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Preface

This lecture note is a collection of slides presented at the workshop "Mathematics for
Innovation in Information and Communication Technology," held in Fukuoka, Japan,
from September 25 to 27, 2024. The workshop was sponsored by the Institute of
Mathematics for Industry (IMI), Kyushu University, and JSPS KAKENHI Grant Number
JP23K26104.

The aim of this workshop was to provide a platform for both academic and industrial
researchers to engage in discussions and exchange ideas on cutting-edge research in
information and communication technology. Mathematics plays a crucial role in driving
innovation by offering abstraction, simplification, and mathematical modeling to address
real-world challenges.

The workshop featured 15 presentations.

On the first day, Professor Shota Saito discussed the guessing problem in information
theory and its relationship with lossy data compression. Professor Tad Matsumoto
examined decision-making problems in real-world communication systems from the
perspective of network information theory, including the Slepian-Wolf coding problem and
lossy coding with side information (Wyner-Ziv coding). Dr. Lei Jiang presented on
Direction of Arrival (DoA) and Doppler frequency estimation. Professor Christos
Masouros, an IEEE ComSoc Lecturer for 2024-2025, gave a talk on signal processing
for Integrated Sensing and Communications (ISAC).

On the second day, Professor Hidekazu Murata reported the latest experimental results on
collaborative wireless mobile terminals. Dr. Jun Muramatsu discussed the channel coding
theorem from an information-theoretic perspective, emphasizing the key role of constrained
random number generation. Professor Yutaka Jitsumatsu explored an ISAC problem and
proposed a joint radar and communication system using Orthogonal Time-Frequency Space
(OTFS) modulation signals. Professor Brian Kurkoski discussed applications of machine
learning to communication receiver design. Professor Hirosuke Yamamoto presented his
research on lossless coding methods, introducing two types of source coding: Almost
Instantaneous Fixed-to-Variable (AIFV) codes and the Asymmetric Encoding-Decoding
Scheme (AEDS).

On the third day, Professor Masayoshi Ohashi reported on the latest advancements in
Gabor-Division Spread Spectrum (GDSS) systems. Professor Osamu Muta discussed a
localization method using channel state information (CSI) from wireless LAN, aided by
deep learning. Professor Keigo Takeuchi presented a mathematical analysis of efficient
algorithms for compressed sensing (CS). Professor Hamdi Joudeh shared his recent
findings on Joint Communication and Sensing (JCAS) from an information-theoretic
perspective. Dr. Boris Karanov explored the application of deep learning to optical
communication receiver design. Finally, Professor Teruya Fujii delivered a lecture on the
grand design of a global-scale network connecting terrestrial and non-terrestrial networks
while sharing the same frequency bands.



Over the course of three days, various aspects of information and communication
technology were extensively discussed. I hope that all attendees will continue to collaborate
and communicate, fostering future research advancements.

Organizing Committee Chair: Yutaka Jitsumatsu

Organizing Committee Members

Yutaka Jitsumatsu (Kyushu University/ Associate Professor)

Masayoshi Ohashi (Advanced Telecommunications Research Institute International
(ATR)/ Collaborate Researcher)

Akio Hasegawa (Advanced Telecommunications Research Institute International (ATR) /
Head)

Katsutoshi Shinohara (Hitotsubashi University / Associate Professor)

Shintaro Mori (Fukuoka University / Assistant Professor)
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Program

Wednesday 25", September 2024
13:00 Opening

13:10 — 14:10 Shota Saito (Gunma University)

Two Problems Under Logarithmic Loss: Soft Guessing and Lossy Source Coding

14:25 — 15:25 Tad Matsumoto (IMT-Atlantique, JAIST and University of Oulu (Emeritus))

Decision making via End-to-End Lossy Distributed Wireless Cooperative Networks
— A Distributed Hypothesis Testing based Formulation —

16:10 — 16:40 Lei Jiang (Tokyo Institute of Technology)

2D smoothing based recursive subspace and factor graph framework for high mobility
geolocation and tracking; — With a duality consideration to joint Delay-Doppler estimation

16:55 — 17:55 Christos Masouros (University College London)

Physical Layer Technologies for Sustainable and Multi-functional Wireless Networks

Thursday 26th, September 2024
9:30-10:30 Hidekazu Murata (Yamaguchi University)
IRAREEIC L > TERT 27 A ERBIES X T LA

Novel Wireless Communication System Realized by Mobile Terminal Collaboration
(Japanese)

10:45 — 11:25 Jun Muramatsu (NTT Corporation)

Coding Theorems Based on Constrained-Random-Number Generators



13:00 — 14:00 Yutaka Jitsumatsu (Kyushu University)

Delay-Doppler Estimation for Joint Sensing and Communications

14:15 — 15:15 Brian Kurkoski (JAIST)

Designing communication receivers using machine learning techniques

15:30 — 16:30 Hirosuke Yamamoto (The University of Tokyo)

Lossless data compression coding schemes to replace Huffman and arithmetic coding

Friday 27th, September 2024
9:30 — 10:00 Masayoshi Ohashi (ATR)

Detection performance evaluation of Gabor-Division Spread Spectrum signals

10:00 — 10:30 Osamu Muta (Kyushu University)

Experimental Evaluations of Device-Free Localization Using Channel State Information in
WLAN Systems

10:45 — 11:25 Keigo Takeuchi (Toyohashi University of Technology)

Comprehensive Comparison of Message-Passing Algorithms for Compressed Sensing

13:30 — 14:30 Hamdi Joudeh (Eindhoven University of Technology)

Some information-theoretic aspects of joint communication and sensing



14:45 - 15:15 Boris Karanov (Eindhoven University of Technology)

Low-complexity machine learning for optimal communication receivers

15:30 — 16:30 Teruya Fujii (SoftBank Corp.)
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Three-dimensional spatial cell configuration in mobile communications

— Sharing the same frequency between terrestrial and sky cells — (Japanese)

Vi
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MATHEMATICS FOR INNOVATION IN INFORMATION AND
COMMUNICATION TECHNOLOGY

September 25th-27th, 2024, JR Hakata City, Fukuoka, Japan

Two Problems Under Logarithmic
Loss: Soft Guessing and Lossy Source
Coding
Shota Saito
Faculty of Informatics, Gunma University, Japan

Finite blocklength lossy source coding is essential to provide low-latency
communications in modern 5G networks and beyond. Some theoretical results for finite
blocklength lossy source coding under logarithmic loss are shown. Furthermore, the
connection between soft guessing and lossy source coding under logarithmic loss is
discussed.
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In modern 5G networks and beyond,

finite blocklength lossy source coding
is important to provide low-latency
communications




Title of this workshop No.3
BB EDEATERT DTz DEFREIE
Information and Fundamental
Communication Mathematics

A mathematical theory of communication

citation :
https://en.wikipedia.org/wiki/Claude_Shannon

In 1948, Shannon [1] proposed

a theoretical framework

that uses mathematical tools

to model and analyze

digital communication systems.

[1] C. E. Shannon, "A Mathematical Theory of Communication," 7he Bell System Technical Journal,

Vol. 27, pp. 379-423, 623-656, 1948.




Schematic diagram of a general communication system

Fig.1in [1]

No.5

[1] C. E. Shannon, "A Mathematical Theory of Communication," 7he Bell System Technical Journal,

Vol. 27, pp. 379-423, 623-656, 1948.

Schematic diagram of a general communication system

The information source produces a message.

No.6




Schematic diagram of a general communication system

The transmitter encodes the message into a form capable of being sent
as a signal.

Schematic diagram of a general communication system No.8

The channel is the medium through which the signal passes.




Schematic diagram of a general communication system No.9

The noise source represents the corruptions that afflict the signal
on its way to the receiver.

Schematic diagram of a general communication system

The receiver decodes the message.




Schematic diagram of a general communication system

The destination is the recipient of the message.

Schematic diagram of a general communication system No.12

A key component of such a system is source coding
(also known as data compression)




Source coding No.13

H _X‘]XQ.-.—Xn XX ...Xrn
Information Encoder Decoder =2 -

source

* Aninformation source produces a sequence X1 X>...X,
* Anencoder compresses the data
e Adecoder represents X:X,...X, byanestimate X X,...X,

Shannon investigated the case where the blocklength of the source
sequence to be compressed tends to infinity (i.e, n —» ).

Finite blocklength source coding

In modern 5G networks and beyond, low-latency is desired.

However, Shannon’s coding theorems cannot provide exact theoretical
benchmarks for low-latency communication because the assumption
that n — oo leads to undesired arbitrarily large latency.

To tackle this problem, finite blocklength source coding is essential.




Simple notation No.15

In finite blocklength source coding, n does not play an important role.
Hence, we use the following simple notation.

Information| X1X2-. Xan X Xs... X,
Encoder Decoder
source

< > < >

Information
source

Encoder Decoder

Lossless source coding vs. lossy source coding

Information
source

Encoder Decoder

Lossless source coding: X is the same as X
Source coding

Lossy source coding: X is not the same as X

Practical image and video compression systems usually tolerate some
imperfection between X and X.

In this talk, we focus on lossy source coding.




PART Il

Logarithmic loss in lossy source coding

Distortion measure No.18

Information
source

Encoder Decoder

— Definition
A distortion measure

evaluates the difference between a source symbol X and
a reproduction symbol X.

10



Common distortion measures

Hamming distortion:

Squared-error distortion:

For these distortion measures, ¥ is a deterministic value.

Example No.20

Estimation: deterministic value

Tomorrow's
weather will be
rain.

How likely is
it to rain?

11



Example No.21

Estimation: deterministic value Estimation: probability distribution

Tomorrow's
weather will be
rain.

Tomorrow's

weather will
be...

How likely is Rain: 85%
it to rain?

Cloudy: 15%

Sunny: 0%

Soft reconstruction for lossy source coding

In the following, we assume that X is a finite set.
The cardinality of X is denoted by |X]|.

Let be a set of all probability distributions on X, i.e.,

The reconstruction alphabet is . In other words,

The reconstructions are allowed to be soft.

12



Logarithmic loss No.23

—- Definition

The logarithmic loss distortion (log-loss distortion) between x € X
and its reconstruction P € P(X) is defined by

Example — next slide

Example No.24

——|Encoder Decoder—

ol 1| 2 | 3 | 4

Prob. =~ 1/8 1/8 1/4 1/2

13



Example No.25

——|Encoder Decoder—

o 1| 2 3 | 4

Prob.  1/2 1/4 1/8 1/8

Example No.26

——|Encoder Decoder—

oy 1| 2 | 3 | 4
0 0

Prob. i 0

14



Some remarks on logarithmic loss No.27

* The logarithmic loss was introduced in the context of lossy source
coding by Courtade and Wesel [2] and Courtade and Weissman [3].

» The logarithmic loss is widely used in machine learning.

[2] T. A. Courtade and R. D. Wesel, "Multiterminal source coding with an entropy-based distortion
measure," 2077 IEEE ISIT, St. Petersburg, Russia, 2011, pp. 2040-2044.

[31T. A. Courtade and T. Weissman, "Multiterminal Source Coding Under Logarithmic Loss," in IEEE
Transactions on Information Theory, vol. 60, no. 1, pp. 740-761, Jan. 2014.

PART Il

Achievability and converse bounds

for finite blocklength lossy source coding
under logarithmic loss

15



——|Encoder f |—— |Decoder g | —

e let
e Arandom variable X takes values in X
* A probability distribution of X is denoted by Py

* We assume that Py(a) > Py(b) fora < b

- Definition
A variable-length lossy source code is a pair of mappings

where denotes a finite-length binary strings including an
empty string ¥, i.e,,

16



Definition

If (f,g) is such that no codeword in f(X) is a prefix of any another
codeword in f(X), we call (f, g) prefix free.

Example

>

prefix free

Fundamental limit No.32

— Definition

For x € X, let £(f(x)) denote the length of f(x).
A variable-length lossy source code (f, g) is an (L, D) code if

and

— Definition

17



Converse theorem No.33

- Theorem [4]

where H(X) is the Shannon entropy

[4] Y. Y. Shkel and S. Verdu, "A Single-Shot Approach to Lossy Source Coding Under Logarithmic Loss,"
in IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 129-147, Jan. 2018

Proof of converse theorem No.34

We only show the proof of L*(D).

For an arbitrary (L, D) code, we have the following lemma.

Lemmal

Remark
Throughout, log = log, and exp(a) = 2¢

18



Proof of converse theorem No.35

Proof of Lemma 1

>Definition of log-loss

Po(-) = g(m)

\

Some calculation

Proof of converse theorem No.36

Now, consider an arbitrary (L, D) code. We have

> Lemma 1

19



Proof of converse theorem No.37

Let Qx (x) be defined by
Then,

Previous
slide

Achievability theorem No.38

— Theorem [4]

We explain the
proof of this
upper bound.

where Z is defined by

[4] Y. Y. Shkel and S. Verdu, "A Single-Shot Approach to Lossy Source Coding Under Logarithmic Loss,"
in IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 129-147, Jan. 2018

20



Proof of achievability theorem No.39

First, we introduce the following lemma.

Lemma 2

Forany D > 0,P € P(X), we have ,
where

Proof:

Since implies ,

Proof of achievability theorem No.40

Let L > 0.
Forx € X ={1,2,...,|X]|}, we define the encoder f;* as follows.

X —{0,1}*—

2 o

______

21



Proof of achievability theorem No.41

Next, we define the decoder g; as follows.

where
Proof of achievability theorem No.42

Now, consider the code (ffexp(D)J ) gfexp(D)J)

For any x € X, we have

Hence, (ffexp(D)J,gfexp(D)J) is an (L, D) code for some L.

22



Proof of achievability theorem No.43

Moreover, we see that the code <ffexp(D)J,gfexp(D)J) is optimal in the
average codeword length sense because

Lemma 2 implies no codeword can cover more than elements
and

the encoder f;" assigns shortest strings to the most likely elements.

Proof of achievability theorem No.44

1~

where the final inequality follows from Theorem 2 of [5] [ |

[5] I. Kontoyiannis and S. Verdd, "Optimal Lossless Data Compression: Non-Asymptotics and Asymptotics,"”
in IEEE Transactions on Information Theory, vol. 60, no. 2, pp. 777-795, Feb. 2014,

23



Cumulant generating function of codeword lengths

So far, we have considered the average codeword length:

In some applications, we may want to impose more penalty for
longer codewords.

For this purpose, we can use a cumulant generating function
of codeword lengths, which is defied as

Remarks No.46

* By using L'HOpital's theorem, we have

* We can control the contribution of the longer codewords via
a free parameter p in the cumulant generating function; if we

increase the value of p, we impose a more severe penalty for
longer codewords.

24




Remarks No.47

Campbell [6] first proposed the cumulant generating function
of codeword lengths for variable-length lossless source coding.
* Summary of variable-length source coding under the cumulant

generating function of codeword lengths
- see, eqg., [7].

[6] L. L. Campbell, "A coding theorem and Rényi's entropy," Information and Control, vol. 8, no. 4,
pp. 423-429, Aug. 1965.

[7] S. Saito and T. Matsushima, "Non-Asymptotic Bounds of Cumulant Generating Function of Codeword

Lengths in Variable-Length Lossy Compression,” in IEEE Transactions on Information Theory, vol. 69,
no. 4, pp. 2113-2119, April 2023.

Fundamental limit No.48
— Definition

A variable-length lossy source code (f, g) is an (A, D, p) code if

and

— Definition

25



Converse and achievability bounds No.49

- Theorem [8]

where H, (X) is the Rényi entropy of order a:

[8] H. Wu and H. Joudeh, "Soft Guessing Under Logarithmic Loss," 2023 IEEE International Symposium
on Information Theory (ISIT), Taipei, Taiwan, 2023, pp. 466-471

Remarks No.50

 Saito [9] derived the following achievability bound:

where Z is defined by Z = {L(?M;X(D)J-‘

» For some cases, the above upper bound is tighter than that in [8].

[9] S. Saito, "An Upper Bound of Cumulant Generating Function of Codeword Lengths in Variable-Length
Lossy Source Coding Under Logarithmic Loss," in 2024 International Symposium on Information Theory
and Its Applications (ISITA2024), November 2024.

26



PART IV

Soft guessing

under logarithmic loss

Example No.52

Suppose a malicious person enter the password many times and
try to guess the password.

How many time does he enter the password until he correctly guess
the password?

27



Guessing No.53

In 1994, Massey pioneered the information-theoretic study on the
problem of guessing and showed that the average number of guesses
is characterized by the Shannon entropy

Two years later, Arikan proved that the guessing moment is characterized
by the Rényi entropy

Since then, the problem of guessing has been studied in various contexts.

Guessing No.54

| e guessing subject to distortion ————Arikan & Merhav [10] first proposed.
guessing allowing errors,

uessing under source uncertainty,
j%int som?rce—channel coding and gyuessing, Recently' Wu & Joudeh [8] and
guessing via an unreliable oracle, Saito [11] investigated soft guessing.
guessing with limited memory,
multi-agent guesswork,
guesswork of hash functions,
multi-user guesswork,
universal randomized guessing,
guessing individual sequences,
guesses transmitted via a noisy channel,
and so on.

[8] H. Wu and H. Joudeh, "Soft Guessing Under Logarithmic Loss," 2023 IEEE International Symposium
on Information Theory (ISIT), Taipei, Taiwan, 2023, pp. 466-471

[10] E. Arikan and N. Merhav, "Guessing subject to distortion," in IEEE Transactions on Information
Theory, vol. 44, no. 3, pp. 1041-1056, May 1998

[11] S. Saito, “Soft guessing under log-loss distortion allowing errors," 2024 IEEE International Symposium
on Information Theory (ISIT), Athens, Greece, 2024.

28



Soft guessing No.55

Suppose Alice has x € X, which is a realization of a random variable X.

Bob, who does not know x and wants to guess it, has his soft guesses
of x as follows:

Soft guessing No.56

Let D > 0 be a predetermined logarithmic loss level

Bob shows P; to Alice and ask “Is d(x, P,) < D?"

.

1

Alice calculates d(x, P,), where d(z, P) = log,

.

If d(x, P,) > D, then Alice answers “No.”

.

continue

.

29



Soft guessing No.57

Next, Bob shows P, to Alice and ask “Is d(x, P,) < D?"

-

Alice calculates d(x, P,), where d(z, P) = log,

=

If d(x, P,) < D, then Alice answers “Yes!”

=

End

1

e Weassume X ={1,2,...,|X]|}and Px(1) = Px(2) == Px(|X]) > 0.

» For some integer N, a guessing strategy ¢ is defined by

* D > 0is apredetermined logarithmic loss level.

* We consider a D-admissible guessing strategy:

Definition
If , then the guessing strategy is called
D-admissible. D-admissible guessing strategy is denoted by G(D).
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* When X = x, for a D-admissible guessing strategy G(D), the guessing
continues until d(x, %) < D at the j-thstep (j = 1,2, ..., N).

« The guessing function G (x) induced by the D-admissible guessing
strategy G(D) is the minimum index j for which d(x, 13]) < D.

 In other words, the guessing function G (x) is the number of guesses
required by the D-admissible guessing strategy G(D) when X = x.

Fundamental limit No.60

— Definition

For D > 0 and p > 0, the minimal p-th guessing moment is defined
by
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Converse and achievability bounds No.61

- Theorem [8]

We show only the proof of the achievability bound (upper bound)
and consider the connection between guessing and source coding.

[8] H. Wu and H. Joudeh, "Soft Guessing Under Logarithmic Loss," 2023 IEEE International Symposium
on Information Theory (ISIT), Taipei, Taiwan, 2023, pp. 466-471

Proof of the achievability bound

Let and we construct the guessing strategy G* as follows:

wherefori=1,2,...,N — 1,

and
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Proof of the achievability bound No.63

12 L L+1L+2 2L - (N—=DL+1 (N=1DL+2 - |X|

Proof of the achievability bound

The guessing strategy G* is D-admissible because for any x € X, there
exists P*; such that
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Proof of the achievability bound No.65

Moreover, the guessing strategy G* is optimal soft guessing strategy
because

Lemma 2 implies no soft guess can cover more than elements

and

higher probability elements are assigned shorter guessing orders.

Proof of the achievability bound No.66

The guessing function G*(x) induced by the guessing strategy G*
is given by Y

L = |exp(D)]

Finally, some calculation yields Lt

and we complete the proof. W
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Remark No.67

The soft guessing [8] was recently extended to soft guessing allowing
errors by Saito [11].

[8] H. Wu and H. Joudeh, "Soft Guessing Under Logarithmic Loss," 2023 IEEE International Symposium
on Information Theory (ISIT), Taipei, Taiwan, 2023, pp. 466-471

[11] S. Saito, “Soft guessing under log-loss distortion allowing errors," 2024 IEEE International Symposium
on Information Theory (ISIT), Athens, Greece, 2024.

Summary
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Summary No.69

Finite blocklength lossy source coding is essential to provide
low-latency communications in modern 5G networks and beyond.

Some theoretical results for finite blocklength lossy source coding
under logarithmic loss were shown.

Moreover, the connection between soft guessing and lossy
source coding under logarithmic loss were discussed.
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Abstract

The goal of this tutorial is to provide the course takers with the knowledge on
Decision-Making Theory by Distributed Hypothesis Testing (DHT) with Lossy Correlated
Sources Observations via End-to-End Distributed Lossy Communications. First of all, this
tutorial focuses on Mathematical and Information Theoretic background needed to
understand the concept, where important Theorems, Lemmas and their practical meanings are
explained. Then, this tutorial introduces analytical methods based on the theorems, and the
results of numerical calculations for evaluating their performance represented by their
corresponding Rate-Error-Distortion functions and outage probabilities.

This tutorial applies the theoretical framework of DHT for the decision making via lossy
networks. The relationship in the mathematical bases between Wireless Lossy
Communications (WLC) and DHT, as well as between WLC and Machine Learning, between
WLC and Semantic Communications are investigated.

We consider the DHT and WLC Toy Scenario, as:

- Two sources, X and Y are correlated, and the correlation is expressed by random bit
flipping Bern(po) (if po=0.0, X and Y are fully correlated).

- X and Y are lossy-compressed with their rates Rx and Ry, respectively. The DHT Center or
Network Destination of WLC aim to decode based on the lossy-compressed data. Let the
decoded data be denoted by U. Then, U, Y, X form a Markov chain, U->X->Y in both
DHT and WLC. Furthermore, in Machine Learning systems, also U->X->Y holds where
X is the semantic source, U is the semantic decoding result, and Y can be seen as the
training sequence.

This tutorial provides the course takers with theoretical sketch in mathematics for those Toy
Scenarios where some example cases are used. To help course takers understand the
mathematics, a slide set (roughly 100 pages long) will be distributed beforehand. The curse
slide set has the following Sections:
1. End-to-End Lossless Relaying: Slepian Wolf Theorem with Source-Channel
Separation
a. EXIT Analysis for Source Bit-Flipped MIMO Transmission with Turbo
Equalization
b. Slepian-Wolf Formulation for Lossless Two-Way Relay Networks
2. End-to-End Lossy Distributed Multi-terminal Networks: Rate Distortion Analysis
a. Wyner-Ziv Formulation for End-to-End Lossy Two-Way Relay Network
b. Berger-Tung Formulation for Two Source One Helper Network
c. End-to-End Lossless and Lossy Multiple Access Networks
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d. Two Stage Wyner-Ziv Network: Distortion Transfer Analysis
3. Wyner-Ziv Formulation for Decision Making Process

a. Reuvisit of Helper-aided Lossy Networks

b. Distributed Hypothesis Testing (DHT)

c. Semantic Communications

d. Training Process of Machine Learning

Most of the presentation slides are available at:
https://dspace.jaist.ac.jp/dspace/bitstream/10119/19040/1/Tutorial.pdf

Keywords: Lossy Wireless Communications, Distributed Multi-terminal Source Coding,
Distributed Hypothesis Testing, 10T, V2X, Sensor Networks, Decision Making

References

[1] Zhou, Xiaobo, Meng Cheng, Xin He, and Tad Matsumoto, "Exact and approximated outage
probability analyses for decode-and-forward relaying system allowing intra-link errors,”" IEEE
Transactions on Wireless Communications, vol. 13, no. 12, pp. 7062-7071, Dec. 2014.

[2] Lin Wensheng, Shen Qian, and Tad Matsumoto, “Lossy-Forward Relaying for Lossy
Communications: Rate-Distortion and Outage Probability Analyses”, IEEE Transactions on
Wireless Communications, Vol. 18, No. 8, 05 June 2019, pp. pp. 3974-3986, Dol:
10.1109/TWC.2019.2919831

[3] Shulin Song, Meng Cheng, Jiguang He , Xiaobo Zhou, and Tad Matsumoto,”Outage Probability
of One-Source-with-One-Helper Sensor Systems in Block Rayleigh Fading Multiple Access
Channels”, IEEE Sensor Journal, Accepted date: Aug. 24, DOI: 10.1109/JSEN.2020.3018787

[4] Amin Zribi, Lin Wensheng, Reza Asvadi, Elsa Dupraz, Tad Matsumoto, “Two-stage Successive
Wyner-Ziv Lossy Forward Relaying for Lossy Communications: Rate-distortion and Outage
Probability Analyses”, Under Review, IEEE Trans. Vehcular Technology.

[5] Gil Katz, Pablo Piantanida, and Merouane Debba, “Distributed Binary Detection With Lossy Data
Compression”, IEEE TRANS. ON INFORMATION THEORY, VOL. 63, NO. 8, 2017

[6] Elsa Dupraz, Ismaila Salihou Adamou, Reza Asvadi, and Tad Matsumoto, “Practical Short-Length
Coding Schemes for Binary Distributed Hypothesis Testing”, Conference Record, IEEE ISIT 2024

[7] Fatemeh Khaledian, Reza Asvadi, Elsa Duprazy, and Tad Matsumoto, “Covering Codes as Near
Optimal Quantizers for Distributed Hypothesis Testing Against Independence”, Conference
Record, IEEE ITW 2024

[8] Wensheng Lin, Yuna Yan, Lixin Li, Zhu Han, and Tad Matsumoto, “Semantic-Forward Relaying:
A Novel Framework Towards 6G Cooperative Communications”, IEEE Communications Letters:
1-1 2024-01-11

[9] Mahdi Nangir, Reza Asvadi, Jun Chen, Mahmoud Ahmadian-Attari, and Tad Matsumoto,
“Successive Wyner-Ziv Coding for the Binary CEO Problem under Logarithmic Loss”, IEEE
Trans. On Communications, 67(11) 7512-7525, 2019

[10]Abbas ElI Gamal and Young-Han Kim, “Network Information Theory”, Cambridge University
Press, 2011, ISBN: 978-1-107-00873-1

38



MATHEMATICS FOR INNOVATION IN INFORMATION AND
COMMUNICATION TECHNOLOGY

September 25th-27th, 2024, JR Hakata City, Fukuoka, Japan

2D Smoothing based Recursive
Subspace and Factor Graph
Framework for High Mobility
Geolocation and Tracking

- With a duality consideration to joint Delay-
Doppler estimation

Lei Jiang; Nopphon Keerativoranan, Tad
Matsumoto**, Jun-ichi Takada"

*Department of Transdisciplinary Science and Engineering,
Tokyo Institute of Technology, Japan

*Mathematical and Electrical Engineering, IMT-Atlantique, Brest,
invited Professor, JAIST and UOulu, Professor Emeritus

This paper proposes a distributed sensor-based RECursive Subspace and Factor Graph
(REC-SaFG) framework for direction-of-arrival (DoA) estimation and geolocation of a
fast-moving target. The whole framework includes two recursive processes: (1) DoA
estimation and tracking by 2-dimensional (2D) smoothing-based recursive subspace
technigque using low rank adaptive filter (LORAF); (2) Factor graph (FG)-based
geolocation and tracking network utilizing an extended Kalman filter (EKF) which takes
into account the target's position and velocity and updates them as well as the acceleration
information. In (1), the recursive subspace technique aims to fully utilize sample size
insufficiency due to the fast-moving target and to recover the rank deficiency incurred by
the coherent signal components. In (2), the estimated DoA and target velocity information
obtained by (1) is considered as input to the unified FG implemented by EKF for
geolocation and tracking (FG-GE-TR) of the target position. By integrating these two
processes, the REC-SaFG framework promises significant improvements in the accuracy
and efficiency of geolocation and tracking systems, particularly in environments
characterized by a fast-moving target and the need for high-resolution tracking.

Through extensive numerical simulations, the proposed technique demonstrates superior
performance in high-mobility applications, including unmanned aerial vehicles (UAVS)
and commercial aviation. Furthermore, a duality consideration is explored for joint Delay-
Doppler estimation in Orthogonal Time Frequency Space (OTFS) modulation schemes,
extending the applicability of the proposed method to next-generation communication
systems. This integration lays the groundwork for efficient signal processing in high-
mobility scenarios, bridging the gap between theoretical advancements and practical
implementations.
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Abstract: The future Global cellular infrastructure will underpin smart city applications,
urban security, infrastructure monitoring, smart mobility, among an array of emerging
applications that require new network functionalities beyond communications. Key network
KPIs for 6G involve Gb/s data rates; cm-level localization; ps-level latency; Tbh/Joule energy
efficiency. Future networks will also need to support the UN’s Sustainable Development
Goals to ensure sustainability, net-zero emissions, resilience and inclusivity.

The multifunctionality and the net-zero emissions agenda necessitate a redesign of the signals
and waveforms for 6G and beyond. In this talk, we first explore a recent research direction
involving symbol-level precoding (SLP) approaches that treat interference as a useful
resource in multi-access communication systems. These have been shown to offer orders of
magnitude savings in power consumption, over a range of communication scenarios. The
second part of the talk focuses on enabling the multi-functionality of signals and wireless
transmissions, as a means of hardware reuse and carbon footprint reduction. We overview
recent research in the area of integrated sensing and communications (ISAC), that is a
paradigm shift that enables a both sensing and communication functionalities from a single
transmission, a single spectrum use and ultimately a common infrastructure.

With the rising demand for sustainability and resilience from the network infrastructure, the
above technologies are becoming essential building blocks of the wireless network.
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* Multi-access technologies to
exploit ‘Green’ interference
power

» Multi-access technologies to
enable dual use of hardware -
multifunctionality
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ICT: ~2% of global CO, emissions
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Constructive Interference for M-PSK

Im ClI optimization
A . I
< / region m a . b
Yi = Yib;
—— o
Ve . ; Re
b; = el®i Re 1

Constructive Interference:
1.
2. la;l < (ag —y)tan

Constructive Interference for QAM

Section 1: No scope for CI

Section 2: CI only on the Im

Section 3: CI only on the Re

Note: We focus on PSK in the following for
analytical simplicity
Section 4: CI similar to QPSK case

A. Li and C. Masouros, “Exploiting Constructive Mutual Coupling in P2P MIMO by Analog-Digital Phase
Alignment”, IEEE Trans. Wireless Commes., vol. 16, no. 3, pp. 1948-1962, March 2017
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Performance Evaluation

Power Minimization

(N, x K) 5x4, QPSK 4x4, QPSK

~ 1-2dB SNR gain in 5x4
~ 5-6dB gain in 4x4 MIMO

Just by exploiting
interference already
existing in the system!!

11

Feasibility Evaluation

N x 4, QPSK

% Conventional beamforming
non-feasible for less than
4 tx antennas

v/ CI more relaxed allowing
feasibility for less
antennas

Feasibility: Satisfying the SNR constraint with a ‘reasonable’ transmit power (below a reasonable threshold)

12
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Conventional:
- Statistical constraints
- Instantaneous violation

K
minZIIwiIIZ s.t.
Wi 4

i=1

» outages
[nlw,|*

K Tw + Ny
k+i

i

_'_l
outages
Interference Exploitation:
- Instantaneous constraints
- No outages

min|[x||?
s.t.|Im(hxb;})

< (Re(h!xb;) — |JT;Ny) tan @
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Conventional Interference Exploitation

Lower complexity at the resource-limited MU receiver
No need for CSI training and overheads at MU receiver
Immune to such CSI errors

C. Masouros, “Harvesting Signal Power from Constructive Interference in Multiuser Downlinks”, in the book “Wireless Energy Harvesting
for Future Wireless Communications”, Edited by: John Thompson, Symeon Chatzinotas, Salman Durrani, 2018 edition Springer
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Proof-of-Concept — 6x2 MIMO-OFDM, QPSK

5dB gain

C——

T. Xu, F. Liu, A. Li, C. Masouros, |. Darwazeh, “Constructive Interference Precoding for Reliable Non-Orthogonal loT Signaling”,
IEEE INFOCOM2019

A. Li, C. Masouros, “Interference Exploitation Precoding Made Practical: Optimal Closed-Form Solutions for PSK Modulations”,
|IEEE Trans. Wireless Comms., vol. 17, no. 11, pp. 7661-7676, 2018 15

15

Data-Driven CI Precoding (SLP-DNet)

Power Minimization
min||wl|?
s.t. [Im(hfwe/C¢2)]|
< (Re(hiTwej(_¢i)) = M) tan ¢

Unfolding using the Lagrangian —
regularised loss function:

16
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Data-Driven CIl - NN Quantization

Quantized NN weights

Binary (SLP-DBNet): Memory consumption
Complexity

Ternary (SLP-DQNet): s/Hardware Friendly

Stochastic quantization

(SLP-DQNet):

17

Numerical Results — PSK

Performance trade-off Memory and complexity
» Scalable performance vs quantization trade-off.
»  Down to 50% quantization with ~1.5dB loss for Ternary Quantization.
» Scalable memory / complexity vs power trade-off

A. Mohammad, C. Masouros, |. Andreopoulos, “A Memory-Efficient Learning Framework for Symbol Level Precoding with
Quantized NN Weights”, IEEE Open Journal ComSoc., vol. 4, pp. 1334-1349, 2023
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CoMA: Constructive Multiple Access

Vii = i Z Wi Xk + Ny
=

yl = h’{WZxZ - h’{WZQZ + h’{wlxl + ng

» Challenge: Symbol-by-symbol (sub msec level) SIC

* How to remove the detrimental effect of interference + need for SIC?

19

NOMA For perfect SIC:
R; = log, (1 + |h{w1|z) Single-user performance

(x, must be decodable by both users)

2 2
|RTw,| [Ryw.|
Ry = min(log, [ 1+ —A—2 ) log, [ 1+ 722
2 ( gz( w2 +02) 8\ " T hlwy |2 + o7

Less than SDMA

CoMA

Ry = log, (1 + |h{W1|2 + |h{Wz|2)

Better than single-user

|RIw, |2 + o2

1w, |* )

R, = log, (l +

Like SDMA

A. Salem, X. Tong, A. Li and C. Masouros, "NOMA Made Practical: Removing the Receive SIC Processing Through Interference
Exploitation," in IEEE Open Journal of the Communications Society, vol. 5, pp. 2723-2734, 2024
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+ CoMA improves Tx power for given SNR target, by exploiting interference power

» CoMA improves SER for given Tx power budget

A. Salem, X. Tong, A. Li and C. Masouros, "NOMA Made Practical: Removing the Receive SIC Processing Through Interference
Exploitation," in IEEE Open Journal of the Communications Society, vol. 5, pp. 2723-2734, 2024

21
Decoding-only complexity:
X1, X, @User 1+ x, @User 2 User 1 User 2 User 1
BS antennas (N) Modulation order (M,)
» CoMA reduces decoding complexity w.r.t. NOMA
» Don’t forget CSIR estimation complexity, errors, quantization... !
A. Salem, X. Tong, A. Li and C. Masouros, "NOMA Made Practical: Removing the Receive SIC Processing Through Interference
Exploitation," in IEEE Open Journal of the Communications Society, vol. 5, pp. 2723-2734, 2024
22
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Sustainable and Multifunctional Wireless Networks
Part Il: Sustainability Through
Hardware Reuse and
Multifunctionality
Christos Masouros
Dept. of Electronic & Electrical Eng.
University College London
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A Wireless Infrastructure with Multiple
Functionalities - Beyond just Communications

Gathering data,

rt mobilit
building Intelligence Smart mobility

Sensed
data

Next Generation
Communications

Localization

Imaging

Security,
monitoring, EM signatures
incident detection

Face/figure recognition

“

F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, A. Hassanien, Y. Eldar, S. Buzzi, “Integrated Sensing and Communications: Toward Future
Dual-functional Wireless Networks”, IEEE Journal on Sel. Areas Comms., vol. 40, no. 6, pp. 1728-1767, June 2022
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Dual-Functional
Radar-Comms

=

Comms and Radar systems cooperate instead of competing for resources.

* Mutually benefit the real-time performance for both radar and communication
systems

» Turn radar applications, which are on the rise with emerging loT applications
such as autonomous cars, into a commodity.

F. Liu, C. Masouros, H. Griffiths, A. Petropulu, L. Hanzo “Joint Radar and Communication Design: Applications, State-of-the-art, and
the Road Ahead”, IEEE Trans Commun., vol. 68, no. 6, pp. 3834-3862, June 2020.
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DFRC Signalling Technologies

e Radar-centric design Radar WF wp  Radar-Centric

— Pulse Interval Modulation (PIM) ) DFRC
. . . modulation
— Radar beampattern sidelobe signalling
— Index Modulation (IM) using radar waveforms
e Comms-centric design Comms WF o c c‘t"}"‘[‘)s':'kc
— OFDM based DFRC y
— IEEE 802.11ad based DFRC Radar detection  wmed
o o _ Joint DFRC
e Jointly optimized design Radar Comms
— Radar-centric joint design
Trade-off

— Weighted Comms-Radar optimization

New DFRC WF
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Dual-functional Radar-Communication Signals

Joint Design

31
Weighted optimization
Ideal radar
waveform
Q
Q
5
3 p-0
2
[0}
©
u“—
o
2
3
[
Q
[
o
S
©
°
. s} p—1
p - Comms priority ©
p - Radar priority .
Comms average achievable rate (bps/Hz/user)
F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, "Toward dual-functional radar-communication systems: Optimal
waveform design," IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264-4279, Aug 2018.
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Radar Beampattern
measurement

e=1 0=0.2
0=0.9 0=0.1
Py, = Pr(Power <y | obstacle present)
Py = Pr(Power <y | obstacle not present)
0=0.5 o=

T. Xu, F. Liu, C. Masouros, I. Darwazeh, “An Experimental Proof of Concept for Integrated sensing and Communications
Waveform Design”, IEEE Open Journal of ComSoc, vol. 3, pp. 1643-1655, 2022
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Dual-functional Radar-Communication Signals

Radar-centric Design
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Over-The-Air Lab Setup Radar RFSoC

platform

LFM waveform

Radar node is situated behind the ‘bin’ target L q
next to the dual radar Tx and Rx dishes. Three indices are considered

The comms Rx ARESTOR node is seen on * centre _frequenCy
the bench behind its receiving dish to the * bandwidth
right of the image. * polarization

M. Temiz, N. Peters, C. Horne, M. Ritchie, C. Masouros, “An Experimental Study of Radar-Centric Transmission for Integrated
Sensing and Communications”, IEEE Transactions on Microwave Theory and Techniques, in press
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T,=50us

T.=10ps

Maximum Throughput [Mbits/s]
Radar SNR [dB]

Chirp Duration (T;) [us]

» | Radar pulse duration — 1 Comms throughput, | Radar integration gain

36
60



Dual-functional Radar-Communication

Subject to Security threats?

37

Radar + Information: Subject to Security Threats

Target

(Eve) o Target can be:

Legitimate user 1 * Enemy aircraft
(Bob 1) * Malicious UAV
* Non-cooperative car

Legitimate user 2 ° .
Bob 2
(Bob 2) Malicious target can:
* Detect Data intended for LUs

Legitimate user K — unique to DFRC

(Bob K) * Infer critical radar info

(location, 1D, ..., ...)
DFRC BS (Alice)

* Need for PHY security guarantees over
the Radar beamwidth

» Secure Beamforming / Artificial Noise
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Unique Sensing Performance vs Security Trade-offs

'\ Power towards the direction SINRg
of target Target k\-\ Location uncertainty
E .
§ Useful signal power (SINRg) (Eve) interval
towards the target Legitimate user 1
SCNRRadar (Bob 1)
4 SINR, towards the users

SINR,,
Legitimate user 2
(Bob 2)
Apply PHY Sec approaches
Legitimate user K
+ Secure BF (Bob K)

* AN, Jamming
- Cooperative Security DFRC BS (Alice)

Z. Wei, F. Liu, C. Masouros, N. Su, A. Petropulu, “Towards Multi-Functional 6G Wireless Networks: Integrating Sensing, Communication and
Security” IEEE Comms Mag., vol. 60, no. 4, pp. 65-71, April 2022

39
Secure DFRC Transmission — An Artificial Noise Design
N =18 antennas, K = 4 legitimate users, one target — LU SNR y;, = 10dB.
Target <« —
(Eve) ‘\ Location uncertainty ;:»T
interval >
Y/ =
Q user 1 2
o]
2 Trade-off
a user 2 < rade-o
o
3
Q user K 4
DFRC BS (AlICE) PSLR ¥,
N. Su, F. Liu, C. Masouros, “Secure Radar-Communication Systems with Malicious Targets: Integrating Radar, Communications
and Jamming Functionalities”, IEEE Trans. Wireless Comms., vol. 20, no. 1, pp. 83-95, Jan. 2021
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Secure DFRC Communication

Exploiting Subcarrier Interference

41
a =09, QPSK, N=6, K=2
OFDM
Compression factor a = Af - T
SEFDM
SEFDM: Controllable interference, that can be removed at Rx
T. Xu, C. Masouros, |. Darwazeh “Design and Prototyping of Hybrid Analog Digital Multiuser MIMO Beamforming for Non-
Orthogonal Signals”, IEEE loT Journal, vol. 7, no. 3, pp. 1872-1883, March 2020
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ISAC trade-off for SEFDM
Security by SEFDM:

« Controllable interference,
removable at legitimate Rx

* Non-resolvable at Eve

Compression factora = Af - T

T. Xu, Y. Ye, C. Masouros, “Signal Waveform Design for Resilient Integrated Sensing and Communications” IEEE CSNDSP 2024
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Secure DFRC Communication
Exploiting Constructive / Destructive
Interference
44
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Im Im, Vi = yib{

Re q

b; = el®i
Constructive Interference:

1.
2. la;l < (ag —y)tanb

C. Masouros and G. Zheng, “Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization”, IEEE
Trans. Sig. Proc., vol.63, no.14, pp.3668-3680, July, 2015

A. Li, et. al,“A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions”,
IEEE Comms. Surveys and tutorials., vol. 22, no. 2, pp. 796-839, 2020
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DFRC BS (Alice)
<«— Radar SNR
<«—— Constructive interference
to users
<«—— Destructive interference
to target (Eve)
N. Su, F. Liu, Z. Wei, Y. Liu, C. Masouros, “Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for
Resilience Against Target Eavesdropping”, IEEE Trans. Wireless Comms. vol. 21, no. 9, pp. 7238-7252, Sept. 2022
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N =10 antennas, K = 5 legitimate users, one target. Radar beampattern

Signal Constellations at users / target

Constructive interference

Constructive - Destructive interference

SER at users / target

(Ch

QPSK

N. Su, F. Liu, Z. Wei, Y. Liu, C. Masouros, “Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for
Resilience Against Target Eavesdropping”, IEEE Trans. Wireless Comms. vol. 21, no. 9, pp. 7238-7252, Sept. 2022
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Secure DFRC

Securing the Sensing

48
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DFRC Infrastructure: Opportunity for Malicious Sensing

* Need to secure both Communications and Sensing Functionalities
» Secure DFRC Communication
» Secure DFRC Sensing

49

X = WS (W: beamforming matrix; S: symbol matrix)
Mutual information with perfectly known reference signal

Legitimate receiver:

:] Eavesdropper:

A, P; « Eigendecomposition of Ry,

A¢, Q; < Eigendecomposition of Ry,

J. Zou, C. Masouros, F. Liu, S. Sun, “Securing the Sensing Functionality in ISAC Networks: An Artificial Noise Design”, IEEE
Trans. Veh. Tech., in press
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(with artificial noise)

X = WS + N (W: beamforming matrix; S: symbol matrix; N: artificial noise matrix; )

Mutual information with perfectly known reference signal

J. Zou, C. Masouros, F. Liu, S. Sun, “Securing the Sensing Functionality in ISAC Networks: An Artificial Noise Design”, IEEE
Trans. Veh. Tech., in press
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N;: 6, SNR,,= 28dB, K=3, 1 target N,: 6, P,=30dBm, K=3, 1 target
Baseline: maximize Ml
of legitimate receiver
7dBI 19dB
» MI Gap increases with secure sensing transmission
 Trade-off between Secure Sensing vs Comms performance
52
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Secure DFRC Synergies

Sensing-Assisted Data Security

53
Eve-unaware transmission Sensing-assisted Secure transmission
» Synergy with One end-goal: Secure Comms — not separate Comms vs Sensing
» New analytical framework where Eve’s info is subject to sensing performance
(MSE,CRB,...)
N. Su, F. Liu, C. Masouros, “Sensing-Assisted Eavesdropper Estimation: An ISAC Breakthrough in PHY Security”, IEEE Trans.
Wireless Comms., in press
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—— Comms Users’ DOA

Stage 1: Initial Eve’s estimation (without comms) comms Users
<« RadarFisher —— Eves’ estimated DOA Eve
information i
matrix g
B Eve
BS (Alice)

Stage 2 (iterative): DFRC for Eve’s estimation refinement + secure comms

-
e
SR =

PSRL
Function of Eve’s uncertainty |:|

Main beam e 1 Eve’s estimation — | uncertainty
o 1 DoF for secure transmission —
e 1 Resources for Eve’s estimation
refinement

» lterative estimation that improves
performance of secure transmission

N. Su, F. Liu, C. Masouros, “Sensing-Assisted Eavesdropper Estimation: An ISAC Breakthrough in PHY Security”, IEEE Trans.
Wireless Comms., vol. 23, no. 4, pp. 3162-3174, April 2024
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Radar Beampattern evolution Secrecy Rate evolution

Secrecy — Sensing Trade-off

p=05 Iteration number

p - Sensing priority
p - Secrecy priority

Root-CRB of angle (deg)

Root-CRB of amplitude
Root-CRB of angle (deg)

Iteration number Iteration number
Secrecy Rate (bit/s/Hz)
N. Su, F. Liu, C. Masouros, “Sensing-Assisted Eavesdropper Estimation: An ISAC Breakthrough in PHY Security”, IEEE Trans.
Wireless Comms., vol. 23, no. 4, pp. 3162-3174, April 2024
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Sensing  Comms » A

57
ISAC book

IEEE ComSoc
ISAC ETI
ISAC ETSI ISG
ISAC TWG
ISACET
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MATHEMATICS FOR INNOVATION IN INFORMATION AND COMMUNICATION TECHNOLOGY

September 25th - 27th, 2024, JR Hakata City, Fukuoka, Japan

Novel Wireless Communication System Realized by
Mobile Terminal Collaboration

Hidekazu Murata

Graduate School of Sciences and Technology for Innovation
Yamaguchi University, Japan
muratahidekazu@yamaguchi-u.ac. jp

This talk introduces a transmission/reception technique based on mobile terminal col-
laboration that equivalently increases the number of antennas by sharing received sig-
nals among mobile terminals. To overcome the shortage of antennas on the mobile ter-
minal side, multi-user multiple-input multiple-output (MIMO) transmission has been
studied. However, the accuracy of precoding degrades in mobile environments. On the
other hand, terminal collaboration systems, in which terminals collaborate to increase
the equivalent number of antennas, eliminate the need for precoding and are there-
fore suitable for mobile environments. The terminal collaboration system requires
high-speed and low-latency communications over short distances, making the use of
high-frequency bands suitable. This terminal collaboration system has the potential
to effectively expand the number of MIMO signal streams in the so-called platinum
band by utilizing the high-frequency bands. In this presentation, we describe recent
research results on the terminal collaboration system and its potential application to
the uplink.
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Higher bit rate, more frequency bandwidth

-
Narrow pulse shape requires more bandwidth
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Channel capacity

SISO (Single-Input Single-Output) o7 '
¢ /1+1
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Y 6
/3/ 1B
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2 M=8
§ 3
C =log,(1 +7y) 2
) © Pe=le5
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J Figure 3.4 Channel capacity for QAM
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Parallel transmission
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Channel capacity of MIMO

Unknown CSI at transmitter

C = log, det ( I + —HH"
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N
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MIMO versus SISO
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Channel capacity of MIMO
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5G NR and small cell
In 5G, high frequency band is employed.

Low frequency bands:

Frequency band -
H H H conventional cellular systems
Low frequency )) High frequency 5G NR frequency bands: high-
e.g-4G e.g.-5G speed transmission in small cell
Macro cell

Coverage is limited.

Qutside small cell

Transceivers and antennas for 5G NR
frequency band are not fully utilized.
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Collaborative MIMO reception

Frequency band
MSs share own signals with other
’c | | MSs via higher-frequency bands.
Low frequency ) ) High frequency
e.g. 4G e.g.5G

The number of antennas of each

MS can be increased virtually.
Macro cell

Small cell Channel capacity can be increased

in proportion to the number of MSs
in collaboration.

Collaborative MIMO reception

If MS collaboration is perfect, virtual MS group works as SU-MIMO MS with a number

of antennas.
10
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Collaborative interference cancellation

Idea: Increase the number of antennas by mobile terminal’s collaboration
Technical highlights
Mobile terminal selection algorithms
Collaboration techniques via higher frequency band

BS MSs

~— ~—

T

Collaboration

Received signal sharing by high-speed

. L2 Suitable for bus and train
short-range wireless communications

WIRELESS COMMUNICATION ENGINEERING LABORATORY

Collaborative interference cancellation technique

Collaborative interference cancellation (CIC) can cancel femto/macro interference

Red: Precious cellular freq.

Green: short-range high-speed
wireless communications
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TX antenna2

Le

3.8m

Field meas

TX antennat

Y

N

®

(a) TX antenna

25m

|.

TX antenna3

setup

(b) RX antenna setup in vehicle
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urements

End \

Measurement course

Maximum speed 50 km/h

Running direction

Shirakawa-dori St.

BS antennas —»e

Hidekazu Murata, Daisuke Umehara, “Collaborative MIMO reception: Measurement campaign and mutual information

rate analysis,” Proc. 2023 28th Asia Pacific Conference on Communications (APCC), Sydney, New South Wales,

Australia, pp. 313-314, Nov. 2023.
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TABLE I
MAJOR PARAMETERS OF MEASUREMENT CAMPAIGN
Parameters Values
Carrier frequency 427.2 MHz
Number of TX antennas 3
TX antenna Omnidirectional
TX antenna gain 5.8 dBi
TX antenna height 255 m
Cable loss 1.4 dB
Transmit power 1 W per antenna
Packet interval 50 ms
Symbol rate 312.5 ksps

Transmit

filter

Square root raised cosine
Roll-off factor 0.4

Number of RX antennas
RX antenna

RX antenna gain

RX antenna height

8
Omnidirectional
2.15 dBi

21 m
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20

15

10

Average mutual information rate in bits/s/Hz

0

0 10 20 30 40 50 60 70
Number of RX antennas times quantization bit depth M bq in bits
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Collaborative MIMO reception

MS serves as a receive antenna, and/or detector, and/or controller for target MS(s)

BS|H

------ i . . :
Collaboration links ==-==r==r==m=smmmmmmmemmssmemeees
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Collaborative MIMO reception

BS . MSs
e=(m @ @ ) mo Y Y
Y 000
] rata Collaboration
) Y4 Y5 Ye MSs receive signal x.

— Then, MSs forward own

— . signal y,, to the detection MS.
Detection MS

BS antennas transmit signal x.

Detection MS decodes the MIMO signal streams using both the received signals from
other MSs y;, ¥,,¥3 and own received signals ys.
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Traffic for collaboration

Improve the decoding performance while keeping the collaboration traffic as small as

possible
SRERE EEEEE
Poor Capacity/Performance Good
Small Collaboration traffic Large
MSs
AT
(=~ = «
49U

............................

Collaboration Links
Thanks to broadcast

nature of radio signal, (0@] (<@ (2
—
other MSs can use o

Y1 Y2 V3. 4
Detection MS
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Multiple detection MSs

If the detected bit sequences at the target MS have low reliability, the target MS
requests other detected sequences from other detection MSs.

The detected bit sequence with the highest reliability is selected.

BS
I )
|| MIMO
) S D
|| Links g :
))) : (((
=) Target MS—~> Detection MSs Nz
A A
D REnET REEEERERRR >
— Local ARQ
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Flow of Local ARQ

SW: synchronization word, TS: training symbol
CTRL: control word, CP: cyclic prefix

15 symbols 15 symbols 192 symbols

|sw| TS [CTRL| CP | DATA |

39 symbols 4 symbols

Digital _\/V__a}\_/g_fc)_r[n Forwarding o t
MSH1
MS2
MS3 z § LO.C.%'.AF.*Q
MS4 : : ; +--Request
MS5 :
MS6 £ |[]--Detected Bits

.......... SR
Detéction
) Frame ]

The target MS is assumed to be MS4.
MS5 and MS6 send their detected bit sequences to MS4 upon request.

The collaboration links are assumed to be error free.
20
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Simulation parameters

Parameters Values
Number of BS antennas 4
Number of MSs 6
Modulation scheme QPSK

Filter

Code
Code length

Data symbol length

CP length
Equalization
Channel model

Channel estimation

Square-root Nyquist

(roll-off factor = 0.4)

LDPC (rate 1/2)

384 symbols

192 symbols

4 symbols

Frequency-domain iterative equalization
i.i.d. Rayleigh fading

(fpTs = 6.4 x 107°)

Least-squares

21
21
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Frequency-domain iterative equalization

o] S S
[
o
N z

Received signal

Soft-decision replica

[Helper]

Channel impulse response
Equalized signal

SIS

Soft-decision symbols

/@i Residual interference
coefficient

o+ : e Ind ()
{I}r—l:l: I L
I Ni: Y

FD-Soft Replica Generator | ;.

T 1 13

FD FD
Soft MMSE
Cancel Filter

BINE
I I S

Replica generation
Yi(f) = g:(HXi(f)

MMSE Filter
Z(f) = wS(f){Y(f) By fz(f)}
i#n
wy(f)= <g

ADIEO+Y BN+ 5T) ()

T. Koike, H. Murata, and S. Yoshida, “Frequency-domain SC/MMSE iterative equalizer with MF approximation in
LDPC-coded MIMO transmissions,” IEEE PIMRC, Sept. 2004.

BP |——|Decision
X T PNy
S

T

22

86




WIRELESS COMMUNICATION ENGINEERING LABORATORY

Residual interference coefficients

Residual interference coefficients

Residual interference coefficients indicate the average residual symbol interference after
cancellation.

0 Parity-check satisfied
Bﬁ,m = 1 ~ 2 .
1 — %> 4 |Zm(k)]” otherwise

o N ESRTT

A a 0< |Zm(k) <1

m : mth stream

Residual interference coefficients 3
Adaptive selection of detected bit sequences based on /3.

[ is utilized in iterative MIMO equalization and detection.

QPSK

23
23
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Two schemes and extra traffic of Local ARQ

4 TDBS A JPRBPEELELEE
Target MS —>@
Stream m /]
T[]0
Detected bit sequences 2 o
3 [ 1 o1
4 [ 105
I Per-frame scheme 1
IBased on the sumof the | o
reliability metrics of all 3
streams
gSDetPFl 4

I Per-stream scheme

IBased on the reliability
metric of each stream

TDBS:
Transferred detected bit sequences

:

el i
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Best MS subset selection in Local ARQ

,C*: selected pattern

I d-detector per-frame scheme (dDetPF)

MS1 MS2 MS3
LZDetPF = arg min Zﬁﬁ,m

g min

I d-detector per-stream scheme (dDetPS)

79 2

* o .
MS4 MS5 MS6 Lipetps,m = argmin e,
ﬁE{T,Dl,DQ}

W't N — d helper MSs
Nyt N\ N (include d MSs as detection MSs )

m : mth stream at the target MS o5

25
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Average FER and TDBS performance versus SNR

Frequency-flat fading channels

—_
o
. o

4

T T T T T T T

FER 1Det, FER ——

i 1Det 3DetPF, FER —«—
3DetPS, FER -
3DetPF, TDBS —&— | 3
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—
S

3DetPF

I
N
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s
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S
[\
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T

3DetPS

—_

S
w
T

' TDBS

Tl

1074

S -
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Average FER and TDBS performance versus SNR

Frequency-selective fading channels

100 F T T T T T T 4
i3 1Det, FER ——
3DetPF, FER —«—
3DetPS, FER - K-meeme

3DetPF, TDBS —&— | 3

3DetPS, TDBS —a-

Average FER
\]
Average TDBS

- = | | 0
8 9 i0 11 12 13 14 15 16 17

Average SNR in dB
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Proof of concept activity

Trial 1 End
This map is based on the Digital Map Web
by Geospatial Information Authority of Japan
Antenna 2 Antenna 3
N Measurement course
Antenna 1 Antenna 4 @ Maximum speed 50 km/h >
[
S
4
Trial 2 End — g
©
2
g
£
»
MS5 MS6
MS4 MS1
Sla&
Ms3 MS2 I
. A-dorj

e
BS antenna e >

28
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Performance comparison

RIC (Residual interference coefficients)

Liicm = argmin  fzm
' LE{T,D1,Ds}
L selected MS set @ """" @ """""""""""""""
MC (Majority Combining) m : stream number g8
LLR (Log-Likelihnood Ratio) combining @ @ @
LT 9, | 2,

29
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FER performance versus TDBS

Frequency-flat fading channels

-
o
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-
S
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MC (

RIC (3Det3H)

Ciy/ LLR (3Det5H)
L RIC (3Det4H) 3 4

Average FER
5
S
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-
S
w

3 bits )
RIC (3Det5H) 4 bits
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107
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30

90



Off-line processing using actual received signals

WIRELESS COMMUNICATION

Results of field measurement

ENGINEERING LABORATORY

Parameter Values
Carrier frequency 1272 Mz
Symbol rate 312.5ksps
Transmit power of BS W

Number of BS antennas 4

10° : Gain of BS antenna 5.8dBi
BS antenna height %.5m

1Det2H Cable loss 1.4dB

* LLR (4Det2H) Transmit filter Sauare root raised cosine

Roll-off factor 0.4

Frame interval 50 ms

RIC (4Det2H) Number of antennas of cach MS T

101k | Number of MSs 6
Antenna of MS A/4 omnidirectional monopole

MS antenna height 21m

Average FER

1Det3H

*

MC (3Det3H

RIC (3Det3H) s

1DetaH, e

LLR (3Det3H)
et

)«
2bits 3 bits 4 bits

2bits LR (2DetdH)

3 bits

RIC (2Det4H) 1Det5H
.
L 1(

3459 4 bits

40

60 80

Average TDBS

100

T 1 Ena
his map i base o e Dt Map Wet
oy Geospatal mamaton Auiorty of Japan

e ®

scurament course

-
e
8 anemnas avamum 5poed 30k

31

Subband
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based MS selection

Frequency-selective fading channel, best MS group is not unique.

)))

) MIMO
BS )]) links

,))

v
Collaboration MSs

Collaboration links

i

- Terminal selection I

Channel estimation

DFT

FD soft replica generator

Detected bit sequences

32

91




PER

WIRELESS COMMUNICATION ENGINEERING LABORATORY

Subband based MS selection

In frequency-selective channel, subband based MS selection improve the performance.

10°

1-path
2-path

MPoSV

MCN

SINR (sum) SINR (max-min)j
. me-

4-path —w—

107

107

Fixed1234 ——
MPOSV —=—

MCN ———

SINR (sum) —+—
SINR (max-min) —&—

Number of subbands S

10
Number of subbands S

100

Freq. response

(6) SINR (maxmin)
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Application to uplink

Spatial multiplexing (just timing synchronization is required)
Beam forming, null steering (timing and phase synchronization are required)

4+ (
Y 4
Y 4
Y
Yo
4+ (
4+ (

5668666

Our current research topic

34
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12x12 MIMO

12-Stream Spatial Multiplexing Transmitter 12-element ULA

35
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12x12 MIMO transmission

2-antenna terminal

36
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10°

Computer simulation

107"

1078

1074

Theory QPSK 1x1

Sim. 1x1+LDPC - -= -
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Ey/Nyin dB

dPSK theory‘in flat_—fadin‘g —————

Sim. 1x1 - -= -
Sim. 4x4 - -~ -
Sim. 8x8 - - = -
Sim. 12x12 - -~ -

Sim. 1x1+LDPC ——
Sim. 4x4+LDPC ———
\ Sim. 8x8+LDPC —=—
™\ Sim. 12x12+LDPC ——

Perfect CSI
i.i.d. Rayleigh
N\ fDTs=te-5 |

\BP8, Outer 3

10 20 30 40
Avg. E, /N, per antenna in dB
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Antenna spacing: 1A
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Initial results (fail)

Antenna spacing: 3\
Trial 1

Antenna spacing: 3A
Trial 2

W%ﬁwﬁhﬁmi %f] 1t - At

38
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Coding Theorems Based on
Constrained-Random-Number Generators

Jun Muramatsu
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(joint work with Shigeki Miyake)

This talk introduces a channel code constructed by using constrained-random-number
generators. The channel capacity is achievable with this type of codes.
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Summary of this talk (1)

B Channel code and lossy source code are constructed by using constrained-random-

number generators generating a random sequence u subject to the distribution

Y
Foludu=ey I Au=c¢,

VU|C(U|C) B 0, otherwise
for given uy, A, and c.

B When a channel/source is memoryless, there are tractable approximation algo-
rithms for a constrained-random-number generator by using the Sum-Product
algorithm or the Markov Chain Monte Carlo method.

B We call this type of codes CoCoNuTS (Codes based on Constrained Numbers

Theoretically-achieving the Shannon limits).
Copyright 2024 NTT CORPORATION 2/32
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Summary of this talk (2)

B Simple and rigorous proofs are given by using

» Collision resistance property
» Balanced coloring property
of an ensemble satisfying (cx, 3)-hash property [M.-Miyake,2010,2011].

Copyright 2024 NTT CORPORATION 3/32

Outline

B Algorithm of constrained-random-number generator
B (a,3)-hash property

B Construction of channel code (CoCo channel)
B Construction of lossy source code (CoCo lossy)
[

Concluding remarks

Copyright 2024 NTT CORPORATION 4/32
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Algorithm of constrained-random-number generator [M., 2014]
B Assume that U" is memoryless. Time complexity is O(n*w?t).
Step 1 Let k < 1.

Step 2 Calculate the following conditional probability distribution with the Sum-

Product algorithm:
l
Zuf{ H;l:k MUJ(I’]) Hiil X(a’i . uSi — Ci)
i
L l
Z“? Hj:k MUj(uj) HZ‘:1 X(ai Sus, = Ci)

where x(a; - us, = ¢;) is a parity check function.

k— l
Vﬁk‘ﬁch,(udul L )

)

Step 3 Generate xj; at random subject to Vﬁk\ﬁf‘*ICZ("“]f—17 o).
Step 4 If k =n, then u = 27 and exit.
Step 5 Let k <= k+ 1 and go to Step 2.

Copyright 2024 NTT CORPORATION 5/32

Lemma [M., 2014]

k=1 Iy : :
mIf yﬁk‘@flcl(uﬂul , ') is computed exactly, then the algorithm outputs a ran-

dom sequence subject to the distribution

n

”ﬁurhﬂc)Z:Illﬁ@quCKUMUT‘%cﬁ
k=1

 pp(w)x(Au = ¢)

2w hv(u)x(Au = ¢)

ey i Au=c

0 otherwise,

where x(S) denotes the support funcction (x(S) = 1 iff S is true).

Copyright 2024 NTT CORPORATION 6/32
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(e, B)-hash property of ensemble (A, pa) [M.-Miyake,2010]

B lim ay(n) =1

n—00
B lim Ba(n) =0
n—
. 3 pan ({A: Au = Au'}) < Ba(n)  for all w € U,
u'eld"\{u}:
Pan({A:Au=Au'})> 280
where

> A: asetof functions A : U" — U
» pa : probability distribution on A

Examples

B 2-universal class of hash functions [Carter-Wegman,1979] with uniform distribution
» random binning [Cover,1975]

» random linear functions [Csiszar,1984]
B ensemble of g-ary LDPC matrices (with column weight O(logn)) [M.-M.,2010]

Copyright 2024 NTT CORPORATION 7/32

Lemma [M.-Miyake,2010]

B If (A, pa) satisfies Z pan ({A: Au = Au'}) < Ba(n) for any u, then
w'eld"\{u}:
PA.,L({A:Au:Au’})>“Iy‘ﬁxz‘
Tl
pa AT\ fl] N Calidw) #0)) < (1584 5y
forany 7 C U".
Collision-resistance property
B When |T| < |ImA|, w € T can be specified by ¢ = Au.
Lo JleJlefledl | ecTCU
Calc1) Calez) Ca(es) -+ Caler)
Coset/Bin determined by ¢ € ImA: Ca(c) = {u : Au = ¢}
Copyright 2024 NTT CORPORATION 8/32
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Lemma [M.-Miyake,2010]

B If (A, pa) satisfies Z pan ({A: Au = Au'}) < Ba(n) for any u, then
w'eld"\{u}:
pan({A:Au=Au'})> “ A;)\

QECale)nT) 1 H - \/QA 14 [Ba + 1][ImA| maxyer Q(u)
Q(T) [T AJl] — Q(T)
for any function @ : U" — [0,00) and T C U", where Q(T) = >_ .7 Q(u).
Balanced coloring property
B If maxuer Q(u)/Q(T) < 1/[ImAJ, then T can be partitioned equally by A.

0@ |e@ (@0 00| (@0 ocT CU”

[0\ (O, [0 [\ [O)

Calc1) Calez) Cales) Cales) Cales)
Copyright 2024 NTT CORPORATION 9/32

En

>

c

Channel coding

Encoder Channel Decoder

mt = Pt WYX eyt ) gl

Message Input Output Reproduction
(Codeword)

Channel capacity [Shannon, 1948]

CW)=max|H(X)— HX|Y)] =max I(X;Y)

125 125
Optimal input distribution @y can be obtained by using Arimoto-Blahut algorithm.

Copyright 2024 NTT CORPORATION 10/32
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Shannon, “A Mathematical Theory of Communication,” 1948

Copyright 2024 NTT CORPORATION 11/32

Shannon, “A Mathematical Theory of Communication,” 1948

ENCODER DECODER

Copyright 2024 NTT CORPORATION 12/32
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Random codebook generation

Encoder Decoder
Message Codeword Codeword Message
000 1101001 1101001 000
001 0110010 0110010 001

— Channel —

111 1101101 1101101 111

Generate

onl(X3Y) codewords
subject to px

Copyright 2024 NTT CORPORATION 13/32

Random codebook generation

Encoder Decoder
Message Codeword Codeword Message
000 1101001 1101001 000
001 0110010 0110010 001
E E ,— Channel— ¥ E E
m —— \ rT— m
ML Decoding
111 1101101 1101101 111
Generate
ol (XY) codewords

subject to pux

B Decoding error probability — 0 by generating less than 2"/ codewords.
Copyright 2024 NTT CORPORATION 14/32

(X3Y)

102




Random codebook generation [Shannon, 1948]

B Codewords are generated at random.

» ML decoding is impractical.

» A large lookup table for {(message, codeword)} is necessary.

LDPC Codes [Gallager, 1963], Polar Codes [Arikan, 2009]

B Decoding is practical.

[l These codes achieve capacity of a symmetric channel.
B An additional technique (e.g. a quantization map) is necessary
to achieve capacity of a general (asymmetric) channel.

» Linear codes cannot achieve capacity of asymmetric channel [Ahlswede, 1971].

Copyright 2024 NTT CORPORATION 15/32

Source coding with side information at decoder

Encoder Decoder

" — (ZS E— VX  —

g

I
n

Y

Theorem [Slepian-Wolf, 1973]

B The infimum achievable rate is H(X|Y).

Theorem

B For any (X,Y), the rate H(X|Y") is achievable by using
» random binning [Cover, 1975]
> linear codes [Csiszar, 1984]
> LDPC codes [M.-Uyematsu-Wadayama, 2005].

Copyright 2024 NTT CORPORATION 16/32
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Shannon, “A Mathematical Theory of Communication,” 1948

ENCODER DECODER
B We can interpret 'OBSERVER' as a source encoder and

'"CORRECTING DEVICE' as a source decoder with side information.

Copyright 2024 NTT CORPORATION 17/32

Shannon, “A Mathematical Theory of Communication,” 1948

ENCODER DECODER
B We can interpret 'OBSERVER' as a source encoder and

"CORRECTING DEVICE' as a source decoder with side information.
B From the Slepian-Wolf theorem, the arrow “M’ — OBSERVER" is unnecessary.

Copyright 2024 NTT CORPORATION 18/32
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Channel code for a general discrete memoryless channel

B A matrix A, a fixed vector ¢ € ImA, a bijection ga.: M — T N{zx: Ax = ¢}

are shared by an encoder and a decoder.

Encoder

C =

m

~

ga

€T

Yy

Decoder

ga

~2~{ G0 -

el

ga(cly) = arg ax x|y ('ly)  Slepian-Wolf decoder
x':Ax'=c

Theorem [M., AEW2004]|[M.-Uyematsu-Wadayama, 2006]

B When dim(ImA)/n > H(X|Y) and @ is a typical sequence satisfying Az = ¢,

the decoding error — 0 because ¢ is a Slepian-Wolf codeword of x
B There are 2/HX)-HXWY)] — onl(X3Y) typical sequences satisfying Az = c.

Copyright 2024 NTT CORPORATION
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Shannon, “A Mathematical Theory of Communication,” 1948

B From this theorem,

Copyright 2024 NTT CORPORATION

ENCODER

DECODER
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Shannon, “A Mathematical Theory of Communication,” 1948

T, A c T, A c
ENCODER DECODER

B From this theorem, the OBSERVER is unnecessary by sharing 7, A, and ¢,

and assuming that channel input @ always satisfies € 7 and Ax = c.

Copyright 2024 NTT CORPORATION 21/32

Channel code (CoCo channel) [M.-Miyake,2019]

B Functions A, B, and a fixed vector ¢ € ImA are shared by an encoder and a decoder.
Encoder Decoder

C = C -

I e e M =

log [Tm.A|
/'1457 7‘41+RB<H<X)
Ry= log |TmB| ry> H(X|Y)
n

_ pw(@)x(Az = ¢, Bz = m)
V)?“\Clm‘\,[’u<w|ca m) = Za; /L)@($)X<A$ =c¢,Bx = m)
_ frxopys(@y)x(Az = )
g x|y x(Az = )

q;?u‘yncl/l(w|y7 c) Stochastic decoder

Copyright 2024 NTT CORPORATION 22/32
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Channel code (CoCo channel) [M.-Miyake,2019]

B Functions A, B, and a fixed vector ¢ € ImA are shared by an encoder and a decoder.

Encoder Decoder
c— c —
Xn € Xn—x 11
. )
ra+ Rp < HX) rq > H(X|Y)

B When 7, + Rp < H(X), we can generate x satisfying ¢ = Ax and m = Bz

from uniformly generated (¢, m) based on the balanced coloring property.

B When 4, > H(X|Y), the decoder can reproduce  from ¢ and y based on

the collision-resistance property.
Copyright 2024 NTT CORPORATION 23/32

Theorem [M.-Miyake, 2019]

B For given 74, R > 0 satisfying

1> HIX|Y) (1)
ri+ Rp < H(X), (2)
assume that an ensemble (A, pp) (resp. (B, pg)) of functions (sparse matrices) satisfies
(aup, Ba)-hash (resp. (e, Bg)-hash) property. Then for any § > 0 and sufficiently large
n there are functions A € A, B € BB, and a vector ¢ € ImA such that
Error(A, B, ¢) < 4.
B For any discrete memoryless channel, the capacity

sup I(X;Y)

1226
is achievable with this code by optimizing pix, because forany Ry < H(X)—H(X|Y) =
I(X;Y) there is 14, > 0 satisfying (1),(2).

Copyright 2024 NTT CORPORATION 24/32
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Lossy source coding

Encoder Decoder
"= o = gt — >y
Source Output Codeword Reproduction

Distortion criterion
Prob (d, (X", $(6(X"™)) > D) < &
Random codebook generation [Shannon, 1959]

B Quantization points (reproductions) are generated at random.
» A large lookup table for {(codeword, quantization point)} is necessary.

» Encoding (looking for nearest quantization point) is impractical.
Copyright 2024 NTT CORPORATION
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Lossy source code (CoCo lossy) [M.,2014]

B An encoder and a decoder share functions (matrices) A, B and a fixed vector ¢ € ImA.

Encoder Decoder
[ C>
- - )/’n,-a-—gl -»IIII!iIII—-—--» 1233/ - Y — Yy
log |Im.A
/:15% A <H(Y|X)
_ 10g |IH16‘ ra+ Rp > H(Y)

Rp

_ py o (Yle) X (Ay = )

Dy iyrxe(ylE)X (Ay =€)
v (y)x(Ay = ¢, By = m)

Goni ity (Yle, m) =

Prow @) = T Ay = o)

Copyright 2024 NTT CORPORATION

My xncia (ylz, c)

Stochastic decoder
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Lossy source code (CoCo lossy) [M.,2014]

B An encoder and a decoder share functions (matrices) A, B and a fixed vector ¢ € ImA.

Encoder Decoder
c o> _ c
- yn ->y-> By Y=Y
ry < HY|X) ri+ R > HY)

B When ry < H(Y|X), we can generate ¢ = Ay independent of & based on the balanced
coloring property. Then the encoder and the decoder can share a fixed c.

B The encoder can generate y satisfying ¢ = Ay and d(x, y)/n < D with high probability.

B When 1y + Rp > H(Y), the decoder can reproduce y from ¢ = Ay and m = By

based on the collision-resistance property.

Copyright 2024 NTT CORPORATION 27/32

Theorem [M.,2014]+[M.-Miyake,2017], [M.,2024]

B For given 4, Rp > 0 satisfying

1< H(Y|X) 3)

ri+ Ry > H(Y) (4)

assume that an ensemble (A, pa) (resp. (B, pg)) has (cua, B)-hash (resp. (aea, B4)-hash) prop-

erty. Then for any § > 0 and sufficiently large n there are functions A, B and a vector ¢ € ImA
such that

Prob (p, (X", $((X")) > D) < 4.

B For any source X, the region
I(X;Y)<R
U (R,D):
Eld(X;Y) < D

Hy|x
is achievable with the proposed code because for any Ry > H(Y) — H(Y|X) = I(X;Y) there
is 14 > 0 satisfying (3) and (4).

Copyright 2024 NTT CORPORATION 28/32
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Concluding remarks

B Channel code and lossy source code are constructed by using constrained-random-number

generators.
B Simple and rigorous proof is given by using
> Balanced coloring property [M.-Miyake,2011]
> Collision resistance property [M.-Miyake,2010]
of an ensemble satisfying (cv, (3)-hash property.
B Codes can be extended intuitively to relayless multi-terminal source/channel coding prob-
lems [M.,2023][M.,2024].
» Random codebook generation can be replaced by random binning.

> (Goal) Reconstruct all achievability theorems from the above two properties.

Copyright 2024 NTT CORPORATION 29/32

Multi-terminal channel coding with message access structure
[Somekh-Baruch and Verd(,2006][M.-Miyake,2018][M.,2023]

M, Encoders Decoders
o fXi— vl e,
M,
n n AT
(I)Q X o —> 1y x; > Yoy — \112 _>MD2
n n Tr
Py 1z — 17— Y71—~Mp,,
Ms

B Optimal muti-letter region is derived in [M.,2023].

Copyright 2024 NTT CORPORATION 30/32
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Distributed source coding [Jana-Blahut,2008][M.,2024]

sources
+
helpers

decoder side information Y™

Encoders Decoder
X" CD(”) _,M(”)_» L, X"
7\ |Zo]
P
L
(n) (n)
St A el
—27)

B Optimal muti-letter region is derived in [M.,2024].

|Zo|
Vs

lossless reproductions

lossy reproductions
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Thank you for your kind attention.
Copyright 2024 NTT CORPORATION 32/32

111
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September 25th - 27th, 2024, JR Hakata City, Fukuoka, Japan

Delay-Doppler Estimation for Joint Sensing and
Communications

Yutaka Jitsumatsu

Department of Informatics, Kyushu University, Japan
jitsumatsu@inf.kyushu-u.ac. jp

Recently, the commercial use of millimeter wave wireless communications has become
feasible. Millimeter waves have high directivity, which makes them susceptible to ob-
struction, rendering them less suitable for wireless communication. As a result, they
have primarily been used for radar applications. In recent years, attention has shifted
to Joint Communications and Sensing (JCAS), which enables simultaneous wireless
communication and radar or sensing functions using a single transmission signal. Ad-
ditionally, Integrated Sensing and Communications (ISAC) has gained attention, as
it involves the immediate sharing of sensed data with wireless nodes via communica-
tion networks. Orthogonal Time Frequency Space (OTFS) modulation is considered a
promising candidate for JCAS.

In this talk, we will describe Frequency Modulated Continuous Wave (FMCW) and
pulse radar as typical radar signals. We will compare the delay-Doppler domain in
OTFS with that in pulse radar. It is shown that the delay-Doppler domain in OTFS
is essentially the same as the delay-Doppler map in pulse radar. Finally, we present
the author ~ s proposed method for delay-Doppler estimation.
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Outline

O Introduction

* Integrated Sensing and Communications (ISAC)
U Conventional Radar methods

O OTFS for ISAC
 Details of OTFS

Q Proposed Delay-Doppler Estimation Method

O Conclusion

¢ Future Research
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Introduction
U Integrated Sensing and Communications (ISAC)

B Use of millimeter wave for wireless
communications

| V2V, V2|, V2X

B Collision avoidance, congestion mitigation,
automated driving

B [nstantaneous sharing of sensing
information

sication W Vertical communications (stratosphere, low

ommu . .
vale earth orbit satellites)
V2v

Sensing of environment

Usage scenarios of IMT2030
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Background of ISAC research

Better
Q Joint design of waveforms
BFrom split channel use to simultaneous use
BFrom a trade-off relationship to a cooperative
relationship Better
Q Three theoretical challenges in Ten Open From 1]
Cha”enges for ISAC [2] [1] M. Kobayashi, G. Caire, and G. Kramer, “Joint
State Sensing and Communication: Optimal
1) What are the information-theoretic limits of ISAC Tradeoff for a Memoryless Case,” 2018 Int. Symp.
tems? Inform. Theory (ISIT2018), 2_018.
sys : . . . [2] S.Lu, et al. “Integrated Sensing and
2) How much channel information can be inferred Communications: Recent Advances and Ten Open
from the sensory data? Challenges,” IEEE Internet of Things, June 2024.
3) How could we quantify the integration and
coordination gains? 5

Difference between Radar and Communications

O A simple model.
Y=HX + Z

* RADAR: From X and Y obtain H. From H, we detect
1) there exists objects or not,
2) the distance to the objects, (Range)
3) the moving speed of the objects. (Doppler)

* Communication: From H and Y, obtain X. From X, recover the transmitted
symbol.
Often H is unknown. = Channel estimation is needed.

e NOTE: Channel estimation and radar detection use different methods.

»How to achieve two objectives simultaneously? 6
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Complex baseband equivalent representation

O Assume that the received signal is expressed by
r(t) = a - s(t —t,)e?™pt 4 n(t)
r(t): received signal, s(t): transmitted signal, n(t): additive noise

Unknown parameters («, t,, f,) = complex attenuation, delay, Doppler frequency,
as many as the number of paths

e Prior distribution : « decays with distance, ¢, follows uniform distribution,
fp obeys Jakes model

0 MIMO radar is an important issue but today's presentation discuss
single antena radar.

7
The conventional methods
O Radar Signal Categories
| Radar Modulation Methods|
I
[
| Continuous Wave (CW) |
I
I | | I I |
Frequency Phase Intra-pulse Inter-pulse
Modulation Modulation unmodulated modulation modulation unmodulated
FM-CW
Frequency Phase Frequency Phase
Modulation | | Modulation Modulation | | Modulation
| Linear || Nonlinear ||Binary Phase|| Polyphase |
8
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@ Frequency Modulated-Continuous Wave (FM-CW)

Transmitted signal Received signal >
= < =
=S &
Mixing
Time time
O Widely used in automotive radar and other
applications Detect 7, v by solving a
. simultaneous linear equation
Q Inter-radar interference occurs when two or au
) ) from the beat frequencies of
more FMCW signals are present. Thus, there is the up and down chirps
a need for interference suppression.
- Phase-coded FMCW 9
[3] Uysal, “Phase-Coded FMCW Automotive Radar: System Design
and Interference Mitigation,” IEEE Tran. Veh. Tech. Jan 2020.
@Pulse Radar (1/3) U i
T MT
’_‘ ’_‘ ’_‘ (M: duty ratio)
Pulse (Rectangle) Time

O Pulses of short time widths are sent repeatedly at regular intervals.

O Detects the reflected wave and calculates the distance to the target from the

round-trip time.

O The speed of the target is calculated from the Doppler frequency.

10
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@Pulse Radar (2/3)
QO Output of the matched filter

T
2(6) = f (T — Dy (t — 1) dr
0

Sampled data

<

—— B ti
2T 2T ime

Pulse Repetition Interval (PRI) = MT

@Pulse Radar (3/3)

O After placing the signal in two dimensions, the Doppler frequency can

be determined by performing a Fourier transform.

1
k.

=

N x (MT)
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Orthogonal Time Frequency Space (OTFS)
modulation

O We review the definition of OTFS.
* Modulation/Demodulation method

* Channel estimation method

O We then describe some of the unsatisfactory aspects of OTFS.

13

OTFS (Orthogonal Time Frequency Space) Modulation

U Proposed by R. Hadani and S. Rakib [4].

O Resistant to Doppler-shift

Q Outperforms OFDM in a high-mobility environments
U Radar applications

Q Candidate waveform for ISAC.

Q Data is allocated in the “Delay-Doppler domain”
& In OFDM, data is allocated in the frequency domain.

[4] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. Goldsmith, A. F. Molisch, ‘]4
and R. Calderbank, "Orthogonal time frequency space modulation,” in
Proc. [EEE WCNC, 2017.
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OTFS Signal Configuration
O Review of OFDM

¢ Original definition

M-1
s = ) X[m]g(t)ers/mt

i Af = %: subcarrier spacing

g(t): rectangular
waveform with duration T

M subcarriers

ﬁ

M/T

* Digital implementation

= Time domain signal s[#] is the IDFT of X[m]

[ = Data symbols X[m] are on frequency domain )

M-1 o
sie] = Z X[m] em™

m=0

M-1

0\ T

5(t) = Z s[{’]v(t - €M>
=0

v(t): pulse with duration

TS:H

T . .
n sampling interval

15

===p * Digital implementation (if g(t) is rectangular)

-1M-1

5() = Z s[€+nM]v(t—{’%—nT>

0 £=0

=

n

Time index: £ + nM
£: fast time index
n: slow time index

v(t): pulse with duration Ty = %

16

OTFS Signal Configuration
* Original definition
M-1
M-1N-1 1 2T
i [ +nM] =— Z Xrpp[m,n]e‘m ™
S©= )" ) Xrelm,nlg(e —nT)et2rmase ’ i £
m=0n=0 £=012,.,.M-1
m=M-1
2 1
.% i Af =2
a -~
2 Xrplm,n]
=
m=
m=0
n=0n=1 n=N-1 n=0n=1
— <>
T L
T Ik sampling interval
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Definition of the DFT / FFT Bin Size (Supplemental)

1) FT: Continuous-time,
non-periodic signal with
continuous spectrum

2) Continuous-time periodic 3? DFT: Discrete-time and
signal with line spectrum discrete spectrum

=Zx(t—iT)

2(t)
i€Z N samples
x(t) /\ /\
t /\ /\ t
Vo

V

XN

A [

f

~i-d

OTFS Signal Configuration

0 Range-Doppler map in radar signal processing
M=4N=3
Slow time (n) 0,0,0,0,1,1,1,1,2,2,2,2
sfe+nM] [TTTTTTTTTTT]
Fasttime () 0,1,2,3,0,1,2,3,0,1,23
-
Fast time (£)

Slow time (n)

Called Discrete Zak Transform (DZT)

~@— Execute DFT along n axis
Range(?) Range-Doppler map
= . = Delay-Doppler domain
Doppler(k) Xpplk, €] = Wi Z s[e +nM]e "N
n=0

Range-Doppler map

18
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OTFS Signal Configuration

Q The OTFS transmit signal is generated in the reverse direction of the previous page.
M=4N =3

Slow time (n) 0,0,0,0,1,1,1,1,2,2,2,2
ste+nM] [TTTTTTTTTTT]

Fasttime (/) 0,1,2,3,0,1,23,0,1,2,3

-
Fast time (¢)

Slow time (n)

2k Called Inverse Discrete Zak transform
s[¢+nM] = ZXDD[k f]e / (1DZ7)

.f.

Execute inverse DFT along k axis
Delay (¢

Data
symbols » Doppler(k)

Range-Doppler map = Delay-Doppler Domain 19

Relation between TF domain and DD domain signals

-1

<

om
s[¢ +nM] = rrlm, nle" s ™ M

=3
(]
mo

21
Xpplk, £] = s[t +nMle” Wk (@)

0

=( §||"

3
I}

QO Substituting (1) into (2) yields

E
N

N-1

Xl ] i mf nk
, r[m,n]exp | i2m| - — o
n=

Xpplk, £] =

-

3
I

20
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Time Frequency (TF) domain and Delay Doppler (DD) domain

M-1N-1
S@ =D ) Xeelmnlg(t - nT)e2e st
m=0 n=0
t] = 1 = ) mé nk
Xpplk, ]_\/ﬁ Xrg[m, n] exp zZn(W—W)

0n=0

3
il

Size of 1 grid on DD domain (M = 4,N = 3)

Xpplk, ?]
5 Af 1
o > NENT
[oN
8
dela:
Y ? y
T 1
M~ MAf

Delay-Doppler domain

Size of 1 grid on TF domain

frequency

Xre[m,n]
m
M-1
A _1
f_T
0 T
f_H .
time
0 N—-1 T

Time-Frequency domain

21

Frequency domain signal

Continuous-OFDM DFT-OFDM (M = 16)

(Real part)
m=20
time (t) time

DD domain signal

Zak-OTFS(N = M — 16)
k=1¢£=0

LZZZ
SRR

T

frequency(m)
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Channel Estimation in OTFS [5]

If delay and Doppler are integers, the received signal is

Ypplk, €] = Z Ry, ep]e‘iﬁ—ﬁ"v" Xop [[k — k) [ e,,]M] + Zpplk, €]

P
[n]y stands for n mod N

Transmitted signal

F;IIOt signal Received signal

Data Symbols /

J | 2Vimax

Guard Interval I 2Vmax

—
Tmax Tmax /

de|ay Dist/ortion

Doppler

24

[5] P. Raviteja, K. T. Phan and Y. Hong, "Embedded Pilot-Aided Channel Estimation
for OTFS in Delay—Doppler Channels," IEEE Trans. Vehicular Technology, 2019

The ambiguity function - DD domain matching
O DD domain representation:
1 —iZTnke
Transmitted signal ~ S[¢ +nM] = \/—NZXDDUC.{’]E N,
Received signal r[¢+nM] = \/iﬁz Yoplk, f]e‘iZWﬂ""_
Q Assume Xpplk —aN,€ — bM] = XD; [k, £] holds for any integers a, b.

Proposition[5]: The ambiguity function between s and r is given by
N-1M-1 o
Aplk’, €] = Voolk, £1Xpplk — k', £ — £]e"N0*'
(k' £")-shifted Xpp[k, €]

*: complex conjugate

Note.
1. Ambiguity function computation reduces to the matching in DD domain.
2. The TF domain representation does not allow this concise expression.

25

[5] P. Raviteja, K. T. Phan and Y. Hong, "Embedded Pilot-Aided Channel Estimation
for OTFS in Delay—Doppler Channels," IEEE Trans. Vehicular Technology, 2019
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.21

Proof of Proposition Wy = e

2

-1M-1
Ak, 2] Zr[£’+nM]s [ +nM — £ Wm0

=
= R *
— > Ypplk, 1w || — Z Xppl[k", € — £ Wk | wkt+n
\/NZ ook, €] Wy VN 4 ool 1wy NM

3
I}
o
o

=

m
X
I

1]
i
I

k=0 k''=0
M-1N-1 N-1 N-—
- Ypplk, €] Z Xpplk", € — 2] z W kk!"=K')
£=0 k=0 k''=0 n=0
M-1N-1
= Yook, €] Xpplk — k', € — £'1Wf
£=0 k=0 QED

26

Unsatisfactory aspects of OTFS and my research motivation

1) OTFS's ideal pulse is assumed to satisfy biorthogonal robust property,
which however cannot be realized.(*)

2) OTFS-based radar transmits NM samples and receives NM samples...
How does the receiver find the OTFS frame?

3) OTFS-based Radar often assumes analog-carrier OTFS.

4) Results obtained under the analog-carrier OTFS assumption may not
be applied for DZT-based OTFS.
8

To overcome these drawbacks, consider pulse radar based on DZT

27
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Biorthogonal robust property[3]

AnggTX (tv) = ngx(t)g%X(t - T)e—iZm/t dt=20

fort € (nT — Tax NT + Tax), V € (MAf — Vipax, MAS + Vijax)

Early studies[6] assumed this equation even though there is no
waveform that satisfies it. Today, this assumption is rarely seen.

28

[6] P. Raviteja, K. T. Phan, Q. Jin, Y. Hong and E. Viterbo, "Low-complexity iterative
detection for orthogonal time frequency space modulation,” WCNC2018.

Our past research and remaining issues
O We have proposed Gabor Division Spread Spectrum (GDSS) [7].

O The transmitted signal is

N-1M-1
s(t) = Z Z X[m,n] g(t — nT)esznmt g(t) is a Gaussian waveform

n=0 m=0
QO Phase Updating Loop (PUL) algorithm to detect delay and Doppler was
proposed. (Details are omitted)
O Digital implementation and radar application was studied by Ohashi. (2018)

Remaining Issues: Convergence proof for PUL. High computational cost of PUL.

29

[7] T. Kohda, Y. Jitsumatsu and K. Aihara, "Gabor Division/Spread Spectrum System Is Separable in Time and Frequency
Synchronization," VTC2023 Fall, 2013
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Proposed Method

Q Pulse radar using DZT-based GDSS signal is considered.
* The transmitted signal is a digital version of GDSS.
» Symbols must be designed (not random) < under study.

» To be used as a pulse radar, signals are transmitted in pulses at regular intervals.

U Delay-Doppler estimation
* Use a discrete ambiguity function.
» Any delay-Doppler estimation is based on the calculation of the ambiguity function.

* Discrete ambiguity function can be efficiently computed by sliding FFT.
- Avoiding the high computational complexity of PUL

30
Comparison of OTFS pilot signal and GDSS signal structure
(Omit Guard Interval/Cyclic Prefix) Assumption: Propagation path is
invariant during one block
» OTFS one block
MxN [N
fo
I | [| | | I | |
Nonzero value 1
» GDSS one block
MxN (Next block)
[ |
Interval with non-zero values
N¢ X Ny
» Processing multiple GDSS blocks together is a future challenge. 31
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TF domain and time domain representation

T Reflection T

When transmitting radio

waves, signals in the same
frequency band cannot be
received at the same time.

Parameters used in the

experiment :

Ny = N; = 8,N = 64,M = 16.
U—M—ZU—N—8
TN TN,

32

Delay and Doppler detection for Gabor Division Spread Spectrum
Output (L x L)

Input (L = NM)

Received signal —» Calcl_JIat}on of |, Discrete Ambiguity Int'eger'Unit Fraptior?al part
ambiguity Function Estimation estimation

Transmitted ~ —1 function A[k, ] Y

signal replica ’

(L-point FFT)XL It is a common practice to divide the data into

. . o two steps. The fractional part is estimated by
Output L-dimensional vector per unit time  completion with a double sinc function.

Input (L = N x M)

Output (N x M) )
Received signal — DZT k Integer Unit Fra'ctlor?al part
r[nM + £] (k) - Y[k, 7] Estimation estimation
Transmit signal (M-point IFFT) x N
is fixed to pilot
symbols Output N x M matrix for each L time 33
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Sliding DFT to compute the discrete ambiguity function
» Ambiguity function
A [k, €] = Z r[nls*[n — L)W = FET[r[]s[- —£]]

n

Received signal r[n]'s I TA T T TI T TTT TTTT 111
X
Copy of the I

transmitted signal 2
s*[n—4] Lpoint FFT

Sliding DFT L E

34

Delay-Doppler Estimation
U OTFS-based Method A [8]

* Calculate the ambiguity function A,s(z,v) on a grid finer than an integer.
Disadvantage: increased computational complexity

U OTFS-based Method B [9]

 Coarse integer unit estimation of sampling interval and FFT frequency bins. And
fractional part estimation (piecewise-linear interpolation)

O Our method

* Estimation method: integer unit estimation + fractional part estimation.
» Novelty: use 2-D sinc function for fractional part estimation.

* Simulation evaluation. Greatly improved accuracy. Computational complexity is also
small.

[8] L.Gaudio, M.Kobayashi, G.Caire, G.Colavolpe, “On the effectiveness of OTFS for Joint Radar

Parameter Estimation and Communication,” IEEE Trans. Wireless Comm.Vol.19, 2020. 3 5
[9] K.Zhang et al., “Radar sensing via OTFS signaling: A delay doppler signal processing

perspective,” arXiv:2301.09909, 2023.
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Approximation formula for continuous ambiguity function

O Estimation of fractional parts of delay and Doppler

~ ~ ~ 2
(6 é,é) = argmin > > {JAnslla + & fp + k]| - o A(£ = e,k - )]}

A0 ) <U, [k|<Uf
O Computing the exact self-ambiguity function Ag¢(7,V) is very expensive. > We approximate it.

[A(T, V) = {(s)mc(UtT) -sinc(Upv) if |Upr| < 1 and |Usv| < 1 }

otherwise

Pseudorandom Pseudorandom
Number A Number B 36
Theorem. Let Az;(7, v) be the symmetric auto-ambiguity function. Let
1 N-1M-1
=— _ i2nm Af t
s(@®) W;m=ox”[m'n]g(t nT)e
For an i.i.d. Xpr[m, n], we have
E[Ags(t,v)] = Agg(z,v)Diricy (vI)Diricy (tAf),
where
o 1— e—iZT[NZ
DlI‘lCN(Z) = m
|Diricy (z)| = %ZZZZ ~ sinc(Nz) for [Nz| < 1if N » 1.
Thus, for |7] < %, vl < AN—f, |E[Ags (T, v)]| = Agy (T, v)sinc(vNT)sinc(tMAf)
37

The discrete version can be proved in a similar way.
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Proposed method (delay-Doppler detection algorithm)
O Choose pseudo-random numbers X[m, n].
O Select a threshold value 6 > 0.

1. Calculate Ambiguity function in discrete time (using FFT)

NM-1

Arslekl= )" 115"l — W

=0
2. Listup [#, k] satisfying |A,s[¢, k]| > 6. Denote them as ¢4, and kj,.

3. Foreach 2y, ky, listed in 2., do the following (this time using scipy functions)

. . - 2
(&, &, ér) = argmin Z Z {|AT¥S[€d + 0 kp + k]| — o Al — €, k — Ef)|}
a>0,6q,€6¢
[€|<Uy |k|<Us

4. Let (2 + €, k + €) be the delay and Doppler estimates.

38

Integer Unit Estimation:

Pe rfo rmance eva | uatio N RMSE of uniform distribution on [—0.5,0.5] is 0.288
O Root Mean Square Error (RMSE)

ﬂ46%
6.2%
RMSE of delay estimation  Unit (%) RMSE of Doppler estimation Unit (f:]’—‘f")
t.
2 Quadratic approximation around the origin of the Ambiguity function 39

(details omitted)
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Comparison of execution times

O Environment : Intel Core-i9-13900KF 3.0GHz, Memory 128GB Windows +
VSCode

Computation time (average over 1000 runs)

Step1 Step3 Step3 Step3
Computation of Fine estimation via | interpolation by interpolation by

discrete Ambiguity | matching with the | quadratic function | piecewise linear
function 2D sinc function function

1.29 millisecond 2.23millisecond 0.59 microsecond 0.205 microsecond

O Methods based on approximations by 2D sinc functions take about twice as
long as integer unit estimation (first step).

O The scipy library uses a quasi-Newton method.

O Evaluation of the computational order is a future work. 40

Remarks

Q Isn't this a topic that has been well-researched for some time?
* Yes. However, what we want to claim is the following.

 The central part of the ambiguity function can be approximated by a two-
dimensional sinc function. = This is a new finding.

* We have to choose a good two-dimensional pilot signal.

Q If quadratic interpolation is not sufficient, why not employ a higher-
order approximation such as spline interpolation?
* That's right. We must explore that soon.

O The simple method of making the grid finer increases the sampling

rate and significantly increases the computational complexity.
41
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Conclusions
Q Delay and Doppler estimation for radar.

0 Comparison with existing methods
* FM-CW
* Pulse radar
* OTFS

O Future research
* Pilot signal selection method

¢ Extension to MIMO

¢ Joint Sensing and Communications.

42
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Designing Communication Receivers Using
Machine Learning Techniques

Brian Kurkoski

School of Information Science, Japan Advanced Institute of Science and Technology
kurkoski@jaist.ac. jp

Your smartphone has many communications receivers, not only in its various wireless
interfaces, but in the flash memory controller as well. In fixed-precision VLSI receivers,
reducing the number of bits used to represent messages will reduce power consump-
tion and increase battery life. This presentation describes the design of fixed-precision
receivers from an information theory perspective. This can be called "hardware-aware
information theory” because the objective is to maximize mutual information (an infor-
mation theory quantity) while minimizing the number of message bits (in the hardware
implementation). Results from machine learning play a key role, because quantization
can be seen as classification. Numerical results show that widely-used decoders for
low-density parity-check (LDPC) codes based on the proposed max-LUT method can
outperform belief-propagation decoders [1] [2] [3] [4] [5].
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Smartphone Communications Receivers

Smartphone has numerous wireless receivers:
o cellular radio (5G, LTE)

o WiFi

e Bluetooth

The data storage also uses a “receiver”

o flash memories

Many other devices have receivers:
o digital video broadcast

o wired ethernet

e SSDs and hard drives

apple.com
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ifixit.com

ETH Zurich http://bit.ly/2nTE{Cy

VLSI

Smartphone Communications Receivers

Communication receivers are implemented in VLSI
hardware:

e More efficient than CPUs
e VLSI uses integer arithmetic or fixed point

¢ But, most communications algorithms use real
numbers

To implement an algorithm in VLSI, must

approximate real numbers with integers.
Tradeoff:

o More bits per integer: better performance

o Fewer bits per integer: more efficient VLSI

ifixit.com

ETH Zurich http://bit.ly/2nTE{Cy

Smartphone Communications Receivers

VLSI

Engineers implement quantization schemes in an “ad

hoc” way: try different schemes, choose the best one.

Can we give a theoretical foundation to

quantization of communication receivers?

“Communication receiver” includes:
o equalization,
¢ detection and

o error-correction, particularly LDPC codes
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Outline

1 Background on Communications and LDPC Codes
o Just enough information theory
o LDPC codes and their decoding
2 Quantization and Classification
o Connections between machine learning on information theory
o Optimal quantization for binary inputs
o “KL-means” algorithm and information bottleneck method
3 Hardware-Aware Information Theory
e Max-LUT method
o Works amazingly well: efficient and good performance

o LDPC decoding: 4 bits/message “performs like floating point”

Just Enough Information Theory

k bits of n bits of received y estimated codeword X

information codeword x
208 o1 L %

ENCODER | NOISY

\ 4

parity CHANNEL ST

DECODER

.0

—

Coderateis R=F% / n
Good channel (high SNR) — high code rate R (few parity bits)
Bad channel (low SNR) — low code rate R (many parity bits)
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Just Enough Information Theory

X ~ px() Y
NOISY
»| CHANNEL ’
What is the best we can do?
Claude Shannon:
Code rate < Channel Capacity mutual information

is the highest

R < C =maxI(X;Y) achievable rate

px ()
I

LDPC Codes and Their Success

Low-density parity-check (LDPC) are now a widely-used error-correcting code:
¢ 5G and 6G cellular data,

e recent WiFi 802.11 standards,

e video broadcasting,

e wired ethernet,

e flash memories, SSD drives, hard drives
Reasons for success of LDPC code:

o LDPC codes are good codes — long codes are close to the Shannon limit, empirically

o Message passing decoding of LDPC codes: complexity is linear in the block length
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Low-Density Parity-Check (LDPC) Codes

LDPC code is defined by a low-density parity-check matrix H
A codeword x satisfies Hx = 0 mod 2

check nodes

Xo X1 X2 X3 Xa X5 Xe X7 Xg Xg X10
111100000000 (rows) — []
011010010000
101100001000
100000101100
H=]0 100 101000 10
0001010000 1 1
8 8 8 8 8 ? 8 1 (1) ? 8 ? [ Xo X1 Xz X3 Xs Xs X X7 Xg  Xo Xio Xy
0000041100101 data parlty

) i variable nodes . .
Parity-Check Matrix (colums) Bipartite graph
(Tanner graph)

Decoding LDPC Codes
Input from channel

variable

nodes

Xe
!

input from channel

Pr(zo = lyo) -

Pr(zo = 0lyo)
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Decoding LDPC Codes
Iteratively Exchange Messages

In practice, perform 5 to 50 iterations. Stop when:
¢ Codeword is detected Hx = 0
e maximum number of iterations reached

Nodes are Functions
Edges are Messages

check node

\

L; .
Ly Ly L3 —2tanh™? ( H tanh(— 3)) variable node

ieM(e)\e
final decisions:

Ev:Yv+ Z V;
€N (v)

“sum-product rule”:
for edge e, do not use incoming message e

Vi Ve
\ j Yo+ > Vi
/ €N (v)\v
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Quantization of Message-Passing Decoding

value

two’s complement

-1.0
VLSI 075

-0.5
-0.25
0
0.25
0.5
0.75

100
101
110
111
000
001
010
011

3-bit quantized messages

-0.75 = 101

0.5 = 010 —*

VLSI implementations use fixed point (integer) arithmetic

Var
node

-0.25 = 111
—

e How to choose quantization? 7 bits/message for floating-point performance. We want fewer

bits/message

e« How to implement nonlinear functions?

Instead of ad hoc schemes, can we consider a more theoretical approach?

o Next: Node function is a lookup table that maximizes mutual information

2 Quantization and Classification

Quantization and Classification

¢ Key problem is channel quantization to maximize mutual information

o Strong similarities to classification in machine learning

¢ Optimal, polynomial-time algorithm for binary input

e K-Means algorithm/Lloyd-Max algorithm

o “KL-means” algorithm for non-binary input is suboptimal but efficient
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Machine Learning: Classification

Example of a simple classification problem:

o X is a fruit

o One-pixel camera takes picture of a fruit, provides sample Y

e A classifier @ should choose one of strawberry, banana or kiwi Z = Q(Y)

-Q

— Z = {strawberry, banana, kiwi}

Q

Single-pixel camera

Classifier

Machine Learning: Classification

o Classification is an important machine learning problem

e Connections with information theory

Pr(Y|X) Q
X—Y —/

strawberry
banana

kiwi

Machine learning
Minimum-entropy optimal classifier Q*:

Q" = arg mcén H(Z|X)
Q is called a classifier

Information Theory

mgxI(X; Z) = H(X)— ngn H(Z|X)

Q is called a quantizer
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Key Problem — Quantization

Pr(Y|X)

X —

Y Q \ Z Given a discrete memoryless channel
and input distribution pxy(z,y),

find the quantizer () which maximizes

mutual information:

QF = arg mgx I(X;2)

with |Z| < [Y].

’Z‘ Z ’Y| is triVial Claude Shannon:

mutual information

is the highest
achievable rate

Backward Channel Pr(X | Y) as a Vector

u, = [Pr(X = 1Y =), Pr(X =2Y = y),...,Pr(X = J|Y = y)}

Uyeq = [1,0,0] \ u, [ ‘] u, [ |
X % similar N
1 Wime = [0.8,0.2,0]
o

Uyellow = [03, 0.2, 05]
2 \/similar

Ugrange = [0.33,0.33,0.34]

Each output y is a
3 Ugreen = [03,0.3,04] point in the simplex
u, =[001]

Uprown = [0.1,0.1,0.8]
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Quantization in Backwards Channel

quantizer

outputs
Z

cluster

o Cluster shows all y which are mapped to a given z -
19

Optimal Quantizer Design Algorithm for
Binary Inputs

o Cluster (preimage of optimal quantizer) is convex
[Burshtein et al, 1992]

e Dynamic programming: Search over all convex

quantizers
e Provably optimal — max mutual information

o Complexity is M3

B. Kurkoski and H. Yagi, “Quantization of Binary-Input Discrete Memoryless Channels,” IEEE Trans on Information
Theory, May 2014.
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K-Means Algorithm (machine learning)
Lloyd-Max Algorithm (information theory)

1. given n-dimensional data set, randomly choose

K means (centroids)

iterate
2. nearest neighbor K clusters consists of data

points closest to its mean in Euclidean

distance

3. centroid step move the mean to the center of
the cluster

wikipedia

Not optimal but works well in practice.
Hugely successful in machine learning -
21

K-Means with Generalized Metrics

“KL-Means algorithm”
replace Euclidean distance
with Kullback-Leiber

Divergence

</
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KL-Means Algorithm

“KL-Means algorithm” replace Euclidean distance with KL distance

Min KL divergence = max. mutual information

Q" = arg max I(X;Z) = arg ngn E(D(U||V))

3 KL Means Quantization

reedy Quantizer

Optimal Quantizer

Numerical results show tradeoff:

e increasing number of quantizer outputs

Mutual Information Gap A, log sc
3

e decreases the loss of mutual information

Y S T S O T Y M S
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Quantizer Outputs, K

A. Zhang and B. Kurkoski, “Low-Complexity Quantization of Non-Binary Input DMCs” ISITA 2016.

KL-Means = Information Bottleneck Method
Information bottleneck method (Tishby, et al., 2000). For the Markov chain:

X=Y—=Z
How much information Z provides about X through the “bottleneck” Y:

min I(Y;Z) — BI(X;Z)

Pz|Y(Z|y)

The information bottleneck and KL-means algorithms both try to solve:
max I (X;Z)
Q

When f — oo the two algorithms are equivalent.

B. M. Kurkoski, “On the relationship between the KL means algorithm and the information bottleneck method,” in
11th International ITG Conference on Systems, Communications and Coding (SCC2017).
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3 Hardware-Aware Information Theory

Hardware-Aware Information Theory
o Max-LUT method — Mutual-information maximizing lookup tables
o Application of Max-LUT to LDPC decoding

o Numerical results: 4 bits/message “performs like floating point”

Max-LUT Method
o,

How is it possible to replace 1.6

mathematical operations with lookup
tables?

Max-LUT is a method for

implementing the node decoder

v/

functions for graph-based decoders,
using lookup tables that maximize

mutual information. L

Ly
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Characteristics of the Max-LUT Method

e We need a factor graph

o We need input probability distributions

o Factor graph messages are discrete

o Decoding functions are look up tables (LUT)

o Lookup tables are designed to maximize mutual information

Lookup Table (LUT) Implementation

1

2 Lo 1 2 3
— 0[]0 0 1 2
1 0 1 2 3
2 0o 2 2 3
L1 3 2 2 3 3
Z 2-bit lookup table, 0 = 00, 1 = 01, etc.
Lo

e Assume that LUTs are easy to implement in VLSI hardware

e Do not use quantized LLRs, just labels 0=00, 1 = 01, etc. -
28
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Max-LUT Method: Central Idea with Factor Graphs

Encoder Side. Code symbols X Decoder Side
X1 — Ly
A e & Z
Xy —] Lo
o Check node f: X3 = X1+ Xz L;is a noisy version of X;,
e Var node f: X1 = Xy = X3 Z is a noisy version of X3
e ctc.

Choose LUT to maximize mutual information

maxI(Xg; Z) = II%L%(I(X;),; LUT(L,, Lg))

Max-LUT Method: Three Steps

e Step 1: Find joint distribution from input distributions

o Step 2: Quantize joint distribution maximize mutual

information

e Step 3: Find LUT from the quantizer
Example
e LDPC variable node, two inputs Ly, Lo with Pr(L;|X;)

e local constraint: “x1 = xo = x3”

e Goal: find max-MI lookup table Z = LUT(Ly, L2)
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Max-LUT Step 1: Joint Distribution

I
“

—

S R A e B

=~ = 4
= N
.Lw [l VAS —_ UJ
2
~
Z
E TR g
2 g 8
g z |

Py R <t ON— 2 \w

8 < S
H ™ = =
=) = o 8
g X2
2 -~
7 5 X
M MH L1.r05432.|
”M )
o] X
= T
- TV oz
. AT - e

Max-LUT Step 2: Quantize

e Too many levels! Reduce to Z with K levels

o Quantizer is a mapping from (L;,Ls) to Z

Q:£1x£2—>Z

151



Max-LUT Step 3: Lookup Table

6,4
Ly, L
(L1, L2) / L,
a 1 L1 1 2 3 4
> 114 4 3 3
X ' 2 25 5 5 4
: Z 315 5 4 4
4
, 3 413 3 2 2
. 3 5| 2 11
6 |1 1 1 1
4
33 Lookup table:
' > Z=LUT(L:, Ly)
21)

Application to LDPC Code Decoding

o How to obtain the probability distributions needed by Max-LUT
method?

> Density evolution
e How to keep the lookup table reasonable size?
> Node decomposition or “opening the node”
o How does it perform numerically?

> Similar to BP with four bits/message

152




Density Evolution Unwraps the Graph

<+«—iter ] —» «—iter 2 —» «—iter ... —»

Pr(R|X) Pr(L|X) : Pr(R|X) Pr(L|X) (2 Pr(R|X) Pr(L|X) 0O
— =N A /R
AN/ \

) //'&k\\ A

k\\‘“‘vlw., 7 /;.{\ﬁél{ai;.{tﬁél4'i7,.\\““‘vlw.';;
= A A A IA

72 RO H 2 R H A NS SRS
£ N\ 2V Y. oA\l X D e\ 2 VY." e\ 2 VY."
25 SxANAN «//'(.\ \V/ 0. /'(.\ \\0 9. «14/'(’\ \\0 9. 4,/'(
5 0Nk ,’Q‘*\o '.‘/t.Q" LN L
= < e

: & % X .18 A

« construct lookup table

« get next density Pr(L|X)

Non-Uniform Quantizer: Quantization Points

R =1/2, BSC(0.08), 11 levels

8 &8 &

y s

Iterations ——

LLR
Beyond just LUT labels: We know the probability distributions.
> Use the find LLR values
> These LLR values show non-uniform quantization
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Noise Thresholds with Quantization

----------___‘__AWQNJOLSE("LSS_T‘QU_L___ -- o
szresiarene] =T—— 4 bits/msg
0 - — _
% \ 3 bits/msg
Z 2 bits/msg
)
—
'Q -
B +— 1 bit/msg
(&)
n
o
o 0.4 B
Z .
B ' 1 BI-AWGN channel, R=1/2
2 B 2 B P 12 6 2 4 3w (3, 6) regular LDPC code

Levels of Channel Quantization

F. J. Cuadros Romero and B. M. Kurkoski, “LDPC decoding mappings that maximize mutual information,” IEEE
Journal on Selected Areas in Communications, vol. 34, pp. 2391-2401, August 2016

4 bits/message close to BP

10° - 10
o ' ?;1{”[1/7.“'5?;,. ; g AN iy 3 — bit/msg
0 30 ; : /’L S " 20 LUT decoding
107 23 2724 i 4 hit|msg ] - e 1 19 4 - bit/msg
© i \Yl 20 LUT decoding g 132) LUT decoding
45 10° 13 , 17 BP t 107 BP
~ 111 15 floating-point @ ﬂoatmg point
107 L Q
;5 [ 10 —-K \:Ym £ w0 10 -
= 11\
G e ;
5 107 1 = 107
g K g
= 11
m ; "E 8
10 ,
Lo O 1 A9
0 = Sl
30 g
5 -
05 2 25 3 35 4 45 0,5 2 25 3 35 4 45
E,/NO Ey/NO

Ficure 8. BER and WER results for the LUT decoding algorithm. d, = 4, d. = 9
R =0.56, N = 4113, Max. Iter.= 30, Array code [2].

F. J. Cuadros Romero and B. M. Kurkoski, “LDPC decoding mappings that maximize mutual information,” IEEE Journal on
Selected Areas in Communications, vol. 34, pp. 2391-2401, August 2016
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BSC: Lower Error Floor than Sum-Product
But not lower than FAIDs

N = 2388, (d, = 3,d. = 12), R = 0.75 and Max. iter = 60

10°

FAIDs are designed to avoid
the effects of harmful 10”
subgraphs, lowering the
error floor Planjery et al
(2013).

10

The proposed decoding
mapping functions can be
used in a variety of
channels not only in the
BSC.

Word-error rate

10" =
F. J. Cuadros Romero and B. M. Kurkoski, “LDPC decoding mappings that maximize mutuajlolnformation,” IEEE Journal on
Selected Areas in Communications, vol. 34, pp. 2391-2401, August 2016
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Conclusion: Hardware-Aware Information Theory

o Overlap between machine learning and information theory
¢ Max-LUT method can gives floating-point performance using 4-bits/message

o Optimized non-uniform quantization method well-suited for VLSI hardware

Open Questions

o Can these techniques be applied more generally, e.g. to equalization and

detection?
o Other decoders: non-binary LDPC or polar codes?
e How to deal with unknown channel distributions?

o What is special about 4-bits/message?
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(joint work with Ken-ich Twata)

Abstract: In this talk, we introduce new lossless data compression coding schemes,
called the Almost Instantaneous Fixed-to-Variable length code (AIFV code) and the
Asymmetric Encoding-Decoding Scheme (AEDS). The AIFV code can attain better
compression rate than the Huffman code by using multiple coding trees and allowing
a small decoding delay. The AEDS can be considered as a generalization of the ANS
(Asymmetric Numeral Systems) proposed by Duda, which can attain almost the same
compression rate as the arithmetic code with less arithmetic operations. We explain
the encoding and decoding algorithms of the AIFV code and the AEDS, and clarify
how and why these codes can beat the Huffman code and the arithmetic code.
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Lossless Data Compression Coding Schemes
to Replace Huffman and Arithmetic Coding

Hirosuke Yamamoto
(The University of Tokyo)

No.2/53

Outline

1. Overview of new lossless data compression coding schemes
to replace Huffman coding and arithmetic coding.

2. AIFV codes (almost Instantaneous fixed-to-variable length codes)
and extended codes, which can attain better compression rate
than the Huffman code.

3. ANS (asymmetric numeral systems) and AEDS (asymmetric
encoding-decoding schemes), which can attain almost
the same compression rate as the arithmetic code
with less mathematical operations.
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Well-known lossless data compression codes

Huffman code
(Huffman[1] 1952)
Optimal code in the class of

prefix—free codes
(instantaneous codes).

Arithmetic coding
(Rissanen[2], Pasco[3], 1976)

Range coding
(Nigel-Martin[4], 1979)

Asymptotically optimal code
for data sequences.

No.4/53

Huffman code

Optimal code in the class of
prefix—free codes
(instantaneous codes).

b AIFV code
Huff 111952 (Yamamoto-Tsuchihashi-Honda[5], 2015)
(Ruffmanf1] 1952) AIFV-m code

Arithmetic coding

Range coding
(Nigel-Martin[4], 1979)

(Rissanen[2], Pasco[3], 1976)

for data sequences.

Asymptotically optimal code

New lossless data compression coding schemes

better compression rate

(Hu-Yamamoto-Honda[6], 2017)

N-bit-delay AIFV code
(Sugiura-Kamamoto-Moriya[7], 2023)

less mathematical operations
Asymmetric Numeral Systems (ANS)

» (Duda[8], 2009)

Asymmetric Encoding-Decoding

Scheme (AEDS)
(Yamamoto-lwata[9], 2024)
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New lossless data compression coding schemes

Huffman code AIFV code
(Huffman[1] 1952 ) (Yamamoto-Tsuchihashi-Honda[5], 2015)

Optimal Breakthrough :

(instr Small decoding delay
and multiple code trees

Arithmetic coding
(Rissanen[2], Pasco[3], 1976)

better compression rate

AIFV-m code
(Hu-Yamamoto-Honda[6], 2017)

N-bit-delay AIFV code
(Sugiura-Kamamoto-Moriya[7], 2023)

less mathematical operations

Asymmetric Numeral Systems (ANS)

Range coding =) (Duda(8], 2009)

Breakthrough :

Backward-order encoding
and forward-order decoding

Asymmetric Encoding-Decoding
Scheme (AEDS)
(Yamamoto-lwata[9], 2024)

Outline

No.6/53

1. Overview of new lossless data compression coding schemes
to replace Huffman coding and arithmetic coding.

2. AIFV codes (almost Instantaneous fixed-to-variable length codes)
and extended codes, which can attain better compression rate

than the Huffman code.

3. ANS (asymmetric numeral systems) and AEDS (asymmetric
encoding-decoding schemes), which can attain almost
the same compression rate as the arithmetic code
with less mathematical operations.
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Optimality of Huffman

Huffman code is optimal.
(Huffman[1], 1952)

Kraft Inequality

T~

Kraft Theorem
(Kraft[10], 1949)

code

~

No.7/53

FV codes (Fixed—to—Variable length codes)

( )
Uniquely decodable codes

2:24@)§1

SES

‘McMilla

S : source alphabet
l(s): code length of s € S

(McMillan[11],1956)

n Theorem

Instantaneous codes
(Prefix—free codes)

Optimality of Huffman

Huffman code is optimal.
(Huffman[1], 1952)

code

Kraft Inequality

Kraft Theorem
(Kraft[10], 1949)

NS

No.8/53

FV codes (Fixed—to—Variable length codes)

e N
Uniquely decodable codes

~

Z 2—1(3) <1

seS

(McMill

S : source alphabet
l(s): code length of s € S

“McMillan Theorem

an[11],1956)

Instantaneous codes
(Prefix—free codes)
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Optimality of Huffman code
FV codes (Fixed—to—Variable length codes)

. . ( )
Huffman C‘(’Sfﬁ'r:ar?[?}'%%lé)\ Uniquely decodable codes
\\
. Kraft Theorem 6 )
Kraft Inequality (Kraft[10], 1949)]
22_1(5) <1 | "| Instantaneous codes
° - McMillan Theorem (Prefix—free codes)
s€ (McMillan[11],1956)
\_ J
Only the case of a single code tree. \. J

Multiple code trees =g Better compression rate than Huffman code
Small decoding delay === AIFV (almost instantaneous FV) code

No.10/53

AlIFV codes (Aimost Instantaneous Fixed-to-Variable length codes)

Number of Maximum decoding
code trees delay (bits)
AIFV code
(Yamamoto-Tsuchihashi 2 2
-Honda[5], 2015)
AIFV-m code
(Hu-Yamamoto-Honda[6], 2017) m m
N-bit-delay AIFV code .
(Sugiura-Kamamoto-Moriya[7], multiple N
2023)
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Hierarchy of FV codes

Decoding delay is
not bounded.

delay

.

Maximum decoding

No.11/53

Uniquely decodable codes
~
- - { Arithmetic code
J
( : )
N-bit decoding delay
% :
3 3-bit decoding delay
E 2-bit decoding delay
< no decoding delay
(instantaneous code)
\_ J
\_ J

No.12/53

AIFV code (Yamamoto-Tsuchihasi-Honda[5], IEEE IT 2015)
(two code trees and 2-bit decoding delay)

Ex. 1 Source alphabet: S = {a,b,c,d}

Code alphabet:

B=1{0,1}

® |eaf

° Complete internal node

Incomplete intenal node
® Master node

o Slave node
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Encoding of AIFV code

Data sequence: C b d C a
Codeword sequence: 11

To : initial tree

Transition rule of code trees

leaf == T

master node == T

No.14/53

Encoding of AIFV code

Data sequence: C b d C a

Codeword sequence: 1110 1100 11 01
Tl TO T() Tl

Transition rule of code trees

leaf == 15

master node ==> T}
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Decoding of AIFV code
Codeword sequence: 111011001101

Data sequence: C
To : initial tree

Transition rule of code trees

leaf == T

master node == T

No.16/53

Decoding of AIFV code

Codeword sequence: 111011001101

Data sequence: C D d ca
TO T1 TO T() Tl

Transition rule of code trees

leaf == 15

master node ==> T}
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Decoding of AIFV code

Codeword sequence: 111011001101

Data sequence: C D d ca
TO T1 T() T() Tl

v

Uniquely decodable code
with at most 2—bit decoding

delay
Average Code Ieng‘th Huffman COde tree o188
Ex.2 S={abcd B={0,1} S Average code length
p(a) = 0.45,p(b) = 0.3, a 0\ Ly =18
p(c) =0.2, p(d) =0.05 b 0/\1
Entropy: H(S) =~ 1.7200 c d
AIFV code tree Transition probability of code trees

Q(T1|To) = p(c) = 0.2
Q(To|T1) = p(a) + p(b) + p(d) = 0.8
Stationary probability of code trees
Q(Ty) =0.8,Q(T1) = 0.2
Average code length
Larrv = Q(To)Lo + Q(T1) Ly
=08x1.65+0.2x2.1
=1.74
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Transition rule of code trees

leaf == Tj
master node == T}

. 0 No.20/53
N-bit-delay AIFV code S§={a,b,c} ——7--
(Sugiura-Kamamoto-Moriya[7], 2023) N — 3 —1

Mode {)\} {011, 10} {0,10} {0,100} {01,1}
T3 T,
o T
I / |
¢
|

Data sequence:b a ¢
Codeword sequence: 0 0 100 - - -
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N-bit-delay AIFV code S={abc} —-2--
(Sugiura-Kamamoto-Moriya[7], 2023) N — 3 1

Mode {\} {011 10} {0 10} {0,100} {01 1}
T3
\ (L—)T’; a%Td
. C%TA;L *)To @ %TU @:)% C—>T4
Uniquely decodable

For any two data sequences that are
not a prefix of each other, the corre-

Data sequence :b a ¢ e sponding codeword sequences must
Codeword sequence:0 0 100 - - - be not a prefix of each other.

N-bit delay AIFV code S={abc} ——-2—- o
(Sugiura-Kamamoto-Moriya[7], 2023) N — 3 S
Mode {\} {011 10} {0 10} {0, 100} {01 1}

/
aHTg

/

1
=3

|
|
|
; ©=D =0 D +

/
b% T() : /
/\ |
XA
/ / /

L‘}TU
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N-bit delay AIFV code S ={a,b,c}
(Sugiura-Kamamoto-Moriya[7], 2023) T __1__
Mode {\} {011 10} {0 10} {0, 100} {01 1}
Ty

’ \
b—Ty a_>T" ] I aaTs
I |
I |
D) =) ©n 0 LﬁTo OIS
/
\ =5 =5

/ | Mode : A tree obtained by trimming
/X ) 'X all full subtrees
Maximum decoding delay
= maximum length of modes

No.24/53

Maximum decoding delay and optimal binary FV code

Maximum decoding delay (Proved by) Optimal code

no decoding delay & Huffman code

(instantaneous code) W single code tree

1-bit decoding delay (Hashimoto-lwata[12], 2022)

2-bit decoding delay - » AIFV code
(Hashimoto-Iwata[13], two code trees
2023)

N-bit decoding delay > N-bit—delay AIFV code

N>3
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Construction of optimal AIFV code trees T = (Ty, T3, -+, Tyn_1)

[teration Altorithm (AIFV code : Yamamoto-Tsuchihashi-Honda[5], 2015)
(general case : Fujita-lwata-Yamamoto[14], 2019)

Parameters: C = (Cy,C1,-+ ,Cpu_2)

—> Local optimization of each T;,5=0,1,--- ,m —1 by IP or DP
for a given parameters C'.

}

Update C for the newly obtained T'.

No.26/53

Survey paper

[15] IUAIEE “EBREFFVRABAIFVEB)—N\II U SICBLEMREE
ERTH5HE—", BFIBERBIEFRES vol.104, no.1, pp.35-42, 2021

Topics:

AIFV code, Number of AIFV code trees, AIFV-m code,
Dynamic AIFV code, Alphabetic AIFV code, AIVF code,
Universal code, Iteration algorithm, etc.
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Outline

1. Overview of new lossless data compression coding schemes
to replace Huffman coding and arithmetic coding.

2. AIFV codes (almost Instantaneous fixed-to-variable length codes)
and extended codes, which can attain better compression rate
than the Huffman code.

3. ANS (asymmetric numeral systems) and AEDS (asymmetric
encoding-decoding schemes), which can attain almost
the same compression rate as the arithmetic code
with less mathematical operations.

No.28/53

Arithmetic coding and ANS coding
Arithmetic coding
Data sequence: sySg + -+« -~ - Sprrererrens
Encoding direction : >
Decoding direction : >
Codeword b is determined from the MSB to LSB.

Interval b(s') € [F(s'), F(s") + P(s")) F(s') = Y P(&
§t<st
ANS coding
Data Sequence : 81 82 ......... St ............

Encoding direction : <
Decoding direction : >
Codeword b is determined from the LSB to MSB.

Only one integer variable == less mathematical operations
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ANS (Asymmetric Numeral Systems)

+ A noiseless data compression scheme proposed by Jarek Duda, 2009.
(Duda[8] 2009, Duda[16] 2014, Pieprzyk-Duda-et.al[17] 2022, etc.)

* ANS can attain almost the same compression rate as arithmetic coding
with less arithmetric operations.

* ANS is widely used, e.g. Facebook Zstandard (ZSTD) compressor,
Apple LZFSE compressor, Google, Dropbox, Microsoft, Pixar, etc.

* Variants
ABS (Asymmetric Binary Systems), rANS (range variant of ANS)

tANS (tabled variant of ANS)

No.30/53

Information theoretic analyses for ANS

ABS (Asymmetric Binary Systems), rANS (range variant of ANS)
tANS (tabled variant of ANS)

» Proof of asymptotic optimality for tANS
(Dubé-Yokoo 1SIT2019, Yokoo-Dubé SITA2019)

+ Information theoretic analysis of average code length for each variant.
(18] WAEE sBHE—, “ANSOFSE - ES7ILITI)ILETHHSR
DT, 7 BEFERBEFZSFEHIEEA, Nov. 2024, (IBHFRX)
(REARR: July, 2024)

(English translation version)

[19] H.Yamamoto, K.lwata, “Encoding and Decoding Algorithms of ANS
Variants and Evaluation of Their Average Code Lengths,”
arXiv: 2408.07322v1, Aug. 2024
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tANS

+ We treat the encoding and decoding algorithms of tANS, which we
refer to tANS as ANS for simplicity.

+ We will show how the ANS can be generalized to the AEDS.

T < Encoding
Data sequence :S™ = SS9 - --ST_1ST
» Decoding

S : a finite discrete source alphabet.

ST > an iid. data sequence,s; € S.

p = {p(s)|s € S} : source probability distribution.

No.32/53
ANS (Duda[8], 2009)
(Pieprzyk-Duda-Pawtowski-Camtepe-Mahboubi-Morawiecki[17], 2022)

X={N,N+1,--- 2N — 1} : set of internal states used in ANS.
N is a positive integer, N = |)('| )
X, : subset of X correspondingto s € S, N, = | Xs |-
XsNXy =0 for s #5s, X= UXS, N:ZNS
sES seS  Ng=|Vs|
Vs ={Ng,Ng+1,--- ;2N — 1} : another set corresponding to s € §.

One—to—one correspondence

(s,y) ESX Vs =X, CX N,
p(s)~ — forse S
x = C|s,y] (s,y) = Dl[z] N
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Encoding/decoding algorithms of ANS X (NN+L. 2N 1}

T <t Encoding
Data sequence: S° = S1S2**ST_1ST
» Decoding
Encoding : Decoding :
1. Select x € X arbitrarily. 1. Codeword sequence :

(x07515/827" : 7/8T)

2.Repeat the following from ¢ = T to 1. ;
2.Repeat the following from ¢ = 1 to7.

(-xt’st) kt:Ug(xt/Nst)J (/Bt,xt_l)
ﬁt =T mod 2'1% (8t7 yt—l) = D[xt—l]
_ ket

Y1 = [2/27] € Vs, | k= [1g(NV/ye—1)]

1 =Clss,ip1]e X, C X
(Bt, w4-1) ze =2y, + By

3. Codeword sequence : (4, 5¢)
(20, 81, Ba, -, Br) S Decoded sequence (81,82, ", ST)

; : . log =1l No.34/53
Encoding/decoding algorithms of ANS

T < Encoding
Datasequence: S = S1S2:**ST_1ST N
> Decoding p(s)~ =2 forseS
N
Encoding : 2 € X ={N,N+1,--- ,2N — 1}
1. Select zp € X arbitrarily. (N < 2, < 2N)
2.Repeat the following from¢ = T'to 1. N
(.’Et, St) ky = |lg(z:/Ny,)] {lg N J <k < \‘lg QNJ
B = x; mod 2F¢ Ns, N,
Y1 = /2] €D, \}g L J <k < ng J +1
(ﬁt,xt—l) i1 =Clss,y—1]€ X5, CX p(se) ]~ e p(s¢)
3. Codeword sequence : Ig L 1<k Slg ! +1
(z0, B1, B2, , Br) p(st) p(st)
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AEDS (Asymmetric Encoding-Decoding Scheme) B

(Yamamoto-lwata[9], 2024)

T < Encoding X:{al,a2,~- »aN}
Data sequence: S° = S1S2**ST_1ST : an arbitrary finite set.
» Decoding
Encoding : Decoding :
1. Select xp € X arbitrarily. 1. Codeword sequence :
2. Repeat the following from¢ = T'to 1. _(xo’ﬂl’ P2, br)
(s, 5¢) 2.Repeat the following from ¢ = 1 to7.
’ Bt = E(l)(st) (6t7xt—1)
o — p
(2) St T (Bt)
zi-1 = EP (s4) B o
(Bt re-1) zy = Dy, (Br)
3. Codeword sequence : (a2, 5t)
(o, B1, B2, -, Br) 3. Decoded sequence : (sq, Sa,- - , ST)

{(EM, E® DM D) | e x}:AEDS

€T ) xr

No.36/53

An example of AEDS A l’;‘:}l;ﬁ%lljence with Encoding
Decoding

S ={a,b,c}
X:{al,ag,--- ,055}, N = |X|:5

Encoding functions : Foreach z € X
EVN .S -B={0,1}, E® . S§-x
Decoding functions : Foreach x € X
DM . BD) 5, DB : BD) 5 x
BP) .= (EM(s)| 2 € X,5 € S}

Uniquely decodable
Foreachgx € X,

B{P) must satisfy the prefix-free condition.

Codewords 3;
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An example of AEDS A : null sequence with
length 0.

This can be represented with [lg N bits.
In the coding rate of a long sT,
[lg N'| bits can be ignored.

No.38/53

State—divided AEDS (sAEDS)
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Relation between sAEDS and ANS

No.39/53
Encoding

Decoding
ANS is a special case of SAEDS.

ANS: The difference in codeword length of | | B(”)
is within 1 bit.

:tEXs(E)

SAEDS: each BJ(UD )can take any variable-length
code satisfying the prefix-free condition.

\

The class of sSAEDS is much wider than ANS.

The optimal sAEDS can attain a compression
rate better than (or at worst equal to) the ANS.

Codewords 3

No.40/53
Average code length of sAEDS Encoding

Decoding
Q(x) : stationary probability of statex € X.

St
Ti—1 !

The average code length :

L= > UED (9)p(s)Q(#)

TEX s€ES

s€S zex{®) zexP

Codewords 3
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sAEDS with the same average code length

as Huffman code.
S ={a,b,c,d}

Huffman code tree

lH(a)l
a

\ZH(d)
d

lH,max

b

lg(s) :code length of s € S
L H max : maximum code length

C

The optimal sAEDS can attain

a compression rate better than
(or at worst equal to) the Huffman
code.

|X| — 2lH,max
|XS(E)| — 2lH,max—lH(S)

|X(§E)| — 2lH,max—lH(a)

45 =20 =1

A =20 =1

|Xz§E)‘ — 9lamax—lu(d) {

No.41/53

sAEDS for binary sources.
S ={a,b}
pla) =p, p(b)=1-p, 0.5<p<1

Tt

Redundancy r

phased-in code

No.42/53

Stationary prob. : Q(a;) = pl(,pzvzi)’ Qb)=1-p
N=N,+1, k=[lgN]
pQ’C—Na
Average code length: L = (1 —p) 1= N +k
bits
3 4 256781016 32 128 N
p
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(1-p)
2-p

SAEDS for binary sources. Stationary prob. : Q(a:) = pil(l:pf), Qb)) =

S ={a,b}
pla)=p, pb)=1—p, 05<p<1 Average code length:

L = p[2Q(az) + Q(b1) + 2Q(b2)]
+ (1 = p)[Q(a1) +2Q(a2) + 3Q(a3) + 3Q(b2)]

bits

Redundancy r

No.44/53

sAEDS for non—binary sources
Source probability distribution : p = {p(s)|s € S}
Number of states: N = |X|, N, = |xP)|

Case 1: N/Ns is an integer for every s € S .

L<H(S)+ D(pllg) + 0o
q={q(s)|s €S}, q(s)=N,/N
o=Ilglge+1—1ge~ 0.0860713
D(pllg) = > _p(s)1g(p(s)/q(s))

sES
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sAEDS for non—binary sources

Source probability distribution : p = {p(s)|s € S}
Number of states : N = ||, N, = |xF)]

No.46/53
sAEDS for non—binary sources

Source probability distribution : p = {p(s)|s € S}
Number of states : N = ||, N, = |xF)]
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sAEDS for non—binary sources

Source probability distribution : p = {p(s)|s € S}
Number of states: N = |X|, N, = |)(§E)|
Case 3: [N is the power of 2.

L<H(S)+D(pllg)+ Y _ p()Ay. 5.
seS
g={q(s)|s €S}, a(s)=Ns/N
2ks — N,
ANS,QS = Z Q(x) — N
:EG/"?S(E) ®
O.x) =0(xPH = N~ 0(2) for » e ¥E)
[9] H.Yamamoto and Klwata, “An asymmetric encoding—decoding

scheme for noiseless data compression,” IEEE ISIT2024, pp.50—60,
Attens, Grace, July 2024.
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Asymptotic optimality of SAEDS

Source probability distribution : p = {p(s)|s € S} q(s) = Ng/N
Probability distribution of each state: Q(z;), z; € X, i=1,2,--- |N

. e PO N +i
Optimal probability distribution : Q*(4) :=Ig Niiol

If Q(x;) = Q*(i) can be realized, we achieve L = H(S) + D(p||q) .
(Dubé-Yokoo[20] 2019, Yokoo-Dubé[21] 2019, Yamamoto-lwata[22] 2024)

Fora>0and 1<i<N,

Q) -Q' ()< 5 = L<H(S)+Dplla) +
/- «
Q) =0 < Fpy = L<HES)+ Dl + 1y

Q) -Q' () <%  wb L<H(S)+Dlg)+a
(Yamamoto-lwata[22] 2024)
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SAEDS that can satisfy Q(z;) — Q*(4) <

(0%

No.49/53

= N2 (Yamamoto-lwata[22] 2024)
Tt—1 Tt
B et | TN A For the case of N
Lo s
SN 710-\1:_~§ p(s) = q(s) - -
PN T N
l ~
C, ! \\\\ T XCSDa e — "l l—‘
- : N - I oks AT s = |18
SA, 420 W oks 2N — 2% Ny N,
(E) " \‘N’“\\‘~~~\ = |Xc.p.|
5l | N T
Xy { Saerm Py
N, = X)) B _‘&‘_‘_:ﬁ_- M N =¥
SA e " \\
| T
I W T
A ! :\\\— -
o S W\ IQk:—l XASB
- "_‘_*:\-\1‘ 9k N, — N
Sies W = |Xa.B.]
\\\\\\\ W\ B,
=v
‘_#B«s v v
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Summary

AIFV (almost instantaneous fixed—to—variable length) codes and
extended codes, which can attain better compression rate than the
Huffman code by using multiple code trees and allowing a small

decoding delay.

ANS (asymmetric numeral systems) and AEDS (asymmetric encoding—
decoding schemes), which can attain almost the same compression
rate as the arithmetic code with less mathematical operations.
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Summary

Features of AEDS
+ The optimal AEDS can attain a compression rate better than (or at worst
equal to) the ANS since the ANS can be considered as a special case of the

AEDS.

+ The optimal AEDS can attain a compression rate better than (or at worst
equal to) the Huffman code.

« The AEDS can realize fast encoding and decoding since the AEDS does not
use mathematical operations.

+ We showed some examples of AEDS for binary and non-binary sources and
we derived several upper bounds of the average code length.

No.52/53
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MATHEMATICS FOR INNOVATION IN INFORMATION AND COMMUNICATION TECHNOLOGY

September 25th - 27th, 2024, JR Hakata City, Fukuoka, Japan

Detection performance evaluation of
Gabor-Division Spread Spectrum signals

Masayoshi Ohashi

Adaptive Communications Research Laboratories, ATR, Japan
ohashi@ieee.org

For delay and Doppler estimation using Gabor GDSS(Gabor Division Spread Spec-
trum) , we propose a simple method for estimation of sparse GDSS signals in the time
and frequency domains. Instead of PUL(Phase Updating Loop) search in the time and
frequency domains, the estimation is performed via matched filters in both domains.
Although it is a simple method, it is computationally inexpensive, and estimation can
be performed with fairly good accuracy with relatively high signal-to-noise ratio.
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DETECTION PERFORMANCE EVALUATION OF GABOR-
DIVISION SPREAD SPECTRUM SIGNALS

Masayoshi Ohashi

ATR

Outline

- History of study

- Issues to be solved

- Proposal for simplified method
- Performance evaluation

- Conclusion
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Radar basics

- Radar system transmits a radar
signal (radio pulse).

- It is reached to the target object

AAA o and reflected. |
- Radar RX system receive a
= weak reflected pulse energy.

- From the observed time delay

and Doppler shift, distance and

speed of the object can be
measured.

Precise detection and identification of At
and Af is the key

f

Delay Received pulse

—8 .0

I Af Doppler shift
| “t

Transmitted pulse
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Conventional method

|
+ FMCW | At ~distance

A Af ~velocity
> 3
(&)
c
(] I
> |
o |
o ‘
= |

|

|

|

|

|

|

|

|
S| —

Afy Af,
t

distance = — (Afy+ Afy), velocity = — (Af,— Afy)
4a 4fo

d
¢ = light speed, fy = TX freq, a= d_): of TX signal.

]
UWB radar

- Very short impulse is used

pulse

Amplitude

Spectrum

Wideband spectrum
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Problems of At and Af ML estimation

- Basically, it is 2-dimensional estimation
- ML (maximum likelihood) estimation requires time
space x frequency space 2D-search.

- If we take exhaustive approach using conventional
matched filter on both TD and FD, N? order
computation is inevitable.

‘Received pulse

Delay
At

Af Doppler shift

t
Transmitted puls

]
Study by Jitsumatsu, Kohda and Aihara -1
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Study by Jitsumatsu, Kohda and Aihara - 2
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Delay and Doppler is not commutative

s(t—1) Av

S(t)». AT ) » » s(t — 1)e/?m™t

Av S(t)ejZm/t

s(t) » » . AT ) » S(t_T)ejZm/(t—r)
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[7]Kohda et al, ITW2013 T
Time shift and frequency shift operator v
i
TTOTO Js(t) = s(t — )eitmvie=n) o frea
Trws(t) = s(t — 1)ed?m(t=3)
Tows(t) = s(t)er? ™" 70/ o
0 - Phase distortion:e/™7
s
7 ,
s 75,.,7;,05( )= s(t —r)er™!
o/‘
7
’
- o
s(t) Tros(t) = s(t —7)
time shift frequency shift
Non-commutativity of operators: 7.0 7o, =e /2™ Ty, Tro

Symmetric delay-shift operator  [7lkohdaetal, w2013
T,s(0) e = e (e3)
7wﬂﬂ—?v y)e 2m(r3)

FD operation
such that
Tf F -1

fp—ta

T g;d’fD

FD TD TD

FD
J F ‘Ttdfu = 7

S(f) ’ \ —jZﬂtd(f—f—D)
FD FD S(f —fple 2
\ f / D

fp—tp

This operator makes manipulation on TD and FD plane equivale
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DEFINING 2D SS SIGNAL
WITH TFS PROPERTY

Application of gaussian wave

- Gaussian wave is applied for constructing Gabor
Division / spread spectrum system
- Equivalent waveform is kept between TD and FD plane

08

[1] T. Kohda, Y. Jitsumatsu, and K. Aihara, “ 2D Markovian SS codes
flatten time-frequency distribution of signals in asynchronous Gabor
division CDMA systems, "2011 IEEE ICASSP , 2011.
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Template on TD
(15t level 2D SS code)

(1) Define TD template (in case of N=4)

f u Pt X)

—N-->
- X
X t

0
template TD signal

N-1
1 . p
U (6 X) = NI Z X e ITIIET 7 02 (0),
m=0

0o<m <N -1

Signature on TD
(15t level 2D SS code)

(2) Define TD signature(In case of N=4)

f v(t; X)

m'Fc
shift
1 N'-1
v(t;X) = — Z X Ty e wTP(E X)
4 IENT, m m Fe. “m )
N m’'=0
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Template on FD
(15t level 2D SS code)

(3) Define FD template (in case of N'=4)

URP(FiX')

I/L
=
X’Ol / \L t

N'-1

1 S
URP(f; X" = o z X, eJmmm TCFC%Tm,FCZ(f),
m'=0

0<m<N-1

Signature on FD
(1t level 2D SS code)

(4) Define FD template (in case of N'=4)

V({f;X)
f ___, Offset mT,

Xo 3

t

1 —
V(5 X) = 2= S X T g o U (5 X0
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These signatures are perfectly
symmetrical

Gabor Division/Spread Spectrum System (2"
level SS signal)
D FD
2D SS coded 2D SS coded
s(t; X) signature waveform signature waveform
data address data address
s(t;X) = z dg* Tyrqev(GX) S(F;0) = Y dg-Th, V(FiX)
7 7 7 '
L.
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Transmitted and received signal
Received signal affected by delay t; and doppler fp
f R e
A | | | | |
1 | |
| | | |
| | | |
| | | | |
| | 1 Received signal
ta | | |
>
1 b " Transmitted signal
> ¢
tqand fp 2D estimation

The proposed receiver

Rece|ver deS|gn where £ is fixed and p is

varying

a) Correlator (inner product) type

a(t)

r(t) —é— J’(')dt —

b) Matched filter type
t =kT

r(t) — 5(=t) —}—>
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[5]Kohda et al, VTC2013

Correlation calculation et

TD A
Cﬁ’n (.u: td)
=<r(t;X),T;

° CEDI(O' fD)
=< R0, T Toe e Twr oY Unt (F3Y) >y

FD ...
pouTor e Tar,of, WP (HY) >,

 In cg?l (u; £4),u: a controlled parameter for estimating f,
* InC;i (a3 fp), o - acontrolled parameter for estimating t,

Phase Updating Loop (PUL)

(u*,n*) = arg mz%lXR[ D (u; £4)]

)

(o*,n'*) = arg max R[C ﬁ,n’ (0; fD)]
fD < ,ll*, fd —0"

t, and f, are updated alternatively and
iteratively.
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Phase Updating Loop process

(', n*) = arg maxR[c;> (u; £4)]
un !

(i) D fo < w
BV G
(a0 o) "3'"3/ w3 n'3)
_'“\ C\)g__h \,Q‘,’/h 4
T\ % “ta fo)
(03,n3)
O  (n3)
(01,1n7)

£ Iy _ FD (. ¢
(o",n") = argmax R[Cz (03 fp)]
td «o"
Von Neumann’s APT (Alternative Projection Theorem) guarantees
the conversion to target (tq4, fp)

History of our study

- Verification of TFS property and performance
evaluation(SITA2018,2019,NLP2020/01,ISITA2020).

- Good estimation performance is observed under low noise
condition

- False locks sometimes happen depends on templates assignment
- GDSS RF waves are generated using software radio
BladeRF(RCS2020).
- Test trial using other type of templates (e.g., Frequency
Hopping type)(SITA2021)
- Feasible parameter study (IT2020)
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Issues to be considered

- Large computational efforts required for for GDSS correlation
- Measurable Doppler and delay unit would be rather large

I T [

Number of window samples 4096 4096
Number of samples between pulses 64 64
Number of Gauss waves 16 16
Signal duration 34usec -
Sampling period 33nsec

Required bandwidth - 30MHz
Range resolution 10m

Velocity resolution 3.9m/s

Frequency band 80GHz

M. IT(2020/12)

Proposed idea

- GDSS Gauss pulses are sparsely placed onto TD and FD
domain.(like pulse radar type approach was taken by V.
Jitsumatsu)

- 2-dimensional conventional GDSS PUL is used if necessary
Gabor Cells

I~
f / L \. Possible advantages
e Only sparse Gauss signals may

° . be observed both on TD and FD
° o * Because Gauss wave is used,
° . no sidelobe is seen both on TD
and FD (unlike OFDM),
simultaneous measurements of

m O | delay and Doppler may be
e o o possible.
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Model

- Total cell size: 16x16 cells

- GDSS gauss pulse is placed on every 4cells on TD and
FD. No signal is generated at other cells

Gabor Cells

AN
VAR

t

Signal constellation Ambiguity Function

Generated signals on TD/FD domain

Gabor Cells 005 w4 i e phase sHif from m) i M- Kbt |
3
A

f cu;q” ]
E E E = 3_@%
mE = E = :g;
5%
[ || || [ | K.
t A

é-qlal 5 10 15 2 zls — e[

f Time (scaled by Tc) — — —lmag

t

201



e
Signals on TD and FD domain

Gabor Cells

- /N
| W b e .

TX signal on Frea. Domain
T T

Frequency scall

10

Amplitude
°

Basic search result with PUL

- Under no noise, delay search follow by Doppler search
gives a correct search result

|:| Given target

f{ Search Result

Search Paths

Tentative Decision
O Point(Switch
Between TD & FD)
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Example of RX signal

RX signal v on Time domain

S/N=5dB

T T
Real

0.06

— — — Imag

004 |
. TXtiming

. RXtiming

0.02

D

Amplitude

15 20 25 30
Time scaled by Te

RX signal V on Frequency domain
0.04
T T | T T T

0.02

FD

Amplitude
1
)
=)
=

-0.04

-0.06 1 1 1

HDopplerl . .
0 5

Frequency scaled by Fc

Matched filter output on Time Domain

Matched Filter Output of TX signal on Time Domain.

Real
— — Imag
__ __ TX timing.
1
30
Time
10 Matched Filter Output of RX Signal on Time Domain
T i T
2 Real
5 o —
o 4 __ __ __ RXtiming.
2| il
0 5 0 15 20 25 30
Time
10 Lowpass filtered output
5[ T T T T T T
g ook
8 )
S s A
S
0 x
0 5 0T 15 20 25 30
Time
10 - Combined Signal
T T T T T T
RN 4
£
8
o
0 1 1 1 1 1
[ 5 15 20 25 30
Time
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Matched filter output on Freq. Domain

Matched Filter Output of TX signal on Freq. Domain.
T

T T T T T T T
— Real
¢ 0 —_ — —Imag (]
8 — — — TXfreq.
= i il
, | , | , . .

-15 -10 - 0 5 10 15
Freq.

0 Matched Filter Output of RX Signal on Freq. Domain.
T

Conclusion

- Under relatively high S/N condition(up to S/N=5dB),
Delay and Doppler may be well estimated.

- However, sometimes there are cases that causes wrong
estimation, we need to investigate further.
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MATHEMATICS FOR INNOVATION IN INFORMATION
AND COMMUNICATION TECHNOLOGY

September 25th-27th, 2024, JR Hakata City, Fukuoka, Japan

Experimental Evaluations of Device-Free Localization
Using Channel State Information in WLAN Systems

Osamu Muta
Kyushu University, Japan

Abstract: Wireless sensing technologies integrated with wireless communication systems are
key technologies for the development of 6G systems. Specifically, future wireless networks
are expected to provide not only data transmission services but also additional functions to
support new application services such as object detection or localization by radio signals. The
basic principle of object detection using radio signals and channel state information (CSI) is to
capture the target object’s behavior by monitoring the fluctuations that it causes in the wireless
channel. In this talk, an indoor localization approach that utilizes radio signals is presented.
We introduce a real-time device-free indoor machine learning-based localization scheme
utilizing feedback beam-forming weights for IEEE802.11-based wireless local area networks
(WLANSs), where feedback beam-forming weights from stations to the access point are utilized
as feature information for machine learning. Both simulation and experimental results prove
the effectiveness of the proposed WLAN-based localization approaches in indoor
environments.
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service systems laboratories.

References:

[1] NTT DOCOMO White Paper Ver. 5.0, “5G Evolution and 6G,” Jan. 2023.

[2] T. Murakami, M. Miyazaki, M. Ishida, and A. Fukuda, "Wireless LAN-Based CSI Monitoring
System for Object Detection,” MDPI Electronics, pp. 1-11, Nov. 2018.

[3] O. Muta, K. Takata, K. Noguchi, T. Murakami, and S. Ohtsuki, "Device-free WLAN Based Indoor
Localization Scheme with Spatially Concatenated CSI and Distributed Antennas," IEEE Transactions
on Vehicular Technology, Jan. 2023.

[4] O. Muta, K. Noguchi, J. Izumi, S. Shimizu, T. Murakami, and S. Ohtsuki, "Device-free Indoor
WLAN Localization with Distributed Antenna Placement Optimization and Spatially Localized
Regression," IEEE Transactions on Wireless Communications, VVol. 23, Issue 8, pp.9869 - 9883, Aug.
2024.

[5] O. Muta, J. Izumi, S. Shimizu, T. Murakami, and S. Otsuki, "Experimental Evaluation of Device-
free Indoor Localization Using Channel State Information in WLAN Systems with Distributed
Antennas,” IEICE Transactions on Communications, Vol.E107-B, No.12, pp.890-898, Dec. 2024.
[6] IEEE Computer Society, IEEE 802.11-2016, “IEEE Standard for Information Technology —
Telecommunications and information exchange between systems Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications”, LAN/MAN Standards Committee,
2016.

205



Experimental Evaluations of Device-Free

Localization Using Channel State
Information in WLAN Systems

Osamu MUTA

Kyushu University

Background (1/2) 1

Wireless signals are used not only for wireless communications but also
sensing for new application services.

Transmitter k @
Target

Receiver

\ J
Y

* Wireless sensing is a key technology that supports the evolution of wireless
communications for beyond-5G and 6G networks(!!

[1] NTT DOCOMO White Paper Ver. 5.0, "5G Evolution and 6G," Jan. 2023.
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Background (2/2)

* Wireless sensing techniques can be categorized into two main directions:

4 N

Device-base

Receiver = Target

Transmitter

¢ Target object has a wireless device.

e Distance to target can be estimated. Simple

triangulation-based localization is possible.

-

(" Device-free

Transmitter

Ta rget\
Recelver

e Target object has NO wireless device.

e The system can detect targets who have no
wireless devices. Various applications such
as intrusion detection are expected.

J

WLANS.

O. Muta, K. Takata, K. Noguchi, T. Murakami, and S. Otsuki,
Concatenated CSI and Distributed Antennas," IEEE Transactions on Vehicular Technology, Jan. 2023.

This research was conducted as a collaborative research project with NTT (Nippon Telegraph and
Telephone Corporation) access network service systems laboratories.

Objective of this presentation 3

e In this talk, we will introduce our recent study on a device-free indoor
localization utilizing channel state information (CSI) for IEEE802.11-based

"Device-free WLAN Based Indoor Localization Scheme with Spatially

207




 Characterize target object behaviors as (simulation results)

fluctuations of wireless channels.

Transmitter\Q\ @

Target

Amplitude

Receiver (simulation results)

e The target’s existence and behaviors can be
estimated by learning the relationship between
target status and channel status (CSI: channel
state information).

Amplitude

Principles of device-free localization 4

Example of impulse response

= With object
Without object

Example of frequency response

Delay time

= With object
Without object

Frequency

Difference between Hand V (4x4 MU-MIMO) 5

m: Antenna index
K: subcarrier index

Using H
N J
Y
Frequency channel response (H) for 4 users
1HIl 1
Extract right singular
matrix of H [Vl
k
m
v Beam-forming weight (V) for 4 users m k
. r
Using V
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CSI concatenation for CSl-based WLAN localization 13

¢ We aim to design a lightweight object detection algorithm with a small dataset.

4 K4
z ¢| g’é : m: Antenna index
K m k k  K:subcarrier index
m
<

Access
CSI compression via frequency-domain (FD) sampling

Point

©)
(B)
Change in A) ‘ : Multiple BFWs are
location (time) j ] <] : concatenated into
k¢| e K a single CSI data.
Y - m m <k = CS| concatenation
- J

Af = RAQ
Frequency-domain CSI sampling is adopted to reduce
the data size and the required complexity E> T (ﬁ
f ? 5 f

[3] O. Muta, K. Takata, K. Noguchi, T. Murakami, and S. Ohtsuki, "Device-free WLAN Based Indoor Localization Scheme with Spatially Concatenated CSI and Distributed Antennas,"
|IEEE Transactions on Vehicular Technology, Jan. 2023.

m

Overall system configuration [21(3] 7

Station

Y N T Channel
=" estimation
| l H

Access Point

IEEE802.11ac |-
Beam former |* «—

CSl .l_ Singular Vél}ue
I | compression decomposition
CSl capturing termipal  pA—i— 0 T—To T T m S SmSmssms-=s -
[rmrmrm = mm i m e — e — = t Feedback frames conveying beam-
. Frequency Frequency S I forming weights (BFWs) are
I response g’ response = . collected at an off-the-shelf WLAN
I = . S I device (CSI capturing terminal).
! g— - A % o—»| Machine | -
1 ] . I learning | !
' & 8| i
! Detection
| A result
s e il
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Experiment Scenario #1 8

¢ The machine learning (ML) model is trained on measured CSI during the offline training phase.
» Object localization is carried out using the trained ML model in the online testing phase.

AP 5.3m

O

Experiment Setup

Number of antennas at M=4

AP

System bandwidth 20 MHz

Center frequency 5.18 GHz

Number of subcarriers 52
cs capturing e

terminal

Measured CSl in Experiment 9

CSI (beam-forming weight) at AP

Subcarrier
Antenna index
index
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Experiment results : Area-wise detection probability 1o

1
5.3m
‘ AP M=4
> m|
£ o8 @mily Il'5
_\% [[[[[[[ &[G Ilm
-8 31 23) | (15; 7
E_ 0.6 30) [(22) | (14) [ (6
- ha.am| 29) [ (3) [(5)
9 29)|@[@)[()
B o4 QlIOIO][O]
- 26) |(28) | (20) (2
a [Sl[@)[0)6]
02 Ty .
0
123456 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Area number
w/o CSI w/ CSl N = 1 (Number of STAs = 1)
concatenation |:| concatenation FD-sampling compression ratio : 1/13
Impact of antenna spacing on detection performance 11
5.3m
1 1 AP M=4
WYY
Z 0.8 > 0.8 Detection
= b= . terminal
2 06 = Ol(D][0](O] Ik
Re] © 26 23) (10 7
g s 06 DIOIOIIE
S 04 g- 12.3m[Gs) [ @) | () | (5
g7 § 04 21(0]01(0
g g Q)[0)[01(O]
a 0.2 g O 2 31) @ @ 2
Q][0)[0] (€
0 I V(@) -
1 075 05 07 1 o075 05 WYY |
Antenna spacing d [m] Antenna spacing d [m] -
Number of STAs N=1 Number of STAs N=2
w/o CSI w/ CSI . .. __ Number of correct results
. concatenation . concatenation Detection probability — Number of tests
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Experiment scenario #2 12

* We consider the following two experiment scenarios. Offline training is used by using measured CSI samples.

Experiment scenario at a gymnasium Experiment scenario in an outdoor environment
33m
1o.om Detection terminal Detection terminal
;Z;emo.”- . 15m o, = 15 , =
 V 2m YY VY "TYTY
— &=/
13.5m 6.0m 16 |15| 6 | 5 16115 6 | 5
H 17|14 7 | 4 171147 | 4
38.4m 18|13 8| 3 18138 | 3
191121 9 | 2 191129 | 2
20(11)10( 1 20111110 1

Experiment results for scenario #2

H

VVvVvYy Vvyy yvvy VyvVvy
v

v v

* When the target is located in areas directly facing the AP antennas and STAs, it results in higher
detection probabilities unlike other areas that experience a marked drop in detection probabilities.

e This result suggests the detection probability can be enhanced in specific areas by properly
determining the AP antenna and STA positions.
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Average detection probability vs. compression ratioR 14

Gymnasium scenario

09 09 YYYY

Covered area

0.8

0.7 17|24 7|4

0.6 181138 |3 gﬁf’i
05 05 19]12]9 |2

04 20|12 |10] 1

0.3
0.2

n

Average Detection probability

Execution time for detection [s]

O W/ CSl concatenation (U=4)
0.1 O wi/o CSlI concatenation (U=1)
0 0 [ Execution time for training [s]
0 0.2 0.4 0.6 0.8 1

Compression ratio R

Almost the same detection probability can be obtained even when frequency-domain sampling rate is about
R= 0.1, while the execution time is reduced to 1/10.

Conclusion and Future work 15

B We briefly introduced our recent studies on a device-free CSI based WLAN indoor
localization with a small dataset, and demonstrated the achieved performance of our
developed scheme in various environments.

B Future work:

e The concept is applicable to other wireless communication systems if the acquisition
of CSI between transceivers is possible.

¢ Advanced sensing with more powerful ML models under various scenarios.
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Comprehensive Comparison of Message-Passing
Algorithms for Compressed Sensing

Keigo Takeuchi

Dept. Electrical and Electronic Inf. Eng., Toyohashi University of Technology, Japan
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The purpose of compressed sensing is recovery of sparse signals from compressed lin-
ear measurements. This lecture note reviews four message-passing algorithms for signal
recovery: approximate message-passing (AMP) [1], orthogonal /vector AMP [2, 3], con-
volutional AMP [4], and memory AMP [5].

AMP is a low-complexity and Bayes-optimal algorithm for zero-mean independent
and identically distributed (i.i.d.) Gaussian sensing matrices. The main feature of
AMP is the so-called Onsager correction to realize asymptotic Gaussianity for the
estimation errors. A disadvantage of AMP is that AMP fails to converge when the
sensing matrix has non-zero mean or dependent elements.

Orthogonal /vector AMP solves the disadvantage of AMP: It achieves the Bayes-
optimal performance for all right-orthogonally invariant sensing matrices. However,
orthogonal /vector AMP requires high-complexity linear minimum mean-square error
(LMMSE) estimation.

Convolutional AMP is a message-passing algorithm with long-term memory to re-
alize the advantages of AMP and orthogonal/vector AMP. The current messages are
updated with messages in all previous iterations. Convolutional AMP can achieve
the Bayes-optimal performance for right-orthogonally invariant sensing matrices if it
converges to a fixed point. However, it fails to converge for ill-conditioned sensing
matrices.

Memory AMP approximates the LMMSE estimation in orthogonal/vector AMP
with gradient descent. Memory AMP is in a similar situation to that in convolutional
AMP. When long-memory damping [5, 6] is utilized, however, memory AMP is guar-
anteed to converge asymptotically.

In the end of this lecture note, these four algorithms are numerically compared.
Numerical simulations were originally presented in [7].
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Signal Recovery from Linear Measurements
Linear Measurement Model
y=Ax+w, w ~ N(0,0%1,).
x € RY: N-dimensional unknown sparse signal vector with i.i.d. elements
y € RM: M-dimensional compressed measurement vector (M < N)

A € RM*N: Known sensing matrix
Ultimate Goal in Signal Recovery
Construct an estimator zZ(y, A) of x that satisfies

« Bayes-optimal performance in the sense of mean-square error (MSE)
o Minimum (optimal) complexity in the order of M and N
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Summary of Message-Passing Algorithms

Approximate message- O(tMN) i.i.d. Gaussian Optimum

passing (AMP) [1] t: #iterations

Orthogonal/Vector AMP O(tMN + M? Right-orthogonal ~ Optimum

(OAMP/VAMP) [2, 3] + M?N) invariant

Convolutional AMP (CAMP) O(tMN)  Right-orthogonal Optimum?

[4] invariant

Memory AMP (MAMP) [5] O(tMN)  Right-orthogonal Optimum?
invariant

[1] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci.,
vol. 106, no. 45, pp. 18914-18919, Nov. 2009.

[2] J. Ma and L. Ping, “Orthogonal AMP,” IEEE Access, vol. 5, pp. 2020-2033, Jan. 2017.

[3] S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664—-6684, Oct. 2019.
[4] K. Takeuchi, “Bayes-optimal convolutional AMP,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4405-4428, Jul. 2021.

[5] L. Liu, S. Huang, and B. M. Kurkoski, “Memory AMP,” IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 8015-8039, Dec. 2022.

Vemoryless Message-Passing

Module A (Linear Estimation)

v, A Signal Estimation Onsager Correction
xp: ERY vpr >0 Xapt €ERY vpLp: >0

Module B (Element-wise Nonlinear Estimation)

Onsager Correction Signal Estimation
Xgar+1 € RY Vpopers >0 X1 ERY Vi1 >0
Estimator
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Approximate Message-Passing (AMP)

Module A (Matched-Filter Estimation)

— T
xA_>B't = xB't + A Zy,

Zt=

_ 2
VasBt = 0° + 2 VB

NUB,t
y—Axg; + Zp 1.

Mvp g1
Onsager correction

Module B (Element-wise Denoiser)

Xgi+1 = E[X|XaB ¢ VasB el

1 2
UBt+1 — NIE [||x - xB,t+1|| |XA-B ¢ VA—»B,t]

Virtual Gaussian Measurement

XpA-Bt = X + ht; ht ~ N(O, vA—)B,tIN)-

Postulate asymptotic Gaussianity of the estimation error x5, — x.

Effect of the Onsager Correction

Without correction

With correction

Compression rate

M/N =05

Signals

Bernoulli-Gaussian with signal density p = 0.1

Sensing matrices

i.i.d. Gaussian matrices

Signal-to-noise ratio (SNR)

30dB

Number of iterations

2
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Orthogonal/Vector AMP (OAMP/VAMP)

Module A (LMMSE Estimation)

— Tg-1 _
Xar = Xgoar A E (Y — Axgoay),

2

vB—>A,t

g, = Iy + AAT
A-lt M )
Var = Tr(Iy — ATZ;'4), UBoaAt
_ Xar —SAtXBoAt _ $atVBoat
XA-Bt = 1z

VAt
VAsBt = 75— SAt =
1-8ac 270 1—8ac

B vB—>A,t-
Module B (Element-wise Denoiser)

Onsager correction

Xgt+1 = E[X|XaoB 6 Vass el

1 2 > Equivalent to AMP
VBt+1 = NIE [”x — x| 1XasEn vA—)B,t]

x _ XBt+1 — $BtXaoBt v _ $BtVASBE ¢
oAt 1&gt P UBoAE T e Ot

" VasBt

_ UBt+1

Long-Memory Message-Passing

Module A (Linear Estimation)

Memory Buffer Signal Estimation Onsager Correction
{xB—>A,T}:.=0 Veoat Xpe ERY Vype Xaopt €ERY Vaope
1

yA——

Module B (Element-wise Nonlinear Estimation)

Onsager Correction Signal Estimation Memory Buffer
N ] N t
xgoat+1 € RY Vpoarsn xgis1 ERY Vprir {xA—)B,T}Tzo Vaspt

Estimator
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Convolutional AMP (CAMP)

Module A (Matched-Filter Estimation)  p,r,: Asymptotic eigenvalue distribution of ATA

t—1 =il
_ (t-1) (t-1) _ UBt'+1,t'+1
z, =y — Axgp; +Zfr 9t-1Zr, Sz = EE——
Va-Bt't!
=0 t'=t1 e
_ T _ 4 CAMP .
XpsBt = Xpe A Ze, Vaoge = @™ (Vaspi—1, VB PaTa)-

The tap coefficient g, € R and covariance matrix V,_p, are designed via state evolution.

Module B (Element-wise Denoiser)

1 T
Xpe+1 = E[X|Xaop e, Vaspel VBes1e/+1 = NIE [(x — Xgr41) (X xB,t’+1)|xA—>B,t'xA—>B,t']

VasB el Vaspeel
Xp-Bt =X+ hy, (hy,hy) ~N 1O, I I
Va-Bit' el VasBi/ !

Contour of Joint pdf for Estimation Errors

M = 8192, N = 16384
Bernoulli-Gaussian with signal density p = 0.1
Right-orthogonally invariant (Condition number k = 5)

30 dB i,

System size
Signals
Sensing matrices
Signal-to-noise ratio (SNR)
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Matrix-Inversion Approx. via Gradient Descent
Matrix Inversion in OAMP/VAMP

=c.=27 1y —
2, = ¢, (¥ — Axgoar) (> Bz =y — Axpoag)

¢; € R: any constant

Quadratic-Programming Formulation

7= argminfi®),  f(2) = 5775z — cl(y — Axe-a) '
Approximation via Gradient Descent

ngl) = zgi) — € Vf; (zgi)) =(- etEt)zgi) + etct(y — AxB_,A,t)

I:> Z§i+1) _ Et(Zl _ AAT)Zgi) + EtCt(y - AxB—>A_t)

Optimizing €, > 0 =,

Memory AMP (MAMP)

Design Idea
Perform one update of gradient descent in each MAMP iteration.

Module A (Matched-Filter Estimation)

Zt == Et(/‘l_l - AAT)Zt_l + {t(y - AxB_,A't),

T t (t) t-1
A Zt + z:‘r=0<1"€-[+1‘>;A,L“—‘pr—>A,‘r ®) 0
€ = | | (9

t ) ! T+1 —
=0 {‘EET+1§AI—T =1

XA-Bt —

Vasge = ®FMP (Vg 45 pyarg).

Design éa¢, ¢ € R and covariance matrix V5_,p, via state evolution.
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Memory AMP (MAMP)

Module B (Element-wise Denoiser)

Xpe+1 = E[X|Xp-p0 Vap,el Equivalent to CAMP

1 T
VBt+1,t'+1 = N]E [(x —Xpe41) (X—Xg e )| Xacpe xA—>B,t’]

XBt+1 — $BtXA-Bt UB,t+1,t+1 .
XBoAL = 1 , ég¢ = ————, Equivalent to OAMP/VAMP
—¢&Bt VpA-B,tt

v - Vg tr1,e'+1 ~ $BtSBt'VASB Lt 6]
B-oAt+1,t'+1 (1—¢&p)(1—¢&gyer)

[6] has used to define vg_,, 11741, instead of the original paper [5].

[6] K. Takeuchi, “On the convergence of orthogonal/vector AMP: Long-memory message-passing strategy,” IEEE Trans. Inf. Theory,
vol. 68, no. 12, pp. 8121-8138, Dec. 2022. 13

Convergence Guarantee

Long-Memory (LM) Damping [5, 6, 7]
Forall t" € {0, ..., t}
G 1 01 Valped
XA-Bt = ; Ot cXa-Br) VasBit = m: 9;,t 1TV g1

Ot0

Effect of LM Damping [6, 7]
In general, the MSE N™1E [||x—xA_,B,t||2] after LM damping is monotonically
decreasing in the large system limit as t increases.

:> LM damping guarantees the convergence of MAMP.

[7] L. Liu, S. Huang, and B. M. Kurkoski, “Sufficient statistic memory approximate message passing,” in Proc. 2022 IEEE Int. Symp. Inf. Theory,

Espoo, Finland, Jun.-Jul. 2022, pp.1378-1383. 1
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Numerical Conditions

System size M = 8192, N = 16384
Signals Bernoulli-Gaussian with signal density p = 0.1
Sensing matrices Right-orthogonally invariant
Condition number k=10
SNR 30 dB

Numerical Simulation ooz ece @ 2

[8] K. Takeuchi, “Challenges and Future Direction in Message-Passing Demodulation,” IEICE Tech. Rep., vol. 123, no. 439, CS2023-114,
pp. 58-63, Mar. 2024.
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N umerica | S| mu | ation (Copyright®2024 IEICE, [8] Fig. 1)

[8] K. Takeuchi, “Challenges and Future Direction in Message-Passing Demodulation,” IEICE Tech. Rep., vol. 123, no. 439, CS2023-114,
pp. 58-63, Mar. 2024. 17

Conclusions

Summary

The advantages (complexity, flexibility, and performance) of both AMP and
OAMP/VAMP can be realized in part via LM damping.

Direction in Future Research

« Performance of current LM message-passing (Condition number < 30)
&« Performance of OAMP/VAMP (Condition number < 10%)

o LM message-passing requires a huge system (N > 10%)

* LM message-passing cannot treat non-zero mean sensing matrices.

:> Much room for improvement in LM message-passing
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Some information-theoretic aspects of joint
communication and sensing

Joudeh Hamdi

Department of Electrical Engineering
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Abstract: In this talk, I will discuss a basic model for joint communication and sens-
ing, where a transmitter simultaneously communicates with a receiver over a state-
dependent discrete memoryless channel and senses the channel state through a gener-
alized feedback channel. First, I will discuss a list estimation approach to the sensing
problem and establish a suitable notion of sensing capacity. Then, I will focus on
reliability and discuss error exponents for sensing and communication.
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Some information-theoretic aspects of
joint communication and sensing

Hamdi Joudeh
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Joint Communication and Sensing (JCAS)

anna

AN

T

Source: VDE-ITG position paper on JCAS

» a.k.a. Integrated Sensing and Communication (ISAC)
» Major challenge: IT framework and limits

2/27
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Talk Outline

1. Sensing (and JCAS) Capacity

2. Sensing (and JCAS) Reliability

3727

Communication Channel

X" yn .
W — Enc Pyix Dec — w(Y™)

» R achievable if there exists (n, M, ¢)-codes with
1
HlogM—)R and ¢—0

» Capacity: C £ maximum achievable rate

(Shannon’48)

C=maxI(X;Y)
Px

» Concise and insightful. Can we do similar for JCAS?

4727
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Sensing Channel

n n
Ps S Py|s z Est — s"(Z")

Models:

» Fixed random state: S; = O, for all i

> ii.d. state: S; ~ Sjand S; L Sj, for all i # j (this talk)
i.i.d. state estimation:

» Point (sequence) estimate s" = (51,52,...,5,)

» Additive (separable) distortion measure

_n.7

d,(s",5") = ! > d(si,s)
i=1

» Excess or expected distortion criteria
P [d.(S",8"(Z")) > D] or E [d,(S",5"(Z"))]

5/27

Sensing Channel: List Estimation

n n
ps |5 Pys 4 Est (— L(Z")

» L-list estimation: £(Z") C S™ with |£(Z")| =L
» Sensing error: state sequence not in list

6 =PI[S" ¢ L(Z")]
» A achievable if there exists (n, L, §)-schemes with

1
HlogL—>A and 6 —0

» Sensing Equivocation: A* £ minimum achievable list rate

Theorem
A* =H(S|Z)

6/27

228




Proof: Achievability

» Given that sensor observes 2", select list as

L(z") = {s" : %logw < H(S|Z) —1—5}

List size

1= ) P(s"jz")

stesn

> ) P(s")E")

steL(zm)
> |L(z")| exp{—n(H(S|Z) +¢)}

» Error probability: By the WLLN

PIS" ¢ £(Z")] = P {%mg]ﬁ > H(S|2) +5} 50

7/27

Typical Set Intuition

List estimation Channel decoding

Ta(S) Ta(812)  Tu(X) T(X[Y)

8/27
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Proof: Converse

» Recall that 6 = P [S" ¢ L(Z")]
» Fano’s inequality for lists (Kim et al.’08)
S|

1£(27)]

H(S"|Z"™) <log |L(Z™)| + hp(d) + dlog
» For small §, the above implies

log |L(Z")| > H(S"|Z") — ¢
= H(S|Z) — ¢ (i.i.d. and DMC)

9/27

Sensing Channel: Active Probing

n ni
Ps S Pzixs z > Est > L(Z7,X")
n:
i Pro
» Input cost constraint:
1 n
- Z b(x;) <B
i=1

» Type (empirical distribution) of x™:
1
Qxn(a) = Ez;]l[xi:a], foralla e &
1=

e.g. cost constraint: ), Qe (a)b(a) < B

10/27
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Sensing Channel: Active Probing

» Achievable list rate:

A(X") —e <H(S"Z" X" =x")
1 n
= H ZH(Si|Zi7Xi = Xl')
i=1

=Y Qu(x)H(S|Z,X = x)

xeX

» minimize w.r.t. Q., subject to > ., Qxn(x)b(x) < B

A*= min H(S|Z,X)
Py:E[b(X)|<B

No cost constraint:

A* = min H(S|Z,X = x)
xeX

11/27

Sensing Channel: Further Remarks

» Sensing Capacity: Define sensing rate as
I £H(S) - A
Then sensing capacity given by

Cs= max I(S;Z|X)
Py:E[b(X)]<B

» Same results obtained under excess log-loss distortion
§=P [z(sn,ﬁ<.|z“)) > nA}

where £(s", P(-|z")) = — log P(s"|z")

» List est. <= Soft est. under log-loss (Shkel-Verdi’18)

12/27
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JCAS Channel
Sn

W —{ Enc Pyzixs Dec — w(Y™, Sh)

oz

» State dependent channel

» Feed-forward: communication; and feedback: sensing
» Coupled by the same input (dual function)

» Introduce by (Kobayashi-Caire-Kramer’18)

13/27

JCAS Channel: List Estimation
Sn

W%* Enc Pyz)xs Dec — w(Y™, S")

.......................

Theorem (H.J-Caire’24)
R<I(X;Y|S) and A > H(S|Z,X)
for some Py s.t. E [b(X)] <B

Equivalently, I' £ H(S) — A leads to
R <I(X;Y|S) and I <I(S;ZIX)

14/27
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Talk Outline

1. Sensing (and JCAS) Capacity

2. Sensing (and JCAS) Reliability

15/27

Reliability Function

X" Y" .
W —| Enc Pyix Dec — w(Y™)

» (R,E) achievable if (as n — o0)
1 1 1
—logM —-R and —log— —E
n n €

» Reliability function: maximum E for fixed R

E*(R) £ sup{E : (R,E) is achievable}

(Fano’61, Gallager’65, Shannon et al.’67)

E(R) < E*(R) < Eqp(R)

16/27
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Reliability Function: BSC

) —E;
0.6 = =By |
\ o R,
\
\
0 0.1 0.2 0.3 0.4 0.5 0.6

R

E.g. URLLC vs. Broadband

Next: do something similar for sensing and JCAS!
17/27

Sensing Reliability Function

n n
ps |5 Pys z Est (— L(Z")

» (A, E;) achievable if (as n — o0)
1 1 1
—logL — A d =log= —E
n ogL — an n 0og 5 — L

» Sensing reliability function: maximum E; for fixed A

EX(A) 2 sup{E; : (A, E;) is achievable}

To find E; (A), we'll take a small digression

18/27
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Guessing Digression

» Determine S through sequence of inquiries
“isS =577
“s S = 5?7

until answer is “yes”
» Guessing number (rank): G(S)
» Optimal guessing: G* according to decreasing probability

(Arikan’96)

E[G*(5)°] < exp (pH 1 (5))

T+p
Converse: E [G*(S)?] > exp (pHL (S) — plog(1 + log \3\))
T+p

19/27

Guessing Proof

66 = X1 [Py 2 pe) < 3 (5 )

s'es s'es

where o > 0. Set a = %er, where p > 0

I

i
o
=

2

SN—

g

3

Corollary (i.i.d.)
E[G*(5)"] < exp (npH 1 (5))

20/27
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Guessing with side information

» Guess S given that Z is available
» Given Z = z, guess G*(s|z) according to P(s|z)

E [G*(S|Z)"] = Y _P(2)E[G*(S|2)”]

z€Z | -
< Z P(2) (Z P(s|z) 1+p)
zeZ sES

2 exp (PHL (SIZ)>
1+p
(Arimoto’s cond. Rényi entropy)

Corollary (i.i.d.)

E[G*(S"12")"] < exp (npH. 1_(5I2))

21727

Back to sensing
» Optimal list: L-MAP list

Given Z = z, L£*(z) = {L highest posterior realizations}
— LM(z2)={s€S:G(s|z) <L}

» Error probability bound:
PS¢ L£5(Z)] =P |[G*(S|Z) > L]
(tilting+Markov) < I%[E [G*(S]Z)p]

1
- < L
(Arikan'96) < 75 €XP <leip (S]Z))

Achievability
1 1
n P[5 g Lr(zm)] © Subr <A iy (S|Z)>

22/27
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Sensing Reliability Function

Converse (through method of types)

1 1
limsup — log ——F+——— < min D(Qz||P
el P [S" ¢ L(27)] Qs H(SI12)2A (QszPsz)

(Bunte-Lapidoth’13) = sup p <A —H 1 (S]Z))
p>0 1+p

Theorem

With Probing:

E{(A) = supmax p (A —HL(S|Z,X)>
p>0 Px 1+p

23727

Sensing Reliability Function: BS-BSC

14

1.2+

1+

0.8+
o
0.6 +

0.4+

0.2+

Bernoulli-q i.i.d. state sequence observed through BSC-p

24727
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JCAS: Rate-Reliability Trade-Off

Sn
W —| Enc Pyz|xs Dec — w(Y™, S")

¥

Corollary: All non-negative (R,E, A, Es) satisfying

E < Eo(o,Px) — 0R
Es < pA _EO,s(paPX)

for some Px, p > 0 and g € [0, 1], are achievable

25727

Summery and Remarks

» Basic Shannon-theoretic framework for sensing and JCAS
» Sensing capacity and JCAS rate trade-offs

» Sensing reliability and JCAS rate-reliability trade-offs

» Method of types for achievability: universal estimation

Food for thought:

» Clean results but not (perhaps at all!) practical
> States with memory?!

» Continuous alphabets

» Distributed models and Networks

26/27
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Thank you!

h.joudeh@tue.nl

Supported by the ERC Starting Grant IT-JCAS
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Recently, end-to-end deep learning-based autoencoder systems where the complete
transceiver is implemented as a single neural network (NN) were demonstrated, both
numerically and on experimental test-beds, as a viable alternative to conventional DSP
for both the optical and wireless communication links. In particular, it has been shown
that carefully chosen autoencoder architectures have the potential to provide
performance improvement as well as complexity reduction. Nevertheless, one of the
challenges in designing NN-based transceivers for economical communication links lies
in developing simple yet efficient neural network architectures and optimization
procedures, thus circumventing a substantial computational complexity overhead.
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Recent success of neural networks

https://www.cs.toronto.edu/~kriz/cifar.html

1 Neural Networks in Communication Transceivers
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Recent success of neural networks

* Neural networks surpass human
capabilities in fields such as
image processing

* Almost perfect recognition

https://benchmarks.ai/cifar-10

1 Neural Networks in Communication Transceivers

Communication system design

Transmitter Receiver

* “Reproduce reliably at one point a message selected at another point” [Shannon,

1948]
* Design transmitter and receiver to reliably transmit a message over the channel

2 Neural Networks in Communication Transceivers
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Communication system design

Transmitter Receiver

AnOther---m-'E‘.‘D"D"D"I'"ic"{ Channel }-»-X—»{*DDD'.']““_’“’ point

point

“Reproduce reliably at one point a message selected at another point” [Shannon,
1948]

Design transmitter and receiver to reliably transmit a message over the channel
Conventional: separate processing blocks responsible for individual transceiver
tasks (coding, modulation, pulse-shaping, equalization, etc.)

2 Neural Networks in Communication Transceivers

Communication system design

Transmitter Receiver

Another
not "‘m—’—’—’—{lunmﬁﬂi{ Channel ]flf—{ﬂ-[}-[}-l}”—"* point

point

* “Reproduce reliably at one point a message selected at another point” [Shannon,
19438]
* Design transmitter and receiver to reliably transmit a message over the channel
* Conventional: separate processing blocks responsible for individual transceiver
tasks (coding, modulation, pulse-shaping, equalization, etc.)
» Model-based — relies on full channel knowledge
» Absence of optimal computationally feasible algorithms for some practically
relevant nonlinear channels

2 Neural Networks in Communication Transceivers
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End-to-end neural network-based transceiver

* Fundamentally reconsider communication system design

* Optimization of transmitter and receiver in a single process

* |dea of learnable communication systems*

* Deep learning for transceiver optimization over the channel constraints
* Auto-encoder which minimizes the end-to-end error

*T. O’Shea and J. Hoydis, “"An introduction to deep learning for the physical layer," IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563-575, 2017.

3 Neural Networks in Communication Transceivers

End-to-end neural network-based transceiver

* Complete chain of transmitter, channel model and receiver implemented as an end-
to-end computational graph
* Achieved by using differentiable transmission model and NN-based transceiver

4 Neural Networks in Communication Transceivers
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End-to-end neural network-based transceiver

* Complete chain of transmitter, channel model and receiver implemented as an end-
to-end computational graph

* Achieved by using differentiable transmission model and NN-based transceiver

* Message sequences encoded by Tx NN and decoded by Rx NN

4 Neural Networks in Communication Transceivers

End-to-end neural network-based transceiver

* Complete chain of transmitter, channel model and receiver implemented as an end-
to-end computational graph

Achieved by using differentiable transmission model and NN-based transceiver

* Message sequences encoded by Tx NN and decoded by Rx NN

* Cross-entropy loss computed between the transmitted and received messages
Optimization via backpropagation and gradient descent for minimizing the loss, e.g.
the message error rate

4 Neural Networks in Communication Transceivers
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End-to-end NN transceiver in optical fiber systems

Transmitter
Q.
¢ Waveform channel g O Onecht noe
E O ReLU node
8 © Clipping node
@ Softmax node
L]

Nonlinearity and chromatic
dispersion
e Transmitter NN transforms

fil

Receiver

= discard

[ discard

sazpeuasaq

f— discard

AYAN
Pesyie

9.
pxes
)\!/A‘\\vi

messages into digital - ) o) Y
waveform samples Contl i
° Received Waveform Communication channel
[ discard
samples decoded by the -
receiver NN - s
End-to-end optimization yielding an autoencoder

learning of optical fiber communications,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4843-4855, 2018
5 Neural Networks in Communication Transceivers

End-to-end NN transceiver in optical fiber systems

Transmitter Receiver
e Transmitter NN transforms A £ O omei o -
. . . g O ReLU node
messages into digital 8 Q Comoe e -~
Softmax node
waveform samples -
* Received waveform
samples decoded by the s
receiver NN "'““’ %
npac(t) TiRec. () napc(t)
Pt = Cemm} block
p; ) Communication channel L e
End-to-end optimization yielding an autoencoder

learning of optical fiber communications,” Journal of Lightwave Technology, vol. 36, no. 20, pp. 4843-4855, 2018
6 Neural Networks in Communication Transceivers
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End-to-end NN transceiver in optical fiber systems

e Transmitter NN transforms
messages into digital
waveform samples

* Received waveform
samples decoded by the

receiver NN
P =
Pe)

tensity
modulated channels using bidirectional recurrent neural networks," Opt. Express, vol. 27, no. 14, pp. 19650-19663, 2019.
7 Neural Networks in Communication Transceivers

Implemented on experimental test-bed

8 Neural Networks in Communication Transceivers
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Neural network-based receiver

e Conventional transmitter scheme (e.g. PAM with RC filter)
* Can be implemented directly with real-world transmission data
* Labelled training database of received signals and associated messages

9 Neural Networks in Communication Transceivers

Performance

42 Gb/s

10 Neural Networks in Communication Transceivers
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Performance — Symbol detection in linear IS| and AWGN

N-Farsad Elek A ith L et b inf

.y "
- f

sequences," IEEE Trans. Signal Process., vol. 70, pp. 366-380, 2022.
11 Neural Networks in Communication Transceivers

Neural Network-aided classical systems

» Data-driven perspective on classical algorithms via NN
* Preserves structure of established optimal algorithms
* Circumvents the need for full CSI

12 Neural Networks in Communication Transceivers
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Neural Network-aided classical systems

ag(st)

13 Neural Networks in Communication Transceivers

Data-driven symbol detection - linear ISl and impulse noise

£p K

HChen YW A W e Derta-di bol-detecti

3

H
channels with bursty impulsive noise," https://arxiv.org/abs/2405.10814
14 Neural Networks in Communication Transceivers
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Performance

15  Neural Networks in Communication Transceivers

Conclusions

Neural networks suitable for optical fibre systems where optimal transmitter-

receiver pair is unknown or computationally prohibitive to implement

* Data-driven transceiver tailored for communication over the dispersive nonlinear
channel

* Reach increase or enhanced data rate compared to state-of-the-art DSP

benchmarks

16 Neural Networks in Communication Transceivers
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Conclusions

Neural networks suitable for optical fibre systems where optimal transmitter-

receiver pair is unknown or computationally prohibitive to implement

* Data-driven transceiver tailored for communication over the dispersive nonlinear
channel

* Reach increase or enhanced data rate compared to state-of-the-art DSP

benchmarks

Integrating NN into classical algorithms can lead to complexity reductions

e Further complexity reduction

Efficient hardware implementation

16 Neural Networks in Communication Transceivers

Thank you for your attention!

Neural Networks in Communication Transceivers
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MATHEMATICS FOR INNOVATION IN INFORMATION AND
COMMUNICATION TECHNOLOGY

September 25th-27th, 2024, JR Hakata City, Fukuoka, Japan

Three-Dimensional Spatial Cell
Configuration in Mobile
Communications

- Sharing the Same Frequency Band
between Ground Cells and Aerial Cells -

Teruya FUJII
SoftBank Corp.
Tokyo Institute of Technology

To make mobile communication systems available even in the sky, a “three-dimensional
spatial cell configuration” has been proposed. This configuration uses beamforming
technology for base station antennas to spatially divide ground cells and sky cells,
allowing the same frequency to be shared between the ground and the sky. In this paper,
we first introduce our proposed 2x2 orthogonal polarization MU-MIMO (Multiple-Input
Multiple-Output) canceller using orthogonal polarization antennas at the base station to
improve communication quality, particularly for sky cells. Next we present the
communication quality when applying the proposed 2x2 orthogonal polarization MU-
MIMO canceller in a cellular environment composed of multiple cells.
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[2] T. Tsuji, et al, “Frequency sharing between ground and sky cells by applying beamforming and MU-
MIMO canceller in mobile communication”, IEICE technical report RCS 2024-11, Apr. 2024-04 (in
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[3] T. Tsuji, et al, “A study on frequency sharing between ground and sky cells by applying beamforming and
orthogonal polarization MU-MIMO canceller for cellular mobile system, IEICE technical report, RCS
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Three-Dimensional Spatial Cell Configuration
in Mobile Communications
- Sharing the Same Frequency Band between Ground Cells and Aerial Cells -

2024/09/27
SoftBank Corp.
Tokyo Institute of Technology
Teruya FUJII

Aerial Service Area by use of Drone Mobile Communication

*Drone/Flying vehicle need high speed radio communications in sky.
*Construct high speed aerial service areas by use of the existing mobile base stations
(Mobile Communication 3D Cell Configuration)

[ Characteristics ] Mobile Communication 3D Cell Configuration
e Use of the same terminal as

ground communication
*  Use of the same frequency as
ground communication

The same
frequency

The same _
terminal
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Problems of mobiles and drones by using the same frequency

[ Problem]

*Due to a straight sight between drone terminal and base station(BS), there are interferences between them.

*Due to the same frequency use, there are receive signal interferences between drone terminals(DT) and mobile terminals(MT)
inacell.
[Study]

*To solve the problems caused by drone terminal introductions, we need to have interference suppression technologies.

Line of sight DT
fr -
' (free spa(i) = * « Line of sight
Aerial area Interference &~ .
~ Line of sight N\ . Interference
L\ Interference Ny
BS A i .\f/:C
Ground area
MT MT MT
Other cell Own cell Other cell

Current Studies

- Radio Transmission
MIMO(Multi-Input Multi-Output) transmission
- Interference Suppression Technologies

*Base Station: Adaptive Beam-Forming Adaptive
i ; Beam-Forming] DT
*Terminal ¢ Adaptive Power Control
BS

«—| Adaptive
Power Control

MIMO
Transmission

MT
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MIMO Transmission

MIMO(Multi-Input Multi-Output) Transmit and Receive Signals

Two different signals are simultaneously transmitted by two antennas of a terminal.
Communication capacity increases two-times by the same frequency.

SIMO (Single-Input Multi-Output) MIMO (Single-Input Multi-Output)

Communication Capacity: 1 Communication Capacity: 2

Separation
of signals
is needed.

BS MT
Transmit Signal Transmit Signals
Si 518
MIMO Signal Separation

Signal separation by singular value decomposition (SVD)

Suppress interferences and orthogonalize signals among antenna by SVD at Propagation path
response H.

Propagation path Singular value

response ——
4 NZE N

Wovpr H Wopr = 0 =H

Vi

Propagation path

MIMO MIMO
response H

receive transmit
weight weight

Receive signal Y

Y=Wsypr HWsypr S= |:

o

0 Ry Transmit
\/Z \/72 ? signals
51,8,

Transmit signal
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Adaptive Beam Forming

*Increase desired signal power

*Suppress interference signal power

Fixed Beam forming

Base station antenna beams toward MT and DT.

}

Significantly improve
communication quality

Adaptive Beam forming

DT

Mobile terminal

Desired
signal power

d

Drone terminal

. DT DT
Interference Desired sienal
o ] esired signa
BS  signal power EI] BS Interference BS  power
¢’ signal power g - ﬂ
-
-
_ MT MT N oM
Dlesuled H Interference
signal power

signal power

i

Adaptive Transmit Power Control

Adaptively control transmit powers so that receive signal powers at a base station would not exceed
a fixed value I'[dB].

* Required receive signal powers at a mobile terminal : /), (dB)
* Required receive signal powers at a drone terminal : /7, (dB)

Transmit signal power reduction W, (dB)

* Receive signal power of mobile terminal at a base station £, (dB)
Wp=max( Ey- I}, ,0) (dB)
* Receive signal power of drone terminal at a base station £}, (dB)

DT
Interference power

to other cell
W, reduction

Adaptive
transmit signal

power CUI]II'OI
W,=max(E,-T), ,0) (dB) i /’ I
g/ h
ATy
E,, Adaptive

transmit signal
power control
Ly

-3
MT
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Receive Signal Demodulation

Demodulated receive signal
Propagation path
response

Receive signal transmit signal
weight Wy weigh Wy

) _ VA,
Y_WSVD,RWBF H WSVD,TWPC S =

VS,

MIMO Beam forming ~ MIMO Transmit power

' Receiv'e weight transmit control weight
signal weight

signal weight

Adaptive
beam forming

Adaptive transmit
power control

MIMO
transmission

Current Study of System Configuration

Radio Transmission Method

MIMO(Multi-Input Multi-Output) transmission
Interference Suppression Technology

BS: Adaptive beam forming

.

Terminal : Adaptive transmit power control (ATPC)

Adaptive transmit

power control ﬂ ﬂ

Adaptive beam

forming 7

Adaptive transmit
power control

DT
ATPC

ATPC
w

MT
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Problem of Current Study (I)

When an arrival angle of drone terminal is close to that of mobile terminal, side lobe interference at base
station antenna is increased.

Arrival angle of drone terminal is different Arrival ang!e of drqne terminal is close to
from that of mobile terminal that of mobile terminal
DT DT
Beam forming P ﬂ Beam forming Kl
LT . -
1 I Side lobe interference 2 1 Side lobe interference
\,: 1 Small >’~~ Large
R o

S

~

w0

Cell boundary

MT
Cell boundary

When an arrival angle of signals from drone and mobile terminals to BS is getting close, side lobe
interferences of beam forming are not controlled so that communication quality of drone and mobile
terminals would be significantly reduced. Impossible for simultaneous use of drone and mobile terminals. |}

Interference Suppression between Drone and Mobile Terminals by Beam Forming

Antenna DT 9 :
lements & 8 ﬂ Current Receive Signal Model
Y= WB H Wpc S

f

Beam forming ~ Transmit Power
BS MT Weight Control Weight

Mobile Drone
Terminal (-10° ) terminal(10° )
T / T RRREE:

AN
A

=

y"%‘ R
=~

Gain (dB)
>

e
o

Py =uin
=

B i R
=30 <20 -10 0 10 20 30
Angle in vertical plane (deg)

N
=TT
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Problem of Current Study (II)

Problem due to MIMO of drone terminal
Two different signals are simultaneously sent by two antennas of a terminal. Communication Capacity
increases two-times by the same frequency.
[ Condition of two-times communication capacity
Spatial correlation p of base station receive antennas (2 antennas) would be =0

Transmit and receive antenna are non-line of sight Transmit and receive antenna are line of sight
(Spatial correlation p=0) (Spatial correlation p=1)

DT

Increase Decrease

communication BS communication
capacity capacity
(two-times ) (1 time)

Spatial correlation
) = ‘

BS MT f

Even with MIMO, the capacity of “drone terminals" does not double due to the impact of spatial

correlation between base station antennas. 13

Proposed Interference Suppression between Drone and Mobile terminals (MU-MIMO Canceller)

Current transmit and receive signals model Proposed transmit and receive signals model
Y =|WggH Wp¢ S Y =(Wgp Wgr H Wp¢ S
7 ﬁ MU-MIMO Canceller "
Interfi
Beam forming Transmit power Sl;;rzr:s?zﬁ Beam forming Transmit power
weight control weight Weight weight control weight
' Block Diagonalization Wyp !
ock Diagonalization ! #1
______ g Lo BD ) #Z%DMT

. . R SR —
zero by using block diagonalization. @ \7#3 #1

. . 7#1 WpeH Wpe [4,4
'Compute null weight Wyp that makes interference among terminals #2 e Wee [4:4]
; : . . Y#4 #2 DT
*Suppress interferences among terminals by superposing null weight

Wgpreceiving signal H Wpc Block Diagonalization(BD)
Hpp:  0zx2 Hpp1[2,2]
Wip (WepHWec) = ] y#1 ~
80 (WerHWp¢) = 05, Hpp, #2 e %D MT
BD )

Interference suppression weight Wpp is unitary, and does not BS y#1 _
. . #2 DT
increase noise.
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Proposed MU-MIMO Canceller

Antenna
elements : 8

Mobile
Terminal (-10° )

/AN
VY

Drone
terminal(10° )

Gain (dB)
N'J

=

;H\

B
=30 -20 -10 0 20 30
Angle in vertical plane (deg)

Proposed receive signal model

Y =|Wgp Wgr

i

Interference
suppression weight

Beam forming
weight

HWp S

\

Transmit power
control weight

Mobile

Terminal (-10°

terminal(10° )

Drone
)

MU-MIMO 0

Canceller

/

\

Gain (dB)
=

ERWA)

L1

A RL LY

-40 30

-20
Angle in vertical

shlig
=

-10 1 20 30
plane (deg)

Propose Orthogonal Polarization MIMO

Applying 2x2 orthogonal polarization MIMO to reduce spatial correlation caused by line of sight propagation

between transmission and reception.

By using orthogonal polarization transmission and reception, the correlation between base station antennas in

line of sight propagation can be reduced to approximately p = 0.

Orthogonal polarization MIMO — |
V-polarization V-polarization V-polarization T -
Orthogonal e e
polarization . \ Orthogonal
» L=~ i < I polarization
H-polarization ’ g \J N
[ ] Spatial correlation p =0
\T >
Orth 1 I?JI::E:SEH '\ Spatial correlatt V-polarization
L rthogona ~ -
g \ =0
V-polarization MIMO polarization MIMO p
BS \ MT
A Fad
A —

The receive power of the horizontally polarized antennas at the base station (V=H) decreases,

causing a reduction in the MIMO communication quality of the mobile terminals.
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45° Rotated Orthogonal Polarization MIMO

To improve the MIMO communication quality of
ground terminals, the orthogonal polarization
MIMO antennas at the base station are rotated by
45 degrees.

V-polarization V-polarization

45° rotated

BS BS

Base station
45° rotated orthogonal
polarization MIMO

Base station
orthogonal
polarization MIMO

H-polarization

45° rotated orthogonal polarization MIMO

Orthogonal polarization T

(45° rotation)

TS

,
\
\

e
!
=
“._/ Spatial correlation p =0
r’\l
!/

I

/
(9

Spatial correlation

v p=0
\
“

\
The receive power of the orthogonal polarization
antennas at the base station becomes equal and
suppressing the reduction in MIMO communication
quality of mobile terminals.

MT

45° Rotated Orthogonal Polarization MIMO

Channel response Hy y of mobile terminal.

]

Orthogonal
polarization MIMO

hyy1,
h‘H V22

— hVVll

Hy,, =
xv hyva:

V-polarization MIMO
V#1 Vi#1
i
V#2

MT H
y hVVlZ :
Rotation matrix transformation
Wkiotate With a rotation of 8

hVVlI

BS

H

N

58]

WRotate I'[X,V
Rotation matrix

Channel response Hy xof drone terminal.

Hew = [hvvu hvx-uz]
*X 7 lhuvar Rz
Orthogonal Orthogonal
polarization MIMO polarization MIMO
V#1 hyyiy  v#1
y hyvay
MT  |g#2 H#2 BS
<] hyiiz b
hyy2,

Rotation matrix transformation
Wkotate With a rotation of 0

WRotate HX,X

cosé

Wrotate = [—Sin9

sinf

cosH]: LZE _11] (6 =457

2024/12/26
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Received Signal of 45° Rotated Orthogonal Polarization Beam Forming MIMO Canceller

Rotation matrix Transmit signals Receive signal of mobile terminal

~ _ \M’Ml 0
HBDI 0 HBDI -
0 o S = WSVD,R WBDWBF WRolale H WSVD TWPC S 0 V /IMZ
BD2

| Receive signal of drone terminal

Interference
suppression 0. - Ay 0
weight Bb2 0 [2,,

SVD SVD
receive weight Transmit wei ght Transmlt power
control Welght

Orthogonal polarization antennas, adaptive beam forming MU-MIMO cancellers and adaptive
transmission power control, can convert each signal of mobile terminals and drone terminals into
signals w/o interference.

System Evaluation

Evaluate the "Orthogonal Polarization MU-MIMO Canceller," which integrates MU-MIMO cancellers
and orthogonal polarization MIMO.

Cell model
-Linear model (Cell radius 1km)
-Height of mobile terminal /,,=0m, Height of drone terminal /2, =100m % hy =100m

. . . o o Line of sight
-Mobile and drone terminals are uniformly distributed within each cells. e 87
N,=8
Base station Antenna(orthogonal polarization antenna)

- Height of base station antenna /,=50m Non-line of sight

Transmit power of mobile terminals and drone terminals

- Number of elements N,=8, Element spacing/wavelength=0.7 / h, = 50m
H Om

- Set the transmission power such that the receive SNR } } }
at the cell boundary for mobile terminals is 20 dB. -1 9 1[km]

20
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Base Station Antenna Configuration

Current System A gy
ntenna element directivi
*  Configured with two V-polarization base station antennas sufficiently ) ) v ty
spaced apart horizontally. * Assuminga Gaussrfln fupcnen:
* Number of V-polarized antenna elements: Half-power beamwidth is 80" .
8 in the vertical direction (N, =8) . SeF the relative sidelobe level to a
uniform value (G; = —20dB)
Proposed System 5
*  Configured with a single orthogonally polarized SLLRRN LLLRLY LLLRLN LRI LRLLLE LLLLE-
base station antenna. _ 0 ; ;
*  Number of Orthogonally polarized antenna elements (45° rotated): % -5 5 e =
8 in the vertical direction (N, = 8) o S 0E £ 800 3
Orthogonal polarization £ 3 l E
sufficiently spaced(no correlation ) (45° rotated) 8 -15 E I \ E
( - 20 & =
) Beam to DT
1 285 _ _25§|||| bbb ||||a
NS t Vepolarized N -180 -120 -60 0 60 120 180
A1t antenna 4 Angle in vertical plane (deg)
L 1 Beam to MT SL
| Adaptive beam forming | | Adaptive beam forming | Gy(4) = Gymax [exp (—av¢2) R IOW]
I Transceiver I I Transceiver I ay = In2/(®/2)* 1
Propagation Model

Variation superimposed with propagation distance and instantaneous fading considering cross-polarization.

Variation due to propagation distance e(d)
e(d)=Ad™®
(a:propagation constant, d : propagation distance , A:constant)

Evaluation parameter values

Instantaneous fading r(t)

Nakagami-Rice fading
rs(t)

r(t) =
VIKZ +(Irs@1?)  VIK2 +(Irs(©17)
(K: Rice Factor, r4(t) :Rayleigh Fading)

Mobile terminal
Propagation Constant a,,=-3.5 (Urban propagation)
Rice Factor K,,=0 (true value)

Cross-polarization discrimination y,,= 6dB

cross-polarization ey(t, d)

e (t,d) = 7s(t)
IK|2 + (|rs(0)]2)

/v

(ry(t): Rayleigh Fading)

Drone terminal
Propagation Constant a, = -2 (Free space path loss)
Rice Factor K,,=20dB

Cross-polarization discrimination y, =15dB

(y: Cross-polarization discrimination(Xp))
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Propagation Model

Mobile terminal

Hy () = () >[Kﬂﬁrs,l(t) KM+rS,z(t)}_ e(t,d) { OO }

”KM‘Z +<‘rs(t)‘z 5O vy 1547y <‘rs(t)‘2> LD yy 1547y

Rice Factor K, =0 (true value)
Cross-polarization discrimination y,,= 6dB (Urban propagation)

75 (#) (i=1~4) are mutually independent scattered waves (Rayleigh Fading)
00

Propagation Model

Drone terminal

IIIIIIIIIIIIIIIDTIIII
\n__ /

Hx,x(tad) =

eg(tﬂ')|:KD+rS,l(l) rS,Z(Z)/}/D}
K[+ )L 75270 Ko+ 154

Rice Factor K,,=20dB i
Cross-polarization discrimination y, = /5dB (Aerial) T T a— T

Received power(dB)

‘ ) ) 1000 2000 3000 4000
7p,(t) (i=1~4) are mutually independent scattered waves (Rayleigh Fading) Distance (m)

5000

23

Evaluation based on communication capacity

Compare the communication capacity C (Shannon capacity)
when MIMO is applied to mobile terminals and drone terminals.

C =log,(1+ SINR,)+log,(1+ SINR,) (bps/Hz)

Own cell signal power
SINR=

Noise power + Other cell interference signal power

Communication capacity of mobile terminals C,,
. { [, 0
\) ﬂ’MZ

BDI —
Communication capacity of drone terminals C,,

} ® C, =log,(1+4,,)+log,(1+4,,) (bps/Hz)

HBDZ :{ & 0 :1 B C, =log,(1+4,,)+log,(1+ 4,,) (bps/Hz)

24
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Effect of MU-MIMO Canceller (V-polarized MIMO)

+ Evaluation in a single cell
* V-polarized MIMO

w/o MU-MIMO canceller w/ MU-MIMO canceller
V-polarized MIMO V-polarized MIMO -
(Current antenna configuration) (Current antenna configuration)
DT DT
TSNS
/ \
| 1
/N A\
Spatial cc Spatial corfelation =1 !

v

lation =0 elation =0

Adaptive beam forming
MU-MIMO interference canceller:

Transceiver ﬁ

Adaptive beam forming

Transceiver ﬁ

Effect of MU-MIMO Canceller (V-polarized MIMO)

Communication capacity of mobile terminal Communication capacity of drone terminal

e e e e e e e e B — 1 [Trrr oo} T

V-polarization MIMO ] | V-polarization MIMO B

oglMii8 R 08 | Nat8 / ]
8 1 ATPC I, 2 30dB 1 r

" L| ATPC I); : 30dB / i
0.6 - } § 0.6 i :

o B 5 C : ]
a L MT -
8 [ i o | (w/o Canceller) / \ ]
2 ——
04 04 - 7 MT ]
= 7 L (w/ Canceller) |
A i ), 1
0.2 0.2
L ‘ (w/ Cfanceller) C /ncr"ase ]
| | Lo [N I
0 3 015 20 25 0 3 T [
Communication capacity (bps/Hz) Communication capacity (bps/Hz)

* The communication capacity of both mobile and drone terminals can be significantly
improved by using MU-MIMO cancellers.
+ The communication capacity of drone terminal is lower than that of mobile terminal.
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Comparison of V-polarized Antenna and Cross-polarized Antenna at Base Station

* Evaluation in a single cell
* MU-MIMO canceller applied

V-polarized MIMO

[ DT

Line of sight

Spatial
correlationy
~]
Spatial
correlation

Adaptive beam forming
[MU-MIMO interference canceller|

Tansceiver

Orthogonal polarized MIMO
[
. . DT
Line of sight
Spatial \I
correlation
e
=0
/ Spatial
| correlation
\ XU
N =0

Transceiver r

Effect of MU-MIMO Canceller (Orthogonal Polarization MIMO)

Communication capacity of mobile terminal
1

[ T T 1T T T 1T T TT L ‘

LIN,:8 i
08 L ATPC I, : 30dB

L DT |

- V-polarization
0.6 i

L - i \ 4

MT B

04l (Orthogonal B

polarization)

. ‘\/l :
2 tmost no;——

reduction 1

0| I IR AR R
5 10 15 20 25

Communication capacity (bps/Hz)

CDF
T

Communication capacity of drone terminal
1

T T T T
AT ]
[ | ATPCT,, : 30dB 1
0.8 -

F DT >
0.6 r (Orthogonal | ™1 ]
. polarization)

CDF
T

increase

R

0 5 10 15 20 25
Communication capacity (bps/Hz)

0.4 b 7 1
C V-polarization ‘ / Significant i
\

* Mobile terminal capacity is hardly reduced
* Drone terminal capacity is greatly improved compared to V-polarized MIMO

28

269




Cellular System Evaluation

Cellular System Evaluation

Study at this time (with other cell interference)

| . . 1 Base station antenna
Without other cell interference C

: O;;:gg;gz; = e e e : (Orthogonal Polarization

1 ?0° ] -======="7Adaptive : Array Antenna)
........... il i S 0Nz

: ! i | transmission | Orth%oqal
i 1 1 1 Polarization

1 H I power control . .

1 il 1 r 1 (45" rotation)

[ i ! b | Element
b ==~ =

I '} ...-----"'l-“.' - NA

: 4" s e .s® 1

10rthogona ot :

polarizatio R | | Adaptive beam forming |

1(45° tilt) ) | I

1 1 Adaptive 1 I MU-MIMO interference canceler I

| | ! S transmission : I

: -3 H 2 3 power control Transceiver

| V polarization ‘l Iy :

o o o B B B o o o o 30
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Orthogonal Polarization MU-MIMO Canceller

Receive signal Y

Propagation
characteristics
Receive weight Transmit weight
Wy Wy

Y= WSVD,R WBD WBF W

Rotate

\

H
H WSVD,TWPC :[ SDI

Transmit signal

~ S
HBD2

\\\

SVD
transmit weigh

BD cancel
weight

Rotation matrix

weight

SVD
transmit weight

Adaptive
transmit power
control weight
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Interference Signal

Interference from other cells is generated by the Evaluation cell
terminals of surrounding base stations. The P ———
amount of interference from other cells can be !
determined by superimposing the transmission
weight Wy, of the terminals in other cells onto the
propagation path H,, from other cells and the
reception weight Wy, of the local base station.

z

1
1
1
1
1
1
. : I_{E____ me“ Bk from other cell
Interference Signal Other cell I i 14 feceive weikht
[ —W. H.W. ¥ sienl ! o 1
o1 — YWRo o1 Y191 1 _ W
o 1 T - ROJ1
’ \ Other cell I ! H 1
. 1
Own cell BS Propagation terminal 1 '-w--- - - —: —
receive weight  from other transmit 1 RO\ 1 l; | = -
cell weight 1 1 :
: 1 Non line of sight *
Own cell signal power
SINR= ErLP I

Noise power+ Other cell interference power

Other cell

Line of sight F--1-=

-~ 'ﬁmpaqanon

Olher cell
terminal
transmit weight
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System Configuration

* Cell configuration
- Radiuslkm straight line model, 3 cells configuration

Evaluation cell

- MT height /1),=0m, DT height /,,=100m

- MT and DT are equally distributed in cell %
- MT’s receive SNR at cell boundary: 20dB <, 4% hy = .
“PLine o[‘sigh/ 100m .-~
* Base antenna(orthogonal polarization antenna S T
nna(orthogonal polariz ) Ny=16 2 Nl Na=16
- Base station antenna height /,,=50m e
7’
- Element N =16 ’ T

- Distance between elements/wave length=0.7

* Transmit power control set value
-MT I, =25dB (SNR)
-DT I, =25dB (SNR) -1

Noarline of sight [:14 he T

e

0' T

Surrounding cell

Center cell

—
Cell radius

Surrounding cell

33
Comparison between current and proposed models
Current System (i) Current System(ii) Proposed System
(without DT) (without DT) (with DT)
B Orthogonal Orthogonal
V-Polarization l’nﬁ\(\\'\}z\tlkﬁ!\ B P_Llhmzzmgn
¥ (45° rotation) eam (45° rotation)
N, 4 forming Element
N,
\JP/ - /
\
>< ]
/V\'\ “745° Rotation
L, i 1[km]
f 0 f
1[kmf | -1
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Comparison with the Current System

Communication capacity

Current (i) |
C V=16 ! 1 ] Pmpo;ed System
0.8 Blr,=r,=25d8 | (with D)
0.6 :_ 77777777777777777 = (Pmpﬂscd)% ™
o C | ) ] %
o4 CQurentn d H I
- Currcn:t (ii) . (Proposed)
0.2 -\ C
of ‘ ' | | ]
H 5 10! 15 20 25

Adaptive beam forming
L]

& Communication capacity (bps/Hz)

Number of Antenna element N, = 16

* The proposed system can achieve equal or greater communication capacity for both ground terminals and aerial
terminals compared to the current system, which only supports ground terminals, in regions where the
communication capacity is 10 bps/Hz or less.

 With the proposed system, it is possible to construct both ground and aerial areas using the same frequency
35

Summary

In the 'Mobile Communication Three-Dimensional Spatial Cell Configuration,' which realizes ground cells
and aerial cells using the same frequency, we propose an 'Orthogonal Polarization Beam forming MU-
MIMO canceler' that combines the following technologies:

* Adaptive beamforming technology,

* Adaptive transmit power control technology,

* MU-MIMO canceler technology to suppress interference between ground terminals and aerial terminals,
* Orthogonal polarization MIMO technology to improve the MIMO communication quality of aerial
terminals.

We investigated the 'Orthogonal Polarization Beamforming MU-MIMO Canceler' considering inter-cell
interference. The results clarified that, compared to the current system, which only supports ground
terminals, the proposed method enables both MT and DT to achieve equal or greater communication
capacity.

The proposed method enables MT and DT to use the same frequency, thereby realizing
double the frequency utilization efficiency
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