[Sunyoung, Kojima, and Toh. (2021)]
"A Newton-bracketing method for a simple conic optimization problem.”

NTT DATA Mathematical Systems Inc.

Miguel Anjos, PhD, FCAE, FEUROPT, SMIEEE

Miguel FAnjos@ed.ac.uk

Recognltian Research «

QAPLIB is a Quadratie Assigrment Prablem Liteary

Four previously unsalved QAPLIE instances have been salved ko optimaity in recent years see baiila baid5h, taid0h and skodZ.

We prasant below tha 28 instances that have not yet been solvad to optimality; recent devalopmants ars highlighted. Have you found a battsr sokition or bound? Sand
me an smaill

Thonemann and Balte (1994) Feasible Bound Gap Software
solution
Thodd (n=40) 240516 228079 517% NevtBeacket
Thot40 (n = 150) 8133398 7252594 342% NewtBeacket
Withelm and Ward (1987) Feasible Bound Gap Software
solution
WIISO (n = 50) 18816 46245 1.47% bBawtBrackel
WII00 {n = 100) 273028 288955 150% HECPOP

https://www.miguelanjos.com/gaplib

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
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Overview: Computation Results

No. of CPU
problem Opt.val | #node time(sec) | cores used
nug30 6,124 26,181 3.14e3 1,728

2021 | tai30a 1,818,146 | 34,000,579 | 5.81e5 ~ 6.8 days 1,728
tai35b 283,315,445 2,620,547 2.49e5 1,728
tai40b 637,250,948 278,465 1.05e5 1,728

2021| sko42 15,812 6,019,419 | 5.12e5 = 5.9 days 5,184

2022 | tho40 240,516 | 139,077,975 | 1.66e6 ~ 19.1 days 24,528

Table: Computational results on large scale QAPs

m HPE SGI 8600 (384 nodes, 13,824 cores)
m HLRN-IV System (1270 nodes, 230,000 cores)

© 2022 NTT DATA Mathematical Systems Inc.

Newton-bracketing method

QAP(01-QOP)

¢* := min {(B ®A, xx')

x € {0,1}"
(IeeT)x=(e"@x=e|’

4

Lagrangian DNN relaxation of QAP
Pyt =min {(@" X): X € KiNKy, (H’, X) =1 (X0 =1) }.

K; : semidefinite cone (1)
X5 > 0 (nonnegative)

Ky := {XeSttm: f } 2

? { N = K=Y, @)

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
amatical Systems ino
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Newton-bracketing method

P: 17’\ = min {(Q’\, X): X ek ﬂKz,(HO, X) =1 (Xoo = 1)}
{ Strong duality
D: y*=max{y €R : @ — H € (K1 NK2)* = K} + K2} =,
G(y)
y

Newton-bracketing method
Step 0: Start with upper bound y° > y*.
Step 1: Obtain (X, Y1, Y2) € (K; NKjy) x K} x K3 satisfying KKT
condition by APGR method.
Step 2: Update y* by Newton iteration yk*+1 .= yk —
secant iteration.

k

g%

Step 3: p < min eig. of G(y*) — Y2, ¢ < max{y* + pp, "}

Step 4: Obtain [¢*,y¥](3 ), k + k+ 1, goto Stepl.

© 2022 NTT DATA Mathematical Systems Inc. NTT naTa
samatical Sistems ine

GLTA Mathamat

Newton-bracketing method

® (* : The optimal value of QAP
® y* : The optimal value of Lagrangian DNN relaxation; y* < ¢*.

Newton-bracketing method
Lagrangian DNN relaxation problem
can be regarded as minimization prob-

lem of convex function g : R — R . a(y)
® Newton method (+ secant
method)

e (Valid) lower bound BT
els_._serser+1_)y* y y yey

yr el v —¥) 30

i
y*<_yr+1SyrS,_,Sy0. : i

[Sunyoung, Kojima, and Toh. (2021)]
"A Newton-bracketing method for a simple conic optimization problem.”
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QapNB:Newton-bracketing method+branch-and-bound

QAP

¢* :=min {(B@A, xxT)

x € {0,1}™ }

(lee)x=(e"T®lx=e

(1) Incumbent solution
® Apply robust tabu search method ( [Tailard 1991] ) to obtain global
upper bound ¢.
(2) Stop condition of Newton-bracketing method
[Condition 1] Stop if lower bound of DNN ¢ exceeds {
— prune the node
[Condition 2] Stop if upper bound of DNN y* gets below ¢
— branch on the node

(3) Branching strategy (Polytomic branching)

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
sam yeteme b

AT Matham

QapNB:Newton-bracketing method+branch-and-bound

QAP

¢* == min {(B ®A, xxT)

x40, 1}"
(Iee’)x=(e"®@)x=¢f

(3) Branching strategy (Polytomic branching)

1. Select facility f — fix x¢; = 1 for V£.
2. Select location £ — fix xr; = 1 for Vf.

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
samatical Systems ing
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QapNB:Newton-bracketing method+branch-and-bound

Branching strategy

Estimate the score ¢(f,#) for unfixed facility f and location £.

average branching

o(f,£) := avg. obj. value of feasible solutions in QAP(F U f,LU{)

primal DNN branching

Stepl. Obtain primal feasible solution of DNN Lagrangian relaxation

X = X/(H°, X).

Step2. Project primal solution X onto subproblem space :

X — X(f, )

Step3. o(f,£) := (Q°((F U f),(LU8)), X(f,L)).

© 2022 NTT DATA Mathematical Systems Inc.

ParaQapNB:
Newton-bracketing method + parallelized branch-and-bound
LoadCoordinator :
| waiting: Base solver '
running: @..... .. /O, presolve J
— /@ o ‘
fi\, & J}X o000
i
Solver 1. 3 Solver 4 Solver n

EESH

» DNN (doubly nonnegative cone) -based branch-and-bound

» Special criteria of Newton-bracketing method

» Primal heuristics
» Branching rule

Koichi Fujii, Naoki Ito, Sunyoung Kim, Masakazu Kojima, Yuji Shinano, Kim-Chuan Toh
"Solving Challenging Large Scale QAPs." (2021).[arXiv:2101.09629]

NTTDaT
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ParaQapNB:

Newton-bracketing method + parallelized branch-and-bound

> Time/node of DNN-based branch-and-bound
>> Time/node of LP-based branch-and-bound
> hard to parallelize
> hard to debug

25000 { — @500 0000275 { — %EM-ROIS
20000 1 g 0.000250
E— 0.000225 -
3 7
8 15000 A z
1S E 0.000200
£ 7
5 £ 000175 |
% 0.000150 -
5000
0.000125
0 T T T T T T 2' -i 6| é 1.0 1.2 1;1 1IG
0 100 200 300 400 500 ]
node ID {sort by time) node D (sorted by time)
time per node of tai50b (QAP) (averaged) time per node of gen-ip016(IP)
by ParaQapNB by ParaNUOPT

UG: Ubiquity Generator (UG) Framework

® C++ parallel branch-and-bound framework
® Based solvers and communication libraries are abstracted
® NuOpt, SCIP and Xpress is parallelized with UG
® Many attractive features: checkpoint, racing, self-split, ... et al.
Single controller: LoadCoordinaor Parallelize Base solver externally
r--------w
UG framework Parallel search tree generated by UG § [l Base solver 1
Loads are coordinated by a specal process of thread [ I/.(;" solver Bikse sohi 3
Base solver Sad Base solver Lo Base solver Base solver 3
Using AP to control Using API to control Using AP to control . Base solver 4
solving algorithms solving algorithms. solving algorithms Base solver 5
! [using : MP1 o pthreads Base solver 6
&: qu— 0 4}Hg’~ - ] ) [ Basesolver?7
_J Map over a target computing environment l_ Base solver 8
T ———__(shared memory, distributed memory) Bl easesoiver o

Base solver 10

2 | Sewon e -
.. n mm Bl eosesoiver 11

o: transferred node - Base solver 12
LR L L L L L 1 1)

NTTDAaTd

AT Mathamati
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New features of UG

W Self-Split (+ heuristics)
B Enhanced checkpoint
B Huge checkpoint split

B Notification Offset

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
wamatical Systems lno

NTT [ATA W

New features of UG

[l Self-Split (+ heuristics) ]

B Enhanced checkpoint
B Huge checkpoint split

B Notification Offset

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
afical Systemes o
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UG: Self-splitting

B Self-splitting ([Laursen 1994] [Fischetti 2014])
® The same enumeration trees are initially built by
all workers.
® Each worker solves the assigned nodes after
sampling phase.

N\ N\ e
¥ P ¥

v N

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
==l Sijeteme ine
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UG: Self-splitting (+heuristics)

B Self-splitting (+heuristics)
® Robust Tabu Search [Taillard 1991] + randomization

—

(] e"g‘

N e
P P P

v\
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UG: Self-splitting (+heuristics)

W Self-splitting (+heuristics)
objective - optimal (or best known)

mmmmm
mmmmm

mmmmm

tailOb tai20b tai30b tai40b tai50b tai60b tai80b tail00b  tail50b
—tryCount=10 —tryCount=100 ~—tryCount=1000 —tryCount=3000 —tryCount=6000

iteration=100000
AMD Ryzen 9 5900X 12-Core Processor

2 NTT DATA Mathematical Systems Inc

New features of UG

B Self-Split (+ heuristics)

[l Enhanced checkpoint ]

B Huge checkpoint split

B Notification Offset

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
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UG: Checkpointing mechanism

» Since usage of supercomputer is limited, checkpointing
mechanism (b&b tree storage) is indispensable

» Only the essential nodes are saved into checkpoint files

© 2022 NTT DATA Mathematical Systems Inc.

UG: Checkpoint/Restart mechanism

LoadCoordinator
waiting: Base solver
running: @ I/0, presolve

/\
IN T, oo
\ Solver 1 Solver 2 Solver 3 “Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
samatical Systems ing
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UG: Checkpoint/Restart mechanism

LoadCoordinator
waiting: ., Base solver
running: & I/0 , presolve
“ . . . N
Solver 1 Solver 2 Solver 3 olver 4 Solver n

NTTDAaTa

© 2022 NTT DATA Mathematical Systems Inc

UG: Checkpoint/Restart mechanism

inator
waiting: Base solver
running: i‘p\ I/O, presolve
- >>}}

Solver 1 Solver 2

. -
olver Solver n

TTDaTa

© 2022 NTT DATA Mathematical Systems Inc.
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UG: Checkpoint/Restart mechanism

LoadCoordinator
waiting: “x
running:

—

Base solver
I/0, presolve

. N
Solver 3 olver 4 Solver n

Solver 1 Solver 2

UG: Checkpoint/Restart mechanism

inator
waiting: Base solver
running: Fe29 /0 , presolve

Solver 1 Solver 2

Solver 3 olver Solver n

NTTDAaTd

© 2022 NTT DATA Mathematical Systems Inc.
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UG: Checkpoint/Restart mechanism
- Checkpoint files
LoadCoordinator

waiting: Base solver
running: I/0, presolve
A, A A .
/N / \
voo (X X
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc. !'[N:TT DaTa
AT Wathamabiesl Suztems lnc

UG: Checkpoint/Restart mechanism

Checkpoint files
LoadCoordinator / -

Lwaiting: Base solver
running: & ? /0 , presolve
A A .
AN\
000
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
JATA Mathamatical Syztem: inc

125




UG: Checkpoint/Restart mechanism
/- Checkpoint files
LoadCoordinator

Lwaiting: Base solver
running: M I/0 , presolve
A A :
AN\
000
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc.

UG: Checkpoint

[collects all nodes one solver by one solver]

- Checkpoint files
LoadCoordinator /r

Lwaiting: Base solver
running: &ﬂ’ /0 , presolve

.

/:-\---\.’...... Shonoooooooood : “:/.‘}\.’ .
 eoe coo
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

NTTDaT
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UG: Checkpoint

[collects all nodes one solver by one solver]

- Checkpoint files
LoadCoordinator

waiting: Base solver
running: &g! I/0 , presolve
/ A A :
7\ \
I\ 7 eoo
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc.

UG: Checkpoint

[collects all nodes one solver by one solver]

- Checkpoint files

LoadCoordinator
Lwaiting: Base solver J
running: ®ee¢ I/0, presolve
A A :
\
CY X )
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

NTTDaT

© 2022 NTT DATA Mathematical Systems Inc.
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UG: Checkpoint

[collects all nodes one solver by one solver]

- Checkpoint files
LoadCoordinator

waiting: Base solver
running: o I/0, presolve
o
000
N
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc.

UG: Checkpoint

[collects all nodes one solver by one solver]

- Checkpoint files

LoadCoordinator
waiting: Base solver
running: I/0 , presolve
(Y X )
N
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

NTTDaT

© 2022 NTT DATA Mathematical Systems Inc.
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UG: Checkpoint

B UG is based on "Supervised/Worker” mechanism

(# Primary/Replica mechanism)

cf. Kurt Anstreicher et al “Solving large quadratic assignment problems
on computational grids”

B Enhanced check point enables to collect all open
nodes, working carefully to be compatible with
existing check point mechanism in UG.

© 2022 NTT DATA Mathematical Systems Inc.

New features of UG

B Self-Split (+ heuristics)

B Enhanced checkpoint

B Huge checkpoint split

B Notification Offset

© 2022 NTT DATA Mathematical Systems Inc.
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UG: Huge Checkpoint Split
-Checkpoint files

waiting: Base solver
running: bgl I/0 , presolve
N - A, .
/ \ S e S ’ \‘./.‘}( “..‘
i
N
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
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UG: Huge Checkpoint Split

Node List Node List 2
 —

Checkpoint files

{waiting: A‘ Base solver J
running: P29 I/0 , presolve
A - Al o
SN\ . ; : / c
1 oes
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

NTTDaT
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AT Mathamatical Syztems inc

130




UG: Huge Checkpoint Split

Node List 1 Node List 2

W AN AN N A BN AR R AR EEEEEREEAEEAREEEAEREESEEAEEEREEEEEAREREEEREEREEEEEE.

SN N RN AN N NN NN NN NS NN NN SN NN NS NN ESEEEEEEEEEEEEEEEEEEEEEEEEEEEES

.
»

Checkpoint files

eummmmEm
®annnnnn

waiting: 0 Base solver
running: 1/0, presolve

4

Solver 1 Solver 2 Solver 3 Solver 4 Solver n

22 NTT DATA Mathematic;

UG: Huge Checkpoint Split

Node List Node List 2
f_—‘

LTI sisssmaEEEEEEEEEEEESEEEEEEEEESEEsEEEEEEEEEsEEEEEEEEEREEsEEEs

NN R AR NN NN NN NN NN NN NN NN NN NN NN NN NN EEEENEEEEEEEEEEEEEEEEES

.
»

Checkpoint files

eunmmmEm

®anmmnnsn

waiting: * " Base solver

running: 1/0 , presolve
7194 677@ 7964881 12239  4588216517.08008  311640451.7643 47.28%  311540451.7643 £7.28%
7199 6776 7964875 12239 458821517.0000 311540451.7643 47.28% 311548451.7643 47.28%
7284 6778 7964873 12239  458821517.0008  311540451.7643 47.28%  311568451.7643 47.28%
72180 6783 7964868 12239  458821617.8000  311640451.7643 47.28%  311548451.7643 47.28%
7217 6786 7964865 12239 458821517.0000 311540451.7643 47.28% 311548451.7643 47.28%
7222 6793 7964903 12239 4658821617.0000 311540451.7643 47.28% 311548461.7643 47.28%

Storing check-point data after 7226.73 seconds. 7950738(p0012:7926169) nodes were saved.
7228 6880 7964941 12239  458821517.8000  311540451.7643 47.28%  311548451.7643 47.28%
7236 6886 7965876 12248  458821517.000@  311540451.7643 47.28%  311548451.7643 47.28%
7262 6812 7965154 12239 458821517.0000 311540451.7643 47.28%  3115408451.7643 47.28%
7247 6823 7965233 12239  458821617.6000  311540451.7643 47.28%  311548451.7643 47.28%
7253 6828 7965228 12239 458821517.0060 311540451.7643 47.28% 311548451.7643 47.28%
7260 6838 7965263 12248  4658821517.8000  311540451.7643 47.28%  311540451.7643 47.28%
Solver 1 Solver 2 Solver 3 Solver 4 Solver n

© 2022 NTT DATA Mathematical Systems Inc. NTT naTa-
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UG: Notification Offset

LoadCoordinator Solver1 Solver?2 Solver3

conflict |
-
i)
0.1(s) X 10,000 (Solver) . :
= 1,000(s) —| Notification Interval
. le -
conflict .| notification |...... .‘
v ! 1
v v V v/

© 2022 NTT DATA Mathematical Systems Inc.

UG: Notification Offset

LoadCoordinator Solver1 Solver2 Solver3
less conflict |

d notification |~ 1 —«l o "
+ | Notification Offset

N notification ¥ 7

+ .

notification

~ notification 1 -

——

NTTDAT;
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UG: Huge checkpoint split / Notification Offset

B UG is now possible to "split” checkpoint files
® avoid computational cost to work on large
checkpoint file

B New feature “Notification Offset” is useful if
processing status messages (notification) is time
consuming.

NTTDaTa

© 2022 NTT DATA Mathematical Systems Inc. .7
& Matham

Experimental Results of ParaQapNB

solver=1(+LC=1) | solver=5(+LC=1) | solver=11(+LC=1)

problem | #node | time(s) | #node | time(s) | #node | time(s)
nugl?7 50 100.09 50 52.27 50 48.49
nugl8 104 170.58 104 68.57 104 37.67
nug20 685 1974.14 685 407.14 685 236.71
nug2l 312 1047.18 312 239.59 312 156.45
nug22 429 1968.21 429 412.47 429 240.47
nug24 1245 | 9225.15 | 1245 | 2014.35 | 1245 1217.50
tail7a 364 290.59 364 70.85 364 44.72
tai20a 2464 | 5185.60 | 2464 | 1087.38 | 2464 577.78
tai20b 166 223.01 166 186.08 166 187.90

geomean 843.16 252.45 166.08

Table: computational results of ParaQapNB on medium instances

NTTDaTa

© 2022 NTT DATA Mathematical Systems Inc.
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Experimental Results of ParaQapNB

No. of CPU
problem Opt.val | #node time(sec) | cores used
nug30 6,124 26,181 3.14e3 1,728

2021 tai30a 1,818,146 | 34,000,579 | 5.81e5 = 6.8 days 1,728
tai35b 283,315,445 2,620,547 2.49e5 1,728
tai40b 637,250,948 278,465 1.05e5 1,728

2021| sko42 15,812 6,019,419 | 5.12e5 = 5.9 days 5,184

2022 | tho40 240,516 | 139,077,975 | 1.66e6 ~ 19.1 days 24,528

Table: Computational results on large scale QAPs

m HPE SGI 8600 (384 nodes, 13,824 cores)
m HLRN-IV System (1270 nodes, 230,000 cores)

© 2022 NTT DATA Mathematical Systems Inc.

Experimental Results of ParaQapNB

computational log of tho40 irun:

300000 100 HPE SG' 8600

@ISM(Japan)

250000

80 grun:
HLRN-IV System
200000 7 @ GOttlngen

brun:
HLRN-IV System
@ Berlin

150000 50

time(h)

100000

, 1 II [ 1 ,

> \2 J \al g © S\ N d S " > o Q &
SFIFFFFFIFPFPFPIIFTPEESEE
TS S

m time(h) B #node  emm==dualbound e primal bound
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Summary & Future work

B ParaQapNB: massively parallel DNN-based branch-
and-bound solver for QAP
® successfully solved open instances tai30a(2021),
sko42 (2021), tho40(2022)
® still have chance to solve some more open
instances

B New features of UG contribute to process large &
heavy tree of DNN-based branch-and-bound

© 2022 NTT DATA Mathematical Systems Inc. NTT DaTa
hathematical Susiems ine
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Mobility Optimization Engine and
its Real-world Applications

Katsuki FUJISAWA

Institute of Mathematics for Industry, Kyushu University, Japan
fujisawa@imi.kyushu-u.ac.jp

Various efforts have been made to realize a so-called super-smart society recently.
Our project team builds services to create new industries and other services through
corporate collaboration [1,2,3]. We have utilized large-scale computing infrastructures
and developed the Cyber-Physical System Mobility Optimization Engine (CPS-MOE)
that provides various functions, including creating new industries. It can reduce cost and
industrial waste and constructing services to calculate the optimum control schedule of
transportation agencies. The latest research results and industry-academia collaborative
projects using CPS-MOE will be presented in this talk.

References
[11 Akihiro Yoshida, Tatsuru Higurashi, Masaki Maruishi, Nariaki Tateiwa, Nozomi Hata, Akira
Tanaka, Takashi Wakamatsu, Kenichi Nagamatsu, Akira Tajima, and Katsuki Fujisawa, “New
Performance Index “Attractiveness Factor” for Evaluating Websites via Obtaining Transition of
Users’ Interests”, Data Science and Engineering, Volume 5, Issue 1, pp. 48-64, March 2020,
https://doi.org/10.1007/s41019-019-00112-1
Akihiro Yoshida, Yosuke Yatsushiro, Nozomi Hata, Tatsuru Higurashi, Nariaki Tateiwa, Takashi
Wakamatsu, Akira Tanaka, Kenichi Nagamatsu, and Katsuki Fujisawa, “Practical End-to-End
Repositioning Algorithm for Managing Bike-Sharing System”, The proceedings of the IEEE
BigData2019, 2019, https://doi.org/10.1109/BigData47090.2019.9005986
Nozomi Hata, Takashi Nakayama, Akira Tanaka, Takashi Wakamatsu, Akihiro Yoshida, Nariaki
Tateiwa, Yuri Nishikawa, Jun Ozawa, and Katsuki Fujisawa, “Mobility Optimization on Cyber
Physical System via Multiple Object Tracking and Mathematical Programming”, the Fifth
International Workshop on High Performance Big Graph Data Management, Analysis, and
Mining (BigGraphs 2018), to be held in conjunction with the 2018 IEEE International
Conference on Big Data (IEEE BigData 2018), 2018,
https://doi.org/10.1109/BigData.2018.8622146
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Kyushu Uniwensity

Cyber-physical System and Industrial Applications
on Large-scale Computing Infrastructure

Katsuki Fujisawa

Professor, Institute of Mathematics for Industry, Kyushu University

The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
on Advances in Classical and Quantum Algorithms
for Optimization and Machine Learning
September 18th, 2022

The battle for supremacy over data,
the "oil of the 21st century
The main battlefield will shift from

cyberspace to cyber-physical space

The world’s most valuable resource CrstOfer hysica Syesre) ORIy Do el
is no longer oil, but data Real World Cyber Space Real World
Modeling Reel World . Guinization s . Feedback/Control Real World
The data economy demands a new approach to antitrust rules o, 5, 'z‘_"““"'“""“"“‘" m&m;,f :; g
Mmlmr_w Peogle Movement 9 .S-n:izl 5';;:“!. s, =
Information, ; CPS-MOE ”l‘—.:' ! o
Solal Information : =¥
Medica & Finance LS 0g e
|' ;Iil' *“Wearable Device Pilgatign

Personal Devies

-

Digital Signage
"W
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CPS(Cyber Physical System) and|MOE(Mobility Optimization Engine) |

Real World Cyber Space Real World
Modeling Real World "~ Optimization/ . Feedback/Control Real World

GPS, GIS, Facility Information Simulation /
- ¢ Learning

Administrative
Information,

Social Information

Medical & Finance

EMS

Q D Q Smart Phone,
£ Navigation

0 .' [ " ' ; '
’ ' A
$ ’ Wearable Device
- 1. W Personal Device
Energy Consumption 2 "
r,g"?—i_: % [ Digital Signage

CPS Mobility Optimization Engine and Industrial Applications
- [——————p Real World C—————) Cyber World ——————) Real World ——) -

Data acquisition Learning / Optimizing Feedback / Realization
Clustering Evaluate website’s performance
Ac:ess log ‘§| I: j
[ e
ﬁHﬁ%&?\,

Visualize People Flow s

Graph Analysis  control People FI
Multiple Object " e

Tracking @g

Map Matchmg Modeling & Optimize Maas
I mm—- (@) Demand (2) Optimizing (@ Vehicle Routing
Q %, ---  Predicti . Number of bikes Problem

——— ‘ s
SoftBank J gg-; - 1- o
2 o a2
T
YAHOO! &
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Algorithm Layers of CPS Mobility Optimization Engine

* Firstlayer - Graph and network analysis algorithms e
* Dijkstra algorithm (Single source shortest path problem) ,BFS (Breath first search %)
algorithm) : Shortest path, Centrality(BC etc.), Clustering problem
* Second layer : Al and Mathematical Optimization algorithms
= ML/DL, MILP(Mixed Integer Linear Problem), SDP : Facility location problem, Set
covering (partitioning) problem, Scheduling, Evacuation Program, Object Tracking

Large Sensor Reduction of data size by Applying mathematical
+ Monitoring Data utilizing graph analysis optimization algorithms to
i ?_r“:fﬁ“ Grid | algorithms without loss of | | reduced data
T = taion important components
- SNS (Twitter)
k _;;éf:g
A N
| v s i ks
| HPC Technologies (CPU & Accelerator + Data Store) | |

GREEE': GraphSOO (https://graph500.0rg/)

Graph Search Based Benchmarks for Ranking Supercomputers

e Graph500 is a competition for evaluating performance of large-scale graph processing
» The performance metric is a traversed edges per second (TEPS)
» 1GTEPS : Search 1 billion edges per second
s Graph500 list is updated twice a year (June and November in BoFs of ISC and SC)
» An artificial graph called the “Kronecker graph” is used
= A good approximation of Social network graph (small world and scale free)

In 2014 to 2019, Our project team has been a winner m
at the eighth, and 10th to 18th Graph500 benchmark. —
g3

Supercomputer Fugaku

K computer (RIKEN, Japan) RIKEN Center for Computationsl Science
(Reces)

In 2020 to 2021, Our project team has been a winner
at 20th to 22nd Graph500 benchmark.
Fugaku super computer (RIKEN, Japan)

Future direction --> Collaborative research (RIKEN (R-CCS), ZIB, IMI)
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Fugaku & K Computer #1 : Graph500 Benchmark

Graph Search Based Benchmarks for Ranking Supercomputers https://graph500.org/
158,976 nodes, 7,630,848 CPU cores ggbﬁggonggisto o

5 Petabﬁg mem, 40.8GB/s TofuD NW 38 'Petabyte il 3
: : : 20GB/s Tofu NW o ¥ v

Effective x13
performance c.f.

*Problem size  LLNL-IBM Sequoia Linpack
1.6 million CPUs  TaihuLight

R BRIKEN

June 2014 17977.05 ;
is weak scaling it
: - 1.6 Petabyte mem
June2015~ | oo, 40 Hybrid+Node  “Brain-class” ¥ 1t milllon:Cis
Nov 2018 > Compression graph

June 2020 1 70,980.17 C i

Hybrid + Node
June 2021 1 102,955.45 Compression
Load Balangng

Example of CPS Application

Smart Factory : ROHTO Pharmaceutical Co.,Ltd., Ueno City, Japan ROHTo

+ Main Products of this Plant |

- Eye drops, Cosmetics R J* | B N L

« One of the world's leading eye drop 7= o ‘&
production lines =

id?

P it

Ueno City
Famous as a village of ninja
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__ (2 Digitization of the real world 3 Mobility Optimization

Object  People QR Code | ( Optimization Y|M_| s |
. i B d . R AN
Dtectn Tracing APCOUE min 2x7Qx +¢"x [ Assignment | 7

st. Ax<bh

Formulate the problem
Solve it using mathematical

optimization

Mobility optimization system (smart factory)

Optimize the placement of inventory in the warehouse

—Improvement of operational efficiency
Optimize in\ren‘tory placement

duction [
Camera P'© Improvement of work &
M schedule efficiency of workers iﬂ:a
- Devise work order 36 \
E i ] @ ))) - Optimization of lines / m E R
of flow
| Work order | | Route planning |

Layout Sensor

@Applications
Phvsical space 9

Hierarchical Data Analysis and Optimization System for smart factories

Real World Cyber Space Real World
Modeling Real World Optimization / Simulation Feedback/Control Real World

- Bottleneck Analy

Long-term
Analysis ]
Layer |
Month/Quarter/Year)

Mid-term
Analysis
Layer

(Day / Week)

Short-term
Analysis
Layer

(Hour/ Real-time)
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Long-term
Analysis
Layer

Month/Quarter/Year)

Mid-term L
Analysis
Layer

 (Day / Week)

Short-term
Analysis
EAySE

(Hour/ Real-time)

Automated conveyors are used to store and retrieve cargo.
Management is also automated, and the instructions transport cargo

Sorted Transfer Vehicle(STV)

uffer Station

170 Eavian ]
BT 12
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Automated warehouse operation opfimization system

Get information
on jobs, Requests:

transporters | * Storage

|:> « Retrieve @ |
/'\

Three algorithms for generating job assignments
* Heuristic method (rule-based)

+ Exact solution method (optimization problem)
+ Deep reinforcement learning

Ceontrol based
Perform calculations based on formulation on assignment

Grophs

i i 2 » Stors Repeat in based on job and

* Features (compared to optimization problems) 2. Retrieval @ short eycles rransponer informatior|
+ Solution accuracy: Optimality guaranteed 3 Bl 10 or |5 min.?
» Computation time: Depends on the number of Buer =60~ ED : i

jobs, etc. It may take more than | hour A= ien]

Optimize "job and transporter assignment” and

"the order in which each transporter processes jobs.

Optimize the order in which each transporter processes jobs. Formulate and solve

optimization problems
using graphs

Automated warehouses

D 1/0 Statien ' Order:

D Buffer |
— Station

1. Storage W

2. Retrieve @

@ ,-BH 1. Retrieve @
i e i . 2. Storage

Receiving and shipping information;. [~
transporter information

Order:
Task: @<
* storage 1. Storage & at 3:00 pm

2. Retrieve @ at 3:10 pm

(6]
1. Retrieve® at 3:00 pm
2. Storages at 3:10 pm

@Applications

* retrieve W@

Phvsical space it
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Hierarchical Data Analysis and Optimization System for smart factories

Real World Cyber Space Real World
Modeling Real World Optimization / Simulation Feedback/Control Real World
Flow line and lene
graph data
Long-term
Analysis
Layer
Month/Quarter/Year)
: Optimization
Mid-term i SRk Anayle
Analysis - | '
Layer

(Day / Week)

Short-term
Analysis
Layer

(Hour/ Real-time)

o g,
mp  Real-time computation

Cyber Physical System(CPS) & Mobility Optimization Engine

... | Real World :“) Cyber World :} Real World :>

- Data acquisition + Optimization » Feedback
« Censoring, = Simulation « Realization
Sensing, « Analyzing . Display
1 \ Based on Manifold Theory |
Graph ) 1[ EHEHE |
Analysis — Manifold

Theory

Extract nice low dimensional
representation from high
dimensional original data

| Optimization |

Human and Objects o )
Detection from cameras Obtaining the most likely
passage using optimization

: ; Detection and Visualization of
Desp Learning and graph analysis congestions and its origins 16
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Optimization of flow lines of people and objects
Motion line tracking and optimization using images captured by fisheye and box cameras
[ Objective ]

» Understanding the work-flow line
* Understanding areas and duration of stay

b
People Congestion Analyzing System Using Time-Expanded Graph
- Step 1: Mapping People Traffic Lines to Graph Data -
A graph G(based on a map; lt% tlmejexpand_ed graph Gy
iy shiop; stabiomy e + with a time horizon T
i ! and a time span At
@ : Nodes on aisles
(O : Exit/Entrance
“w, : People traffic line
(points represent data of one person)
* The purpose is the detection of congestions
and its origins from people traffic data
obtained by cameras, sensors, and beacons 18
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People Congestion Analyzing System Using Time-Expanded Graph
— Step 2: Construction of Time-Expanded Graph -
Its time-expanded graph G
———————— = with a time horizon T
and a time span At

A graph G(based on a map;
in a shop, station, etc.)

@ : Nodes on aisles
() : Exit/Entrance
“», : People traffic line
(points represent data of one person)
* Each node of Gy represents a tuple of
its original node and its time

People Congestion Analyzing System Using Time-Expanded Graph
— Step 3: Data Complement via Network Flow Algorithm (as LP) -

The LP(Linear Programming) formulation:
minimize Z F(e)

ec Ay
subject to Z F(e) = Z F(e)
ecd(vt) ecpfut)
flow conservation (vveV\ S5, te{2,---,T-1})

area covered
by cameras

Keeping original flow F(e) =r(e) (Ve € R)

F(e) + F(rev(e)) <U (Ve e Ar)

where

o G=(V.4)

* Gr=(Vp, Ar)

® 5C Vo the set of entrance fexit nodes

o [ C Ap: the set of edges with people traffic data

o r: B — M : the number of people on each edge

o d{v,£) © Ag: the set of edges from (v,t)

® p{u,t) © Ap: the set of edges to (v,1)

e [ : an upper bound of people passing throngh an edge

* :flow obtained by the complement o rev(e) i= ({w,t), (v,t')) for e = ({v.2), (w, "))

———= :flow obtained by the original data ® i Ay = Ezg a complemented flow

20
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Data Complement via Network Flow Algorithm
Computational results

# Nodes = 907,200 : # Edges = 12,367,882 (time-expanded
graph : one hour)
LP : 6138118 rows, 12367882 columns and 27549816 nonzeros

Instance : flow_completion.mps (LP)
Software : Computation Time

O CBC 2.10.5: 52s

O CPLEX 22.1.0.0: 72s

O GUROBI 9.5.2 : 54s

Computational Server

CPU : Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz x 14 cores
Memory : 128GB

0S : Cent0S 7.9

21

Hierarchical Data Analysis and Optimization System for smart factories
Real World Cyber Space Real World
Modelmg Real World Optimization / Simulation Feedback/Control Real World

Long-term
Analysis
Layer

Month/Quarter/Year)

Mid-term
Analysis
Layer

(Day / Week)

ation of dynamic

such as sensing

Short-term
Analysis
Layer

(Hour/ Real-time)

. r Real-tir‘ne computation ’ ﬂﬁ}t J &I_

22
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Mulriple Object
Tracking{MOT)
(POM, KSF)

Object
Dietection
(Y OLO)

Mobility Opumlzauon System

11z

Cyber Physical System(CPS) & Mobility Optimization Engine

Acquiring [Jara from
Camera, Sensor, ...

Real
r

Acquiring Data from
Camera / Sensor etc.

.K.".\.

Optimize (Minimize the latest arrival time)

Object Detecrion
(YOLO)
Mohbility o
Optimizati Multiple Object Tracking | -+ yher
el SAT.1P) (POM, KSP) o o | World
Muobility Optimization
SAT, 1P}
I I | Feedback | Real
Wiorld
Movie (30 seconds) SAT (10 seconds) IP (10 seconds)
N R
feedback
Visualize Peaple Flow 7 7
Cantral Peaple Flow
: R
A e
R
=l 23

Optimize(Minimize the total transit time])

Mobility Optimization — Formulation (SAT)

ki pListiiealiin
1

K

A (A Bgu.-;) A
k=1 kite
1=

BT (T Jebae)

A Akt w)

vEVope \ ek }
et

K
N Aalk o) (/\ 5.[1-])
k=1

vEV (b )
kb

Clk. 4t 0)

Aylk tov,w) = (=x ) v V B
WEN (1)

{ap ), Y, k. t)

(Ve € Vope \,

Ty

Aglk,tyu,v) = (- )V

(Vi & Vo \ {fu} Wi, k. t)

Ti—1
Bi(k) i= V V pakw

=5, wENgilon)

Ti=1

Ba(k) = V v alte (k=1,...,K)

Py v EA L (b )

k)
A T——
(Vh, LW E Tiy)
B the set of terminal nodes of the transits

Tie = min{Tang . L}
Ty = {5 o TR} N {5, .. T

(k=1,...,K)

Flow
conservation

Departure /
Arrival time

P71 opq 15 satisfiable

{— all transits can be finished by Teng
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Mobility Optimization — Formulation (IP)

Wcklicy Dyptmization WEN e (2

{SAT, 1B}

=5

T

(Vv € 3,

find the minimum value of Tgpg Ty Hxpy
(Ve eV,

e
minimize E > > (t — S — dy )
VENapr (i) |

k=11=58 ¢ FlDW
subject to conservation
E TRy = E (Vo k. t)

WEN e (v)

T ’
Z z TR = TR Departure /
W &N e (85) Arrival time |

t=51 vEN e [

Yy, € N (1), Wk, L¥E € 7))

B VL we € Nope (v).Vh1LVE € 73t)

rr_-_l' <1

*  fix Tppq as a timelimit
* minimize the total transit time by IP

fi: the set of terminal nodes of the transits

Ty = min{Teng , Ly}

Ty = {Sgs s T} NS, 0, Ty}

Mobility Optimization : Computational results

Solver
O SAT (Satisfiability problem) : Minisat Ver. 2.2.0
O IP (Integer optimization problem) : Gurobi Ver. 9.5.2

Computation Time

YR

O SAT : 16m50s (Binary search) mp } ! >

O IP : 1m59s
movie Optimal maovie
start Time end

Computational Server

CPU : Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz x 14 cores

Memory : 128GB
0S : Cent0S 7.9

26
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Mobility Optimization - Experiments

SAT : Optimize (Minimize the latest arrival time)
IP : Optimize{Minimize the total transit time)

8 IDs 1D3 THE DEPARTURE AND ARRIVAL TIME OF EACH ID[5]
18] Orniginal SAT 13
total: 224 5 I 273 | 13~00 | 0~63
oA 2l Os 2 D~287 | 5~0 | 27~10
/ B g T s 3 0297 | 0~87 | 06
f Pt 29: A~ Movie | * | 0297 | 087 | 23~10
i lV;J i i 5 0~273 | 10~87 | 063
) N S 6 0~297 | 3~10 | 0~53
I B ~/\( 7 0~297 | O~10 | Ot
< e B | 77~207 | 727~00 | 77~10
total 22 62 7
R R g total: 62 5 " AT AR Tmes! 2y [ 10 1
e B 2B e B D 0s The SAT i
N < et . e solution
L : SAT suggests all transits
/ can be finished in 10
seconds
| (~3x faster)
i + The IP solution
finally achieved
e IP 4.7x faster transit
| w.r.t. total transit time
| (224s — 47s)

Overall architecture | Overview 28

Mobility Optimization Engine & Applications
+ APl / Application Store / Data distibution infrastructure:

Platform functions that can use various APIs, and online store functions |
that users can find and use software and services they need I ‘ AP f Application Store / Data distribution infrastructure l !
- I

- Serverless(FaaS/Baas) : { ; "

- Function-based execution envirenment and back-end I ‘ SMG!‘L_E!SZ_EF_G'_C?S!B’DG’S] |
functions I Management I
» ID/Security : MeocRine Taol |
- ID account management, firewall, etc. F|| iprsecuity loT {eciing I

«loT: ] . -
Essential for industries that handle equipment data such as
manufacturing and power / fraffic i s

* Machine Learning :

Provides large-scale model construction ond learming BigData
processing using GPU etc. /Data Analytics.

+ BigData/Data Analytics/DB : - —— = = = = = = = = T = ———
Supports large-scale data analysis, Provided for lorge-scale | Computing P e I
data providers such as financial companies, and for recl- ] (HPC&Quantum) Storage Nefwork ]
time-criented companies such as manufacturing 1 1

« Computing: D .

. ' R ata Center : Cloud
Provides machine accelarator function with TPU (Tensorflow I !

Processing Unit) configured with GPU or ASIC

- Storage: | Mobile: | | Backbone network / infernational long- |
- Provides varicus types according to access frequency, access communication distance communication / 1X

speed, and reliability = "
« Data center: Edge Computing

-Provide faciliies / operational maintenance

# It 5 assumed that the implementation time [ function for each function
s determined by service requirements 25
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The 6th RIKEN—IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16™ - 19h, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 221, 2022, Fukuoka (Kyushu University), Japan

Towards an optimal operation of
automated storage and retrieval system
with multiple machines

Hiroki ISHIKURA

Kyushu University, Japan
tomomi ishikura@kyudai.jp

We aim to improve the efficiency of a new type of automated storage and retrieval systems
(AS/RSs) called multi-control automated storage and retrieval systems (MC-AS/RSs). MC-AS/RSs
have multiple storage/retrieval (S/R) machines that operate independently according to storage and
retrieval requests. Consequently, MC-AS/RSs can transport loads farther without using human labor,
thereby requiring fewer human resources than conventional AS/RSs. However, the structure and
control method of AS/RSs are complex because multiple S/R machines must be controlled
simultaneously. Therefore, when operating an MC-AS/RS, many factors must be considered, such as
the sequence and transport timing. We propose an optimization method using a time-expanded
network (TEN) to solve these problems and generate optimal operational methods. First, our method
models an AS/RS with a TEN to calculate the optimal sequence and conveyance timing while
considering the movements of multiple S/R machines. Second, we formulate the operational efficiency
of the MC-AS/RS as a problem of minimizing the sum of execution times of requests on the TEN.
Finally, we generate the request order necessary for practical use based on the results. The mechanisms
implemented to achieve include a generator, optimizer, and scheduler. Our experiments confirm that
this method reduces the total execution time of requests compared with other rule-based methods. This
method enables us to propose an efficient operation method for AS/RSs with a complex structure of
multiple carriers.
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Towards an optimal operation of
automated storage and retrieval system
with multiple machines

Hiroki Ishikura*, Katsuki Fujisawa

Kyushu university, Fukuoka, Japan
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for Optimization and Machine Learning

18/9/2022
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I. Smart factory

ROHTO Smart Factory
\M‘ + Optimization

* Machine Learning

* Modeli
sl * Deep Learning

+ Simulation

() ﬁD n Eﬂ,]“
Qo -
Recording / Sensing Feedback / Control
Factory Customers
") ‘ Eﬂ -

Cc rry~ out

-‘ -
[Physi e
Physical Space m ---
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ROHTO Smart FCICTOI"Y
|Cyber Space = Optimization

* Machine Learning

+ Modelin :
Simulmign = Hesp beaming
() 4 S o
Qo )
Recording / Sensing Feedback / Control
Factory This presentation’s target
(Optimization problems allow
for more efficient use
Heehane cary-in OF @Utomated warehouse)
e arry-out
Physical Space ! q et |£>

Table of contents

2. Automated warehouse
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Automated Warehouse

outside locations our target

 pe)

mmal \o=h

automated

1.
factory warehouse

bew ¢

I
— Eafzal=
loads
( materials, products, ) products
intermediote products

stores

Mobility in Automated Warehouses

Factory Outsides
: s workers [
Retrieval Iﬂ r;-%
request trucks
A I/O
Station
IQ STVs
Buffer S/R
Station machines
+ S/R machines can store and retrieve [% Cranes
loads without human labor
; ; ¥ Cell
» Loads is transported in accordance St
with the requests. oreas
request
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Mobility in Automated Warehouses

Crane

+ Multiple type of machines: STVs, cranes
« They cooperate via buffer station
* Capacity of buffer stations are limited

Mobility in Automated Warehouses

Factory Qutsides
: s workers [
Retrieval Iﬂ r.-%
request trucks
'y I/O
Station
I@- STVs
Buffer S/R
Station machines
Optimization Target: I H Cranes
How do S/R machines process requests? Cell
- Minimize the total time to execute S v <
all requests torage 1o
request
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3. Our method

Overview of Proposed Method

O {0 vostation :

i Generating 2 o
:}H - l | Buffer Statio Time-expanded _-__}::5__. o o
e B-06-8B B ||| optimier
Construction of t=0 1 B
h frof
graphffomamep.  Generator Making requests order and Scheduler
getting buffer stations’ states
(Order: g
Requests:_ : @ ; gtcntrggellz
- Storage = | | Getrequestsand Feed back = el
* Retrieve @ = S/R machines data : : requests order ® H 1. Retrieval @
L 2. Storage =
Buffer: (D= E)=>Ea
" = =

+ Movements of S/R machines and loads = paths on time-expand network
* Capacity of Buffer station = capacity of node
» Optimal control = optimization problem on fime-expanded network
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Overview of Proposed Method

O {0  vostation

. i Generating
i Buffer Station | _.
C) (=) Bu ' i | Time-expanded

0o O ce

Construction of
graph fromamap  cGanerator

*+ Movements of S/R machines and loads = paths on time-expand network
« Capacity of Buffer station = capacity of node
« Optimal control = optimization problem on time-expanded network

Construction of graph and time-expanded network

Data of requests Graph Time-expanded network
Request: NN e ek Time granularity=10{s]
* Storage © o i (J 1O station B—0—@—@ T C%)

T @) Buffer station |

|:> E)ril. Cell

@ @ ®  S/R machine

Request: e

f@:] @ C| C'J:: -En :‘..@

/ e e > _J

L_.JI._.IL._.II._I

t=0 1 2 3
0[s] 10[s] 20[s] 30[s]

Buffer station

+ Construction of a graph based on the location information used by the
request

» Determination of time granularity based on the error
between discretized travel time and actual travel time
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Construction of graph and time-expanded network

Data of requests Graph

Request:
+ Storage @&

0
[l ®(:) Bufferstation :

‘:> E]n ™ Cel

Request: [ e

Buffer station

+ Construction of a graph based on the location information used by the
request

+ Determination of time granularity based on the error
between discretized travel time and actual travel time

Construction of graph and time-expanded network

Graph Time-expanded network

Time granularity=10[s]
i3 10 station

o B OB

[l @i ) Bufferstation : C@E/ : E@ (T (L rreh @
To @ Cell () :
| ; : ’ \ )

& @ ® S/Rmachine o 8 @ 0 -
Request: [ e = T T T

0[s] 10[s] 20[s] 30[s]

+ Construction of a graph based on the location information used by the
request

» Determination of time granularity based on the error
between discretized travel time and actual travel time
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Construction of graph and time-expanded network

Data of requests Graph Time-expanded network

Request:
+ Storage

Time granularity=10{s]

® 8O- _._:_@' S @T (_é)

0 i
H @ Buffer station |

E> @ ® e Cell

Request e = |

Buffer station

t=0
0[s] 10[s] 20[s] 30[s]

+ Construction of a graph based on the location information used by the
request

+ Determination of time granularity based on the error
between discretized travel time and actual travel time

Overview of Proposed Method

+ Movements of S/R machines and loads = paths on time-expand network
* Capacity of Buffer station = capacity of node
» Optimal control = optimization problem on fime-expanded network
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Objective function and variables

Variables:
* Xrq €{0,1}: | if the loads of request r passes arc a, otherwise O
* Yua € {0,1}: | if S/R machine u passes arc a, otherwise O

—> Yo =Yya =1

J —> Xy =0,v.=1
‘ = |Buffer [ )» > " .
— —J —J
E="2 aisersionssssiiriis t=1 t=0 1 2

—> Xg =1, Yua = 0

Xra = Ypa = 0

Objective function and variables

Variables:
Xrq € {0,1}, ¥4 € {0,1}

minjmize [Z(ﬁ,(x) )+ U Z (1- gr(x))l

TER TER

(o Objective: Minimize the total time to execute all requests

* fi(x) — 1,: execution time fo finish request r from r occurs
(if r is not finished, f,.(x) = 0)

* gr-(): | if ris finished, otherwise O
— If it is impossible to execute request r, we set penalty U

[ ﬁ_(x) = szV"r t(v) XXy (i) } ¥7: The set of request r's destination nodes
2 (v,

on time-expanded network
* gr(x) = ZvEVE Xy (v1h) l;: Request r's super sink, t(v): Time of node v € 7

[« Path for the request r = {a € A7 | x4 = 1}
* Xpq = Yua = 1= the load of request r is carried by S/R machine u
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Constraints

s N 1 H )
Xp.q ¥r,q Must form disjoint path buffer station has capacity
Y za<l  (TacAT\HT) 2 Y wmasu®) (b eBT)
rei % rER aed (b)) )
wa<l (YacAT) - - : -
,E; e each load must move with S/R machines
z Tra — Z Ero=pledenn) ey | T T T T T T : ------------ o
acd (n) agd_ (n} PGERJI & _;xZ’i:IUn« Vacdg)
— J
> =Y. Wua=pllulun) (Cpn) : A
e B S/R machine has limited space to move
e S T N TP ——
plni,na,n) = 1 (n = na) i (ue MYac AT\ AT)
0 (otherwise) Y = B &M "
- J \ J

Constraints

N i

ref

z Ypa =1

pe M

Ty Zrg = pllrbeeyn) (Trym)
Y Fa—) Fea=H ) (

a€d+(n) agd_(n}
Z Yua = Z Yiea = Py burs 1) (T g m)
agd+(n) agd_(n)
-1 (n=m)
plny,na,n) = 1 (n=mn)
0 (otherwise)

L

N
Xy Vr,q MUsT form disjoint path

(Yac AT\HT)

(Fae A7)

"y
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Constraints

|' buffer station has capacity ]

Constraints

: ( each load must move with S/R machines ]
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Constraints

S/R machine has limited space to move

Y

Overview of Proposed Method

Making requests order and Scheduler
getting buffer stations’ states

Order:
[ R

1. Storage =
2. Retrieval @

1. Retrieval @
5 ‘DH 2. Storage =&
Buffer )= ED = &w
=@=0C0

+ Movements of S/R machines and loads = paths on time-expand network

» Capacity of Buffer station = capacity of node
» Optimal control = optimization problem on fime-expanded network
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DeadLock

The flows of the solution

o
> O O

; Buffer station
' ® Cell
i ® Pallet

[] SR machine_'_.E

Scheduler generates only requests order
Simulation according to requests order

(" Request order: )
1. Storage (©

m 2 Retrieval @ T o ol
N--Eeio

1. Fietneval ®
— | Buffer .
station

®
q | 3. Storage (Q) ) )

2. Storage (A)
IAII S/R machines can’t transport any request }_ 27

Avoiding deadlock

The flows of the solution

0O () vostaon

Buffer station

O Cell

F @ Palet |

i @  SRmachine

[/Scheduter generates requests order and the order of requests to buf‘Fer stations
Simulation according to these two information

e ]

( Request order: \
1. Storage
[ 2 Retrieval ®
1. Retrieval ®

® 2 Storage (1)

. 3. Storage [©

E.' Deadlock doesn’t occur!

o
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4. Numerical experiment

Numerical Experiments - Overview

[Evaluation]
Total execution time to process all requests

[Baseline]
Nearest-Neighbor method(Details later)

[Setting]
Time granularity : 10[s]
Number of requests : 10, 20, 30, 40
Solver : GUROBI 9.5. 1
Warehouse

* 41/0 Stations

+ |2 Buffer Stations

[sv |

STV

O N

4 STVS | = T Sa;g:rr‘

+ 3 Cranes / ’:
« 1296 cells L
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Numerical Experiments - Baseline

Buffer

Buffer

Nearest-Neighbor method (NN):

each S/R machine chooses its nearest request

OK calculated quickly

[N cannot consider capacity -

Proposed method vs. baseline (Nearest Neighbor)

summary

Execution time to process all requests
#requests NN Ours
10 2,036.0(+ 3.29) 1,904.8(+ 12.35)

20 47432(+£131.34)  4,399.2(+16.76)
30 9,629.6(+56.06)  8,844.6(+10.50)
40 14,695.0(£76.65)  13,353.2(54.68)

* randomly generated requests

» Evaluation by the
total execution time to process
all requests

\* 6~ 10% faster operation Y,

I detail (5 calculation per data) I

firequests  data NN Churs| Progosed ) diff
A 2,036.0(+3.29) 1,004.8(+12.35)  -131.2

10 i 1,551.2(£060)  -181.4
c 1,480.8(£2.40) -TR.6

D 1,756.2(£0.08)  -119.8

E 1,640.4(£1.06)  -281.4

20 F 4,300, 2(+ 16.76) -344.0
G 4,270.0(£11.40)  -704.2

H 4,466.4(£10.78)  -B40.8

I 4,357.0(7.46) -5659.4

1 4,433.6(+5.54)  -453.0

30 K 06206(£5606)  8,844.6(£1050)  -785.0
L SOBT6(4139.09)  B,568.6(14.63) 4040

M 7,916.2(+10.45)  -810.8

N B,T1L6(+12.14)  -1,123.6

o] 1,523, 9,936.6(124,65) 3868

P 11,695.0(+76.65)  13,368.2(+54.68) -1,341.8

Q 14522.6(+123.26)  13,505.0{+48.67) -1,0176

R 15,221,2(+270.75) | -1,941.4

40 S 16,16.8(+121.63) -1,4724
T 16,572.4(+206.49) 16758
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Difference in performance between NN and our method

Random input

G s ot - — data0

Ve \ 2200 j —_—: datat
* The number of requests: 40 ] o2
-. ‘,. .................................. — data3

- datad

= Amount of reduction
=>NN — Ours [s]

Amount of reduction(s]
s - R [
[+ B [=2] [+:] o
(=] Q (=] [=] (=]
o [ =] o a o

« Data | and 3 allowed
\_ the solution to be calculated ¥, 1000{ & ]

If we continue the calculation 200 400 600 800 1000 1200
. . Calculation i
until we get the solution *+: s

Data 0 - 8,215.45(1,413.75)[s]
Data 2 - 4,090.23(+272.1 1)[s]
Data 4 - 3,286.66(+362.79)[s]

Computational environment
CPU: Intel (R) Core (TM) i9-7940X@3. 1 0GHz x|

Table of contents

5. Conclusion

6. Other researches
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Conclusion

Optimization problems allow
for more efficient use
of automated warehouse

[Next Step]
Systematized to be applicable
to actual factories

[Future Work]
Sometimes it takes too long to calculate
» Conjunction with a method
to find assignments at high speed
ex.) Nearest-Neighbor method

« Development of a method
to find fast and efficient assignments
ex.) reinforcement learning

Control bosed
on assignment

Order;
A 1, Storage &
2. Refrieval @
1. Retrieval @
lTIH 2. Storage @
Buffer 0= B = ER
= CH= 0

@

Convert solved results
to assignment

Get information
of 5/R machines
and jobs

Requests:
* Storage @ @
+ Retrieve @ |

7~ N

Repeot in
short cycles

—

Formulate and solve
optimization problem
using graph

Construction of graph
based on information
of 5/R mochines and jobg
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Adaptive Cut Selection in Mixed-Integer
Linear Programming

Mark Turner

Chair of Software and Algorithms for Discrete Optimization,
Institute of Mathematics, Technische Universitidt Berlin,
Strafle des 17. Juni 135, 10623 Berlin, Germany
turner@zib.de

Cut selection is a subroutine used in all modern mixed-integer linear programming
solvers with the goal of selecting a subset of generated cuts that induce optimal solver
performance. These solvers have millions of parameter combinations, and so are
excellent candidates for parameter tuning. Cut selection scoring rules are usually
weighted sums of different measurements, where the weights are parameters. We
present a parametric family of mixed-integer linear programs together with infinitely
many family-wide valid cuts. Some of these cuts can induce integer optimal solutions
directly after being applied, while others fail to do so even if an infinite amount are
applied. We show for a specific cut selection rule, that any finite grid search of the
parameter space will always miss all parameter values, which select integer optimal
inducing cuts in an infinite amount of our problems. We propose a variation on the
design of existing graph convolutional neural networks, adapting them to learn cut
selection rule parameters. We present a reinforcement learning framework for selecting
cuts, and train our design using said framework over MIPLIB 2017. Our framework and
design show that adaptive cut selection does substantially improve performance over a
diverse set of instances, but that finding a single function describing such a rule is
difficult.
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The definition of a MILP T Zy

This is a Mixed-Integer Linear Program (MILP):

argmin{c’™x | Ax<b, I<x<u, xez7 xRN
X

c € R" - Objective coefficient vector

A € R™" - Constraint matrix

b € R™ - RHS constraint vector

LLue {R, —00,00}" - Lower and upper
variable bound vectors

J C{1,...,n} - Set of indices of
integer variables

vvyyvyy

v

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming
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The definition of a cut TN Z!B/

A cut is a constraint that does not remove any feasible solutions when added.
We restrict ourselves to linear cuts.
A cut a = (g, ,a,) € R™ is valid, where the set of feasible solutions is Zy and:

n
g aixi < g, Vx € Iy, where x = (xg, -+, X,)
i=1

7

xLP

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 2

Cut selection TV Zy

The purpose of cuts is to tighten the linear programming (LP) relaxation.
Cuts sometimes called separators, as they're often generated by separating specific
points (x.F).

n
E aixt? > ag, where x' = (xtP ... xtP)

i=1

Given the set of generated cuts S’ = {a,- -+ , g}, find a subset S C &' to add to
the formulation. That is the cut selection subproblem.

Con of adding all cuts: Large computational burden when solving larger LPs at each node
Con of adding no cuts: Substantially more nodes needed to solve to optimality

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 3
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Existing literature for cut selection I/ Z!B/

Older comprehensive computational experiments on cut selection:

» Constraint integer programming - Achterberg, 2007, PhD Thesis
» Embedding {0, 1/2}-Cuts in a Branch-and-Cut Framework: A Computational Study -
Giuseppe et al, 2007, doi 10.1287 /ijoc.1050.0162

P Implementing cutting plane management and selection techniques - Wesselmann et al, 2011

Summary: Cut selection best as cheap heuristic. Filtering parallel cuts is most important.
Recent machine learning experiments on cut selection:

P Reinforcement learning for integer programming: Learning to cut - Y. Tang et al, 2020, MLR Press

P Learning to Select Cuts for Efficient Mixed-Integer Programming - Z. Huang et al, 2021,
https://doi.org/10.1016/].patcog.2021.108353

P Adaptive Cut Selection in Mixed-Integer Linear Programming - M. Turner et al, 2022
Summary: Improvement is possible, but non-trivial and difficult to generalise.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 4

Cut selection rule in SCIP W Zy

Cuts are scored as a weighted sum of measurements.

Efficacy - Distance between cut and x-F.

Directed cutoff distance - Distance between cut and x-” in the direction of some primal
solution X.

Integer support - Ratio of non-zero coefficients that are for integer valued variables.
Objective parallelism - Absolute cosine similarity measure between cut and objective.

Ak eff + Ay kdecd + A3 isp+ A\g*xobp, A1+ X+ A3+ N =1,
Ai>0 Vie{l,2,3,4}, A=][\, 2, A3, \q]

Algorithmic Idea: Add highest scoring cut. Filter all parallel cuts. Repeat until no cuts.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 5
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Example of worst-case performance “ﬁ Z!B/

Questions:

» Can a grid-search of the parameter space miss all cut selector parameter values that
would quickly solve an instance?

» Can this be extended to an infinite family of instances, all of which only solve
quickly for values outside the grid-search?

» Can this infinite family be made to, no matter the grid-search, have an infinite
subset of instances that do not solve quickly?

Answer: Yes. By choosing a simplified cut selection rule, and disabling all other solver
settings (e.g. branching), we manage to prove this.

Is this useful: It's incredibly cool. It motivates the need for adaptive cut selection if these
fringe cases are to be handled. Modern solvers are so interconnected however, that
proving this for practical solving processes is impossible.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 6

Learn mapping from MILP instances to A N1/ ZBJ

That is, can we learn a function that outputs values {1, A2, A3, A\g}, which induce
optimal solver performance for the input instance.

Computational setup:
» Force 50 rounds of cuts
» Select exactly 10 cuts per round
» Stop solve process after the 50 rounds of cuts
» Enable all cut generators

P> Test-set MIPLIB 2017. Filter out all numerically troubling instances. Root solve
must take at most 20s and be non-optimal with standard parameters.

» Use MIPLIB solution as primal
Default constant SCIP 8.0 parameters: [1.0, 0.0, 0.1, 0.1] (eff, dcd, isp, obp)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 7
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Parameter sweep (Experiment) W 2

Improvement measure: Relative improvement of gap closed compared to run using
standard cut selector parameters.

Experiment: Get the best improvement per instance with parameters from the following
grid-search:

4
Z)\,- =1, where )\, =

i=1

@, gieN, Vie{l,23 4}

10

Aim: Provide a lower bound on the potential improvement gain. In a perfect world, our
learnt function will be at-least as good as a grid-search approach.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming

Parameter sweep (Results)

0.4

Fraction of instances
o
(9]

°
w

0.2
0.1 . . .

------ Median relative GAP improvement = 0.0958
00 4 i i e Mean relative GAP improvement = 0.1866

0.0 0.2 0.4 0.6 0.8 1.0
Maximum relative GAP improvement (best parameters per instance in grid search)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming
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Phrase problem using reinforcement learning I/ Z!B/

We formulate our problem as a single step Markov decision process.

Initial state: MILP instance post-presolve, but before any cuts are added.

Terminal state: MILP instance after 50 rounds of cuts.

Action: Decision of cut selector parameter values followed by applying 50 round of cuts.
Reward: Relative gap improvement compared to standard cut selector parameter values.

Additional Info:
» Actions drawn from a normal distribution, modelled as a graph neural network.
» Only use static features. All information is available before first LP solver.
» Approximate instance distribution using sample average approximation on MIPLIB.

» Evaluate trained network using mean of distribution.

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 10

One model per instance (Overfitting results) ] Zy

0.5

Fraction of instances

-+ Median relative GAP improvement = 0.0418
0.0 cE L Mean relative GAP improvement = 0.0895

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
Relative GAP improvement (generated parameters)

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 11
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Single model for all instances (Results) TN Z!B/

1.0
0.9
0.8
307
o
c
& o6
|7}
£
5 0.5
c
S04
8
T 0.3
0.2
0.1
Median relative GAP improvement = 0.0175
0.0 Mean relative GAP improvement = 0.0604
-0.9 -0.7 -0.5 -0.3 -0.1 0.1 03 0.5 0.7 0.9
Relative GAP improvement (generated parameters)
M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 12

Thanks for listening! T Zy

If interested and would like more details, please feel free to email me at turner@zib.de or
read the paper this presentation was based on:

Adaptive Cut Selection in Mixed-Integer Linear Programming, 2022
M. Turner, T. Koch, F. Serrano, M. Winkler
Preprint: https://arxiv.org/abs/2202.10962

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming 13
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Outlook / Future Research TN Z!B/

Explore non-linear cut selection rules

Explore different set of cut measurements

>

>

» Directly rank cuts with learned model

» Learn additional parameters in combination with cut selector parameters
>

Define better standards of improved solver performance

M. Turner Adaptive Cut Selection in Mixed-Integer Linear Programming
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A Quadratic Programming Approach for
Performance Analysis of Energy Systems
Ryohei YOKOYAMA

Department of Mechanical Engineering, Osaka Metropolitan
University, Japan
ryokoyama@omu.ac.jp

The optimization of energy systems for their design and operation necessitates the
analysis of their performances under many different conditions. To analyze static
(steady) and dynamic (unsteady) performances, it is necessary to solve nonlinear
algebraic equations and nonlinear differential algebraic equations, respectively [1, 2].
Nonlinear equations have been solved conventionally by the Newton-Raphson method,
where the solution of linearized equations is repeated until convergence. On one hand,
however, the Jacobian matrices may not be regular because of network structures and
operating conditions of systems. On the other hand, they may not be calculated because
of violated restrictions on variables used for equations. It is a burden for analysts to take
account of avoiding these situations in modeling systems. Thus, an alternative approach
is necessary to reduce the burden. The singular value decomposition approach, which
derives least squares and minimum norm solutions, can resolve the former situation, but
cannot resolve the latter situation. In this work, a quadratic programming approach will
be proposed to derive least squares and minimum norm solutions under restrictions on
variables. Some examples will be presented to show the effectiveness of the proposed
approach.

References

[1] Ryohei Yokoyama, Shinsuke Takeuchi, and Koichi Ito, “Thermoeconomic Analysis and
Optimization of a Gas Turbine Cogeneration Unit by a Systems Approach,” Proceedings of the
ASME Turbo Expo 2005, Paper No. GT2005-68392, pp. 1-7, 2005,
https://doi.org/10.1115/GT2005-68392

[2] Ryohei Yokoyama, “Performance Analysis and Optimization of a CO, Heat Pump Water
Heating System,” Xin-Rong Zhang and Hiroshi Yamaguchi (Eds.), Transcritical CO, Heat Pump:
Fundamentals and Applications, Chapter 9, pp. 249-282, 2021, John Wiley & Sons,
https://doi.org/10.1002/9781118380055.ch9
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Introduction (1)

O Background

Importance of optimizing design and operation of
energy systems to save energy and global environment

Necessity of grasping performance of energy systems
under many different conditions

Necessity of solving nonlinear algebraic equations and
nonlinear differential algebraic equations for static
(steady) and dynamic (unsteady) performances,
respectively

Newton-Raphson method used conventionally to solve
nonlinear algebraic equations causes troubles
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Introduction (2)

Singular value decomposition method can avoid some
of troubles

O Objectives

Proposal of quadratic programming method in place of
singular value decomposition method for Newton-
Raphson method in performance analysis

Presentation of some fundamental examples to show
effectiveness of proposed method

Example of energy systems: 4
CO2 heat pump water heating system (ECO CUTE)

Mixing
valve General hot
[——————— 20 water supply
Outlet I——___'O

[
| i |
I | Heat
I I”? I exchanger Bath hot
I I I [ | water supply
| Iy I v | |
: . | —
COy Hot water I L. I9 A - =
heat storage L 1 Bathtub
pump tank Extracted | I Bath
water . i
f | I I heating
| < | I Pump
I I . | Water disposal
| Inlet | I I
: water I_ | Pump I
L._.@._.. _ .__@__5__l
Pump e — Feed water
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Fundamental equations for performance analysis

O Component equations
Mass, pressure, and energy balances
Other performance characteristics

O Connecting conditions
Mass, pressure, and energy balances

O Boundary and ambient conditions
O Operation and control conditions

O Initial conditions (only for dynamic analysis)

Static (steady) analysis of energy systems

O Formulation by nonlinear algebraic equations

= (xla Loy **y %)T }

f = (fla f27 T fn)T

flx)=0
O Solution by Newton-Raphson method
~1
9,
Lat+1) = Loy — —f(m(z)) f(m(z))
oz
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Dynamic (unsteady) analysis of energy systems (1)

7

O Formulation by nonlinear differential algebraic equations

f = ( 1) f27 T n+m)T
X = (le X27 R Xn)T

Dynamic (unsteady) analysis of energy systems (2)

8

O Solution by hierarchical combination of Runge-Kutta

and Newton-Raphson methods
F(2(t) + & kAL &)y Yy EF KAL) =0

Loy | _ [
Ya+1) Yo

of : .
— —(az(t) + &,k AL 20y, Yoyt KAL),

oz
of : :
a—y(w(t) + &, k) AL &gy, Yoy T KAL)
X f(a(t) + dy, bk AL &gy, Yoy, E KAL)
(r=1,2 - ;1=12 -)

-1

187




General-purpose tool for performance analysis

Numerical simulation for performance analysis
of CO2 heat pump water heating systems

Numerical simulation for dynamic/static analysis
of energy systems

Building block modeling for dynamic/static analysis
of network-structured systems

Solution of nonlinear differential/algebraic equations
by Runge-Kutta and Newton-Raphson methods

Possible troubles in numerical computation

10

O Trouble 1: Singularity of Jacobian matrices
Circulating fluid flows — Redundant mass balances

Products of mass flow rates and temperatures as heat
flow rates in energy balances — Indefinite temperatures
with zero mass flow rates

O Trouble 2: Violation of physical and mathematical
limits for values of variables

Initial values of variables far from those after
convergence — drastic changes in values of variables

Changes of operational modes — drastic changes in
values of variables
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Measures to avoid troubles in
numerical computation

11

O Modeling without troubles

Trouble 1: Removal of unnecessary variables and
equations = Increase in burden for modeling and
difficulty in systematic way

Trouble 2: Setting of appropriate initial values of
variables close to those after convergence = Increase
in burden for modeling and difficulty in systematic way

O Solution without troubles

Replacement of solution method = No burden for
modeling and easiness in systematic way

Singular value decomposition (SVD) method
(for static analysis)

12

O Equations to be solved

0
_i@m
ox

~—

(%H) - %) = —f(=)

O Least squares and minimum norm solution

ﬁ(xm) —Uxv?

|10z

Ty — Ty = — [V( VTV)‘l}ZJ‘l [( U'u)ut| f(z,)
= - VXU f(x)
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Quadratic programming (QP) method 13
(for static analysis)
O Least squares solution
min. ||""1+1 ||2
of
sub. to | == (ay)) (%H) - *”’(0) ~ Ty = —flzp) |
ox
<ty =T
TS T ST
O Minimum norm solution
min. |2, — @)l
of
sub. to | —= (=) (3'3(1+1) - 5'3(1)) = —f(zy) + 101
oz
TS T ST
14

Example 1: Mixing of fluids (Problem)

ml , Tm mi)ut’ Tout
é
Fluid 1

Fluid 2
_>

. in in out out
m2 5 7—‘2 m2 9 T

* Number of variables
without derivatives = 6

* Number of equations = 6

minch + Ql — mfuth-ylout

. in out

m =My
out

m2 = 1y

in N . out out
my cTy" 4+ @y = my T,

out
+ my

t t
mlou c iz'vlou +

out __

. in
= My
out Tout _

in in
1y cTy
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15
Example 1: Mixing of fluids (Results)

SVD/QP method

8 T . 100
= —e— Mass flow rate
© —e— Temperature ] 80
- 6 — Rank o
s . / . 5
Pt ¢ 460 &
¢ 4 3
2 140 €
= 2
2 2 / ’ 120
S
=

0 ¢ 0

0 1 2 3
Iteration
Example 2: Water heating, storage, 16

and supply (Problem)

. out out . tin tin . tout tout
yp, Tap  Tgr, Tgr gy s Tgr . out

m
Myp = Myp
. in in 0 __ . .out out
Hot water MypC Tap + Qup = MgpcTyp

. tin . bout
Y Mgy = Mgy
. bin . tout
Heat Storage | - Mgy = Mgy
ST _ . tin tin . bout bout
pump tank mSTC(dTST/dt) = mgrcTyr — Mgy ¢Tgy
- . bin bin - tout tout
A Qup A + mgpclsy —mgp ¢Tgr
Feedwater - USTAST( Ty — Tamb)
. in Tin . bout Tbout . bin Tbin 7751?19ut == TST
Myp, Ltyp Mgt » LgT Mg, LgT tout
- T ] Tsr = Tgy
* Number of variables cout o tin

Myp = Mgr

with derivatives = 1 out _ ptin
. HP — +ST
* Number of variables ppbout _ 5in
without derivatives =9 ST HP

Tbout — Tln
* Number of equations =11 57 HP
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Example 2: Water heating, storage,
and supply (Results)

17

Example 3: Heat exchange of fluids (Problem)

—— —
SVD/QP method
12 T T 0.02 0.30 T T 55
4
§10— o o025l
° g2 1)
S 8r 4 000 5 © 0.20 50§
o —=— Temperature change o = ©
© 6 —*— Heat flow rate 52 015} —— Mass flow rate Q
= —=— Rank ®© @ —s— Temperature €
S 4 -4-0.02 g_g 0.10\ -45|°_’
1) €
§ 2+ ,“_’ 0.05
0 4 -0.04 0.00 4 40
1 2 3 0 1 2 3
Iteration Iteration
18

in
ml,T my

out Tout

‘

<

Fluid 1 ¢ AT,

. Heat
Q exchanger
AL A Fuide2
mfllt, Tout m2 , Tll’l

* Number of variables

without derivatives =7

* Number of equations =7

.in __ . out
me=my
in in N . out out
my ¢ +Q =my ey
. in . out
mz = My

1n Tln Q mout Tout
Afrl — 1120ut o Trlm
AT2 — Tin . 1‘110ut

Q=UA ZJATAT 1 AT + AT,
3 3

2
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Example 3: Heat exchange of fluids (Results)

SVD method QP method
T T T T 100 8 T T T T 100
< —e— Mass flow rate —o— Mass flow rate
®© ——Temperature Jgn o —e— Temperature | g —
- —e— Temperature % o 6 —s— Temperature %
% difference 02 © difference )
o —— Heatflow rate 4 60 5 ‘@ = —— Heatflow rate {60 5 ‘é
b= —o— Rank T = g 4 —e— Rank T =
= {40 88 g9 140 32
S §5 = o 88
ﬁ 420 + 2 2 (20 + 2
=
1 1 1 1 0 O O
2 3 4 5 6 0 1 2 3 4 5 6
Iteration Iteration
20

Conclusions (1)

O Main resulis

Proposal of QP method in place of SVD method for
Newton-Raphson method in performance analysis of
energy systems

Applicability of SVD method in many cases except in
case that values of variables violate their limits

Applicability of QP method in place of SVD method in all
cases

Unsuitability of QP method for dynamic analysis because
of longer computation time

Recommendation of applying SVD method primarily and
QP method conditionally
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Conclusions (2)

21

O Future work

Incorporation of proposed method into general-purpose
tool for performance analysis

Application of proposed method to static and dynamic
analysis of several energy systems
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Given a finite set X of n items, a complete order (permutation) of the items is called
a ranking of X. A ranking distribution over X is a collection of rankings of X. Most
existing models are classified into two groups; distance based and utility based. The
former assumes the probability of a ranking depends on the distance from the central
ranking, while the latter assumes the existence of the global utility value for each item
which is independent of raters. We introduce a high-fidelity model of a ranking
distribution utilising a novel geometric idea based on the hyperplane arrangement. We
will also discuss efficient learning and sampling algorithms ([1]).

References
[1] Shizuo Kaji, Akira Horiguchi, Takuro Abe, Yohsuke Watanabe, “A Hyper-surface Arrangement Model of
Ranking Distributions”, KDD "21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 796--804, 2021, https://doi.org/10.1145/3447548.3467253
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Modelling Preference
with
Hyperplane Arrangement

Shizuo Kaji
joint with A. Horiguchi, T. Abe, Y. Watanab

Summary

0b'|ective: construct a geometric representation of ranking data
000 items -

Decision boundary

— 0.0
\ (dixalmdixb)
c>b>a
00

) (dtbled(xcl)

Ranking data

partial orders on items

0.0
{dlncimdixa))

Uniform sampling from the distribution
Uniform sampling from M

b>a>c

An embedding of items into a metric space M defines equidistant hyper-surfaces, which divide M into cells.
We find such an embedding, where the volume of each cell is proportional to the probability of the corresponding ranking.

Application to real world data

The distribution over complete rankings on n items is n! dimensional
Each judge may provide only a partial ranking (not a full ranking)

Representation capacity of our mode

Histogram of ranked positions

)
[ model ] SUSHI3-2016 dataset consists
Complex, multi-modal ik of rankings by 5000 judges on
distribution of the 1. ba k 10 sushi items.
data s captured well 'y Edd dd )
by the model | ] ™ l | 4 | I l Our model visualises some
LT - IRRRERERRRR characteristics of the
: 0 ' r population’s preference
Many people rank Fatty tuna first or high. People love or hate Sea urchin.
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Preference

o Each judge has his or her own preference
o A judge may not know (or reveal) preference among some items

More formally,

B: a set of items { > [ tuna } >[ egg ]>[ cucumber

salmon
tuna
=L

A partial ranking of B

{[solmon]>[ egg } , [ tuna }>[ cucumber |

o Preference among the set of items can be modelled by an order on B

o An order can be partial;
e.g., in the second case above, we do not know if egg > tuna or tuna < egg

o Preference depends on judges
(A judge is not necessarily a human but a criterion such as price and nufrition)

o Ranking data consists of rankings by many judges
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Definition of Order (Ranking)

oA partial order on a set B satisfies
oa < b and b > a do not occur at the same time
ca<bandb<cimplya<c

oA total order on B further satisfies
ca>borb>aora=bforanyab eB

oAn order is described by a set of pairwise comparisons

ex. { a>b, b>c, a>d }

o remark: a partial order = transitive closure of an acyclic directed graph
In this talk:
complete (or full) ranking = total order
incomplete (or partial) ranking = partial order

Ranking data given by

a collection of pairwise comparisons
judge higher lower

0 a o) .
Ranking data
0 b d =
rankings by many judges
0 a C =
Pairwise comparisons
1 d o associated with judges
1 d a
C a
2 b C
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Remark: Various problems occur as
special instances of ranking inference

Penguin > Puffin > Pigeon > ... > Cat

» Probability/confidence

Classifier + Data give rise to a ranking data
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Goal Today

Constructing a geometric model for ranking data (a set of partial rankings)

Assumptions:
o Judges are indistinguishable (i.e., the data is just a set of partial rankings)

o Each incomplete ranking can be completed
(i.e., each judge has an unknown complete ranking)
These mean that the data is represented by a probability distribution over
the permutation group S, of nitems (| B |=n).
We call such a distribution a ranking distribution on n items

Two main difficulties:
(1) A probability distribution over S, is (n!-1) dimensionall
(2)How can we complete an incomplete ranking?

Existing models for ranking distribution

Two popular and basic models are

> Mallows’ ¢ model It has the mode at wy and the

probability decrease as the
°P(w) o« exp(—0dyx(w,wo)) wES, distance from w, increases.
o Parameters: 8 > 0,w, € S,

ody is a distance on §,, (e.g. the Kendal tau distance)

o Plackett-Luce's model
. o a(wj) Each item has a utility value
Bl e Hi:lz}gm a(wj) 778 5 and selected one by one
s Parameters: a:X — R according to the value
. . >0

[ ]
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Geometric model in general

oRepresentation learning is a field of research to find a
representation of (implicitly) structured objects.

oThe representation space often admits geometric structures.
(e.g., Euclidean space and other metric spaces)

word

‘ Points in a metric space ‘

graph

Ex. Graph representation translates a combinatorial structure (adjacency)
to a geometric one (metric)

Equidistant Line Arrangement on plane

Decision boundary
avsb
(Ix-al=|xb])

bvsc
(Ixb|=[xc]|)

cvsa
(Ixc|=|xal)

c>a>b |- Each compartment corresponds fo a

b>c>a total ordering
» They are subdivision of Voronoi cells
esbhse c A pomol ordering corresponds to the
union of compartments
e (e.g., the Voronoi of a = {a>b and a>c})
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Equidistant Hyper-surface Arrangement

Decision boundary

avsb
Riemannian (d(x.q)=d(x.b))
manifold M bvs ¢
(d(x.b)=d(x.c))
cvsa

(d(x.c)=d(x.a))

Uniform sampling from the distribution

Uniform sampling from M

Our model is an equidistant hyper-surface arrangement such that
the volume of each cellis proportional to the probability of the corresponding ranking.

Learning Algorithm L e
Optimising coordinates in M of T SR
both judges and items by minimising * = o B & :

Triplet loss \ g% @& T -

Ly = Z Z max(d(b,uw) — d(b,u),—€) * T @ . B e B 2

UeX bi>ubj ’r \o . S . .
\ N - ° . .
Coulomb’s po’ren’iiol ¢ N . .
LR =] — ” ' \\\ . ; 2 = % .
= d(uyuy) . \ E = &
Target function: L = Ly + A(t)Lg . h ‘ o B "
First, place judges in the right cells by Ly “

90 judges prefer item 0, 10 judges item 1

Later, adjust volume by Lg M = disk
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Dimension constraints

Noft all arrangements can be realised as equidistant arrangement.

(e.g., three equidistant lines of a triangle meet at the circumcentre)

Theorem
An equidistant arrangement in D™ of (generic)
n points, we have n! cells if and only if n-2 <m.

o This gives a clue on the choice of the embedding dimension m.
oNote that the dimension of the representation space is mn.

L

EXPERIMENTS
WITH SUSHI DATASET
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The SUSHI3-2016 dataset

o Consists of complete rankings of 10 items by 5000 judges
o Collected by T. Kamishima et al.
o Available at

Learning the model

o We chose M = D° as the metric space.
o The theorem suggests dim =|B|-1.
o The results was almost same for M = D10

o |t fook about two hours on Ryzen 2990WX.

o Visualisation was interpretable:
o Fatty tuna has a large Voronoi region
o Egg and Cucumber are similar and not
popular

o Sea urchin and Salmon roe are similar and
distinctive

PCA projection of D?
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Representation capacity: ranking position

' 10 ! 10
Many people rank Fatty tuna first or high. People love or hate Sea urchin.

Complex, multi-modal distribution is captured well by the model

Representation capacity: conditional probability

data
Q12
0.150 mOdeI alo

0125
0.100
0.075
0.050

0.025

1 for judges with egg > tuna - 1 for judges with tuna > egg 10

The ranked position of eel (non-raw) depends heavily on
judges’ preference between tuna and egg,
which the model successfully captures.
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Generalisation capacity

Input: Each judge reveals his or her ranking of, say, four items.
Output: The distribution for all fen items

The probability of a>b>c>d>e>f>g>h>i>jis 0.01
Judgeu:a>c>b>d

The probability of b>f>e>i>j>a>g>h>d>c is 0.02
Judgev:e>g>d>b

This can be used for prediction:
For example, “what is the conditional probability of
g being ranked in the first by a judge with a>c>b?e”

Evaluation metrics for top-4 rankings
o 2 4 6 8 10 model Uniform Plackett-Luce
Corr | 0.165 0.795 0.840 0.868 0.886 || Corr | 0.025(+0.058) 0.436
sKL | 0.370 0.154 0.150 0.142 0.121 || sKL | 0.388(£0.001) 0.283
W 2502 0.832 0.770 0.666 0.457 W 2.51(40.110) 2.03

Each judge revealed a partial ranking among « items out of 10.
Evaluated for the top-4 ranking with N

o Correlation of probability (higher is better) How to interpret:
. . : If you are given the ranking of a = 4
o symmetrised KL-divergence (lower is better) random items from each judge

> Wasserstein distance (lower is better) (the choice of four items varies for
each judge), you can tell the

population’s top-4 ranking
. distribution fairly well (corr = 0.795). 4
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Conclusion

A model for ranking data which
ohas high representation capacity

outilises a geometric structure as regularisation

ois relatively low dimensional

ois easy to sample from

ois mathematically interesting
occomes with an implementation:

https://github.com/shizuo-kaji/rankLearning

Open problem

o Parametrisation of arrangements
o Efficient sampling under a condition
o Stricter bounds for embedding dimension

o Choice of the ambient manifold O

o Combinatorics of arrangement as a topological invariant
(c.f. the homotopy type of the configuration space
can sometimes distinguish homeo types)

o Optimal transport on S,
(e.g., how the combinatorics helps computation?)

o Generalisation to partial rankings
o Evaluation by myself by eating a lot of sushi

213 231

123 321

132 312

Toy example of S!
Always antipodal
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Convex integer optimization with
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Mixed-integer nonlinear optimization is a broad class of problems that feature
combinatorial structures and nonlinearities. Typical exact methods combine a branch-
and-bound scheme with relaxation and separation subroutines. We investigate the
properties and advantages of error-adaptive first-order methods based on the Frank-
Wolfe algorithm for this setting, requiring only a gradient oracle for the objective
function and linear optimization over the feasible set. In particular, we will study the
algorithmic consequences of optimizing with a branch-and-bound approach where the
subproblem is solved over the convex hull of the mixed-integer feasible set thanks to
linear oracle calls, compared to solving the subproblems over the continuous relaxation
of the same set. This novel approach computes feasible solutions while working on a
single representation of the polyhedral constraints, leveraging the full extent of Mixed-
Integer Programming (MIP) solvers without an outer approximation scheme.

(joint work with Deborah Hendrych, Hannah Troppens, Mathieu Besangon)
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What is this talk about?

Introduction

A mixed-integer convex optimization method
based on conditional gradients.
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What is this talk about?

Introduction

A mixed-integer convex optimization method
based on conditional gradients.

Why? Conditional gradients generate sparse iterates, leading to lower fractionality, and hence
less branching.

Today: A brief overview of approach and solver.
Outline
® Recap: Conditional Gradients a.k.a. the Frank-Wolfe algorithm

® Mixed-Integer Conditional Gradients
® Julia Package Boscia.jl

(Hyperlinked) References are not exhaustive; check references contained therein.
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Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—The Basics—
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:

min f(x) (baseProblem)
xeP
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Source: [Jaggi, 2013]
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:

min f(x) (baseProblem)
xepP

. Very versatile model

A 0O N =

Source: [Jaggi, 2013]

. Can use various types of information about both f and P
. Works very well in (continuous) real-world applications

. At the core of many (all?) learning algorithms (albeit mostly non-convex case)
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:

min f(x) (baseProblem)
xeP

Our setup.

Source: [Jaggi, 2013]

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

X <— argmin c’

veP
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Given a smooth and convex function f and a polytope
P, solve optimization problem:

min f(x) (baseProblem)
xepP

Our setup.

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

X <— argmin clv.
veP
2. Access to f. First-Order Oracle (FO): Given x return

Vif(x) and f(x).
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The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a polytope
P, solve optimization problem:

min f(x) (baseProblem)
xeP

Our setup.

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

X <— argmin clv.

veP
2. Access to f. First-Order Oracle (FO): Given x return

V£(x) and f(x).

= Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients
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Interlude: why LMOs?

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

LMO model has many advantages.

1. Includes explicit formulation via constraints

2. Some problems do not posess ‘small’ formulations but have efficient LMOs.
Example: Matching Polytope [Rothvoss, 2014, Braun and Pokutta, 2015a,b, Braun et al., 2015, 2017a]

3. Allows modeling of compact convex constraints as long as we have an LMO.
Example: SDP cone

4. Often much faster than projection.
Example: nuclear norm. Largest singular vector (Lanczos method) vs. full SVD
5. LMO is a black box for the algorithms

6. For many LMOs of interest close form solutions available.
Example: {1-ball for LASSO regression.

For an overview see: [Combettes and Pokutta, 2021]
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R — R be a differentiable function.
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R” — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

fy) = f(x) 2 (Vf(x),y = x) .

In particular, all local minima are global minima.
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R” — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

fly) = f(x) 2 (VF(x),y = x).

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

1) = 100 < (Y100, = x) + 5y = xIP.
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The basic problem

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : R” — R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

COMVEXITY AND SMOOTHNESS
\ | |

fy) = f(x) 2 (Vf(x),y = x) .

e, ' \ ;smmwsss
. I J N \ "
In particular, all local minima are global minima. N\ \ //
TN b o
- f\ ‘\ / /
Definition (L-Smoothness) | oty \ /
For all x, y it holds:
CONVEXITY
x
L 2
fy) = 00 < (VEK),y = x) + Sy = xII%.
Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 5/23

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: xp € P
2: fort=0to T —1do
3 vy < argmin(Vf(x¢),v)
veP
4
5

X1 < Xt + Ve(ve — Xt)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 6/23
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xo € P

2. fort=0to T —1do

3 v; < argmin(Vf(x;), V)
veP

4 X1 < Xt + Ve(ve — Xt)

5: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: xp € P
2: fort=0to T —1do
3 vy «—argmin(Vf(x;),v)
veP
4
5

X1 < Xt + Ve(ve — Xt)
: end for

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xo € P

2. fort=0to T —1do

3: Vi «— arg mip(Vf(xﬂ,v)
ve

4 X1 < Xt + Ve(ve — Xt)

5

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: xp € P
2: fort=0to T —1do
3 vy < argmin(Vf(x¢),v)
veP
4
5

Xt — Xt + yi(ve — Xxt)

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xo € P

2. fort=0to T —1do

3 v; < argmin(Vf(x;), V)
veP

4 Xpp1 — Xt +pe(ve — Xt)

5

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: xp € P
2: fort=0to T —1do
3 vy < argmin(Vf(x¢),v)
veP
4
5

Xt — Xt + yi(ve — Xxt)

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xo € P

2. fort=0to T —1do

3 v; < argmin(Vf(x;), V)
veP

4 Xer1 < X¢ + yi(ve — Xt)

5

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:

® Extremely simple and robust: no complicated data structures to maintain
® Easy to implement: requires only the two oracles
® Projection-free: feasibility convex combination and LO oracle.

® Sparsity: optimal solution is a convex combination of (usually) vertices.

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 6/23

The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xp € P

2: fort=0to T —1do

3 vy < argmin(Vf(x¢),v)
veP

4

5

Xt+1 < Xt + yt(ve — Xt)

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:

® Extremely simple and robust: no complicated data structures to maintain
® Easy to implement: requires only the two oracles
® Projection-free: feasibility convex combination and LO oracle.

® Sparsity: optimal solution is a convex combination of (usually) vertices.

Disadvantages:
® Suboptimal convergence rate of O(1/T)
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The Frank-Wolfe Algorithm

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)

1: xo € P

2. fort=0to T —1do

3 v; < argmin(Vf(x;), V)
veP

4 Xer1 < X¢ + yi(ve — Xt)

5

: end for Vi

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:

® Extremely simple and robust: no complicated data structures to maintain
® Easy to implement: requires only the two oracles
® Projection-free: feasibility convex combination and LO oracle.

® Sparsity: optimal solution is a convex combination of (usually) vertices.

Disadvantages:

® Suboptimal convergence rate of O(1/T)

= Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.
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Simple Convergence Proof

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y: = %

2LD?
f(xt) — F(x*) < .
t+3
Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 7/23
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Simple Convergence Proof

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %

21 D?

f(xt) — f(x*) < s

Proof Sketch.
By smoothness:

L Ly?
f(xe1) — F(xe) < (VF(Xe), Xer1 — xe) + §||Xt+1 = xtl? = e (VEXe), v = Xe) + TtHVr - xtll?.
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Simple Convergence Proof

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y: = %

21 D?
t+3

f(xt) — f(x*) <

Proof Sketch.
By smoothness:

p L 2 LVIZ 2
(1) = F(xe) < (VF(Xe), Xt — Xe) + §||Xt+1 = xtll® = e (Vi(xe), ve = xe) + T”Vt =xl°

LP maximality and convexity: (Vf(x;), vi — x;) < (Vf(x¢),x* —x;) < f(x*) — f(x;). Moreover, ||v; — x¢|| < D.
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Simple Convergence Proof

Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)

Let f be L-smooth convex, P be polytope with diameter D. With choice y; = %

21 D?
t+3°

f(xt) — f(x*) <

Proof Sketch.

By smoothness:

L Ly?
f(xe1) — F(xe) < (VF(Xe), Xer1 — xe) + §||Xt+1 _Xt||2 = e (VF(xe), vi —xt) + Tt”Vt —Xt||2~

LP maximality and convexity: (Vf(x;), vi — x¢) < (VF(xt), x* — xt) < f(x*) — f(x;). Moreover, ||v; — x¢|| < D.
Thus: "
LD

fxee1) = F(X*) < (1 = ye)(F(xe) = F(X7)) + ¢ >

]
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Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm
Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice y; = +25:
2LD?
f(x¢) — f(x™) < .
(x1) = x) < =
Proof Sketch.
By smoothness:
L 2
L 2 _ Vi 2
F(Xt41) = F(xt) < (VF(xe), Xe1 —Xe) + §||XI+1 =xt|l® = ye (VI(xe), ve —xt) + a [lve = xe|I=.
LP maximality and convexity: (Vf(x;), vi — x;) < (Vf(x¢),x* —x;) < f(x*) — f(x;). Moreover, ||v; — x¢|| < D.
Thus:
. . IDE
Fxest) = Fx°) < (1= y0)(F0) = FO) + Y=
By Induction (plugging in the guarantee + definition of y;):
2\ 2LD? 4 LD? 2LD?(t+2) _2LD?
f -fx)<ft-—=l—=+——=—< —
(1) (X)—( t+3)t+3 t+32 2 (+37 ~t+4’
by (t +2)(t + 4) < (t + 3)2.
O
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Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015, Lan and Zhou, 2016, Garber and Meshi, 2016]
2. Non-convex case [Lacoste-Julien, 2016]
3. Online case [Hazan and Kale, 2012]
4. Stochastic variants and adaptive gradients [Hazan and Luo, 2016, Reddi et al., 2016, Combettes et al., 2020]
5. Sharp functions and sharp regions [Kerdreux et al., 2019, 2021a,5]
6. Acceleration [Diakonikolas et al., 2020, Bach, 2020, Carderera et al., 2021]
7. Specialized variants [Freund et al., 2017, Braun et al., 2017b, 2019b,a]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see our survey! [Braun et al., 2022]
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Mixed-Integer Conditional Gradients

—The Framework—
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Problem setting

Mixed-Integer Conditional Gradients

Basically. Smooth convex objective over MIPs.
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Problem setting
Mixed-Integer Conditional Gradients
Basically. Smooth convex objective over MIPs.
Slightly more general:
min f(x,y)
X,y
st.xeX
Xi€Z Vjed
yey
with LMO over (X N bounds) X Y.
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Three main algorithmic frameworks for MINLPs

Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

node < >bound

Standard BnB framework on top
of NLP relaxations.
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Three main algorithmic frameworks for MINLPs

Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

BnB

node
node < > bound

Standard BnB framework on top
of NLP relaxations.

fixings

solution’
bound

LP-based MINLP frameworks
and outer approximations
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Three main algorithmic frameworks for MINLPs

Mixed-Integer Conditional Gradients

Diamond blocks represent nodal relaxations in the given framework.

BnB

node < >bound

Standard BnB framework on top
of NLP relaxations.

LP-based MINLP frameworks
and outer approximations

Tree of trees or forest — Boscia (Corsican) = Forest.

BnB

n()(lt bunuv

gradier m dm ction

Our approach. Linearized models solved as MIPs
within the Frank-Wolfe algorithm on top of which
we branch

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 11/23
Branching: continuous relaxation (usual approach)
Mixed-Integer Conditional Gradients
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Branching: continuous relaxation (usual approach)

Mixed-Integer Conditional Gradients
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Branching: mixed-integer hull (our approach)

Mixed-Integer Conditional Gradients

[ Y ——Y

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 13/23

230




Branching: mixed-integer hull (our approach)

Mixed-Integer Conditional Gradients
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Branching: mixed-integer hull (our approach)

Mixed-Integer Conditional Gradients

[ Y ——Y

Open question.
Can we define adaptive criteria to choose relaxation?
(E.g., geometry of the feasible set, conditioning of the function)
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Reducing number of MIP oracle calls

Mixed-Integer Conditional Gradients

We use Blended Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]
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We use Blended Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]

® |azification. aggressively reuse old solutions
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Reducing number of MIP oracle calls

Mixed-Integer Conditional Gradients

We use Blended Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]
® |azification. aggressively reuse old solutions
® Blending. perform local steps for sparsity — low fractionality
® Active set. branching means simply splitting convex combination

® Discarded set. reuse solutions from previous nodes
® |Incomplete resolution and warmstarts. Less work per node

Does it help?
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Reducing number of MIP oracle calls

Mixed-Integer Conditional Gradients

We use Blended Pairwise Conditional Gradients (BPCG) [Tsuji et al., 2022]

® | azification. aggressively reuse old solutions

® Blending. perform local steps for sparsity — low fractionality

® Active set. branching means simply splitting convex combination
® Discarded set. reuse solutions from previous nodes

® |ncomplete resolution and warmstarts. Less work per node

Does it help?

Avg set size
LMO calls

1 B 11 16
Node depth

—®—  Active set —#— Discarded set —e— LMO calls

On average something like 7 to 10 sub-MIPs per node.

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 14/23

Reducing cost for each MIP

Mixed-Integer Conditional Gradients
Subproblems are MIPs. Leverage MIP advances:

® Cutting-planes

® Domain propagation
® Presolving

® Primal heuristics

® etc.
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Reducing cost for each MIP

Mixed-Integer Conditional Gradients

Subproblems are MIPs. Leverage MIP advances:

® Cutting-planes

® Domain propagation
® Presolving

® Primal heuristics

® etc.

Moreover, we can reuse information across solves heavily:

® MIP solver called with different objectives within node
® |dentical polyhedron with updated bounds solved across nodes
® All found primal solutions are valid for main problem
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Reducing cost for each MIP

Mixed-Integer Conditional Gradients
Subproblems are MIPs. Leverage MIP advances:

® Cutting-planes

® Domain propagation
® Presolving

® Primal heuristics

® etc.

Moreover, we can reuse information across solves heavily:

® MIP solver called with different objectives within node
® |dentical polyhedron with updated bounds solved across nodes
® All found primal solutions are valid for main problem

Question of MIP reoptimization: [Gamrath et al, 2015]

Which information should be (conditionally) transferred across instances?

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 15/23
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Boscia.jl

—The Code—

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 16/23

The package

Boscia.jl

® Julia package

® Based on Bonobo. jl (BnB package) and FrankWolfe. j1 (our FW package)
® Via MOT can use basically any MIP solver; some features specific to SCIP

® |ncludes other features such as hybrid branching

® Available under MIT license

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 17/23
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Example: Code

Boscia.jl

using Boscia

using FrankWolfe

using Random

using SCIP

using LinearAlgebra

import MathOptInterface
const MOI = MathOptInterface

const diffw = 0.5 * ones(n)
o = SCIP.Optimizer ()

MOI.set (o, MOI.Silent (), true)

X = MOI.add_variables(o, n

for xi in x

MOI.add_constraint (o, xi, MOI.GreaterThan(0.0))
MOT.add_constraint (o, xi, MOI.LessThan(1.0))
MOI.add_constraint (o, xi, MOI.ZeroOne())

end

lmo = FrankWolfe.MathOptLMO (o)
function f(x)

return sum(0.5x (x.-diffw)."2)
end

function grad! (storage, x)

@. storage = x-diffw

end

X, _, result = Boscia.solve(f, grad!, lmo, verbose =

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 18/23
Boscia.jl
a> include (*examples/low_din_in_high_din.31%)
Boscia Algorithm.
Paraneter setting
Move best bound
infeasible
ce: 1.000000e-
Relative dual g ance: 1.000000e-
k-Wolfe subproblem tolerance: 1
1 number of varibales: 1
Number of integer var
Number of binary variab
Iteration open Bound Incumbent Tine (s) Nodes/sec W (ns) MO (ms) LMO (calls c) FW (Its) #ActiveSet Discarded
B 1 -1.977958e+03 5. 3.278689€+00 3 10001 3 0
. 2 1 1 10001 17 o
. 1 2 6 10001 11 0
N 5 10 10001 12 0
. 3 11 10001 1 0
. 8 8 10001 6 2
. 1 s 10001 9 1
. 4887 1 8 10001 3 1
" 1.190200e-02 3. 5 10001 a 2
1.080967e-02 5.2 6 10001 2 1
9.868008e-03 6. 6 3
Optimal (tolerance reached)
57406
3
868007876175864
s / node: 11.64
Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 19/23
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Example: computational results: Sparse Regression

Boscia.jl

3.254 17500
12000 _
3.204 15000
10000
- ~ 12500 ,
8000 & 315 =
G 80 10000 &
G000 2 Upper bound ERE - Upper bound
K] Lower bound & 00 === Lower bound
4000 —— Total Imo calls 3.054 5000 —— Total Imo calls
2000 3.00 4 2500
0 2954 0
o 250 500 750 1000 1250 1500 0 500 1000 1500 2000
Number of nodes Number of nodes
High-dimensional sparse regression problem High-dimensional sparse regression problem
with l’o-constraints over mixed-integer feasible region.
Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 20/23

Thank you!

Preprint: arxiv.org/abs/2208.11010,
Convex integer optimization with FW methods [Hendrych et al., 2022]
Package available at github.com/ZIB-I0OL/Boscia.jl

In a nutshell. Minimize smooth convex objective over any MIP. Applications in engineering, sparse prediction models,
statistics, and relaxation of combinatorial problems.

Sebastian Pokutta - Boscia: Mixed-Integer Conditional Gradients 21/23
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Shota Takahashi
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Blind deconvolution is a technique to recover an original signal without knowing a
convolving filter. It is naturally formulated as a minimization of a quartic objective
function under some assumption. Because its differentiable part does not have a
Lipschitz continuous gradient, existing first-order methods are not theoretically
supported. In this presentation, we reformulate the objective function as a difference of
convex (DC) functions and add nonsmooth regularization. Then, we apply the Bregman
proximal DC algorithm (BPDCA) and the BPDCA with extrapolation (BPDCAe),
whose convergences are theoretically guaranteed under the L-smooth adaptable (L-
smad) property. BPDCAe outperformed other existing algorithms in image deburring
applications. This talk is based on [1] and [2].
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Difference of convex functions (DC) optimization

Definition (DC optimization problem with a regularization term)

Given convex functions Fy, F, G : RY — (=00, +00], consider the following DC optimizaion problem:
minC Fi(z) — Fx(z) + G(z), (1)

zedl
where F; is C1, and C € R? is a nonempty open convex set.
Exisiting algorithms (£% € OF,(z¥) is a subgradient of F, at z¥):
e DC algorithm (DCA): z*1 € argmin, ¢ c{Fi(z) — (¢¥,2) + G(2)}.
e |ts subproblem is computationally demanding unless F1 and G have simple structures.
e Proximal DCA: z<! = argmin, . c{(VF1(z¥) — €X,2) + G(z) + 2|1z — z¥[3}, A € (0, ).
e To guarantee its global convergence, it requires Fi is L-smooth (VF is Lipschitz continuous).
e When F; is not L-smooth (L cannot be defined), it is not practical.
o Bregman proximal gradient (BPG): z"*! = argmin, c{(VF(z¥), 2) + G(2) + 3+ Dn(z, z¥)}.
e The Bregman distance Dy (z,w) := H(z) — H(w) — (VH(w), z — w), where H is C' and convex.

e Does not require L-smoothness of F = F; — F, (when F; is also C').
1/14
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Today’s contents

Definition (DC optimization problem)

Given convex functions Fi, F, G : R — (—00, +o0], consider the following DC optimizaion problem:

i Fi(2) - F(2) + 6(2), &)

where F; is C1, and C € R? is a nonempty open convex set.

o Introduce proximal DCA using the Bregman distance.
o The Bregman distance Dy(z, w) := H(z) — H(w) — (VH(w), z — w), where H is C* and convex.
o The proposed methods converge to a stationary point of (1) under the L-smooth adaptable
property instead of L-smoothness.
o Application to blind deconvolution.
o For BPG, finding an appropriate H for F is difficult. Using DC decoposition, it is easier.

2/14

Proposed method: Bregman proximal DC algorithm

Bregman proximal DC algorithm (BPDCA) [Takahashi et al., 2022]

Input: z° € C, A > 0, and a convex and C! function H.

for k=0,1,2,...,:
Compute &X € OF,(z¥) and
ZzK — argmin {(VFl(zk) — &K 2)+ G(2) + %DH(z,zk)} . 2)
zecd C

BPDCA is a method combined with BPG [Bolte et al., 2018] and proximal DCA [Wen et al., 2017].
e Minimizes a first-order approximation of the objective function,
Fi(z) — Fa(2) + G(2) ~ (VFi(2") — £, z — 2¥) + Fi(2¥) — F(2¥) +G(2), (3)
const.
with the Bregman proximality }Dy(z,z%) = } (H(z) — H(z¥) — (VH(Z¥),z — Z¥)) as (2).
e Does not require the differentiability of G.
e When G has a sufficiently simple structure, such as G = || - ||, (2) is solved in a closed form.

3/14
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Proposed method: BPDCA with extraporation

The accelerated version of BPDCA.
BPDCA with extrapolation (BPDCAe) [Takahashi et al., 2022]

Input: z7! =22 C, A\ >0, t_; =ty=1, and a convex and C! function H.
for k=0,1,2,...,:
Set wk = zk + tk’tilk*l(zk —zK"1) and tyq = @.
Compute &X € OF»(z¥) and
k+1

V4
zecl C

= argmin {(VFl(wk) — &K 2)+ G(2) + %DH(Z, wk)} . (4)

Reset t,_; = t;, = 1 and wk = z¥ if either of the following conditions holds:
e k=0 (mod N), N € Nis given.

o Dy(z", wk) > pDy(z¥1, z¥), where p € [0,1) is given.
o wk¢ C.

4/14

Convergence analysis: Decreasing property

Definition (L-smooth adaptable (L-smad) [Bolte et al., 2018])

Let F,H:R? — (—00, +0c0] be C* and H be convex. The pair (F, H) is called L-smooth adaptable
(L-smad) if there exists L > 0 such that LH — F and LH + F are convex.

The L-smad property is a generalization of L-smoothness.
When H = 1| - |3, the L-smad property corresponds to L-smoothness.

If the pair (F1, H) is L-smad, the sequence of the objective function value W := F; — F, + G
generated by BPDCA is decreasing.

Lemma (Decreasing property [Takahashi et al., 2022])
Let {z¥}, be a sequence generated by BPDCA. Then, it holds that
AV(ZKY) < AW(ZF) — (1 — AL)Dy(2"+Y, 2). (5)

In particular, the decreasing property in the objective function value W is ensured with 0 < AL < 1.

5/14
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Convergence analysis: Global convergence

When the objective function is a Kurdyka-tojasiewicz (KL) function, the following theorems holds.

Theorem (Global convergence [Takahashi et al., 2022])

Let {z“}« be a sequence generated by BPDCA. Assume that the objective function is a KL function.

Then, {z}, converges to a stationary point 3.

Theorem (Rate of convergence [Takahashi et al., 2022])

Let {z¥}4 be a sequence generated by BPDCA and assume that {z*}, converges to a stationary
point Z. Assume that the objective function is a KL function with ¢(s) = cs*=? for some 8 € [0, 1)

and ¢ > 0. Then, the following statements hold:
e If @ =0, there exists kg > 0 such that z¥ is constant for k > kg (finite);

o If 0 € (0, 3], there exist c1, k1 > 0, and n € (0,1) such that |[zK — Z[|» < c1n* for k > ki (linear);

o If § € (3,1), there exist ¢ > 0 and kp > 0 such that [|z¥ — Z[|, < k™1 for k > kp (sublinear).

For BPDCAe, similar convergence results hold.
6/14

Blind deconvolution

Definition (Blind deconvolution)
Consider the convolution of a filter f € R™ and a signal g € R", given by

where * denotes the convolution. Our goal is to recover g from y without knowing f.

e Non-blind deconvolution: Recover g with known f.
e Blind deconvolution: Recover g and f simultaneously. It is a charenging problem.

Application: Astronomy, communication engineering, and image processing.

y f g

Figure 1: Recover the original image g from the blurred image y by removing the blurring kernel f.

7/14
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Optimization problem for blind deconvolution

For the linear operators B and A, assume that there exist the true (h°, x°) € R® x R® such that

f=Bh°, g=Ax° (7)
Applying the discrete Fourier transform /mF € C™*™ to both sides of y = f x g,
y = Bh° © Ax°, (8)

where y := ﬁF“\?, B := FB, and A := FA, and ® denotes the Hadamard (elementwise) product,
and ~ denotes the complex conjugate.

Definition (Optimization problem for blind deconvolution)

. 1 E———
nmin 511Bh © Ax — y||; +G(h, x). 9)
—_————

—F(h,x)
e F is nonconvex and not L-smooth.
o G:R™ xR% — (—00,+00] is convex and non-smooth (not differentiable) as a sparse regularizer.

e Use sparse regularization (for example, 1 norm) when h or x have sparse structures.
e [Li et al., 2019] used a smooth G using £> norm.

8/14

DC decomposition for blind deconvolution

Because F has a bilinear term 2 Re(Bh® Ax, y), it is difficult to find H satisfying the L-smad property.
— BPG [Bolte et al., 2018] is not applicable.

DC decomposition for blind deconvolution

Our optimization problem for blind deconvolution:

. 1 o
amin - 5l1Bh© Ax — y[3+G(h.x). (9)

=:F(h,x)
F has a DC decomposition F = F; — F, for two convex functions F; and Fp:

1 1 1
Fi(h,x) = ZIIBhHﬁ + ZIIAXIIi +5(1Bh® Ax|)3 + lly © Bh|j5 + || Ax[l5 + lly|13).
1 1 1 _ _
Falh,x) = 5 1BhIS + | Ax| + 5117 © Bl + Ax|3.
Problem (9) is equivalent to the following DC optimization problem:

min Fi(h,x) — F>(h,x) + G(h, x). (10)
(h,x)ecl C

9/14
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L-smad property for blind deconvolution

Consider the L-smad property of (F1, H) to apply BPDCA(e).

Theorem (L-smad property [Takahashi et al., 2023])

Let H be defined by
1 2 1
H(h,x) = 2 (1113 + [IxI3)" + 5 (1A113 + [Ix]2) - (11)
By denoting b; and a; be the jth column vectors of B" and A", respectively, then for any L
satisfying
L= (3libl3 + 3llali3 + lIilI30a03 + 1y PlIbi15 + lla13) , (12)
j=1

the pair (F1, H) is L-smad.

BPDCA(e) converges to a stationary point of (9).

Adjuste L in our numerical experiments.

Backtracking can be applied to BPDCA(e) but its calculations are sometimes expensive.
10/14

Numerical experiments: Blind deconvolution

o The blurring kernel h € R has its elements in \/d; x \/di pixels (v/dy = 48).

o The wavelet coefficients x € R% (dy = 2562).

o B is an operator reshaping h, and A is an inverse discrete wavelet transform operator.
o Therefore, f = Bh°, g = Ax°. The pixcels of the original image is 512 x 512.

e The regularizer G(h,x) = 0||h||;.
o The feasible region cl C = {(h,x) € R%" xR% | h > 0,x > 0}.

.= *
y g

Figure 2: Recover (h°, x°) from y = ﬁF}.

f
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Comparisons of algorithms

Algorithms

° [Takahashi et al., 2022]: The accelerated version of BPDCA.
° [Takahashi et al., 2022]
e FISTA [Beck and Teboulle, 2009]: Adjusts the step size by backtracking.

Alternating minimization (AM): Minimizes W with respect to h and x alternately (its
subproblems are solved by FISTA (10 iterations); the number of the maximum iteration is 3,000).

W(h,x) = 1 Bh & Ax — y|3 + 0] Al ]
e (h°, x°) is the ground truth, W° = W(h°, x°). |
e 0 =0.01.

0g10|WhY, x¥) = W°|

0 5000 10000 15000 20000 25000 30000
Iteration 12 /14

Comparisons of the recovered images

) Ground truth (b) Intial point (c) BPDCAe (d) BPDCA (e) FISTA

Figure 3: The upper row: the recovered hs. The lower row: the recovered xs.
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Summary and future work

e Introduce BPDCA(e) for solving a DC optimization problem without L-smoothness.

e Reformulate blind deconvolution as a DC optimization problem with non-smooth regularization
and apply it to BPDCA(e).

e How to choose the Bregman distance Dy.

e Application to self-calibration in radio interferometric imaging.

@ Takahashi, S., Fukuda, M., and Tanaka, M. (2022).

New Bregman proximal type algorithms for solving DC optimization problems.
Computational Optimization and Applications, online.

@ Takahashi, S., Tanaka, M., and lkeda, S. (2023).

Blind deconvolution with non-smooth regularization via Bregman proximal DCAs.
Signal Processing, 202:108734.
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Graph-structured data is one of the representative discrete data structures, while
continuous data is usually represented as vectors. Continuous representation of graph-
structured data refers to the assignment of vectors to nodes in the graph-structured data
so that the relationship between two nodes can be recovered using these vectors. By
representing graph-structured data in continuous space, we can apply various algorithms
in continuous space to real-world applications such as link prediction, attribute
prediction, information retrieval, and question answering while preserving
combinatorial characteristics of graph-structured data. In this presentation, we focus on
the theoretical representational power of representation methods. Some representation
methods, such as [1] or [2], can represent any inputs accurately. Such a property is called
full expressiveness. We theoretically proved that some representation methods which
are not fully expressive are, in fact, almost fully expressive. This presentation introduces
almost fully expressive models and shows numerical results for link prediction tasks.
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1. Background

Applications of graph representation
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Graph-structured Data and its representation

/—[ Graph-structured Data H

/{ Continuous Representation ]-\

G ()

o

i has

Temporal Graphs

Representation
(Embedding)

Reconstruction

|Subquces|

Poincare
Embedding

Tree

TransE

Flower
Flants
Crganism
Mammals
=~
Person l
Dog

Cat

<

Order Embeddingi

Italy

Disk Embedding

l Vienna

!

EU«—Austria

Which objects are vectorized?

(V) = x; T

CEENs = 5 |

% 2 g > xs CHCCMCTH

= Xy IO
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[ Knowledge Graphs] Xeat | B EE
: Xrail m = |
Emammat CHCT

Representation,
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Temporal Graphs
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f(s,t,—):RY - RY to represent
time variation froms fot _J

xgaf t =0 BT
xp at ¢ =0 OO
x, ot t =0 CHCCICTH
xgatt =0 BT

-
+« CPS applications
by combining other
machine learning techniques
« link prediction
S » recommendation

= data completion
» question answering (KG)

+ node clustering
» attribute prediction
» community detection
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Our interest: representational capacity

Some representational methods ignore some information, and some do not

[Exompie: inner product-based representation for undirected graphs]

o Representation Reconstruction o

o ﬁ XarXp Xg ﬁ

| . example of reconstruction rule:
(1, 1) € Epeconseruer © (X, %) = 1

Our interest: representational capacity

Some representational methods ignore some information, and some do not

[Exomple: inner product-based representation for undirected gruphs]

Representation Reconstruction o

o ﬁ xwxb’xc ﬁ

2
(X, xp) =1
{xp, ) 2 1

are necessary [ I. example of reconstruction rule:

(1,v) € Ereconstruce © {%u, xp) = 1
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Our interest: representational capacity

Some representational methods ignore some information, and some do not

[Exomple: inner product-based representation for undirected graphs]

o Representation Reconstruction o

R O P R Qi o

R
(© - (©
{xg, %) =1

{(x x)=1 (& {x,,x.) < 1)are satisfied
bl =

2.
{<xa: =1

dre necessdary

|. example of reconstruction rule:
{xp,xc) 21

(1, v) € E peconstruce & {Xu Xp) = 1

(1 < (x4, xp) = max{|lx, |12, ||lx |13} = fail to represent the non-existence of self—loop]

Our interest: representational capacity

Some representational methods ignore some information, and some do not

What information is represented or ignored?
A
we can select appropriate model
according to their characteristics
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Definition: full expressiveness

Def (full expressiveness)
A representation model M is fully expressive for class C

& For any input G in C, there exists a “good” representation X;
s.t. M can recover G from X

Xcat | B _mn|
Xtail - u |
Xmammal CHCT M
Xanimar BT

Yhes T yis CHEEEER
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2. Geometric Models for Knowledge Graph Representation
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Datasets and Models

Representation models

2013 2015 2017 2019 2021
2011 2014 2016 2018 2020 2022
I TransE ‘ | Transk | ConvE RotatE
_ k -
RESCAL I R-GCN TuckER IRof Pro
DistMult HolE HypER BoxE | HousE I
IE implE LineaRE
Datasets ComplEx Slmp '
2015
1995 2007 2008 2012 2014 i 2020
WordNet Freebase NELL H
YAGO DBPedia Wiki-Data OpenBioLink

Target: Knowledge Graph Representation

—Geometric models

TransE

Relations between entities
—> geometric relation between vectors
ex) TransE, RotatE, BoxE

—Bilinear models.

KGs — 3rd-order tensor
representation = dimensionality reduction
ex)RESCAL, ComplEx, TuckER

— Other models

Xp X, X

RESCAL

4, |~ ]

oo
Anpre = X Wexy

Deep learning-based models,
probabilistic models, -
ex) R-GCN, GAATs, CapsE

self-loop
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Target: Knowledge Graph Representation

—Geometric models
Relations between entities
— geometric relation between vectors

ex) TransE, RotatE, BoxE

—Bilinear models
KGs — 3rd-order tensor
representation = dimensionality reduction

ex)RESCAL, ComplEx, TuckER

— Other models
Deep learning-based models,
probabilistic models, -+-

ex) R-GCN, GAATs, CapsE

:> reconstruction by
distance of vectors

I:> reconstruction by
inner product of vectors

reconstruction by

| > method-specific decoders

e.g. neural networks

Target: Knowledge Graph Representation

—Geometric models
Relations between entities
—> geometric relation between vectors

ex) TransE, RotatE, BoxE

—Bilinear models.
KGs — 3rd-order tensor

ex)RESCAL, ComplEx, TuckER

representation = dimensionality reduction

Most of them have high

(or theoretically perfect)

representational capacity

based on

— Other models
Deep learning-based models,
probabilistic models, -

ex) R-GCN, GAATs, CapsE

» matrix factorization techniques

« universal approximation theorem
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Target: Knowledge Graph Representation

—Geometric models

Relations between entities
— geometric relation between vectors
ex) TransE, RotatE, BoxE

—Bilinear models.

KGs — 3rd-order tensor
representation = dimensionality reduction
ex)RESCAL, ComplEx, TuckER

— Other models

Deep learning-based models,
probabilistic models, -+-
ex) R-GCN, GAATs, CapsE

Most methods do not focus on the

theoretical representational power, and

focus on the pattern recognition on KGs

How about theoretical differences?

Target: Knowledge Graph Representation

Geometric models

Relations between entities
—> geometric relation between vectors
ex) TransE, RotatE, BoxE

+ In experiment, distance-based reconstruction

combining these operations performs well

+ Most papers explain that the performance is
mainly because the operation can recognize

implicit patterns in KGs

TransE
Xp X, X
& —>r®

O/-

Rotation

C

>
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Example: TransE

TransE translates fact (h,r,t) into an
equation x; + x, = x;

= inspired by word2vec

» only uses addition

+« When we set the reconstruction rule as
(hrt) € Fpredice © Xn +Xp = X;

» TransE is said to have low representation
capacity because of the simplicity

r
man @@——p() king

woman @————p() queen
i o

Xking — Xman T Xwoman = Xgueen
= Xking ~ Xman = Xqueen — Xwoman
Xman T Y = inn;,r
=3Iy s.r,{

xWOmﬂ?i + y = XQHBEH

xT
xXp .—’O X

Example: RotatE

RotatE translates fact (h,7,t) into an
equation z;, o e = z, (z;,z, € C%,0, € RY)
+» only uses 2D rotation and uses d planes

» RotatE has higher representation
capacity than TransE

» TransE cannot distinguish two
symmetric relations while RotatE can

+ We will show that RotatE can represent

any KGs by setting reconstruction rule as
[leir o z, — z,]l, < & (£ > 0: const.)

23

Zpa

rl
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Example: BoxE

BoxE translates fact (h,r,t) intfo an
element-wise inequality in R?

|xh + Y — Cﬁl)

ot = e <

< W,El)

 Since inequality can be rewritten as

(xh) " (0 [) (xt) _ Cr(l) < Wr(l)

Yh I 0/ \)Vt C(Z) - W(Z) !
r r

BoxE utilizes reflection
» The first geometric model which is

proven to be fully expressive

/‘7
e
A Yt +/ w,
e
Yh
Xt "W @
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3. Theoretical Results

262




Theoretical Analysis

Consider the following model M '

+ Representation: .
Vave z, e K¢ o o
R3re f:K% — K? (geometric operator)

+ Reconstruction rule:
(7. t) € Foregicr © Ifizn) — zellw < £
where £ = 0: constant and K = RorC.

represent

|. Wheneg=0,i.e.,

(h,r,t) € P};reaact & filzp) = z,,
there exists a KG which M cannot reconstruct.

reconstruct

To represent the graph on the right figure,

{f:;’(za) = za fr(2a) = 2y, fr(2p) = 25
frlzp) # 2,

requires, however, f,.(z;) = z;, = f.(z,) = 2,.

a Je ;1b

Theoretical Analysis

Consider the following model M: '
* Representation: !
V3vez, €K o—o
R3re fukKd - ke
+ Reconstruction rule:
(h,7,0) € Fyredicr © Ifi(zn) — 2zl = € represent

where £ = 0: constant and K = Ror C.

2. (Addition) When &> 0,K = R and

3 reconstruct
f. can be written as f,(z,) = z, + 2, (z, € RY),
there exists a KG which M cannot reconstruct.
lzqa + 2r — 2Zalle = | 2p ]|l = € is required -
a)e @

to represent a — a, which couses that M cannot

represent the inexistence of b - b.
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Theoretical Analysis

Consider the following model M

+ Representation:
Vavez, €K?
R3r e fukd - K¢

+ Reconstruction rule:
(thrf) € F;Jreriici = ”fr(zh} - Zr”:m po

where £ = 0: constant and K = RorC.

3. (Reflection) When & > 0,K = C and
fr(zn) = wy 0 Zy (W, € €4, |wy | = 1),
there exists a KG which M cannot reconstruct.
Since ||fi(z4) — zpllee = Ifi-(zp) — 2zalles
reflection operator cannot represent

directed edges.

) [
(@ &)

represent

reconstruct

ai<

Theoretical Analysis

Consider the following model M:

* Representation:
Vavez, €KY
R3re fukKd - ke
+ Reconstruction rule:
(hrt) e Furedict < Ifi(zn) — 2ol = €
where £ = 0: constant and K = Ror C.

(Rotation) When £ = 0,K = C and
fr(zy) = et o z, (8, € RY),

M can represent any KGs

with sufficiently large dimension d.

&)

represent

reconstruct

*eifr: element-wise exponential function
**2[k]: k-th component of vector z

v
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Theoretical Analysis

4. (Rotation) When ¢ > 0,K = C and
£ (@) = ei®r oz, (6, € RY),
M can represent any KGs
with sufficiently large dimension d under
the reconstruction rule

(h' T t) € Fpredict < ”ﬁ'(zh) - Zt”oo <&

Idea of proof:

« Using uniform distance:
(h,1,1) € Fpreaice © |- (@n)li] — 2 [l < € (¥)).
(h,1,t) € Fpreaice © 3/ 5.t 1/ (zp) U] = 2 /1 > €.
I. IndexV XRXV\F= {(hrj tj)}il
2. j-th component of vectors
represent only (h;,7,t;) & F

= B
= B8

*elfr: element-wise exponential function
**2z[j]: j-th component of vector z

Theoretical Analysis

Consider the following model M:

* Representation:
Vove z, €KY
R3rwo fK* - K¢
* Reconstruction rule:
(h,1t) € Fpredict © Ifr(zr) — zelleo < €
where ¢ > 0: constant and K = R or C.

4. (Scaling) When ¢ > 0,K = R and
fr(zn) = zp 02, (Zr € Rd)ﬂ
M can represent any KGs
with sufficiently large dimension d.

N
@)

represent

reconstruct

>( b
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Proof

E (g =ty =),
=1 (r=rghy =t
g2 {e=h ), )

=il = (r=ruhs#4)

/5 (hyfty =),

o (r#Er5).
o {otherwise).
£ thiy=1=m1),
(—1+ile/2 (0=Mh#Y) i i (r=r

] = [ =

: (M+4)ef2 (B A=), L ofrn

hy=t |

hy 1y

L4 by, by

xyl/], 2, [j] for scaling / z,[f], 6,[/] for rotation

| | lilnli] = mlil) | eyl = 2]l
7 rn ey
s t=h, | @ e | 0
t#hy 0
hj # j‘r t= f_ 13 & 13 &
t# 1t [ 0 0 0
tm by £/2 £ 4]
h=hy tmty £f5 [/2e] £
t # byt i V2 el
t=hy /2 0 [
b=t t=t /5 £ 0
tE byt i g/v2
| | (2 £/2 LY 2
| B Rty /5 /5 £/v2
| 0 0 0 0
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4. Numerical Experiments
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Experimental Setup: Learning Method

Training l
I. Define score function §,.(h,t) according to model
2. Train embedding as S,(h, t) [large ((h,7,t) € F)

small (o/w)
Ex) TransE learns embedding as x,® ——i?——b)(
(hrt)ET & xp +x, =X, " '.x
t
= 5. (ht) =—|lxp + x,. — x| o

(h,7,t) is regarded as a fact if 5,(h,t) is sufficiently large

v

model Enfity embedding Relation embedding expected condition S(ht)
TransE x, € R? % € B? X+ X, =X =l 42— x|l
RotatE 2, EC* 8, € Be 2y oelt =z, |y = e — 2|
(1) ()
Xy + ¥ — r =Wy
BoxE o, ¥y € RY oo wi® e me ! =) (see original paper)
l}‘n x - L[z;| < w?

Experimental Setup: Evaluation Metrics

Training l

|. Define score function f.(h,t) according to model

2. Train embedding as f.(h,t) —{ large ((h,7,t) € Faaea)
small (o/w)

Evaluation I

For test triple (h,1,t),

I. Sort P, ={(h',r,t) | h:entity}, @, = { (h,7,t") | t": entity }
accordlng to the score function®

2. rank of (h,r,t) in P or Q is used for evaluation
Mean Reciprocal Rank (MRR): mean of 1/rank(h,r,t).
HITS@k: percentage of test triples with rank(h, 7, t).

®——0

®
NP

©

large fr(=1t) fr(h, =)
fr(;h t) f'r(?-r, t)
fv(P;’. £) fr(f; t')
small

*If (h',r,t) or (h,r,t") is in the training / valid / fest dotaset, these are excluded for evaluation (filtered setting) .
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Experimental Setup: Datasets

Dataset:

* FBI15k-237 (c FreeBase): KG of general facts / various relations
* WNI8RR (c WordNet): KG of words / hierarchy & similarity

* YAGO3-10 (c YAGO3): KG of people, countries, «+*-+- / largest
dataset FB15k-237 WN I 8RR YAGO3-10
#entity 14,541 40,943 123,182

ftrelation 237 Il 37
#ttraining 272,115 86,835 1,079,040
#valid 17,535 3,034 5,000
fttest 20,466 3,134 5,000

Experimental Results

FB15k-237 WN18RR YAGO3-10

Model fr scoring
MRR H@10 MRR H@10 MRR H@10

TransE  Addition RLOO 7, 323 522 232 539 439 645
- Scaling RN L, 335 473 573 497 663
RotatE  Rotation c,r; 330 521 480 580 452 641
- Reflection 500, 1, 325 517 448 533 455 .642
MuRE*  Scaling + Addition RY0%, 1, 525 477 563
RotE*  Rotation + Addition %0, 1, 336 522 481 658
RefE*  Reflection + Addition %00, , 334 520 472 568 505 .665
BoxE** 7 /2-Reflection + Addition usingboxes .318 505  .443 541 480  .650

* 30 times hyperparameter search using Optuna

* 1,000 parameters per entity

» Theoretical difference appears to the link prediction task

» Combination of addition slightly improves the results
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5. Conclusion & Future Work

Conclusion & Future Work

Theoretical analysis:
rotation & scaling operators have high representational capacity
compared to addition & reflection
Numerical experiment (link prediction):
« results reflected theoretical analysis
* combining multiple operator improves representational power

Future work: O Addition
* to analyze other types of representation models o
. Rotation -
e.g., for weighted graphs, temporal graphs, *-* =~ Scaling
= to find good representation model sag
« with high representational power 1 """"""
+ while reducing the number of parameters 3 Reflection
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Port Set Clustering for Internet-Wide
Scanner

Akira TANAKA, Chansu Han, Takeshi
Takahashi

National Institute of Information and Communications
Technology, Japan
tanaka.akira@nict.go.jp

Indiscriminate IoT attacks have increased in recent years. Adversaries confirm if
vulnerable destination ports are open as a preliminary step of the attack, and this
procedure is called port scan. The darknet, also known as a network telescope, is used
for observing such port scan activities. It passively monitors network traffic with an
unreachable dark IP address block; thus, it receives not regular network traffic but
Internet-wide scans for attack or investigation. Our goal is to specify scan activities for
attack purposes by focusing on the destination ports of packets collected from a darknet.
We treat each source IP address as a multiset made from the pairs of the destination port
and the number of packets. We create a distance on the multisets and perform clustering
using the distance. Multisets contribute to more fine clustering than clustering using port
sets or the number of packets. We also propose the speedup technique for clustering
based on the property of the distance.
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NICP.

=

NICTER

Contribution

* We propose a metric space on multiset and prove that the
metric satisfies well-known properties. (positivity, symmetry,
and triangle inequality)

‘Triangle inequality d(x,z) < d(x,y) +d(y,2) ‘

* We propose the fast DBSCAN for the metric space.
— The output of the fast DBSCAN is the same as the original DBSCAN.

— The fast DBSCAN reduces 99.5% computation cost compared to
the original DBSCAN in our experiments.

NICY NICTER

=
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Contents

-+ Background
» Malware/Botnet behavior
» Research direction
* Multiset
* Approach
* Metric on multiset
« DBSCAN
* Characteristic of our data
» Fast DBSCAN

— Partition of data
— Ball-based DBSCAN

* Experiment

NICTER

/vdér)

Background

« Indiscriminate attacks have been increasing in the IP address space.
* Scan activities derived from malware (dangerous software) are observed by darknets.

;a‘r% Y * passively monitors network traffic with
&D-

specify an unreachable dark IP address block
vulnerability

—receive port scans from malware or
an Internet investigation institute

NicTER

» observe only first contact
(darknet) y

— Intention of a scanner is unclear.
(we guess it from a destination port)

infectious devices

Our Goal | We want to grasp emerging threats

NICTER
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» Background
->+ Malware/Botnet behavior
-+ Research direction

* Multiset

* Approach

* Metric on multiset

« DBSCAN

* Characteristic of our data

» Fast DBSCAN

— Partition of data
— Ball-based DBSCAN

* Experiment

N/IC'T;T NICTER

Malware/Botnet behavior@®

1. Looking for targets
They send packets to random IP addresses to specify hosts
that run vulnerable service/software (port scans).

2. Infection
They exploit the vulnerability and gain control of the host.

— They try to authenticate via a set of known default credentials.

3. Attack

Infectious devices are used for DDoS attacks, email spam, and
cryptocurrency mining.

NICTER
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Malware/Botnet behavior®

1. Looking for targets
They send packets to random IP addresses to specify hosts
that run vulnerable service/software (port scans).

Each malware has its target services/destination ports. \
A vulnerable service/software has a default port, and

malware checks if the port is open (port scans).

* Darknet can monitor port scans.

-

‘ | Do we detect malware from the destination ports

K collected by the darknet? /

NICTER

Malware/Botnet behavior®

» Botnet/malware has its target destination ports.

* Infected devices are chronologically synchronized and
suspected to send about the same number of packets to
the target destination ports.

|
Because | (' C&C server commands the infected devices

to perform port scans all at once.
* Port scan script is open access and reused by many attackers.

NICTER
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Research direction

* Assumption
Infected devices are chronologically synchronized and
suspected to

* Research direction
We perform clustering so that if two IP addresses are in the
same cluster, the two IP addresses send about the same
number of packets to the target destination ports.

NICP.

=

NICTER

10

Contents

* Background
* Malware/Botnet behavior
» Research direction
2+ Multiset
* Approach
* Metric on multiset
* DBSCAN
» Characteristic of our data
* Fast DBSCAN

— Partition of data
— Ball-based DBSCAN

* Experiment

NICP.

=

NICTER
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M

ultiset

— Definition

A collection of unordered elements, where every element occurs a finite number of times

mA(l) = 3, mA(Z) = 1, mA(3) = 3,

— Example

A=1{2,1,1,1,3,3]} ¢
|

Another

expression 1

multiplicity of 1isthree |3 jfy =1

ma(x) = ifx =2

Interpretation of the multiset
in our problem

|Supp(A) ={1,2,3} | multiplicity function

0 otherwis

The IP address A sent one packet to port 2, three packets to port 1, and

NICP.

=

NICTER

11

Contents

Nﬁ

Background

Malware/Botnet behavior

Research direction
Multiset
Approach

Metric on multiset
DBSCAN

Characteristic of our data

Fast DBSCAN
— Partition of data
— Ball-based DBSCAN

Experiment

NICTER

12
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13

Approach

1. We propose a metric on multiset that satisfies

— the metric becomes small the if multiplicity of each element is
almost the same.

~ multiplicity of 1 is three
A={2,111,33}

2. We perform clustering (DBSCAN) based on the metric.
— We speed up the DBSCAN.

i A cluster may represent a malware/botnet.

NICT: NICTER

=

14

Contents

* Background
* Malware/Botnet behavior
» Research direction
* Multiset
* Approach
-+ Metric on multiset
* DBSCAN
» Characteristic of our data
* Fast DBSCAN

— Partition of data
— Ball-based DBSCAN

* Experiment

NICTER
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Metric on a multiset

* If x € supp(4) A supp(B) =
i+ If x € supp(4) Nsupp(B) = +t(0 <t < 1) to metric, where t is
i based on the multiplicity difference(t = 0 if multiplicities equal)

Min-max normalization term A=1{2,111, }
B ={2, 11,
d(4.B) :%ur)p(il U B)| Zjﬁigg C . }
E€Supp(4UB) AUB={211,1,33}
1/1—-1 3-2
() AAB= {133}
e Support * Union

Supp(4) = {x|m4(x) > 0} myyp (x) = max{m, (x), mg(x)}
* Symmetric difference

mpp(x) = max{m, (x), mp(x)} — min{m, (x), mp(x)}

NICTER

NICT:

15

Properties of metric

d(AB) = 1 myap(x)

[Supp(A U B)| resubstaug) myyup(x)

* The metric is small if the multiplicity of each element is almost the same.
We prioritize support differences over multiplicity differences.
0<d(4,B)<1

The function d satisfies the following well-known metric properties;
—d(4,4) =0

— (Positivity) d(4,B) > 0if A#B

— (Symmetry) d(4,B) = d(B, A)

— (Triangle inequality) d(4,B) < d(A,B) + d(B, ()

NICT: NICTER

=

16
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Contents

» Background
» Malware/Botnet behavior
» Research direction
* Multiset
» Approach
* Metric on multiset

-+ DBSCAN
 Characteristic of our data
* Fast DBSCAN

— Partition of data
— Ball-based DBSCAN

* Experiment

Ncl§7? NICTER
DBSCAN® )
i DBSCAN: e =1; minPts =8 Abstract

DBSCAN puts together points close to each other
(distance < ¢). It also marks as outliers the points
that are in low-density regions.

Core point

«| Apointis a called core point if at least minPts

points are within distance .

Clustering rule (g_is reachable from p)
A point q is the same cluster as a core point p if
and only if there exists pg, p1, ***, Pn Such that
Po=0Pn=qd@ipis) Se(0<i<n-—-1),
and p; is a core point except for i = n.

P1 P3
————— X X
. X ~o-7T -~X
0 5 10 15 20 s PEDP) px q(= ps)
Y
" Note : £ and minPts are both DBSCAN parameters?Ore points NICTER
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Core point Neighborhood
A point is a called core point if at least Neighborhood of v is N(v) is defined as
minPts points are within distance €. N@) = {w e M:d(v,w) < &}
DBSCAN Algorithm
1. j«1
2. We arbitrarily pick up a core point v not
been visited until now.
3. We label v as cluster j.
4. Foreachw € N(v). If wis a core point, go
to step 3 (we replace v with w in step 3). - O&
X X X O core point
Otherwise, we label w as j and end this £+ not core point
step. O—% d(v,w) <e
5. If we finish the step 4 for all points, we vow minPts= 3
update j « j + 1, and we go to step 2. O cluster1
Nclgr Note : £ and minPts are both DBSCAN parameters. NICTER
DBSCAN® )
Core point Neighborhood
A point is a called core point if at least Neighborhood of v is N(v) is defined as
minPts points are within distance €. N@) = {w € M:d(v,w) < &}
DBSCAN Algorithm
1. je1 End step 3w/ End step 3.
2. 'We arbitrarily pick up a core point v not \ i
been visited until now. W N()

We label v as cluster j. vy - GotoStep 3 «Next slide

For each w € N(v), if wis a core point ./ Ws“—s Go to Step 3

and not been visited, go to step 3 (we - }j
. . . O core point
replace v with w in step 3). Otherwise, we

% not core point

label w Z.-lSj and end this step. . O— d(w,w) < e Points in Step 3= {w,, w;}
5. If we finish the step 4 for all points, we vow minPts= 3
update j « j + 1, and we go to step 2. O cluster 1
N:ICT Note : £ and minPts are both DBSCAN parameters. NICTER
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Core point Neighborhood
A point is a called core point if at least Neighborhood of v is N(v) is defined as
minPts points are within distance ¢. N@) = {w € M:d(v,w) < &}
DBSCAN Algorithm
1. je1

2. We arbitrarily pick up a core point v not
been visited until now.
( 3. We label v as cluster j.
4. Foreachw € N(v), if wis a core point

and not been visited, go to step 3 (we
replace v with w in step 3). Otherwise, we

core point

©+ not core point

ﬁ Next slide

21

label w as j and end this step. O— dw) < Points in Step 3= {w}
5. If we finish the step 4 for all points, we vow minPts= 3
update j « j + 1, and we go to step 2. O cluster1
N://CT Note : € and minPts are both DBSCAN parameters. NICTER
22
DBSCAN®
Core point Neighborhood
A point is a called core point if at least Neighborhood of v is N(v) is defined as
minPts points are within distance €. N@) = {w e M:d(v,w) < €}
DBSCAN Algorithm
1. je1

2. We arbitrarily pick up a core point v not
been visited until now.
3. We label v as cluster j.

4. Foreachw € N(v), If wis a core point
and not been visited, go to step 3 (we 5 .'c'ii'rE'p"di‘h.t
replace v with w in step 3). Otherwise, we £ not core point
label w as j and end this step. O—: d(w,w) < e
5. If we finish the step 4 for all points, we vow
update j « j + 1, and we go to step 2. O cluster 1
N(/CT Note : £ and minPts are both DBSCAN parameters.

minPts= 3

NICTER
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Core point
A point is a called core point if at least
minPts points are within distance ¢.

DBSCAN Algorithm
1. je1
2. We arbitrarily pick up a core point v not

been visited until now.

Neighborhood
Neighborhood of v is N(v) is defined as

Nw)={weM:d(v,w) <e}

3. Welabelvasclusterj,. [ X e ]
4. Foreachw € N(v), If wis a core point v ;\‘](v)

and not been visited, go to step 3 (we O core point :

replace v with w in step 3). Otherwise, we . Y

. . i notcore point |y Wy

label w as j and end this step. O— d(v,w) <& | PointsinStep 3= {w;, Wy}
5. If we finish the step 4 for all points, we vow minPts= 3

update j « j + 1, and we go to step 2. (] clluster;

O cluster
N://CT 2527 Note : £ and minPts are both DBSCAN parameters. NICTER
24
DBSCAN®@

Core point Neighborhood

A point is a called core point if at least
minPts points are within distance €.
DBSCAN Algorithm

Neighborhood of v is N(v) is defined as
Nw)={weM:dlv,w) <¢e}

‘ Problem

We calculate distances for all pairs of points

* to obtain neighborhood of a point
Because © tojudge whetherg [Z‘)C‘)ith‘iS‘ core point

A B c

distance matrix—>

A d(AA) d(AB) d(AC) -

We propose an
algorithm to reduce
calculations of distance.

d(B,B)|d(B.C), -

d(C.)J,

e T |

N:IC v

Note : € and minPts are both DBSCAN

.~.Noise
v N©u)
O core point 5 0&
A ., o
P : notcore point| .. Wy’
O d(v,w) <e | Pointsin Step 3= {wy, w,}
minPts= 3
O cluster1
O cluster 2
parameters. NICTER
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Characteristic of our data

ratio
31.7%

The distribution of supports

#multiset
102,042

support

445 11.4% of multisets have the support {23,80,8080}.

i11.4%

36,689

23:80:8080

10.3%
3.0%
2.6%
2.6%
2.4%
2.1%
1.5%
1.5%
1.4%

33,079
9,787
8,292
8,291
7,742
6,622
4,750
4,712
4,600

23
5555 Support

50382
A={11,1233}= A) ={1,23
S0 { } = supp(4) = (1.23)

22

0.976388889

1433

23:81
23:80:81:1023:2323:5555:7574:8080:8443:37215:49152:52869

Several high-density regions exist in support of multisets.

Nﬁ

b We take advantage of the characteristic for speeding up the DBSCAN.

NICTER
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Fast DBSCAN for multiset

1. Based on the support of multisets, we partition the
data(the set of multisets) such that multisets in different
subsets are different clusters.

2. We perform ball-based DBSCAN for each subset.
1. We make balls from each support.
2. We connect or divide balls.
3. We obtain clusters from a ball graph.

N&T; NICTER
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Fast DBSCAN for multiset ”

1. Based on the support of multisets, we partition the
data(the set of multisets) such that multisets in different
subsets are different clusters.

2. We perform ball-based DBSCAN for each subset.
1. We make balls from each support.
2. We connect or divide balls.
3. We obtain clusters from a ball graph.

NICP.

=

NICTER

30

Partition of data@

—Lemma 1
e Let U}‘lej (= M) be a partition of data (set of multisets).
» We consider an undirected graph ¢ = (V, E) such that
.« V= (Mg, My, M) A, M) =, min, d(4),4,
e F = {(]V[j,Mjr): a lower bound ofd(M}-,]V[j,) <¢}

¥

Multisets in different connected components belong to different clusters.

t desirable partition

. \ ...... / Ay ?sz = Aj and A, are different cluster.

We give a partition and roughly estimate the distance between subsets.

NICTER
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Partition of data®@

1. Based on the support of multisets, we partition the

-

data(the set of multisets) such that multisets in different —

subsets are different clusters.

Step 1

We give a partition.

Step 2
We create a lower bound of
distance between subsets.

Step 3 \

We make a graph and obtain
connected components.

31

NICTER

Partition of data®

1. Based on the support of multisets, we partition the

-

data(the set of multisets) such that multisets in different —

subsets are different clusters.

Step 1

We give a partition.

Step 2
We create of
distance between subsets.

Step 3 \

We make a graph and obtain
connected components.

32

NICTER
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Partition of data®@

* Partition
— We define the following equivalent relation ~ on multisets M
A ~ B & supp(4) = supp(B)
— The quotient set M/~ is a partition of M

By ={1,1,2
A ={1,2,3,3} =112

4, = {111,223} B =L1122} p _ 1

The equivalent class of A is [41] == {A € M : supp(4) = supp(4,) = {1,2,3} = {41, 4,}
The quotient set M /~= {[A4], [B1]}

NICTER

34

Partition of data®

1. Based on the support of multisets, we partition the
data(the set of multisets) such that multisets in different —
subsets are different clusters.

/ Step 1 Step 2 Step 3 \

We give a partition. Wg create a lower bound of We make a graph and obtain

distance between subsets. connected components.

... alower bour]g.d(]\/[j,]\/[j,) %
: . s x ........

X : B
..... M e
d (M, ;) . /——
NICTER
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Partition of data® ”

The lower bounds bounds of the distance between equivalent class [4] and [B]

Lemma 2 /
d([A],[B]) < di([A],[B]) < d(4,B) forany A € [A], B € [B]

A=1{2,11,1, 4},B ={2, 11,3,3}

e sparboundr e e e comprr
a;([A]' [BD —i- E;r)l(((llzllllf)zii;lllllssif)i(é;ll)) 22?:1]2 ill.ijt;;/port 0
a:([A]' [B]) = % support %:%
d(A,B) = mszSupp(AuB) Zjﬁigc; multisets %

P

NICTER

Partition of data® *

Procedure

1. We makes the quotient set M/~ with the equivalent relation
A ~ B & supp(A4) = supp(B)
2. We makes an undirected graph G = (V, E) such that

V =M/~and E = {([4],[B]) : d2([A], [BD} < & A di([A],[BD)} < &}

Multiset in different connected components belong to different clusters.

P i)

18] = = Aand D are different clusters.

NICTER
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Fast DBSCAN for multiset

1. Based on the support of multisets, we partition the
data(the set of multisets) such that multisets in different
subsets are different clusters.

2. We perform ball-based DBSCAN for each subset.
1. We make balls from each support.
2. We connect or divide balls.
3. We obtain clusters from a ball graph.

NICT NICTER

38
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Ball-based DBSCAN® ’

* Input
— M : afinite number of multisets. We admit one multiset appears several times in M.
— £ (> 0) : aradius parameter of DBSCAN
minPts : a density threshold of DBSCAN
— 1init (S €/2) 1 an upper bound of initial radius
— a (0 < @ <1):an attenuation rate
* Output

— flabel : M = N U {—1}, the clustering result of DBSCAN. fi.pe1(x) = k
means that a multiset x belongs to cluster k if k # —1; otherwise (k = —1), x is a

noise point. ‘s | | e e
% 3
xzx X Xx7 XXB » fiaber(xs) = 2 (cluster 2)
x xx4 cluster 2 :
fiabel(xg) = —1 (noise)
cluster 1
NICTER
40
Ball-based DBSCAN®

1. We make a disjoint closed-ball cover of M whose radius is
less than or equal to ry,.
M = UjL,B(xj, 1), 17 < rO,B(x]-,rj) N B(x, 1) = 9,
B(xj,r;) = {x € M : d(x,x;) <10}

2. We build a graph by connecting or dividing the closed balls.

3. We obtain connected components of the graph; each
component corresponds to a cluster.

B(xq , .1_”.1) e
) - x1 P f e )
IR P S i : .
x"\x3/ B(x4,73) XXG/’% clusterl : xq,x5,**, X5

’ X — B(x7,17)
B(x3,73) B(x6,76)
cluster 1 cluster 2
s NICTER
N/IC T; ;
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Ball-based DBSCAN® "

2. We build a graph by cdnnétting or dividing the closed balls.

B (xl"r.l) &5 x Xs
~ x'1 , P } ; e, .
IR S e, ; .
xz’(\x3 7 B(xam) { xxe/‘xx7 clusterl : xq,x5,*, X5
s e By, )
B(x3,73) B(x6,76)

cluster 2

NICT

NICTER

Build graph® :

For any pair of balls B(x;,7;), B(x;7,7jr) (suppose 7; = 73,)

the slide after next slide
c next slide

* "B(x3,73) and B(xs, T5)
* B(x3,71)and B(xs,15)

. d(xj,xj/) —1; =1y > ¢ = do nothing

d(xj,x,-r) < = connect B(xj,rj) to B(xjnrjl)

e Otherwise
= Divide the ball B(x;,7;) = Uy, B(x,) where r < ar;
For each B(x, ), we connect B(x,7) to B(x;,7;) and do this step for B(x,r) and B(x;, 7).

B(x3,713) Bz, -rz)

. B (%1,71) d(xy, xs) — n ’)‘: x *one B(xxs;(:s?‘:
g o xzx \rSX 4 xl‘.‘_ﬂ. xx9;
A X X D S— . SR g

\7‘1 d(xq, x5) xx& B(xy,m)
B(xs,75) ’ ® B(xs,75)
B(x3,13) B(x4,17) NICTER
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Build graph®@ N

For any pair of balls B(x;,;), B(xj,,rj,) (suppose 1; = 17,)

d(x,,x/r) —1; =7y >¢ = do nothing

d (B(x17), B(xj131) ) =

min d(x;,x;, ) > € satisfies.
ijB(xj,rj) ( 7 ],)
XjIEB(Xj,,T]', )

x3 d(x3,x3) — 13— 735
B(x3,13) :\ Bes rs?‘
XMXS i

BGxum) ® B(xs,75)

.. B(x3,13) B(x2,12)

=

NICTER

Build graph® :

For any pair of balls B(x;,7;), B(x;7,7jr) (suppose 7; = 73,)

. d(xj,xj/) —1; =1y > ¢ = do nothing

« d(x;,x0) < = connect B(xj,7;) to B(x;,,7;,)

B(XZ! ‘7"2)

B

| d(x3,x3) — 13— 75 I‘ “““ ’

B(xy,11)

B(x1,711) B(xs,75)

. B(XS,TS) B(X3,T'3) B(Xz,rz)

~ B(x3,13) B(x3,72) NICTER
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Ball-based DBSCANG) :

3. We obtain connected components of the graph; each
component corresponds to a cluster.

By, ) S %X
. x'i. c x{ e .
{x S e |
xz"\x3 B(x4,14) { e /-xx7 clusterl @ xq, X5+, Xs
e B(x,70)
“Eom) B(xe1s)

cluster 2

NICT NICTER

46

Obtain clusters

+ For simplicity of explanation, we suppose all multisets are core points.
* Finally, we obtain the undirected graph G = (V, E).

— V = the set of closed balls B(x3,73) (m < ;—) with U; B(xy,72)
= Multisets in a closed ball belongs to the same cluster because distance < ¢

— An edge (B(xy,17), B(xp,,1,)) exists if d(xy, xy,) < ¢
= B(x,7;) and B(x,,,13,) are the same cluster
because any element in B(x;,r;) is reachable from any element in B(x;,,;,).

X4 is reachable from x4
because there exists the path
{Cc1, x2), (x2,%3), (x3,x4)} and d(x;, xi41) < €

| Each connected component of G = (V,E) corresponds to one cluster. I

NICTER

Nﬁ
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Experimental settings

* Our darknet received packets from 487,761 IP addresses (ip.src) on September 1.
* We removed noise ip.src (#packet < 6) and then obtained 321,435 ip.srcs.
* For each ip.src, we created a multiset whose support is destination ports and whose

multiplicity is the number of packets.

* We conducted the fast DBSCAN and calculated the computation cost.

* We used the Julia language.

#darknet’s IP addresses #ip.src (multisets)

day

298,280 321,435

September 1st 2021

NICTER

48
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Computation Cost®

#total d = #d + a#d,
where «a is the computation cost ratio of d; to d.

|Algorithm | epsminPts #d, #d|  #d(%) #total d: #total d(%)|
015 10 9,709,900 110,539,156 L 128,648,994 0.25%

015 20 97 - 0.25%
. A B 379

ot DBSCAN 025 10 17 0.37%
025 20 1 _ POV P 0.36%

035 10 o4 Calculation i I 0.41%

0.35 20 2 percentage B d(B,B)!d(B,C): - 0.42%

Original DBSCAN - - to distance matrix oo 100.00%

1 100%
NICV NICTER
C_/
. 50
Computation Cost®@

{Algorithm epsminPts #dy #d,  #d(%) #total di #total d (%)
015 10 97 R 0.25%

015 20 97 Calculation AR TV A 0.25%

fast DBSCAN 025 10 173 percentage § 0.37%
025 20 173(  to distance matrix = °_ 1009 0.36%

035 10 234 ' i 0.41%

035 20 23498478 175,406,957 0.30% 233,735 0.42%

|original DBSCAN - - - 51,660,068,895 100.00% 51,660,068,895  100.00%

NICY NICTER

=
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Computation Cost@®

* The fast DBSCAN calculated less than 0.5% of distances.
¢ Calculation cost was not much affected by the DBSCAN'’s parameters.
Algorithm t epsminPts #&l% #d #d (%) #totald% #total d(%)
015 10 9,709,900 110,539,156 0.21% 128,648,994 0.25%
015 20 9,709,900 110,996,250 021%" 129,106,088 0.25%
025 10 17,309,806 157,003,986 7 0.30% 189,288,333 0.37%
fast DBSCAN -
025 20 17,309,806 155,472,637 0.30% 187,756,984 0.36%
035 10 23,498,478 168,235,838 033%" 212,062,616 0.41%
035 20 23,498,478 175,406,957 0.34%" 219,233,735 0.42%
Original DBSCAN - - - 51,660,068,895 100.00% 51,660,068,895 100.00%

Note: We do not calculate fast DBSCAN in parallel after a partition of data

NICP.

=

NICTER
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Multi-target cluster®

The below cluster targeted 8 destination ports.

7,10001:473
,10001:49

The IP address XXX.XXX.233.76

* sent 999 packets to port 443,
* sent 491 packets to port 3310,
e sent 521 packets to port 80,

Heps=0.15, minPts=10

N&T; NICTER
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Multi-target cluster@

|The below cluster targeted 8 destination ports. |

[

001:473,9200:48
10001:493,92

w w|

L

3310:477,
p1p,3310:481
,3310:519,
/3,B3310:468,
i, 3310:511,
210+ 0

&
23
233
23

2

w
“J

W) N

W W W w
w w w

Heps=0.15, minPts=10 | The multiplicity of each element is similar to each other.

NICP.

=

NICTER
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Contribution

» We propose a metric space on a multiset and prove that
the metric satisfies well-known properties. (positivity,
symmetry, and triangle inequality)

‘Triangle inequality d(x,z) < d(x,y) +d(y,2) ‘

* We propose the fast DBSCAN for the metric space.
— The output of our algorithm is the same as the original one.

— Our algorithm reduces 95.5% computation cost compared to the
original DBSCAN in our experiments.

Nﬁ

NICTER
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Finding Densest k-Connected
Subgraphs

Atsushi MIYAUCHI

Graduate School of Information Science and Technology,
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Dense subgraph discovery is an important graph-mining primitive with a variety of real-
world applications. One of the most well-studied optimization problems for dense
subgraph discovery is the densest subgraph problem, where given an edge-weighted
undirected graph, we are asked to find a subgraph that maximizes the average degree.
Although this problem can be solved exactly in polynomial time and well-approximately
in almost linear time, a densest subgraph has a structural drawback, namely, the
subgraph may be disconnected by removing only a few vertices/edges within it. In this
talk, we propose an algorithmic framework to find a dense subgraph that is well-
connected in terms of vertex/edge connectivity. This talk is based on joint work [1] with
Francesco Bonchi (CENTAI), David Garcia-Soriano (ISI Foundation), and
Charalampos E. Tsourakakis (Boston University).

References
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“Finding Densest k-Connected Subgraphs,” Discrete Applied Mathematics 305, pp. 34—47, 2021,
https://doi.org/10.1016/j.dam.2021.08.032.
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Atsushi Miyauchi®
Charalampos E. Tsourakakis?®*

TCENTAI 2ISI Foundation S3University of Tokyo “Boston University
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Dense subgraph discovery

Dense subgraphs in real-world:
e social groups
in friendship networks
e communities & spam link farms
in Web graphs

e molecular complexes
in protein interaction networks

Dense subgraph discovery is a fundamental task in graph mining

3/26

How to detect dense subgraphs

The most common way is to utilize optimization theory:

Step 1: Introduce a quality function
Step 2: Define an optimization model (with or without constraints)
Step 3: Solve the model exactly or approximately

Many optimization models and algorithms have been developed

4/26
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Densest subgraph problem

Let G= (V, E,w) be an edge-weighted graph (w : E — Q)
Problem (Densest subgraph)

Input: G=(V,E,w)
Output: S C V that maximizes d(S) := )

S (density)
w(S): sum of edge weights in the induced subgraph G[S]

¢ Polynomial-time exact algorithms
® | P-based algorithm [Charikar '00]
¢ flow-based algorithm [Goldberg '84]

¢ Almost-linear-time 1/2-approximation algorithm [Charikar '00]

An optimal solution is referred to as a densest subgraph

5/26
Drawback of densest subgraphs
Densest subgraphs are not necessarily well-connected
TN TN
N N N N
PR R
Ny A Ny A
Vel ek
Y WY
Barbell graph
e The entire graph is the densest subgraph
* Removing only one edge or two vertices separates it
Densest subgraphs may not be robust to vertex/edge failure
6/26
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Not only in theory...

Densest subgraphs in real-world Web graphs:

web-BerkStan

- >
E 3 £
S .*Q

R

web-NotreDame web-Stanford 7/26

Terminology

Let G=(V,E) be a graph
e S C Viscalled a vertex separator if its removal divides G into at
least two nonempty subgraphs between which there are no edges

® The vertex connectivity x(G) is the smallest cardinality of a
vertex separator of G if G is not a clique and |V| — 1 otherwise

e Gis said to be k-vertex-connected if x(G) > k

Table: Statistics of the four densest subgraphs SPS C V

Graph |SPS|  |E(SPS)| d(S) x(G[SPS]) min-deg(G[SPS))
web-BerkStan 392 40,535 103.41 12 201
web-Google 123 3,449  28.04 30 30
web-NotreDame 1,367 107,526 78.66 1 155
web-Stanford 597 35,456 59.39 60 60

Note: x(G[S"®]) < min-deg(G[S™®))

8/26
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Our contribution

Problem (Densest k-vertex-connected subgraph)
Input: G=(V,E,w)and k € Z-

Output: S C V that maximizes d(S) = % under x(G[S]) > k

Generalization of Mader’s theorem

Algorithm for finding a Mader subgraph

Bicriteria approximation algorithm
® Approximation algorithm

The edge-connectivity counterparts are obtained but omitted

9/26

Mader’s theorem & Mader subgraph
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Mader’s theorem

Theorem [Mader '72]
Let G=(V,E)be agraph andlet d € Z-¢

If d(V) > d, then G has a (|d/2]| + 1)-vertex-connected subgraph
whose minimum degree of vertices is greater than d

This theorem says that
® dense graphs contain well-connected subgraphs
¢ (although dense graphs are not necessarily well-connected)

11/26

Generalization to edge-weighted graphs

Theorem [This work]
Let G= (V, E,w) be an edge-weighted graph and let d € R+

If d(V) > d, then G has a (| [d/Wmax|/2] + 1)-vertex-connected
subgraph whose minimum weighted degree of vertices is greater
than d

Proof strategy is the same as that of the original theorem

A subgraph whose existence is guaranteed by our theorem is
referred to as a Mader subgraph

12/26
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Algorithm for finding Mader subgraph

Let G* be a Mader subgraph of G = (V, E, w)

e Qur algorithm keeps a family H of subgraphs of G
e Exactly one subgraph in H contains G* as its subgraph

® |n each iteration, our algorithm tests whether a subgraph in H is
a Mader subgraph or not

YES: Output the subgraph
NO: Divide the subgraph into strictly smaller pieces

This is based on the algorithm for finding the most highly connected
subgraph in terms of vertex connectivity [Matula 78]

13/26

Algorithm for finding Mader subgraph

An important subprocedure:

Input: G=(V,E,w)and d € R,
Output: G[S] or Null
S+ V;
while S # ()
Vmin <— argmin, s degg(v);
/I degg(v) is the weighted degree of v in G[S]
if degg(Vmin) > d then return G[S];
S < S\ {Viin};
return Null;

¢ Often used for dense subgraph discovery (e.g., [Charikar 00])
e This algorithm runs in O(|E| + |V|log |V|) time

14/26
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Algorithm for finding Mader subgraph

Input: G= (V,E,w)

Output: G[S]

H < Peel(G,d(V));

T {WJ + 1; // vertex connectivity guaranteed by our theorem

H <« family of the connected components of H that have at least 7 + 1 vertices;
if there exists a clique K in H then return K;

15/26

Algorithm for finding Mader subgraph

Input: G= (V,E,w)

Output: G[S]

H + peel(G,d(V));

T 4— [%J + 1; // vertex connectivity guaranteed by our theorem

‘H < family of the connected components of H that have at least = + 1 vertices;
if there exists a clique K in # then return K;
while True
H' < an arbitrary element of H;
C + the minimum vertex separator of H';
if |C| > 7 then return H’;
S «+ family of the connected components of G[V(H') \ CJ;
/I V(H") denotes the vertex set of H’
H <« 0;
foreach S S
if T:=Peecl(G[SU C],d(V)) has at least 7 + 1 vertices then H' < H' U {T};
if there exists a clique K in ' then return K;
H < (H\{H'}) UH;

15/26
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Analysis

Mader_subgraph(G) outputs a Mader subgraph of G in poly time

Proof (sketch):
e |t suffices to show the while-loop terminates in polynomial time

¢ The time complexity of each iteration is dominated by computing
the minimum vertex separator (i.e., polynomial)

¢ The number of iterations is bounded by | V|

Note: The actual time complexity is O(| V|'%/4)

16/26

Bicriteria approximation algorithm

17/26
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Algorithm (with parameter v < [1, 2])

Input: G=(V,E,w)and k € Z~¢
Output: S C V or INFEASIBLE
Find the family of maximal k-vertex-connected subgraphs
{G[S1],...,G[Sp]}; /I Use the algorithm by [Makino '88]
if there is no k-vertex-connected subgraph found then
return INFEASIBLE;
fori=1,....p
SI* — S,';
Find a densest subgraph SPS (without any constraint) in G[Sj];

ifkquwJ +1> then

St < The vertex set of Mader_subgraph(G[SPS));
return S ¢ argmaxse(s:, .s:) d(S);

18/26

Analysis

Our algorithm is a polynomial-time (% : %, 1/7>-bicriteria

approximation algorithm (Vv € [1,2])

Let S C V be the output
® d(S) > 7 - ;= .OPT (OPT: optimal value of the original problem)

Wmax

e G[S] is (k/v)-vertex-connected

Note:
e We can get <1 . M)—approximation by setting v = 1

4 Wmax

e The time complexity is O(| V(| V|'®/* + Tps))
(Tps: time complexity of computing a densest subgraph in G)

19/26
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Analysis

Theorem

|

Our algorithm is a polynomial-time { 7 - %, 1/7>-bicriteria
approximation algorithm (Vv € [1,2])

Proof (sketch): Let S C V be the output
e G[S] is (k/v)-vertex-connected
* |t suffices to show G[S;] is (k/v)-vertex-connected (Vi=1,...,p)
° lfk<~ (“"(SDZ&J + 1) does not hold, S} is given by S;; so OK
e Otherwise S; is the vertex set of Mader_subgraph(G[SPS))
® Apply the generalized Mader’s theorem:

S;is (LW(S’DSQ%J + 1)-vertex—connected; SO %-vertex—connected

20/26

Analysis

Our algorithm is a polynomial-time <% . l‘,’v"rf:;”X, 1/7>-bicriteria
approximation algorithm (v € [1,2])

* d(S)> 7 Ym . OPT

® Let OPT; be the optimal value of the original problem on G[S|]
* It suffices to show d(S;) > 7 - = - OPT,;

° lfk<y (LMSPSZ%J + 1) does not hold, S; is given by S;;

so every vertex in G[S;] has weighted degree of at least
Wmink > -+ > 7 - - OPT;, implying d(G[S}]) > 7 - == - OPT;
* Otherwise S; is the vertex set of Mader_subgraph(G[SP9))
® Apply the generalized Mader’s theorem:
S; has the minimum weighted degree of at least d(SPS);
so d(S;) > d(SPS)/2 > OPT;/2 (irrespective of edge weights)
20/26
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Approximation algorithm

21/26

Algorithm

Input: G=(V,E,w)and k € Z-¢

Output: SC V or INFEASIBLE

S + argmax{x(G[S]) | S C V}; // Use the algorithm by [Matula '78]
if x(G[S]) > k then return S;

return INFEASIBLE;

This runs in O(|V|?2(k(G)? - min{|V|¥/4, k(G)%/?} + k(G)|V|)) time

22/26
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Analysis

Theorem

Our algorithm is a polynomial-time (% . %)—approximation
algorithm

Note: This is better than the previous <1 . M)-approximation

4 Wmax
Proof (sketch):
¢ Theorem by [Bernshteyn & Kostochka ’16]:
LetG=(V,E)beagraphandtc Z witht>2

If G satisfies |V| > 3t and |E| > 12t(]V| — t), then G has a
(t + 1)-vertex-connected subgraph

e Use the theorem as in the analysis of the bicriteria approximation

23/26

Conclusion
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Summary

Problem (Densest k-vertex-connected subgraph)
Input: G=(V,E,w)

Output: S C V that maximizes d(S) under x(G[S]) > k

e Generalization of Mader’s theorem

¢ Algorithm for finding a Mader subgraph

. (% . mi? 1/7)—bicriteria approximation algorithm (v € [1, 2])

Whmin

. <% : m)-approximation algorithm

The edge-connectivity counterparts are obtained but omitted

25/26
Future work
® Design better (bicriteria or ordinary) approximation algorithms
e Conduct experiments to investigate practical performance
¢ Analyze the computational complexity (NP-hardness etc.)
Thank you!
26/26
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Worst-case constructions for linear
optimization

Antoine DEZA

McMaster University, Canada
dezalmcmaster.ca

Worst-case constructions have helped providing a deeper understanding of how the
structural properties of the input affect the computational performance of linear
optimization. Recent examples include the construction of Allamigeon et al. for which
the interior point method performs an exponential number of iterations, and thus is not
strongly polynomial. In a similar spirit, recent lower bounds on the number of simplex
pivots required in the worst-case to perform linear optimization over a lattice polytope
will be presented, as well as the first worst-case instances for geometric scaling methods
that solve integer optimization problems by primal augmentation steps.
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Worst-case constructions for linear optimization

Antoine Deza, McMaster

based on joint works with:
Shmuel Onn, Technion, Sebastian Pokutta, ZIB, Lionel Pournin, Paris XIII

Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax=Db Ax<b
linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top problems for the XXI century

Strongly polynomial : algorithm independent from
the input data length and polynomial in n and d.
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Linear optimization algorithms
simplex methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max {c'x: Ax=b, x 20}

Simplex methods (Dantzig 1947): pivot-based, combinatorial,
not proven to be polynomial, efficient in practice

»start from a feasible basis
»use a pivot rule

»>find an optimal solution after a finite number of iterations
»most known pivot rules are known to be exponential
(worst case); efficient implementations exist

|

optimal

solution

.

“a

Linear optimization algorithms
(central path following) interior point methods

Given an n-dimensional vector b and an n x d (full row-rank) matrix A
and a d-dimensional cost vector ¢, solve : max{c¢'x: Ax=b, x =0}

Interior Point Methods :
path-following, polynomial, efficient in practice

»start from the analytic center

> follow the central path

» converge to an optimal solution in O(¥VnL) iterations
(L: input data length)

analytic
center

max c'x-[ Eln(b— Ax),

central
«— path

4 : central path parameter
xeP:Ax<b
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Linear optimization diameter and curvature

Diameter (of a polytope) :

lower bound for the number of iterations for pivoting
simplex methods

Curvature (of the central path associated to a polytope) :

large curvature indicates large number of iterations
for path following interior point methods

analytic
center

|

optimal
solution
~

S

Linear optimization

Given an n-dimensional vector b and an n x d matrix A
find, in any, a d-dimensional vector x such that :

Ax=b Ax<b
linear algebra linear optimization

“Can linear optimization be solved in strongly polynomial time?”
is listed by Smale as one of the top | problems for the XXI century

» [Allamigeon, Benchimol, Gaubert, Joswig 2018]
(logarithmic barrier) Interior point methods
are not strongly polynomial

» [Allamigeon, Gaubert, Vandame 2022]
(self-concordant barrier) Interior point methods
are not strongly polynomial

(tropical counterexample to continuous Hirsch conjecture [Deza-Terlaky-Zinchenko 2008])
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Lattice polytopes with large diameter

lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}9

diameter §(P) of polytope P : smallest number such that any two
vertices of P can be connected by a path with at most 3(P) edges

8(d,k): largest diameter over all lattice (d, k)-polytopes

0

ex. 8(3,3) = 6 and is achieved
by a truncated cube

» d(d,k) : lower bound on the number of simplex pivots required in
the worst case to perform linear optimization on a lattice polytope

» [Del Pia-Michini 2018] preprocessing and scaling algorithm yielding
simplex paths that are short relative to 3(d, k)

Lattice polytopes with large diameter

lattice (d,k)-polytope : convex hull of points drawn from {0,1,...,k}¢

diameter §(P) of polytope P : smallest number such that any two
vertices of P can be connected by a path with at most 3(P) edges

&(d,k): largest diameter over all lattice (d, k)-polytopes
» 8(P) : lower bound for the worst-case number of iterations required
by pivoting methods (simplex) to optimize a linear function over P

» Hirsch conjecture : 8(P)<n—d (n number of inequalities)
was disproved [Santos 2012]

8(P) < (n—d)'egd-.. [Kalai-Kleitman 1992, Todd 2014, Sukegawa 2019]
%+ no polynomial upper bound known for 5(P)
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Lattice polytopes with large diameter

8(d, k): largest diameter of a convex hull of points drawn from {0,1,...,k}9

upper bounds :
5(d,1)<d [Naddef 1989]
3(2,k) = O(k%3) [Balog-Barany 1991]
8(2,k) = 6(k/2 3 +O(k"'3log k) [Thiele 1991]
[Acketa-Zuni¢ 1995]
5(d,k) < kd [Kleinschmid-Onn 1992]
8(d,k) < kd - ld/21 fork=2 [Del Pia-Michini 2016]

8(d.k) < kd - a3 - (k-3) forkz=3 [Deza-Pournin 2018]

Lattice polytopes with large diameter

8(d,k): largest diameter of a convex hull of points drawn from {0,1,...,k}9

lower bounds :
s(d1)=d [Naddef 1989]
5(d,2) = |3d/2] [Del Pia-Michini 2016]
5(d,k) = Q(k?3 d) [Del Pia-Michini 2016]

8(d,k) 2 |(k+1)d /2| for k <2d [Deza-Manoussakis-Onn 2018]
8(d,k) = Q(k*1) for fixed d [Deza-Pournin-Sukegawa 2020]

» Lower bound of Q(k““+1) obtained by counting primitive points within
simplex and cross polytope blown up by an integer factor

[Manecke-Sanyal 2020]: primitive Ehrhart theory
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Lattice polytopes with large diameter

k
5(d, k)
1 2134|556 |7 |89
2 12| 3| 4| 4| 5|6 |6 |7 8
3|1 3|4 |6 |7]|9]|10
d
4 4 6 8
5] 5 7 |10
8(d,1)=d [Naddef 1989]
8(2,k) : close form [Thiele 1991] [Acketa-Zuni¢ 1995]
8(d,2) = |3d/2] [Del Pia-Michini 2016]
8(4,3)=8, 8(3,4)=7, 8(3,5)=9 [Deza-Pournin 2018], [Chadder-Deza 2017]
8(5,3)=10, §(3,6)=10 [Deza-Deza-Guan-Pournin 2019]

Lattice polytopes with large diameter

k
5(d, k)
1 23| 4|56 |7 |89
2 2 3 4 4 5 6 6 7 8
3 (3|4 6 |7| 9|10
d
4 4 6 8

» Conjecture [Deza-Manoussakis-Onn 2018]  &(d.k) < |_(k+1)d 12

and &(d,k) is achieved, up to translation, by a Minkowski sum of primitive
lattice veclors. The conjecture holds for all known entries of 8(d, k)
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Lattice polygons with large diameter

Q. What is 8(2,k) : largest diameter of a polygon which vertices are
drawn form the k x k grid?

A polygon can be associated to a set of vectors (edges) summing up to
zero, and without a pair of positively multiple vectors

8(2,3) = 4 is achieved by the 8 vectors : (£1,0), (0,%1), (£1,%=1)

Primitive polygons

lIxXlls = p

Hi(2,p) : Minkowski sum generated by {x € Z2: |[x||1 p, ged(x)=1, x >0}

Hy(2,p) has diameter 5(2,k) = zz o(i) for k= Z ip(0)

Ex. H4(2,2) generated by (1,0), (0,1), (1,1), (1,-1) (fits, up to translation, in 3x3 grid)

@(p) : Euler totient function counting positive integers less or equal to p relatively prime with p
oM =92)=1,9(3)=p4)=2,... x >0 : first nonzero coordinate of x is nonnegative
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Primitive zonotopes
Hgy(d,p) : Minkowski (x € 79 : ||x||4 < p, gcd(x)=1, x > 0)
x >0 : first nonzero coordinate of x is nonnegative

Given a set G of m vectors (generators),
Minkowski (G) : convex hull of all the 2™ subsums of the m vectors in G

% Primitive zonotfopes: Minkowski sum generated by short integer vectors
which are pairwise linearly independent

% Note: convex hull of all the signed subsums of the vectors of
H,(d.p) is a generalization of the permutahedron of type B,

Primitive zonotopes

Hy(d,p) : Minkowski (x € Z9: ||x||4 < p, ged(x)=1, x >0)

x >0 : first nonzero coordinate of x is nonnegative

» Hy(d, 1) : [0, 1]¥ cube for q #
» H4(d,2) : permutahedron of type By (up fo a homothety)
» H4(3,2) : great rhombicuboctahedron

» H.(3,1) : truncated small rhombicuboctahedron
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Primitive zonotopes

% lattice polytopes with /arge diameter
Hq(d,p) : Minkowski (x € Z: [|x|| < p, gcd(x)=1, x > 0)

x >0 : first nonzero coordinate of x is nonnegative

» For k < 2d, Minkowski sum of a subset of the generators of Hy(d,2) is,
up to translation, a lattice (d,k)-polytope with diameter Lgk+1)di2 g

Positive primitive zonotopes

Hq(d,p) : Minkowski (x € Z9 : ||x||4 < p, gcd(x)=1, x >0)
x > 0 : first nonzero coordinate of x is nonnegative

Hq(d,p)* : Minkowski (x € Z.,9: [|xllg < p, gcd(x)=1)

»Hy(d,2)* : Minkowski sum permutahedron + unit cube (graphical zonotope)

»H.(d,1)* : white whale (hypergraphical zonotope)
a(d) = |H«(d,1)"]

number a(d) of generalized retarded functions in quantum field theory
is equal to the number of vertices of H.(d,1)*
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Discrete optimization and theoretical physics

» Ising model (spin glasses)
maxcut, cut and metric polytopes [Deza-Laurent 1997]

» a(d) : number of generalized retarded functions in quantum field theory
(number of real-time Green functions) [Evans 1994]

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

d=2 29 -1 = 3 hyperplanes

6 regions
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Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

» isa(d)2d! [question by Evans]

» a(d) determined till d =9 ®

» how to estimate a(d) ?

a(d) regions <=> a(d) vertices

Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

> isa(d)=d! [question by Evans]
> a(d) determined till d =9 \1\

» how to estimate a(d) ? \.\

» a(d) vertices of the white whale

a(2)=6
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Discrete optimization and theoretical physics

a(d) = number of regions of the arrangement formed by the 29 -1
hyperplanes with {0,1}-valued normals in dimension d

» isa(d)2d! [question by Evans]
» a(d) determined till d =9
» how to estimate a(d) ?

» a(d) vertices of the white whale

Vertices of primitive zonotopes

Sloane OEI sequences
H(d,1)* vertices : A034997 = number of generalized retarded functions in
quantum Field theory (determined till d = 9)

Hx(d,1) vertices : AO09997 = number of regions of hyperplane arrangements
with {-1,0,1}-valued normals in dimension d (determined till d = 7)
Estimating the number of vertices of H.(d,1)* (white whale)

d(d-1)12 <log, | Ho(d,1)* | < d 2 [Billera et al 2012]
d(d-1)/2 <log, | Ho(d,1)* | < d(d-3) [Deza-Pournin-Rakotonarivo 2021]

d?(1-e4) =logy | Ho(d,1)* | < d(d-3) [Gutekunst, Mészaros, Petersen 2021]

(root resonance arrangement, maximal unbalanced families...)
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Sizing the White Whale

d a(d)

2 6 [Evans 1995]

3 32 [Evans 1995]

4 370 [Evans 1995]

5 11 292 [Evans 1995, van Eijck 1995]

6 1066 044 [Evans 1995, van Eijck 1995]

7 347 326 352 [van Eijck 1995, Kamiya, Takemura, Terao 2011]
8 419 172 756 930 [Evans 2011]

9 1 955 230 985 997 140 [Brysiewicz, Eble, Kiihne 2021]

[Chroman-Singhal 2021]
[Deza-Hao-Pournin 2021]

Generating and counting the vertices of the White Whale

» [Deza-Hao-Pournin 2021] : Generating all the edges of White While till d = 9,
and exhibiting a family of White While vertices of degree roughly 29

Vertices of primitive zonotopes

Sloane OEI sequences
H(d,1)* vertices : A034997 = number of generalized retarded functions in
quantum Field theory (determined till d = 9)

Hx(d,1) vertices : AO09997 = number of regions of hyperplane arrangements
with {-1,0,1}-valued normals in dimension d (determined till d = 7)

Estimating the number of vertices of H.(d,1) (matroid optimization)
d<log; | He(d,1) | < d(d-1) [Melamed-Onn 2014]
dlogd <log; | Ho(d,1) | < d(d-1) [Deza-Onn-Manoussakis 2018]

d(d-1)/2 <log; | Ho(d,1) | < d(d-2) [Deza-Pournin-Rakotonarivo 2021]
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Convex matroid optimization

The optimal solution of max { f(Wx) : x € S} is attained at a vertex of the
projection integer polytope in R? : conv(WS) = Wconv(S)

S : set of feasible pointin Z7  (inthetalk S € {0,1}")
W : integer d x n matrix (Wis {0,1,..., p}-valued)
f : convex function from R to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when
S € {0,1}7and Wis a {0,1}-valued d x n matrix ?

obviously v(d,n) < |WS| = O(n9)
in particular v(2,n) = O(n?), and v(2,n) = Q(n°%)

» [Hunkenschroder, Pokutta, Weismantel 2022] : min { g(Wx) : x € {0,1}"

Machine Learning setting with W unknow, but ||W||.. and the number
of rows m « n are revealed, some conditions on g such as having
Lipschitz continuous gradients

Convex matroid optimization

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S

Ex: maximum number m(2,1) of vertices of a planar projection conv(WsS)
of matroid S by a binary matrix W is attained by the following matrix and
uniform matroid of rank 3 and order 8:

w=(“ 0110 u11>
0O00O0OT1T1T1T1

11100000
S=U(38)= i f 2§ & 3

000O0O0T1TT1T1

conv(Ws)
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Convex matroid optimization

The optimal solution of max { f(Wx) : x € S} is attained at a vertex of the
projection integer polytope in R? : conv(WS) = Wconv(S)

S : set of feasible pointin Z7”  (inthetalk S € {0,1}")
W : integer d x n matrix (W is mostly {0,1,..., p}-valued)
f : convex function from R to R

Q. What is the maximum number v(d,n) of vertices of conv(WS) when
S € {0,1}7and Wis a {0,1}-valued d x n matrix ?

v(d,n) < |WS| = O(n9)
v(2,n) = O(n?), and v(2,n) = Q(n°%)

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S

Convex matroid optimization

[Melamed-Onn 2014] Given matroid S of order n and {0,1,...,p}-valued
d x n matrix W, the maximum number m(d,p) of vertices of conv(WS) is
independent of nand S

[Deza-Manoussakis-Onn 2018] Given matroid S of order n, {0,1,...,p}-
valued d x n matrix W, maximum number m(d,p) of vertices of conv(WS)
is equal to the number of vertices of H.(d,p)

m(d,p) = | H.(d,p) |

[Melamed-Onn 2014] [Deza-Pournin-Rakotonarivo 2021]
d 24 <m(d,1) < ;Z_l ((3‘{ }3)"2) 3912 < m(d,1) < 39¢2)
24<m(3,1) < 158" m(3,1) = 96

64 <m(4,1) < 19840 m(4,1) = 5376

m(2,1)=8 m(2,p) =8 ¢(0)
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Geometric scaling

(IP) integer optimization max {¢"x: x € PN {0,1}¢}

[Schultz-Weismantel-Ziegler 1995] optimization and augmentation
are equivalent (bit scaling)

[Schulz-Weismantel 2002] geometric scaling solves (IP) by
O(d log d ||c||..) augmentation oracle calls

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] geometric scaling
solves (IP) by O(d log ||¢||.) augmentation oracle calls

[Deza-Pournin-Pokutta 2022] geometric scaling may require
d + log ||c||. +1 iterations over a simplex

[Le Bodic-Pavelka-Pfetsch-Pokutta 2018] tight upper and lower bound
for bit scaling

Maximum ratio augmentation based geometric scaling

(IP) integer optimization max {¢"x: x e PN {0,1}9}

Input: P, c € Z9, vertex x° € P, 1,2 ||c]|=
Output: vertex x”maximizing ¢"x

H— Ho X X°
repeat
compute vertex x* e P maximizing ¢"(x*-x") /|| x* - x" ||
if x*=x"orcT(x*-x") < ul|| x*-x||; then u« u/2 (halving step)
else x* — x* (augmenting step)
end
until < 1/d
return x*

Do TH R b G

convex hull (9, v1,....,v¥) where v/ = (0,...0,1...1) with / ones

P
c=(1,23,...,d),x0=v0

» requires d augmenting steps and log ||¢]||. + 1 halving steps
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Feasibility test based geometric scaling

(IP) integer optimization max {¢"x: x € PN {0,1}¢}

Input: P, c e Z9, vertex x° € P, 1,2 ||c||-
Output: vertex x"maximizing ¢"x

M po, X X°
repeat
compute a vertex x* € Psuch that ¢T(x*- x") > u || x* - X" ||
if there is no such vertex then yx «— 1/2 (halving step)
else x" — x* (augmenting step)
end
until g < 1/d
return x*

Q0o GBI g O R

P = convex hull (2, v1,....,v¥) where v/ = (0,...0,1...1) with / ones
c=(24.8,...,29),x0 =0

» requires d /3 augmenting steps and log ||c||. + 1 halving steps

Feasibility test based geometric scaling

(IP) integer optimization max {¢"x: x e PN {0,1}9}

Input: P, c € Z9, vertex x° € P, 1,2 ||c]|=
Output: vertex x”maximizing ¢"x

H— Ho X X°
repeat
compute a vertex x* € Psuch that eT(x*- x*) > u || x* - x" |4
if there is no such vertex then x4 «— 3u/4 (halving step)
else x* — x* (augmenting step)
end
until < 1/d
return x*

Do TH R b G

P = convex hull (W2, v1,....,v¥) where v/ = (0,...0,1...1) with / ones
c=(248,...29,x0 = 0

» requires d augmenting steps and log ||¢]||. + 1 halving steps
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Primitive zonotopes
(degree sequences)

D, : convex hull of the degree sequences of all hypergraphs on d nodes
D, =H.(d1)*

D, (k) : convex hull of the degree sequences of all k-uniform hypergraphs
on d nodes

Q: check whether x € D, (k) N Z“ is the degree sequence of a k-uniform
hypergraph. Necessary condition: sum of the coordinates of x is multiple of k.

[Erd6s-Gallai 1960]: for k = 2 (graphs) necessary condition is sufficient
[Liu 2013] exhibited counterexamples (holes) for k = 3 (Klivans-Reiner Q.)
»Answer to Colbourn-Kocay-Stinson Q. (1986)

Deciding whether a given integer sequence is the degree sequence of a

3-uniform hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]

(reduction to 3-partition problem)

Primitive zonotopes, convex matroid optimization,
and degree sequences of hypergraphs
8(d,k): largest diameter over all lattice (d,k)-polytopes

»Conjecture : 8(d,k) < |(k+1)d/2] and 8(d,k) is achieved, up to translation,
by a Minkowski sum of primitive lattice vectors (holds for all known &(d,k) )

= 8(d,k) = |(k+1)d/2 | for k < 2d
»m(d,p) = | H.(d,p) | (convex matroid optimization complexity)
»tightening of the bounds for m(d,1) =| H.(d,1) |
»tightening of the bounds for  a(d) = | H.(d,1)*| (white whale)
»Answer to [Colbourn-Kocay-Stinson 1986] question:

Deciding whether a given integer sequence is the degree sequence of a
3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2018]
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Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Approximate Methods for Solving
Chance Constrained Linear Programs
in Probability Measure Space

Xun Shen

Tokyo Institute of Technology, Japan
shen.x.ad@m.titech.ac.jp

Many risk-aware decision-making problems can be formulated as a chance
constrained linear program in probability measure space, which is NP-hard and
unsolvable directly. In this talk, we introduce approximate methods to address this NP-
hard problem. In the proposed methods, the original problem is approximated by two
kinds of solvable optimization problems in finite-dimension space. We show the
convergence of the approximations and give numerical experiments including a
stochastic control problem for validation. Two numerical examples are presented to
show the effectiveness of the proposed method.
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Background and Motivation

® Chance constrained optimal control: applications

=

Ve
< Soa e
%« 7[.N [ Riskregion [ Safe region

Planetary rover and self-driving vehicle

Safe constraint

Prix, Eglz1-u

a -??-}:\

Problem
formulation

ST . T i &
+ i, Pk =0 Xp Prob. 2 ]

Predictive model |

*  Impres performance 1
e . S
Row : Micdel Model deterioration in T f H
! Predictive intervel 5 predictive interva | i
/_-—-—b | - i H
3 — 1t i
P . ¥ R \"'—_;:1 +  Canservative i |
¢ (72 L *  Low perfarmance ,l H Dataset |

Magnetic control of tokamak plasmas

Background and Motivation

® Chance constrained optimal control: stochastic policy

Timeindex: t  Statevariable: z; € R™ Inputvariable:u; € R™  Stochastic variable: §, € A

Let M(R™) be the space of probability measure on R™.

Let w : R™ — M(R™)be stochastic policy. For a given x, u; ~ 7(u¢|z¢). The space of 7 : II.

* Deterministic policy e Stochastic policy

a1
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Background and Motivation ﬁ

® Chance constrained optimal control: how to obtain optimal policy (closed loop)

Input variable: u; € R™  Stochastic variable: 0 €A

Timeindex: ¢t  State variable: z; € R™

T-1
min E{y"lr(zr) + Y +"l(zr,u)}, 7€ (0,1],  Objective function
mell =
s.t. Ti41 — f(Ityuty 6t)7 Uy ~ 7T('|It)7 t= 07 17 7T - 17 Dynamics

(Pd) g1(z1) <0
NP hard o
Probability level
Pr gi(w) <0 >1—a, Chance constraint robability feve
a€0,1]
gr—1(zr-1) <0
gr(zr) <0,
U € [Umin, Umax), t = 0,1, ..., T — 1. Normal constraint
5

Background and Motivation ﬁ

® Chance constrained optimal control: how to obtain optimal policy (open loop)

Timeindex: t  Statevariable: z; € R™ Inputvariable:u; € R™  Stochastic variable: §, € A

T-1
min E{v"lr(zr) + > vl (e, u)}, € (0,1],

t=0
s.t. Tip1 = f(xtyuh 575)7 v = 07 1,...,T-1, Dynamics

Objective function

P 1 . Mol
Fa) g1(@1) <0 - [ - } < gy " 170) € MO
= mT
NP hard (:L' ) <0 Ur—1 Mol m
Pr gelt) = >1—aq, Chance constraint Probability level
a€[0,1]

gr—1(zr-1) <0
gr(zr) <0,
Uy € [Umim umax]y t=0,1,....,T -1 Normal constraint
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Problem Formulation ﬁ

® Chance Constrained Linear Programs in Probability Measure Space (CCLP in PMS)

Let Z  R™=be a compact set with the infinite norm defined by [|2]loc = max |z, 2 € 2.
i=1,..., Ny
Diameterof Z: D = sup{||z — 2'||o : 2,2’ € Z}.
Random vector: § € A C R® Probability density function: p(J)
(P ,a) HEI?\}?Z)/Z‘,' J(Z)du(z) | J : Z 3 R continuous and differentiable

{y} =1, ify <O

s.t. /Z dﬂ(z)zl’{)ﬂ{y} =0, ify > 0|
/Z/Aﬂ{h(z,é)}p(5)dﬂ(z) >1-a

h:ZxA—R™ * Forevery §, h(.’ 5) is continuous and differentiable;
¢ Forevery z, h(;;7 5) has a continuous PDF.

Problem Formulation ﬁ

® Chance Constrained Linear Programs in Probability Measure Space (CCLP in PMS)

(Poo) Jmin [ I:)au)

s.t. /Z (z) =1,

dp
/z /A H{h(z,8)}dp(6)dp(z) > 1 — a

Feasible region:  Ma(2) = {u € M(Z) : / / {h(2,)}dp(6)du(z) > 1 — a}
ZJA

Optimal objective function: J, o := min /sz 2

P J o= min | J(@)dn(z)

Optimal solution set: Apo = {ne My(2) ;/ J(z)dp(z) = jma}
z

Optimal Measure: [y o € Ay
8
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Proposed Method ﬁ

@® CCLP in PMS v.s. chance constrained optimization (CCO) in finite space

(Pz’a) min J(2)

z2€Z
s.t. Pr{h(z,0) <0} >1-a.

Feasible region: Optimal objective function:

Zyi={2€ Z:Pr{h(z,6) <0} >1—a}. Jeo :=min{J(2) : z € Z,}.
Optimal solutionset: A, . :={z¢€ Z,: J(z) = J;a}. Optimal solution: Za € A; -

Theorem (Pua) and (P..q)

The optimal objective values of (P...) and (P.,.) satisfies
j,ha < jz,a, Ya € [0,1].
Besides, if a = 0, with probability 1, we have
Juo=J.0 and A,o={pe M(2):p(2)=p(A.0)} .

Proposed Method ﬁ

® Sample-based approximation

(T_)S ) min ZJ (@) |Random|yextractedz Zg={1,. ,z(s)},|

KERS

Zp (i) =1, p(i) >0, Vi=1,...,5, / Z/l,(i)ﬂ{h(z(i),rs)}p(ﬁ)déZ 1—o.
A

) P
Feasible region: Optimal objectlve function:

={ueR": / Zp(t 1{n(=1,8) < 0}dp(8) > 1 — a}. jiu = mm ZJ(Z() Ju(3)
Optimal solution set: 45, = {ue F5, ZJ 2 Nu(i) =I5, ). Optimal solution: i , € A3
Theorem (Pu.) and (P5.)

As S — oo, With probability 1,
(a) For any discrete probability measure 1.° € 7 ,, we haven® € M,(2);
(b) We have

S
lim inf o= Jua

S—o0

10
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Proposed Method ﬁ

® Sample-based apprOX|mat|0n Randomly extracted 2: Zg = {z(V, ... 2(5}.
(PS’N) min Z‘] I Randomly extracted §: Ay = {5(1),...,5(N)}.
" HERS
s L o
Zu =1, u(t) >0, Vi=1,..., S, ZM(i)NZH{h(z(’),é(]))}21—0@
i=1 j=1
Feasible region: . N Optimal objective funct|on
1 o
Fil={peRrS: Zu(i)NZH{h(z(’),é(J))} >1-oa}. TSN = min_ ZJ @Dy
P P E]:u &
S
Optimal solution set: ASY := (e F&Y 2 J()u(i) = JSY}. Optimal solution: 5% € oSN,

Theorem (PS,) and (P5 L)
As N — oo, with probability 1,
TN = I8

s

S,N s
and ADN — A7

1

Proposed Method ﬁ

® Sample-based approximation

S — oo,

(PS) (P5) = (Pu.a)

Solvable NP hard NP hard

Theorem (Pu,a) and (P5Y)

As S, N — oo, with probability 1,

¢ lim inf J9N = J, o, and ApY C Mo (2).
,IN—o00 ’

12
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Proposed Method ﬁ

® Gaussian mixture model(GMM) based approximation

(PG,N) 2‘2(5} /J(z)pg(z)dz ‘Randomlyextracted o AN={6(1),...,6(N)}.|
JTNG" z

N
1 .
s.t. / E ZI{h(z,6N)}py(2)dz > 1 —a.
=N

About PDF of GMM:

L L
4(=) :Zwi¢(3ymiyzi)' 0={0ecR™ :Zwl-:l,MzO}.
i=1 im1

Feasible region: N Optimal objective function:
1 ; _
e ={rco: -/ZZ Nﬂ{h(z’ 8 py(z)dz > 1 — a}. oI = gmir}’/ J(2)po(z)dz.
j=1 col Jz

Optimal solution set: A%Y = {6 € ©F ;/ J(2)po(z)dz = J&:N. Optimal solution: g1 € A},
zZ
13

Proposed Method ﬁ

@® Gaussian mixture model(GMM) based approximation

(Pg:g) N — o0, L — oco. (P 704)
| D

L
Solvable po(z) = Zwiqb(z,mi,&). NP hard
=1

- Theorem (P,.o) and (P5X)
As N, L — oo, With probability 1,

i i FON T
}\1{1300 infJ )y =Jua,

L
Hgn € My (2).

Hgn 1= / pgw(z)dz. vZ - Z.
o Pale

14
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Numerical Examples ﬁ

® Example 1: one dimension example

\ : : J(z) = —(2+0.6)*+2
(a) § 0 E — Cost funtion .
AL : --_ gfmal solution of chance constrained optimization| Z — { z e R sz e [_1’ 1]}
5 . . . . . '
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
04 ; ; ; ; T ; ; : h(Z, 5) - Zz + 6—2
4 o Measure by sample-based approxiamtion
03 ' - - Boun 1
(b) Zo: ' § ~N(0,1)
0.1 s
-1 0.8 0.6 0.4 -0.2 0 02 0.4 0.8 1 =
0.6 T T = JZ,0.05 = 0'572
il 7200,2000 __
(€ = ! T2 o0 = 0.5602
0.2 3 9
! 76,2000 __
) P T3 = 0.5615
-1 0.8 0.6 0.4 0. 0 02 0.4 0.8 1

oo e e 5

Numerical Examples ﬂ

@® Quadrotor system control

min  E{*(x) + ™(u)
HEM (UN) { o ( )}

s.t. w1 = Awy + B(m)uy + d(we, @) +wi, uw~ _\[(UN).

(Pgsc)
£=10,1,...N—1,
: N-1_ 4 3
]—’l{(/\l_:l xrt & Of) Alen € Xgoal)} 21 —a;
1 At 0 At?2/2 0 At?|vg|vy /2
|01 0 0 1] At 0 _ Atlvg|vg
A=1o 0 1 ae  BOI=00 0 Al W) = =2 A lo,/2
0 0 0 1 0 At Atlvyloy

16
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Numerical Examples ﬁ

® Quadrotor system control

(@) b N (©

xgoal

10| 10 |

Py

a = 15%
MC= 11.6%

a =15%
MC= 12.8%

i = 15%
MC= 11.2%

0 5 10 IS5 0 5 10 15 0 5 10 15

Conclusion and Future Work ﬁ

Conclusion

® Formulate CCLS in PMS from chance constrained optimal control (CCOC)
® Proposed sample-based approximate problem of CCLS in PMS

® Proposed GMM-based approximate problem of CCLS in PMS

Future work
® To overcome the dimension curse of sample-based approximation
@ Fast algorithm to obtain parameters in GMM-based approximation

® Establish closed loop feedback stochastic optimal policy for CCOC

18
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A generalized Levenberg—Marquardt
method for large-scale composite
minimization
Naoki MARUMO

University of Tokyo / NTT, Japan
marumo-naokil@g.ecc.u-tokyo.ac.jp

We propose a new generalized Levenberg—Marquardt method for minimizing the sum
of a smooth composite function and a convex function. The method enjoys three
theoretical guarantees: iteration complexity bound, oracle complexity bound, and local
convergence under an error bound condition [1]. Numerical results show that the
proposed method performs well for some large-scale problems.

References

[1] N.Yamashita and M. Fukushima. On the rate of convergence of the Levenberg-Marquardt
method. In G. Alefeld and X. Chen, editors, Topics in Numerical Analysis, pages 239-249, Vienna,
2001. Springer Vienna.
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A generalized Levenberg—Marquardt method

for large-scale composite minimization

Naoki Marumo (NTT / UTokyo, Japan)
joint work with Takayuki Okuno and Akiko Takeda

Outline: Problem setting & contribution

Composite minimization

sty ) == ol

® g:R? - RU{+o0}: convex
c:R% — R™ smooth (Lipschitz Jacobian)
h:R" - R: convex & smooth (Lipschitz gradient)

® Nonconvex optimization problem with many applications

¢ Levenberg—Marquardt (LM) method: efficient and widely used
(e.g., implemented in MATLAB and SciPy)

® We propose a new LM method with both an oracle complexity bound
and a local quadratic convergence guarantee ©
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Application: Empirical risk minimization in ML

1 N
min NZE(qu(ai),bi)
=1

xcRd

(a;, b;) € RP x R%: training data (i =1,...,N)

¢z : RP — RY: machine learning model with parameter z

?:R? x R? — R: loss function

o ¢(z) = (¢e(ar),. .., pulan)) € RN

g(yiv bl)

M=

1
. h(y)=h(y1,---,yw)=ﬁ 1

i

il h(c(z))

Levenberg—Marquardt (LM) method

® |terative method that uses the composite structure of the problem

e Construct a subproblem for the k-th iterate z¥.
Set 2¥*! to be an (approximate) solution to the subproblem

SnbpsehicgiogCH] linear approx. of ¢(z) damping term (p > 0)

min g(z) + A e(a¥) + Ve(@¥)(@ — 2¥) ) + £ o - 2|
zcRd 2

cf. original problem

e g9(z) + h(c(z))

® Ve(z¥) € R™*4: Jacobian matrix

® The subproblem is strongly convex and much easier than the original
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Levenberg—Marquardt (LM) method

® Introduced for least-squares problems (g(-) = 0, h(:) = %|-||3)
[Levenberg, 1944, Marquardt, 1963]

® Extended to general g, h
[Nesterov, 2007, Lewis and Wright, 2016, Drusvyatskiy and Lewis, 2018]

® Many other LM methods
[Osborne, 1976, Yamashita and Fukushima, 2001, Dan et al., 2002, Kanzow
et al., 2004, Ueda and Yamashita, 2010, Behling and Fischer, 2012,
Drusvyatskiy and Paquette, 2019, Bergou et al., 2020, Marumo et al., 2020]...

Main differences between LMs 6/18

Assumptions on g, h
How to set the damping parameter 1
Algorithm for subproblems

Theoretical guarantees
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Features of our LM 6/18

Assumptions on g, h
— g: convex, h: smooth convex. Not restricted to least squares

How to set the damping parameter u

— Adaptively

Algorithm for subproblems
— Accelerated proximal gradient with a particular termination cond.

Theoretical guarantees

— lteration complexity, oracle complexity,
local quadratic convergence (under additional assumptions)

First LM to achieve both oracle complexity and local quadratic conv.

cf.: iteration and oracle complexity

Iteration complexity
The number of iterations required to find an e-stationary point

e Used when we, at each iteration,

® compute the Jacobian Ve(z*) € R"*4 and

® solve the subproblem using it,

and the cost of @ is dominant

® Then,
(Tocal cost) ~ (Iteration complexity) x (Cost for Vc(z))

® Mainly for small- or medium-scale problems (d,n < 103)
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cf.: iteration and oracle complexity

Oracle complexity

The number of oracle calls required to find an e-stationary point

Oracles assumed in this work

e c(z), Ve(z)u, Ve(z)Tv (z,u € RY, v € R?)

* h(y), Vh(y) (y € R

® prox,,(z) = argmdin{ng(z) + Lz — 2} (z e RY, 1> 0)
z€R

® Used when we, at each iteration,

® do not compute Ve(z¥) € R™? explicitly and

® solve the subproblem using Ve(2*)u, Ve(z*)Tv

Mainly for medium- or large-scale problems (d,n > 103)

Comparison of theoretical guarantees

General g,h  #lteration #Oracle Local
Existing LM 1 v
[Yamashita and Fukushima, 2001]
2 0] (\/ZH)
[Ueda and Yamashita, 2010]
[Marumo et al., 2020] e (\/Z/Q) O( A/f)
O(VAk) v
[Marumo et al., 2020]
v O(Ky)  O(KupVr)
[Drusvyatskiy and Paquette, 2019]
Our LM < o(WVA) OWAVE) v
cf.: Prox. grad. 1 v O(Kpr' O(Kpr')
2 v O(VAr)  O(VAk)

® .k’ > 1: constants like a condition number

® Ky, Ly: Lipschitz constants of h, Vh. Normalized to L, =1

* A= g(xo) + h(c(zo)) — <a£IEHR% g(x) + ;IelliRr’ll h(y)>
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Numerical example: Rosenbrock function

min x —1)2 +100(z? — y)?
= ( ) ( Y)

100\ T T ———
W
\\

1.0 )
=
()
0.8 z 104 \\
] ~
0.6 ks] 7 N
- é 10 \\\
0.4 / o AN
’ /4 % 10-10 \\
0.2 @ Oursé % \\ = Qurs
/ O 13 N L
0.0 @ 5 O N DL
N GD Xy —= GD
7()2 S ST 10 16 \\
—0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 100 200 300 400 500
z Iteration

Our LM converges faster than existing LM and Gradient Descent ©

Previous parts of this talk:

® Problem setting
® | M method

® Qur contribution & comparison with existing work

Remaining parts:

® Details of the proposed LM and theoretical guarantees

® Numerical experiments with large-scale problems
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Proposed LM method 12/18

k-th iteration of our LM

(1 QTP p\/F(xk) — (g* + h*) (p: constant)

0 "l ¢ {x e RY ] Bk, () < %Hx - xk||2}

* F(z) =g(z) + hlc(z)), g¢" = g g(z), h" = Lty h(y)

® Wy, . (x): (sub)gradient norm for the subproblem

® @ is computed by accelerated proximal gradient

Key point of the proposed LM method 13/18

k-th iteration of our LM

O = p\/F(a:’f) — (g* + h¥) (p: constant)

0 o+ € {2 € RY | G (o) < Bl — 2o }

Difficulty on u:
® small 4 — worsen cond. number of subproblem — increase #oracle

® large p — fail quadratic convergence

Difficulty on the accuracy of subproblem’s solution:

® accurate  — increase costs per iteration — increase #oracle

® inaccurate — fail quadratic convergence & increase #iteration

© and O strike a good balance!
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Theoretical guarantee: Complexity (Main result 1) 14/18

Complexity for an c-stationary point

Iteration complexity: O(LC— VaghA(F(aco) — F*))

Oracle per iteration: O(y/klogk)
Oracle complexity: O(LC— Vgg”A(F(xo) — F*)\/klog /1)

® c-stationary point: a point z € R? s.t. w(z) < ¢

w@) = min [p+ V@) Vhe@)],

L., Ly: Lipschitz constants of V¢, Vh, =1+ L\/;» sup||Vc( )||c2,p

® A:=F(xo) — (¢"+h"), F*:= min F(x)
r€ERA

Theoretical guarantee: Local quad. conv. (Main result 2) 15/18

Assume:
e Zero-residual: F(z*) = g* 4+ h* for some z* € R,

0is sufficiently close to z*,

°
® Error bound condition.

Then, (F(2*)) converges to F,, := g* + h*. Futhermore, for some C' > 0,

F(z"1) — Fyy < C(F(a) = Fa)®, Yk >0.

Def.: Error bound condition

For some v > 0, %dis’c(a:k,X*)2 < F(z®) — (¢ +h*), Vk>0.

e dist(2, X*): distance between z* and the optimal solution set X*

® Weaker than strong convexity
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Numerical result 1: Classification with NN (MNIST)

100 = Ours(107?)

= Ours(107?)
E ~— —-== DP(10-2,10°) —-—= DP(102,10°)
g 1 g7 —= PG(107Y)
5107 >
g 8
< P
= g
2104 50 o S———
= O R s —
9] b N L B e e S e
= [
© 106 5

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Oracle cost Oracle cost

N

a{reuRI}i —% Z<bi’ LogSoftmax(¢,.(a;))) 7

i=1
® (a;,b;) €[0,1]™* x {0,1}19: training data. Pair of image and label
* ¢, : R7 - RI0: neural network with parameter x

o d=104938, n=10N = 60,000

Numerical result 2: Nonneg. Matrix Factr. (Movielens)

17/18

1.1 -
10! 0 i i — Ours(107)
E | -—— DP(1073,10°1)
100 105 T DP(10°},10°Y)
L 3 .
2 %) Y —:= PG(107?)
© > X8
g ® 1.00
210 8 = Ours(107%) ';8 '''''''''''
= , -
3 === DP(107%,107") 005 AN/ e T e
S e DP(10-1,10°1) - e
1075 e B AV e s
o B 0.90
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Oracle cost Oracle cost
1 2
: 2 2

pPXT gxXr
VERy T VeRy (ir7.5)€8)

® () training dataset. (i,7,s) € §: user i rated movie j as s € {1,...,5}
® )\ =107 regularization parameter
® d=pr+qr=1312500, n=|Q|= 280,000
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Conclusion 18/18

i 9(z) + h(c(z))

Our LM has iteration and oracle complexity bounds and a local
quadratic convergence guarantee

k-th iteration of our LM

O = p\/F(:Ck’) — (g* + h*) (p: constant)

0 o1 € {a € RY | G () < Bl — oo }

® Subproblems are solved by an accelerated proximal gradient method
® Parameter i and the accuracy of subproblem’s solution are carefully set

® Qur LM is practical for large-scale problems (d ~ 10°-106)

Appendix: Lemmas for complexity bounds 19/18

Iteration complexity is derived from Lemma 1, and
oracle complexity is derived from Lemmas 1 and 2

Lemma 1 (this work)

P(a**h) < F(a¥) — EE ! — b3, vk 20

Lemma 2 (this work)

Oracle complexity for @ is

I
O(Vrrlogky), rg =1+ M—:nvqx’f)nzp
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Appendix: Example of zero-residual problem

e f:R? 5 R™ given smooth & nonlinear function, n < d
* * c R%: unknown signal, sparse

e y:= f(z*):  observation

Goal: Recover the sparse signal z* from the low-dimensional observation y

Nonlinear compressed sensing

min |y — f(@)[3, st |zl <7
xcRd

® The constraint ||z||; < 7 enhances the sparsity of x

® This problem is composite minimization and zero-residual

References | 21/18

R. Behling and A. Fischer. A unified local convergence analysis of inexact constrained
Levenberg—Marquardt methods. Optimization Letters, 6(5):927-940, 2012.

E. H. Bergou, Y. Diouane, and V. Kungurtsev. Convergence and complexity analysis of
a Levenberg—Marquardt algorithm for inverse problems. Journal of Optimization
Theory and Applications, 185(3):927-944, 2020.

H. Dan, N. Yamashita, and M. Fukushima. Convergence properties of the inexact
Levenberg—Marquardt method under local error bound conditions. Optimization
Methods and Software, 17(4):605-626, 2002.

D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence
of proximal methods. Mathematics of Operations Research, 43(3):919-948, 2018.

D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex
functions and smooth maps. Mathematical Programming, 178(1-2):503-558, 2019.

C. Kanzow, N. Yamashita, and M. Fukushima. Levenberg—Marquardt methods with
strong local convergence properties for solving nonlinear equations with convex
constraints. Journal of Computational and Applied Mathematics, 172(2):375-397,
2004.

K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Aathematics, 2(2):164-168, 1944.

360



References |1 22/18

A.S. Lewis and S. J. Wright. A proximal method for composite minimization.
Mathematical Programming, 158(1):501-546, 2016.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431-441, 1963.

N. Marumo, T. Okuno, and A. Takeda. Majorization-minimization-based
Levenberg—Marquardt method for constrained nonlinear least squares. arXiv preprint
arXiv:2004.08259, 2020.

Y. Nesterov. Modified Gauss—Newton scheme with worst case guarantees for global
performance. Optimisation Methods and Software, 22(3):469-483, 2007.

M. R. Osborne. Nonlinear least squares—the Levenberg algorithm revisited. The Journal
of the Australian Mathematical Society. Series B. Applied Mathematics, 19(3):
343-357, 1976.

K. Ueda and N. Yamashita. On a global complexity bound of the Levenberg—Marquardt
method. Journal of Optimization Theory and Applications, 147(3):443-453, 2010.

N. Yamashita and M. Fukushima. On the rate of convergence of the
Levenberg—Marquardt method. In G. Alefeld and X. Chen, editors, Topics in
Numerical Analysis, pages 239-249, Vienna, 2001. Springer Vienna.

361






The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

BIPSOL: A metaheuristic solver for
large-scale binary integer programs
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Metaheuristics have proven to a comprehensive approach to attain good solutions for
hard combinatorial optimization problems. However, they are usually based on specific
characteristics of the problem to be solved, which makes them hard to develop efficient
general purpose solvers for such as the mixed integer programs (MIPs) and the constraint
satisfaction problems (CSPs). In designing metaheuristics for combinatorial optimization
problems, the quality of solutions typically improves if larger and sophisticated
neighborhoods are used, while computation time of searching the neighborhood also
increases rapidly. BIPSOL is a metaheuristic solver for large-scale binary integer
programs (BIPs) that introduces a generalized technique of the neighbor-list used for
traveling salesman problem (TSP) to generate smaller and structured neighborhoods
automatically [1,2]. We incorporate an efficient incremental evaluation of solutions and
a dynamic control mechanisms of penalty weights into BIPSOL. In this talk, we show
some progress of development in BIPSOL and future directions.
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[1] Shunji Umetani, Exploiting variable associations to configure efficient local search algorithm in
large-scale binary integer programs, European Journal of Operational Research, 263 (2017), 72-
81. https://doi.org/10.1016/j.ejor.2017.05.025
[2] Shunji Umetani, Exploiting variable associations to configure efficient local search algorithm in
large-scale set partitioning problems, Proceedings of 29" AAAI Conference on Artificial
Intelligence (AAAI-15), 1226-1232.
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BIPSOL: A metaheuristic solver
for large-scale binary integer programs

Shunji Umetani
Osaka University, JAPAN

6t RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop

on Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

Overview

We have developed a metaheuristic solver called BIPSOL for large-
scale binary integer program up to several millions of variables.
' S. Umetani, Exploiting variable associations to configure efficient local search

algorithm in large-scale binary integer programs, European Journal of
Operational Research, 263 (2017), 72-81. (open access)

¥ S. Umetani, Exploiting variable associations to configure efficient local search
algorithm in large-scale set partitioning problems, Proc. of 29" AAA|
Conference on Artificial Intelligence (AAAI-15), 1226-1232,

The proposed algorithm was implemented as the WLS solver in the
Nuorium Optimizer, a mathematical optimization package of NTT
DATA Mathematical Systems, Inc.

We review the concept and implementation of the proposed
metaheristic solver and discuss some current technical issues.
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Binary integer program

* The binary integer program (BIP) is a general model having many
real-world applications, such as crew scheduling, vehicle routing,

facility location, and so on.

* Based on linear programming (LP) technigues, many exact and
heuristic algorithms have been developea.

* Many large-scale BIP instances still remain due to a large gap
between the lower and upper bounds of the optimal values.

min. z(x) = Z Ci%

JEN

s.t. Z agxp < b;, ie M,
jeN
ZBUXJ > b, i€ Mg,
JEN
Za,jszb;, i€ Mg,
JEN
x; € {0,1}, jeN.

Metaheuristics

* Metaheuristics can be considered as the collection of ideas on
designing heuristic algorithms for optimization problems.

* The ideas of metaheuristics give us to a systematic view by
incorporating them into greedy and local search algorithm.

* However, we often need to extract special features of individual
problems to achieve high performance in practice.

iterated
local search

local optimum

objective value

search space

multi-start &, -
local search

How to develop general purpose metaheuristics?
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Approach overview

* BIP is a general-purpose optimizationfprob!em but having few
good features to improve efficiency of algorithms.

* We consider extracting good features from the instance to be
solved (not the problem formulation) to improve efficiency of local
search (LS) algorithms.

* We introduce a simple data mining approach for reducing the
search space of LS algorithms for BIP.

problem instance _ meta data _

(formula‘mon
min .
s.t. Ax >b
x € {0,1}"

The PROBLEM has ]

no good features
NP-hard problem

A
/ Extract good features ﬁ
from DATA

Outline of the proposed algorithm

* The main components of the proposed algorithm:
v Exploiting variable associations to reduce the search space
v Adaptive control of penalty weights
v Efficient incremental evaluation

Local search

6
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Local search algorithm

* Start from an initial solution x, and repeats replacing x with a better
solution x’ in its nelghborhood NB(x) until no better solution is
found in NB(x) .

+ Searching the larger neighborhood increases chance to find better
solutions but very time consuming.

Construct initial
neighborhood solution
VAL I N

‘@ Search neighborhood

locally optimal
yes

solution

lacally optimal
solution

SOIUTIoN

Search space and evaluation

* Even the problem only to find a feasible solution is NP-complete.

« Allow excess y; and shortage y; of thei-th constraint and
introduce penalty functions with weights w;" and w;”

(adaptively controlled in the search).

min. 2(x)=Y ¢+ >, (Wiy+wy)

JEN iEM UMz UMg
s.t. Z ajxj — y:r < b;, i M,
JEN e gic
— . easibie
Z aijxj +y; = bj, i€ Mg, region
JEN
Zag)g—y‘-++yf_ =b;, i€ Mg,
JEN Search promising region
xj e {0,1}, jEN, by controlling penalty weights
yiyi =20, i€ Mg UMgU Me.
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Neighborhood structure

* The k-flip neighborhood NB(x) for BIP is defined by

NBi(x) = {¥' € {0,1}" | d(x,X') < k} (d(xx)=|{j € N|x #x}])

* The 4-flip operation includes representative operations such as
exchanging assignments between two agents.

* However, the 4-flip neighborhood is too large to search efficiently
in large-scale instances.

WXt =1 X1 X+ -exp =1

o

X12

¥ 7

L]
L]
. 5 .
122 3 a)
o S >
)t X2t o =1 o1 H0)F e =1)

How to define and search large neighborhood?

How to extract features in BIP

* MIP instances often include characteristic parts of special
constraints, and extracting them may improve the performance of
MIP solvers.

« However, extracting characteristic parts of constraint matrix is
basically very hard (e.g., extracting a maximum totally unimodular
matrix is NP-hard).

seymour écc—tight4 2000 stp3d
(#cst:d944 #var:1372)  (#cst:3052 #var:1339)  (#est: 10500 #var:4000)  (Hest: 159488, #var:204880)

* ds (#cst:656,#var67732)
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Exploiting variable associations

* Find promising pairs of variables in NBz(x) from the instance to be
solved for reducing the search space.

* Keep pairs of variables x;, and x;, having similar columns
aj and aj, in the k-nearest neighbor graph.

+ Search candidate solutions only for edges in the k-nearest neighbor

graph.

Select pairs of variables
with similar columns e
I C |
i < :
A —>
>
X
constraint matrix k-nearest neighbor graph

Neighbor-list implementation

. Fg_la_r each variable x;,, keep a number of variables x;, with the largest
a; aj, into the j;-th row ot the neighbor-list.

* However, constructing the whole neighbor-list is still very time
consuming for large-scale instances.

« Starting from empty list, we incrementally compute the corresponding
rows of neighbor-list when flipping variable x;, in the 2-flip
neighborhood search.

x| o [ o [ om |
X2 ¥ xigs | x810 | x99 | aind |

x100 [ .
' L] lazy generation of
b E[\_t'he neighbor-list

x5 M an2
X ndE | K0 X731

57— aios [ xam [ x104 | xse

X8 [——b] %495 | 57 | al08 | x708 | 83 |

%9 ¥ x| k311 | X106 | X193 | xEd ]
10— o | s | oy | a0 |

x11 M xiis | w821 [ xsra]

k-nearest neighbor graph

neighbor-list
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Large neighborhood search

* Using k-nearest neighbor graph, we extend the 2-flip
neighborhood search to search a set of promising solution in larger

neighborhood.

* We develop the 4-flip neighborhood search for an improving
solution by flipping four variables alternately along 4-paths or 4-
cycles in the k-nearest neighbor graph.

flip 4 variables along
s=| to 4-path or 4-cycle

Incremental evaluation

* Naive implementation requires to scan the constraint matrix to
compute the evaluation function z(x).

* Using the auxiliary data, we compute the increase of the evaluation
function in O(1) time when flipping a variable.

* The auxiliary data are updated only when updating the current
solutionx — x’ € NB(x)".

difference in obj. auxiliary data constraint matrix
Az (x) = ¢ +Ap(x)+Ag(x) x| N|| C |
AZ (x) = - +Ap(x)+Ag (X) =

¥, <

Compute in O(1) time

si(x) = aix A
JEN
=\

How to skip scanning
the constraint matrix?

|V

Efficiently update the auxiliary T
data for the sparse constraint
matrix

(X

*# of evaluating neighbors x’ € NB(x) is much larger than # of updating the current solution.i4

370




Adaptive control of penalty weights

» We incorporate an adaptive control of penalty weights w;" and w;”
to escape poor locally optimal solutions and intensify the search
around the boundary of feasible region.

« If Z(x) > z(x") holds, decrease the penalty weights w:"and w;”
uniformly; otherwise, increase them by the following formula.

z(x*) — z(x)

Wi — Wi -+ = Vi ie M,

ZRGM(-V;_Z +yi )

feasible
region

—, Search promising region
| by controlling penalty weights

* x” is the incumbent solution obtained so far.

Test instances of SCP

* We have tested our algorithm on benchmark instances of the set
covering problem (SCP) and the set partitioning problem (SPP).

* Run in a single thread on MacBook Pro (Intel Core i7, 2.7GHz,
16GB mem).

original presolved
instance Zip Thisit st #hvar, Ecst. #var, time limit
+G.1-5 (5) 149.48 166.4 1000.0 10000.0 1000.0  10000.0 600 s
*H.1-5 (5) 45.67 59.6 1000.0 10000.0 1000.0 10000.0 600 s

*1.1-5 (5) 138.97 158.0 1000.0 50000.0 1000.0  49981.0 1200 s
*J.1-5 (5) 104.78 129.0 1000.0 100000.0 1000.0 99944.8 1200 s
+K.1-5 (5) 276.67 3132 2000.0  100000.0 2000.0  99971.0 1800 s
*L.1-5 (5) 209.34 258.0 2000.0 200000.0 2000.0 199927.6 1800 s
*M.1-5 (5) 41578 549.8 5000.0  500000.0 5000.0 499988.0 3600 s
*N.1-5 (5) 34893 503.8 5000.0 1000000.0 5000.0 999993.2 3600 s

RAIL507 17215 +174 507 63009 440 20700 600 s
RAIL516 182.00  #182 516 47311 403 37832 600 s
RAIL582 200.71  *211 582 55515 544 27427 600 s
RAIL2536 688,40  +689 2536 1081841 2001 480597 3600 s
«RAIL2586  935.92 947 2586 920683 2239 408724 3600 s
*RAIL4284 1054.05 1064 4284 1092610 3633 607884 3600 s
=RAIL4872  1509.64 1530 4872 968672 4207 482500 3600 s
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Test instances of SPP

* We have tested our algorithm on benchmark instances of the set
covering problem (SCP) and the set partitioning problem (SPP).

* Run in a single thread on MacBook Pro (Intel Core i7, 2.7GHz,
16GB mem).

original presolved
instance Zip Ziace #ost. Hvar. #est. Fvar. time limit
aa01-06 (6) 40372.75 +«40588.83 675.3 7587.3 478.7 6092.7 600 s
us01-04 (4) 974944 +9798.25  121.3 295085.0 655 B5T72.5 600 s
v0415-0421 (7)  2385764.17 =%2393303.71 1479.3 303416 263.9 7277.0 600 s
v1616-1622 (7)  1021288.76 +1025552.43 1375.7  83986.7 1171.9 51136.7 600 s
t0415-0421 {?) 5199083.74 5453475.71 1479.3 7304.3 820.7 2617.4 600 s
*t1716-1722 (7) 121445.76 157516.29 475.7 58981.3 4757 131936 3600 s
*ds 57.23 187.47 656 67732 656 67730 3600 s
*ds-big 86.82 731.69 1042 174997 1042 173026 3600 s
#ivu06-big 135.43 166.02 1177 2277736 1177 2197774 3600 s
*ivub9 884.46 1878.83 3436 2569996 3413 2565083 3600 s

Computational results for SCP (2016)

* We compare other variations with the proposed algorithm: w/o
neighbor-list, w/o incremental evaluation, w/o 4-flip.

* We show the relative gap % x 100 (%) of the obtained
feasible solution.

TS OO0 0T 000 O\ s faster
+G.1-5 (5 00% 12% 00% 0% :
+H.1-5 (5) 031% 031% 031%  0.00% t?a” tﬂf ”a'ffcf\
+1.1-5 (5) 124%  0.86%  050%  0.50% dgoR LA
+1.1-5 (5) 242% 167% 168%  153% simple incremental
«K.1-5 (5) 212% 1.69% 132%  1.26% evaluation

+L.1-5 (5) 3.44%  351%  2.35% 2.05%

*M.1-5 (5) 1097% |833% 279%  2.65%

*N.1-5 (5) 19:11% 22.06% 4.76%  5.47%

RAIL507 0.00% 057% 0.00%  0.00%

RAIL516 0.00% 0.00% 0.00%  0.00%

RAIL582 047% 047% 047%  0.00%

RAIL2536 268% 227% 1.29%  0.72%

+RAIL2586 2.57% 287% 2.21%  156%

*RAIL4284 542% 5.17% 274% @ 2.12%

+RAIL48T2 443%  347%  2.36% 1.80%

avg. (all) 455% 4.42%  1.65% 1.56%

avg. (with stars)  4.89% 4.75% 1.77% 1.69%
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Computational results for SPP (2016)

* We compare other variations with the proposed algorithm: w/o
neighbor-list, w/o incremental evaluation, w/o 4-flip.

+ We show the relative gap flizlmzﬂi x 100 (%) of the obtained
feasible solution.

* We also show # of instances for which the algorithm obtained
feasible solutions within the time limit.

instance no-list no-inc 2-FNLS proposed

2a01-06 (6) 2.33%(6) 2.26%(6) 2.07%(6) 1.60%(6)
us01-04 (4) 0.04%(4) 1.16%(4) 0.63%(4) 0.04%(4)
v0415-0421 (7) 0.00%(7) 0.00%(7) 0.00%(7) 0.00%(7)
v1616-1622 (7) 0.62%(7) 0.17%(7) 0.09%(7) 0.00%(7)
t0415-0421 (7) 1.46%(5) 1.30%(6) 0.29%(7) 0.92%(6)
*t1716-1722 (7) 5.46%(7) 4.33%(7) 5.71%(7) 2.45%(7)
*ds 36.03% 33.80% 24.13% 0.00%
*ds-big 29.11% 0.00% 40.75% 0.00%
#ivuDB-big 5.31% 3.83% 2.25% 0.00%
*ivub9 15.75% 11.39% 16.01% 0.00%
avg. (all) 3.76%(40/42) 2.60%(41/42) 3.35%(42/42) [0.81%(41/42)

avg. (with stars) 10.37%(12/13) 6.61%(12/13) 9.48%(13/13) 1.43%(12/13)

Computational results for SCP (2016)

* We compare the proposed algorithm with the recent solvers.
+ We show the relative gap ZX)—2=t » 100 (%) of the obtained

feasible solution. 2
instance CPLEX12.6 Gurobi5.6.3 SCIP3.1 LocalSolver3.1 Yagiura et al. proposed
*G.1-5 (5) 0.37% 0.49%  0.24% 45.80% 0.00% 0.00%
+H,1-5 (5) 1.92% 2.28%  1.93% 61.54% 0.00% 0.00%
*1.1-5 (5) 2.81% 272%  1.85% 41.38% 0.00% 0.50%
*J.1-5 (5) 8.37% 430%  3.59% 58.40% 0.00% 1.53%
*K.1-5 (5) 4.77% 4.38%  2.55% 51.22% 0.00% 1.26%
+L.1-5 (5) 9.57% 8.44%  3.52% 57.79% 0.00% 2.05%
*M.1-5 (5) 18.43% 1010% 30.71% 71.08% 0.00% 2.65%
#N.1-5 (5) 33.13% 1249% 4232% 75.63% 0.00% 5.47%
RAIL507 0.00% 0.00%  0.00% 5.43% 0.00% 0.00%
RAIL516 0.00% 0.00%  0.00% 3.19% 0.00% 0.00%
RAIL582 0.00% 0.00%  0.00% 5.80% 0.00% 0.00%
RAIL2536 0.00% 0.00%  0.86% 3.50% 0.29% 0.72%
*RAIL2586 2.27% 217%  2.27% 5.39% 0.00% 1.56%
+RAIL4284 5.34% 157%  30.55% 6.50% 0.00% 2.12%
+«RAIL4872 1.73% 1.73%  2.67% 5.61% 0.00% 1.80%
Tavg. (all) 8.64% 4.92% 10.00% 49.99% 0.01%  1.56%
avg. (with stars) 9.45% 5.38% 10.91% 54.22% 0.00% 1.69%
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Computational results for SPP (2016)

* We compare the proposed algorithm with the recent solvers.

* We show the relative gap % x 100 (%) of the obtained
feasible solution.

* We also show # of instances for which the algorithm obtained
feasible solutions within the time limit.

instance CPLEX12.6 Gurobis.6.3 SCIP3.1 LocalSolver3.1 proposed

2a01-06 (6) 0.00%(6) 0.00%(6) 0.00%(6) 13.89%(1) 1.60%(6)
us01-04 (4) 0.00%(4) 0.00%(4) 0.00%(3) 11.26%(2) 0.04%(4)
v0415-0421 (7) 0.00%(7) 0.00%(7) 0.00%(7) 0.05%(7) 0.00%(7)
v1616-1622 (7) 0.00%(7) 0.00%(7) 0.00%(7) 4.60%(7) 0.09%(7)
t0415-0421 (7) 0.66%(7) 0.60%(7) 1.61%(6) — (0) 0.92%(6)
#t1716-1722 (7) 8.34%(7) 16.58%(7) 3.51%(7) 37.08%(1) 2.45%(7)
*ds 8.86% 55.61% 40.53% 85.17% 0.00%
*ds-big 62.16% 24.03% 72.01% 92.69% 0.00%
*ivu00-big 20.86% 0.68% 17.90% 52.54% 0.00%
*ivub9 28.50% 4.36% 37.84% 48.95% 0.00%
avg. (all) 437%(42/42)  4.88%(42/42) 5.06%(40/42) 17.52%(22/42) 0.81%(41/42)

avg. (with stars) WA10%(13/13) 1S66%(13/13) 1S07%(13/13) [6329%(5/13) |1A3%(12/13)

Current technical issues

* BIPSOL misses pairs of variables to be swapped for fixed charge
cost type problems such as the bin packing problem and the facility
location problem.

* The variable y; illustrates the usage of i-th bin.
* We often prefer to swap a selected bin and a non-selected one.
* Any pair of variables yi, and i, never appears in the same constraint.

* 2-FNLS never swaps the values of Yi andYi, simultaneously.

bin packing problem

min. Zy,- | |

ieM . [ d J
s.t. Z wixj — Cy; <0, ieM, <

JEN [ ]_

Y xi=1, jEN, -

iemM i

x; € {0,1}, JEN, Vol ¥

yi € {0,1}, ieM. - .
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Current technical issues (cont.)

* We expect BIPSOL searches around the boundary of the feasible
region, but ...

« BIPSOL often dives the infeasible region because of the
undesirable behavior of the adaptive control of penalty weights.

* The local search algorithm sometimes stops at an infeasible
solution even though increasing penalty weights.

* BIPSOL then decreases penalty weights despite of having some
violating constraints, it makes to dive the inf};asibie region deeper.

feasible
region

Conclusion and future direction

* We introduce a simple data mining approach to reduce the search
space of local search algorithms by extracting the instance to be
solved.

+ We construct parts of a k-nearest neighbor graph on demand that
identifies promising pairs of flipping variables in the 2-flip
neighborhood search.

* We develop the 4-flip neighborhood search using the k-nearest
neighbor graph.

*+ We also introduce the adaptive control of penalty weights and fast
incremental evaluation.

» We discuss current some technical issues on BIPSOL.

* We now plan to extend BIPSOL to perform more general
optimziation problems, such as the general integer programs (IP),
the mixed integer programs (MIP), the binary quadratic programs
with constraints (BQP), the constraint satisfaction problem (CSP),
etc.
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Performance of the supercomputer
Fugaku for Graph500 benchmark

Masahiro Nakao

RIKEN Center for Computational Science, Japan
masahiro.nakao@riken.jp

We present the performance of the supercomputer Fugaku for breadth-first search
(BFS) in the Graph500 benchmark, which is known as a ranking benchmark used to
evaluate large-scale graph processing performance on supercomputer systems. Fugaku
is a huge-scale Japanese exascale supercomputer that consists of 158,976 nodes. We
evaluate the BFS performance for a large-scale graph consisting of about 2.2 trillion
vertices and 35.2 trillion edges using the whole Fugaku system, and achieve 102,955
giga-traversed edges per second, resulting in the first position of Graph500 BFS
ranking[1, 2].

References
[1] Masahiro Nakao, Koji Ueno, Katsuki Fujisawa, Yuetsu Kodama, Mitsuhisa Sato. ' 'Performance
of the Supercomputer Fugaku for Breadth-First Search in Graph500 Benchmark.", ISC 2021, Jun.
2021, https://doi.org/10.1007/978-3-030-78713-4_20
[2] https://graph500.org
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Parallelize BFS and SSSP algorithms on supercomputers

« Parallelize fundamental graph algorithms on supercomputers
« Breadth First Search (BFS) in cooperation with IMI
« Single-Source Shortest Path (SSSP) in cooperation with ZIB and IMI
« Large scale supercomputers
« Graph algorithm that runs efficiently on such systems is a challenging research

The K computer : 82,944 nodes[1] Supercomputer Fugaku : 158,976 nodes|[2]

[1] Koji Ueno et al: Efficient breadth-first
search on massively parallel and
distributed-memory machines.

Data Science and Engineering, 2016

[2] Masahiro Nakao et al: Performance of the

[ " Supercomputer Fugaku for Breadth-First
2012- 2019 Search in Graph500 Benchmark." ISC 2021

Graph500 https://graph500.0rg &R@

« Graph500 is a competition for evaluating performance of large-scale graph processing
« The performance unit is a traversed edges per second (TEPS)
e« 1GTEPS : Search 1 billion edges per second
« Graph500 list is updated twice a year (June and November in ISC and SC)
e BFS : The K computer ranked first 10 times from 2014 to 2019
e BFS : Supercomputer Fugaku ranks first from 2020 to now
e SSSP : Supercomputer Fugaku ranks 2nd in June 2022
« In graph500, an artificial graph called the “Kronecker graph” is used
« Some vertices are connected to many other vertices while numerous others are
connected to only a few vertices
« Social network is known to have a similar property
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Objective

« This presentation describes the performance tuning of BFS for the Graph500
submission and experimental evaluation results conducted on Fugaku

e Summary
e Use a large-graph with 2.2 trillion vertices and 35.2 trillion edges (SCALE=4T)
e Archive 102,955 GTEPS
e The performance of Fugaku is 3.3 times better than that of the K computer

June 2019 November 2020
NAME SCALE GTEPS NAME SCALE GTEPS
Ist |K computer 40 31,302|Supercomputer Fugaku 41 102,955
2nd |Sunway TaihuLight 40 23,756(Sunway TaihuLight 40 23,756
3rd |Sequoia 41 23,751|TOKI-SORA 36 10,813
4th |Mira 40 14,982(Summit 40 7.666
5th SuperMUC-NG 39  6,279(SuperMUC-NG 39 6,279

Outline

BFS in Graphb500 Benchmark

The supercomputer Fugaku

Tuning BFS on the supercomputer Fugaku
Full node evaluation
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OverviewbfBFSTnTGraph500

Input : Kronecker graph and root vertex Output : BFS tree

« Repeat BFS 64 times from different root vertex
« The harmonic mean of the performance in 64 trials is used as the final performance

Hyb ri d 'B FS [Beamer, 2012] Scott Beamer et al. Direction-optimizing breadth-first search

« Hybrid-BFS runs while switching between Top-down and Bottom-up

Top-down Bottom-up

Search for unvisited vertices Search for visited vertices
from visited vertices from unvisited vertices

« In the middle of BFS, the number of vertices being visited increases explosively,
so it is inefficient in only Top-down
« Hybrid-BFS switches between Top-down and Bottom-up on the situation
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NumberbfWVertexthecks

« SCALE =26
« Graph with 2*{SCALE]} vertices and 2*{SCALE+4} edges
e« 67.1 million vertices and 1.1 billion edges

Top-down Bottom-up Hybrid-BFS
0 2 2,103,840,895 2
! 66,206 1,766.567,029 06,206 Hybrid-BFS decides when to
2 346,918,235 52,667,691 52,667,691 switch between Top-down and
3 1,727,195,615 12,820,854 12,820,854 Bottom-up from information
4 29,557,400 103,184 103,184  Such as the number of
s 82,357 o 21,467 21,467 vertices being searched.
6 221 21,240 221
Total 2,103,820,036 3,936,062,360 65,679,625
Rate 100.00% 187.09%

2DHybrid-BFS

[Beamer, 2013] Scott Beamer, et. al. Distributed Memory Breadth-First
Search Revisited: Enabling Bottom-Up Search. IPDPSW '13.

« Adjacency matrix is distributed to a 2D process grid (R x C)

Aig || Auc
A= : :
Ara | = [Arc

)

« Communication only within the column processes and row processes
« Allgatherv, Alltoallv, point-to-point (isend/irecv/wait)

« The closer the R and C values are, the smaller the total communication size

« Based on this 2D Hybrid-BFS, we implemented BFS with various ideas to
improve performance[1]

[1] Koji Ueno et al: Efficient breadth-first search on massively parallel and
distributed-memory machines. Data Science and Engineering, (2016)
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Outline

BFS in Graph500 Benchmark

The supercomputer Fugaku

Tuning BFS on the supercomputer Fugaku
Full node evaluation

r%y
The supercomputer Fugaku 4 /E\

« The supercomputer Fugaku, which is developed jointly by RIKEN and Fujitsu Limited
based on Arm technology

« Located in RIKEN Center for Computational Science in Kobe, Hyogo, Japan

« 158,976 compute nodes

« Start sharing in March 2021
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SpecificationoflComputerNode

AGAFX, 4842/dcores, 2.0/22GHz L28MB o« Each node has a single CPU

3,072/3.379GFlops (double precision .
I Lol b ety ) « Each CPU has 48 compute cores and 2/4 assistant

CPU

Network| TofuD: 0.49 to 0.54us (Latency) cores. The assistant cores handle the interrupts OS and
6.8GB/s (Bandwidth) communication
e 2.0 GHz or 2.2 GHz for each job
CPU (AB4FX) » Each CPU consists of 4 CMGs
X+ » Each CMG consists of 12 + 1 cores and 8GiB HBM2
X- e It is recommended that the number of processes

|5_:‘Ié1

Tofu-D Network Router

per CPU is a divisor of 4

TNI2 Z+ » Each CPU has 10 network cables

TNI3

I

b+

p- CMG : Core Memory Group

¢ NOC : Network on Chip
TNI: Tofu Network Interface

L2 Cache Coherent control between CMGs

NetworkTopologyofFugaku

» 6D mesh/torus : XYZabc-axis » Process Mapping
» The size of abc is (2,3,2) » Discrete assignment
» The size of XYZ is (24,23,24) « 1D torus or mesh
S0 it has 24*23*24*2*3*2 = 158,976 nodes « 2D torus or mesh

« 3D torus or mesh

Node 12 nodes

,\
KQ fQ o
(@R A 4)D)

R AlLALAD Aq | | Aic
(@ ZAZAZ PN ey :
Par\Wan\ Wan I A
(@ R A %)) RA RC

c

https://pr.fujitsu.com/jp/news/2020/04/28.html
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Outline

BFS in Graph500 Benchmark

The supercomputer Fugaku

Tuning BFS on the supercomputer Fugaku
Full node evaluation

Number®ofiprocessesPperhodeT1/2)

» Process per node (ppn)
» 1 process 48 threads per node (1ppn)
e 2 processes 24threads per node (2ppn)
o 4 processes 12threads per node (4ppn) In the cases of 1ppn and 2ppn, the cache hit

rate decreases because the memory accesses
by threads cross the CMG.

Performance Performance Ratio with 1ppn
g 20,000 4 1.75 The result of 16,384 nodes for 2ppn could not
W 46000 PP s be measured due to a system malfunction.
= o
o ~ 150
~ 12,000 <
3 2ppn =
S 8,000 w w
g 1ppn o L1125 @
- © —
E 4,000 e 2ppn 1]
o}
0 1.00
a 512 1,024 2,048 4,096 8,192 16,384 512 1,024 2,048 4,096 8,192 16,384 Tppn
Number of nodes Number of nodes

« The larger the number of nodes, the smaller the performance difference
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NumberTfiprocessesperhodeT2/2)

1ppn 4ppn

, .

00 | = 100 ey |n;t_)s:atr;ce°_nt
= int-to-poi
£ g0 D 80 P P
=2
G
§ 80 60 alltoallv Comm.
T 40 40
o allgatherv
® 20 20 .

B calculation

0 0

512 1,024 2,048 4,096 8,192 16,384 512 1,024 2,048 4,096 8,192 16,384
Number of nodes Number of nodes

« As the number of nodes increases, the rate of communication increases

« Ippn has a smaller rate of communication than 4ppn

« If the number of nodes is increased further, the communication ratio will increase.

« Thus, we select 1ppn, which can bring out the full communication performance

UsebfEagerimethodT1/2)

« In the point-to-point communication of most MPI implementations, the Eager and
Rendezvous methods are implemented

« Although most MPI implementations switch the Eager and Rendezvous methods
automatically depending on message size, optimal message size depends on application

Eager Rendezvous
Sender  Receiver Sender  Receiver

MPI_Send s MPI_Recv

message (5

MPI_Send l

message

Asynchronous communication that
can start/end the message sending | Synchronous communication to
process regardless of the state of send/receive messages after both MPI
the sending/receiving processes processes are ready to communicate
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UsefEagerimethodT2/2)

« In the default setting, Rendezvous was selected for all send/recv communication of BFS
« Fujitsu MPI library on Fugaku can set the threshold for switching between Eager and
Rendezvous methods
« We change the threshold to 512 Kbytes from default value to use Eager method
« Since Fugaku's compute node has 32 Gbytes memory, the buffer size is relatively small

. 0.5 4.0 imbalance
9} - point-to-point
g o4 3 50
“E’ 0.3 ° alltoallv
£ Rendezvous E 20
§ 02 A allgather
2 0.1 g g0
o = calculation
0 .
512 1,024 2,048 4,096 8,192 16,384 Rendezvous  Eager Achieved a performance
Number of nodes 16,384 nodes improvement of 2.3%

PowerTmanagementT1/2)

« User can specify CPU frequency for each job ruffrsy
« Normal mode : 2.0 GHz AG6LFX”

* Boost mode : 2.2 GHz
« Eco mode : Two floating-point arithmetic pipelines of A64FX are limited to one, and
power control is performed according to the maximum power
« Since BFS does not perform floating-point arithmetic, the use of Eco mode can be
expected to reduce power consumption without affecting performance

« Normal: 2.0 GHz, two floating-point arithmetic pipelines (in previous evaluations)
« Boost: 2.2 GHz, two floating-point arithmetic pipelines

« Normal Eco : 2.0 GHz, one floating-point arithmetic pipeline

« Boost Eco: 2.2 GHz, one floating-point arithmetic pipeline
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PowerTmanagementT2/2)

Performance (TEPS) ratio Power Efficiency (TEPS/W) ratio
o
o 1.0 =1 1.40 L Eco
= & ° g TR S
4 1.0 5 1.30 k—ﬂ—-“.__*_\‘
g 1.0 GCJ 1.20 Boost Eco
© Boost Eco ‘©
£ 1.02 E 110
5 o Eco | @ W Normal | @
t 10 — —— © g 100 2
e ““Normal | § = —e— s, Boost |ZF
0.9 = L o090 =
512 1,024 2,048 4,096 8,192 16,384 512 1,024 2,048 4,096 8,192 16,384
Number of nodes Number of nodes

« Boost Eco mode has a good balance between performance and power efficiency
« The performance in Boost Eco mode is 3.6 % better than that in Normal mode

« The power efficiency in Boost Eco mode is 27.2 % better than that in Normal mode

« The results of Boost Eco mode for 16,384 nodes are 18,607 GTEPS and 1,408 kW

Outline

e BFS in Graph500 Benchmark

o The supercomputer Fugaku

e Tuning BFS on the supercomputer Fugaku
e Full node evaluation
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Six-dimensionalprocessTmappingT1/2)

« The size of six axes in Fugaku network is (X, Y, Z, a, b, c) = (23, 24, 23, 2, 3, 2)
« It is desirable that the values of R and C process grid of BFS are close

« We assign the processes to (R, C) =

(XY, Zabc) = (552, 288)

« Since neighborhood communication occurs in BFS, we assign the processes
physically next to each other in row/column dimension

12 nodes

Node

R

&

b,c

0.04-+90,1

0.ttt 1

0,2t 1

0,20-%2,0

0.%:0°42.0

o w &l o
- N oo ©

A AN
ALAL A
Ororw

R AlLALD
oo
mlalm b
oo I/C

C “owa

0.0:0-%:0,0
(80.6)
a

Six-dimensionalprocessTmappingT2/2)

« We evaluate the BFS performance for a large-scale graph consisting of about 2.2
trillion vertices and 35.2 trillion edges using the whole Fugaku system (158,976 nodes)

« Boost Eco mode

« Performance: 102,956 GTEPS, Power: 14,961 kW, Efficiency: 6.9 MTEPS/W

« Performance is 3.3 times that

1076 1.2
of the K computer (82,944 7}

- i T

nodes), and power efficiency L 10 08 g

. . o 10t 8L

is 1.9 times that of IBM T @

Sequoia (Blue Gene/Q) § i

£ 10% 0.4 3.

€ @

2 3

The K computer did not measure $ <
power. At IBM Sequoia, the graph 1013 0

512 2,048 8192 32,768 131,072

is the same size as Fugaku.

Number of nodes

00%
imbalance

80% |11.6 | send/recv

60% alltoallv

40%

14.7 | allgather

calculation
0%

158,976 nodes

20%

24
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Summary

« Tune performance of BFS in Graph500 on Fugaku

« We evaluate the BFS performance for a large-scale
graph consisting of about 2.2 trillion vertices and 35.2
trillion edges using the whole Fugaku system

« Achieve 102,955 GTEPS, resulting in the first position
of Graph500 lists in from 2020 to now

Ig

TNI1

« Future works s

« Develop SSSP in cooperation with ZIB and IMI :
« Some ideas to improve performance of BFS

I

_.II

Zaz

> fw

Tofu-D Network Router

-
4
o
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The 6th RIKEN—IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16™ - 19th, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 221, 2022, Fukuoka (Kyushu University), Japan

Notes on Solving QUBOs
and Quantum Computing

Prof. Dr. Thorsten KOCH

Zuse Institute Berlin and Technical University of Berlin,
Germany
koch@zib.de

It is regularly claimed that quantum computers will bring breakthrough progress in
solving challenging combinatorial optimization problems relevant in practice. In particular,
Quadratic Unconstraint Binary Optimization (QUBO) problems are said to be the model of
choice for use in (adiabatic) quantum systems. Combinatorial Optimization searches for an
optimum object in a finite but usually vast collection of objects. This approach can be used
for many practical purposes, like efficient allocation of limited resources, network planning,
and hundreds of other applications in almost all fields, e.g., finance, production, scheduling,
and inventory control. However, many combinatorial optimization problems are known to
be NP-hard. This theoretical statement about worst-case runtime complexity is often
translated simplistically as "intractable"; however, the practical side looks different. In many
cases, it is possible to solve such problems to proven global optimality. We explain some of
the meaning and implications, review the state of affairs, the potential of quantum
computing, and give new computational results regarding solving OUBOs.
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News: The Ministry of Defence has procured the government’s first quantum computer. .. Z!y

by f

They'll work with Orca Computing, a British company, to investigate and
apply quantum technology in military defense.

Quantum computer manufacturers claim their devices can solve complex
problems that classical computers cannot solve.

https: h-ministry-of-defence-procu m-computer

About Orca | find there: British Quantum Computing Firm ORCA, Claims
Breakthrough in Quantum Computers

https:, british-quantum-computing-firm- laims-t quantum-computers
The major challenge identified by one of the UK’s leading quantum
computing experts Prof Morton, was the ability of the Orca computer to
scale up quickly.

“Scaling up is very important for the computer to be able to serve its purpose
by performing complex, highly scientific and experimental tasks such as
combating climate changes, accelerating artificial intelligence, ship
navigation or even drug development.

These tasks require millions of qubits to be successful when in reality, the
Orca computer has just four qubits which is very far from ideal. “

However, the company assured that they will scale up in the next two years.

Looking at the Orca Webpage | found then:

ORCA discovers new algorithm for solving QUBO problems with near-term,
‘shallow’ quantum computers

On the webpage Orca claims to solve binary knapsack problems with 70
variables faster than any other QC and classical methods.

As a reference to the conclusions a scientific article published by the Orca
scientists was given: https://arxiv.org/abs/2112.09766

Unfortunately, there is nothing about knapsacks, but:

2.8. Scalability and other challenges.

How plausible is it to scale the presented variational method?

The first problem the reader can point out is the fact that despite the parity
map effectively coarse graining the measurement results of an M-mode
circuit it is not a sustainable strategy since the size of an M-qubit Hilbert
space grows exponentially. [...]

But here we tacitly assume that the measurement outcomes are uniform
which is not the case. We observed that randomly chosen parameters of the
studied shallow circuits typically result in a small set of measurement
patterns to have high probability enabling it to be sampled with confidence
with a bounded number of repeated measurements.

The caveat is, of course, that even if this trend continues as M grows it
inevitably means that the ratio of such reliably estimated measurements
with respect to all possible patterns decreases exponentially.

On the one hand, this still enables us to use the proposed variational
algorithm. However, the odds of getting stuck in a local minimum most likely
increase. How exactly it affects the ability to reach a global solution is a
matter of a more detailed study.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch

TU Berlin / Zuse Institute Berlin (ZIB)

Notes on Solving QUBOs and Quantum Computing
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W 28

“In theory, there is no difference between theory and practice;
but in practice, there is.”

— unknown (not Einstein, or Feynman)

Notes on Solving QUBOs and Quantum Computing

Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB)

News: The Ministry of [

https: british-ministry-of-def

They’ll work with Orca Computing,
apply quantum technology in militaj
Quantum computer manufacturers
problems that classical computers

About Orca | find there: British Qua

Breakthrough in Quantum Comput] w=

https:, british-quantum-com

The major challenge identified by of
computing experts Prof Morton, w4
scale up quickly.

“Scaling up is very important for thd
by performing complex, highly scie

combating climate changes, acceler
navigation or even drug developme
These tasks require millions of qub)
Orca computer has just four qubits
However, the company assured thal

Looking at the Orca Webpage | four|

ORCA discovers new algorithm for
‘shallow’ quantum computers

On the webpage Orca claims to sol!
variables faster than any other QC 4

Notes on Solving QUBOs and Quantum C

European Journal of Operational Research
Isaue 6, November 1978, Pages 420-428

An algorithm and efficient data structures for the
binary knapsack problem

uhl
Show more
Share

+ Add to Mendeley o %3 Cite

https:/fdot.org/10.1016/0377-2217(TRI90137-6 Get rights and cantent

Abstract

A branch-and-bound algorithm for the binary knapsack problem is presented which
uses a combined stack and deque for storing the tree and the corresponding LP-
relaxation, A reduction scheme is used to reduce the problem size. The algorithm
was implemented in FORTRAN. Computational experience is based on 600
randomly generated test problems with up to 9000 zero-one variables. The average
solution times (excluding an initial sorting step) increase linearly with problem size
and compare favorably with other codes designed to solve binary knapsack
problems.
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Being Deterministic ﬂg Z!y

i"’t getRondomNumber () “Insanity Is Doing the Same Thing Over and Over Again

return Y; // chosen by fair dice roll and Expecting Different Results.”
// quaranteed to be random

} — unknown

An algorithm is deterministic, if given a particular input, it will always produce the same output, with
the underlying machine always passing through the same sequence of states. upsenwicpesia orgwi/eterministic aigorittm

A deterministic algorithm computes a mathematical function; a function has a unique value for any input
in its domain, and the algorithm is a process that produces this particular value as output.

Non-determinism can result, for example, from:
> use of an external state other than the input, such as a hardware timer value.

> if multiple processors writing to the same data at the same time. In this case, the precise order in
which each processor writes its data will affect the result.

While digital computers are thought of being deterministic,
Quantum computers a probabilistic, i.e., non-deterministic by definition.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 9
What does “solving” an NP-hard problem typically mean? " Zy

Being able to ...

Theoretical ... compute proven optimal solutions to every instance of this problem
Computer Scientist class with at most this effort

... practically compute within numerical tolerances proven optimal
solutions to these particular (relevant) instances of the problem class in
reasonable time

Applied Discrete
Mathematician

Physicist, Quantum ... compute reasonably good solutions to these (selected) particular
Computing Researcher instances of the problem class in very short time
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 8
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Setting the stage ﬂg Z!y

“Combinatorial Optimization searches for an optimum object in a finite collection of objects. Typically,
the collection has a concise representation, while the number of objects is huge --- more precisely, grows
exponentially in the size of the representation. So scanning all objects one by one and selecting the best
one is not an option.”

— Alexander Schrijver, Combinatorial Optimization, 2003, Page 1.
mei)r(lf(x)witth{x,b,l,ﬁeZ":g(x)Sb, <x<u}
P e hd

For the rest of the talk, we assume: f: X — Zis a linear or quadratic function, i.e.,
f(x) =cTx +xTQx,c € Z" Q € Z™™, and g: X — Z™is a linear function, i.e., g(x) = Ax, A € ZV™,

Note: argmin f(x) = argmax —f(x) and g(x) + s = b,s = 0 & g(x) < 0, and similar for >.

We defined everything using integer numbers. If we would use rational numbers, we could then scale
them by the least common multiple of all denominators to make everything integer.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 11

Disclaimer ﬂg Zy

For the rest of this talk,
unless noted otherwise,
everything | say,
will refer (only) to
Combinatorial Optimization Problems.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 10
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The Bigger (complexity) Picture

W 2

Counting

Problems

« #P

From Catherine C. McGeoch: Adiabatic Quantum Computation and Quantum Annealing

Computable Problems

Decision Problems

EXPTIME

” PSPACE

NP

.“;.\'p(‘ \:

\| BPP

QMA

+ QMAC

BQP |+ QCMA

Optimization
Problems

« NPO

« APX
« PTAS

FPTAS

BQP is bounded-error quantum
polynomial time. A quantum model
of computation uses an
arrangement of quantum circuits (in
the gate model) operating on qubits.
These problems can be solved by a
quantum computer in polynomial
time with an error probability of at
most 1/3.

QMA stands for Quantum Merlin-
Arthur. This is the set of decision
problems for which yes-instances
can be verified by a quantum
computer in polynomial time, and
no-instances rejected in polynomial
time, with error probability at most
1/3. This is the quantum analog of
NP, related to BQP as NP is related
to P. QMAC is the set of complete
problems for this class.

QCMA stands for Quantum-classical
Merlin-Arthur. This class is similar to
QMA but the witness for a yes-
instance must be a classical string.

Notes on Solving QUBOs and Quantum Computing

Thorsten Koch

TU Berlin / Zuse Institute Berlin (ZIB) 13
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Complexity classes

P Solvable in polynomial time. A running time of Ag
“easy” 1020 - n1990 for input size n is poly time. i
NP “Yes” answer can be checked in poly time. It does NP-Hard

not matter where the answer comes from.
NP-Complete Hardest problems in NP. If you could solve one of

them in poly time, then you can solve them all.
NP-Hard As least as hard as the hardest problems in NP.
“intractable”  Need not to be in NP. NP-Complete

Integer factorization is in NP.
Current assumption: it is not in P and not NP-hard => not NP-complete.

Integer Programming/Optimization is in NP.

Complexity

Proven to be NP-hard and therefore NP-complete

A proof of P=NP might not be constructive and include a huge constant.

By Behnam Esfahbod, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid:

P# NP%:]

TU Berlin / Zuse Institute Berlin (ZIB) 12
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Quantum Supremacy ﬂg Z!y

https://www.quantamagazine.org/john-preskill-explains-quantum-supremacy-20191002

In 2012, | proposed the term “quantum supremacy” to describe the point where quantum computers
can do things that classical computers can’t, regardless of whether those tasks are useful.

https://scottaaronson.blog/?p=4317
Scott’s Supreme Quantum Supremacy FAQ!

Q1. What is quantum computational supremacy?

Often abbreviated to just “quantum supremacy,” the term refers to the use of a quantum computer to
solve some well-defined set of problems that would take orders of magnitude longer to solve with any
currently known algorithms running on existing classical computers—and not for incidental reasons, but
for reasons of asymptotic quantum complexity. The emphasis here is on being as sure as possible that
the problem really was solved quantumly and really is classically intractable, and ideally achieving the
speedup soon (with the noisy, non-universal QCs of the present or very near future). If the problem is
also useful for something, then so much the better, but that’s not at all necessary. The Wright Flyer and
the Fermi pile weren’t useful in themselves.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 15

Slide by Scott Aaronson: https://www.scottaaronson.com/talks/speedup.ppt

An Inconvenient Truth

If we set aside NP-complete problems, there just aren’t that
many compelling candidates left for exponential quantum
speedups! (And for many of those, we do have exponential speedups,
and for many of the rest we have polynomial ones)

NP-hard

PzBQP, NPZBQP:
Plausible conjectures,
which we have no
hope of proving given
the current state of
complexity theory

398




Integer Linear Program (ILP) ﬂg Z!y

min f(x) withX ={x €eZ": Ax < b l<x<u} f(x) = c'x
xeX z

Solving this problem is in general NP-hard, even if have x € {0,1}. However, is important to note that
without the integrality requirement, i.e., for x € R™ the problem can be solved in polynomial time.

What does NP-hard mean:
(1) If we get some x, we can check in polynomial time whether it belongs to X and compute f(x).
(2) Finding the minimum x might, in the worst case, be as difficult to solve as any other problem in NP.

(3) As of today, no algorithm is known that has better than exponential worst case runtime complexity to do so.
And there is little hope to find one. Note: Integer factorization is not NP-hard!

What does NP-hard not necessarily mean:
(1) Finding some x € X is difficult. Might be difficult, but doesn’t have to.

(2) Finding the minimum x € X is difficult.
Finding it might actually be easy, proving it is the minimum is the hard part.

(3) Large size instances of NP-hard problems are intractable or unsolvable in principle.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 17

https://arxiv.org/abs/2111.03011 ﬂ Zy

Solving the sampling problem of the Sycamore quantum supremacy circuits
Feng Pan, Keyang Chen, Pan Zhang

We study the problem of generating independent samples from the output distribution of Google's
Sycamore quantum circuits with a target fidelity, which is believed to be beyond the reach of classical
supercomputers and has been used to demonstrate quantum supremacy. We propose a new method to
classically solve this problem by contracting the corresponding tensor network just once, and is
massively more efficient than existing methods in obtaining a large number of uncorrelated samples with
a target fidelity. For the Sycamore quantum supremacy circuit with 53 qubits and 20 cycles, we have
generated one million uncorrelated bitstrings {s} which are sampled from a distribution P*(s)=|{"(s)| 2,
where the approximate state " has fidelity F=0.0037. The whole computation has cost about 15 hours
on a computational cluster with 512 GPUs. The obtained one million samples, the contraction code and
contraction order are made public. If our algorithm could be implemented with high efficiency on a
modern supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost
a few dozens of seconds, which is faster than Google's quantum hardware.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.090502

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 16
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Notes on NP-hard ﬂ Z!y

Subset-sum: Given x € Z" and b € Z exists a subset S € {1, ...,n} such that }};csx; = b,
Subset-sum is NP-hard (even with x; € N)
However: Subset-sum bounded by a constant C > x; € Nisin P

On a Computer x; is always bounded if we restrict ourselves to, say 64-bit integers.

For a mathematician nearly all numbers are larger than 2%%. (there are only finite many exceptions)

But in real-life even the US dept in pennies is just 100 - 30 - 1012
264 18.446.744.073.709.551.616
3-10%° 3.000.000.000.000.000

Adding numbers up to this is O(1)

NP-hard problems are extremely difficult as a class and in theory. In practice, it depends.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 19

Problem classes -I'E J

QUBO = ILP SAT is NP-complete, so is ILP and
everything that encompasses it.

That a class of problems is NP-complete should
not stop you from solving instances
of this class to proven optimality

CI P Constraintlintegerl
Programming

MILP

Mixed Integer
Linear Programming

SAT

Satisfiability

ILP

Integer Linear
Programming

StephenlCookl(1971)
The Complexity of Theorem Proving Procedures

doi:10.1145/800157.805047

CP

Constraintl
Programming

Linear
Programming

LP

RichardIM.IKarp (1972)
Reducibility Among Combinatorial Problems

doi:10.1007/978-1-4684-2001-2 9

LeolLiberti (2019)I
Undecidability and Hardness in MINLP
https://doi.org/10.1051/ro/2018036

MINLP

MixedlIntegerINon-linear
Programming

Symboldarstellung MatthiasIKéppe (2010)!
Raume sind nicht groRenmaRig On the complexity of nonlinear mixed-integer optimization
korrekt dargestellt. arXiv:1006.4895v1
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 18
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Examples for finding some x € X is difficult. Might be, but doesn’t have to. ﬂg Z!y

We can write our problem as a decision problem (and minimize by binary search):
Xp#0?withXy ={x € Z"Ax < b l<x<u AcTx =k}

In this case finding some x is equivalent to solving the problem.

Or, using some suitable big constant M, we can move the constraints into the objective:
min f(x) with X = {xezml<x<ul}lf(x)=c"x+ M- Ax)
e ¢

now it is obviously trivial to find some x € X.

This difference in difficulty
is one reason why people

Note: To solve an ILP, i.e., to optimality two things must be done: i
believe P + NP

(1) 3 :Find the minimum x* € X.

(2) V :Prove there exists no x* € X with f(x) < f(x*).
This is equivalent to showing: {x EZMAx<bl<x<u ANf(x)< f(x*)} =0

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 21
What O = Order of means: both pictures are equally correct " Zy
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What are QUBOs? ﬂg Z D

QUBO : Quadratic Unconstraint Binary Optimization
UBQP : Unconstrained Binary Quadratic Program
(BIQ :Binary Integer Quadratic problem)

min_ x7 Qx
x€{0,1}"

x is a vector of binary variables, Q is a square nXn matrix of constants

Since QUBOs are unconstraint, any 0/1 vector is a feasible solution

All QUBOs can be brought to the form where Q is symmetric or upper triangular
Solving QUBO (in general) is NP-hard

Since x is binary, x; = x? holds = The coefficients of the linear terms of the objective function
correspond to the diagonal entries of Q

vV vV vV VvV V

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 23

https://arxiv.org/abs/2207.13630 ﬂ Zu

Copositive programming for mixed-binary quadratic optimization via Ising solvers
Robin Brown, David E. Bernal Neira, Davide Venturelli, Marco Pavone

Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately
searching for the ground state of Ising spin Hamiltonians.

The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred
an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing
approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization
algorithms. Due to the heuristic and black-box nature of the underlying Ising solvers, many such approaches have
limited optimality guarantees.

While some hybrid algorithms may converge to global optima, their underlying classical algorithms typically rely on
exhaustive search, making it unclear if such algorithmic scaffolds are primed to take advantage of speed-ups that the
Ising solver may offer.

In this paper, we propose a framework for solving mixed-binary quadratic programs (MBQP) to global optimality
using black-box and heuristic Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs,
which we propose to solve via a hybrid quantum-classical cutting-plane algorithm. The classical portion of this hybrid
framework is guaranteed to be polynomial time, suggesting that when applied to NP-hard problems, the complexity of
the solution is shifted onto the subroutine handled by the Ising solver.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 22
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BIP to QUBO -I.H Z!y

BIP BIPs can be reformulated as QUBOs by
) T putting the constraints into the objective
xer{(l)llil}n c X with a penalty term P. The penalty should be
! zero if and only if the constraint is fulfilled.
st.tAx < b
QU BO Glover, Kochenberger, Du (2019):

A Tutorial on Formulating and Using QUBO Models
arXiv:1811.11538

min c’x?2+P(Ax +1s — b)T(Ax + Is — b)

x€{0,1}"
=>
min_ xTQx
x€{0,1}"
where Q € R™"™ and symmetric
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 25

From QUBO transformation, E. Rodriguez-Heck, Gurobi Days Digital May 03,2022

. . . GUROBI
| Ismg Hamiltonian e

» Quantum annealing is a special-purpose device that finds the minimum energy of an
Ising Hamiltonian heuristically ho by

HIsing = Zhisi + Z JijSiSj, s; € {—1,+1}
i€V {i,j}EE

A Quadratic Unconstrained Binary Optimization (QUBO) problem can be transformed
into an Ising Hamiltonian with a simple algebraic manipulation:

s;i+1
L =
T 2
r° Qr  wm——tmle Ising
s € {—1,1}
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 24}
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Max-Cut ﬂ Z!y

Graph formulation G = (V,E,w)

n;z%x Z wij with ScV,TcV,SNT=0,SUT =V
i€S,JET

Ising formulation

n n
1
max - Z WU(l — xt-xj),xk € {1,—-1}fork € {1,...,n}
=1 j=1
Binary Linear Programing formulation: Binary Quadratic Programing formulation:

n n

n n

i=1j=1 J i=1j=1
=x:=0> z:: =
2 < x; + xj%"l 5 = 0=y =1

zjj < 2 —(x;+ x]-) Can be written as:
xx € {0,1} r?in}n xTQx
x€{0,1
Zij € {0,1}
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 27

Independent (stable) Set ﬂg J

Given a graph G = (V, E), find the maximum size independent set of nodes

Classical Constraint Equivalent Penalty
max |S|withu,ve S = (u,v) ¢ E = i) ]
scv

x+yvzl Pl =x—=y+xy)

[¥ay=1 P1=x—y423)
X<y P(x-xv)
Binary Linear Programing formulation: | fa+xatxs Plrka + 0% +xass)
xX=y Plx+y=2xy)
max Z x, subjectto x, +x, <1 forall (u,v) €E " Table of  few Known constraint/penalty pairs
xefo,1}IVI
VeV
Unconstraint Quadratic Binary Programing formulation:
min —Zx5+P- Z Xy * Xy
xe{0,1}IVI
VeV (uwv)EE
=0
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 26

404



Some more notes on QUBOs ﬂg Z!y

In theory possible to model all ILP and SAT, but not MILP Clause # Clause Quadratic penalty

Number of constraints is not important,

| <Xy =x34x182

1
only the number of Variables! : .
> Constraint with large support result in dense Q, % TV E x1%2
cardinality constraint is worst ; ‘: iy ::n Ha
>  While most available software works on dense instances 7 v ——
this limits the problem size dramatically : s '7“‘ Fan
> General P(Ax — b)T(Ax — b). Beware numerical trouble! 10 v G
> QUBO is unconstraint and pure binary, nearly all heuristic :1 i :: :N“ TN
ideas WOI’k niCEIy Glover, Kochenberger, Du (2019):
> Preprocessing is limited compared to ILP/SAT A Tutorial an Formulating and Using QUAG iadels
> Impossible to distinguish between feasibility and optimization. When to stop?
> Best for problems where there is some “natural” quadratic formulation. (But, e.g., QAP is dense)
> On the primal side hard to win against problem specific heuristic approaches
> How to get good lower bounds? (LP/SDP/Newton-Bracket)
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 31

Transformations

U 2/

Modelling a linear relationship quadratic:

x =x2%x €{0,1}

Modelling multiplication of binary variables y = x; * x5 = x1 A x5, for x4, x, € {0,1}:

y=x
Y =X
y=x1+x,—1
y € {0,1}

Modelling general Integer variables from Binary variables:

Alternatively:

n-1
Z 2ix; < N,x; € {01} & 7 € {0, .., min(2" — 1, N)}
i=0

N N
Zi-xi=z and x;=1 forx; €{0,1},z € {1,...,N}
i=1 i=1
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 29
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Once upon a time ﬂg Z!y

Mathematical Programming 68 (1995) 213-237

Computational experience with a difficult mixed-
integer multicommodity flow problem™

D. Bienstock™®, O. Giinliik

Departinent of Industrial Engineering and Operations Research, Columbia University,
New York, NY 10027, USA

Received 27 April 1993; revised manuscript received 17 June 1994

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 34

Reminder ﬂ Zy

Solving an optimization problem means
min f (x) with X = {x.bluez®: g(x)<bl<x<u}
X

(1) finding a feasible solution (often trivial, but not always)
(2) Proving it is the best one

Solving a decision (feasibility) Problem means
X #0 < min0with X = {x,bluez®: g(x)<bl<x<u}
X

(1) Finding a solution

A QUBO by definition is an unconstraint optimization problem
min_ x!Qx
x€{0,1}"
i.e., finding a solution is absolutely trivial (e.g., x = 0)

We can transform between the 3, so be careful what is done exactly and how a solution translates back.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 33
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Best solutions so far ﬂg Z

Int. Cons. Obj.

!y

) Objective Exact Viol Viol Viol Submitter Date Description

34 665.5714 665.5714 0 0 0 Yuji Shinano 2020-04-16 Obtained with ParaSCIP in
2014

18 667.5577 0 0 0 Edward Rothberg 2019-12-13 Obtained with Gurobi 9.0

4 2 676.5630 0 0 0 Robert Ashford and 2019-12-18 Found using ODH|CPlex

Alkis Vazacopoulus

2 1 691.8961 691.8961 0 0 0 - 2018-10-12 Solution found during
MIPLIB2017 problem
selection.

<\ i ..:s;%.:!‘.{w\f T SIS 7
M e

R
e

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 36

T

dano3mip ﬂ Zy

[ aiaievous | cardinnity | miced-vinac

Submitter Variables Constraints Density Status Group Objective MPS File MIPL l B 3 0
.

Daniel 13873 3202 1.79317e- ano  665.571428571428" dano3mip,mps.g2

Bienstock Ja.nuary 1996

Telecommunications applications

Imported from MIPLIB2010, 2 (To download in Netscape, click while pressing the SHIFT key)
Variables 13873
Constraints 3202
Binaries 552

@ arkino1
Integers 0 @ hellda
s ® hel
: Continuous 13321 ° %ﬁ n
Implicit Integers 0
P Fixed Variables 0
“
Nonzero Density 0.00179317
Nonzeroes 79655
s
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 35
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Best know solution ﬂg Z!y

e iy o
- s |4221 5
2 .. . .
-« I_O L3 o
- " . R
oy P s é
B U L) .
- o . -
114484 20 ” .
o, ] e g B
¥ . X 2
£ 3 .
- . 0
414 0061 v =
L ) v .
hd 0 (42 Lo
1
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 38

ICONG(2) TV Zy

min z kije{q,.., 24} Root relaxation objective: 30.28571
dano3mip root relaxation : 576.2316

s.t. Xij = 2 for all i 1
JZ; N ' o Best known solution: 665.5714
szﬁ _ , foralli )
J# M = 666
fuis < M foralikiz; ®
ij
kaij - kaij = sk forallik @
T=i T= 30.28571 95.4%
5) 350.63706 47.3%
kai/‘ < z forall i #j 425.04748 36.1%
I3 436.46971 34.4%
fs > 0 for all ki # j (6) Gurobi 9.5.1 root cuts 439.96568 33.9%
7) original model 577.82468 _
Xij € {01} foralli=j with some cuts removed 577.88492 _
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 37
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Make it all integer ﬂg Z!y

Scale by 1000 for 3 decimal digits

min z
Root relaxation objective 3028.571
s.t. sz” = 2 for all i
J#EL
E:%i _ ) for all i
J#i
frij < M-x; forall k,i # j
kaij - kaij = 1000-s¥ forallik
JET JET
kaii < z foralli=j
k
freij € {0,..,1000} forall k,i #j
Xij € {0,1} forall i #j
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 40
Transforming ICONG(2) into a QUBU (so we can solve on a QC) "g Zy
Todo:
1. Make it all integer
2. Make it equality (Ax = b)
3. Make it binary
4. Put the constraints into the objective
Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 39
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Making it binary

T 2B

Modelling general Integer variables z € {0, ..., N} using Binary variables x; € {0,1} :

O(N) representation is not unique
=1
N N
, <1 we need an extra constraint, which quadratic
JBC) A X = vy looks like ¥, je(1, . ny,i=j Xi * %j, and is dense
i=1 i=1
n:=[VN| n-1
z i-x;+ Z [ Xp4i O(N) representation is not unique
i=1 i=1,i€ER,
n :=|log, N| n-1
i i, ] switching from 2™ — 1 to 2™ changes all involved
&t Z 25 Xy N O(log, N) variables, only unique for powers of 2
i=0 i=1,2t€R,
n:=[\/ﬁ

withR; ={i€{l,...n —1}| Zjeri=N—3%;_]

1i AR minimal}, Ry = {i € {1,..,n — 1}l Sieni = N — 57518220 & [R| minimal}

Notes on Solving QUBOs and Quantum Computing Thorsten Koch

TU Berlin / Zuse Institute Berlin (ZIB)
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Transforming an ILP to a system of equations

B,

min —2x; —x, subjectto
XEL

80x; — 10x, < -7
x; + 20x, < 120
—5x;, — 20x, < -32
7x, + 2x, < 48 —
-2x; + 2x, < -7
3, + 4x;, = 5
3, + 4x, < 5
x < l
x > u
min cTx
st. Ax<b
=
I<x<u
x €ZM

AeR™" ceRY b, L, ueR™

min—2x; —x, subjectto
X€EL

80x; — 10x, + s = -7
x;, + 20x, + s, = 120
5x; + 20x, — s3 = 2
7x, + 2x, + s, = 48
2%y — 2%, — S5 = 7
3x; +  4x, 5
l < x < u
s = 0
mincTx

st. Ax+1,s=0Db
1<x<u

x EL™

s=0

sER™

Converting to
equation form
adds m variables.

Notes on Solving QUBOs and Quantum Computing Thorsten Koch

TU Berlin / Zuse Institute Berlin (ZIB)
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Faster than a Quantum computer ﬂg Z!y

MAX-Reaper:
An exact solver for QUBO and Max-Cut

Faster exact solution of sparse MaxCut and QUBO problems
Daniel Rehfeldt, Thorsten Koch, Yuji Shinano
doi: 10.48550/arXiv.2202.02305

Notes on Solving QUBOs and Quantum Computing Thorsten Koch TU Berlin / Zuse Institute Berlin (ZIB) 45

Putting the constraints into the objective "B Zy

min z
min c"x?+P(Ax + Is — b)T (Ax + Is — b)
x€{0,1}"
s.t. Z Xij = 2 for all i
J#i

for all i Nodes, commodities: k,i,j € {1, ..., 24}

y or all i

]Z;X” = 2 Integer to binary: M = 666 — |log, 666] + 4 = 13
foralli #j — 24x23 = 552

fuij + Swij — M - x5 = 0 for all k,i # j
forallk,i # j - 24x552 = 13248
szij_szif_M‘slk = 0 for all i, k Binary variables total:
I J#
552 + 13%x(13248 + 13248 + 552) = 352,176
kaij tsij—z = 0 foralli#j =Qe€ 7352176X352176
k
X c 01 foralliz] i.e., we need at least 352,176 qubits
The range of the coefficients in Q is at least up to
frij € {0,..,M} forallk,i=j 6663 = 295 408.296
Skij € {0,..,M} forallk,i#j And Q will not be particular sparse!
Sij € {0,..,M} foralli=;j
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Overall Architecture

L

UG Framework for massive parallelization

SCIP Constraint Integer Programming Framework

Max-Cut Specialization

Cutting planes Preprocessing

Heuristics Conflict analysis

LP
Solver

The final code will be able to completely utilize existing HPC resources:
Run multicore on many nodes employing GPU accelerators in parallel.
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Branch-and-cut algorithm for sparse QUBO and Max-Cut problems

U 2/

Main components:

Presolving

Simple Domain Propagation

Problem-specific cutting planes (optimized implementation)
Primal heuristics

vV vV vV VvV V

Parallel branch-and-bound search via UG framework
(still experimental).

About 15,000 lines of code + 1M lines for SCIP and LP solver.

Already faster than existing QUBO/Max-Cut solvers on sparse
QUBO and Max-Cut benchmarks in many cases.
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Preprocessing

Whenever one tries to solve real-world (and other) problem instances, the first thing to do is to
implement some preprocessing. We found some new techniques to improve performance.

As one can see, the IsingChain and the K64-chimera instances practically vanish.

base preprocessing +new techniques relative change
Test-set # V| [%] |E| [%] V| [%] |E [%] V| [%] |E| [%]
IsingChain 30 6.1 0.8 1.1 <0.05 -82.0 <-93.8
K64-chimera 80 351 4.6 3:1 4.6 0.0 0.0
Kernel 14 24.1 30.1 16.4 20.6 -32.0 -31.6
Mannino 4 64.1 69.3 63.2 68.7 -1.4 -0.9
Torus 18 80.6 R7.5 78.5 85.2 -2.6 -2.6
WO01,00 10 99.1 94.8 99.1 94.8 0.0 0.0
DIMACS 4 97.0 98.9 96.9 98.9 -0.1 0.0
PM1siq0 10 99.7 99.9 99.7 99.9 0.0 0.0
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Selected Benchmarks (there are more)

'll

Name # VI |E] Description

DIMACS 4 512-3375 | 1,536-10,125 | Instances from 7t" DIMACS Challenge

IsingChain 30 100-300 | 4,950-44,850 | Max-Cut instances from physics applications

QBLIB 22 | 120-1,225 602-34,876 | QUBOs from QPLIB instances

Mannino 4 48-487 1,128-8,511 | Frequency assignment problems

164-dwave 80 2,049 8,064 | Max-Cut instances from D-Wave Chimera graphs
Paintshop 30 10-1,000 22-2,498 | QUBO Instances modelling the binary paintshop probnlem
Torus 18 100-343 200-1,029 | Max-Cut instances from physics applications

Kernel 14 33-2,888 91-2,981 | Instances from various sources

GKA, 4 35 20-125 204-7,788 | Randomly generated

[V]: Number of vertices (Max-Cut), or n of matrix Q € R™ ™ (QUBO).
|E|: Number of edges (Max-Cut), or number of non-zero entries in Q (QUBO)
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Quantum Annealing versus Digital Computing: An Experimental Comparison ﬂg Z!y

M. Junger, E. Lobe, P. Mutzel, G. Reinelt, F. Rendl, G., T. Stollenwerk. 2021.
ACM J. Exp. Algorithmics 26, Article 1.9, doi: 10.1145/3459606

This is paper makes a very detailed and precise comparison with the following conclusion:

ﬂHowever, we should stress the fact that exact optimization requires a lot of time to \
prove optimality, and thus it is not fair to compare their times with the heuristic
times, but even with this additional burden, the exact algorithms are faster than
D-Wave on a large portion of the sample.

[..]

It may well be (and we hope) that the exciting new quantum computer technology will
make leaps in the future, but in our experiments, we have certainly not observed
Quperior performance of quantum annealing in comparison to “classical” methods.” /
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Comparison of the new solver MAX-Reaper (new) and Gurobi 9.5 MIQP (Grb) ﬂ Zy

# solved  mean time (sh. geo. mean) maximum time
Test-set # Grb new Grb(s] new [s] speedup Grb[s] newls]  speedup
PM1s100 10 10 10 192.3 20.9 9.20 303.3 48.4 6.27
WO01li100 10 10 10 44.1 3.1 14.23 97.1 21.5 4.52
Kernel 14 14 14 0.7 0.1 7.00 14.3 1.1 13.00
IsingChain 30 30 30 1.3 <0.05 >26.00 41.0 <0.05 >820.00
Torus 18 18 18 3.8 0.4 9.50 628.0 7.6 82.63
K64-chimera 80 80 80 90.1 1.5 60.07 195.4 6.0 32.57
QPLIB 22 8 13 687.4 165.5 4.15 3600 3600 1.00
BQP100 10 10 10 0.1 0.1 1.00 0.2 0.3 0.67
BQP250 10 0 7 3600 610.6 5.90 3600 3600 1.00
BE120.3 10 9 10 265.6 50.1 5.30 3600 525.1 > 6.86
BE250 10 0 8 3600 571.8 6.30 3600 3600 1.00
GKA,.4 35 20 31 6.5 6.1 1.07 3600 3600 1.00

Time limit: 1 h, single-threaded, Intel Xeon Gold 5122 3.60 GHz, 96 GB, Sep. 2022
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Running Parallel

RS

. Name gap %) new primal previous primal
\':Zsi;::S";’:rhtg:’u“;g“:/ia:gd torusg3-15 opt 286626481 282534518
toruspma3-15-50 1.3 3010 2968
88 core E7-8880v4@2.20GHz
QPLIB.3693 1.3 -1152 -1148
QPLIB_3850 1.7 -1194 -1192
primal-dual gap [%] run time [s]
Name Grb-T1 Grb-T8 new-T1 new-T8 Grb-T1 Grb-T8 new-T1 new-T8
torusg3-8 0.0 0.0 0.0 0.0 1494.2 1178.5 35 9.3
toruspm3-8-50 1.8 1.8 0.5 0.0 36 1415.8
torusg3-15 6.8 3.4 1.3 0.4 >4
toruspma3-15-50 9.5 12.2 2.3 2.3 >3600 >3600 >3600 >3600
mannino_k487a 0.0 0.0 0.0 0.0 3.5 10.7 1.1 1.3
mannino_k487b 0.0 0.0 0.0 0.0 92 80.5 2.9 2.8
mannino_k487c 0.1 0.0 0.1 00 | >3600 3176.7 >3600  398.2 |
mannino_k48 0.0 0.0 0.0 0.0 0.1 0.4 2.7 3.8

Notes on Solving QUBOs and Quantum Computing
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Comparing to Mc-Sparse

LY,

# B&B nodes

run time

Name Y |E| MS new MS [ new [s
pmls_100.3 100 495 341 741 48.2 48.0
pw01_100.0 100 495 171 179 20.0 8.5
mannino_k487b 487 5391 1 15 167.3 4.3
bio-diseasome 516 1188 1 1 9.5 0.6
ca-netscience 379 914 1 1 0.1 0.0
2000981 110 188 1 1 0.0 0.0
imgseg 138032 12736 23664 1 1 30.5 3.9
Name n nnz MS new MS [s] new [s]
bqp250-3 250 3092 25 17 414.1 84.1
gka2c 50 &13 1 1 0.5 0.3
gkadd 100 2010 129 9 219.6 43.7
gka5c 80 721 1 1 0.1 0.1
gkaTa 30 241 1 1 0.0 0.0
bel20.3.5 120 2248 111 15 257.7 46.6
be250.3 250 3277 107 47 841.0 150.7

MS data from: Charfreitag, Jiinger, Mallach, Mutzel, ALENEX 2022, doi:10.1137/1.9781611977042.5
Mc-Sparse: Exact solutions of sparse maximum cut and sparse unconstrained binary quadratic optimization problems.

MC was used in the
comparison with the
Quantum Annealers

On the previous slide.

We see still substantial
room for performance
improvement on solving
QUBO:s on digital
computers.

Experience shows that this
improvement will happen
esp. on those instances
who are now difficult.
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https://blogs.nvidia.com/blog/2021/11/09/cuquantum-world-record/ .'g Z!y

NVIDIA Sets W  Theoretical computer scientist puting Simulation With cuQuant
mean something different by
“efficiently”

Driving towal + by this definition just finding ed the largest ever simulation
solving the M, 2 solutionis not“solving™it. - 5 our SDK for accelerati
GPU.

In the math v_orld, MaxCut is often cited as an example of an optimization
can solve efficiently. MaxCut algorithms are used to design large comput
layout of chips with billions of silicon pathways and explore the field of

[...]
We used the cuTensorNet library in cuQuantum running on NVIDIA
simulate a quantum algorithm to solve the MaxCut problem. Usin
we were able to solve a graph with a whopping 3,375 vertices. T)
largest quantum simulation.

Not the optimal solution.
We need 0.2 s on a workstation to
find this quality solution.

2 days to find the optimal solution,
3 more days to prove optimality.

no known computer
rks, find the optimal

ouse supercomputer, Selene, to
6 GPUs to simulate 1,688 qubits,
’s 8x more qubits than the previous

Our solution was also highly accurate, reaching 96% of the best-known answer. We set this new record
with an algorithm developed by NVIDIA researchers and an open-source framework.
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https://blogs.nvidia.com/blog/2021/11/09/cuguantum-world-record " Zy

NVIDIA Sets World Record for Quantum Computing Simulation With cuQuantum Running on DGX SuperPOD

Driving toward that future, NVIDIA created the largest ever simulation of a quantum algorithm for
solving the MaxCut problem using cuQuantum, our SDK for accelerating quantum circuit simulations on a
GPU.

In the math world, MaxCut is often cited as an example of an optimization problem no known computer
can solve efficiently. MaxCut algorithms are used to design large computer networks, find the optimal
layout of chips with billions of silicon pathways and explore the field of statistical physics.

[...]

We used the cuTensorNet library in cuQuantum running on NVIDIA’s in-house supercomputer, Selene, to
simulate a quantum algorithm to solve the MaxCut problem. Using 896 GPUs to simulate 1,688 qubits,
we were able to solve a graph with a whopping 3,375 vertices. That’s 8x more qubits than the previous
largest quantum simulation.

Our solution was also highly accurate, reaching 96% of the best-known answer. We set this new record
with an algorithm developed by NVIDIA researchers and an open-source framework.
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Looking back

What people through about computers in the early 1960s
The Thinking machines (MIT 1961)
https://www.youtube.com/watch?v=aygSMgK3BEM

https://www.youtube.com/watch?v=5YBIrc-6G-0

If you check the movie, you will find, that many of the ideas mentioned became true. —
Only in the movie they mention “within 10 years” while in practice its now 60 years later. e T

Current state in Quantum Computing e
> Still trying to figure out how to build a QC
> Doing gate level algorithms
This is comparable to digital computers in the 50s
> QCis about where the Wright bros were with planes.
Getting a 747 took 67 more years.
> There is much to be done in Quantum computing.
It will take time and effort.
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There is still a lot missing (or waiting to come) '.F Zy

SCIP-Jack is faster than problem specific state-of-the-art solvers for several well-known Steiner problem
variants. Example: The Rooted Prize-Collecting Steiner-Tree-Problem (RPC-STP is NP-hard)

Given an undirected graph G = (V,E), arootr € V, edge-weightsc : E = Q¢ , and
node-weightsp : V = Qxq, atree S = (V5, E_S) in G is required such that r € S and

P(S) = Zce'l' Z Pv
e€Eg vEV\Vs
is minimized.
DIMACS fiber network instances, hard instances (>20,000 edges):
> first publication (Ljubic ‘04): > 4,000 s*

> SCIP-Jack at DIMACS (1) >100's Rehfeldt, Koch (2021)

> best other solver: >300s Implications, conflicts, and reductions for Steiner trees
> current SCIP-Jack: <1ls doi: 10.1007/978-3-030-73879-2_33
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https://physicsworld.com/a/conquering-the-challenge-of-quantum-optimization .' y4

!y

Quantum computers are often touted as the solution to all our problems. They are expected to cure
disease, alleviate world hunger and even help mitigate the effects of climate change. Fuelled by this
enthusiasm, a number of quantum computing firms have started joining established markets. However,
despite this interest, there is still a lot of uncertainty around the near-term uses of quantum computers.
A crucial question facing quantum researchers today, in both academia and industry, is a pretty
fundamental one: what problems are best solved with these devices?

[...]

There is, nevertheless, one point on which everyone seems to agree: it is very likely that some problems
exist where quantum optimization is provably superior to classical methods, but these problems will
likely occur in the realm of physics and not in finance or industrial operations. “Nature is quantum. If
nature can solve a problem, so should quantum computers,” says Franc¢a, who is confident about
problems involving molecules or quantum materials like superconductors. “The strongest case for
variational algorithms,” Aaronson says, “seems to be on problems that are themselves quantum.”

Training Variational Quantum Algorithms Is NP-Hard
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.120502
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Looking forward ﬂg J

“We tend to be too optimistic about the short run, too pessimistic about the long run.”
— J. Preskill

> Practical MILP solving on digital computers got arguably faster at least 42% every year
(combined hard+software) during the last 40 years. This is an exponential speed-up.
Progress in Mathematical Programming Solvers from 2001 to 2020, K., Berthold, Pedersen, Vanaret, ZR-21-20

> Regarding our QUBO solver, there are still plenty algorithmic improvements possible. Additionally, we will add GPU-
based heuristics and distributed memory parallelization to able to run up to 1 million cores.

> QC likely will evolve for some very specific applications, first likely around Quantum Simulation. This is the original
application of QC. It has some strong inherit advantage compared to classical computers.

Recommended further Reading:

NP-complete Problems and Physical Reality, Scott Aaronson, https://arxiv.org/abs/quant-ph/0502072
An lntroductlon to Quantum Camputmg, without the Phystcs Giacomo Nannlcml https://arxiv.org/abs/1708.03684
X -li - -h

https://www.scottaaronson.com/talks/speedup.

ttgs ((scottaaronson blog/?p=5387 (and the rest of his Quantum blog entrles)
-ch

https: wwwtechnolo review.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem
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3 reasons why a question in industrial optimization might be difficult to answer ﬂ Z!y

1. The question is not well defined,
i.e., the modeling is intricate. Very often, in industry, problems are involved and multi-layered.
Determining a precise definition of the problem, the input and output data, and mapping this to a
mathematically well-defined computable optimization problem can be challenging.

2. The data needed to solve the problem is not fully available.
Many companies struggle hard to consolidate their IT. Getting out precise numbers is often
surprisingly hard. One fundamental reason is decomposition, which has been necessary, at least in
the past, to counter complexity. As a result, everyone only sees either a very little or very simplified
part of the whole picture, and it is very hard to impossible to collect and the data into a coherent set.

3. The resulting problem is computationally hard to solve.
Since the complexity class of discrete optimization problems often is NP-hard, this is not surprising.
However, experience shows, that solving particular instances works surprisingly well and that usually,
the main reason for the inability to solve a problem is its size. For example, the likes of SAP, Amazon,
Google, Huawei all have extremely large-scale supply-chain-type problems at hand. But not so many
others. And there are surprisingly few small challenging real-world problems unless the time allowed
for solving is very short.
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More Links ﬂ Zy

Twenty Questions for Donald Knuth

17. Andrew Binstock, Dr. Dobb's: At the ACM Turing Centennial in 2012, you stated that you were
becoming convinced that P = N P. Would you be kind enough to explain your current thinking on this
question, how you came to it, and whether this growing conviction came as a surprise to you?
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Quantum algorithm for stochastic
optimal stopping problems with
applications in finance

Joao F. DORIGUELLO

Centre for Quantum Technologies, National University of
Singapore, Singapore
joaofd@nus.edu.sg

The famous least squares Monte Carlo (LSM) algorithm [1,2,3] combines linear least
square regression with Monte Carlo simulation to approximately solve problems in
stochastic optimal stopping theory. In this work, we propose a quantum LSM based on
quantum access to a stochastic process, on quantum circuits for computing the optimal
stopping times, and on quantum techniques for Monte Carlo. For this algorithm, we
elucidate the intricate interplay of function approximation and quantum algorithms for
Monte Carlo. Our algorithm achieves a nearly quadratic speedup in the runtime
compared to the LSM algorithm under some mild assumptions. Specifically, our
quantum algorithm can be applied to American option pricing and we analyze a case
study for the common situation of Brownian motion and geometric Brownian motion
processes.

References

[1]1 F. A. Longstaff and E. S. Schwartz. “Valuing American options by simulation: a simple least-
squares approach”. In: The review of financial studies 14.1 (2001), pp. 113-147.
https://doi.org/10.1093/rfs/14.1.113

[2] E. Clément, D. Lamberton, and P. Protter. “An analysis of a least squares regression method for
American option pricing”. In: Finance and Stochastics 6.4 (2002), pp. 449-471.
https://doi.org/10.1007/s007800200071

[3] D. Z. Zanger. “Convergence of a least-squares Monte Carlo algorithm for bounded
approximating sets”. In: Applied Mathematical Finance 16.2 (2009), pp. 123—-150.
https://doi.org/10.1080/13504860802516881
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Introduction

Consider the following game:
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American Options

o Contract that allows the holder to buy/sell an asset at a
specific price (strike price).
@ It can be exercised at any time until an expiration date.

o Payoff: max{S — K,0}, where K is the strike price and S is
the asset’s price.

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022

American Options
APPLE INC
ASPL & NASDAQ
167.79“1; -0.85 (-0.50%) May 3 608 2.748T 0.52% 28.58
tm 30m th B v [} (0 wé ~ (%) Compare Zj Indicators
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Vo 5 562M 1800
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Problem Statement

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 13/1

Problem Statement: Markov chain and payoff process

o Probability space (Q, F,P).

o Markovian discrete-time stochastic process (X;)[_, with state
space (E,€), E C R

o Xp = xg is known.

o Given z; € L2(E, p;), let (Z;)[_, be a non-negative
discrete-time stochastic process such that Z; = z;(X).

o (X;)[y: asset’s price; (Z;)[_,: American option’s price.

Jodo F. Doriguello Quantum LS algorithm QOctober 10, 2022 14 /1
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Problem Statement: stopping time

e Stopping time: random variable 7: Q — {0,1,..., T}.
o The payoff obtained with 7 is Z;(w) := Z; () (w).

Problem Statement

For € > 0, approximate

sup E[Z:]

T stopping time

up to additive accuracy €.

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 1571

Dynamic program

o It is known!

sup  E[Z,] = E[Z,,] = max{Zo, E[Z]}.

T stopping time

Dynamic program

T = Ta
{Tt = t].{Zt Z E[ZTH-:I |Xt]} + Tt+11{Zt < ]E’[ZTH_1 |Xt‘]}7 0 S t S T — 1

E[Z:,,,|X¢] are called continuation values.

]E. Clément, D. Lamberton, and P. Protter. "An analysis of a least squares regression method for
American option pricing”. {2002)

Jodo F. Doriguello Quantum LS algorithm QOctober 10, 2022 16/1
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The LSM algorithm

T = T,
{Tt = t1{Z > E[Z,,|X]} + o1 l{Z < E[Z,,|X:]}, 0<t<T -1

@ Not known how to solve exactly.

o Least squares Monte Carlo (LSM) algorithm by Longstaff and
Schwartz in 2001.2
o Approximates E[Z,, . ,|X;] by a set of functions.
o Evaluates the functions from such set by a Monte Carlo
procedure.

2F. A. Longstaff and E. S. Schwartz. "Valuing American options by simulation: a simple
least-squares approach". (2001)

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022

The classical LSM algorithm
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The LSM algorithm: 1st approximation

o J; C L%(E,p:), t € {0,..., T}: hypothesis class.
o Approximate E[Z |X¢] by f; € J4.
e Which £;? Use linear least-square regression.

o For a set {e : E — R}, of m real functions and
Jt; = span{e, : E — R},

E[Zr, | X ~ ar - €(X) = Y (ar)jei(Xe),
=1

where &(-) := (e1(%),...,em(-)) " and

Q¢ = arg min ]E[(ZTH»] —a: g(Xf))z]'

acRm

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 19/1

The LSM algorithm: 1st approximation

o If {ex : E — R}, are linearly independent, then o has a
closed formula:

ar = A7 by where by = E[Z,,.,€(X;)]

and A; € R™*™M has coefficients

(Ae)k, = E[ex(Xe) e (Xe)]-

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022 20/1
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The LSM algorithm: 2nd approximation

o Evaluate f; using Monte Carlo sampling.
Sample N independent paths (Xt(l))tT:o, cl (Xt(N))tTIO.
Denote by Z,_g") = zt(X,_Sn)) the associated payoffs.

For each path solve the dynamic programming: obtain N
(n)
T .

sampled stopping times

o E[Z, .| X¢] = o - €(X;) where
1< 2
ap = arg argﬁigr)n N ; (ZT(t("i))] —a- é’(Xt(”))) .

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 2171

The LSM algorithm: 2nd approximation

o For linearly independent functions,

o,

N
1 n) — n
ar = Al be where by = 5 7 & x{"y
n=1

and A; € R™*™ has coefficients

N
1 n n
(A = 5 2 X e(X{").

n=1

o At the end of the dynamic program, obtain {Tl(")},’yzl and

output (remember sup,. E[Z;] = max{Zy, E[Z]})

N
1 ()
Us = max {zo, 5 Z; le(n)} .

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022 2271
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The LSM algorithm

1: Sample N independent paths (Xt(l), . ,Xt(N))tT:O.

2: Compute the associated payoffs (Zt(l), . .,Zt(N))tT:0 and values
(X)), - e eerrrnerm-

Estimate the matrices {A,}/ ' and inverses {A; '} 1.

Set 7'( ") = Tforne [N].

fort— T—-1toldo
Calculate the vector ay = A; 1L ZN Z(?n)) _‘(thn))'

t+1

AN AR S

7: Calculate, for n € [N],

7" = t{Z" > ap - @ X))+ T ZT < ap - EX))
8: end for
9: Qutput Up := max {Zg, N ZN Z(")}

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 2371

QOur quantum LSM algorithm
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Our quantum LSM algorithm

@ Main tool: use quantum Monte Carlo3 to approximate
b; = E[Z,,.,&(X;)] and A; = E[e(X,)e(X:) T].

t+1

Montanaro (2015)

Given ¢ € (0,1) and random variable X with = E[X] and
Var(X) < o, there is a quantum algorithm that runs in time
O(o/e) and outputs 1 such that | — u| < e with high probability.

@ Recent results of Cornelissen, Hamoudi and Jerbi?.

3A. Montanaro. "Quantum speedup of Monte Carlo methods". (2015)

4A. Cornelissen, Y. Hamoudi, and S. Jerbi. "Near-Optimal Quantum Algorithms for Multi-variate
IWMlean Estimation". (2021)
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Our quantum LSM algorithm: input model

o Quantum sampling access to the Markov chain (X;)/[_,:

Upl0) = D Vp(x)Ix)

x€ET

where p(x) = P[X; = x1] [T/ P[Xes1 = xer1|Xe = xi].

o Quantum access to functions h: E — R:

Valx)[0) = [x)|h(x)).

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022 26/1
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Our quantum LSM algorithm: high-level analysis

@ Use quantum Monte Carlo on by = E[Z;, ,€(X;)] and
A = E[e(X)e(X:)T].

o Compute oy = A; ' by classically (m is small) and use to
compute next stopping time 7.

t+1

o Difficulty: 7; is computed in superposition and we don’t have
direct accessto 7, for t +1 < u < T.

e Main idea: recompute all 7, for t +1 < u < T recursively in
superpaosition in order to obtain 7.

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 27 /1

Our quantum LSM algorithm: computing 7,

o Want Ct(k), t € [T] and k € [m], such that

CONB) = [x)|2ny e (Xe-1))-

o Construct, with knowledge of vy, W; such that®

{Wt|X>|7;t+1(X)>I5> = )| Te41(x)) [7e(x)) ift#T,
We|x)|B) = |x)| T) if t = T.

o Construct Vt(k) such that
k —,
VL) e (x))18) = [3) 76 (x)) | Zre () ek (xe-1)).
Wi VOW Wiy ... Wi

k
cP o =wh. .. wi,

B re(x) = t1{ze(xe) > ar - Ex)} + mera (91 ze(xe) < ae - Sxe)}
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Our quantum LSM algorithm

1: Approximate the matrices {A; }t 5t by QMC.

2. Compute the inverses {A; '} ! classically.

3: Construct Wt : [x)[0) — |x)|T).

4: for t =T to 2 do

5 if t £ T then

6: Construct W, @ [x)|7e11(X))[0) = [x)|Te1 (X)) |T(x)).

7: end if

8 Construct VI - x)|7:(x))[0) = x)|7e(x))|Zr (o ek (Xe-1)),
k € [m].

9:  Approximate b,_y using QMC with Wi .. wiviOw, .. wr,
k € [m] (remember b;_y = E[Z,,&(X:—1)])-

10: Compute the vector a1 = A; ", b, classically.

11: end for

12: Construct the unitary Wy : |x)|72(x))|0) — |x)|m2(x))|71(x))-

13: Construct the unitary Vi @ [x)|71(x))|0) = |[x)[71(X))|2r (x))-

14: Approximate E[Z,,] using QMC with W; .. Wllr ViWwg ... W,

15. Qutput Uy := max {ZO,E[ZH]}.
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Classical vs quantum LSM algorithm

Error analysis and complexity

Let € € (0,1). Let opmin < Mingc(T-1] omin(At) and N = @(52 5 )

ITIIn

LSM outputs Uy with high probability such that

|u0 - ]E[Z"'n]l < 5T <5 + maX arglkn ||a e(Xt) - E[th+1|Xt]||Lz(Pt >

using classical 0 (520" ) or quantum O (

min

) time.
EO’n‘lll‘l
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Error analysis and complexity

T . —
b~ BIZo]| <87 (=-+ max, min - €(X) ~ BlZ. Xl

@ ¢ comes from Monte Carlo approximation.
© maxp<i<T MiNaerm |2 &(Xt) — E[Zr, 4 | Xe]l|12(,): known as
approximation error.

o Classical O (6;’—:_’,6 > vs quantum O (TZQ’4>.

min min

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 3171

Special cases

o Bound the approximation error and omin?
e 7 = polynomials of degree at most g.

@ Underlying Markov process:

o Brownian mation;
o Geometric Brownian motion.

Jodo F. Doriguello Quantum LSM algorithm QOctober 10, 2022 3271
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NISQ/Fault-Tolerant Quantum Computers

o Quantum LSM algorithm suitable for NISQ devices?
o Praobably not.

@ Require fault-tolerant quantum computers to observe some
advantage.

Jodo F. Doriguello Quantum LSM algorithm October 10, 2022 33/1

Summary and open problems

Proposed a quantum version of the LSM algorithm.

Obtained a near quadratic improvement on the complexity for
a few scenarios.

Can we improve the T2 time dependence?

Perform a full quantum algorithm without intermediary
classical steps?

Other algorithms for the optimal stopping problem?
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Multicriteria Shortest Path Algorithms
Ralf BORNDORFER

Zuse Institute Berlin & Freie Universitit Berlin, Berlin, Germany
borndoerfer@zib.de

The optimization of paths subject to different criteria such as length, duration, cost,
etc. comes up in all kinds of route planning applications; they lead to the Multiobjective
Shortest Path Problem (MOSP) of computing the Pareto front of efficient solutions. We
propose a new “Multiobjective Dijkstra” label-setting algorithm [1,2] that computes a
minimum complete set of Pareto optimal paths; it is based on a lexicographic
organization of the label exploration process. In this way, the main data structure, a
priority queue, can be kept small, holding at most one label per node of the underlying
graph, and all extracted labels are guaranteed to be efficient. The resulting algorithm
improves the best know complexity bounds in this area. It gives rise to an FPTAS
approximation variant [3], it can be generalized to a time dependent setting (in the FIFO
case), it is parallelizable, and it works in practical implementations for more than two
objectives.
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The Airway Network (2D) ZiB
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The Time-dependent 2D Flight Planning Problem  Z8)

Definition (Time-dependent 2D Flight Planning Problem).
Input:

= Directed graph D = (V, A) (embedded on the Earth)

= Source and target nodes s,t € V

= Departure time 1,

= Travel time functions (TTFs) t,: Rs, = R, for each arc a € 4,
mapping starting time t to traversal time ¢, (1)

Output:
= st-path path p = {v,, ..., v,} minimizing
t(P) = X150 taww+n (@) St T =T+t v (Tic1)

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 3

FRA-SFO: Min. Fuel vs Min. Distance Track zy
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The Static 2D Flight Planning Problem zIB

Definition (Static 2D Flight Planning Problem).
Input:

= Directed graph D = (V, A) (embedded on the Earth)
= Source and target nodes s,t € V

= Departure time 1,

*= Costc, €, foreacharca e A
Geben Sie hier eine Formel ein.

Output:
= st-path path p = {v,, ..., v,} minimizing
n-1

¢ (p) = C(vi,vi+ 1)
=0

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 7
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The Multiobjective Shortest Path Problem Z1B

C2
u (1,2) %
it \/ I}
S/Q& S
s (2,2) v
1
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The Multiobjective Shortest Path Problem zg)

C2
u t ..........................................................
SO
/Q‘b{} g:; 3 S S e :
:Cl
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The Multiobjective Shortest Path Problem Z1B

C2
u (1,2) ok 2
4 S
o - c(p)
:{:/@(5) 3 T ......................
S v ..................... ......................

10
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The Multiobjective Shortest Path Problem

C2
u (1.2) N o,
I ™
9 5 ; T I .
2 ........................
. 22 I A e R m——
> Cq

11
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The Multiobjective Shortest Path Problem

C2

u (1,2) ok 2 K
p c(r)

4, ...........

;: @(jl\q S: 3 SORU O | W—:

(@)
2 .......................
r
5 22 e e o
2 3 4

1

Definition (Dominance). Let p,r be sv-pathsin D = (V,A4), c €

R45?. Then p dominates r := p <r:< c(p)

Definition (Efficiency). An undominated sv-path is efficient.

= c(r).

12
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The Multiobjective Shortest Path Problem

u (1,2)

t

/[ i
]
S

Definition (Multiobjective Shortest Path Problem (MOSP)).

Input: Digraph D = (V,4,c),c € N§*4, s € V.

2 3

4

Output: "Minimally complete" set of efficient sv-paths for all v € V.
Note: Only one path for each multidimensional objective.

13
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The Intractability of MOSP Z1B

(1,0 (2,0) (ZI"TJ, 0)

V1 >V > V3 > Vs > Vs e Un—2 > Un—1 > Un
n-2
1 ©0) ©02) ©0) o271 ©0)

Example & Observation (Intractability of MOSP, Hansen
[1979]). Even for only two objectives, a MOSP can have an
exponential number of efficient paths.

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 14

Multiobjective Shortest Path Algorithms zie

/]

u (1,2)

N
oY

/

S (2,2) a4

(1L.1)

Definition (Explored & Permanent Paths). Let p be an sv-path in a
digraph D(V,4,c),c € N¢, s,v € V.

a) p explored :< p has been seen but is not known to be efficient
b) p permanent :< p is guaranteed to be (and remain) efficient

Explored sv-paths are stored in a priority queue Q, and permanent
sv-paths in a set B,.
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Multiobjective Shortest Path Algorithms

C2

p%q and q<p 3 S ........... ...........
P <iex 4 2 N ...........

2 3

1

Definition (Lexicographic Order). Let p, g be sv-paths in D = (V, 4),

c € N§*4, Then
P <iex 9 < ci(p) < c;i(q) for the firsti € [d] s.t. ¢c;(p) # ci(q).

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021
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Martins's Algorithm (Martins [1984])

Input: MOSP (D,c,s)

Output: P,veV
forall v € V do B, « @ endforall
Pinit < (5), Q < {Pinit}
while Q = @ do

1

2

3

4 p « Q.extract_min(), v < head(p)
5. B <R ui{p}

6 forall w € 6*(v) do

7 if B, % (p,w) then

8 Q< Quilpw)}

9. Q « clean_heap

10. endif
11. endwhile

12. return P,,v €V

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021
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Martins's Algorithm

ZiB

Vg (1L1) > Vs
o,‘ﬂ priority queue Q
v1 o
e
< )
£ o / o s 2 v, Vg Uy v
\oj (0,0)
(3.3) U3
Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 18
Martins's Algorithm zie)
Vy (L1 Vs
oY priority queue Q
VU1 L/;\
< / ¢ g
£ 2 / o 2 vy Vg Uy Vg
) 41) (@23 @G3) 49
LCL?Q
(3.3) > V3

19
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Martins's Algorithm

ZiB

Uy (1,1 > Us
o,‘ﬂ priority queue Q
v1 o
e
< )
N / o 2 v, Vg Uy v
N} (41) B3 #¢4H 798
(3.3) U3
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Martins's Algorithm zie)
Uy (1,1) Vs
oY priority queue Q
VU1 Lg)\
< / ¢ g
£ 2 / o 2 vy Vg Uy Vg
\a) (41) 44 (78
p@"& (6,9)
(3.3) > V3

21
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ZiB

Martins's Algorithm

Uy (1,1 > Us
l o,‘ﬂﬁ priority queue Q
U1 o

< / T e

£ 2 / o s 2 v, Vg Uy Ve
) 44 (798
L@“)‘ (69)

(5,10)

(33) U3

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021

22

Martins's Algorithm zie)

Uy (1,1) Vs
/o%ﬁ priority queue Q
VU1 L/;\
< / ¢ g
£ 2 / o s 2 vy Vg Uy Vg
\a) (5,5)
(3.3) > V3

23
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Martins's Algorithm Zie)

Input: MOSP (D,c,s)
Output: P,vevV

1. forall v € V do P, « @ endforall
2. DPinit < (5),Q < {Pinit}
3. whileQ # ¢ do
4. py < Q.extract_min(), v « head(p;)
5. B, <P u{py}
+
6. for.aII wEo *(v) do a) (@ can contain exponentially
/. if B, % (py, w) then many sv-paths for any v € V.
8. Q < QU {(py,w)} b) clean_heap must access
9, Q < clean_heap them all and remove the
10. endif dominated ones.
11. endwhile Cc) Heap properties have to be

12. return P, v € V restored after deletions.
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Multiobjective Dijkstra Algorithm (BKMS [2021]) 2B

Input: MOSP (D,c,s) a) Paths extracted from Q are
Output: P,,v eV efficient.

1. forall v € V do P, « @ endforall b) @ contains at most one path
2. Pinit < (5),Q < {Pinit} per node: the lex-smallest
3. while Q # ¢ do undominated path at P,.

4. p; < Q.extract_min(), v « head(p;)

5. R <P U{py}

6. pyV < arglexmin, cp es—w){(Pw V): By % (py, v)} // Next cand. label
7. if peW = nil then Q « Q U {pfc"} endif

8. forallw e §*(v)do

9. if B, % (p3,w) and (p;, w) <iex Q.w then Q.decrease_key(Q,w, (p;, w)) endif
10.  endforall

11. endwhile

12. return B,,v eV
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Multiobjective Dijkstra Algorithm

Uy (1,1 > Us
l G priority queue Q
2 &5
< / T e
£ o / o s 2 v, Vg Uy v
N Uy (0,0)
L @?D/
S (3,3) V3
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Multiobjective Dijkstra Algorithm zg)
Uy (1,1) Vs
l (9) priority queue Q
VU1 o)
< / ¢ g
£ 2 / o 2 vy Vg Uy Vg
o V2 41 (23 B3 G4
p@,@
S (3,3) > U3

27
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Multiobjective Dijkstra Algorithm

S (3,3) > U3

2 (1,1) > Vs
l G priority queue Q
2 i
< / T e
£ o / o s 2 v, Vg Uy v
) (4,1) 33 (44 (78
(3.3) V3
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Multiobjective Dijkstra Algorithm Z18)
Uy (L1) Vs
l o9 priority queue Q
VU1 ’~f3
< / ¢ g
NJ 9 / o s 2 vy Vg Uy Vg
¥ (4.1 4o ©9
p@,@

29
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Multiobjective Dijkstra Algorithm

Vy 1D > Vs
9
G
2 &
< / ¢ g
N / L
N %)
L @'9/
S (3,3) V3

U1

priority queue Q

Uy Us

(44) (510)

30
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Multiobjective Dijkstra Algorithm

28

Uy (1,1) Vs

l @,9)

VU1 o)
< / ¢ g
N / e
\a) [
for
S (3,3) > U3

V1

priority queue Q

V3 Uy Vs

(5,5)

31
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Multiobjective Dijkstra Algorithm Zie

Theorem (Complexity of the MDA). Let (D, c,s) be a MOSP and let
* n number of nodes

= m number of arcs

= N total number of efficient paths

" Nmnax Mmaximal number of efficient paths at a single node.

Then the complexities of Martins's Algorithm and the MDA are

Algorithm Martins's Algorithm MDA
Run time O0(dN?n) O(dN logn + dN2,,, m).
Breugem et. al. [2017]

Proof (Sketch):
a) Nlogn = # iterations x complexity of extract_min.

b) N2, m = complexity of building paths and checking dominance
Note: P, < p takes 0(d|P,|) < 0(d Npay)-

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 32

Many efficient flight paths exist (time vs fuel). Z18)

NN\

——

// AN
/
//
L
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Approximating the Set of Efficient Solutions Z18 )

€1
Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 34
Approximating the Set of Efficient Solutions zie
C2
()
b 89
1
1+e ()

> C1
Definition (e-Dominance). Let p, q be sv-paths, € > 0. Then

p e-dominates ¢ := p <. q:= c(p) < (1 +€)c(q).
Definition (e-Cover). P. is an e-cover for a MOSP (D, c, s) if for
every sv-path p there is an sv-path p’ € P. s.t. p’ <. p.
Definition (FPTAS). An FTPAS computes for any € > 0 and any
MOSP (D, c,s) an e-cover in time polynomial in (D, ¢, s) and /.
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Definition (pos-function, Tsaggouris & Zaroliagis [2006]). The
lower left corner of the cell of path p is assigned grid coordinates
0, ci(p) =0, L
pos;(p) = - llog cl-(p)] c(p) £ 0 i€[d],r=(1+e)n 1
logr | ’
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Approximating the Set of Efficient Solutions ZIB
¢, (log scale)
.................... e
o OQ ...................... ...........
e O ........... ............
o I % |
.................. OO OO
R I R ) 1 e
¢, (log scale)

Observation (Cells and Coverage). Let p, q be sv-paths. Then
pos(p) < pos(q) = p <¢ q.
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Approx. Multiobjective Dijkstra Alg. (BKMS [2021]) #'8)

Input: MOSP (D,c,s)

Output: P,v eV

forall v € V do B, « @ endforall

Pinit < (5), Q@ < {Pinic}

while Q # ¢ do

Py < Q.extract_min(), v « head(p;,)

P, <« B, U {py}

2 arglexminpuePu:uEE_(v){(pu' v): P, (P, v)}

if pheW = nil then Q « Q U {phe"} endif

forall w € 6*(v) do
if B, <. (py,w) and (p;, w) <jex Q.w then Q. decrease_key(Q, w, (p;, w)) endif
endforall

11. endwhile

12. return P,v eV

WoNO WD

—
e
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Approximative Multiobjective Dijkstra Algorithm ~ ZIB

Lemma (Correctness of the Approximate MDA). Let p be an
efficient sv-path with k arcs. Then the output of the Approximate
MDA contains an sv-path p’ s.t.

c(p’) < r¥e(p).

Corollary (Correctness of the Approximate MDA). Under the
conditions of the above Lemma,

c(p) =1+ e)(p).
Proof. k<n—1landr=(1+ e)ﬁ.

Corollary (e-Cover). The Approximate MDA computes an e-cover.
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Approximative Multiobjective Dijkstra Algorithm zie

Theorem (Complexity of the Approximate MDA). The run time
of the Approximate MDA is

O(dCnlogn + dC?m),

where C := max c;(a).
i€[d],aeA

Proof. The pos-function takes at most
C:= (lzlog(nC)J)d
€

values. Hence, every node can have a path in at most € cells, and the
number of output paths is at most nc. As

<NNmax

N
O(dNlogn+ dN2,,m) < O(dNpaxnlogn + dN32,, m),
the claim follows from Np,.x = C.

Corollary (FPATS). The Approximate MDA is an FPTAS for MOSP.
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Computational Results on Exponential Graphs zie
EXP | 2D | Martins/BD | FPTAS vs FPTAS
8 ]
7
6 - ®
-~ 5 il
) @
l
F 3 ®
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Computational Results on Grid Graphs Z18 )
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time [s]
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le7
, Blue: Martins
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Back to the 2D Flight Planning Problem Z18)

Definition (Time-dependent 2D Flight Planning Problem).
Input:

= Directed graph D = (V, A) (embedded on the Earth)

= Source and target nodes s,t € V

= Travel time functions (TTFs) t,: Rs, = Ry, for each arc a € 4,
mapping starting time t to traversal time ¢, (1)

= Departure time t,

Output:
= st-path path p = {v,, ..., v,} minimizing
t(p) = X1y tww+) (@) St T =T+t v (Tic1)
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Back to the 2D Flight Planning Problem Z1B

Observation (Dynamic Arc Costs). Let c: 4 x R%, - R%, be a
dynamic arc cost function. Then the cost of an sv-path (p,a) is
defined recursively as

c(s) =0, c(p,a) =c(p) + c(a,c(p)).

Proposition & Definition (Dynamic MDA & FIFO Property). If a
dynamic arc cost function satisfies the FIFO property

x<y=x+clax)<y+c(ay) Vx,y,a,
MDA s.t. dynamic arc costs is correct.

Proposition (Dynamic FPTAS). If a dynamic arc cost function is
piecewise linear with positive intercepts, the Approximate MDA is
correct.

Multiobjective Shortest Path Problems | 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop | Sep 21, 2021 44

Back to the 2D Flight Planning Problem Z18)

Number of instances

Labels saved by Dynamic FPTAS on 2D flight planning instances.
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Back to the 2D Flight Planning Problem Z1B

N w N
o o (=]
1 1 1

Number of instances

=
o
'

0.0 0.1 0.2 0.3 0.4 0.5 0.6
1 — treras/tox

Time saved by Dynamic FPTAS on 2D flight planning instances.
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Summaryand FE LT hTHY I ED z218)

* Dynamic and Static 2D Flight Planning Problem
= Multiobjective Shortest Path Problem (MOSP)

= Martins's Algorithm

= Multiobjective Dijkstra Algorithm (MDA)

= Approximate MDA (FPTAS)

= Dynamic Arc Cost Versions

= A* Versions

- Papers @ https://www.zib.de/projects/flight-trajectory-optimization-airway-networks

Pedro Maristany de las Casss, An FPTAS for Dynamic Algorithms, 14(2), pp. 1-22, 2021 PDF (Z2IB-Reporty
Rall Bomdorfer, Luitgard Kraus, Multiobjective Shortest Path {preprint available as ZIB-Report BibTeX
Antonio Sedefo-Noda Problems 20-31) ool
Pedro Maristany de las Casas, An imp Computers & Operations PDF (Z1B-Repori)
Antonio Sedeno-Noda, Ralf Shorisst Research, Vol 135, 2021 (preprint BibTex
Borndorfer available as Z|B-Report 20-26) DOl
Pedrc Maristany de les Casas, Targefed Multiobjective Dijkstra 2021 {under review) BibTeX
Luitgard Kraus, Ralf Bomdidrfer, Algonthm arXn
Antonio Sedeno-Noda
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Randomized subspace regularized
Newton method for unconstrained
non-convex optimization

Pierre-Louis POIRION

RIKEN-AIP, Tokyo, Japan
pilerre-louis.poirion@riken.jp

In this talk we present a randomized subspace regularized Newton method for a non-
convex function. We show that our method has global convergence under appropriate
assumptions and its convergence rate is the same as that of the full regularized Newton
method. Furthermore, we can obtain a local linear convergence rate, under some
additional assumptions, and prove that this rate is the best we can hope when using

random subspace.
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Randomized Subspace Newton Method for
Unconstrained Non-Convex Optimization
The 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop

Pierre-Louis Poirion (RIKEN-AIP)
joint work with Terunari Fuji and Akiko Takeda

November 2, 2022

1/23

Overview

© Introduction

@ Global convergence

@ Local convergence

© Numerical experiments
@ Summary

I November 2,202

2/23
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The gist

Non-convex unconstrained minimization

min f(x),

where f : R" — R is twice differentiable

I Newmber2202 3/23

The gist

Non-convex unconstrained minimization

min f(x),

x€R"

where f : R” — R is twice differentiable )

Subspace optimization

min f(x + P u),
u€Rs

where P € R%*" is a random matrix.

I Newmber2, 202 3/23
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The gist

Non-convex unconstrained minimization

min f(x),

where f : R" — R is twice differentiable

Subspace optimization

min f(x + P u),
u€Rs

where P € R**" is a random matrix.
@ Can we speed up the computation time?

@ Global and local convergence properties?

November 2, 2022 3/23

Previous works

Random Subspace Newton (RSN) [Gower et al., 2019](f is convex)

By computing the Newton direction on the function u +— f(xx + PkTuk),

we obtain ug = —(PxV?f(xk)P) ) 1PV f(xk), hence

Xka1 = Xk — P (PeV2F (i) PL ) "t PRV £ (xk).

They prove global sub-linear convergence and local linear convergence if f

is strongly convex.

November 2, 2022 4/23
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Previous works

Random Subspace Newton (RSN) [Gower et al., 2019](f is convex)

By computing the Newton direction on the function u — f(xx + P, ),
we obtain ug = —(PxV2f(xk)P) ) 1PV f(xk), hence

Xpr1 = Xk — tiPL (PV2 () PR ) " PRV F ().

They prove global sub-linear convergence and local linear convergence if f
is strongly convex.

e [Hanzely et al., 2020]: Cubically-regularized subspace Newton
method.
o [Kovalev et al., 2020]: random subspace version of the BFGS method.

@ [Roberts and Royer, 2022]: probabilistic direct-search method in

reduced random spaces (non-convex problems). The authors prove
sub-linear convergence.

November 2, 2022 4/23

Our work

Based on regularized Newton method (RNM) for the unconstrained
non-convex optimization [Ueda and Yamashita, 2010], we propose the
randomized subspace regularized Newton method (RS-RNM):

die = =P (P V2 F(x )P+ nils) 2PV F(xi),
Xk+1 = Xk + tedk,

where 7 is defined to ensure PyV2f(xk)P, + nils = 0 and t satisfies
Armijo’s rule.

I Newember2, 202 5/23
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Our work

Based on regularized Newton method (RNM) for the unconstrained
non-convex optimization [Ueda and Yamashita, 2010], we propose the
randomized subspace regularized Newton method (RS-RNM):

di = =P (PV2F(x)PL + nicls) 2PV F(xi),

Xk+1 = Xk + tid,

where 7, is defined to ensure P;<V2f(xk)PkT + nkls = 0 and ty satisfies
Armijo’s rule.

@ In [Ueda and Yamashita, 2010] the authors prove global sub-linear
convergence and local quadratic convergence under local-error bound
condition.

@ Can we extend these results to the random subspace setting ?

I Newmbe2, 202 5/

What is Random Projection

n-dimensional

s-dimensional ‘

o ()

&

I Newmber2, 202 6/23
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Random Projection

Lemma JLL

Let P € R9*" P; ~ N(0,1/s), i.id..
Then for any x € R” and € € (0,1), we have

Prob [(1 —¢)Ix|3 < [IPx|3 < (1 +¢)Ix|3] = 1 — 2exp(—Ce?s),

where C is an absolute constant.

’ n-dimensional ‘

°. : :
: s-dimensional ‘
X
.
. log | X
s O( gg‘z ‘)
@
o

I November 2, 2022 7/23

Algorithm 1 Randomized subspace regularized Newton method (RS-RNM)

input: xo € R", v>0,c; > 1,0 >0,,5 € (0,1)
1: k<0
2: repeat
3:  sample a random matrix: Py ~ Gaussian matrix N'(0,1/s)s*"
4:  compute the regularized sketched hessian:
M, = PkVZf(xk)P,;r + cN\ils + CQHVf(Xk)”’Y/S, where Ay =
max(0, —Amin(PkV2f(xc) P, )
5. compute the search direction: dy = —PZM;IPka(Xk)
: apply the backtracking line search with Armijo’'s to compute /, > 0
such that (1) holds. Set t, = 8%, x¢ 1 = xx + txdy and k « k +1

7: until the stopping criteria is satisfied
8: return the last iterate x
F(xe) — F o + Bde) > —aBlg) di. (1)
I —— November 2, 2022 8/23
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Global convergence

Assumption (1)

The level set of f at the initial point xy is compact, i.e.,
Q:={R": f(x) < f(x0)} is compact.

November 2, 2022 9/23

Global convergence

Assumption (1)

The level set of f at the initial point xy is compact, i.e.,
Q:={R": f(x) < f(xo0)} is compact.

Assumption (2)

Q <1/2,
Q o<1/2
© There exists Ly > 0 such that

IV2£(x) = V2E()I < Lullx =y,

1—
’Yn

vx,y € Q+B(0,n),

where r :=

, and V£ < U.

November 2, 2022 9/23
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Global convergence

Let
2.2
tmin = min | 1, —Bczliz
Theorem

Suppose that Assumptions (1) and (2) hold. Let

Qtmin

2C(1 + C1)§UH + 2C2U;'

p =
Then, with probability at least 1 — 2m (exp(—%s) - exp(—s)), we have

f(Xo) — f*

> i Vf .
mp ko, VG

This global O(72) complexity is the same as that obtaijned.-in

Local convergence

Assume that {xx} converge to a strict local minima x. We show that
o the sequence {f(xx)} converges locally linearly to f(X)

@ when f is strongly convex, we cannot aim at local super-linear
convergence using random subspace.

November 2, 2022 10/23
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Local convergence: assumptions

Assumption (2')

In a neighborhood of X, we have

IV2F(x) = V2E ()] < Lullx =yl

Assumption (3)

We have that s = o(n), that is, lim 2 =0.
n—-+oo )
I —— November 2, 2022 12/23
Local convergence: assumptions
Assumption (2')
In a neighborhood of X, we have
IV2F(x) = V2E () < Lullx =yl )
Assumption (3)
We have that s = o(n), that is, lim 2 =0.
—>+00 )
Assumption (4)
We assume that
© There exists o € (0,1) such that r = rank(V2f(x)) > on
© There exists p EN(O 3) and C such that in a neighborhood of X,
f(xx) — f(x) > C|lxk — X||” holds.
I —— November 2, 2022 12/23
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Proposition 1

Let 0 <o < 1. Then under Assumptions (3) and (4.1) there exists
no € N (which depends only on ¢ and &) and a neighborhood B* C B
such that if n > ng, for any x € B,

(1 - 60)2

PV2(x)PT = = 7523,
S

holds with probability at least 1 — 6 exp(—s).

I Nownber2,202213/23

Proposition 1

Let 0 < o < 1. Then under Assumptions (3) and (4.1) there exists
no € N (which depends only on ¢ and &) and a neighborhood B* C B
such that if n > ng, for any x € B¥,

(1 — 80)2

PV2f(x)PT = T2,

holds with probability at least 1 — 6 exp(—s).

Proposition 2

Under Assumptions (1),(2') and (4). there exists 0 < x <1, kg € N,
no € N, and C > 0 such that if n > ng, kK > kg, we have with probability
1 — 6(exp(—s) + exp(—%s)):

f(x) = min f(xi + Py u) > C(F(x) = £(%)).

I Newember2, 202 13/23
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Local convergence: Theorem 1

Theorem

Under Assumptions (1),(2'),(3) and (4), there exists 0 < k < 1, kg € N,
and ng € N such that if n > ng, kK > kg, then

F(xkt1) = F(%) < R(F(xi) = £(X)).

holds with probability at least 1 — 6(exp(—s) + exp(—%s)).

I Nownber2.2022 14/23

Super-linear convergence?
Assumption (5)

We assume that
(C +2)?s < n.

I Nowember2, 202 15/23
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Super-linear convergence?
Assumption (5)

We assume that
(C+2)%s < n.

Theorem

Under Assumptions (2') and (5), if f is locally strongly convex around X.
There exists a constant ¢ > 0 such that for k large enough,

X1 = X[ = ellx — x|

holds with probability at least 1 — 2 exp(—$2) — 2 exp(—s).

I Nownber2,2022 18/23

Super-linear convergence?
Assumption (5)

We assume that
(C+2)%s < n.

Theorem

Under Assumptions (2') and (5), if  is locally strongly convex around X.
There exists a constant ¢ > 0 such that for k large enough,

X1 = X[ = el = X]]

holds with probability at least 1 — 2exp(—%) — 2exp(—s).

We deduce from the theorem and the assumptions that there exists a
constant ¢’ such that

F(xig1) = (%) = ' (F(x) = £(X)),
with probability at least 1 — 2exp(—%) — 2exp(—s).

I Nowember2, 202 15/23
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Numerical experiments: Support vector regression

Data: Vi < m, (x;,y;) € R" x {0,1}, we aim minimizing sum of a loss
function and a regularizer

1 m
f(w) = — > Ly —x w) + Allw].
i=1

@ Internet advertisements dataset from UCI
repository[Dua and Graff, 2017] processed so that the number of
instances is m = 600 and and n = 1500.

e Comparison with Gradient Descent (GD) and Regularized Newton
Method (RNM)

@ Step sizes are all determined by Armijo backtracking line search

@ The parameters are fixed as follows:

a=2c=1~v=050a=03,8=05s e {100,200, 400}

I Nownber2,2022 16/23

Loss function

2t2
i) = t2+4
£(t)
1 L
)
t
-1 101

Figure: The robust loss functions.

I Newmber2, 202 17723
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— GD
— RNM
—— RS-RNM(s =100}
—— RS-RNM(s =200)
—— RS-RNM(s =400)

— 107

&

-t
] 200 400 GO0 800 1000

iterations

Figure: iterations versus f(w) (logqg-scale)

10!

10-# aD

—— RNM
—— RS-RNM({s =100}

IV £(w)l

0 —— RS-RNM(s =200)
— RS-RNM(s =400)
- - L —
1] 200 400 GO0 800 1000

iterations

Figure: iterations versus ||Vf(w)|| (log;o-scale)).
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GD

RNM

RS-RNM(s =100)
RS-RNM{(s =200)
RS-RNM (s =400)

RERN

0 30 ] 150 300
time(s)

Figure: computation time versus ||V (w)|| (log;o-scale).

I Nownber2,202 20/23

Future work

Can we find a second order subspace algorithm with local superlinear
convergence ? Full paper: "T. Fuji, P.L. Poirion, A. Takeda, Randomized

subspace regularized Newton method for unconstrained non-convex
optimization. arXiv:2209.04170, (2022)"

I Newember2, 202 21/23
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Minimax Analysis for Inverse Risk in
Nonparametric Invertible Regression

Akifumi OKUNO

Institute of Statistical Mathematics / RIKEN AIP, Japan
okuno@ism.ac.jp

Learning invertibility from data and exploiting an invertible estimator are used in many
domains, such as statistics, econometrics, and machine learning. Although the
consistency and universality of invertible estimators have been well investigated,
analysis on the efficiency of these methods is still under development. In this study, we
study a minimax risk for estimating invertible functions. We first introduce an inverse
L2-risk to evaluate an estimator which preserves invertibility. Then, we derive lower
and upper rates for a minimax inverse risk by exploiting a representation of invertible
functions using level-sets. To obtain an upper bound, we develop an estimator
asymptotically almost everywhere invertible, whose risk attains the derived minimax
lower rate up to logarithmic factors. This work is a joint work with M. Imaizumi (U.
Tokyo), and is based on a preprint of ours [1].

References
[11 Akifumi Okuno, Masaaki Imaizumi, “Minimax Analysis for Inverse Risk in Nonparametric
Planer Invertible Regression”, CoRR, arXiv preprint https://arxiv.org/abs/2112.00213
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Minimax Analysis for Inverse Risk
in Nonparametric Invertible Regression
(joint work with M. Imaizumi, arXiv:2112.00213)

Akifumi Okuno

Institute of Statistical Mathematics and RIKEN AlIP

Sep. 2022

fo, Do Nonparametric invertible Regression Sep. 2022 1/33

Summary of This Talk

This study focuses on invertibility of the function.
We estimate invertible regression function f, : [-1,1]9 — [~1, 1]¢ and evaluate invertible risk

Rinv(Fa. £2) = ([0 — £ull72(py +0(IFR — £ 2(py))-

Our contribution (d = 2; planer invertible regression; O12021)

With ¥(z) = z*,
inf sup Rigy(Fn f.) = n=2/C+d)
fo f,ertie

Inv

up to logarithmic factors, same as the (standard) Lipschitz function estimation!

> \We can employ this minimax rate as a baseline of efficiency!
» Generalized to d € N, 9(z) = 2% by assuming C? in Ol (in prep.)

A Ciluna Manparametric invertibly Regression Sep. 2022

482




Background

fo, Do Nonparametric invertible Regression Sep. 2022

Invertible Functions
Let / = [—1,1]. A function f: /9 — 19 is invertible iff
fy) :={xei?|f(x) =y}

is a unique point, for any y € /9. We consider Lipschitz invertible functions f € -,

= =
21 2 ;
/ /
I."l /
2 \ / ! /
\ !
A
a | / = =
b \ .-"r
\ /
- Y !
77 N /
b
N A
= -
0 T T T
-0 -0 0o 25 1 a0 o5 10

Figure: Non-Invertible f(x) = 2x* —1 Figure: Invertible f(x) = x*

CRung Monpatametric invertibly Regjression
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Invertible Function Estimation (d = 1)

Invertiblility = (Strict) Monotonicity

Response

7' Dose

» Many papers on application/theory of monotone func. estimation in econ/stats.
» Nonparametric statistical calibration (e.g., Tang et al., 2011, 2015)
» Nonparametric instrumental variable regression (e.q., Krief, 2017)

fo, Do Nonparametric invertible Regression Sep. 2022

Invertible Function Estimation (d € N)

Invertiblility = One-to-one correspondence

g

e

Latent Space Y

Usually, it is quite difficult to define invertibile and expressive estimator for d > 2.
Recent way: Invertible Neural Network = Normalizing Flow (Dinh et al., 2014).

A Ciluna Manparametric invertibly Regression Sep. 2022
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Types of Normalizing Flows and Universality
There are various types of normalizing flows (NF), where they are basically in the form of

f(x)= (1010009509 10 )(x)

with invertible ¢y, @5, --- . ¢, : R? — R? and Affine mappings ¥, %5, --- . ¥, 1.

(i) Simple ones: Non-universal
> Planar flow ¢;(x) = x +ah(Bx + ¢),
» Househdlder flow ¢;(x) = x — 2\.3\:1-' x, etc...

(ii) Triangular map-based: Universal (in the sense of distribution matching)
P Sum-of-Squares (SoS; Huang et al., 2018),
» Neural Autoregressive (NAF; Huang et al., 2018), etc...

(iii) Real NVP: Universal (in the usual sense)
> Affine-coupling flow (ACF Dinh et al,, 2014) ¢;(x) = (X<, X>k @ exp(s;(x<)) + ti(x<k))

equipped with NNs s, t; : B¥ — R and & € [d].

fo, Do Nonparametric invertible Regression Sep. 2022

Affine-Coupling Flow (ACF)

. Output
pu
< &t(xck) P(x) = (x<p, 2)
Input S(xsk)

z 1= X5 © exp(s(rgy)) + tlxzy)

> ACF is invertible: f1(y) = (¢ o9 ' ---o¥5 o oy o 7 1)(y) with

t ()’<k))

. Yok —
o7 (y) = (y : =
i )= Yo epls (y2))

» \With increasing number of layers L — oc,

ACF universally approximates C? invertible functions (Teshima et al., 2020).

A Ciluna Manparametric invertibly Regression Sep. 2022 B/33
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Still difficult to evaluate the efficiency, for d > 2.

P Teshima et al. (2020) assumes L — oc.
» Even the (simple) minimax optimal convergence rate is not obtained,

» d =1 is OK: monotonicity is easy enough to handle. IMany studies.

> d > 2 is very difficult: monotonicity is no longer available.
Even the characterization of the invertible function is not known:
nonparametric estimator (for theory) is not known.

Thereis a HUGE gap fromd =1to d = 2:
we evaluate the efficiency for d = 2.

A Dking Nenparametric invertible Regression

Pl

Conventional Theory and Our Problem Setup: Inverse Risk

A Ciuns Manparametric invertibly Regression
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Regression Problem

Fiw ={F: 1> = I? | ¥y € I?, 13x € I? such that f(x) =y}

FHP = {f € Finy | £.£71 are Lipschitz).

Inv

(/:=[-1,1]).

Assume we have observations @, := {(X;, Y;)}!_; C 12 x B2 that independently follow

Li.d.

Yi=f.(X)+e. &< Ny(0,0%), i=12,...

for a true function f. € F-” and 02 > 0.

> f, estimates f., using the observations D,
» Note: d = 2 is assumed throughout this talk.

A, Do Nonparametric invertible Regression

N,

Consistency
Definition (Risk)

For any estimator . we define a [?-risk:

R(fnrf*) = |||fn = fm”ﬁz(px}.

where [|[f]]|¢2(py) = (37=y J |£12dPx)2 is an L2-norm.

Definition (Consistency)

A estimator T, is consistent if

P(R(Fn ) < Cry) > 1 -0,

holds for some C € (0, o0) and decreasing sequences ry,, 8, N\ 0. 1, is also called

convergence rate.
Kernel smoother is consistent with r, = n—2/(2+d)

A Ciluna Manparametric invertibly Regression

, for Lipschitz f..
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Consistency # Invertibility: An Example

f.(x) =x, fa(x) = (x1. F (),

X
| o duz dios 2
1

With dyj = —1 4+ jvn, ﬂ, is consistent with the (arbitrarily fast) rate v,,
whereas it is NOT invertible over entire /2 = [1, 1.

Inverse Risk Measures both Consistency and Invertibility

Definition (Empirical inverse function)

Let c € R?\ /2 be a constant vector. An inverse function for the estimator f,, : /2 — /2 is:

) - {x (if 13x € /2 such that f,(x) = y) e

¢ (otherwise)
Definition (Inverse risk)
Rinv(Fn, F2) := R(Fo. ) + W(REL £71),  for Fp: 12— 2.

» Inverse risk measures both invertibility (a.e.) and consistency (for both f,,, f,'T)

> The previous approximation example: R(fn,f*) —P 0, Riyy(Fa. f.) > Jec > 0.
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Level-Set Representation

Pl

A Dking Nenparametric invertible Regression

Level-Set Representation
Definition (Level-Set Representation)
For f(x) = (fi(x). f2(x)) € Finv, We define a level-set Le(y;) = {x € I? | fi(x) = y;} and the
level-set representation

fiy)={xe?|f(x) =y} =La(n)NLe(y2), Yy=(n.)2)€ /.

Figure: £71(0,0.1) = L5 (0) N Ly (0.1)

» Example: for f(x) =x, Ly (y1) = (v, 1), Le(y2) = (1. y2).

A Ciuns MNonparametri
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An Real Example

= = =
i “ b
= = =]
P u © o« O
xS * g i
w bt |
=] = =]
¥ ] 1
S 2 S | B
- - - 17
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Figure: {Lg(£k/t)} k=0,1.2...t (red forj =1, blue for j = 2).

AL Dk MNonparametric invertible Regression Sep. 2022 17 /33

Level-Set Properties (in Theory)

L)

Figure: f71(0,0.1) = L (0) N Ly(0.1)

Forany f = (fi,f) € .?ﬂll‘j'f
> L (v1) = Uaeif (31, @) and Lg (y2) = Uaerf (@, y2).
P dhausdorfr(Le (V) Le (V) < 3Cly =y, Wy, y €1, j=1,2.

> L¢(+1) € 8/%, j=1,2. (more specifically, f(8/2) = 81? = f~1(8/?))

A Okuna Monparametne invertible Regression Sep. 2022 18/ 33
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Proposed (Asymptotically A.E.) Invertible Estimator

fo, Do Nonparametric invertible Regression Sep. 2022

Basic Idea: Two-Step Estimation

Example: in the case d = 1.

1. Compute ?f,l} over the grid

: . ; (2
2. Interpolate them using the line (as the second-step estimator ff? }),

CRung Monpatametric invertibly Regjression
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Planer Invertible Regression (d = 2)

Level set representation of £ yields f.(x) = (f. )7 (x) = f.(x1, 1) Nfu(/, x2).

(1 .
1. Compute f}T ) over the grid
2. Interpolate them using the quadrilateral (as the second-step estimator ff)),

AL Do Nonparametric Invertible Regression Sep. 2022

Numerical Experiments: Approximation

> n=10% ¢ = 10~ (larger noise), X; ~ U(/?).

> t=3.
0 =
o =
o =
§1 3
T T T i T
-1 05 0 o5 1 -1 =05 0 05 1
i F1)
(a) fis (b) £
A Okuna Menparametric Invertibie Regression Sep. 2022
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Numerical Experiments: Number of Splits t = t,

Estimasoc- f,. (18] Estimator: (1 16)

Groundinath -t Estimatoc: 1, (141

-1 =056 0 05 1
-1 =06 0 05 1

-1 <05 0 05

o o o
w w w
o = =
# 2 # 2 % 2
n " wn
F z §
= = 2
T i i
x * a
AL Ckaing Nenparametric invertible Regrassion Sep. 2022

Numerical Experiments: Other Functions

Al

GrOUnEru 1, first steg: 1, )
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_‘._r_r.[.t.'. 8)

0s

#,

-10 05 00 05 10

-10 -05 00 05 10
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-0 -05 00 05 10
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Lower/Upper Bound Analysis

Lower Bound Analysis
Let d = 2,9(z) = z*%.
Theorem (Lower Bound)

C,n—2/(2td) <inf sup RivvAFn, 1)
T f,g}‘;;'f

with probability larger than 1/2.

Theorem (Upper Bound)

inf sup R;Nv(fn.f,) < Cn~2/(+d)(jog n)zo“

fo f e P
w.p. 1—68,(71), for any o' > 0.
See Ol (2021) for details.
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Ongoing Work and Conclusion

fo, Do Nonparametric invertible Regression Sep. 2022

Ongoing Work

» Generalization to d € N (Ol, in prep.) by assuming C9smoothness (g = 2).

Theorem
Let d € N. There exists C € (0, oc) such that,

inf sup Rpwuf, f.) < Cn29/CH D (16g n)2*  wpal 1-6,
fu f,:EFfw

Table: Studies on minimax optimality of the estimation of invertible functions f € C9([-1, 1]9).

d=1 d=2 d=34,56,...

g<1 X %
Lipschitz (nearly g = 1) Existiig Ol (2021) X
l< g2 x ¥

2<q Ol (in prep.)
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Conclusion
> \We proved for d = 2 that
inf sup Riny(fs f.) = n~2/(+9)
fn r.ere
in probability, up to logarithmic factors.
» \We proposed a minimax optimal (whereby asymptotically a.e. invertible) estimator ?n,

Groundinah -4,

Tot=a)

-5 0 05
-0E 0 08

T u
-1 b5 0 05 1

(a) Groundtruth (b) Estimator

https://arxiv.org/abs/2112.00213

A, Do Nonparametric invertible Regression Sep. 2022

Some Remarks

A Ciluna Manparametric invertibly Regression Sep. 2022
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Problem: Quadrilateral Approximation and Twists

> If Lg € [1, 2”"’), no twist appears when approximating quadrilaterals.
» Otherwise, there can be twists.

Each twist vanishes by increasing the number of division (for most suitable cases).
Daneri and Pratelli (2014) Proposition 4.1 proves

L(twisted region) —7 0.

A Cikng Nonparametric invertible Regression Sep. 2022

Pathological Example

=

——
— I a1/
i— : 2.0,1/8)

4.(.0)
g.0.0 g.01/8.1)  g.01/410) g.(1/2,0)

g.0,1/2)

Whereas each twist is decomposed into smaller quadrilaterals (by increasing t = t;), twists
can appear indefinitely in some pathological examples. (They are ignored in the sense of
Lebesgue measure, in our theory)

A Okuna Monparametne invertible Regression Sep. 2022
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Which is better to assume: Lipschitz or C?7?

> Nonparametric statistics usually assumes that f. is Lipschitz:

€y Less restrictive
L) Includes pathological examples

This study assumes Lipschitz (with d = 2): as we are researchers of statistics...
Almost impossible to extend to general d > 3.

» Geometry usually assumes that f, is C2:

¢ Theoretically tractable (tangent space can be defined)
L) More restrictive

Our ongoing work assumes C? (and generalize to d € N).

A kG Monparametric invertible Regression Sep. 2022
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On the geometry of periodic timetables
in public transport

Niels LINDNER

Zuse Institute Berlin, Germany
lindner@zib.de

What rhythm is to music, is the timetable to a public transportation system. Many public
transportation networks are operated periodically, and therefore the computation and
optimization of periodic timetables is a frequent and important task. The mathematical
foundation of periodic timetabling is the Periodic Event Scheduling Problem [1], which is
easy to formulate, has a rich theory, but is notoriously hard to solve. In order to obtain a
better understanding of how to solve periodic timetabling problems, we analyze the
geometry of periodic timetables, and discover surprising connections to tropical and discrete
geometry that are beyond the scope of the standard toolbox of combinatorial optimization
[2]. We outline how tropical neighborhood search, a new heuristic developed from these
geometric insights, helped to compute new incumbent solutions for instances of the
timetabling benchmarking library PESPIib [3].
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Public Transport...

... is often operated periodically

Images: MaedaAkihiko and Trouper3000, CC-BY-SA 4.0; Rolf Heinrich, K6ln, CC-BY 3.0; all via commons.wikimedia.org
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ZIB
Public Transport... J

... is often operated periodically
— Periodic Timetable Optimization

Images: MaedaAkihiko and Trouper3000, CC-BY-SA 4.0; Rolf Heinrich, K6In, CC-BY 3.0; all via commons.wikimedia.org
Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 3/26

ZIB
Public Transport Planning Cycle : _/

Network Design

Line Planning
Periodic Timetable
T|metabl|ng €osunnnnnnns Opt|m|zat|on

[Vehicle Scheduling}

< >

[Duty Scheduling]

Crew Scheduling] operational

( 5 short-term

[Real-Time Management] few decision makers

strategic
long-term
many decision makers

'

Bussieck et al.: Discrete optimization in public rail transport, 1997
Liebchen: Periodic timetable optimization in public transport, 2006

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 4/26
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A Line Network: Tokyo Subway
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From Line Networks to Event-Activity Networks

\/
/\

Line Plan: 3 bidirectional lines, same frequency

6/26
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ZIB
From Line Networks to Event-Activity Networks " J

Event-Activity Network: directed graph G

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 6/26

ZIB
Periodic Timetable Optimization ' ./

Events:

e arrival
e / 5 o departure

Activities:
— drive, dwell, turn

// —  transfer

Event-Activity Network: directed graph G

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 7/26
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ZIB
Periodic Timetable Optimization ./

Bounds [¢, u]
3 AN > driving times
» minimum transfer times
S » maximum dwell times
[23,28],753
. // > minimum headway times
/ L ] (o] >

8 c / / ® Weights w:
A / | » passenger load

> turnaround penalties
> ...
N ‘ Period time T:

(G, T,l,u,w) » e.g., T =60forlhour,
resolution of 1 minute

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 8/26
Periodic Event Scheduling Problem (PESP)
Given
G = (V,A) event-activity network,
TeN period time,
(cRA lower bounds,
ueRrA upper bounds,
weRL,  weights,
find

7 €RY periodic timetable,
x € R periodic tension

such that
(1) m —m = x;j mod T forallij € A,
(2) £ <x <u,

(3) w'xis minimum,
or decide that no such (7, x) exists.

(Serafini and Ukovich, 1989)

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 9/26
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Periodic Event Scheduling Problem (PESP)

e/

Given
G = (V,A) event-activity network,
TeN period time,
¢ cRA lower bounds,
ucRrA upper bounds,
weRy,  weights,
find
7 € RY periodic timetable,
x € R*  periodic tension
such that

(1) m — 7 = x; mod T forallij € A,
(2) £ <x<u,
(3) w'xis minimum,

or decide that no such (7, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize w'x
s.t. T — T = Xj — Tpj, ij €A,
i < x5 < ujj, ij €A,
mi € R, iev,
pij € Z, ij €A

p € Z” periodic offsets

Niels Lindner: On the geometry of periodic timetables in public transport

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 9/26

Periodic Event Scheduling Problem (PESP)

Given
G = (V,A) event-activity network,
TeN period time,
(cRA lower bounds,
ueRrA upper bounds,
weRL,  weights,
find
7 €RY periodic timetable,
x € R periodic tension
such that

(1) m —m = x;j mod T forallij € A,
(2) £ <x <u,
(3) w'xis minimum,

or decide that no such (7, x) exists.

(Serafini and Ukovich, 1989)

Incidence-based MIP formulation:

Minimize w'x
sit. T — 7 = X — Tpy, ij €A,
Ly < xij < ujj, ij €A,
mi € R, iev,
pjj € Z, ij €A.

p €7 periodic offsets

Assumptions after preprocessing:
» Gisweakly (2-)connected
» Ghasnoarca € Awith 4, = u,
> 0</<TandO<u—-/¢<T

Niels Lindner: On the geometry of periodic timetables in public transport

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 9/26
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ZIB
Periodic Event Scheduling Problem (PESP) J

Given Incidence-based MIP formulation:
G = (V,A) event-activity network,
TeN period time, Minimize w'x
e RA lower bounds, st mj—m =Xj— Tpj, [ €A,
ueRrA upper bounds, i < x5 < ujj, ij €A,
weRy,  weights, i € R, i€V,
find pj € Z, ij €A

7 € RV  periodic timetable,

A . .
x € R*  periodic tension p e Z" periodicoffsets

such that Symmetry breaking:
(1) m — 7 = x; mod T forallij € A, » couldimpose0 < 7; < T and
(2) £<x<u, pj € {0,1,2}

(3) w'xisminimum, .
. . Redundancy among periodic offsets p:
or decide that no such (7, x) exists. )

> could set pj = 0 along spanning tree

(Serafini and Ukovich, 1989)

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 9/26
Hardness of PESP
Theory
» NP-hard for fixed T > 3 (Odijk, 1994, Nachtigall, 1996)
» NP-hard for G with fixed treewidth > 2
(in particular for planar G) (L. and Reisch, 2022)

» NP-hard cutting plane separation
(cycle, change-cycle, flip) (Borndérfer et al., 2020, L. and Liebchen, 2020)

» LP relaxation has trivial solution
™ =0, x"={ p*=1(/T

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 10/26
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ZIB
Hardness of PESP _/
Theory

» NP-hard for fixed T > 3 (Odijk, 1994, Nachtigall, 1996)
» NP-hard for G with fixed treewidth > 2
(in particular for planar G) (L. and Reisch, 2022)

» NP-hard cutting plane separation
(cycle, change-cycle, flip) (Borndérfer et al., 2020, L. and Liebchen, 2020)

» LP relaxation has trivial solution
™ =0,x* =10 p*=10/T

Practice

» rich literature on algorithms:
MIP techniques, CP, SAT (also MaxSAT and SAT+ML), modulo network simplex,
matching, merging, maximum cuts, graph partitioning, . ..

> several success stories (Berlin, Copenhagen, Netherlands, Switzerland, .. .)

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 10/26
Hardness of PESP
Theory
» NP-hard for fixed T > 3 (Odijk, 1994, Nachtigall, 1996)
» NP-hard for G with fixed treewidth > 2
(in particular for planar G) (L. and Reisch, 2022)

» NP-hard cutting plane separation
(cycle, change-cycle, flip) (Borndérfer et al., 2020, L. and Liebchen, 2020)

» LP relaxation has trivial solution
™ =0, x"={ p*=1(/T

Practice

» rich literature on algorithms:
MIP techniques, CP, SAT (also MaxSAT and SAT+ML), modulo network simplex,
matching, merging, maximum cuts, graph partitioning, . . .

> several success stories (Berlin, Copenhagen, Netherlands, Switzerland, .. .)

Summary: primal: = dual: =

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 10/26
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PESPlib

e/

Railway timetabling instances
Best objective

20,230,655

Name Events Activities 2 Author, Date Best lower bound
(weighted slack)
R1L1 3664 5386 39,656.259 Goerigk 12/05/2017
39,539,519 Goerigk 14/06/2012
39,216,699 Grossmann 14/09/2012
38,384,557 Pétzold 04/07/2017
37,338.904 Herrigel 04/06/2013
33,711,523 Liebchen 20/04/2017

31,838,103 Goengk & Liebchen 08/05/2017
31,184,961 Goerigk & Liebchen 25/06/2017
31,099,786  Goerigk & Liebchen 18/05/2017

30,780,097 Patzold 11/10/2018
30,463.638 Lindner & Roth 30/01/2019
30,415,672 Lindner 23/10/2018

29894745  Lindner & Liebchen 24/02/2021

http://num.math.uni-goettingen.de/ m.goerigk/pesplib/

» benchmarking library, est. 2012 by Goerigk

» 22 hard to extremely hard PESP instances

» smallest instance — MIP with 2722 (general) integer variables
» no instance has been solved to optimality so far

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
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ConcurrentPESP

28/

Concurrent Framework for Periodic Timetable Optimization

Exact Methods
Network Strategies Branch & Cut
Preprocessing Gurobi/CPLEX/SCIP interface
Shrinking Heuristics several MIP formulations
Graph Partitioning dynamic cutting planes

~

~
for each network ™
N

Solution Pool

Starting Heuristics
SAT Solver

Improving Heuristics
Modulo Network Simplex
Multi-Node Cuts
Maximum Cuts

...trades off by far more than just concurrency
...holds primal and dual records for all 22 PESPIlib instances

(Borndorfer, L., Roth, 2020)

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop
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ZIB
Periodic Timetabling Spaces ./

Question

Can we get more insight by studying the geometry of periodic timetables?

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 13/26
Periodic Timetabling Spaces ./
Question

Can we get more insight by studying the geometry of periodic timetables?

Timetabling Spaces

mixed-integer set of feasible solutions
{(m,x,p) € RV x RA X Z* | Vij € Az mj — m = X — Tpy, £ < x;j < uj}

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 13/26
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ZIB
Periodic Timetabling Spaces J

Question

Can we get more insight by studying the geometry of periodic timetables?

Timetabling Spaces

mixed-integer set of feasible solutions
{(m,x,p) € RV x RA X Z* | Vij € Az mj — m = X — Tpy, £ < xj < uj}

project project project

m-space 1

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 13/26
Periodic Timetabling Spaces ./
Question

Can we get more insight by studying the geometry of periodic timetables?

Timetabling Spaces

mixed-integer set of feasible solutions
{(m,x,p) € RV x RA X Z* | Vij € A= mj — m = X — Tpy, £ < x;j < uj}
project project project

m-space 1

convex hull

full MIP toolbox this talk Benders decomposition

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 13/26
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ZIB
Gallery of Timetabling Spaces /

PESP instance withn =3, m=3,7T =10

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 14 /26

ZIB
Gallery of Timetabling Spaces _/
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ZIB
Gallery of Timetabling Spaces J

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 m

N/R1is periodically tiled by polyt(r)opes

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 14 /26
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Decomposing the Space of Periodic Timetables
Decomposition

The space of feasible periodic timetables is
ﬂ::{WERV|EIpEZA:VU'EA:EUS?T/—W;—l-Tp,-jguU}.
The space 1 decomposes into polyhedral regions:
n= U R(p), whereR(p) := {r e RV |Vij € A: £ — Tpy < m; — 7 < ujj — Tpy}-
peZf
Due to the preprocessing assumption 0 < u — ¢ < T, the union is disjoint.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 15/26
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ZIB
Decomposing the Space of Periodic Timetables J

Decomposition

The space of feasible periodic timetables is
Ni={reR’|3IpeZ VijicA: t; <m—m+Tp;<uj}
The space 1 decomposes into polyhedral regions:
n= U R(p), where R(p) := {m € RV | Vij € A: ly — Tpy < mj — m; < uj — Tpj}.
pEZA
Due to the preprocessing assumption 0 < u — ¢ < T, the union is disjoint.

Weighted Digraph Polyhedra

Add a reverse copy @ of each arc a. This produces a new graph G = (V,A) withV = V.
If we set k(p)q := Ug — Tpg and k(p)g := —¥q + Tpg, then

R(p) = {m e R | m — m < k(p); forallij € A}.

This means that R(p) is the weighted digraph polyhedron (Joswig, Loho, 2016)
associated to (G, x(p)). In combinatorial optimization terms, R(p) is the polyhedron
of feasible potentials in G w.r.t. the arc costs x(p).

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 15/26

ZIB
Decomposing the Space of Periodic Timetables ./

A First Symmetry

If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):
» The recession cone of R(p) is R1.
» The quotient R(p)/R1is a polytope.

Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable 7 can be fixed at one event v, € V to m,, := 0 without affecting feasiblity
or optimality.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 16/26
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ZIB
Decomposing the Space of Periodic Timetables ./

A First Symmetry

If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):

» The recession cone of R(p) is R1.

» The quotient R(p)/R1is a polytope.
Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable 7 can be fixed at one event v, € V to m,, := 0 without affecting feasiblity
or optimality.
Polytropes

A polytrope is the convex hull of finitely many points, both in the ordinary and the
tropical sense:

n
teconv(xy, ..., Xn) 1= {EB Ai © X
i=1

Polytropes are exactly the quotients of weighted digraph polyhedra of strongly
connected digraphs by R1 (Joswig, Kulas, 2010).

AseesAn ER} - {mjip()\;—i—x,-)

)\1,...,)\,;6]1@}.
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ZIB
Decomposing the Space of Periodic Timetables ./

A First Symmetry

If G is weakly connected, then G is strongly connected and by (Joswig, Loho, 2016):

» The recession cone of R(p) is R1.

» The quotient R(p)/R1is a polytope.
Choosing coordinates on R(p)/R1 amounts to the periodic timetabler’s wisdom that
a timetable 7 can be fixed at one event v, € V to m,, := 0 without affecting feasiblity
or optimality.
Polytropes

A polytrope is the convex hull of finitely many points, both in the ordinary and the
tropical sense:

n
teconv(Xi, ..., Xn) = {EB A O X;
i=1

Polytropes are exactly the quotients of weighted digraph polyhedra of strongly
connected digraphs by R1 (Joswig, Kulas, 2010).

A, A ER} - {nlrlilrm()\;+xi)

Al,...,AneR}.

Corollary: [1/R1 decomposes into the disjoint union of the polytropes R(p)/R1.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 16/26

516




The Periodic Timetabling Torus

Periodicity: If = € T, then 7 + Tg € I forall
q € 7V. ~ Consider the space of timetables
inside the (|V| — 1)-dimensional torus

T = (R"/(TZ)")/R1.
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The Periodic Timetabling Torus

Periodicity: If 7 € I, then 7 + Tg € I forall
q € 7Z". ~ Consider the space of timetables
inside the (|V| — 1)-dimensional torus

T = (R"/(TZ)")/R1.

Redundancy of periodic offsets: Let I be the
cycle matrix of an integral cycle basis 5 of G.
ThenR(p) = R(p')on T iffTp = I'p’. We can
hence denote R(p) modulo 7 by R(z), where
z:=TpeZb.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 17/26

517




The Periodic Timetabling Torus

Periodicity: If = € T, then 7 + Tg € I forall
q € 7V. ~ Consider the space of timetables
inside the (|V| — 1)-dimensional torus

T = (RY/(TZ)")/R1.

Redundancy of periodic offsets: Let I be the
cycle matrix of an integral cycle basis 5 of G.
ThenR(p) = R(p’) on T iff Tp = 'p’. We can
hence denote R(p) modulo 7 by R(z), where
z:=TpeZb.

Running example:

I 12 -2+13

T 10
ZZB> 3—-10+4 o,
T — 10

~>atmost R(0),R(1),R(2) arein T.
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The Periodic Timetabling Torus

Periodicity: If 7 € I, then 7 + Tg € I forall
q € 7Z". ~ Consider the space of timetables
inside the (|V| — 1)-dimensional torus

T = (R"/(TZ)")/R1.

Redundancy of periodic offsets: Let I be the
cycle matrix of an integral cycle basis 5 of G.
ThenR(p) = R(p')on T iffTp = I'p’. We can
hence denote R(p) modulo 7 by R(z), where
z:=TpeZb.

Running example:

BS {12—2+13J _,

77 =
T 10
I 3-10
Z:—XZ 7+4 =0,
T 10

~>atmost R(0),R(1),R(2) arein 7.
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More on Timetabling Polytropes J

Dimension

» R(p) = 0ifand only if G contains a negative weight directed cycle w.r.t. x(p).

» The dimension of R(p)/R1 is the number of connected components of the
equality graph of (G, x(p)) minus 1 (Joswig, Loho, 2016).
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More on Timetabling Polytropes
Dimension

> R(p) = 0 if and only if G contains a negative weight directed cycle w.r.t. x(p).
» The dimension of R(p)/R1 is the number of connected components of the

equality graph of (G, x(p)) minus 1 (Joswig, Loho, 2016).
Vertices

> Every vertex of R(p)/R1 corresponds to a unique spanning subgraph of G.

> Foreach/ € V,thei-th tropical vertex of R(p)/R1 corresponds to a shortest
path tree of (G, k(p)) rooted at i (Joswig, Kulas, 2010).
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More on Timetabling Polytropes _/

Dimension
» R(p) = 0ifand only if G contains a negative weight directed cycle w.r.t. x(p).

» The dimension of R(p)/R1 is the number of connected components of the
equality graph of (G, x(p)) minus 1 (Joswig, Loho, 2016).

Vertices
> Every vertex of R(p)/R1 corresponds to a unique spanning subgraph of G.

» Foreachi € V,thei-th tropical vertex of R(p) /R1 corresponds to a shortest
path tree of (G, x(p)) rooted at i (Joswig, Kulas, 2010).

Relation to the Periodic Tension Polytope (aka conv(X))
» Themapm, : m — (m; — m + Tpjj)jea embeds R(p)/R1 into conv(X).
» conv(X) = conv{im(m,) | p € Z*}.

> im(m),) is the intersection of the affine space im(B ") + Tp with the LP relaxation
polytope Xip = [],c4lfa Ua], where B denotes the incidence matrix of G.
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Tropical Neighborhood Search ./

Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R’(p) /R1 a of the
“limit” instance where u := ¢ 4 T. The union of the polytropes is then no longer
disjoint and covers all of RV /R1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
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Tropical Neighborhood Search ./

Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R’(p) /R1 a of the
“limit” instance where u := ¢ 4 T. The union of the polytropes is then no longer
disjoint and covers all of RV /R1.

Observation
The R'(p) induce a polyt(r)opal subdivision of RV /R1.
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Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R’(p)/R1 a of the
“limit” instance where u := £ 4 T. The union of the polytropes is then no longer
disjoint and covers all of RV /R1.

Observation
The R’(p) induce a polyt(r)opal subdivision of R” /R1.

Neighbors

We call R(p)/R1and R(p")/R1 neighbors if R (p) /R1 and R’(p") /R1 intersect in a
common facet.
If R(p)/R1and R(p")/R1 are both neighbors, then p = p’ + e, for some arca € A.
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Polytropes in the Limit Instance

Let R(p)/R1 be a polytrope. The offset p also defines a polytrope R’(p) /R1 a of the
“limit” instance where u := ¢ 4 T. The union of the polytropes is then no longer
disjoint and covers all of RV /R1.

Observation
The R'(p) induce a polyt(r)opal subdivision of RV /R1.

Neighbors

We call R(p)/R1and R(p")/R1 neighbors if R (p) /R1and R’(p’) /R1 intersectin a
common facet.
If R(p)/R1and R(p’)/R1 are both neighbors, then p = p’ & e, for some arc a € A.

Tropical Neighborhood Search (Baseline)

Given a non-empty polytrope R(p)/R1, solve PESP on R(p)/R1 (this is a linear
program, and dual to uncapacitated min cost flow). While there is an improving
neighbor of R(p)/R1: Go to the best neighboring polytrope, and repeat.

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 19/26
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Tropical Neighborhood Search ./

modulo network simplex search space tropical neighborhood search space

colored by objective value colored by objective value
squares are local non-global optima
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Algorithm Tuning /

» work on the torus T:
use R(z) instead of R(p)/R1
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ZIB
Algorithm Tuning ./

» work on the torus T:
use R(z) instead of R(p)/R1

» P formulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on

the instance and noton z
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» work on the torus T:
use R(z) instead of R(p)/R1

» LPformulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on
the instance and not on z

» selection of neighbors:
do not explore all possible neighbors, only those the computed optimal vertex
of R(z) is neighboring
(best case: 2|A| vs. |V| — 1 neighbors, but we trade speed for quality)
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ZIB
Algorithm Tuning ./

» work on the torus T:
use R(z) instead of R(p)/R1

» P formulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on
the instance and not on z

» selection of neighbors:
do not explore all possible neighbors, only those the computed optimal vertex
of R(z) is neighboring
(best case: 2|A| vs. |V| — 1 neighbors, but we trade speed for quality)
» sorting of neighbors:
changing the order does affect the outcome, but unpredictably
(we tried several strategies including “pseudocost branching”)
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» work on the torus T:
use R(z) instead of R(p)/R1

» LPformulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on
the instance and not on z

» selection of neighbors:
do not explore all possible neighbors, only those the computed optimal vertex
of R(z) is neighboring
(best case: 2|A| vs. |V| — 1 neighbors, but we trade speed for quality)
» sorting of neighbors:
changing the order does affect the outcome, but unpredictably
(we tried several strategies including “pseudocost branching”)

» stopping criterion:
quality-first rule measured by relative improvement of the objective value
(again trading speed for quality)
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ZIB
Algorithm Tuning ./

» work on the torus T :
use R(z) instead of R(p)/R1
» P formulation:
empirically: impact of up to a factor 14, the behavior seems to depend only on
the instance and not on z
» selection of neighbors:
do not explore all possible neighbors, only those the computed optimal vertex
of R(z) is neighboring
(best case: 2|A| vs. |V| — 1 neighbors, but we trade speed for quality)
» sorting of neighbors:
changing the order does affect the outcome, but unpredictably
(we tried several strategies including “pseudocost branching”)
» stopping criterion:
quality-first rule measured by relative improvement of the objective value
(again trading speed for quality)
» prevent cycling:
hashing visited R(z) showed only negligible effects
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Performance of Tropical Neighborhood Search ./

Set-up
» 8 PESPlib instances
» 32 parameter configurations per instance

» 3 concurrency configurations for ConcurrentPESP
» 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 22/26
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Performance of Tropical Neighborhood Search

Set-up

» 8 PESPlib instances

> 32 parameter configurations per instance

» 3 concurrency configurations for ConcurrentPESP
» 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

General Results
» Tropical Neighborhood Search can escape local optima
» slow in the beginning, but becomes important in the late game
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Set-up
» 8 PESPlib instances
» 32 parameter configurations per instance
» 3 concurrency configurations for ConcurrentPESP
» 1 hour wall time, Intel i7-9700K CPU, 64 GB RAM

General Results
» Tropical Neighborhood Search can escape local optima
» slow in the beginning, but becomes important in the late game

New PESPlib Incumbents

Instance  NewValue  OldValue Time(s)

BL3 6675098 6999313 25732
RiL1lv 42591141 42667746 9110 found new incumbents for 5
R3L3 40483617 40849585 3547 out of 8 instances!
R4L4 36703391 36728402 11122
R4L4v 61968380 64327217 3625
Niels Lindner: On the geometry of periodic timetables in public transport 6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop 22/26

ZIB
Tropical Neighborhood Search vs. Other Heuristics ./

B

q0.001s1 qlsl q0.001s2 qls2 q0.001s3 qls3 q0.001s4 qlsd q0.001s1 qlsl q0.001s2 qls2 q0.001s3 qls3 q0.001s4 qls4

contribution of algorithms in ConcurrentPESP to overall improvement:
tropical neighborhood search, modulo network simplex, maximum cut, reflow, MIP

(8 parameter choices on R1L1)
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Selection of Neighbors: All vs. Vertex-Tight /

Camplete RAL4Y cold

gt
H

selecting only polytropes neighboring at an optimal vertex is an advantage in the
beginning
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ZIB
Final Slide ./

Conclusion

Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.
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Conclusion

Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.

Further Geometric Questions
» Can we devise more heuristics from the polytropal
decomposition of the timetable space?

» Can we extract dual information from the periodic
timetabling torus?

» Can we exploit the duality relations between the I1-
and P-spaces? (~ cycle offset zonotopes)
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|
Final Slide Zy

Conclusion

Tropical Neighborhood Search is a simple yet powerful geometry-inspired method
for that adds new value to the zoo of periodic timetabling heuristics.

Further Geometric Questions
» Can we devise more heuristics from the polytropal
decomposition of the timetable space?

» Can we extract dual information from the periodic
timetabling torus?

> Can we exploit the duality relations between the I1-
and P-spaces? (~- cycle offset zonotopes)
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In our studies to analyze gas network systems, we study building public research data
sets from incomplete data scattered around various data sources. These data sources may
not be consistent with each other or accurate. Thus, during these studies, we use our
domain-specific mathematical modeling know-how to eliminate the data errors by
filling missing data, or fixing inconsistencies. However, when working with the
resulting highly-connected data, we encountered several cases where our analysis
detected data errors that were too complex for humans to understand. Examples are
irreducible infeasible subsystems (IIS) of large mixed-integer programs (MIP) or
bottlenecks in the pressure-coupled pipeline network that is non-linear. While detecting
these errors is a significant achievement, removing such errors is extremely difficult.
Hence, quantifying the data quality is also a key enabler in this study to tell whether the
data is of sufficient quality for the aimed analysis. We present our studies on data quality
improvement in the presence of superhuman complexity in data errors, and explain the
challenges. We report our results on the German high-pressure gas transport network
data set.
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Introduction ﬂﬁ Z!y

¢ Highly-connected data in industrial applications

- provided by industrial partners
- consolidated from public data sources
- generated using mathematical models
* Data errors too complex for humans to understand detected by analysis tools, i.e.,
- irreducible infeasible subsystems (IIS) of large mixed-integer programs

- bottlenecks in the pressure-coupled pipeline network that is non-linear

* Detection and correction of such errors are extremely difficult

I. Yuksel Ergtin| ZIB | 21.09.2022 2
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Supply Infrastructures “ﬁ Z

e Transport power, gas, water, data, goods from suppliers to customers

e Consist of complex networks
* Digitization of planning and operation of such networks is essential for vital problems, i.e.,

- Security of supply of energy, supply chain management, energy transition, decarbonization, etc.

High quality data = Reliable analysis results
High quality data is incredibly costly to obtain both in commercial and public applications, since
supply infrastructures
* have complex network structures
* were mostly built before digitization age
* consist of layered and connected structures that may be operated by different parties

* include complex facilities with intricate structures that can be handled by detailed mathematical
models

I. Yuksel Ergtin| ZIB | 21.09.2022 3

Example: The European Gas Transport Network ﬂﬁ Z!y

{ g £\ 5 = o European gas transport network in numbers:
= g AT * 42 member, 10 associated partner, 2 observer
TSOs
* > 200 interconnection points, > 170 storages
"« =200,000 km transmission pipelines (EU+UK)

= 3 R e R

..... 'l - ot [1] ENTSOG. Transmission Capacity Map. Retrieved
1 Mo from https://www.entsog.eu/maps#transmission-
) capacity-map-2021. Accessed on 31.10.2022
1. Yiksel Ergiin| ZIB | 21.09.2022 4
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Example: The European and Germany Gas Transport ZIB
Network 1 [ k=

German gas transport network in numbers:
16TSOs

* 44interconnection points, 60storages

_* =31Kkm transmission pipelines (in total >500K

km)

o e e ; i —4 [1] ENTSOG. Transmission Capacity Map. Retneved

2 7 S s s S from https://www.entsog.eu/maps#transmission-
1ol T ’ capacity-map-2021. Accessed on 31.10.2022 PSS
1. Yuksel Erglin| ZIB | 21.09.2022 5

Example: Gas Transport Network Data "ﬁ “J
) )=
Network Interconnections Topology & Complex facilities

* =70 entry & =900 exit points
*  =1650inner nodes pressaredn nt=bar e
v qresmiretdse int = e 7007
’ . = i Om._rism_por._bots” uikm"S0.0'S>
» 1770 pipes por-hour” sl
* =95 control valves |
G * 58 compressor stations

| «pipo trom="N1"
[ <fowhanur lDODm.ubv.w hou w071
| aftowMi ur ="1000m..cube..pér _ houl 7350077
<kength k=K' w507
| «dzmatar uo 130
<roughrmss w=mm eshien 001>
| <huatTranstor Coctticient unit="W. pec .M. Suaro. par_KC v =207

. =k
14 61505 TrarsmisionCpalty . Fetived o . X

fwiw entsop eu/mapsitransmission-capacity map 2021, 129 compressors & drivers
hcteseiion 5103025 . 200 valves

PO TICATTRS I e
PeAICOTRIATepenry e
aarter

Compressor station data: .cs file (>54K lines)
Compressor statlon characteristic dlagrams

e

atetaponm tapse7 machine config
o

L‘—O—»e—‘—?

[2] Yueksel-Erguen et . Modeling the transition of the multimodal
pan-European energy system including an integrated analysis of
electricity and gas transport. Technical Report 22-17. Zuse Institute
Berlin, Takustr. 7, 14195 Berlin, 2022.

“‘ Wm ansmission Capacity Map. Retrieved from [3] Kunz et ol. Reference Data Set: Electricity, Heat, and Gas Sector
v entsof, eu/maps transmission capacity-map 2021 .
oy Data for Modeling the German System (Version 1.0.0), 2017. et
https://d 10.5281/2en0do.1044463.
I. Yuksel Erglin| ZIB | 21.09.2022 6
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Gas Transport Network — Data Error Example 1 ﬂﬁ ZJB
= =

(2] Yueks . of

. ort
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

3] Kunzetal. Set: Electricity, Heat, Data for Modeling
the German 100), 2017. 1044463,

.net file should be corrected by:

* adding the missing node

* updating end node of existing pipes

* adding two pipes between the end nodes of the existing pipes and the added node

I. Yuksel Ergtin| ZIB | 21.09.2022

Gas Transport Network — Data Error Example 2 ﬂﬁ Z*IB

2 al. Modeling

port.
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunzetal. Heat, Data for Modeling
the 1.00), 2017. h 1044463,

.net file should be corrected by:

¢ deleting the node

* deleting two of the existing pipes

* updating end nodes of the two pipes

1. Yaksel Ergin| ZIB | 21.09.2022
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[2] Yueksel-Erguen et al. Modeling the transition of the multimodal pan-European

of e
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

[3] Kunz et al. Reference Data

Set: Electricity, Heat, and Gas Sector Data for Modeling
the German 100), 2017. 1044463,

.net file should be corrected:

* adding missing pipe
or,

« deleting the disconnected part

I. Yuksel Ergtin| ZIB | 21.09.2022

9
Gas Transport Network — Data Error Example 4 I'E ——
Station Configuration Definition
All probable configurations of compressors in a compressor machine with a two
compressor machines:
Conf. 1: Conf. 3:
@00 e 0
2] al. Modeling Conf. 2: Conf. 4:
Technical Report 22-17. Zuse Institute Berlin, Takustr. 7, 14195 Berlin, zoz; . W w
[3] Kunz et al. ty, Heat, Data for Modeling
the German 1.0.0), 2017. ht 1044463.
.cs file should be corrected by:
* updating the probable configuration(s)
1. Yiiksel Ergiin| ZIB | 21.09.2022 10
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Gas Transport Network — Data Error Example 5

b AL

¢ The direction is controlled by valves.

[2] Yueksel-Erguen et al. Modeling the transition of the multimodal

electricity and gas transport. Technical Report 22-17. Zuse Institute
Berin, Tkust. 7, 14195 Beriin, 2022 P1 —’O—’O—’-—’O—'O —p2 Pl +— Q_,-_,

[3] Kunz et ol. Reference Data Set: Electricity, Heat, and Gas Sector
Data for Modeling the German System (Version 1.0.0), 2017.
https://doi.0rg/10.5281/2enodo. 1044463,

.net file should be corrected by:
* updating valve(s)
* updating end nodes of the pipe(s)

Probable gas directions through a bi-directional compressor in two-pipeline connection case:
* Itis operationally possible for the gas flow from pipe 1 to pipe 2 and vice versa.

Gas direction: pipeline 1 to pipeline 2 Gas direction: pipeline 2 to pipeline 2

—P2

I. Yuksel Ergtin| ZIB | 21.09.2022

11

Modeling Infrastructure Networks in Industrial
Applications

AL

Infrastructure network data consists of

* Tabular data: technical bounds, physical properties, etc.

e Spatial data: network topology

¢ Complex components: often induce non-linear relations of data elements

It is challenging to detect and correct data errors:

* Highly connected

* Requires subject matter expertise to explain errors
e Optimization is actively exploiting errors

1. Yaksel Ergiin| ZI8 | 21.09.2022
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Dimensions of Data Quality

Twze

Accuracy is the ability to reflect reality, i.e., to be
able to correctly describe real world objects

Completeness is existence of all required
data in the data set, comprehensiveness

Accuracy Completeness

Validity is conformance to
predetermined type, range and
format

Validity

Uniqueness

Uniqueness means representing each
real world object in the data set
exactly once

AR

Data
Quality

e

Timeliness

Consistency means conflict-free data, i.e.,
(CUEBERTY attributes of data entities addressing the
same physical attribute should be consistent

Timeliness shows whether data is up-to-date
data depending on the analysis context

[4] Askham et al. The six primary di for data quality Technical Report, 2013, DAMA UK.

I. Yuksel Ergtin| ZIB | 21.09.2022
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Data Errors: Non-conformances to data quality

E DT

Accuracy is the ability to reflect reality, i.e., to be
able to correctly describe real world objects
* Insufficient detail
> cumulative capacities
*  Wrong modeling assumptions
-> flow capacity computation
. Data preprocessing/integration issues
-> erroneous node coupling

Validity is conformance to predetermined
type, range and format

Validity

*  Typosin names/non-conformance
to bounds (mostly data entry
related issues)

Uniqueness

Uniqueness means representing each
real world object in the data set
exactly once

. Repeated use of object names

Accuracy Completeness

Completeness is existence of all required
data in the data set, comprehensiveness

. Missing attributes = missing pipes, valves, etc.
. Missing entities > missing pipe maximum
pressure values, node height values, etc.

AR

Data
Quality

e

Timeliness

. Consistency means conflict-free data, i.e.,
8L BB Sttributes of data entities addressing the
same physical attribute should be consistent

Conflicts in the data sets

- node pressure vs. pipe pressure bounds
(may be induced by data set integration or data preprocessing
assumptions)

Timeliness shows whether data is up-to-date
data depending on the analysis context
*  Untimely data > wrongly forecasted infrastructure related
data for future extensions due to limited information
[4] Askham et al. The six primary dimensions for data quality assessment. Technical Report, 2013, DAMA UK.

1. Yaksel Ergiin| ZI8 | 21.09.2022
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Data Error Detection and Correction ﬂﬁ Z

Uniqueness Easier to detect and correct non-conformance using
Validity automated systems like schema validation, i.e., GasLib
format (www.gaslib.zib.de)

Accuracy Manual detection or correction is often not possible

Completeness

Consistency Correction of non-conformance often requires subject matter

Timeliness expertise and human interaction

I. Yuksel Ergtin| ZIB | 21.09.2022 =

Eliminating Data Errors I'E ./
e e ——

I Uniqueness Format mismatch
Schema validation 1
Validity Nonconformance to bounds
. Completeness Insufficient detail
Data augmentation . . .
Accuracy Missing entries/attributes
. Completeness Insufficient detail
Data generation . . .
Accuracy Missing entries/attributes
Consistency . Conflicts in the data set
Consistency . .
check Accurac Wrong modeling assumptions
i . heuristics ¥ Data preprocessing errors
Error diagnosis Confl he d
. . onflicts in the data set
and correction  Extensive Accuracy ) .
. . Wrong modeling assumptions
scenario Consistency ;
analvsis Timeliness Data preprocessing errors
Y Untimely data

Examples for consistency check heuristics: [5] Inci Yueksel-Erguen, J. Zittel, Y. Wang, F. Hennings, T. Koch. Lessons learned from gas network data preprocessing. Technical
Report 20-13. Zuse Institute Berlin, Takustr. 7, 14195 Berlin: ZIB, 2020.

1. Yaksel Ergiin| ZI8 | 21.09.2022 16
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Extensive Scenario Analysis

8/

Generate practically
valid scenarios using
historical flow data

Generate
Flow

Analyze

Scenario Infeasibility

Improve Network
Topology Data

Utilize mathematical
modeling methods
to detect infeasibility

Can we relate
infeasibility to data
(errors)?

I. Yuksel Ergtin| ZIB | 21.09.2022
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An Example Analysis Set-up — Gas Network Data

ENTSOG IP data set O [ 2
GIE Storage data set

Cumulative gas in-/out- flow
+ of Germany based on IPs
LEEIE D EE R
DE network topology data set O M2: German Gas Transport
Network Model (Linear
Node pressure data from TSOs Q ( )
Gas in-/out- flow of Germany ]
based on physical entry/exit 2. i
nodes
Resulting data
DE gas network .
Details for the models: [2] I. Yueksel-Erguen, D. Most, L. Wyrwoll, C. Schmitt, J. Zittel. Modeling the transition of the multimodal s \.I
pan-European energy system including an integrated analysis of electricity and gas transport. Technical Report 22-17. Zuse o

» M3: German Gas Transport
Network Model (Nonlinear) b
CS data &=
Institute Berlin, Takustr. 7, 14195 Berlin, 2022.

M1: High-level Pan-European
Gas Network Model -

Historical II
fl

ow data

Source:
ENTSOG Security of
Supply Report Scenarios

* Estimated pipeline
capacities

¢ ENTSOG IP- DE network
associations

¢ Parameters related to
gas properties

1. Yaksel Ergiin| ZI8 | 21.09.2022
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Mathematical Modeling Methods for Infeasibility Analysisﬂﬁ ZIB

Slack Formulations
* Different aspects of the formulations can be relaxed with slack variables

¢ The objective is to minimize the deviation from the original model = zero objective function
¢ The smallest distance from the feasibility

(Minimum) Irreducible Infeasible Subsystems (11S)
* Isolates the infeasibility by variables and constraints

* Not an explicit reason why a IIS is infeasible

* Long computation times for large-scale MIPs

e Atrivial lIS is not informative

ns1158817 from
MIPLIB 2010* “

Problem 68,455 1,804,022 2,842,044

“ 2,003 6,002 12,002

*[6] Koch et al. MIPLIB 2010. Math. Prog. Comp. 3, 103 (2011). https://doi.org/10.1007/512532-011-0025-9

I. Yuksel Ergtin| ZIB | 21.09.2022 19

Scenario Analysis — Infeasibility Analysis Method ﬂﬁ Z-"IB

S1. Initiate scenario analysis:

relax all non-linear constraints in the slack formulation

if there is at least one scenario in the scenario set S, select a scenario s from the scenario set and go to S2, else go to S5
S2. Solve the mathematical model

If feasible save the solution, delete the scenario s from the scenario set S and go to S1; else go to S3

S3. Solve the slack formulation

w

if infeasible go to S4
if feasible with non-zero slack: correct the scenario and turn to S3
if feasible with a zero objective function value, tighten one set of the nonlinear constraints in the slack formulation if available and turn
to S3, else save the solution and scenario correction, delete the scenario s from the scenario set S and go to S1;
S4. Find the minlIS using the LP minlIS model
if feasible, save the minlIS solution for the scenario, rescale the scenario by 0.95, and go to S4
if infeasible go to S1.
S!

[

. Analyze the saved minlISs
to detect the frequency of existence of network components and constraint types in the minllS and correct data set, and go to S1.

1. Yaksel Ergiin| ZI8 | 21.09.2022 20
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Automated Infeasibility Analysis Method “E Z*IB

SO. Initiate data set:
restore the scenario set: S:=S0; reset the data rating DR:=0

S

hdy

. Initiate scenario analysis:

relax all non-linear constraints in the slack formulation

if there is at least one scenario in the scenario set S, select a scenario s from the scenario set and go to S2, else go to S5
S

N

. Solve the mathematical model
If feasible save the solution and the scenario neighborhood scale association with the scenario, delete the scenario s from the scenario
set Sand go to S1; else go to S3

S3. Solve the slack formulation

w

if infeasible go to S4
if feasible with non-zero slack: correct the scenario and turn to S3
if feasible with a zero objective function value, tighten one set of the nonlinear constraints in the slack formulation if available and turn
to S3, else update the scenario neighborhood scale and go to S2
S4. Find the minlIS using the LP minlIS model
if feasible, save the minlIS solution for the scenario, rescale the scenario by 0.95, and go to S4
if infeasible go to S1.
. Analyze the saved minlISs
to detect the frequency of existence of network components and constraint types in the minllS, correct data set,

S!

o

$6. Measure the data quality

If data quality is not sufficient, got to S1, else terminate.
1. Yiiksel Ergan| ZIB | 21.09.2022 21

Data Quality Rating ﬂﬁ ZIB

Quality of data can be measured by its ability to represent the addressed entities

We need a data rating measure to facilitate the automated improvement by enabling us to
e understand whether the improved data set is of sufficient quality level for the aimed analysis

* compare the performance of alternative improvements

..and also lead us/the search to the potential errors and error sources...

Example: Number of scenarios generated from the historical data that the data set finds a feasible routing

¢ Not informative enough
e Especially in the very beginning of the improvement process — we may get 0 for all scenario sets

1. Yaksel Ergiin| ZI8 | 21.09.2022 2
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Data Quality Rating of Infrastructure Network Data - 1 “ﬁ ZW

An infrastructure network is an engineered system that is operational:

* Designed to meet certain quality of service requirements given operational requirements

* Robust against uncontrollable factors in the working environment

So, what does it mean from data perspective?
* The network is designed to find feasible routings to scenarios within the operational concept
e The network is designed to eliminate systematic errors

e The network has random errors that cannot be totally eliminated by the design process, so the network
should provide alternative routing solutions for changes in the scenarios

e The amount of the change depends on (robustness of) the network

If a scenario gives a feasible result with the data set,
then a set of scenarios in its neighborhood is expected to be feasible.

I. Yuksel Ergtin| ZIB | 21.09.2022 23

Data Quality Rating of Infrastructure Network Data - 2 ﬂﬁ ZIB

Operational scenarios of an infrastructure network have two main measurable characteristics:

¢ The amount of commodity that can be routed
Small changes in demand and supply without changing the

¢ The distribution of the commodity in the network ¢ supp!
total flow and the main flow direction:

Demand and supply are equally

distributed among sink and source o [ </
nodes, resp. (node sizes are proportional e Q v Os‘\ - Q - O e Q
H S
to the amount of flow). Commodity P $Q$° ° P
distribution 1 &s‘ Q - o -
_—
@) @ o © e
—/
O Change
commodity
distribution
-/ ~
© o 8w o o2 . o
W ¢¢‘\°“
e & __ Q © O
Commodity
Q@ - Q \ Q o

distribution 2
© Source node

Sink node

I. Yiksel Ergiin| ZIB | 21.09.2022
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Future Outlook: Automated Data Improvement
Using Extensive Scenario Analysis 1

v

ZIB

Raw tabular
data
Raw spatial
data (ie from
0SM)

Data
wranglin
9

Traditional analysis

Run
mathemati

cal model

25

I. Yuksel Ergtin| ZIB | 21.09.2022

| Ao |—| Using Extensive Scenario Analysis 2

Future Outlook: Automated Data Improvement

Tz

Raw spatial
data (Sie from
05M)

Envisioned Analysis

For each scenario

Data Run
wranglin fee—— mathemati
g Initial network »| cal model
a set DataunaIity;
ta
" Update oata.
Feaglble performance Eﬁ/easlﬁlattse modifications
! measure
Measure Update
and classify =l improvement
Historical infeasibility suggestions
commodity
Generate
(sﬂf;:ﬂ?:aatﬁd scenarios Feasible No Upgsteg
demand) upply/deman g:ta 2gt
d scenarios
Update
network
Data data set |  Updated network
modifications ta set
26
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Optimal discrete pipe sizing for tree-
shaped CO. networks

Jaap Pedersen, Thi Thai Le, Thorsten Koch, Janina Zittel
Zuse Institute Berlin, Berlin, Germany

Technische Universitdt Berlin, Berlin, Germany

pedersen@zib.de

Many energy-intensive industries, like the steel industry, plan to switch to renewable
energy sources. Other industries, such as the cement industry, have to rely on carbon
capture utilization and storage (CCUS) technologies to reduce their production
processes' inevitable carbon dioxide (CO;) emissions. However, a new transport
infrastructure needs to be established to connect the point of capture and the point of
storage or utilization. Given a tree-shaped network transporting captured CO; from
multiple sources to a single sink, we investigate how to select optimal pipeline diameters
from a discrete set of diameters. The general problem of optimizing arc capacities in
potential-based fluid networks is already a challenging mixed-integer nonlinear
optimization problem. Adding the highly sensitive and nonlinear behavior of CO»
regarding temperature and pressure changes the problem becomes even harder. We
propose an iterative algorithm that splits the problem into two parts: a) the pipe-sizing
problem under a fixed supply scenario and temperature distribution and b) the
thermophysical modeling, including mixing effects, the Joule-Thomson effect, and the
heat exchange with the surrounding environment. We show the effectiveness of our
approach by applying our algorithm to a real-world network planning problem for a CO»
network in Germany.
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Motivation - Net-zero by 2050 5) Zy

Bulldings: 10%

Power coal: 20%
» Decarbonization of industry, e.g, by shifting
towards renewables

» 8 % of global GHG from cement industry

» CO, emissions from chemical process itself

» Carbon Capture and Storage (CCS) or
Utilization (CCU)

» New infrastructure to transport CO, from

Power oll: 7% point of capture to storage/utilization

Industry: 23%

Power gas: 0%

Transport: 23%

Global greenhouse gas emissions (GHG) in 2018 [IEA, 2020]

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 1
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How to transport CO,? - Goal

» CO, is transported in liquid or supercritical state

» Supercritical: State in which the liquid and gaseous phases cannot be distinguished

» Pipeline networks are most cost efficient

» Network planning involves finding the cost-optimal pipeline diameters

Goal 100
Determine the cost-optimal pipeline diameters 5 dense liquid supercritical
from a discrete set of diameters =
. 3 3
» in a tree-shaped CO, network 2107 .
. . . . a N o
» with multiple sources and a single sink N &
» for a given supply scenario 10
L . « G o - T e
» transport CO, in liquid or supercritical state ke pant p - 210 b T - 21639
. 250 300 350 400
= no transition into gaseous phase Temperature in K
Own figure, data from [Bell et al., 2014]
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 2

Background

1000
» Problem of finding optimal pipeline diameters is a

common problem in real-world applications, e.g.,

800
in water, natural gas, and hydrogen networks
[D’Ambrosio et al., 2015, Lenz and Becker, 2022, Robinius et al., 2019] 600
» Discrete decision variables w.r.t. diameter size of
400

pipelines
» Non-convex physics describing flow in pipelines

Density of COy, CHs, H20 in kgim?
N
o
S

» Physical properties of CO, are sensitive against

2 (20 Clo 400 —
——

@
S

N}
o
Density of Hy in kg/m?

an
S)

changes in pressure and temperature 0 0
. . 0 25 50 75 100 125 150
= Mixed Integer NonLinear Program; hard to solve Pressure in bar
Own figure, data from [Bell et al., 2014]
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 3
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Solution approach

> |terative algorithm

» Decouple finding optimal pipe
diameters and thermophysical
modeling

» Exploit the benefits of tree
structure to reduce complexity

» In each iteration update
parameters w.r.t to pressure p and
temperature T

» Stop algorithm if diameters and
pressure levels converge

l—k+1—>

Initialization

kil

Determine optimal pipe diameters
and pressure levels

|Update parameters w.r.t to p and T|

f

Compute temperature distribution

Diameters and
pressure converged?,

Jaap Pedersen, pedersen@zib.de

Optimal discrete pipe sizing for tree-shaped COp networks 4

Determine optimal pipe diameters - Notation

Initialization

k=l

Diameters and
pressure converged?,

a\zy

Directed tree with set of vertices V
and arcs A; arcs orientated from
leafs to root

Set of entry, exit and inner nodes
Set of pipes and pumps

Set of pipe diameters for a € AP

Inflow/Outflow of vertex v € V

pv € [p,, P,] Pressure of vertex v € V

G=(V,A)
v, v, VO
AP, AP

D,

b, €R

G2 € Rxo
d, € D,

Flow over arc a€ A
Diameter of pipe a € A?'

Xad € {0,1} Choice of d, € D, for a € AP

Jaap Pedersen, pedersen@zib.de

Optimal discrete pipe sizing for tree-shaped COp networks 5

550




Determine optimal pipe diameters - Notation ) Zy
MODAL

Incoming and outgoing arcs:

0 (v)={acAla=(u,v)}
dt(v)={ae Ala=(v,u)}

Intermediate nodes:

VM={ve V[~ ()| =10T(v)|=1 A (v)Ust(v) e AP A
‘Da:(u,v)‘ >1A |Da:(v,w)‘ > 1}

Note: Node v ¢ V™ if junction node, tail or head node of pump, tail or head node of pipeline with
a fixed diameter

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 6

Determine optimal pipe diameters - Network elements 8) Zy
MODAL

v

Pipelines are main type of element to transport CO,

v

In general, fluid flows from higher pressure to lower pressure

v

Pressure change in a pipeline

Pv — Pu= ¢a(daa qa) qa|qa‘ - (H\? - HS)pg Va = (V7 u) € AP

friction term elevation difference

v

Friction loss coefficient ¢,(da, ga) is highly nonlinear

v

Pumps can be used to increase pressure of fluid

Pu = Pv Va= (V, U) c A

H?: height of v; p: density of fluid, g: gravitational constant

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 7
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Determine optimal pipe diameters - Model

min E E Ca.dXa,d
X,q,p ’

s.t.

acAri deD,

qa — Z Ga = by,

aedt(v) acd—(v)

Py —Pu= Y Xad$s(d,qs) alqa| — (H) — HY)pg

deD,

Pu 2 Pv
by, <pv <Py,
> e =1
deD,

Z X(u,v),d d= Z X(v,w),d d
deD, ) dED(y,w)
Xa,d € {O7 1}

D z1B)

YveV,

Va=(v,u) € A",

Va=(v,u) € A",
YveV,
Ya e AP,

Yv e Vvm

Va e AP Vd € D,.

Jaap Pedersen, pedersen@zib.de

Optimal discrete pipe sizing for tree-shaped COp networks

Initialization - Reduce complexity

Determine optimal pipe diameters
and pressure levels

Diameters and
pressure converged?,

J
MODAL

» Reduce complexity by precomputing unique flow values
and friction loss coefficients

» We have an in-tree graph rooted at a single exit node
and a given inflow scenario, i.e., all inflow are known

» Recursively determine arc flow values starting at leaf
nodes towards the exit node

» For each pipeline a € A and each possible diameter
d € D, determine friction loss coefficient ¢,(d, g.)

Assume constant physical parameters, e.g., p = const, the model to determine optimal pipe

diameters becomes a tractable mixed integer linear program (MILP)

Jaap Pedersen, pederse

nQzib.de Optimal discrete pipe sizing for tree-shaped COp networks
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Thermophysical modeling 8)

MODAL
12
1000 Tin°C
10 0
w 10
m§ 800 u;;“ 20
2 S8 - 30
c 600 < 40
. . . . N 3, 50
» Physical properties are nonlinear functions of 2 400 2 70
7] S 100
pressure and temperature, e.g.: e 24
200
i 2
Density p=p(p, T)
) i 35 QO'IA
Viscosity v=v(p,T) <30 %0‘12
. <
Heat capacity % =6(p, T) 52 So10
E N
. =20 2
Thermal conductivity ke =re(p, T) g Zo.08
g 15 3
a §0.06
©10 -y
2 5
a £0.04
T s 3
S €
ol - ~| Fo.02
50 100 150 20! 50 100 150 208
pin bar pin bar
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 10

Thermophysical modeling N Z

>
MODAL

» Temperature T, at a junction node v due to mixing

2aes-(v) Pada T3
as) T, =
2365* (v) Cp,ada

Determine optimal pipe diameters
and pressure levels

Effects on the temperature in the network

» Temperature change along a pipeline

b

Tout — -,—in + HJT(pout _ pin) _ kLAT/n
[ —

Joule-Thomson effect

qaCp

Heat exchange with
surrounding

Diameters and
pressure converged?,

ve . S
» For given flow values and pressure distribution,
calculate temperature distribution similar to
computing flow values

T°"': Outlet temperature of pipe; T Inlet temperature of pipe; g,: Mass flow over pipe; c,: Heat capacity of fluid; jujT:
Joule-Thomson coefficient; k: Heat transmission rate; ATj,: Logarithmic temperature difference with surrounding

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped CO, networks 1
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Algorithm ) Zy

Initialization:
Flow and Friction Factor

Determine optimal pipe diameters

k + 1—>
and pressure levels

|Update parameters w.r.t to p and T|

f

| Compute temperature distribution |

A

N Diameters and
Nor 5 Yes
ressure converged?
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 12

Case study - Network data 8) Zy

Connect four cement plants to harbour in North-Western Germany by tree-shaped network

) ND]
Set | [V VFH[ VO VT AR A |D,| e
N 1 4 1661 1652 1662 3 12 &a*w*“*”k/
‘ D P S B o /
Inflow in kg/s 16 8 8 8 "~ /
Temperature in °C 50 60 20 30 \.\
Max Pressure in bar | 95 105 88 88 \.\ /
Minimal pressure at exit: 80 bar \.\\/
Network consists of: ~830 km pipelines % K
Length of each pipe segment: 500 m % .,‘.‘?'
Sections 1 and 17: Fixed to 300 mm &
Surrounding temperature: 10°C o
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 13
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Case study - Results 8)

MODAL
Pressure Temperature Phase state
/ 60
90
—
50
80
e\ N ©
703 a0
'5 § B supercritical
H Kl B Liquid
§ 30 qé
60 g
/ Uao 10 g
w w
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 14

Case study - Results 5) Zy

—— pressure

1000 ~== temperature
—-= density
—#— diameter
height
= g.) 800 "‘E IS - flow
©
o £ E g 5 E
cocy 600 x ¢
S+ C (=
et -‘r-u’ <= ; 8
>0 o
2555 400 2T ,
nal>2 u £
02T S ®©
£ E G S
2 200 O
0
4
}2}2}})&
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Conclusion )

» We presented an iterative algorithm for finding optimal pipeline diameters in a tree-shaped
multi-source single-sink network for CO, transport

» To account for the complex thermophysical behavior of CO,, we split the problem into

a) Finding optimal pipe diameters by solving a tractable MILP
b) modeling the thermophysical effects in the network, including mixing, heat exchange with the
surrounding and the Joule-Thomson effect

» In each iteration we update physical parameters w.r.t. pressure and temperature levels

» We showed Proof-of-Concept by applying our method to a real-world planning instance

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 16

Outlook NN Z

J
MODAL

» Verify coarse solution of optimization with results by a simulator

v

Robustness of method by applying method to multiple instances and scenarios

» Extend method to handling CO,-rich fluids = change of phase envelope, i.e., more complex
pressure bounds

» Extend method to demand-based components, e.g., hydrogen or ammonia as energy carrier
— single-source multiple-sink network

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 17
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Thank You For Your Attention!
Any Questions?

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 18
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Additional Slides
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Determine optimal pipe diameters - Pipeline ) Zy

MODAL
Pressure change in a pipeline

Pv — Pu = ¢a(da7qa) qa|Qa| - (HS - HB)Pg Va = (V7 U) € AP

friction term elevation difference

Friction loss coefficient ¢, using Weymouth equation

8L,
m2pd3

¢>a(d37 qa) = Aa(dav qa)

Darcy friction factor A, using implicit Colebrook-White equation

L (g+2,51
S B\ 374, T Rev,

. daqa,
th Re=
) Wi e A B

a

HY: height of v; p: density of fluid, g: gravitational constant; L,: length of pipe; e: roughness of pipe; Re: Reynold's
number; v: dynamic viscosity of fluid; A,: cross section of pipe

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 21
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Heat exchange with surrounding in buried pipe! 8) Zy
MODAL

Determine heat transmission factor « Heat exchange
Pr:Pr(l/,m,cp): #: %fy AQ = LQ. = kLAT,,
P in out
dq AT, =T
Re = Re(v,d,q) = - =
€ e(v,d, q) A I %
ko — 27
T ke T d
2/3 Start with initial guess Tout0, _using mean
b= (¢/8) RePPg/3 - 1+ (%) } temperature T, = (T + T***"!)/2 and
+ .7\/ C/S( r — ) pressure Pm = (pm 4 pout)/2

Cp(pm7 Tm)7 V(prm Tm)a Hf(pm7 Tm)v HJT(pm7 Tm)

¢ = (1.8logy, Re — 1.5) 2 1
Toutyi _ Tin + MJT(PDUt o pin) — T kLA T/;—l
qc

VDI Wirmeatlas, berlin, Heidelberg: Springer, 2013.

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 22

Compute flow values 5) Zy

MODAL

> Let G = (V,A) be directed in-tree graph rooted at a single exit node

> Let V(u) ={ve V:(uv)e AV (v,u) € A} be the set of nodes adjacent to node u

> Let L. ={veV:|V(v)|=1Av ¢V} be the set of leafs in the tree G

» For each v € L set the flow of the unique outgoing arc a € §*(v) to g, = b, and update
b, == b, + g, for each neighbor u € V(v)

> Let V =V\Land A= A\lJ,; 07(v), update L

> [terate until A is empty

Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COy networks 23
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Compute temperature distribution N Z

5
MODAL

» Let G = (V,A) be a directed in-tree graph with given flow value g, for each a € A and
pressure level p, for each v € V.
> Let L. ={veV:|V(v)|=1Av ¢V} be the set of leafs in the tree G
> Let V(u) ={ve V:(uv)e AV (v,u) € A} be the set of nodes adjacent to node u
» For each v € V7, an inflow temperature T, = T is given.
> For each v € L, set the inlet temperature of the unique outgoing arc a € §7(v) to T\" = T,.
> If a2 € AP, the outlet temperature T2 is determined by solving correlations for buried pipelines
> If a€ APY, set ToUt = TN,
» Then, for each node u € |J,; V(v), compute its mixing temperature T,
> Let V=V\Land A=A\, 67(v)
» Update L, and iterate until A is empty
Jaap Pedersen, pedersen@zib.de Optimal discrete pipe sizing for tree-shaped COp networks 24
Results

'

)
2
8
Density in kgim?
Diameter in mm
Density in kgim®
Diameter in mm
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The 6th RIKEN—IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning
September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22, 2022, Fukuoka (Kyushu University), Japan

Spotlights on success stories of
public-private partnership

Uwe GOTZES

Open Grid Europe GmbH, Essen, Germany
uwe.gotzes@oge.net

The Zuse Institute Berlin [1] and OGE, Germany's largest natural gas transmission
system operator [2], have been cooperating for more than a decade in a variety of
application-oriented research projects [3]. In my talk I will briefly go through the history
of the projects and the collaboration. A more recent project addressing telecom-
munication network design by the application of ZIB’s SCIP-Jack and SCIP [4][5] will
be presented in detail.

References
[1] https://www.zib.de/
[2] https://oge.net/en
[3] https://www.zib.de/features/research-campus-modal
[4] https://scipjack.zib.de/
[5] https://www.scipopt.org/
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' Spotlights on success stories of
public-private partnership

Uwe GOTZES

6th RIKEN-IMI-ISM-NUS-ZIB-MODAL-NHR Workshop — 21 September 2022
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' Shortened and annotated version of the presentation slides ’ OGE
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a history going back more than 80 Qx-ggammm
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° Emsbigen™ — OVinnhorst
1450 employees “ blpc Hr)l{:"bmw\

From the Netherlands

N D.mrhw 2
Plans, constructs, operates and wa;wn(os’ﬁ:ma
7 ’, worte
monitors one of Eu.ro;?e s largest St. Hubert ()1 fj‘(ﬂa&mrmwahi
natural gas transmission systems SR eI Y Baniath” O ot
and Graat Britain ‘ épm P
Total length of about 12,000 km, Stolberg 1 O»‘--«)(:Mnhm
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around 30 compressor stations with ChSchei
about 100 units l‘dw" QNimi-v Esohbiach Vialdershal From Russia
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Hundreds of metering and pressure P W""’" gﬁ Rxﬁo\""ﬂ:hm
i littetbrun henstae

regulating plants o 'j@ O sandhausen 'Rrv\renh»l O
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. . Natural gas pipelines (12,000 km “
450 energy suppliers obtain gas over gaspip { ) m A | Euoemo%
1000 Exit points | Compressor stations(27 w/ 96 units) P i : 3 [« 3
ff \ Wildearanna ‘
i ( O New Ul )

Annual offtake: O stations ‘ it & Berwang From Russia
~ 300 TWh (DSO and industry) £ Hogelheim o
~ 880 TWh total offtake incl. other TSO = Breitbeinn
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We offer...

= the transmission of natural gas through our network

= the technical and commercial services to go with it

Project Forne Various forecasting Project OAD
projects

Processing Technical and Quantity
nominations and non-technical cetermination and
offtake behaviol network operation billing

Capacity Capacity
calculation marketing

Related research projects with ZIB/MODAL
and we provide_ . Project Carp (Detailed presentation on the following slides)

= commercial, technical 4nd IT services for glher companies

=) OGE

A cross section through a pipeline route

From the Netherlands

Right of way
3 = 5 m on either side

riands X

@ 2 10 Emsbizer
= a8 e
- Dieichef

|

|

|

| - > -\lu-na‘yyn({:\ &\‘F‘m,:

i o 3100 Schworte

| ‘ The specially protected right of way strip contains cable
~1m : Cable ducts with fiber optic cables for highspeed internet.

| ducts A subsidiary of OGE offers the capacities of this data

!

[

network to its customers. Another subsidiary of OGE
i plans new routes to connect new customers according

! Gas # to their enquiries. The project Carp delivers new

research driven software tools to support the planning.

| {3 Berwang From Russia

| £ Hogelheim o
Breitbeunn
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Our Project Carp — Computer aided route planning

Given
m undirected weighted graph G = (V, E)
m asubset/C V
m k groups of ny vertices

How does a customer enquiry look like?
Mathematically spoken, we are given an undirected weighted graph G.
The subset [ consists of the green vertices that form our backbone
network in the cable ducts right next to the gas pipelines.

The k disjoint groups of n_k nodes are all hidden in the dark blue,
densely packed area in the lower left corner of the graph

(next slide is a zoom into this area).

y}iomyau suogyoeg
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Tasks

A) Find a minimal subset S C E with two properties

1. the vertices in nyx are pairwisely connected by a path inside of S
2. inside of S there exists a path from one vertex in n, to a vertex in /

=
Approach to solve Task A
* Almost a Steiner Tree Problem...but not exactly
« It just so happens that Daniel Rehfeldt from ZIB has developed (one of) the best Steiner tree
solvers in the world...so why not talk with him first?
Algorithm:
1. Replace all edges by an antiparallel pair of directed edges
2. Connect all vertices from I unidirectionally witch a ‘supernode’ i* at cost 0
3. Solve as many Steiner Aborescence Problems (SAP) as there are groups and consider
vertices of other groups as already connected to the backbone network
After all SAP for all groups are solved, it might happen, that vertices of several groups are
connected in a tree structure, but not yet to the backbone network. To overcome this flaw:
1. Set all edge costs of tree edges to 0
2. Solve ordinary Steiner Problem with all group nodes as terminals
=
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Example graph with euclidean
distance as edge weights

Backbone network (green) and
three vertex groups (magenta,
turquois and yellow)

{}WPAN
XD
<P
<JXPAUA]
=

N}"“"{V{

:N'NNNN}'{N}'{
,NMK‘NWWDAN

Solution of the first SAP in the modified
graph according to the algorithm.
Important: choose a group node and
ot the supernode as root node (green
rcle) for the SAP to make sure that
the group is connected in a tree

structure in the original graph.

10
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XXX

RO
<
X
<

RO
XXX
RSN
RO

/
§

Solution edges of all three SAP in the
original graph.

All groups are connected by a tree
structure, but turqouis and magenta

5 groups are not yet connected to the
backbone network. To achieve this:
Solve ordinary SPG with magenta,
turgouis, yellow groups and supernode
as terminals.

11

N

X<
X
REOZOZONY

<P
X
2
X
X
X

PP

However, the method is a heuristic
1. How good is the heuristic?
2. How can the method be improved?

3. Example where the heuristic does
not yield the optimal solution?

12
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Real world example Task A)

=
13
Tasks
D) k=1,n ={Tp, T1}
Find a shortest node disjoint circle that contains { Tp, T1 } and a vertex i € /
=
14
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RSSO
}4}4h§hﬂh£)4)4$ﬁ
OSSOSO
ﬁﬁbibibibibihﬁbi
OSSO
5‘)()()()4)()()(
\\\',/’

A.

Nightly E-Mail ping-pong-session
ch to

with Thorsten Ko
s follows:

1.

2.

3.

Modify original graph as shown
here (now directed and new
vertex T_2)

Set up three shortest path
problems

Bundle all three shortest path
problems in one huge Three
ways round trip problem
containing three copies of the
modified graph

. Add additional constraints to

forbid shortcuts via T_2
=

16
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DTS
RSSO
ZZOZZOZZo T
ISOSOTOTOZOZ Sz i
DR e Hemwssans
DS
T\

A.

T,0 =
17
Three Ways Round Trip Problem
Modifications of the model in red. Effect: Shortcuts
T X il T_2 are now forbidden. ¥ov I {E}d otes the
Min : L Gij * Xjj edges of the origin Ig aph. ¥delta is Kronecker‘s
(ij.k)eE*{0,1,2} delta.
s.t.
Z XK Xy Vie V\{To,T1, T2}, Yk=0,1,2 (1)
(ij)EE (.i)eE
x X <A vie V\{To,Th. T2} (2)
(i.j, k)EEx{0,1,2}
Y xti=dk Vi, k=0,1,2 (3)
(T;.NeE
Z X,»kTJ = (S(j»Z)mod&k Vj, k = O, 1. 2 (4)
(i, T))=E
X, = X3, V(iTz)eE (8) g
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Shortest node disjoint circle
Real world example Task D)

Thank you!

20
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The 6th RIKEN—-IMI-ISM—-NUS-ZIB-MODAL-NHR Workshop on
Advances in Classical and Quantum Algorithms for
Optimization and Machine Learning

September 16 - 19, 2022, Tokyo (The university of Tokyo), Japan,

and September 215t - 22nd, 2022, Fukuoka (Kyushu University), Japan

Deep Switching State Space Model
(DS3M) for Nonlinear Time Series
Forecasting with Regime Switching

Xiuqin Xu" and Ying Chen™

*]1 Integrative Sciences and Engineering Programme, NUS
Graduate School Institute of Data Science, National University of
Singapore
xiugin.xu@u.nus.edu

*2 Department of Mathematics, National University of Singapore
Asian Institute of Digital Finance, National University of
Singapore,

Risk Management Institute, National University of Singapore,
Singapore
matcheny@nus.edu.sg

We propose a deep switching state space model (DS3M) for efficient inference and
forecasting of nonlinear time series with irregularly switching among various regimes.
The switching among regimes is captured by both discrete and continuous latent
variables with recurrent neural networks. The model is estimated with variational
inference using a reparameterization trick. We test the approach on a variety of
simulated and real datasets. In all cases, DS3M achieves competitive performance
compared to several state-of-the-art methods (e.g. GRU, SRNN, DSARF, SNLDS), with
superior forecasting accuracy, convincing interpretability of the discrete latent variables,
and powerful representation of the continuous latent variables for different kinds of time
series. Specifically, the MAPE values increase by 0.09\% to 15.71\% against the second-
best performing alternative models.
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Deep Switching State Space Model (DS*M) for
Nonlinear Time Series Forecasting with Regime
Switching

Xiugin XU
Ying CHEN

https://arxiv.org/abs/2106.02329

Institute of Data Science & Integrative Sciences and Engineering Programme
Department of Mathematics & Risk Management Institute & Asian Institute of
Digital Finance

National University of Singapore

US Faculty of | Faculty of Arts RMI | Institute of Operations | Institute of | Asian Institute of
e | Science & Social Sciences == | Research and Analytics | DataScience | Digital Finance
Motivation 1-1

Nonlinear time series with regime switching

Figure: The U.S. monthly unemployment rate 2002 — 2021.

[J The U.S. unemployment rate depends on (discrete)
unobservable economic status of booming or recession. It is
also influenced by some latent (continuous) variables, e.g.
elasticity of regional wage level and others, that in turn vary
with the discrete status.

(-] Deciphering these discrete and continuous latent variables can
gain insights.
DS*M
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Motivation 1-2

Technical challenges

[] In many studies, researchers need to model and infer similar
type of time series that disobey traditional assumptions of e.g.
linearity, normality and stationarity in the statistical modeling,
but exhibit nonlinearity with stochastic regime switching
behaviours.

[J Examples: health care (sleep apnea), economics
(unemployment rate), traffic and transportation (metro
passengers volume), meteorology (sea surface temperature),
energy (electricity demand), to name just a few.

[] Two challenges:
» a severe modeling misspecification

» lack of interpretation on the stochastic regimes

DS*M

Motivation 1-3
Switching state space models (SSSM)

] The evolution of time series is assumed to be driven by hidden
factors switching among discrete regimes, see Bae et al.,
2014; Fox et al., 2009; Francois et al., 2014; Ghahramani
et al., 2000.

[] The SSSM is a generalization of the Hidden Markov Models
(HMMs) and State Space Models (SSMs).

% Cn (,’f,.\.
4 o/
T 3

oy S s W 0=
B

. N G A ¥
D

Figure: State Space Model

o

DS*M
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Motivation 1-4
Linear Gaussian State Space Model (LGSSM)

The dynamics in each regime are usually represented by simple
models that could be efficiently estimated even with a small sample
size (Durbin et al., 2012), and the switching among regimes is
controlled by hidden transition probabilities of a Markov chain.

[J Transition function for the latent continuous variable z;:

(zt|ze—1,x¢) ~ N(pe, 22) (1)

where p; = W,z—1 + Wixt + b, and X, is covariance.

-] Emission function for the observation y;:
yi|ze ~ N(mq, Zy) (2)

where m; = W, z; + b, and ¥ is covariance.

DS*M

Motivation 1-5
SSSMs and misspecification
[ Hidden Markov Model (HMM): Baum et al. (1966), Linear
Gaussian State Space Model (LGSSM): Durbin et al. (2012),

[J Non-linear and non-Gaussian SSM: Doucet et al. (2009),
Julier et al. (1997), and Smith et al. (1962)

[ Non-stationary SSM: Ackerson et al. (1970), Chang et al.
(1978), Fox et al. (2009), Ghahramani et al. (2000), Hamilton
(1990), and Murphy (1998)

- By extending the local linear models with different regimes, the
resulting model approximates a globally nonlinear behaviour and is
expected to retain interpretation.

- The existing nonlinear models rely on pre-specified local parametric
forms that usually have simple structures, either linear or nonlinear,
which may not be comprehensive enough to describe the actual
patterns in the modern nonlinear time series, and thus easily lead to

DS Mmode/ misspecification.
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Motivation 1-6
Deep learning

Recurrent neural networks (RNN) have emerged as the new
benchmark to model nonlinear time series with highly complex
dependence.

oy SRR o)

[] Gate structure alleviates gradient vanishing:
Long-Short Term Memory (LSTM,Hochreiter et al., 1997),
Gated recurrent unit (GRU,Chung et al., 2014), Transformers
(Li et al., 2019) and temporal convolution networks (Sen
et al., 2019)

DS*M

Motivation 1-7

Recurrent Neural Networks (RNN)

(] Transition function for hidden states h; to encode past input
x1.+ with a deterministic nonlinear function

he = f(he—1, x¢) (3)

f is commonly chosen as LSTM or GRU.

[J Emission function for y;
yelhe ~ w(ye: @) (4)

¢ = g(ht) (5)

g is often chosen to be a nonlinear function.

DS*M
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Motivation 1-8
Overparametrization and interpretation

(] The classic DL models are deterministic and ignore the presence of
unobserved stochastic signals.

(] The only randomness allowed appears in the conditional output
probability models, with either a simple unimodal distribution, e.g.
Gaussian (Salinas et al., 2020), or a mixture of simple unimodal
distributions, e.g. Gaussian Mixture models (Graves, 2013).

(] It has to require a large number of parameters to ensure a
reasonable modeling accuracy (Zhang et al., 2005). This in turn
requires a large sample size to ensure estimation efficiency and to
avoid overfitting.

The relatively small sample size of real data, and more importantly, the
stochastic behaviors of regime switching make standard deep learning
approaches computationally infeasible and lack of interpretation on the

fitted models.
DS*M

Motivation 1-9

SSM and RNN
ARG

T T
(o) Fon ,
' LS

T £ 3 £ & &

el

N/

Figure: State Space Model Figure: Recurrent Neural Network

[] SSM only allows for simple state structure or linear transitions;
RNN enables to represent complex dependence with richer
internal states and nonlinear transitions

[J The latent variables in SSM are random;
The hidden states in RNNs are deterministic.

DS*M
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Motivation 1-10

Deep state space models (DSSM)
DSSM introduce continuous Gaussian latent variables at each
time-step and combine SSM and RNN/MLP.

[J SRNNs (Fraccaro et al., 2016) incorporate the deterministic
dynamics of RNNs by interlacing them with SSM. The hidden states
do not depend on z; and transition is linear.

[0 STORNs (Bayer et al., 2014), VRNN (Chung et al., 2015) make the
transition equation non-linear via cutting the ties between the latent
states and connect them through the deterministic state of RNNs.

o\ ) |’/Y-~ \
l'\,]_/" b"l "\,T_/" \ ./ \
11 1| L |
(=) () (o} zy continuous.
N G54 e/ .
L } | )\ | Uneasy to inter-
e » \ / PR /
g G/ w/ pret
DS*M -
Motivation 1-11

DSSM with discrete latent variable

While continuous latent variables has more expressive power,
discrete latent variables representing regime switching are natural.

[ Johnson et al. (2016): emission function is a neural network.

[ Dong et al. (2020): both the emission and transition functions
are nonlinear neural networks.

[ Farnoosh et al. (2021): approximates high-dimensional time
series with a multiplication of latent factors and latent
weights, where the latent weights are modeled by a nonlinear
autoregressive model, switched by a Markov chain of discrete
latent variables.

The evolution of time series is purely driven by the discrete latent
variable only.

DS*M
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Motivation 1-12

Deep Switching State Space Model (DS3M)
] Incorporate both continuous and discrete latent into RNN and
prove consistency and stability:
» RNN + nonlinear SSSM: emission and transition governed by
a Markov chain of d; and parameterized by MLPs.

» discrete latent d; represents unknown regimes and influences
both Y; and continuous latent z;

» z: in the SSSM could use the long-term information embedded
in the RNN; the RNN is skip-connected to the observations to
further improve the forecasting.

-] Develop efficient estimation based on an approximate
variational inference algorithm that can scale to large data sets

[J DS3M can leverage the interpretability of discrete latent
variables, the powerful representation ability of continuous
latent variables, and the nonlinearity of deep learning models

compared to SOTA.
DS*M

Outline

Motivation
SOTA
Model

Experiments

ek W=

Conclusion

DS*M
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SOTA 2-13

Settings
[J A time series of T observations as y1.7 = {y1,y2,- "+ ,¥7}
Yt € RD.
[J A sequence of inputs as x;.7 = {x1,x2,-- ,x7}, xt € RY.

» In time series forecasting, x; can be one or multiple lagged
values of the time series, e.g. y;_1 and higher orders

Yt—2,Yt-3," -
» The inputs x; could also contain exogenous variables.
We are interested in modeling p(y1.7|x1.7) and inferring the
predictive distributions for the one-step-ahead to 7-step-ahead
observations {y7141, - ,yT+-} and the discrete latent states

{dT—i—la T dT+T}-

DS*M

SOTA 2.14
Switching linear dynamical system (SLDS)

[] The dynamics of each regime is explained by a linear state
space model.
ze = Wz + W x, + %) e, e, ~ NO,X(%))  (6)
ye = WHz, 4 b 4 ¢, e ~ N0, T(*)) (7)

[] The discrete latent variables d; € {1,2,---, K} at each time
stept =1,2,---, T, follows a Markov chain, d¢|d;—1 follows a
transition matrix I € RK*K | where Fij = p(de = jlde—1 = i).

[] The discrete latent variables d; have impact on both the
continuous latent variables z; € R and y;

When K =1, the model is also termed as the Linear Gaussian
State Space Model (LGSSM).
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SOTA 2-15

OTA
[J GRU, SRNN (Fraccaro et al., 2016), DSARF (Farnoosh et al.,

2021) and SNLDS (Dong et al., 2020)

(a) DSARF (b) SNLDS

[J Most of the extensions assumed that the discrete latent d;
only influences the transition of the continuous latent z;.

] SRNN can be viewed as DS®M model without discrete latent

DS3Mvariables.

SOTA 2-16
Other alternative models

[ Recurrent SLDS (rSLDS) by Becker-Ehmck et al. (2019) and
Linderman et al. (2017) which extends the open-loop Markov
dynamics and makes d; depending on the hidden state z;_1.
Dong et al. (2020) extended the open-loop Markov dynamics
by making d; depends on last observations.

[:] Tree structure prior on the switching variables of rSLDS

(Nassar et al., 2018), deep Rao-Blackwellised Particle Filter
(Kurle et al., 2020)

[] Sometimes can improve accuracy, but can also lead to
unnecessarily frequent state shifts in the estimated discrete
latent variables, making interpretations difficult.

DSARF has been shown to outperform several models such as
rSLDS, SLDS for time series forecasting (Farnoosh et al., 2021).
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Model 3-17

Deep Switching State Space Model (DS*M)

7N N s N
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y[, Y \ / \y’A \ / '?,",A,l/ |
f I f ; T I ‘
J ‘ | J
“ N | 7N\ | e
—T "“\il - lﬂ; 1\ dy “%’KdH T g
’l | g “ ‘ l ‘\‘
ST A Y ) ¥ oo
@1y T 2t TRy
NG/ | W, | A
\ I | ¥ \ 1
\ \ \
\ ,A \ N\ /7N \,V]' \
T “hy S
\T/l, N / \\T/L/
Ti-1 Ly Ttil

[-] stack an RNN below the switching state space model

[-] design a direct connection of the RNN hidden state h; to the
time series y; inspired by the skip connection in ResNet,
Transformers and SRNN.

DS*M
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Formulation

1. Recurrent step:
ht = fh(ht—bxt)

fn is chosen as an LSTM or GRU

2. Switching step: p(d:|d:—1) follows a Markovian transition
matrix I € RKXK

Fij = p(d: = jldt—1 =)
3. Transition step:
(zt|zt—1, he, dy = k) ~ N(z; Mgk)ang))
) = £ (21, ), 1og T = £ (21, o)

fl(k),fz(k) are parameterized by neural network models (MLP)
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583




Model 3-19
Formulation (Con’t)
4. Output step:
velze, he. de = k ~ (1) (8)
o) = £z, he) (9)
£ is parameterized by neural network models (MLP)
7 can be chosen according to the stochastic nature of the

time series, e.g. Gaussian for bell-shaped data, Log-Gaussian
for data with asymmetry etc.

The DS3M includes all the parameters that parameterize the
following functions:

k k
0 = {fi, T, o, (A LM (03K

DS*M
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Estimation
The loglikelihood is

5(9) = log py (Y1:T|X1:T)
Po (Y1:T7 Z1:T, dl:T’xl:T) = HZ—:1 Po (Yt’Zta h:, dt) Po (Zt’Zt—L he, dt) Po (dt’dt—l)

[ £(0) can be obtained by averaging out z;.7 and dj.7 in above
joint probability. Intractable!

(] Maximum likelihood method is not applicable!

] Use variational inference instead. Specifically, we design an
inference network with parameter ¢, i.e. using an
approximated posterior qg (z1.7,d1.7|y1.7,X1.7) for the true
posterior pp(z1.7,d1.7|X1.7,y1.7) and then optimize an
evidence lower bound ELBO(#, ¢).
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Model 3-21
Variational Inference

] For any approximated posterior g4 (z1.7,d1.7]y1.7,X1:7)
£(9) > ELBO(9, $)

: )Z H 7d : X :
//% zy.7,duT]yLT, X1 T) Iog Po (y1.7, 217, 7] 1T)dZ1:TC1d1:T
¢(21:T7d1:T’y1:T7x1:T)

= Eq, [log pg (y1:7|z1:7, d1.7, X1.7)]
— KL (g¢ (z1.7,d1:7]y1: 7, %1:7) || po (z1.7, d1.7[%1.7))

(1 When q¢ (z1:7,d1:7]y1: 7, X1:7) = po (Z1:7,d1:7]y1. 7, X1:7)
(the true posterior), we have £(0) = ELBO(#, ¢).

DS*M
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How to choose q; (z1.7, dv.7[y1.7,%1.7)7?

[] To achieve a tight ELBO, consider true posterior factorization
derived from the d-separation (Geiger et al., 1990):

po (z1.7,d1.7lyrT x1:7) = [ [ po (zelze—1. de, ye7. heeT) po (delde—1, Yo7, heT)
t

[] We design the approximated posterior with the same form of
factorization:

q(b (Zl:T7 dl:T|)’1:T7 Xl:T) - H q¢z (Zt|zt—17 dt7 At) Q¢d (dt’dt—lv At)
t

Where Af = g(f)A (At+17 [ytv ht])' ¢ - {¢Za ¢d7 ¢A}v and quA iS
parameterized as a backward RNN.
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Model 3-23
Parameterization

[l qg, (zt|ze—1,d¢, At) is parameterized to be a Gaussian density:
zt‘zt—laAta di = k ~ N(zt;ugk), ng))

Mgk) = g1(k) (ze-1,At), log ng) = 2(k) (21, At)

g§k), gz(k) is parameterized by neural network model (MLP)

[ qg, (d¢|A¢,dr—1) is parameterized to be a Categorical
distribution:

df‘At,dt—1=k ~ Cat(softmax( W(k)At))

DS*M A
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Inference Network

Y1 Yt | Yt+1)

Figure: The graphical model which represents q, (z1.7, d1.7|y1: 7, X1:7)-

DS*M s v
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Model 3-25
How to estimate the parameters?

[ Instead of maximizing £(#) w.r.t 6, we maximize a variational
evidence lower bound ELBO(0, ¢) w.r.t 0, ¢

DELBO(0,5) DELBO(6,9)

[] Method: Stochastic gradient descent

DS*M

Model 3-26

Factorization of ELBO

[J With the defined approximate posterior, the ELBO can be
rewritten as

ELBO(97 d)) = E%& [log Po (yl:T|zl:T7 dl:T7 hl:T)]
— KL (g (z1:7,d1.7|y1:7, h1.7) || po (z1:7, di.7|hai. 7))

] The factorization of the approximated posterior:
9o (217, du7lyr 7. x0:7) = [ [ 90, (2elze-1, de, Ar) qo, (delde_1, Ay)
t

(] The factorization for the prior:

Po (Zl:T7 dl:Tlxl:T) = Po (zl:T’ d1:T’h1:T) = p(dl:T)p (21;T|d1:T7 hl:T)
= H p(dt’dt_l)P (Zt‘zt—h dt7 hl’)
t
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Model 3-27

Factorization of ELBO (Con’t)

ELBO(6, ¢)
= Zt{qu(Ztl,dtl) Edt q(z)d (dt)EQ¢z(Zf) [log p9 (yt|zt’ dt7 ht)] -
Eq;(zt_l,dt_l) Zdt Aoy (d¢)KL [%z (zt|ze-1,d¢e, Ar) [|pg (z¢]Zt—1,d¢, he)]

~ Eqgtan S, G, ()KL gy, (dlde1, A0 [po(elde1)] .

[ g (ze,de) = [ qg (216, dice|y1: 7, x1:7) dz1:e—1ddye—1
[ g (de) = [ qp, (di:t|yr: 7, x1:7) dd:e—1.

DS*M

Model 3-28

Approximate ELBO

We approximate the ELBO using a Monte Carlo method. We
sample (zt(s), dt(s)) fort=1---,T from g} (z¢,d¢) using ancestral
sampling.

ELBO(#, ¢)
~ Zt{zdt oy (d¢) log pg <Yt|ZE'S)a de, ht)
- Zdt e, (de) KL [%z (Zt‘zgs—)pdt?At) Il e (Zt\zgs_)pdt,htﬂ

S o (de 1)KL [gp, (delde_1, Ay) ||pe(df|dt1>1}.
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Model 3-29

Gradient: ‘%%3(9’@

The derivative of the ELBO(0, ¢) with respect to # can be
calculated as:

OELBO(0, )
06
—E 6|0g Po (yl:Tazlvadl:T‘xlzT)
= Lgg(ze7 du7lyrr xeT) 90
*ZT) g (2logp(yilzedih) | Ologpn (zifzir dhi) | Dlogpy (difdi-),
e 90 90 00
Olog pg <Yt\zgs)7d£s)7 ht) 0log py (ZES)\ZES,)l,dgs), ht) 0 log py (dgs)\d@l)

~ D B 9 * 9 + 06

t=1

(10)
DS*M
Model 3-30
. OELBO(0

Gradient: #

The derivative of the ELBO(0, ¢) with respect to ¢ is more tricky
as ¢ appears in the expectation in ELBO(0, ¢).

[ Score function gradient estimator (Williams, 1992) can be
used but suffer from high variance.

[] Reparameterization trick (Kingma et al., 2014; Rezende et al.,
2014) is often used instead, low variance gradient estimator

> z=g(e¢)

0 f(z € €

Eq(z(;:;) (2) _ 8E€f(ég¢§ 9)) :Ee[af(%(qb. O an
> eg.

Zy ~ N(,uta zf), € ~ N(07 1). Zr = g(ﬁ; Mt,zt) = ¢ + €2t
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Model 3-31
Predictive distributions using Monte Carlo

[ First make inference on the posterior distributions of
{z;,d:}]_; and then generate samples of {z,_gs), d,_gs),yt(s)}tTj{,
s=1,---,5. S represents the number of Monte Carlo

samples.

[] The predictive distributions for the one-step-ahead to
T-step-ahead observations {y711, -, y74,} and the discrete
latent variables {d11,---,d7,} are then approximated
with empirical distribution functions of the generated samples.

DS*M
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Stability in mean square

Theorem
Under regular conditions, for the neural networks fl(k) and fz(k) that

parameterize the mean ,ugk) and diagonal covariance matrix ng) of

the latent state dynamics z; ~ N(ugk), ng)) with arbitrary
activation function a, there exists an equivalent pointwise affine
map which ensures that the latent variable z; is globally stable in

mean-square.
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Experiments 4-33

Experiments

(] Simulations
» Toy example
» Lorenz attractor
[] Real data analysis
» Six datasets in Econ, Medicine, Traffic, Meteorology, Energy

» Sleep apnea, Hangzhou metro flow, Seattle traffic flow, Pacific
temperature, Unemployment rate, French electricity

» First four datasets are analyzed in Farnoosh et al. (2021); The
French electricity is analyzed in Xu et al. (2021), the
unemployment rate is selected to represent Econ data.

DS*M
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Toy example

do ~ Bernouli(0.5),zp = 0

0.95 0.05
delde1 ~ T = [0.05 0.95] e € 40,1}

Xt = Yt—-1

Zyjd—0 = 0.6z¢—1 + 0.4 x tanh(x + zr—1) + Wt(o), Wt(o) ~ N(0,10)
Zijg1 = 0.1ze1 + 0.2 x sin(x; + ze-1) + wi, wi™ ~ N(0, 1)
Yt|d;—0 = 1.5z + tanh(z;) + vgo), v,fo) ~ N(0,5)

Ye|di=1 = 0.5z + sin(z;) + vlgl), vt(l) ~ N(0,0.5)
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Experiments

4-35

Toy example (1- step-ahead forecasting)

Figure: Prediction for the toy example. The red color represents d; = 0

and the blue color for d; =1

DS*M
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Toy example

Table: Summary of the simulation results (mean + standard deviation)

Toy

DS3M SNLDS DSARF

Forecasting RMSE 14.572 + 0.352 16.541 4+ 0.024 15.244 £+ 0.136
Duration for dt=1  7.509 + 1.579  1.282 + 0.001  3.946 + 0.426

Duration for dt=0  7.634 &+ 1.667 1.667 £+ 0.012  3.274 + 0.985

Accuracy (%) 0.788 + 0.033  0.543 £0.001  0.765 + 0.047

F1 score 0.778 + 0.023  0.549 £ 0.001  0.757 + 0.035

Inference Accuracy (%) 0.849 + 0.004 0.692 &+ 0.003  0.819 + 0.044
F1 score 0.831 + 0.005 0.544 + 0.002  0.808 + 0.039
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Experiments 4-37

Lorenz attractor
Lorenz attractor is a canoinal nolinear dynamical system with the
dynamics:

Ve = Wzy 4 vi, where W e R19%3 v, ~ N(0,0.5hp).

dz B aﬁ(Z2 — Z1)
E = Z1 ( — Zl) — 72
72122 — 723

[J The latent variable z; = [zt71,zt72,zt,3]T. Yt € R0 js
observable.

[] Simulated the time series with a length of 3000 and transform
the time series into subsequences with a length of 5.

(-1 Training: Validation: Testing = 1:1:1
DS*M
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Lorenz attractor forecasted switching variable

Figure: DS3M: The forecasted switching variable against the true z.
DS*M
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Experiments

Lorenz attractor

4-39

Table: Summary of the simulation results (mean + standard deviation)

Lorenz
DS3M SNLDS DSARF
Forecasting RMSE 0.168 + 0.017 0.226 + 0.065 0.030 + 0.000
Accuracy (%) 0.882 £ 0.079 0.616 + 0.065 0.788 + 0.143
F1 score 0.837 + 0.127 0.600 + 0.100 0.775 + 0.124
Inference Accuracy (%) 0.911 + 0.068 0.744 + 0.174 0.789 + 0.146
F1 score 0.883 + 0.103 0.680 + 0.244 0.761 + 0.113
DS*M _
Experiments 4-40
Real data

Table: Description of the datasets

Dataset Frequency Dimension T_train+T7_valid T_test (time)
Sleep half a second 1 1000 1000 (500 seconds)
Unemployment month 1 639 240 (20 years)
Hangzhou 10 mins 80 2160 540 (5 days)
Seattle 5 mins 323 6624 1440 (5 days)
Pacific month 2520 336 60 (5 years)
Electricity half a hour 48 2601 320 (1 year)

(] Short-term: 1-step-ahead forecast

[] Long-term: make multiple forecasts simultaneously for all
T _test, standing at the end of the T_train+ T _valid

DS*M
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Experiments 4-41
Real data analysis

Table: Summary of forecastes on testing data. The best models are in
bold. “-" indicates the model forecasts diverge to unreasonable values
and are omitted.

RMSE MAPE (%)

Datasets DS°M SNLDS DSARF SRNN GRU | DSM SNLDS DSARF SRNN GRU

Sleep 1201 2789 1557 1806 1264 | 15.46  88.06 39.25 50.8 31.17

Unemployment | 0.75 1.59 1.06 201 1.05| 4.53 16.13 811 2315 513

Hangzhou 3253  36.67 3481 33.80 3842 | 24.04  23.90 2073 2540 30.48

Short-term Seattle 4.16 418 4.44 417 418 | 5.81 5.85 7.27 6.00 6.89
Pacific 0.57 15.78 0.53 058 056| 169 5801 1.57 174 168

Electricity 2971 5133 8805 3642 4784 | 4.58 7.79 18.64 534  6.60

Hangzhou 4750 4283 4228 60.89 73.18 | 38.20 50.6 4365 8281 86.61

Seattle 4.17 4.19 - 417 1693 | 5.81 5.86 - 5.81 2795

Long-term Pacific 0.72 - 0.73 098 076 | 2.15 - 2.29 299 222

[] Long-term forecasting is only achievable for time series with
regular patterns (Farnoosh et al., 2021). Thus, we exclude
some datasets for long-term forecasting.

DS*M
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Short-term forecasts

(a) Sleep apnea (measured at 2 Hz)

UNRATE

2002jan 20€3jM 00¢ion 230530 2005fon 2007 ja% 20CBjan 2003n 010/an 201ljon 20i2jan 2913 2Ul4jan 0150 2016jon 2017jwm ZC1Bjn Z319Jan 20200an 2021 an

(b) US unemployment rate
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Short-term forecasts ||

Hangzou ¢

2

(c) Hangzhou metro station 0 (d) Seattle traffic loop 0

m
o
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0

*0
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(e) Pacific location 0 (f) French Electricity 0:00
DS*M ~
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Conclusion

[] Proposed a deep switching state space model (DS3M) for
forecasting nonlinear time series with regime switching.

(] The switching among regimes is modeled by both discrete and
continuous latent variables with recurrent neural networks.

] Developed an efficient scalable inference and learning
method

[] The DS3M achieved competitive performance against several
state-of-the-art methods for a variety of simulated and real
datasets.

[ Code and data are available at https://github.com/Sherry-Xu.
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which is a unique institute of industrial mathematics in Japan, the speaker will present
various activities of IMI which characterize its strength; researches in fundamental
mathematics, mathematics applied to other disciplines, joint projects with industry,
together with educational activities, including the WISE program funded by the
Japanese government. Some prospects of IMI for the future will also be presented.

References
[1] Institute of Mathematics for Industry, Kyushu University, An Unparalleled Research Institute for

Industrial Mathematics Based on Diverse Fields of Mathematical Study, official homepage,
https://www.imi.kyushu-u.ac.jp/en/

607



Institute of Mathematics for Industry:
its uniqueness, strength and prospects

Osamu Saeki
Director, Institute of Mathematics for Industry (= 1M1)
Kyushu University, Fukuoka, Japan

The th RIKEN-IMI-ISM-NUS-ZIB-WIODAL-NHE Workshop on Advancas in
Classical and Quantum Algorithms for Ogtimization and Machine Learning
Segrermoer 21, 2022

bditbe of Mothamates fx Induskey

[

© Institute of Mathematics for Industry MEXT Joint Use / Research Center
Kyushu University Since 2011 Joint Research Center for Advanced and
Fundamental Mathematics-for-Industry

[
Institute of Mathematics for Industry (IMI) o™ "

Collaborafion
s samenEducation

Unparalleled industrial mathematics research institute with Resedrch
a foundation in diverse mathematical research fntetnat jonal

Collaboration

Math-for-Industry: A new area of research in mathematics that is valuable as mathematics
itself as well, responding to the demands of society and industry, by reorganizing pure and

applied mathematics.

=
Joint Use / Research Center ,i.)- T —" Joint researches with Industry Research Achievements
and social implementations First in the world ranking in the Graph500
= Workshops (1),(11) = General Research benchmark test using the supercomputer Fugaku

. (total of 15 terms, 5 consecutive victories).
. = Project Research
= Short-term joint

h = International TR
researc . 2

X Project Research 25 15 2021 - "'lﬂ\
* Short-term = Young Researcher ”0
visiting researcher - Female Researcher TS

Participation from industry is essential. - .

International Activities =Sl ;Or Publications Education
B International Journal of Springer Series Mathematics S .
IMI Australia Branch ‘ by Mathematics for Industry for Industry 7[« Graduate School of Mathematics

Graduate Program of
A Mathematics for Innovation

Asia-Pacific Consortium Forum “Math-for-Industry”
of Mathematics for
Industry

@ arcMmt| ﬂ

= 12 volumes 31 volumes

~ published published Long-term research internship (2006--)

Study Group Workshops (2010--)

608




~ > International Activities of M|

hvitate of Mabarsches for sk -
Vo Uiy

Asia-Pacific Consortium of Mathematics for Industry
(APCM{£D)

Forum “Math-for-Industry” 2008 —

Since October 2014

Fobooks WoAOMMUS fubcks Pk Feluska Pkl ekl AL ol s (enlsh, Memey Ui,

L Tt L ﬁ
Mckasmanes

woiran wnina e e | [IMIAustralia Branch at Melbourne

0213 DU28I8  Omal2s  New0E Okt On2e a0 Mw2lal Oidas

Apshotions

Dglwa  Motenin

Ayl AL, decthe | Mrensoc
h  Prman

% GPMI INUiituring Mathematics Talents Active in Society

Cross-Disciplinary Program Nurturing Advanced Mathematical Modeling Talents Endowed with Mathematics Five Forces

Graduate Program of Mathematics for Innovation

RIKEN, ISM,
<. NUS, ZIB also

Policy Making participate in

Legal Tech

(Compumv
Scienoe

this WISE
Advanced Program!
Mathematical
Modeling Math-for-
Innovation
clorns Professionals
Internship Outstanding Mathematics Talents who |

lead innovations in both academia and
industry by creating mathematical
modeling under collaboration crossing the

Mathematics Basic boundaries between organizations or
Five Force Tree Mathematical disciplines based on internationally
Mode"ng excellent abilities in Mathematics and
Statistics

MobrLING

New cross-disciplinary
education system that leads

StaTisTICS
MATHEMATICS

The most important graduate program of Kyushu University XAVS(ETPJr;’S;m supported by

to Graduate School Reform

609







MILZFx—/— )= ZFFTICH2D

KL Fv—7—F2)—=XE, R 21 i COE 7 7 7 4 [ B
REECHR - O & B | (H15-19 4R FE) 128 W THERL L 72 COE Lecture Notes
DFEHITH Y. CERHABRFABEBEBFLELIE T 07T 45 [HEERDPKD S
o e s aEn] (H19-21 4£5) B X O, W7 u—/ 3L COE 7'u s 7
LA[RAT3T - AVFAN)EEWIEHT] (H20-24 4£5) 1BV TTh
N7-iFRoMmRiRe LTSN TE 7z, PR 2B E4HDOYA - 747 - A
Y F A MYBGERT (IMI) 357 & PR 25 4F 4 H o IMI O SCE A L EF A -
FEMFZEME & U C [EEREF OISR - R LRI 7E L | ORBE R 21T
Stk L2 Fx—/—bME. XA THT - A YFAN)ICEDLENND
WigeE 1C L 2ROz, GBS L LCERL, ~XA - 747 - A%
A M) OFE G RFICET 25D LT 5,

2022 4 10 A
XA T AT A YA NS
A MRJE et

IMI Workshop of the Joint Usage Research Projects

Construction of Mathematical Basis for
Realizing Data Rating Service

20224F12H27H

# Katsuki Fujisawa, Shizuo Kaji, Toru Ishihara, Masaaki Kondo, Yuji Shinano,
Takuji Tanigawa, Naoko Nakayama

T JUNKESA - 747 - 4 A M) %R

YRV NEy N e e

T 819-0395 ## i 117 V4 [X 7T [ 744

JUIHRFFR - IMI S =

TEL 092-802-4402 FAX 092-802-4405

URL https://www.imi.kyushu-u.ac.jp/

oo
2

&
3

E1 T/ 4 S 12 7 S v i
T810-0012 R X142 TH 96 =
TEL (092-531-7102 FAX (092-524-4411



1) —XBEFH]
Issue

COE Lecture Note

COE Lecture Note

COE Lecture Note Vol.3

COE Lecture Note Vol.4

COE Lecture Note Vol.5

COE Lecture Note Vol.6

COE Lecture Note Vol.7

COE Lecture Note Vol.8

COE Lecture Note Vol.9

COE Lecture Note Vol.10

COE Lecture Note Vol.11

COE Lecture Note Vol.12

COE Lecture Note Vol.13

Author ~Editor

Mitsuhiro T. NAKAO
Kazuhiro YOKOYAMA

M.J.Shai HARAN

Michal BENES
Masato KIMURA
Tatsuyuki NAKAKI

Francois APERY

Michal BENES
Masato KIMURA
Tatsuyuki NAKAKI

il IEA
mRE R

Alberto PARMEGGIANI

Michael . TRIBELSKY

Jacques FARAUT

Gerrit van DIJK

Faculty of Mathematics,
Kyushu University

TUINREZEREE B
e BRI

Title

Computer Assisted Proofs - Numeric and Symbolic Approaches -
199pages

Arithmetical Investigations - Representation theory, Orthogonal
polynomials and Quantum interpolations- 174pages

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005
155pages

MTEHRAREEFENT & B HEFIAT - PEAERE AR BIRESE 21pages
Univariate Elimination Subresultants - Bezout formula, Laurent series
and vanishing conditions - 89pages

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006

209pages

SN REEEERAN e vy — F v o+ 734 27
138pages

Introduction to the Spectral Theory of Non-Commutative Harmonic
Oscillators 233pages

Introduction to Mathematical modeling 23pages

Infinite Dimensional Spherical Analysis 74pages

Gelfand Pairs And Beyond 60pages

Consortium “MATH for INDUSTRY” First Forum 87pages

Tuy =74 7 [BEEERICHN L ERE TV
— HFASE - JUN RS SERFZE20084E 11 A iff52 4 — 82pages

Published

August 22, 2006

August 22, 2006

October 13, 2006

May 15, 2007

September 25, 2007

October 12, 2007

October 15,2007

January 31, 2008

February 15, 2008

March 14, 2008

August 25, 2008

September 16, 2008

February 6, 2009



1) —XBEFH]
Issue

COE Lecture Note Vol.14

COE Lecture Note Vol.15

COE Lecture Note Vol.16

COE Lecture Note Vol.17

COE Lecture Note Vol.18

COE Lecture Note Vol.19

COE Lecture Note Vol.20

COE Lecture Note Vol.21

COE Lecture Note Vol.22

COE Lecture Note Vol.23

COE Lecture Note Vol.24

COE Lecture Note Vol.25

COE Lecture Note Vol.26

Author ~Editor

Michal Benes,
Tohru Tsujikawa
Shigetoshi Yazaki

Faculty of Mathematics,
Kyushu University

Alexander Samokhin

Fls i
B 14T
R ]
P
BA HT

Tim Hoffmann

Ichiro Suzuki

Yasuhide Fukumoto
Yasunori Maekawa

Faculty of Mathematics,
Kyushu University

Masakazu Suzuki
Hoon Hong
Hirokazu Anai
Chee Yap
Yousuke Sato
Hiroshi Yoshida

sl

&F

(e

a5

Fulton B.Gonzalez

Wayne Rossman

Mihai Ciucu

Title

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2008
TTpages

International Workshop on Verified Computations and Related Topics
129pages

Volume Integral Equation Method in Problems of Mathematical Physics

S0pages

IERRIZE B DK & W3 66pages

Discrete Differential Geometry of Curves and Surfaces 75pages

The Pattern Formation Problem for Autonomous Mobile Robots
—Special Lecture in Functional Mathematics—  23pages

Math-for-Industry Tutorial: Spectral theories of non-Hermitian
operators and their application  184pages

Forum “Math-for-Industry”
Casimir Force, Casimir Operators and the Riemann Hypothesis
95pages

The Joint Conference of ASCM 2009 and MACIS 2009:
Asian Symposium on Computer Mathematics Mathematical Aspects of
Computer and Information Sciences 436pages

ZEY— 5 HAM  1llpages

Notes on Integral Geometry and Harmonic Analysis  125pages

Discrete Constant Mean Curvature Surfaces via Conserved Quantities
130pages

Perfect Matchings and Applications  66pages

Published

February 12, 2009

February 23, 2009

February 24, 2009

February 27, 2009

April 21, 2009

April 30, 2009

June 19, 2009

November 9, 2009

December 14, 2009

February 15, 2010

March 12,2010

May 31,2010

July 2, 2010



1) —XBEFH]
Issue

COE Lecture Note Vol.27

COE Lecture Note Vol.28

COE Lecture Note Vol.29

COE Lecture Note Vol.30

COE Lecture Note Vol.31

COE Lecture Note Vol.32

COE Lecture Note Vol.33

COE Lecture Note Vol.34

COE Lecture Note Vol.35

COE Lecture Note Vol.36

COE Lecture Note Vol.37

Author ~Editor

U R EER B
et

ANDREAS LANGER

RHE - HERK
EH ES
fgi fE—

B &
B
R ok

il IEA
aAR S
A
A B

Institute of Mathematics
for Industry,
Kyushu University

il IEA
aAR
A
A g%

Adrian Muntean
Vladimir Chalupecky

r -

P <58

o A
Michal Benes
Masato Kimura
Shigetoshi Yazaki

il EA
mA
Kirill Morozov
i g
AFIEA
=PI
[ S S
$ o AH—HB
RI EH
WA T

Title

Forum “Math-for-Industry” and Study Group Workshop

Information security, visualization, and inverse problems, on the basis

of optimization techniques  100pages

MODULAR FORMS, ELLIPTIC AND MODULAR CURVES
LECTURES AT KYUSHU UNIVERSITY 2010  62pages

Magma CTJA A5 5O 157pages

Mathematical Quantum Field Theory and Renormalization Theory
201pages

Study Group Workshop 2010 Lecture & Report  128pages

Forum “Math-for-Industry” 2011
“TSUNAMI-Mathematical Modelling”
Using Mathematics for Natural Disaster Prediction, Recovery and

Provision for the Future  90pages

Study Group Workshop 2011 Lecture & Report  140pages

Homogenization Method and Multiscale Modeling ~ 72pages

FHEREAELS A7 A D 210pages

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010

107pages

SPHIMENE B - HERIE &R -
Yav T o T B
154pages

Published

October 21, 2010

November 26, 2010

December 27,2010

January 31, 2011

February 8, 2011

September 30, 2011

October 27, 2011

October 28, 2011

November 30, 2011

January 27,2012

FESE L OEHENZE T — ~ February 20, 2012
~WREEND R BwI~



1) —XBEFH]
Issue

COE Lecture Note Vol.38

COE Lecture Note Vol.39

COE Lecture Note Vol.40

COE Lecture Note Vol.41

COE Lecture Note Vol.42

COE Lecture Note Vol.43

COE Lecture Note Vol.44

COE Lecture Note Vol.45

COE Lecture Note Vol.46

COE Lecture Note Vol.47

COE Lecture Note Vol.48

Author ~Editor

Fumio Hiroshima
Itaru Sasaki
Herbert Spohn
Akito Suzuki

Institute of Mathematics
for Industry,
Kyushu University

J 7 A~
NG EIN
=
PRl A
w2

Institute of Mathematics
for Industry,

Kyushu University
fefr &
il EA
IIENEN=V4

Institute of Mathematics
for Industry,
Kyushu University

41l i

i

[LEEi S U
4R
MH =
R 7
NG TR
A OPTE

FIE Mz

SOO TECK LEE

Title

Enhanced Binding in Quantum Field Theory = 204pages

Multiscale Mathematics: Hierarchy of collective phenomena and
interrelations between hierarchical structures  180pages

MERCTRE 0% - BEROMOT AT 2 — 1) 7 L2012 152pages

Forum “Math-for-Industry” 2012
“Information Recovery and Discovery” 9lpages

Study Group Workshop 2012 Abstract, Lecture & Report  178pages

Combinatorics and Numerical Analysis Joint Workshop  103pages

EY UGN ORA NEY VFSERNOREL  107pages

Joint Research Workshop of Institute of Mathematics for Industry
(IMI), Kyushu University

“Propagation of Ultra-large-scale Computation by the Domain-
decomposition-method for Industrial Problems (PUCDIP 2012)”
121pages

B - R O ERE~ORE T 7u—F
—HEE T T OMAE L R —  325pages

BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE
COMPLEX CLASSICAL GROUPS  40pages

WL -2 ay T [HAatbelZOIEH]  124pages

Published

March 12,2012

March 13, 2012

March 15,2012

October 22, 2012

November 19, 2012

December 27, 2012

January 30, 2013

February 19, 2013

February 28, 2013

March 8, 2013

March 28, 2013



1) —XBEFH]
Issue

COE Lecture Note Vol.49

MI Lecture Note Vol.50

MI Lecture Note Vol.51

MI Lecture Note Vol.52

MI Lecture Note Vol.53

MI Lecture Note Vol.54

MI Lecture Note Vol.55

MI Lecture Note Vol.56

MI Lecture Note Vol.57

MI Lecture Note Vol.58

Author ~Editor

I =
TN

Ken Anjyo

Hiroyuki Ochiai
Yoshinori Dobashi
Yoshihiro Mizoguchi
Shizuo Kaji

Institute of Mathematics
for Industry, Kyushu
University

fefe M5
fH =
EA
il IEA
IIE NIV

o
I
ZH HE
Xavier Dahan

L7}

Takashi Takiguchi
Hiroshi Fujiwara

4 fp—88
W fETE
W A
W Hel

Yoshihiro Mizoguchi
Hayato Waki
Takafumi Shibuta
Tetsuji Taniguchi
Osamu Shimabukuro
Makoto Tagami
Hirotake Kurihara
Shuya Chiba

Institute of Mathematics
for Industry, Kyushu
University

Gk
L

Title

YA THT A YA W
BT 78 & BE i O 72 7 SR

FEEFH 74 1
137pages

Symposium MEIS2013:

Mathematical Progress in Expressive Image Synthesis  154pages
Forum “Math-for-Industry” 2013

“The Impact of Applications on Mathematics” 97pages

Study Group Workshop 2013 Abstract, Lecture & Report
142pages

SERRSAEEE UK R - 74T - A Y F A ) WFZERT
HEFA eSS D - DO R IEBRED 720 O Al
~ A NS OETHERER D720 OIS~ 158pages

Inverse problems for practice, the present and the future  93pages

Study Group Workshop 2013 %17 f#) 7'&1 /"7 2\ Lecture & Report
98pages

Hakata Workshop 2014

~ Discrete Mathematics and its Applications ~  141pages

Forum “Math-for-Industry” 2014:
“Applications + Practical Conceptualization + Mathematics = fruitful
Innovation”  93pages

Symposium MEIS2014:

Mathematical Progress in Expressive Image Synthesis  135pages

Published

August 9, 2013

October 21, 2013

October 30, 2013

November 15, 2013

December 26, 2013

January 30, 2014

February 10, 2014

March 28, 2014

October 23, 2014

November 12, 2014



1) —XBEFH]
Issue

MI Lecture Note Vol.59

MI Lecture Note Vol.60

MI Lecture Note Vol.61

MI Lecture Note Vol.62

MI Lecture Note Vol.63
MI Lecture Note Vol.64

MI Lecture Note Vol.65

MI Lecture Note Vol.66

MI Lecture Note Vol.67

MI Lecture Note Vol.68

MI Lecture Note Vol.69

MI Lecture Note Vol.70

MI Lecture Note Vol.71

Author ~Editor
[LETY
R =
Bel e
A W
=l EA
W A
A B

v

AN E
Jacques Garrigue
Reynald Affeldt

HIE Mz

=Fialird

waE &
TAE

Institute of Mathematics
for Industry, Kyushu
University

FE #=
e Wi
FI Mz
il EA
o A
Philip Broadbridge
A &%

Institute of Mathematics
for Industry, Kyushu
University

i
NG
)

A
N
FE

A5
it

it
i

Institute of Mathematics
for Industry,
Kyushu University

—E BT
[1EF N =¥/

Title

Study Group Workshop 2014 #55=1f8) 7’1 775 4
Abstract, Lecture & Report  196pages

264 BETUINRE: IME SR RAITIIRZE - WFEses (D
JEASERELE 7OV O FEAL & HESE R BOR TOW O 720 OH

7272 e 120pages
ek &
B L FEO O OB B L O EHGEHR

Theorem proving and provers for reliable theory and implementations
(TPP2014) 138pages

Workshop on “B-transformation and related topics”  59pages
Workshop on “Probabilistic models with determinantal structure”
107pages

Symposium MEIS2015:
Mathematical Progress in Expressive Image Synthesis  124pages
Forum “Math-for-Industry” 2015

“The Role and Importance of Mathematics in Innovation”  74pages

Study Group Workshop 2015 Abstract, Lecture & Report
156pages

IMI-La Trobe Joint Conference
“Mathematics for Materials Science and Processing”
66pages

## OVH & Grothendieck-Teichmiiller 7
116pages

Symposium MEIS2016:

Mathematical Progress in Expressive Image Synthesis ~ 82pages
Forum “Math-for-Industry” 2016

“Agriculture as a metaphor for creativity in all human endeavors”
98pages

Study Group Workshop 2016 Abstract, Lecture & Report  143pages

Published

November 14, 2014

November 28, 2014

February 26, 2015

March 10,2015

August 20, 2015

September 18, 2015

October 23,2015

November 5, 2015

February 5, 2016

February 22,2016

October 24,2016

November 2, 2016

November 21, 2016



1) —XBEFH]
Issue

MI Lecture Note Vol.72

MI Lecture Note Vol.73

MI Lecture Note Vol.74

MI Lecture Note Vol.75

MI Lecture Note Vol.76

MI Lecture Note Vol.77

MI Lecture Note Vol.78

MI Lecture Note Vol.79

MI Lecture Note Vol.80

MI Lecture Note Vol.81

MI Lecture Note Vol.82

Author ~Editor

WoE Wi
NI R

g Uk

RH ESR
Kirill Morozov
A it
B
B -

QUISPEL, G. Reinout W.
BADER, Philipp
MCLAREN, David I.
TAGAMI, Daisuke

TR %
HE kB
Wk A%

FHNH—

LI i)
B
Pl
Mt KB
¥ ER
Pierluigi Cesana

WH e

[ IERE 7
AN N 1) 1
e —
Wk IEW
i IR
MEE T
LT v

L]
L

Zz

b

Kirill Morozov
Hiroaki Anada
Yuji Suga

Tsuyoshi Takagi
Masato Wakayama
Keisuke Tanaka
Noboru Kunihiro
Kazufumi Kimoto
Yasuhiko Ikematsu

HLEC IS

Title

Mathematical quantum field theory and related topics  133pages

Secret Sharing for Dependability, Usability and Security of Network

Storage and Its Mathematical Modeling  211pages

IMI-La Trobe Joint Conference

Geometric Numerical Integration and its Applications ~ 71pages

Study Group Workshop 2017 Abstract, Lecture & Report

Tzitzéica JFE 0 A7 BRI PRS2 ATBE L 724808 T O B
—Tzitzéica FFEX OFEMBASUR % 5 & L T—  68pages

PIR294EE UNKER A - 747 - 4 ¥ ¥ A ) WFSET
LEFAEES 1)

FEEOFHE, mhL, OB 148pages

SEIR294EE SRR A - T AT - A ¥ F A N BT
Juv s Mg WiEsEs (D

B S5 - e ST O B E 7L O AL & AL AT T
136pages

SER294EE AIMaP F o2 — Y 7L
I AL R OSLTE LB 96pages

IMI Workshop of the Joint Research Projects
Cryptographic Technologies for Securing Network Storage
and Their Mathematical Modeling  116pages

IMI Workshop of the Joint Research Projects
International Symposium on Mathematics, Quantum Theory,
and Cryptography  246pages

AFN24EE  AIMaP F2.— 81 7
FrEL T F 7 AV A JERGERES A7 B R O B
145pages

118pages

Published

January 27, 2017

March 15,2017

March 31,2017

October 20, 2017

August 4, 2017

December 20, 2017

February 26, 2018

February 28, 2018

March 30, 2018

September 25, 2019

March 22, 2021



1) —XBEFH]
Issue

MI Lecture Note Vol.83

MI Lecture Note Vol.84

MI Lecture Note Vol.85

MI Lecture Note Vol.86

MI Lecture Note Vol.87

MI Lecture Note Vol.88

Author ~Editor

1A
o
BURREET:
TES K
A
M

Taketoshi Kawabe
Yoshihiro Mizoguchi
Junichi Kako
Masakazu Mukai
Yuji Yasui

Hiroaki Anada
Yasuhiko Ikematsu
Koji Nuida
Satsuya Ohata
Yuntao Wang

#HH
FH
Hg
T —k
g w2
(I iy
T H IR
—A &
R YN
e &

2 o m
- = o

Osamu Saeki,

Ho Tu Bao,

Shizuo Kaji,

Kenji Kajiwara,
Nguyen Ha Nam,
Ta Hai Tung,
Melanie Roberts,
Masato Wakayama,
Le Minh Ha,

Philip Broadbridge

Daniel PACKWOOD
Pierluigi CESANA,

Shigenori FUIIKAWA,
Yasuhide FUKUMOTO,

Petros SOFRONIS,
Alex STAYKOV

Title Published

o VEGE - BEHERN OB RN SO T Tu—F L
Z DEEEMIHREI~DISH]  49pages

July 28, 2021

SICE-JSAE-AIMaP Tutorial
Advanced Automotive Control and Mathematics

December 27, 2021
110pages

IMI Workshop of the Joint Usage Research Projects
Exploring Mathematical and Practical Principles of Secure Computation
and Secret Sharing  114pages

February 9, 2022

20204F FERRAR UK R - 74T - A ¥ A MY WHERT
EEEINERD ik
HEALFHEOHIL  135pages

February 22, 2022

Proceedings of Forum “Math-for-Industry” 2021 March 28, 2022

-Mathematics for Digital Economy-  122pages

Perspectives on Artificial Intelligence and Machine Learning in November 8, 2022

Materials Science, February 4-6, 2022 74pages



MI Lecture Note Vol.89

MI Lecture Note Vol.90

K
TR
Il
TEH
AL

I E RS

Hril
w
i B
BUNiES
ks
#n
TR

i)
£ d
Az
R
&
Mz
»EE;
/N
F—
FhiHE
P

i
hH
HBin
E#E

e
i Bl
it

20204 BESRAR G MTKSFE~ A - 7 4 7 - 4 ¥ 5 A M) BI%ERT
EEFI RIS
MR BT B & BT 356pages

20224F FERFARS UMK~ A - 74 7 - 4 ¥ ¥ A M) FZeit
IeFE A eSS
F— Z AT — C AEHO 7200 O FMBLILBEOMEE  58pages

December 7, 2022

December 12, 2022



Institute of Mathematics for Industry
Kyushu University

NMNKENYR T 27 - A5 ANUIREFR
TUMNKZE R B BIE2HT

T819-0395 REMmAX It 744 TEL 092-802-4402 FAX 092-802-4405
URL http://www.imi.kyushu-u.ac.jp/





