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The "WORKSHOP on Mathematics for Industry 2023 – Basis of Mathematics in nanomedicine

structures and life sensing" convened during September 25–29, 2023, at Warsaw University of

Technology, Poland, under the joint auspices of the Faculty of Mathematics and Information

Science, Warsaw University of Technology; Center for Advanced Studies, Warsaw University of

Technology; and Institute of Mathematics for Industry, Kyushu University, with the support of

the Excellence Initiative: Research University Programme at the Warsaw University of Technol-

ogy. With the participation of approximately 70 attendees, including researchers, students, and

PhD candidates, the workshop served as a nexus for interdisciplinary dialogue and collaboration

between the realms of mathematics and applied sciences.

The workshop program encompassed 25 individual talks and 5 mini-courses, each compris-

ing 3 lectures, spanning a spectrum of topics such as topological data analysis, medical imaging

methods, human genome models, big data, machine learning, cryptography, information ge-

ometry, convex optimization, physical models of elastic/plastic bodies and fluids and material

engineering. Delivered by experts from Polish and Japanese institutions, the presentations il-

luminated the symbiotic relationship between abstract mathematical constructs and real-world

engineering challenges, thereby fostering innovation and knowledge exchange. The accompa-

nying booklet contains comprehensive materials from the workshop prepared by the speakers,

including detailed summaries, presentation slides and references, providing a valuable resource

for continued study of the concepts presented during the event, with hope that it will not only

facilitate the exploration of novel research directions, but also catalyze the establishment of

international collaborations between academic environments in Poland and Japan with the goal

of leveraging mathematical methodologies to address pressing industrial concerns and societal

needs.

This work was supported by Institute of Mathematics for Industry, Joint Usage/Research

Center in Kyushu University (FY2023 Workshop(I) "WORKSHOP on Mathematics for Industry

2023 – Basis of Mathematics in nanomedicine structures and life sensing" (2023b004)).

February 2024
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Introduction to Topological Data Analysis

Pawe
l D
lotko

Dioscuri Centre in Topological Data Analysis, IMPAN, Poland

In this mini-course we will explore both theoretical and practical foundations of Topo-
logical Data Analysis (TDA) — a field with a number of applications in physical,
natural and social sciences in the intersection between algebraic topology, computa-
tional geometry and computational methods. We will cover the basic tools of TDA
including discretization of spaces (in the form of various point cloud-based simplicial,
cubical and general CW-complexes), algorithms to compute homology and persistent
homology and applications of those. We will also explore TDA tools of visualization,
like mapper and ball mapper algorithms. Moreover we will present new tools of Eu-
ler Characteristic curves and profiles and show how they can be applied to standard
statistics. All the concepts will be illustrated with real examples. You will also be
required to perform computations on a number of toy and real-world datasets.

References

[1] Edelsbrunner, Harrer (2011), Computational Topology: An Introduction
[2] P. D	lotko, Computational and applied topology, tutorial, https://arxiv.org/abs/1807.08607
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The credo

Data have shape,
shape has meaning,
meaning brings value.

Topological Data Analysis

▶ Persistent homology,
▶ Conventional mapper,
▶ Ball mapper,
▶ Discrete Morse theory (if time permits),
▶ TopoTests (alternative option),
▶ On a very intuitive level,
▶ with a number of practical examples.

Introduction to Topological
Data Analysis

Paweł Dłotko, Dioscuri Centre in TDA, IMPAN,

WORKSHOP on Mathematics for Industry 2023

Politechnika Warszawska, MINI, 25-27 September 2023
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Topology and statistics, together

▶ Statistics provide a vast collection of tools to summarize
properties of point clouds.

▶ However, there are numerous examples (line Anscombe’s
quartet and Datasaurus dataset presented below) of point
clouds with the same descriptive statistics, but very different
shape.

▶ This is why, in statistics, we should always visualize the
considered dataset.

▶ It is however not possible to visualize high dimensional data.
▶ That is where the tools from topology came into rescue –
topological tools we discuss in this tutorial allow us to
estimate if two datasets have similar shape.

Trap of models

It is not possible to adjust an algebraic model to any possible
shape of the data – over-fitting.

We all know this story

3



TDA pipeline

 

Point cloud

Topological 
descriptor

Inference

Datasaurus Dataset

Datazaurus Dozen, Alberto Cairo,
http://www.thefunctionalart.com/2016/08/

download-datasaurus-never-trust-summary.html

Anscombe’s Quartet

Anscombe’s Quartet; Same statistics, different shapes
Anscombe, ”Graphs in Statistical Analysis”, American Statistician, 1973.
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Let the data tell you the story

Topological data analysis:
▶ Persistent homology – point-cloud based homology.
▶ Accurate network models to examine landscapes of data,

! Stable.

!! No black boxes.

!!! We do not enforce any models of data.

Sample simplicial complexes

Source: Wikipedia, typical use FEM-like methods.

Simplicial complexes

▶ K is an abstract simplicial complex iff for every A ∈ K and
B ⊂ A, B ∈ K.

▶ Each abstract simplicial complex has its geometrical
realization built from simplices.

▶ In this case, simplices consist of points in a general position.

Dim 0 Dim 1 Dim 2 Dim 3

a

a

b

a b

c
d

c

ba

5



What do you see?

What do you see?

▶ We may say that we see a circle,
▶ But we really see is 19 points...
▶ ...that may be sampled from a probability distribution
supported at a circle.

▶ Persistent homology is a tool to make this observation precise.
▶ To do so, we need to construct a filtered complex of the point
cloud.

▶ The filtered complex is a nested sequence of subcomplexes - a
way of building a model by adding a sequence of simplices in
a number of steps.

What do you see?

6



What do you see?

What do you see?

What do you see?

7



Filtration of Rips complex

4 vertices, 1 edge

Filtration of Rips complex

4 vertices

Simplicial complexes built from point clouds

▶ P = {p1, . . . , pn}, a finite point cloud with a metric d .
▶ We need a finite, combinatorial representation of the union of
balls.

▶ Rips complex at level ϵ consists of simplices supported in
p0, . . . , pn if B(pi , ϵ

2)∩B(pj ,
ϵ
2) ̸= ∅ for every i , j ∈ {0, . . . , n}.

▶ Čech complex at level ϵ consists of simplices supported in
p0, . . . , pn iff

⋂n
i=0 B(pi ,

ϵ
2) ̸= ∅.

8



Filtration of Rips complex

4 vertices, 5 edges, 2 triangles

Filtration of Rips complex

4 vertices, 4 edges, 1 triangle

Filtration of Rips complex

4 vertices, 3 edges, 1 triangle

9



Rips vs Čech

A hole

Rips vs Čech

Filtration of Rips complex

4 vertices, 6 edges, 4 triangles, 1 tetrahedra

10



Rips and Čech complexes can grow large

If all points get connected by edges in the complex, we witness
so-called combinatorial explosion. You will encounter it when using
Rips complexes.

Čech complex is topologically accurate

▶
⋃

p∈P B(p, ϵ
2) is topologically equivalent to the Čech complex

based on those balls.
▶ Meaning, there exist a continuous deformation from one into
another.

▶ No tearing, no gluing.

Rips vs Čech

r/2 r/2

r/2

r/2r/2

r/2

In this case Rips complex is a triangle with a boundary, the Čech
complex is the boundary of a triangle

11



Be careful with distances (in high dimensions)

1. Concentration of measure (1− 2ϵ)n,
2. Points in dimension d close to be of the same distance d

3 from
each other in l1 distance,

3. Manifold hypothesis.

Alpha complexes

Intersecting B(x , r), for x ∈ X with Voronoi cells of X allows to
build much smaller complexes that preserve homotopy type of⋃

x∈X B(x , r).

Rips and Čech complexes can grow large

r

For N points,
(N
1

)
vertices,

(N
2

)
edges,

(N
3

)
triangles, ...

This is why we always limit the level (ϵ) and the maximal
dimension of simplices in the complex.

12



Practical exercise 1

▶ Please go to
https://github.com/dioscuri-tda/tutorials,

▶ Open PH intro to homology and play with triangulation of a
torus.

▶ What are the homology groups of this triangulation?

Homology

One connected component, one hole in dimension 1.

From complexes to parameter dependent homology

Simplicial 
complex

Chains 
Cycles
Boundaries

Homology groups

13



Persistent homology, under the hood

▶ Let us order simplices according to the minimal ϵ for which
they appear (filtration).

▶ Algorithm to compute (persistent) homology is a version of
Gaussian elimination.

▶ If we run it for a prefix of filtration, we will get homology of
the complex composed by simplices in that prefix (a
subcomplex of the final complex).

▶ Analyzing the structure of zero and non-zero columns in the
reduced matrix allows us to find generators that are created
and which become trivial as we move along the filtration.

Triangulation of a torus

Triangulation of a torus

0 3 4 0

1 8 7 1

2 5 6 2

0 3 4 0
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Persistence matrix algorithm
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Persistence matrix algorithm

1

a

b

c

d

1

2

3

4

5

6

7

8

9

ab ac

bc+

ac cd bd abc

a

b

c

d

ab

ac

bc

1

1

1

1

1

1 1

1

1

1

1

10

1

Persistence matrix algorithm

a

b

c

d

1

2

3

4

5

6

7

8

9

ab ac bc cd bd abc

a

b

c

d

ab

ac

bc

1

1

1

1 1

1

1

1 1

1

1

1

1

10

Persistence matrix algorithm

a

b

c

d

1

2

3

4

5

6

7

8

9

10

ab ac bc cd bd abc

a

b

c

d

ab

ac

bc

1

1

1

1 1

1

1

1 1

1

1

1

1

10

16



Persistence matrix algorithm
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Persistence matrix algorithm
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Persistence matrix algorithm
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Interpretation of reduced matrix

1. The reduced matrix gives the persistence intervals.

2. If the column is zero, then it creates a new homology class.

3. If the column is nonzero, then it kills a homology class.
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Persistence matrix algorithm
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Persistence matrix algorithm
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Dim 0: [2,5], [3,6], [4,8]  Dim 1: [7.10] 
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Lots of B, or a single A?

B B
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Invariance

▶ Persistent homology is a rigorous way of quantifying closed
shapes,

▶ ... like connected components, cycles, voids and more.
▶ No matter if they are embedded in two or a million
dimensional space,

▶ No matter if they are rotated, stretched or transformed in any
other way.

▶ multi-scale,
▶ robust.

Persistence matrix algorithm
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Dim 0: [2,5], [3,6], [4,8], [1,inf]  Dim 1: [7.10], [9,inf] 
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Robustness
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Multiscale

▶ Persistent homology is a rigorous way of quantifying closed
shapes,

▶ ... like connected components, cycles, voids and more.
▶ No matter if they are embedded in two or a million
dimensional space,

▶ No matter if they are rotated, stretched or transformed in any
other way.

▶ Multi-scale,
▶ robust.

Lots of small circles, or a large one?
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Practical exercise 2

▶ Let us go back to our jupyter-notebooks exercises.
▶ Open PH persistence simple point cloud,
▶ Compute persistent homology of a point cloud sampled from
a circle (without and with a considerable amount of noise).

Distances between diagrams

Optimal matchings between points of two persistence diagrams
allow us to define standard distances between them – bottleneck
(length of the longest edge in the matching) and p-Wasserstein
(sum of lengths of matching lines to the power q) to the power 1q .

Robustness

▶ Persistent homology is a rigorous way of quantifying closed
shapes,

▶ ... like connected components, cycles, voids and more.
▶ No matter if they are embedded in two or a million
dimensional space,

▶ No matter if they are rotated, stretched or transformed in any
other way.

▶ Multi-scale,
▶ Robust.
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Warning, outlayers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outliers!

outliers can be a problem, filtration weighted by a distance to
measure estimators

Warning, outliers!

Outlayers can be a problem, filtration weighted by a distance to
measure estimators
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What is a cubical persistence?

▶ Sub-level sets of a function.
▶ Cubes enter from lower to highest function/filtration value.
▶ We track changes in homology of sub-level sets.

Apply to digital images

Left – osteoporotic, right – normal bone (vertebrae).
Not only density, but mostly structure is responsible for

osteoporotic fractures.

Not only point clouds....

▶ If you work with:
▶ Pixel / voxel / cubical data,
▶ Time series,
▶ Correlation and similarity measures,
▶ ...

▶ you may still use similar ideas and track connected
components and holes emerging and disappearing.
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S&P-500 and crashes

Persistence for time series analysis

Practical exercise 3

▶ Digital images are partially-constant discretization of
functions.

▶ Let us go back to our exercises.
▶ Open PH distance from circle,
▶ In this exercise we will construct a cubical approximation of a
function f : [−2, 2]2 → R. f (x , y) is a distance from (x , y) to
a unit circle x2 + y2 = 1.

▶ Let us visualize it as an image, and let us compute persistent
homology of the corresponding cubical complex.
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Persistent homology

▶ We have robust,
▶ multi scale,
▶ coordinate–free,
▶ compressed,
▶ tool to detect connected components, cycles, voids and their
generalizations.

▶ It can be interfaced in various ways with standard stat. and
ML tools.

And more...

▶ We do not have time to cover all this ground.
▶ But, there are numerous resources for further work:

▶ https://arxiv.org/abs/1807.08607
▶ https:
//www.maths.ed.ac.uk/~v1ranick/papers/edelcomp.pdf

▶ https://gudhi.inria.fr/tutorials/
▶ and many more...

Persistence–based descriptors of nanoporous materials

Lee, Bathel, Dłotko, Mossavit, Smit, Hess, Quantifying similarity of pore-geometry in nanoporous materials,
Nature Communications, 15396
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Persistence is nice, but, what about flares?

=

Persistence homology of those two point clouds will be very
similar, as they both have one connected component and one hole.

Homology and persistent homology, biased collection of
resources

▶ Edelsbrunner and Harer, Computational Topology, An
Introduction, AMS.

▶ Kaczynski, Mischaikow, Mrozek, Computational Topology,
Springer 2003.

▶ Dłotko, Applied and Computational Topology, Tutorial
▶ Multiple youtube videos.

Persistent homology, the output
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▶ Muti set of points in R2.
▶ Variable size, not ideal representation to interface with ML/AI
and statistics → persistence representations, embeddings, ...

▶ We need to embed persistence diagrams into a Hilbert space
(vectorize them).

▶ That makes topological/statistical inference - hypothesis
testing, confidence intervals,... possible.
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Reeb graph, formally

▶ Input: M, f : M → R.
▶ We define an equivalence relation x R y iff:

▶ f (x) = f (y),
▶ x and y belong to the same connected component of f −1(x).

▶ M/R .

Reeb graph

source: Wikipedia

But, what about flares?

=

But, oftentimes the information in the flares may be important (it
may for instance carry information about anomalies).
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Conventional Mapper algorithm

Mapper algorithm, idea

▶ Input: finite collection of points sampled from M, f : M → R.
▶ We define a relation x R y iff:

▶ f (x) is close to f (y),
▶ x and y belong to the same cluster ...

Conventional Mapper algorithm

Conventional mapper graph is an attempt to define Reeb graph for
discrete point cloud instead of a manifold.
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Mapper algorithm, coloring

▶ Vertices of the Mapper graph may be colored by an average
value of an objective function on points covered by clusters.

▶ Fix a point cloud X and an objective function f : X → R.
▶ Each vertex of the Mapper graph correspond a subset
(cluster) of points from X .

▶ Typically the value of the vertex will be an average value of f
on the corresponding cluster.

Mapper algorithm, formally

▶ Input: finite collection of points sampled from M, f : M → R.
▶ Cover of the range of f with overlapping boxes.
▶ Fix a clustering algorithm
▶ We define a relation x R y iff:

▶ f (x) and f (y) belong to the same element I of a cover of the
range of f ,

▶ x and y belong to the same cluster in f −1(I ).

▶ Vertices of Mapper graph corresponds to the clusters,
▶ An edge is placed between two vertices if the corresponding
clusters have nonempty intersection.

Conventional Mapper algorithm
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Practical exercise 2

▶ Let us play with something more advanced, let us consider
standard Boston property dataset.

▶ Please open Mapper boston dataset
▶ It contains 13 variables, we want to understand its relation to
prices of properties in Boston area (in ’1970).

▶ Here we will use t-distributed stochastic neighbor embedding
as a filtering function.

▶ We will be able to experiment with numerous clustering
methods as well.

▶ Obtained mapper graphs will be colored by the average price
of a property in a given cluster.

▶ This is not the last time we see Boston Property Dataset!

Practical exercise 1

▶ Let us play with Mapper algorithm!
▶ Go to https://github.com/dioscuri-tda/tutorials
▶ Let us start from something simple – open
Mapper concentric circles

▶ In this exercise we will generate two concentric circles in a
plane.

▶ We will use projection to the y coordinate as a lens function,
▶ And a DBSCAN with certain parameters as a clustering
algorithm.

▶ What is the Mapper graph we obtain?

Mapper is the most well known tool of TDA

Nicolau, Levine, Carlsson, Topology based data analysis identifies a
subgroup of breast cancers with a unique mutational profile and excellent

survival, PNAS 2011.
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Ball Mapper algorithm

Given ϵ > 0, select subset of points N ⊂ X such that for every
x ∈ X there exists n ∈ N such that d(x , n) ≤ ϵ (we call N an

ϵ-net)

Ball Mapper algorithm

Take a point cloud X

Ball Mapper algorithm

▶ As the last part of our schedule, we will play with Ball Mapper
algorithm.

▶ As you might have noticed, it is not always trivial to choose
the lens function as well as clustering algorithm in standard
Mapper construction.

▶ The idea of Ball Mapper is intuitively explained in the
following slides.
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Ball Mapper algorithm

This way we obtain a Ball Mapper graph of X with radius ϵ.
Vertices of the graph can be colored analogously to those of

standard Mapper graph.

Ball Mapper algorithm

Take one dimensional nerve of that cover (an abstract graph whose
vertices correspond to B(n, ϵ), and edges to nonempty

intersections of balls)

Ball Mapper algorithm

Consequently X ⊂ ⋃
n∈N B(n, ϵ), i.e. {B(n, ϵ), n ∈ N} cover X .
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From a gray scale image to a point

(p1,…,p1        )
16384

(p2,…,p2        )
16384

(p3,…,p3        )
16384

(p4,…,p4        )
16384

(p6,…,p6        )
16384

(p5,…,p5        )
16384

Gray scale images converted to vectors in high dimensional space

Network based landscapes of data

128× 128 = 16384 dimensional space

Network based landscapes of data

Meet the Lucky Cat
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Practical exercise 2

▶ In our second example we will re-visit already known Boston
Property Dataset.

▶ Please open BM Boston property
▶ This time we will use Ball Mapper to examine the structure of
the 13 dimensional point cloud, and the distribution of the
explanatory variable (price of properties) on the top of it.

▶ We will use tools from the Ball Mapper implementations to
recognize which coordinates makes most statistical differences
between the regions of the graph.

Practical exercise 1

▶ Please open BM basic circle.
▶ In this proof-of-concept example we will generate a collection
of points sampled from a unit circle x2 + y2 = 1.

▶ And built a Ball Mapper graph based on it.
▶ Do we see what we expected to see?

Network based landscapes of data

128× 128 = 16384 dimensional space
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Testing, for one-sample problem
Available methods depends on the data dimension
▶ 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersonâ€“Darling, Chi-squared,
Shapiro-Wilks

▶ 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

▶ d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark
▶ one-sample: Dn = supx |Fn(x)− F (x)|
▶ two-sample:

Dn,m = supx |F1,n(x)− F2,m(x)|

Basic stats

▶ One-sample problem: We are given a data sample
X = {x1, x2, . . . , xn}, xi ∈ Rd and cumulative distribution
function F : Rd → [0, 1]. Does the data X follow the
distribution F : X ∼ F?

H0 : X ∼ F vs. H1 : X ≁ F

▶ Two-sample problem: We are given two samples X1 ∼ F1
and X2 ∼ F2 and want to test hypothesis that X1 and X2 were
drawn from the same (unknown) distribution

H0 : F1 = F2 vs. H1 : F1 ̸= F2

Basic stats

Topology and hypotehesis testing
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One sample TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 1: EF (χ(n, r)), the Blueprint of F
▶ draw n-element samples X ′

1,X
′
2, . . . ,X

′
M from F

▶ for each sample X ′
i compute its ECC χ(Cr (X

′
i ))

▶

1
M

M∑

i=1

χ(Cr (X
′
i ))

a.s.−−−−→
M→∞

EF (χ(n, r))

TopoTests, one-sample problem, input

We are given a data sample X = {x1, x2, . . . , xn}, xi ∈ Rd and
cumulative distribution function F : Rd → [0, 1].

Testing, for one-sample problem
Available methods depends on the data dimension
▶ 1-D: plenty of available tests: e.g. Kolmogorov-Smirnov,
Cramer-von Mises, Andersonâ€“Darling, Chi-squared,
Shapiro-Wilks

▶ 2-D: theoretical results for Kolmogorov-Smirnov and
Cramer-von Mises, some implementations available in python
and R

▶ d-D: Kolmogorov-Smirnov should work but no
implementation available, critical values of test statistics
unknown, impractical in higher dimensions

Kolmogorov-Smirnov test

Here, K-S will be used as benchmark
▶ one-sample: Dn = supx |Fn(x)− F (x)|
▶ two-sample:

Dn,m = supx |F1,n(x)− F2,m(x)|
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TopoTests – properties

Design and goals

▶ general method: works regardless of the data dimension and
form of probability distribution function we are testing against

▶ computationally feasible in higher dimensions
▶ theoretical results derived (no ML-like approach)
▶ in fact it is framework not one particular test
▶ outperforms baseline methods i.e. Kolmogorov-Smirnov test

TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 3: Actual testing
▶ compute the ECC for sample
data X : χ(Cr (X ))

▶ compute the l∞ between
χ(Cr (X )) and EF (χ(n, r))

D = sup
r∈R

|χ(Cr (X ))−EF (χ(n, r))|

▶ reject H0 if D > tα
▶ it is possible to get p-value as
well

For the two-sample problem the
procedure is slightly different but the
idea remains.

One sample TopoTests

Input: sample X = {x1, x2, . . . , xn}, xi ∈ Rd and CDF
F : Rd → [0, 1].
Step 2: variation form EF (χ(n, r))

▶ draw a new set of m-element samples Y ′
1,Y

′
2, . . . ,Y

′
m from F

▶ Calculate sup distance between χ(Cr (Y
′
i )), i = 1, . . . ,m and

average ECC
▶ determine the threshold value tα as a (1− α)’th quantile of

{di}mi=1, where α is required level of statistical significance
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Two-sample problem

▶ X ∼ F ,Y ∼ G , |X | = n, |Y | = m,

H0 : F = G vs. H1 : F ̸= G

▶ compute distance D between ECC curves on
X and Y

▶ data samples are pooled Z = X ∪ Y

▶ split Z randomly into X(p) and Y(p) of same
sizes

▶ compute distance d(p) between ECC build on
X(p) and Y(p)

▶ p-value is obtained as
p =

∑
p I

(
d(p) > D

)
/N
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Theoretical guarantees

Type II erorr (false negative, fail to reject H0 when it is false
For fixed significance level α, probability of type II error goes to 0
exponentially with number of points sampled

P(type II error) ≤∼ e−n2 → 0

(Technical details swapped under the rug)

TopoTests – Translational & rotational invariance
The test is not sensitive to:
▶ change of location parameter
▶ rotation
▶ reflection
▶ components reordering (c.f. N × Γ vs. Γ×N )
▶ This can be tested using standard moments (after topotest is
done)
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Simulation results (one-sample)
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Simulation results (one-sample)

Test Power: probability that H0 is correctly rejected when H1 is
true
▶ samples sizes 100–5000 data points
▶ test power estimated using 1000 MC replications
▶ power compared with KS (d ≤ 3)
▶ α on diagonal is expected
▶ distributions easy to confuse with normal:

▶ t-Student with ν = {3, 5, 10} DoF
▶ MVN non-diagonal Σ matrix
▶ Cartesian products with N (0, 1) marginals

▶ TopoTests yielded higher power than KS in most of the cases
▶ Heavy MC simulations powered by Google.
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Simulation results (two-sample)
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▶ TopoTests still outperforms
the KS (d = 2, n = 250,
0.765 vs. 0.603)

▶ very expensive method
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Discrete Morse Theory

1. Let us now have a look at a Discrete Morse Theory.

2. K - finite regular CW complex.
3. f : K → R, constant on every cell, is a discrete Morse
function if for every αp ∈ K:
3.1 #{βp+1 > αp|f (βp+1) ≤ f (αp)} ≤ 1
3.2 #{γp−1 < αp|f (γp−1) ≥ f (αp)} ≤ 1

4. Simplex is critical if both (1) = 0 and (2) = 0.

5. For any simplex conditions (1) and (2) cannot be both = 1
(=⇒ define discrete gradient).

Every mathematician has a secret weapon. Mine is
Morse theory.

Raoul Bott

TopoTests, take home message

▶ There are multiple papers where topological techniques are
used to show differences in distributions

▶ Usually they work
▶ We shown an important case, where it works, is comparable or
better than state of the art in low dimension and have no
competitions in high dimensions

▶ Not only that, we have theoretical guarantee for that
▶ Those guarantees does not depend on the fact that we started
from point clouds

▶ We hope that this meta–observation will open up new
opportunities in applied topology
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Discrete Gradient

Why it is called discrete Morse Theory

1. Suppose K is a cell complex with a discrete Morse function.
Then K is homotopy equivalent to a CW complex with exactly
one cell of dimension p for each critical simplex of dimension
p (we will construct this complex soon).

2. If there are no critical simplices a with f (a) ∈ (a, b], then
K(b) is homotopy equivalent to K(a). (In fact, K(b) collapses
to K(a)).

3. If there is a single critical simplex a with f (a) ∈ (a, b] then
K(b) is homotopy equivalent to K(a) with a handle of
dimension dim(a) glued.

4. Morse inequities hold.

5. Gradient of a function is more convenient to use then a
function itself.

Which of them is discrete Morse function?
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Illustration

Illustration

How discrete Morse functions are usually constructed?

1. We almost never assign the values. Gradient is sufficient.

2. It will be represented by arrows.

3. Every simplex can be either tail of head of exactly one arrow.

4. The vector field is curl-free (i.e. there are no loops).

5. Critical cells of Morse functions = cells which are unpaired.

46



Illustration

Illustration

Illustration

47



Illustration

Illustration

Illustration
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Iterated Morse Complex and homology

▶ Let us apply M iteratively.
▶ Homology is preserved, homotopy type is not.
▶ ∃n∈NMn(C ) = Mn+1(C ) = . . . =: M∞(C ) – Iterated Morse
complex.

▶ βi (C ) = #{ cells in M∞(C ) of dimension i}.
▶ Generators can be obtained from this procedure.

Iterated Morse Complex

▶ By iterating construction of a Morse complex we can obtain
both (field) homology and persistence.

▶ Let us concentrate first on standard homology.
▶ Homology over a field =⇒ pairing between A,B can be made
iff κ(A,B) ̸= 0 (Dmitry Kozlov).

▶ Algorithm to construct Morse complex – a functor
M : C → C.

▶ C category of chain complexes.
▶ Assumption: if there are some Morse pairings in C , at least
one of them is made in M(C ) (vitality).

▶ E.g. M procedure search for a single possible pairing and do it.

The Morse complex
▶ Cells of Morse complex = critical cells of discrete vector field.
▶ Boundary relation computed by using gradient paths.
▶ Over Z2 – κ(A, h) =number of gradient paths from A to h
mod 2.

▶ Morse complex (over integers) and the initial complex are
homotopically equivalent.

▶ Homology of a complex and its Morse complex - isomorphic.
▶ κ(A, h) = 0.

A b

c

d

e

f

g

h
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Boundary on the first iteration

0 0

0

1 2

1

22

1

First iteration pairings

0 0

0

1 2

1

22

1

The Dounce hat.

0 01 2

1

22

1

0
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Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Morse complex for persistence

▶ C – chain complex with filtration g : C → Z.
▶ s.t. a,B ∈ C , a < B =⇒ g(a) ≤ g(B).
▶ Morse pairing v : C → C is compatible with filtration if

g(a) = g(v(a)) for every paired a.
▶ Assumption: M constructs only a vector fields compatible
with filtration.

▶ Persistence of C and M(C ) are the same.

M1(K) with Morse pairings on it
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Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22
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Iterated Morse Complex for persistence

▶ Dimension 0 – [0,∞), [1, 3].
▶ Dimension 1 – [4, 6], [5, 6].

Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

5 5 55 5

5 5 55 5

5 5 55 5

6 6 6

666

6 6

66

Filtered complex

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

5 5 55 5

5 5 5
5 5

5 5 55 5
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Final iteration

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

5 5 55 5

5 5 55 5

5 5 55 5

6 6 6

666

6 6

66

Second iteration

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

5 5 55 5

5 5 55 5

5 5 55 5

6 6 6

666

6 6
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First iteration

0

0

0

0

0

0

0 1

1

1

1

1

1

1
2 22 2

2 2
22 3

4

5 5 55 5

5 5 55 5

5 5 55 5

6 6 6

666

6 6

66
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Critical cells

(a,0) (b,1)

(c,4) (d,5) (e,3)

(X,6)(Y,6)

a b
d

c

e

X

Y

Critical cells

a b

c

d

e

X

Y
0

4

3

6

6

(a,0) (b,1)

(c,4) (d,5) (e,3)

(X,6)(Y,6)

5

1

Critical cells

0

0

0

0

0

0

0 1

1

1

1

1

1

1

2 22 2

2 2
22 3

4

5 5 55 5

5 5 55 5

5 5 55 5

6 6 6

666

6 6

66
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Observations

Dim 1:
[4,6]
[5,6]

(a,1) (b,1)

(d,5)

(Y,6) (X,6)

(c,4) (e,3)
Dim 0:
[1,3]
[1,∞)

Observations

(a,1) (b,1)

(d,5)

(Y,6) (X,6)

(c,4) (e,3)
Dim 0:
[1,3]
[1,∞)

Observations

▶ A ∈ M∞(C ), and B1, . . . ,Bn be in boundary of A in M∞(C ).
▶ g(A) > g(B1), . . . , g(Bn).
▶ M∞(C ) is the minimal cell complex (w.r.t number of cells)
with the same persistence as C .
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Level 3

(a,1) (b,1)

(c,4) (d,5) (e,3)

(X,6)(Y,6)

a b
d

c

e

Y

X

[1,3]
Dim 0:

Level 0

(a,1) (b,1)

(c,4) (d,5) (e,3)

(X,6)(Y,6)

a b
d

c

e

Y

X

Persistent Homology via DMT

▶ Based on Morse theory one can obtain persistent intervals.
▶ No need to change representation for one suitable for matrix
algorithm.

▶ Unlike the simplification phase, cells of different filtration
value are paired and nonzero persistent intervals are reported.

▶ Pairings between cells of different filtration value – allowed (to
some extent).
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Level 6

(a,1)

a

c

X

[1,3]
Dim 0: Dim 1:

[5,6]

(c,4)

(X,6)

Level 6

(a,1)

(c,4) (d,5)

(X,6)(Y,6)

a
d

c

Y

X

[1,3]
Dim 0: Dim 1:

[5,6]

Level 3

(a,1)

(c,4) (d,5)

(X,6)(Y,6)

a
d

c

Y

X

[1,3]
Dim 0:

59



The story begins here?

1. We have barely scratch the surface,

2. there are many more invariants,

3. and more applications.

4. Hence, I would like to invite you to Topological Data Analysis!

Level ∞

(a,1)

a

[1,3], [1,∞) [5,6], [4,6]
Dim 0: Dim 1:

Level 6

(a,1)

(c,4)a

c

X

[1,3]
Dim 0:

[5,6], [4,6]
Dim 1:

(X,6)
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Thank you for your time!

Dioscuri Centre in Topological Data Analysis
@Facebook

Paweł Dłotko
pdlotko @ impan.pl
pdlotko @ gmail
pawel dlotko @ skype
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Medical imaging signatures with topology for
cancer

Hidetaka Arimura

Faculty of Medical Sciences, Kyushu University, Japan

What the author is interested in is the connection between medicine and mathematics.
A human body is equivalent to a tube or donut (without considering holes of nose
and eyes). The central hole is a digestive system. The body is covered by surface
tissue (epithelial cells). The epithelial cells exposed to the outside world might have
gene mutations, thereby resulting in cancer cells. On the other side, the heterogeneity
of pixel values in medical images (computed tomography, magnetic resonance imag-
ing, positron emission tomography, etc) would reflect biological tumor heterogeneity,
which could be related to the degree of malignancy and patients’ prognoses. We have
attempted to develop novel medical imaging signatures, which are defined as sets of
features calculated based on mathematical models from medical images, for prediction
of the degree of malignancy and patients’ prognoses. As results, the author’s group
has shown several data that the topological imaging signatures could be superior to
conventional ones in terms of the prediction. The topological image features are de-
rived from Betti number maps (b0, b1, and b2) within cancer regions of medical images.
The assumption that the author has thought through (not twisting things around) is
that the b0, b1, b2 features may characterize high tumor cell density areas, scattered
dead cell areas (necrotic tissues), cancer blood vessels (angiogenesis), respectively. The
author will present the basics of topological image features and the applications to lung
cancer and head and neck cancer.
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I am a medical physicist, not a 
mathematician

2

Hidetaka Arimura, PhD
Professor (medical Physics)

Division of Medical Quantum Science
Department of  Health Sciences, Faculty of Medical Sciences

Kyushu University

Workshop on mathematics for industry
25-29 September 2023 (Warsaw)

Basis of mathematics in nanomedicine structures and life sensing
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What is mathematics?

ü Mathematics is the art of giving the same 
name to different things (Henri Poincar´e)

ü Mathematics is the structure of abstract 
reasoning (Richard Philips Feynman)

6

Abstract science︖

Nature of medical physics 

5

4

Outline

ü Nature of medical physics 

ü Association in shape between human body and topology

ü What we are doing now (radiomics)

ü Mathematical models beyond conventional radiomics

ü Summary (1) 
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What is medical physics (my field)?

9

Applied science that could describe natural phenomena 

related to human bodies with uncertainties (due to 

thermal motion or dynamic metabolic activity?) using 

mathematics that can be used for diagnosis and therapy 

Concrete, but 
Uncertain science? 
with abstract spice︖?

What is medicine?

ü Science of uncertainty and an art of 

probability [William Osler (1849-1919) , 

Principle and Practice of Medicine]

ü Inherent uncertainty in health care [The 

Lancet 2010; 375: 1666]

8

Uncertain science︖

What is physics?

ü Basic science that understands and describes 

concrete natural phenomena by using 
mathematics that can explain them

ü Basically, the natural phenomena could be 

theoretically predicted in the macroscopic world, 

but probabilistically predicted in the microscopic 

world (quantum mechanics).

7

Concrete science︖
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“The truth is invisible to the eye. 
However, mathematics can reveal and 

express its appearance.”

(By a mathematician in a novel of “The Doctor Loves 
Equations” written by Youko Ogawa)

12

“What is essential is visible to the heart.
It is invisible to the eye.” (modified from an original 

version)

(By a fox in “The Little Prince”)

11

What we can get in cancer properties

Big pictures on human body and diseases, 
because you can only predict softly 
something with uncertainties

フッターを追加 10
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What is a human body? 

18

Initial mouth

Initial anus

A small dent becomes 
an initial anusA grown set of cellsAn embryo

Association in shape between human 
body and topology 

17

“The book of the 
universe is written in 
mathematics”

(Galileo Galilei）
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What we are doing now (radiomics)
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What is a human body basically? 

20

≈

Epithelial cells of the digestive 
system exposed to the outside 
world

They might be cancerous due to 
gene mutations such as colon 
cancer.

Our bodies are covered by 
surface tissue (epithelial cells). Mouth

Anus

≈

A digestive 
system 
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How to decide each 
treatment approach : NSCLC

National Cancer Research Center, Cancer 
Information Service
https://ganjoho.jp/public/cancer/lung/treatme
nt.html

Radiotherapy

If a patient is operable with a stage IA tumor, 
this patient will receive surgery, 
but if not, this patient could receive 
radiotherapy.  
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Computational topology

フッターを追加 43

Decomposition of a shape: a set of simplices (many triangles) 
= Vertices (Points) + Edges (Lines) + Faces

Vertex 
(point) 

Side 
(line) 

Face

Hypothesis: Classification of cancer patterns into several categories 
depending on Betti numbers 

42

q Mathematical classification of objects by simplifying connectivity 

q Betti number: Invariant value
[G. Rote, in: Eff. Comput. Geom. Curves Surfaces, 2006: 277–312.]

q b0 = 1
q b1 = 0

Cancer 
pattern C

Cancer 
pattern A

!b0: Number of connected components

Cancer patterns with prognostic information could be classified into several 
categories based on Betti numbers with intrinsic geometrical patterns

Betti numbers after continuous 
deformationb1: Number of holes 

q b0 = 1
q b1 = 1
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Hidetaka Arimura, PhD
Professor  (medical Physics)

Division of Medical Quantum Science
Department of  Health Sciences, Faculty of Medical Sciences
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Singularity theory and its applications to strongly
convex multiobjective optimization problems

Shunsuke Ichiki

Department of Mathematical and Computing Science, School of Computing, Tokyo
Institute of Technology, Japan

A multiobjective optimization problem is a problem to optimize multiple objectives,
such as cost, quality, safety and environmental impact in the industrial world. In this
mini-course, I would like to introduce theoretical applications of “singularity theory of
differentiable mappings”, which is a branch of geometry, to strongly convex multiob-
jective optimization problems.

For this purpose, we first introduce some of basic notions of singularity theory. We
also discuss a result called a “parametric transversality theorem”, which is an important
and fundamental tool in singularity theory for investigating generic mappings. Then,
as an application, we give a transversality theorem on linear perturbations. Next, we
explain some basic notions of multiobjective optimization and introduce a property of
the Pareto set (i.e. the set of optimal solutions) of a strongly convex multiobjective
optimization problem from the viewpoint of topology. Finally, based on them, we in-
troduce theoretical applications of singularity theory to strongly convex multiobjective
optimization problems.
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Explanatory Model Analysis

Przemyslaw Biecek

MI2 Data Lab, Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Shapley values currently stand as the most widely employed technique for conducting
Explanatory Model Analysis (EMA) and achieving Explainable Artificial Intelligence
(XAI). Ongoing efforts are focused on crafting modifications and extensions to adapt
this method to address the diverse challenges posed by a wide array of applications.
In this presentation, I will illustrate instances where Shapley values, and by extension,
techniques utilized in explainable artificial intelligence, prove effective in distinguishing
models exhibiting distinct behaviors, even if their performance appears identical at
first glance. Subsequently, I will present a proposal for an iterative model analysis
process utilizing Shapley values. Drawing inspiration from Rashomon perspectives, this
approach, termed Shapley Lenses, provides a more nuanced perspective on predictive
models. The insights derived from predictive models can then be leveraged to construct
subsequent iterations of models with enhanced interpretability.
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Hype for AI is growing

https://www.slideshare.net/jaypod/digitaltransformation50soundbites/19-Data_is_the_new_oilClive

https://www.newworldai.com/forget-the-hype-what-every-business-leader-needs-to-know-about-artiÞcial-intelligence-now/

Why?

Explanatory Model 
Analysis 

aka Explainable AI

Przemysław Biecek  
/ˈpʂɛ.mɛk/

WORKSHOP on Mathematics for Industry 2023              Przemyslaw Biecek               September 25, 2023
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but AI is broken

https://www.slideshare.net/jaypod/digitaltransformation50soundbites/19-Data_is_the_new_oilClive

https://www.newworldai.com/forget-the-hype-what-every-business-leader-needs-to-know-about-artiÞcial-intelligence-now/


https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

but AI is broken

https://www.slideshare.net/jaypod/digitaltransformation50soundbites/19-Data_is_the_new_oilClive

https://www.newworldai.com/forget-the-hype-what-every-business-leader-needs-to-know-about-artiÞcial-intelligence-now/


https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://incidentdatabase.ai/

but AI is broken
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so, we are here to fix AI

We develop methods, tools and processes 
for responsible machine learning.

but AI is broken

https://www.slideshare.net/jaypod/digitaltransformation50soundbites/19-Data_is_the_new_oilClive

https://www.newworldai.com/forget-the-hype-what-every-business-leader-needs-to-know-about-artiÞcial-intelligence-now/


https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

but AI is broken

https://www.slideshare.net/jaypod/digitaltransformation50soundbites/19-Data_is_the_new_oilClive

https://www.newworldai.com/forget-the-hype-what-every-business-leader-needs-to-know-about-artiÞcial-intelligence-now/


https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced 
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Shapley values

Shapley, Lloyd S. A Value for n-Person Games. Princeton University Press. 1952

Shapley values

Shapley values

Problem A: 

Set S with n players cooperating in a game can earn a reward v(S). 

How to divide this reward fairly among the players?

How?
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Erik Strumbelj, Igor Kononenko, Marko Robnik-Sikonja. Explaining instance classifications with 
interactions of subsets of feature values. Data & Knowledge Engineering, 2009

Shapley values for ML models

Shapley values for ML models

Problem B: 

In machine learning, we train a function f(x) : Rp→R that 
calculates predictions based on p variables. 

How to quantify the effect of each variable on the final 
prediction?

Shapley values

Shapley, Lloyd S. A Value for n-Person Games. Princeton University Press. 1952

Shapley values
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Shapley values for ML models

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. https://ema.drwhy.ai

Example: 

We have a complex predictive model 
f(x) that predicts the probability of 
surviving the Titanic disaster. 

How do we calculate contributions of 
individual variables to the prediction 
for a single passenger.  

Here: an eight-year-old boy travelling 
1st class.

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. https://ema.drwhy.ai

Shapley values for ML models

Example: 

We have a complex predictive model 
f(x) that predicts the probability of 
surviving the Titanic disaster. 

How do we calculate contributions of 
individual variables to the prediction 
for a single passenger.  

Here: an eight-year-old boy travelling 
1st class.

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. https://ema.drwhy.ai

Shapley values for ML models

Example: 

We have a complex predictive model 
f(x) that predicts the probability of 
surviving the Titanic disaster. 

How do we calculate contributions of 
individual variables to the prediction 
for a single passenger.  

Here: an eight-year-old boy travelling 
1st class.
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Lundberg, Scott M,Gabriel G. Erion, Su-In Lee. Consistent Individualized Feature Attribution 
 for Tree Ensembles. NeurIPS. 2019

TreeSHAP as quick SHAP for Tree Ensembles 

Lundberg, Scott M, Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS. 2017

SHAP as an unification of LIME, DeepLIFT,  
Layer-Wise Relevance Propagation

Shapley values for ML models

Explanatory Model Analysis. Przemyslaw Biecek, Tomasz Burzykowski. 2021. CRC. https://ema.drwhy.ai

Example: 

We have a complex predictive model 
f(x) that predicts the probability of 
surviving the Titanic disaster. 

How do we calculate contributions of 
individual variables to the prediction 
for a single passenger.  

Here: an eight-year-old boy travelling 
1st class.
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Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

How to calculate SurvSHAP(t) values

Contribution of variable 𝒅𝒅 in time point 𝒕𝒕 for the patient 𝒙𝒙:

Local variable importance of variable 𝒅𝒅 for the patient 𝒙𝒙:

Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

SurvSHAP(t) for survival models

SurvSHAP(t) for survival models

Problem C: 

In survival modelling, the model output is  
a survival function S(t). 

How to quantify the effect of each variable on the final 
prediction (which is a function)?

117



Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

SurvSHAP(t) shows the dependence  
of variable attributions on its values

Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

SurvSHAP(t) show global variable importance

Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

SurvSHAP(t) can detect time-dependent 
variable effects
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Hubert Baniecki, Bartlomiej Sobieski, Przemyslaw Bombinski, Patryk Szatkowski, Przemyslaw Biecek. Hospital Length  
of Stay Prediction Based on Multi-modal Data towards Trustworthy Human-AI Collaboration in Radiomics. AIME. 2023

Application of SurvSHAP(t)

Application of SurvSHAP(t)

Hubert Baniecki, Bartlomiej Sobieski, Przemyslaw Bombinski, Patryk Szatkowski, Przemyslaw Biecek. Hospital Length  
of Stay Prediction Based on Multi-modal Data towards Trustworthy Human-AI Collaboration in Radiomics. AIME. 2023

Mateusz Krzyziński, Mikołaj Spytek, Hubert Baniecki, Przemysław Biecek.  
SurvSHAP(t): Time-dependent explanations of machine learning survival models. Knowledge-Based Systems. 2023

SurvSHAP(t) can be analyzed using 
functional data analysis technique
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Rashomon set

Leo Breiman. Statistical Modeling: The Two Cultures. Statistical Science. 2001

When?

survex: open software for XAI+surv
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Michael Bücker, Gero Szepannek, Alicja Gosiewska, Przemyslaw Biecek. Transparency, Auditability and eXplainability  
of Machine Learning Models in Credit Scoring. Journal of the Operational Research Society. 2022

The process of explanatory model analysis

Przemyslaw Biecek, Tomasz Burzykowski. Explanatory Model Analysis. CRC. 2021 

Explanatory Model Analysis

How good is the model?

Model Exploration Stack

Which variables are important 
to the model?

How does a variable affect 
the average prediction?

What is the model prediction
for the selected instance?

f(x) AUC
RMSE

Which variables contribute to 
the selected prediction?

How does a variable 
affect the prediction?

Break Down
SHAP, LIME
Chapters 7, 8, 9, 10

Partial Dependence Profile
Accumulated Local Effects

Chapters 18, 19

ROC curve 
LIFT, Gain charts

Chapter 16

MODEL LEVELPREDICTION LEVEL

Does the model
fit well around
the prediction?

Does the model
  fit well in

general?

Permutational 
Variable Importance

Chapter 17

Ceteris Paribus
Chapters 11, 12 

Chapter 13 Chapter 20

Rashomon quartet

Przemyslaw Biecek, Hubert Baniecki, Mateusz Krzyzinski, Dianne Cook. Performance is not enough: 

the story told by a Rashomon quartet. 2023 https://arxiv.org/2302.13356

Fifty years ago, Anscombe presented the construction of four 
datasets covering different relationships but with identical RMSE.  

22 years ago, Breiman discussed the concept of the Rashomon set 
- models with the same fit to the data but different relationships 
between the predictor variables with the target variable.  
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Who?

Hubert Baniecki, Dariusz Parzych, Przemyslaw Biecek. The grammar of interactive explanatory model analysis.  
Data Mining and Knowledge Discovery. 2023

EMA process validated with user-studies

Hubert Baniecki, Dariusz Parzych, Przemyslaw Biecek. The grammar of interactive explanatory model analysis.  
Data Mining and Knowledge Discovery. 2023

EMA process validated with user-studies
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MI2.AI is here to fix AI

BooksPapers TeachingSoftware
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Linear instability of Prandtl spirals

Tomasz Cieślak

Institute of Mathematics, Polish Academy of Sciences, Poland

We review a recent result with P.Kokocki and W.Ożański stating that the union of
three or more uniformly distributed Prandtl spirals is linearly unstable as a solution to
the Birkhoff-Rott equation. First, a linearization of the Birkhoff-Rott equation around
the Prandtl spirals is found. Next, a perturbation leading to the instability is shown.
Notice that, unlike for the flat sheet, the unstable modes grow only algebraically in
time. In our talk we partially answer the question of Helmholtz from his famous 1868
paper on discontinuous flows.
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Pseudospheres from singularity theory view-point
with a classification of 2-soliton surfaces

Toshizumi Fukui

Department of Mathematics, Saitama University, Japan

(joint work with Yutaro Kabata)

We discuss pseudospheres in the Euclidean 3-space with taking care about their singu-
larity types and Backlünd transformations. We investigate a classification of 2-soliton
surfaces by noting how the ridge lines appear.
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Chebyshev’ net
A pseudosphere is a surface with constant
negative Gauss curvatures. We can assume that
they have Gauss curvature −1 up to similarity
transformations.
For a surface with K = −1, we can take the
asymptotic coordinate (u, v) with the following
fundamental forms:

I =du2 + 2 cosϕ du dv + dv 2

II =2 sinϕ du dv

where ϕ is the asymptotic angle.
Gauss-Coddazi equation becomes sine-Gordon
equation:

ϕuv = sinϕ
3 / 16

Surfaces in R3

φ : R2 −→ M = φ(R2) ⊂ R3, C∞

E = 〈φu, φu〉, F = 〈φu, φv〉, G = 〈φv , φv〉

L = 〈φuu,ν〉, M = 〈φuv ,ν〉, N = 〈φvv ,ν〉

where ν is a unit normal.
The first fundamental form

I = E du2 + 2F du dv + G dv 2

The second fundamental form

II = L du2 + 2M du dv + N dv 2

2 / 16

Pseudospheres from
singularity theory view point

with a classification
of 2-soliton surfaces

(j/w with Yutaro Kabata)
Toshi Fukui (Saitama University)
16:45–17:15, 26 September, 2023

Workshop for Mathmatics for Industry
25–29 September, 2023

Warsaw University of Technology
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1. The level sets of ϕ, κ1 and κ2 contaning P are
equal.

2. The differentials of the principal curvatures
are given as follows:

∂xκ1 =
ϕx

1 + cosϕ
, ∂yκ1 =

ϕy

1 + cosϕ
,

∂xκ2 =
ϕx

−1 + cosϕ
, ∂yκ2 =

ϕy

−1 + cosϕ
.

So ∂x-ridge (resp. ∂y-ridge) is given by ϕx = 0
(resp.ϕy = 0). (A level of ϕ has a horizontal (or
vertical) tangent.)
Flecnodal point on pseudosphere is given by
ϕuϕv = 0. (i.e., A level of ϕ has a diagonal (or
anti-diagonal) tangent.)

6 / 16

Ridge and flecnodal

Let vi denote a principal vector of a surface and
let κi denote the corresponding principal
curvature of a surface.

A point P on a surface is vi-ridge if viκi(P) = 0.

A point P on a surface is flecnodal if there is a
line with at least 4 point contact with the
surface at P .

5 / 16

Curvature coordinate
The curvature coordinate is given by

x =
u + v

2
, y =

u − v

2
.

The fundamental forms are

I =cos2 ϕ
2 dx

2 + sin2 ϕ

2
dy 2

II =
1
2
sinϕ (dx2 − dy 2)

The principal curvatures are

tan
ϕ

2
, and − cot

ϕ

2

4 / 16
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Bianchi’s permutability
If ϕi (i = 1, 2) satisfies
(ϕi + ϕ

2

)
u
= λi sin

ϕi − ϕ

2
,

(ϕi − ϕ

2

)
v
= λ−1

i sin
ϕi + ϕ

2
,

and ϕ̃ satisfies

(λ2 − λ1) tan
ϕ̃− ϕ

4
= (λ2 + λ1) tan

ϕ2 − ϕ1

4
,

then
( ϕ̃+ ϕ1

2

)
u
= λ2 sin

ϕ̃− ϕ1

2
,

( ϕ̃− ϕ1

2

)
v
= λ−1

2 sin
ϕ̃+ ϕ1

2
.

( ϕ̃+ ϕ2

2

)
u
= λ1 sin

ϕ̃− ϕ2

2
,

( ϕ̃− ϕ2

2

)
v
= λ−1

1 sin
ϕ̃+ ϕ2

2
.
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Geometric BT
We say

M −→ M̃ , p �−→ p̃,

is gemetric BT, if
• The line pp̃ is in TpM and also in Tp̃M̃ .
• d(p, p̃) is constant (= r).
• the unit normals νp and ν̃ p̃ has a constant

angle θ, that is 〈νp, ν̃ p̃〉 = cos θ.
Geometric BT between K = −1 surfaces is given
by

φ̃ = φ+ r
(cos ϕ̃/2
cosϕ/2

φx +
sin ϕ̃/2
sinϕ/2

φy

)
, r = sin θ

and it preserves Chebyshev’s nets.
8 / 16

Backlünd transformation

We say ϕ̃ is Backlünd transformation of ϕ if

( ϕ̃+ ϕ

2

)
u
= λ sin

ϕ̃− ϕ

2
,

( ϕ̃− ϕ

2

)
v
= λ−1 sin

ϕ̃+ ϕ

2
. (1)

where λ = tan θ/2. θ is in the next sheet.
If ϕ is a solution of sine-Gordon equation, so is ϕ̃.

{sol. of sine-Gordon} BT−→ {sol. of sine-Gordon}

7 / 16
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Criteria of singularities
Let C denote the curvature line through P whose
principal direction is null direction at P .

1. Assume that ϕ is nonsingular at P , i.e., the
singular locus of φ is nonsingular at P .
1.1 φ is cuspidal edge at P if and only if Σ and C

intersect transversely at P .
1.2 φ is swallowtail at P if and only if Σ has

2-point contact with C at P .
2. Assume that ϕ has a Morse singularity at P .

2.1 φ is cuspidal beaks at P if and only if the
Hessian of ϕ is positive.

2.2 φ is cuspidal lips at P if and only if the Hessian
of ϕ is negative.

12 / 16

Singular locus of φ

Let φ : R2 → R3 be a Chevyshev net for a
pseudosphere with K = −1. Let ϕ denote the
asymptotic angle. Then

I =du2 + 2 cosϕ du dv + dv 2

II =2 sinϕ du dv

Remark that the singular locus of φ is defined by

Σ : sinϕ = 0, i.e., ϕ = kπ, k ∈ Z.

For 2-soliton surface, we have k = 0,±1.

11 / 16

Soliton
0-soliton �BT 1-soliton �BT 2-soliton

ϕ = 0
ϕλ = 4 tan−1(λu + λ−1v) ξi = λiu + λ−1

i v

ϕλ1,λ2 = 4 tan−1
(

λ1+λ2
λ2−λ1

· sinh
ξ1−ξ2

2

cosh
ξ1+ξ2

2

)

line
Beltrami’s pseudosphere
Dini’s pseudosphere

2-soliton surfaces

10 / 16
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Classification of 2-soliton
The result in this section should compare the
classification of 2-soliton surfaces (Popov). They
show four types for generic 2-soliton surfaces.
The correspondence between their classification
and our results is summarized as follows:

Type λ1λ2 µ flecnodal ∂x-ridge ∂y-ridge
1 + + exist exist exist
2 + − exist exist not exist
3 − + not exists not exist not exist
4 − − not exists not exist exist

µ = (λ2
1 − 1)(λ2

2 − 1).

15 / 16

When λ2 → λ1 = λ,

ϕλ,λ = lim
λ′→λ

ϕλ,λ′ = 4 tan−1 −η

cosh ξ
,

where ξ = λu + λ−1v + c and η = λu − λ−1v .
The ∂u-flecnodal, ∂v-flecnodal, ∂x-ridge and ∂y-ridge
are defined by

η tanh ξ = 1, −1,
λ− λ−1

λ+ λ−1 ,
λ+ λ−1

λ− λ−1 , respectively.

14 / 16

Flecnodal and ridge on a
2-soliton surface
On pseudospheres, we have
∂u-flecnodal line (ϕu = 0),
∂v-flecnodal line (ϕv = 0),
∂x-ridge line (ϕx = 0),
∂y-ridge line (ϕy = 0)
and, on 2-soliton surfaces, they are

cosh ξ2

cosh ξ1
=

λ2

λ1
,
λ1

λ2
,
λ2 + λ−1

2

λ1 + λ−1
1

,
λ2 − λ−1

2

λ1 − λ−1
1

, respectively.

Here ξi = λiu + v/λi , i = 1, 2.

13 / 16
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Breather surfaces
For λ ∈ C, with Reλ �= 0, Imλ �= 0, we have

ϕλ,λ̄ =− 4 tan−1
(
cot arg λ · sin Im ξ

coshRe ξ

)

where ξ = λu + v/λ.
The ∂u-flecnodal, ∂v-flecnodal, ∂x-ridge and ∂y-ridge
are defined by

(tanhRe ξ)(tan Im ξ)

tan arg λ
= 1, −1,

|λ| − |λ|−1

|λ|+ |λ|−1 ,
|λ|+ |λ|−1

|λ| − |λ|−1 ,

respectively.

16 / 16
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Formation of nanostructured functional particles
with the spray-drying method

Leon Gradoń

Faculty of Chemical and Process Engineering,
Warsaw University of Technology, Poland

The structure of matter, on both an atomic and macroscopic scale, is a result of the
interplay between the requirements of the physical forces operating between the indi-
vidual parts and the mathematical requirements of space-filling. Nanoparticles with
well-defined chemical composition can act as a building block for the construction of
functional structures, such as highly ordered aggregates, as well as porous and hollow
aggregates. A spray drying technique is used for the production of crystal-like struc-
tures with nanoparticle building blocks. When spray-drying uniform spherical particles
tightly packed aggregates with either simple or broken symmetry were formed using
polystyrene particles with varied zeta potential as templates, it is also possible to form
highly ordered porous and hollow aggregates from inorganic colloidal particles poten-
tially useful for controlled drug delivery and catalysis. The process by which organized
mesoporous silica particles are formed by the spray-drying method was examined using
elementary laws of topology.
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“There is plenty of room at the bottom”

Richard P. Feynman

(there is a room for great development even in the microscopic world)

Contents

1. Introduction
2. Principles of self-assembly
3. Shapes of the structures
4. Examples of nanostructures applications
5. Principle of spray-drying process
6. Examples of produced templates
7. Topographical structures for challenging aspects of nanocatalysis
8. Conclusions

Formation of nanostructured functional 
particles with the spray-drying method

Leon Gradon
Faculty of Chemical and Process Engineering, 

Warsaw University of Technology Warsaw, Poland

Stanisław Janeczko
Faculty of Mathematics and Information Sciences 
Warsaw University of Technology Warsaw, Poland

Ratna Balgis, Takahashi Ogi, Kikuo Okuyama 
Department of Chemical Engineering, Hiroshima University, 

Higashi-Hiroshima, Japan
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Examples of static self-assembly

(A) Crystal structure of a ribosome
(B) Self-assembled peptideamphiphile nanofibers.  
(C) An array of millimetersized polymeric plates

assembled at a water/perfluorodecalin interface by
capillary interactions. 

(D) Thin film of a nematic liquid crystal on an isotropic
substrate. 

(E) Micrometersized metallic polyhedra folded from planar
substrates. 

(F) A three-dimensional aggregate of micrometer plates
assembled by capillary forces. 

Types of self-assembly

Static self-assembly (S)
S – involves systems that are at global or local equilibrium and do not dissipate energy

The structure of matter, on both an atomic and macroscopic scale, is a 
result of the interplay between the requirements of the physical forces 
operating between the individual parts and the mathematical 
requirements of space filling.

141



Using shape for self-assembly 

Major milestones towards the goal of self-assembly:

1) Making the building blocks.

2) Understanding and controlling the interactions.

3) Predicting the consequence of many components interacting in a prescribed
environment.

4) Identify components and interactions that will organize to form a desired
product (reverse self-assembly).

5) Knowing how to use self-assembly.

Dynamic self-assembly (D)

D – interaction responsible for the formation of structures or pattern between components only occur if the
system is dissipating energy

Examples of dynamic self-assembly

(A) An optical micrograph of a cell with
fluorescently labeled cytoskeleton and nucleus; 
microtubules (~24 nm in diameter) are colored red. 

(B) Reaction-diffusion waves in a Belousov-Zabatinski
reaction in a 3.5-inch Petri dish. 

(C) A simple aggregate of three millimeter-sized, rotating,
magnetized disks interacting with one another via
vortex-vortex interactions. 

(D) A school of fish. 
(E) Concentric rings formed by charged metallic beads 

1 mm in diameter rolling in circular paths on a 
dielectric support. 

(F) Convection cells formed above a micropatterned
metallic support.
The distance between the centers of the cells is ~2 mm.
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The reciprocity in material technology

means goal

processing structure   properties performance

cause and effect

Templates

A brute force approach to create nearly arbitral shapes uses templates.

Template is a sacrificial mold in which material is grown or deposited, e.g. 
micelles, membrane, colloid crystals, zeolites, and block copolymers.

Instabilities

This approach aims to create a highly symmetric yet metastable structure 
(spherical colloid coated with a metal).

Under the stimulus the structure “relaxes” toward one of its ground states by 
breaking its own symmetry, e.g. stimulus  heat, shell devotes leading to the 
formation of a lower symmetry, stimulus-stretch metastable conformation  fold 
into functional shape (proteins). 
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Principles of spheres arrangements 
in the spray-drying process

Principle of spray-drying process
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• Tetrahedron is a basic unit of the tight packing by equal spheres.

• Distortion associated with tetrahedral packing.

• 13 spheres icosahedron have small distortion.

• 12 spheres arranged symmetrically around one sphere are not
packed in perfectly way.

• Distance a between spheres: a > 2r 

• Elementary property of icosahedron gives a relation:

  

a = 8r / 10+ 2 5( )1/ 2

Tetrahedral nano-cluster
(cluster which consists of tetrahedrals) 

For every two tetrahedra there exist an ordered chain:

That                  have common face, n = 1 … k -1  

  

Til
,Tik

  

Til{ }l=1...k

  

Tin ,Tin+1

Close-packing of spheres in Euclidean space:

Two spheres (Si, pi) and (Sj, pj) of radius r are in contact, i.e.:

dist (pi, pj) = 2r

Cluster of spheres is weakly tetrahedral, T, if for each sphere 
(Si1, pi1) there exist three spheres (Si2, pi2), (Si3, pi3) and (Si4, pi4).

Such the distance dist (Sik, pil) = 2r if 1≤ k ,l ≤ 4

  

S{ } = (S1,p1...(SN ,pN ){ }
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Organization of spheres in the droplet

Electric
furnace

Cyclone

Ultrasonic NebulizerN2

Cooling 
System

Filter

MFC
1
2

34

8
7

6 5

1
2

34

8
7

6 5

Diffusion
dryer

PumpMFC

Filter
holder

Compact packing of spheres
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Examples of produced templates

Organization of spheres in the droplet
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Cell structure on the plane

P = {P1,…..PN} – cell centers on R2

dk(x) = d(x , Pk) – Euclidean distance function from Pk

fk : R2→ R – cell structure function

Global competition squared distance 
function:

 )()(),.....()(min)(ˆ 22
11 xdxfxdxfxd NN=
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Euler formula

Euler formula

Conflict sets arrangements and the intercells patterns 

System of competition organizing centers

P = {P1,P2…..Pn} = {(P1 , f1) , (P2 , f2) .... (Pn , fn)}

Cells corresponding to the system 

CPi = {xR2 : k(1...n) fi(x) di
2(x)  fk(x) dk

2(x)}

Interface curve (generalized Voroni diagram)

VP = { xR2 : ifj S that kfid2(x, pi) =
fj d2(x, pj) = fj d2(x, pj)  fk d2(x, pk)}

assumption: fi  1 , i = 1,…N
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500 nm

M115/16 = 12

500 nm

M115/16 = 6

500 nm

M115/16 = 4

500 nm

M115/16 = 10
Gas flow: 1.0 L/min, M115/16 is the mass ratio of 115/16 nm SiO2 particles

5.0 μm5.0 μm 5.0 μm500 nm100 nm5.0 µm500 nm100 nm
Smooth surface Single layer of small particle 115 nm particle are in

contact with each other

the number of small particles layer decreases 
When the mass ratio of silica particles (M115/16) was increased: 

the particles surface changed from smooth to rough 

500 nm100 nm 500 nm100 nm

SiO2 Nanostructuration using Ultrasonic SD 
Two components

Hierarchical organization of particles of different diameters 
on the surface of sphere
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Thank you for your attention
☺

Conclusions

• The aerosol assisted spray-drying process is an useful method for production of developed 
and desired space-forms made of nanoparticles.

• Mesoporous nanostructured particles were produced using PSL particles as a template 
material for organizing nanoparticles around them.

• The composition of the cells on the surface of sphere is described using the concept of 
conflict set arrangement.

• Stationary state of cell configuration on the sphere has equal infinitesimal of cell 
boundaries in real vortex and they are equal 2p/3.

• The signs of zeta potential of the template particles and colloid particles used in the spray 
drying process define the structure of the final product, which could be either hollow or 
porous.

SiO2 Nanostructuration using Ultrasonic SD 
Three components

Mass ratio of SiO2 particles 16 nm : 115 nm : 360 nm 

500 nm 500 nm 500 nm500 nm

1 : 3 : 3 1 : 2 : 11 : 2 : 2 1 : 5 : 5

5.0 µm 5.0 µm5.0 µm 500 nm 500 nm100 nm100 nm 5.0 µm500 nm100 nm500 nm100 nm

360 nm particles were surrounded by 115 nm particles

When the mass ratio of large particles was increased, 
surface morphology changed from smooth to concave-convex 
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On comparing distributions with imprecise data

Przemys
law Grzegorzewski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

One of the most fundamental problems in mathematical statistics is the comparison
of two or more distributions that characterize the underlying populations. Classical
tests applied there are constructed with pretty specific assumptions concerning the
distributions, like normality, exponentiality, etc. However, in reality, these assumptions
are often not met. The problem becomes much more difficult when the output of an
experiment consists of data that are imprecise, or vague. There we need a model that
allows us to grasp both aspects of uncertainty that appear in such data: randomness,
associated with the data generation mechanism, and fuzziness, connected with data
imprecision. To cope with this problem Puri and Ralescu (1986) introduced a fuzzy
random variable.

On the other hand, in analyzing fuzzy data from the statistical perspective we
immediately come upon some key obstacles, like the nonlinearity associated with the
fuzzy number arithmetic, the lack of a universally accepted total ranking, the lack of
suitable probability distribution models, or no limit theorems for random mechanisms
producing fuzzy data which could be directly applied in statistical inference. Therefore,
statistical tests with imprecise data usually cannot be generalized straightforwardly
from their classical prototypes.

We show that some of the aforementioned difficulties in test construction can be
overcome by using permutation-based nonparametric procedures. Combining these
with a distance-based approach or a dominance credibility index gives us some inter-
esting goodness-of-fit and location tests, respectively.
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Brief Introduction to Topology for Multi-objective
Optimization

Naoki Hamada

Machine Learning Group, KLab Inc.

A broad range of scientific and engineering tasks, including data analysis, product
design, modeling, planning, and management, can be formulated in multi-objective
optimization problems. Recent developments in convex analysis and data science us-
ing topology have brought a new paradigm for solving and analyzing multi-objective
optimization problems. In this talk, several applications of topology to multi-objective
optimization will be presented. We will show how the topology of convex analysis can
be applied to a sparse modeling task, generalizing the regularization path of the elas-
tic net and efficiently tuning its two hyper-parameters simultaneously. To extend this
idea beyond the convexity assumption, we introduce a statistical test using persistent
homology and the Poincaré conjecture whether the hyper-parameter tuning method
works.
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User Input Recognition Routines

Text Text Recognition

Vision Object 
Recognition

Gesture Gesture 
Recognition

Audio Speech 
Recognition

Symbolic AI 
Routines

Planner
(GPT STRIPS)

Real-World Info

0.2

1.4

Virtual-World Info

5.3

2.1

4.6

3.5

GPS

Date / Time

Weather

NPC Position

NPC Emotion

Game State
NPC 

Reaction

Vector Embedding

Generative AI Routines

Text Generation

Facial Expression

Character Animation

Emotional Speech
Sythesis

How do DNNs connect to symbolic AI routines?
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Game Agent

Recognize
with Recognition AIs

Plan
with Inference AIs

React
with Generative AIs

Human 
Intervention

with XAIs

Symbols

Environment

Intention

Action

Data
Too many symbols!

We need to select truly 
meaningful ones.

 Use sparse modeling!
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A Bezier simplex is a 
polynomial map of 
degree D:
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Stability theorem of persistence diagrams:

α-confidence interval
of noise
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Topological spaces
X and Y
are homeomorphic

Homologies
H*(X) and H*(Y)
are isomorphic

We will seek a condition 
where the converse is true.
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Persistent Homology and Machine Learning

Yuichi Ike

Institute of Mathematics for Industry, Kyushu University, Japan

Persistent homology is a central tool in topological data analysis. It encodes the topo-
logical features of given data into persistence diagrams, which are multisets in the
two-dimensional space. In connection with machine learning, persistence diagrams
have been used as an input of machine learning algorithms as feature vectors and are
effectively applied in material science and medical science. Recently, many techniques
have been developed to incorporate persistence diagrams into loss functions for control-
ling the topology of parameters. In this talk, I will start with the basics of persistent
homology and some applications. Then I would like to discuss several recent develop-
ments in optimizing TDA-based loss functions and their applications in dimensionality
reduction or visualization.
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Persistent Homology and Applications
• Extracting the shape of data
• Persistent homology and persistence diagrams (PDs)
• Some applications

3/26

1. Persistent Homology and Applications
• “Shape” of data and persistence diagrams 
• Typical applications of persistent homology

2. PH-based Loss Functions
• Differentiability of persistence diagrams
• Applications of PH-based loss functions

Outline

Optimize
2/26

Persistent Homology and Machine Learning
WORKSHOP on Mathematics for Industry

2023-09-27
Yuichi Ike

Institute of Mathematics for Industry, Kyushu University
Joint work with 

Mathieu Carrière, Frédéric Chazal, Marc Glisse, 
Hariprasad Kannan, Théo Lacombe, Martin Royer, Yuhei Umeda 

(Collaboration with Inria and Fujitsu)
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Topological Data Analysis (TDA)
◼Method to extract topological features of data

Q. How to extract the “topology” of a discrete point cloud?
◼Idea1: Consider the union of balls centered at data points

Idea of persistent homology (PH)

Without hole One hole
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Filtration: increasing family of subcomplexes
◼Simplicial complex: collection 𝐾𝐾 ⊂ 2𝑉𝑉 s.t. 𝜎𝜎 ∈ 𝐾𝐾, 𝜏𝜏 ⊂ 𝜎𝜎 ⇒ 𝜏𝜏 ∈ 𝐾𝐾
◼𝒦𝒦 = 𝐾𝐾𝑟𝑟 𝑟𝑟, 𝐾𝐾𝑟𝑟 ⊂ 𝐾𝐾 filtration of 𝐾𝐾:⇔ 𝐾𝐾𝑟𝑟 ⊂ 𝐾𝐾𝑠𝑠 (𝑟𝑟 ≤ 𝑠𝑠) and ڂ𝑟𝑟𝐾𝐾𝑟𝑟 = 𝐾𝐾
↔ Function 𝑓𝑓: 𝐾𝐾 → ℝ s.t. 𝜎𝜎 ⊂ 𝜏𝜏 ⇒ 𝑓𝑓 𝜎𝜎 ≤ 𝑓𝑓(𝜏𝜏), 𝐾𝐾𝑟𝑟 = {𝜎𝜎 ∈ 𝐾𝐾 ∣ 𝑓𝑓 𝜎𝜎 ≤ 𝑟𝑟}

Filtrations on simplicial complexes

0 0

0

0 1

1

2

0 1 2

Čech filtration
𝑥𝑥0,… 𝑥𝑥𝑘𝑘 ∈ 𝐶𝐶(𝑃𝑃; 𝑟𝑟) :⇔ 𝑖𝑖ځ 𝐵𝐵 𝑥𝑥𝑖𝑖; 𝑟𝑟 ≠ ∅

Rips filtration
𝑥𝑥0,… 𝑥𝑥𝑘𝑘 ∈ 𝑅𝑅 𝑃𝑃; 𝑟𝑟 :⇔ 𝐵𝐵 𝑥𝑥𝑖𝑖; 𝑟𝑟 ∩ 𝐵𝐵 𝑥𝑥𝑗𝑗; 𝑟𝑟 ≠ ∅ ∀𝑖𝑖, 𝑗𝑗

9/26

Topological Data Analysis (TDA)
◼Method to extract topological features of data

Q. How to extract the “topology” of a discrete point cloud?
◼Idea1: Consider the union of balls centered at data points

-> How to adjust the radius value of balls?

◼Idea2: Consider all radii and track the evolution: persistent homology
-> Can distinguish noise and essential topological features

Idea of persistent homology (PH)

Without hole One hole

8/26

Topological Data Analysis (TDA)
◼Method to extract topological features of data

Q. How to extract the “topology” of a discrete point cloud?
◼Idea1: Consider the union of balls centered at data points

-> How to adjust the radius value of balls?

Idea of persistent homology (PH)

Without hole One hole

7/26
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More directly ...
We can distinguish data points with different “shapes”

How to use PDs

Connected 
components

Loops

No hole

One hole

12/26

◼Points far from the diagonal express essential shapes while those 
near the diagonal are regarded as noises
◼We can analyze which type of shape is represented by a point in PD

How to use PDs 

Connected 
components

Loops

Small loop

Big loop

11/26

Filtration: increasing family of subcomplexes
◼Simplicial complex: collection 𝐾𝐾 ⊂ 2𝑉𝑉 s.t. 𝜎𝜎 ∈ 𝐾𝐾, 𝜏𝜏 ⊂ 𝜎𝜎 ⇒ 𝜏𝜏 ∈ 𝐾𝐾
◼𝒦𝒦 = 𝐾𝐾𝑟𝑟 𝑟𝑟, 𝐾𝐾𝑟𝑟 ⊂ 𝐾𝐾 filtration of 𝐾𝐾:⇔ 𝐾𝐾𝑟𝑟 ⊂ 𝐾𝐾𝑠𝑠 (𝑟𝑟 ≤ 𝑠𝑠) and ڂ𝑟𝑟𝐾𝐾𝑟𝑟 = 𝐾𝐾
↔ Function 𝑓𝑓: 𝐾𝐾 → ℝ s.t. 𝜎𝜎 ⊂ 𝜏𝜏 ⇒ 𝑓𝑓 𝜎𝜎 ≤ 𝑓𝑓(𝜏𝜏), 𝐾𝐾𝑟𝑟 = {𝜎𝜎 ∈ 𝐾𝐾 ∣ 𝑓𝑓 𝜎𝜎 ≤ 𝑟𝑟}

PH and persistence diagrams (PDs)

0 0

0

0 1

1

2

0 1 2

Death time

Persistent homology of 𝒦𝒦 = 𝐾𝐾𝑟𝑟 𝑟𝑟 is the family
⋯ → 𝐻𝐻𝑛𝑛 𝐾𝐾𝑟𝑟 → 𝐻𝐻𝑛𝑛 𝐾𝐾𝑠𝑠 → 𝐻𝐻𝑛𝑛 𝐾𝐾𝑡𝑡 → ⋯ 𝑟𝑟 ≤ 𝑠𝑠 ≤ 𝑡𝑡

⇝Persistence diagram (PD): encodes the birth and death time of
each homology class

1

1

2

Birth time

Conn. comp.
Loops

∞
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Application to graph classification
PH extracts some global structure of graphs,
which can be used for classification

◼Need to find suitable filtrations on graphs
e.g., degree function, Heat Kernel Signature

PersLay, M. Carrière, F. Chazal, I., T. Lacombe, 
M. Royer, Y. Umeda, AISTATS 2020

◼Proposed a new architecture for graph classification
◼PersLay (NN vectorization) + one-layer NN

More and more studies to combine PH 
and Machine Learning

15/26

Analysis of silica glass
Kusano, Fukumizu, and Hiraoka: Persistence weighted Gaussian 
kernel for topological data analysis, ICML2016

◼cf. Nakamura et al.: Description of medium-range order in amorphous 
structures by persistent homology.

◼Estimate the temperature that SiO₂ changes from liquid to glass state
◼Idea: Transform point clouds into PDs and analyze them

PD
Vectorization of PDs
(They used kernel method)+

Figures from K. Fukumizu, Persistence Weighted
Gaussian Kernel for Topological Data Analysis

14/26

Analysis with persistent homology
Data Filtrations PD Machine 

Learning

Example
• Point clouds generated

by simulation
• Graphs
• Image data e.g., persistence image, persistence landscape 

13/26
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Recall: A filtration of a simplicial complex 𝐾𝐾
↔ a vector 𝑓𝑓 ∈ ℝ𝐾𝐾 s.t. 𝜎𝜎 ⊂ 𝜏𝜏 ⇒ 𝑓𝑓𝜎𝜎 ≤ 𝑓𝑓𝜏𝜏

Filt𝐾𝐾 ≔ 𝑓𝑓 ∈ ℝ𝐾𝐾 𝜎𝜎 ⊂ 𝜏𝜏 ⇒ 𝑓𝑓𝜎𝜎 ≤ 𝑓𝑓𝜏𝜏}
A parametrized filtration: a function 𝐹𝐹: 𝐴𝐴 → Filt𝐾𝐾 , where 𝐴𝐴 ⊂ ℝ𝑑𝑑

◼Rips filtration        𝐹𝐹: (ℝ𝑑𝑑)𝑁𝑁 → ℝ|Δ𝑁𝑁|, 𝐹𝐹𝜎𝜎 𝑥𝑥 ≔ Τ1 2max𝑖𝑖,𝑗𝑗∈𝜎𝜎‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖
◼Parameters in ML 𝑓𝑓𝜃𝜃:ℝ𝑑𝑑 → ℝ𝐷𝐷 𝜃𝜃 ∈ Θ , 𝑃𝑃 ⊂ ℝ𝑑𝑑: finite subset

𝐹𝐹: Θ → ℝ|Δ𝑁𝑁|, 𝐹𝐹𝜎𝜎 𝜃𝜃 ≔ Τ1 2max𝑖𝑖,𝑗𝑗∈𝜎𝜎 𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 − 𝑓𝑓𝜃𝜃 𝑥𝑥𝑗𝑗

The PD is a vector in ℝ|𝐾𝐾| : 𝑝𝑝1,… , 𝑝𝑝𝑚𝑚, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 , 𝑝𝑝𝑖𝑖 ∈ ℝ2, 𝑒𝑒𝑖𝑖 ∈ ℝ
⇒ The assignment is viewed as 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏: 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝑲𝑲 → ℝ|𝑲𝑲| persistence map
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 ∘ 𝑭𝑭: 𝑨𝑨 → ℝ|𝑲𝑲| parametrized PD 

Parametrized filtrations and PDs

18/26

PH-based loss functions
◼Many attempts to construct PH-based loss functions

◼Brüel-Gabrielsson et al., A Topology Layer for Machine Learning,
AISTATS2020: deformation of point clouds, topological generative models

◼Moor et al., Topological Autoencoders, ICML2020: Topology-preserving AE

ℒ: loss functiondata

17/26

PH-based Loss Functions
• Applications of PH-based loss functions
• Differentiability and convergence of PH-based functions
• Applications

16/26
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Function of PDs: a permutation invariant function 𝐸𝐸: ℝ|𝐾𝐾| → ℝ
𝐸𝐸 𝑝𝑝𝛼𝛼 1 , … , 𝑝𝑝𝛼𝛼 𝑚𝑚 ,𝑒𝑒𝛽𝛽 1 , … , 𝑒𝑒𝛽𝛽 𝑛𝑛 = 𝐸𝐸(𝑝𝑝1, … , 𝑝𝑝𝑚𝑚, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛)

e.g.
◼Distance between PDs,
◼Persistence landscape,
◼Persistence image, …

If 𝐹𝐹 and 𝐸𝐸 are in a good class, then so is ℒ = 𝐸𝐸 ∘ Pers ∘ 𝐹𝐹: 𝐴𝐴 → ℝ and 
it is differentiable a.e.
=> can define the subdifferential 

𝜕𝜕ℒ(𝑧𝑧) = Conv lim
𝑧𝑧𝑖𝑖→𝑧𝑧

∇ℒ 𝑧𝑧𝑖𝑖 : ℒ is differentiable at 𝑧𝑧𝑖𝑖

PH-based functions and subdifferential

Figures from GUDHI Library webpage
21/26

◼How to compute PDs from filtrations?

1. Find the pairs of birth and death simplices 𝜎𝜎𝑏𝑏𝑖𝑖, 𝜎𝜎𝑑𝑑𝑖𝑖 𝑖𝑖 (combinatorial)

2. Associate the filtration value to each pair 𝐹𝐹 𝜎𝜎𝑏𝑏𝑖𝑖 , 𝐹𝐹 𝜎𝜎𝑑𝑑𝑖𝑖 𝑖𝑖
e.g. (1,2)

◼𝐹𝐹 is smoothly parametrized => can consider 𝑥𝑥 ↦ ∇𝑥𝑥𝐹𝐹 𝜎𝜎𝑏𝑏𝑖𝑖 , ∇𝑥𝑥𝐹𝐹 𝜎𝜎𝑑𝑑𝑖𝑖 𝑖𝑖
in the area where the order of simplices does not change

Differentiability of persistence map

0 0

0

0 1

1

2

0 1 2 1

2

Birth time

Death time

Loops

e.g. : birth                 : death
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◼Q. How can we optimize PH-based loss functions?
◼A. Usually just apply gradient descent

◼For a differentiable function ℒ: 𝐴𝐴 → ℝ, 𝐴𝐴 ⊂ ℝ𝑑𝑑 , update the parameter by
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘∇ℒ 𝑥𝑥𝑘𝑘 ,

where 𝛼𝛼𝑘𝑘 is the learning rate at step 𝑘𝑘
◼Toy example: optimize a point set to maximize “# of loops”

◼For the 1st PD 𝐷𝐷1(𝑃𝑃), consider 
ℒ 𝑃𝑃 = −

𝑝𝑝∈𝐷𝐷1 𝑃𝑃
𝑝𝑝 − 𝜋𝜋Δ(𝑝𝑝) ∞

2 + 𝑑𝑑 𝑃𝑃, 𝐶𝐶 ,

where 𝜋𝜋Δ is the projection to the diagonal and 𝐶𝐶 is the square

Optimization of PH-based functions

Optimize with 𝓛𝓛

19/26
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Learn filtrations to give PDs for a classification task
◼Consider the toy task to classify the MNIST images with 0th PDs + RF
◼For a linear function 𝑓𝑓 to some direction, consider

ℒ 𝑓𝑓 =
𝑙𝑙

σ𝑦𝑦𝑖𝑖=𝑦𝑦𝑗𝑗=𝑙𝑙 𝑑𝑑 𝐷𝐷0 𝐼𝐼𝑖𝑖, 𝑓𝑓 , 𝐷𝐷0 𝐼𝐼𝑗𝑗, 𝑓𝑓
σ𝑦𝑦𝑖𝑖=𝑙𝑙 𝑑𝑑 𝐷𝐷0 𝐼𝐼𝑖𝑖; 𝑓𝑓 , 𝐷𝐷0 𝐼𝐼𝑗𝑗; 𝑓𝑓

.

Optimize 𝓛𝓛 𝒇𝒇 to find the best direction. 

Applications: Filtration learning

Classification accuracy before and after filter optimization
24/26

◼Theorem 𝐾𝐾 simplicial compex, 𝐹𝐹: 𝐴𝐴 → ℝ|𝐾𝐾| parametrized family of filtration,
𝐸𝐸:ℝ|𝐾𝐾| → ℝ function of PDs, ℒ = 𝐸𝐸 ∘ Pers ∘ 𝐹𝐹: 𝐴𝐴 → ℝ
Assume that 𝑭𝑭 and 𝑬𝑬 are in a good class (definable) and 𝓛𝓛 is locally Lipschitz. 

Consider the sequence obtained by 
𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘 𝑦𝑦𝑘𝑘 + 𝜉𝜉𝑘𝑘 , 𝑦𝑦𝑘𝑘 ∈ 𝜕𝜕ℒ 𝑥𝑥𝑘𝑘 ,

where 𝛼𝛼𝑘𝑘: learning rate and 𝜉𝜉𝑘𝑘 : random variable s.t.
𝛼𝛼𝑘𝑘 ≥ 0, σ𝑘𝑘 𝛼𝛼𝑘𝑘 = ∞,σ𝑘𝑘 𝛼𝛼𝑘𝑘2 < ∞ ;
sup
𝑘𝑘

𝑥𝑥𝑘𝑘 < ∞ almost surely;

3. For ℱ𝑘𝑘 = 𝜎𝜎(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗, 𝜉𝜉𝑗𝑗, 𝑗𝑗 < 𝑘𝑘) , there exists a function 𝑝𝑝: ℝ𝑑𝑑 → ℝ that is 
bounded on any bounded set s.t. for any 𝑘𝑘 almost surely

𝔼𝔼 𝜉𝜉𝑘𝑘 ℱ𝑘𝑘 = 0, 𝔼𝔼 𝜉𝜉𝑘𝑘 2 ℱ𝑘𝑘 < 𝑝𝑝 𝑥𝑥𝑘𝑘 .
Then 𝒙𝒙𝒌𝒌 𝒌𝒌 converges to a critical point of 𝓛𝓛 almost surely.

cf. Davis et al., Stochastic subgradient method converges on tame functions, 2020

Convergence result

23/26

Convergence of PH-based functions
We can apply stochastic (sub)gradient descent to optimize 
PH-based loss functions using automatic differentiation

◼However, there was no guarantee of convergence
Carrière, Chazal, Glisse, I., Kannan, and Umeda, 
Optimizing persistent homology based functions, ICML2021

◼Proved the almost surely convergence of stochastic subgradient
descent for a wide class of PH-based loss functions 

◼The class includes almost all the PH-based functions in the literature 

ℒ: loss functiondata

22/26
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1. Persistent Homology and Applications
⚫Extract “topology” of data as persistence diagrams (PDs)
⚫We can use PD as input of machine learning (ML)
⚫Applications: material science, graph classification, …

2. PH-based Loss Functions
⚫Many attempts to combine PH and ML
⚫Proved the convergence of SSGD for a PH-based loss functions
⚫Developing thanks to differentiability of PDs

⚫ Filtration Leaning, Topologically Regularized Embeddings, …

Thank you for your attention!

Summary

Optimize

26/26

Hofer et al., Graph Filtration Learning, ICML2020
◼Learn a filter function of graphs end-to-end
◼Recall that a function on vertices gives a filtration of a graph

◼Vectorization of the resulting PDs is used for classification 

◼Parametrized vertex filter function can be implemented by GNN and 
learned thanks to the differentiability and the convergence result

Applications: Graph Filtration Learning

1

1

4

3

2

1 2 3 4

⊂ ⊂ ⊂
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Exotic shapes of nano-spherical structures - new
DNA coding

Stanislaw Janeczko

Center for Advanced Studies,
Warsaw University of Technology, Poland

(joint work with Hassan Babiker)

The simplest naturally ordered tetrahedral packing consists of an ordered sequence of
regular tetrahedra glued together face to face as with the linear packing of a tetrahedral
helix.Such tetrahedral structures are called tetrahedral chains.

Any tetrahedral chain consists of the three types of simplest configurations of four
consecutive tetrahedra called tetrahedral units. Two of these types are left and right
tetrahedral short spirals, U,D, and the third type, F, is a flat configuration of four
tetrahedra. The structure of a tetrahedral chain in D,F, U elementary units is written
as a word like UUDFUD....

The three strands of the left or right oriented tetrahedral helix form a spiral with
irrational slope. This is the reason for the effective density of tetrahedral chains and
nonexistence of closed tetrahedral chains in Euclidean space.

Let us assume that the gluing process of tetrahedra is ordered along a chain and each
step of this process is realized by reflection in a particular face of adjacent tetrahedron.
To each tetrahedron we assign four reflections Ri, i = 1, . . . , 4, in the configurational
three dimensional space V. Reflections Ri in V are represented by four corresponding
reflect-morphisms R̄i, i = 1, . . . , 4, acting in the space of regular tetrahedra T through
a reflectional transformation of their vertices. In V, dimV = n, any tetrahedral chain
of length n + 1 is uniquely represented by an initial tetrahedron T and an ordered
sequence of n reflect-morphisms

R̄i1 , . . . , R̄in , ik ̸= ik+1, k = 1, . . . , n− 1.

The fact that a tetrahedral chain is so rigid in 3-space and regular tetrahedra can not
tile the space gives rise to several questions. The main question we consider is the
recognition of combinatorial and algebraic structures of tetrahedral chains. We want
to investigate their geometric properties and determine what kind of information is
contained in the chain invariants of orthogonal transformations and re-numberings. We
use the parametrization of the chains by sequences of ordered reflections in barycentric
coordinates and find their combinatorial structure. Periodicity along a chain is based on
the structure of sequences of admissible triplets of integers and their cycling properties.
The corresponding numerical invariants and an indexing role of a binary tetrahedral
group defines the complete coding properties in dimension three.
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- Barrow boy’s packing, cell is a rhombic dodecahe-

dron

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 3

Sphere packings

- Square packing, face-centered cubic packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 2

Exotic shapes of nano-spherical

structures - new DNA coding

Stanislaw Janeczko

Faculty of Mathematics and Information Sciences, Warsaw University of Technology

Workshop on Mathematics for Industry
Kyushu - Warsaw 25-29 September 2023

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 1
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Sphere packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 6

Sphere packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 5

- Hexagonal packing, the third layer sits exactly above

the first layer.

CAS-MINI Warsaw 25 - 29 September 2023, Stanislaw Janeczko 4
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Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 9

Icosahedron

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 8

Sphere packing

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 7
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Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 12

Tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 11

Tetrahedral chains

H. Steinhaus, 1957; J.H. Mason, 1972

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 10
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Tetrahedra in barycentric coordinates

T ≡ {p1, p2, p3, p4}, {(S1, p1), . . . , (S4, p4)}

T −regular tetrahedra, ‖ pi−pj ‖=‖ pk−pl ‖, i �= j, k �= l

T ⊂ V ⊗ U∗, U ≡ R4

V - configurational affine space, dimV = 3

U - barycentric coordinates (α1, . . . , α4) ∈ U

H = {∑4
i=1αi = 1} - canonical affine hyperplane

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 15

Dual tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 14

Almost closed tetrahedral chains

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 13
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Generation of tetrahedral chain

si center of Si, si =
1
3(

∑4
j=1 pj − pi)

Four orthogonal reflections by Si

Ri(p) = p− 2
(p− si|si − pi)

(si − pi|si − pi)
(si − pi)

Ri(pj) = pj +2δij(
1

3

∑

k �=i
pk − pj), j = 1, . . . ,4

{T (i)}ni=0 tetrahedral chain

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 18

M is defined uniquely by the commuting diagram

T(M(•)) = F (T(•))

F (pi) =
∑4
j=1αjipj in barycentric coordinates αji.

Then

4∑

i=1

4∑

j=1
αjipj⊗e∗i =

4∑

j=1
pj⊗(

4∑

i=1
αjie

∗
i ) =

4∑

j=1
pj⊗M∗(e∗j).

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 17

T ∈ T , T =
∑4
i=1 pi ⊗ e∗i

Barycentric coordinate map T : H → V :

T(α) =
∑4
i=1 pi ⊗ e∗i (α) =

∑4
i=1αipi,

α =
∑4
i=1αiei ∈ H, and geometrically

T = T(H ∩ {αi ≥ 0})
F : V → V affine mapping.

F lifts to a linear mapping

M : (U,H) → (U,H)

preserving the hyperplane H

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 16
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R̄i is represented by transpose of Mi

EXAMPLE

R̄1(
4∑

i=1
pi ⊗ e∗i ) =

4∑

i=1
p
(1)1
i ⊗ e∗i ,

where



p
(1)1
1

p
(1)1
2

p
(1)1
3

p
(1)1
4




=




−1 2
3

2
3

2
3

0 1 0 0
0 0 1 0
0 0 0 1







p1
p2
p3
p4




,

T
(n)
i1...in

= R̄in . . . R̄i1T.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 21

Representation in barycentric coordinates

R̄i : T → T , R̄i(v ⊗ u∗) = v ⊗M∗
i u

∗

M1 =




−1 2
3

2
3

2
3

0 1 0 0
0 0 1 0
0 0 0 1




T

,M2 =




1 0 0 0
2
3 −1 2

3
2
3

0 0 1 0
0 0 0 1




T

,

M3 =




1 0 0 0
0 1 0 0
2
3

2
3 −1 2

3
0 0 0 1




T

,M4 =




1 0 0 0
0 1 0 0
0 0 1 0
2
3

2
3

2
3 −1




T

.
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T (0) = T,

T
(1)
i1

= R̄i1T,

T
(2)
i1i2

= R̄i2R̄i1T, i1 �= i2,

. . . . . . . . .

T
(n)
i1i2...in

= R̄in . . . R̄i2R̄i1T, ik+1 �= ik, k = 1, . . . , n− 1.

R̄i : T → T twist morphisms, defined by Ri.
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Basic units

Tetrahedral chains: DDUF . . . UDFFD.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 25

Shape orientation

c

c

(2)
c

(3)

(1)

c

(0)

x
1

x

x2

3
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Coding in triplets of consecutive steps

T
(r+1)
k = R̄kT

(r)

T
(r+2)
kj = R̄jR̄kT

(r)

T
(r+3)
kji = R̄iR̄jR̄kT

(r).

U,D, F : T
(r+3)
kji = R̄iR̄jR̄kT

(r)

F : T (r+3); det(xr+1, xr+2, xr+3) = 0

U : T (r+3); det(xr+1, xr+2, xr+3) > 0

D : T (r+3); det(xr+1, xr+2, xr+3) < 0

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 23
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Combinatorial codes for U, D, F

Admissible triplets parametrizing U D F:

(k, i, j),1 ≤ i, j, k ≤ 4, k �= j �= i

EXAMPLE

UUDFD

(3,4,2) → (4,2,1) → (2,1,4) → (1,4,1) → (4,1,3).

T
(7)
3421413 = R3R1R4R1R2R4R3T

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 26
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D-chains period
(2,1,4) → (1,4,3) → (4,3,2) → (3,2,1)
(3,1,2) → (1,2,4) → (2,4,3) → (4,3,1)
(4,1,3) → (1,3,2) → (3,2,4) → (2,4,1)
(4,2,1) → (2,1,3) → (1,3,4) → (3,4,2)
(1,2,3) → (2,3,4) → (3,4,1) → (4,1,2)
(2,3,1) → (3,1,4) → (1,4,2) → (4,2,3)
(4,3,2) → (3,2,1) → (2,1,4) → (1,4,3)
(2,4,3) → (4,3,1) → (3,1,2) → (1,2,4)
(3,2,4) → (2,4,1) → (4,1,3) → (1,3,2)
(1,3,4) → (3,4,2) → (4,2,1) → (2,1,3)
(3,4,1) → (4,1,2) → (1,2,3) → (2,3,4)
(1,4,2) → (4,2,3) → (2,3,1) → (3,1,4)

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 31

U-chains period
(3,2,1) → (2,1,4) → (1,4,3) → (4,3,2)
(4,3,1) → (3,1,2) → (1,2,4) → (2,4,3)
(2,4,1) → (4,1,3) → (1,3,2) → (3,2,4)
(3,4,2) → (4,2,1) → (2,1,3) → (1,3,4)
(4,1,2) → (1,2,3) → (2,3,4) → (3,4,1)
(4,2,3) → (2,3,1) → (3,1,4) → (1,4,2)
(1,4,3) → (4,3,2) → (3,2,1) → (2,1,4)
(1,2,4) → (2,4,3) → (4,3,1) → (3,1,2)
(1,3,2) → (3,2,4) → (2,4,1) → (4,1,3)
(2,1,3) → (1,3,4) → (3,4,2) → (4,2,1)
(2,3,4) → (3,4,1) → (4,1,2) → (1,2,3)
(3,1,4) → (1,4,2) → (4,2,3) → (2,3,1)

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 30

Classification of admissible triplets

u d f

det(x1, x2, x3) = 32
√
3/243 det(x1, x2, x3) = −32

√
3/243 det(x1, x2, x3) = 0

(k, j, i) (k, j, i) (k, j, i)
(3,2,1) (4,2,1) (1,2,1)
(4,3,1) (2,3,1) (1,3,1)
(2,4,1) (3,4,1) (1,4,1)
(4,1,2) (3,1,2) (2,1,2)
(1,3,2) (4,3,2) (2,3,2)
(3,4,2) (1,4,2) (2,4,2)
(2,1,3) (4,1,3) (3,1,3)
(4,2,3) (1,2,3) (3,2,3)
(1,4,3) (2,4,3) (3,4,3)
(3,1,4) (2,1,4) (4,1,4)
(1,2,4) (3,2,4) (4,2,4)
(2,3,4) (1,3,4) (4,3,4)

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 29
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Compositions of L∗−sequences form the indexing

space for tetrahedral chains

The indexing space is a binary tetrahedral subgroup

of S12

generated by three elements Lu, Ld, Lf with the

relations

L3
u = id, L3

d = id, L2
f = id, (LuLd)

2 = id.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 35

L - sequence for tetrahedral chain

Example

DUUFD −→ LdLfLuLdLd

Any periodic tetrahedral chain is characterized by

cycling composition of a numerical representation of

its period

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 33

Combinatorial structure

I = {(α, β) ∈ ∆×∆ : α �= β}

∆ = {1,2,3,4}

Uniquely defined mappings

Lu, Ld, Lf : I → ∆, #I = 12

and bijections

Lu,Ld,Lf : I → I,

L∗(i1, i2) = (i2, L∗(i1, i2)), ∗ = u, d, f.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 32
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Zero branching order
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Tetrahelix
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Geometric characteristics

-proper tetrahedral chains

n 3 4 5 6 7 8 9 10 11 12 13

An 1 3 9 26 76 218 628 1802 5146 14670 41734

-branching order 0 ≤ b ≤ 3

-vertex order P (p),
∑
p∈VCn

P (p) = 4n

-clustering function

Cl(Cn) =
∑

p∈VCn

max(0, P (p)− 4)

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 36
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Ico-clusters

FFUFFDUDUDFFUFFDU,FFUFFDUDUDUDFFUFF

UFFDFFUDUDUFFDFFU,UFFDUDFFUFFDUDFFU

UDFFUFFDUDFFUFFDU,UDFFUFFDUDUDFFUFF.

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 40

Proper chains sharing one common vertex

b\n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total

1 0 0 0 0 0 1 2 6 9 19 38 49 69 79 71 34 6 383
2 0 0 1 4 6 10 24 46 78 113 137 153 132 85 36 6 0 831
3 2 4 6 9 16 27 38 48 55 56 50 35 22 12 2 0 0 380

total 2 4 7 13 22 38 64 100 142 188 225 237 223 176 109 40 6 1594
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Smallest unit b = 1
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Big periodic
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Clustering folding
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Clustering folding
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Spray technology
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Nano-blood particles
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Mixed clustering folding

H. Babiker, S. Janeczko, Combinatorial representation of tetrahedral

chains, Communications in Information and Sciences, Vol. 15, No. 3, (2015),

331-359
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Porous particles
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Large silica particles
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Silica particles
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Hollow particles

S.Y. Lee, L. Gradon, S. Janeczko, F. Iskandar, K. Okuyama, Formation

of Highly Ordered Nanostructures by drying Micrometer Colloidal

Droplets, ACS Nano Journal, Vol. 4, No. 8, (2010), 4717-4724

L. Gradon, S. Janeczko, M. Abdullah, F. Iskandar, K. Okuyama, Self-

Organization Kinetics of Mesoporous Nanostructured Particles, AIChE

Journal Vol. 50, No. 10, (2004), 2583-2593.
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Porous particles
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Stable porous particles
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A = Adenine, T = Thymine, C = Cytosine, G = Guanine

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 59

Geometrical coding of DNA sequences
IV
{ UDFFUFFDUDFFUFFDU,{ A,C} } ACTATACACTACACTCTAC
{ UDFFUFFDUDFFUFFDU,{ A,T} } ATGAGATATGATATGTGAT
{UDFFUFFDUDFFUFFDU,{A,G} }AGCACAGAGCAGAGCGCAG
{UDFFUFFDUDFFUFFDU,{ C,A} } CAGCGCACAGCACAGAGCA
{ UDFFUFFDUDFFUFFDU,{ C,T} } CTACACTCTACTCTATACT
{UDFFUFFDUDFFUFFDU,{ C,G} } CGTCTCGCGTCGCGTGTCG
{ UDFFUFFDUDFFUFFDU,{ T,A} } TACTCTATACTATACACTA
{UDFFUFFDUDFFUFFDU,{ T,C} } TCGTGTCTCGTCTCGCGTC
{UDFFUFFDUDFFUFFDU,{ T,G} } TGATATGTGATGTGAGATG
{UDFFUFFDUDFFUFFDU,{G,A} }GATGTGAGATGAGATATGA
{UDFFUFFDUDFFUFFDU,{G,C} }GCAGAGCGCAGCGCACAGC
{UDFFUFFDUDFFUFFDU,{G,T} }GTCGCGTGTCGTGTCTCGT
V
{ UFFDUDFFUFFDUDFFU,{ A,C} } ACTCTACTCTATACTATAC
{UFFDUDFFUFFDUDFFU,{A,T} }ATGTGATGTGAGATGAGAT
{UFFDUDFFUFFDUDFFU,{A,G} }AGCGCAGCGCACAGCACAG
{UFFDUDFFUFFDUDFFU,{ C,A} } CAGAGCAGAGCGCAGCGCA
{ UFFDUDFFUFFDUDFFU,{ C,T} } CTATACTATACACTACACT
{UFFDUDFFUFFDUDFFU,{ C,G} } CGTGTCGTGTCTCGTCTCG
{ UFFDUDFFUFFDUDFFU,{ T,A} } TACACTACACTCTACTCTA
{UFFDUDFFUFFDUDFFU,{ T,C} } TCGCGTCGCGTGTCGTGTC
{UFFDUDFFUFFDUDFFU,{ T,G} } TGAGATGAGATATGATATG
{UFFDUDFFUFFDUDFFU,{G,A} }GATATGATATGTGATGTGA
{UFFDUDFFUFFDUDFFU,{G,C} }GCACAGCACAGAGCAGAGC
{UFFDUDFFUFFDUDFFU,{G,T} }GTCTCGTCTCGCGTCGCGT
VI
{ UFFDFFUDUDUFFDFFU,{ A,C} } ACTCTATACTACTCTATAC
{UFFDFFUDUDUFFDFFU,{A,T} }ATGTGAGATGATGTGAGAT
{UFFDFFUDUDUFFDFFU,{A,G} }AGCGCACAGCAGCGCACAG
{UFFDFFUDUDUFFDFFU,{ C,A} } CAGAGCGCAGCAGAGCGCA
{ UFFDFFUDUDUFFDFFU,{ C,T} } CTATACACTACTATACACT
{UFFDFFUDUDUFFDFFU,{ C,G} } CGTGTCTCGTCGTGTCTCG
{ UFFDFFUDUDUFFDFFU,{ T,A} } TACACTCTACTACACTCTA
{UFFDFFUDUDUFFDFFU,{ T,C} } TCGCGTGTCGTCGCGTGTC
{UFFDFFUDUDUFFDFFU,{ T,G} } TGAGATATGATGAGATATG
{UFFDFFUDUDUFFDFFU,{G,A} }GATATGTGATGATATGTGA
{UFFDFFUDUDUFFDFFU,{G,C} }GCACAGAGCAGCACAGAGC
{UFFDFFUDUDUFFDFFU,{G,T} }GTCTCGCGTCGTCTCGCGT

1
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Geometrical coding of DNA sequences
I
{ FFUFFDUDUDUDFFUFF,{ A,C} } ACACTCTACTACTATACAC
{ FFUFFDUDUDUDFFUFF,{ A,T} } ATATGTGATGATGAGATAT
{ FFUFFDUDUDUDFFUFF,{A,G} }AGAGCGCAGCAGCACAGAG
{ FFUFFDUDUDUDFFUFF,{ C,A} } CACAGAGCAGCAGCGCACA
{ FFUFFDUDUDUDFFUFF,{ C,T} } CTCTATACTACTACACTCT
{ FFUFFDUDUDUDFFUFF,{ C,G} } CGCGTGTCGTCGTCTCGCG
{ FFUFFDUDUDUDFFUFF,{ T,A} } TATACACTACTACTCTATA
{ FFUFFDUDUDUDFFUFF,{ T,C} } TCTCGCGTCGTCGTGTCTC
{ FFUFFDUDUDUDFFUFF,{ T,G} } TGTGAGATGATGATATGTG
{ FFUFFDUDUDUDFFUFF,{G,A} }GAGATATGATGATGTGAGA
{ FFUFFDUDUDUDFFUFF,{G,C} }GCGCACAGCAGCAGAGCGC
{ FFUFFDUDUDUDFFUFF,{G,T} }GTGTCTCGTCGTCGCGTGT
II
{ FFUFFDUDUDFFUFFDU,{ A,C} } ACACTCTACTACACTCTAC
{ FFUFFDUDUDFFUFFDU,{ A,T} } ATATGTGATGATATGTGAT
{ FFUFFDUDUDFFUFFDU,{A,G} }AGAGCGCAGCAGAGCGCAG
{ FFUFFDUDUDFFUFFDU,{ C,A} } CACAGAGCAGCACAGAGCA
{ FFUFFDUDUDFFUFFDU,{ C,T} } CTCTATACTACTCTATACT
{ FFUFFDUDUDFFUFFDU,{ C,G} } CGCGTGTCGTCGCGTGTCG
{ FFUFFDUDUDFFUFFDU,{ T,A} } TATACACTACTATACACTA
{ FFUFFDUDUDFFUFFDU,{ T,C} } TCTCGCGTCGTCTCGCGTC
{ FFUFFDUDUDFFUFFDU,{ T,G} } TGTGAGATGATGTGAGATG
{ FFUFFDUDUDFFUFFDU,{G,A} }GAGATATGATGAGATATGA
{ FFUFFDUDUDFFUFFDU,{G,C} }GCGCACAGCAGCGCACAGC
{ FFUFFDUDUDFFUFFDU,{G,T} }GTGTCTCGTCGTGTCTCGT
III
{ UDFFUFFDUDUDFFUFF,{ A,C} } ACTATACACTACTATACAC
{ UDFFUFFDUDUDFFUFF,{ A,T} } ATGAGATATGATGAGATAT
{UDFFUFFDUDUDFFUFF,{A,G} }AGCACAGAGCAGCACAGAG
{UDFFUFFDUDUDFFUFF,{ C,A} } CAGCGCACAGCAGCGCACA
{ UDFFUFFDUDUDFFUFF,{ C,T} } CTACACTCTACTACACTCT
{UDFFUFFDUDUDFFUFF,{ C,G} } CGTCTCGCGTCGTCTCGCG
{ UDFFUFFDUDUDFFUFF,{ T,A} } TACTCTATACTACTCTATA
{UDFFUFFDUDUDFFUFF,{ T,C} } TCGTGTCTCGTCGTGTCTC
{UDFFUFFDUDUDFFUFF,{ T,G} } TGATATGTGATGATATGTG
{UDFFUFFDUDUDFFUFF,{G,A} }GATGTGAGATGATGTGAGA
{UDFFUFFDUDUDFFUFF,{G,C} }GCAGAGCGCAGCAGAGCGC
{UDFFUFFDUDUDFFUFF,{G,T} }GTCGCGTGTCGTCGCGTGT

1

CAS-MINI Warsaw 25 - 29 September 2023, Stanis�law Janeczko 57

212



WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

How to measure data diversity and why it is
important?

Pawel Józiak

Faculty of Mathematics and Computer Science,
Warsaw University of Technology, Poland

In Machine Learning we often hear about patterns that algorithms overfit to. To
prevent it, a high quality data, a bunch of data that is curated needs to be prepared.
I will discuss what tools are available, other than manual labor, in order to tell whether
the dataset is diverse, and how we used the knowledge gained through it in order to pre-
pare a highly diverse (and thus highly challenging) Document Understanding Dataset
and Evaluation (DUDE) in the domain of DocumentAI, a field at the boundary of
Natural Language Processing and Computer Vision. Joint work with Jordy Van Lan-
deghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski, Dawid
Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanislawek.

References

[1] Jordy Van Landeghem, Rubén Tito, Lukasz Borchmann, Michal Pietruszka, Rafal Powalski,
Dawid Jurkiewicz, Mickaël Coustaty, Bertrand Ackaert, Ernest Valveny, Matthew Blaschko,
Sien Moens, Tomasz Stanislawek. Document Understanding Dataset and Evaluation (DUDE).
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp.
19528-19540

213



214



215



216



217



218



219



220



221



222



223



224



225



226



227





WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Cryptographic protocol verification - results of
EPW project

Konstanty Junosza-Szaniawski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

Cryptographic protocols are fundamental to cybersecurity, necessitating assurance that
these protocols are devoid of flaws. Among the various tools available for the verifi-
cation of cryptographic protocols, ProVerif stands out. ProVerif models protocols
using Horn formulas and verifies the security properties through the satisfiability of
corresponding logical formulas. However, the complexity of modeling protocols and
their properties in ProVerif is time-consuming and requires a high level of knowledge.
To address this, we have developed a translator from the AnB language, which de-
scribes protocols from a global perspective, to ProVerif syntax. This translator sim-
plifies the modeling process, enabling easy verification of key security properties with
ProVerif, such as secrecy, forward secrecy, weak secrecy, indistinguishability, authenti-
cation, non-replay authentication, and key compromise impersonation. Our translator
is a principal outcome of the project ”Experimental Platform for Automatic Valida-
tion of Crypto Algorithms and Verification of Crypto Protocols” (EPW), funded by
The National Centre for Research and Development under the grant CYBERSECI-
DENT/456962/III/NCBR/2020.
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EPW original concept

Dockers containing ref. 
implementations

Lab 
A

Lab 
C

Lab 
B

Vendor
N

Vendor
M

Implementatios under
verificationAllows self-assessment!

R+D Project EPW –
brief presentation

⮚
Research and Development „Cybersecurity and e Identity” (

⮚
▪ –

▪ –
▪

⮚ –

Cryptographic protocol verification
results of EPW project

Elżbieta Andrukiewicz, Daniel Waszkiewicz
National Institute of Telecommunications, Poland

Tomasz Brengos, Anna Cichocka, Konstanty Junosza-Szaniawski, Adam Komorowski, 
Agata Pilitowska, Hubert Grochowski, 

Warsaw University of Technology, Poland

Supported by The National Centre for Research and Development 
CYBERSECIDENT/456962/III/NCBR/2020
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Equivalence checking (2)

⮚
⮚

⮚

⮚ ⊕ ≠ 0 constraints shall be added.
⮚

Equivalence checking’ (EC) for two implementations 

Equivalence checking (1)

⮚

⮚

Equivalence checking’ (EC) for two implementations 

Formal verification of cryptoalgorithms
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Equivalence checking

Equivalence checking

Equivalence checking

∼ ∼ ∼ ∼ ∼ ∼
∼ ∼
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Formal verification of cryptoprotocols
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Applied Pi-Calculus
in ProVerif

➢
➢

➢

!
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Building a formal bridge

Alice and Bob language

User-friendly automated 
formal verification 
platform

➢

➢
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Protocol\Language Alice and Bob Proverif

Simple Example 15 40

Needham-Schoeder 18 54

Otway-Rees 21 64

Use Case: EAP-AKA

Practical goals

Translator from AnB language 
with cryptographic primitives to Proverif’s Pi-calculus
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Properties verified

Formally verified* AnB to ProVerif translator with automatic checks:

➢
➢
➢
➢
➢
➢
➢

F. Montesi “Choreographic Programming”
F. Montesi “Introduction to Choreographies”

Practical goals

Translator from AnB language 
with cryptographic primitives to Proverif’s Pi-calculus

Formally verified translator
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Thank you

Challenges*:

➢ Formally verifiable translations to other protocol languages

➢ Extended list of security properties

* currently under consideration
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Synergies of medicine, physics, and mathematics in
medical imaging

Shizuo Kaji

Institute of Mathematics for Industry, Kyushu University, Japan

Medical imaging provides detailed visual representations of internal structures and
functions of the human body and plays a pivotal role in diagnosing, monitoring, and
treating various medical conditions. Mathematical disciplines intersect with medical
imaging in multifaceted ways, encompassing:

• Image reconstruction involves the transformation of raw measurements across
diverse modalities such as computed tomography (CT), magnetic resonance
imaging (MRI), and ultrasound into coherent, human-interpretable images.

• Image enhancement and information Extraction aim at refining image
quality while extracting vital information embedded within.

• Quantitative analysis unveils deeper insight into the heterogeneity and pro-
gression of diseases in an objective and reproducible manner.

We will present some of our collaborative endeavours, bridging the expertise of medical
doctors, medical physicists, and the realm of mathematics. Our work showcases appli-
cations of machine learning and topology that fortify and enrich the field of medical
imaging.
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They look locally similar,
but we see a clear difference if  we zoom out

c.f. Manifolds are locally all Euclidean and homology distinguishes the global topology of  them.

Measurement Reconstruction
Feature 

Extraction 

Nuclear physics
Inverse problem

Scientific ML

Clinical Data
Topological Invariants

Machine learning
Biomarkers
Simulation

Diagnosis
Prognosis

A collaborative project on various aspects of medical imaging

Evaluation
Developing clinically useful methods often leads to theoretically interesting questions

Kyoto U. hospital & U. Tokyo hospital & Kyushu U. IMI

Figures from J. Appl Physiol, vol 131-2, 2021

Image from Wikipedia

!	
Medicine

Physics
Applied-Applied
Mathematics

SYNERGIES OF MEDICINE, PHYSICS, 
AND MATHEMATICS IN MEDICAL 

IMAGING
WORKSHOP on Mathematics for Industry

BASIS OF MATHEMATICS IN NANOMEDICINE STRUCTURES AND LIFE SENSING
25-29 SEPTEMBER 2023 (WARSAW)

Shizuo KAJI (IMI, Kyushu U.)

Applied
Maths

Pure
Maths

Application

Application Moebius Kaleidocycle, 2018
S. Kaji, J. Schoenke, E. Fried, M. Grunwald
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CBCT Synthesized PlanCT PlanCT

Remark: Deep Learning is REALLY powerful

Low exposure
Low image quality

High exposure
High image quality

dilemma

(Kida, Kaji, et al., Med. Phys., 2020)

Detection of
abnormal blood cells

with hematologists at Tokiwa hospitalwith physicists at U. Tokyo hospital

(Mori, Kaji, et al., Sci. Rep., 2020)

Reconstruction
Diagnosis

Image Feature Extraction

Radiomics

Convolutional 
Neural Network

Attention-based 
Neural Network

Topological
Invariants

local

global

Requires a large dataset for training
High computational cost for 3D

Usually 2D

High computational cost for 3D

Is not versatile but complements 
neural-network-based methods

Deep-learning based

Background
• DL achieves high performance but has some weakness
• TDA has been proven effective in capturing data 

features that conventional techniques have missed

DL is good at
• Precise observation
• Memorising/imitating examples
• Processing huge data
• Accurate operation

Human is good at
• Rough estimation
• Panoramic view
• Discovering rules/invariance 

from a small number of  examples
• Explaining the reason Deep Learning

(DL)
Data-driven

local
Topological Data Analysis 

(TDA)
Maths-based

global complem
entar

y
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Pipeline

2D/3D image

Sequence of  
topological objects

Features

Topological invariants

Results+InterpretationDomain knowledge + 
Machine learning

Filtered complex

Topological Features
of Image

Difficulty
1. No big data (data acquisition is costly)
2. False Negative (overlook) is critical

FP FNcorrect

Remark: DL and TDA are NOT competitors but collaborators

By combining CNN and TDA, we achieved comparable performance 
with human experts with only 40 labelled volumes

Why it worked well: Topology helped to distinguish sinkholes from pipes, which were reflected in H1

Example: Sinkhole detection in ground penetrating radar image
(with S. Choi, T. Kim, GK Engineering)
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Topological Image Analysis
Function è Space è “Numbers”

Each threshold value 
gives rise to 

the sub-level set
{x | f(x)<a}

topological space X
function 𝑓𝑓: 𝑋𝑋 → 𝑅𝑅

Image processing = Operation on functions
image image

Example of  a kernel:Example: 
Convolution

Image = Function on a metric space

A colour image is represented by a 
triple of real-valued functions (R,G,B)

We focus on a monochrome image
𝑓𝑓: 𝑋𝑋 → 𝑅𝑅 (𝑋𝑋 ⊂ 𝑅𝑅!, 𝑛𝑛 = 2,3)

An image processing/analysis method is 
an operation on the space of  functions
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Persistent homology (formal definition)

Under review as a conference paper at ICLR 2023

parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti1) Hd(Xti) · · · Hd(Xtj1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is

3
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parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti1) Hd(Xti) · · · Hd(Xtj1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is

3

Increasing sequence of  spaces

Apply the homology functor
(with coefficients in F2)

PH is by definition the sequence of  F2-vector spaces (for each dimension d)
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parameters of the image generation. Several different formuli are tested and an iterated function
system, which generates fractal images, is found to be effective. A wider variety of image generation
methods have been tested since then (Baradad et al., 2021; Kataoka et al., 2022). To see how synthetic
images are helpful in acquiring image features is interesting also in terms of cognitive science.

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and
try to learn topological features from them. One technical difference from the Formula-driven
Supervised Learning is how the labels are generated. Instead of fixed labels associated with the image
generation model parameters, we generate labels by a mathematical formula computed directly from
the images, which has advantage of being applicable to any image generation model. The labels
encode topological features (persistent homology, in our paper) and the model is encouraged to learn
image features that are relevant to approximate the topological features.

2.3 PERSISTENT HOMOLOGY FOR IMAGE ANALYSIS

Persistent homology has an unusual input and output when it is seen as a feature extractor. PH takes
a series of nested topological spaces and outputs a multiset of intervals of the real numbers. We view
an image as a function f : X ! R defined over a rectangular domain X , and we obtain a series of
nested spaces

; ⇢ Xt1 ⇢ Xt2 ⇢ · · · ⇢ Xtm = X, Xti = {(x, y) 2 X | f(x, y)  ti},

where tm = max(f). Applying the homology functor Hd(−) with the coefficients in the
field F2 with two elements, we obtain the corresponding sequence of F2 vector spaces,
and this sequence is by definition the persistent homology PHd(X, f) of the pair (X, f).
PHd(X, f) can be written as the direct sum of so-called the interval module having the form

0 · · · 0 F2 · · · F2 0 · · · 0

Hd(;) · · · Hd(Xti1) Hd(Xti) · · · Hd(Xtj1) Hd(Xtj ) · · · Hd(X).

= ⇢ ⇢ ⇢ ⇢ ⇢

We denote the summand by the interval [ti, tj). When d = 0, it may happen that j − 1 = m, in
which case we represent the summand by [ti,1). See Fig. 1 for an example of PH of an image.
To sum up, PH takes a function f : X ! R and outputs a multiset of intervals. The alien output
as multiset can be transformed into a fixed-length vector using vectorisation techniques (Adams
et al., 2017; Bubenik, 2015; Chung & Lawson, 2021) so that it fits in the standard machine learning
pipeline.

CNNs tend to be biased towards texture when trained with a classification task of natural im-
ages (Geirhos et al., 2019). In contrast, human perception relies much on the global shape of the
image content. Therefore, it would be beneficial for a model to learn global topological features
as well as local features. This is supported by an experiment in which combining PH with other
descriptors results in an increased performance in object recognition (Li et al., 2014), showing that
PH provides a shape feature that is complementary to conventional ones. There are previous studies to
assimilate PH into deep learning. To deal with PH with neural networks, a parametric representation
of persistence homology with learnable parameters is introduced in Hofer et al. (2017) so that a
task-optimal vectorisation is obtained in a data-driven manner. Dedicated architectures of CNNs are
designed in Som et al. (2020) for computing vectorised PH of time-series and point clouds in the
form of the persistence image. The topological autoencoder (Moor et al., 2020) learns a latent space
of a point cloud that preserves the topological structure in terms of persistent homology. Our idea is
based on the fact that one has to acquire a certain high-level image representation that encodes global
topological features in order to compute PH, and this makes a good pretext task for training a neural
network.

3 METHOD

Our proposed scheme can be viewed as a type of SSL in which desired image features are learned by
solving a pretext task. The pretext task does not require any natural images, but synthesised images
(Sec. 3.1) are used. The model learns the input-output relation (regression) for the image and the
corresponding image feature vector computed through persistent homology (Sec. 3.2). The model is

3

The sequence decomposes into the direct sum of  “intervals” having the form

which correspond to cycles 
(= generators = topological features)

represented by 𝑡𝑡", 𝑡𝑡# ∈ ℝ$

Id Id

Persistent homology (PH)
◦Extension of homology defined for 
functions over topological spaces

◦For each topological feature(cycle), the 
threshold values with which it was born 
and destroyed are recorded

Remark:
We can also view PH as a “continuous relaxation” of  homology.

Homology is a discrete quantity that is sometimes problematic.
(e.g., homology can change abruptly with small variation in the input)

Function è Space è “Numbers”
For each threshold a, we have a space 

X(f,a) := {x | f(x)<a}

Q: How to choose a threshold?

A: We do not choose. Use them all!

We can compute topological invariants 
of  X(f,a) to obtain image features
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PH as a feature
Input: Function (over a topological space)

Output：Persistence Diagram
(finite points in R2)

1D

2D, 3D

Red: PH0 cycles
Blue: PH1 cycles

Software for Persistent Homology computation 
for image and volumetric data

◦ Cubical Ripser (K-Sudo-Ahara, 2021)
◦ Open-source (MIT license), Available at my github repository

https://github.com/shizuo-kaji/CubicalRipser_3dim/
◦ Capable of  computing persistent homology of  time-series, image, volumetric data
◦ One of  the fastest program for computing persistent homology of  cubical complexes
◦ The only program which can handle two major constructions of  cubical complexes
◦ Python binding that works nicely with Numpy (including DICOM converters)
◦ Tutorial (run on Google Colab): google “shizuo TDA tutorial”

2D or 3D image
Persistent 
homology

Sublevel sets by sweeping thresholds

2D Example

Figure 1: A greyscale image, considered as a function f on a rectangular grid, defines a growing
sequence of spaces by its sublevel sets. The shaded regions indicate the sublevel set Xt = {(x, y) |
f(x, y) < t} for a threshold t. The degree 0 persistent homology is the (multi)set of intervals
{[0, 1], [0, 2]}. For example, the interval [0, 1] corresponds to the connected component (“born” at
t = 0) consisting of the single pixel at the bottom-left corner in the left-most image, which disappears
in the central image (“killed” at t = 1). The degree 1 persistent homology is {[1, 2]} whose element
represents the hole surrounding the two pixels with the value 2 in the centre image. This hole
disappears in the right-most image. Since the space is two-dimensional, persistent homology is
non-trivial only at degrees 0 and 1. In this way, given a growing sequence of spaces indexed by real
numbers, persistent homology records the topological features, islands and holes, with the indices in
which the features emerge and disappear.

and its variants learn a compression-expansion task; in other words, it aims at obtaining a complete90

low-dimensional feature of an image that can recover the image. Since knowledge in general means91

a simple and compressed description of a target object, compression-expansion can be considered92

as a fundamental task in learning, and the learned features are useful for many downstream tasks.93

Another popular framework of SSL is the contrastive learning (see [15] for a survey). In this scheme,94

a low-dimensional embedding of images is learned so that the original image and its perturbation are95

placed nearby whereas different images are placed far apart in terms of a certain metric defined on the96

representation space. Contrastive learning tasks are mostly based on human perception; for example,97

what images should be regarded “similar” is defined by restricting the class of image perturbation.98

2.3 Learning with synthetic images99

Even though SSL saves the annotation costs, the preparation of training data is still a vexing problem.100

For practical conveniences, there are ready-to-use models which are pretrained with large-scale101

datasets. However, there is a concern on how the pretrained model is obtained, which is often out of102

our control. The dataset and its labels used for the pretraining may have been low-quality, subject103

to bias, and violated usage rights and privacy. For example, ImageNet, one of the most popular104

large-scale datasets, suffers from fairness issues [16], and there have been a growing interest in the105

fairness of machine learning [17]. For providers of pretrained models, adversarial actions such as the106

model inversion attack [18] are also problematic, which would reveal sensitive information in the data107

used for pretraining. No matter how much care is paid for data collection, it is impossible to be free108

from all kinds of these issues as long as real images are used. Using generative adversarial networks109

(GANs) to generate image datasets for training is a popular and successful strategy ([19]) to mitigate110

the situation, but GANs are also trained with natural images and cannot avoid above-mentioned111

problems. A promising approach is to use algorithmically synthesised images. Formula-driven112

Supervised Learning introduced in [20] considers pretraining with synthetic images generated by a113

mathematical formula. The labels are assigned according to the parameters of the image generation.114

Several different formuli are tested and an iterated function system, which generates fractal images, is115

found to be effective. A wider variety of image generation methods are tested in [21]. Using synthetic116

images to acquire image features is interesting also in terms of cognitive science.117

In this paper, we also use synthetic images, which are not very meaningful for human eyes, and try118

to learn topological features from them. The main difference from the Formula-driven Supervised119

Learning is how the labels are generated. Instead of fixed labels associated with the image generation120

model parameters, we generate labels by a mathematical formula computed directly from the121

3

PH0 = {(0,1], (0,∞)}  (islands)
PH1 = {(1,2]}           (holes)

A cycle of  the form (a,b] is represented 
by a point 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅$
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Summary
Topology (persistent homology) provides a way to extract image/volume 
features that are not easy to obtain by conventional method

Global and invariant features encoded by persistent homology (PH) 
complement those (mainly local) features obtained by deep learning (DL) 
and can be used in conjunction to boost performance

PH-based image analysis has some advantages:

robust and easily transferable (ó DL needs re-training)

interpretable (ó DL is often a blackbox)

3D (ó many conventional analyses are 2D slice-based)

Applications 
to CT analysis

We cannot include the details here
since some materials are not publishable online.

Contact Kaji for a full copy of  the slides.
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Plasticity – Modeling and mathematical analysis

Konrad Kisiel

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

(joint work with Krzysztof Che�lmiński)

Systems of equations describing an inelastic response of metals, with the fundamental
assumption of small deformations, consist of linear partial differential equations coupled
with nonlinear differential inclusions (or ordinary differential equations) for the vector
of internal variables. The partial differential equations result from general mechanical
laws. The differential inclusions are experimental, and depend on the kind of considered
materials. One of the main assumptions needed in known existence theories is so-called
safe-load condition. This kind of assumption is an indirect assumption on regularity of
data. Our main goal is to present a method to obtaining existence of solutions, where
the safe-load condition can be replaced by an assumption abouth the size of the set of
addmissible stresses.
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1. Theory of inelastic deformations - short introduction

Let Ω ⊂ R3 be a bounded domain with a smooth boundary ∂Ω .
Balance of momentum

ρutt(x, t) = divx T (x, t) + F (x, t) , ρutt ∼ 0 (quasistatic case)

(u, T ) : Ω× (0, Te) → R3 × S3 – (the displacement vector, the stress tensor)
F : Ω× (0, Te) → R3 – the given external force, ρ > 0 – the mass density
Elastic constitutive relation

T (x, t) = D
(
ε(x, t)− εp(x, t)

)

ε = 1
2(∇u +∇Tu) – the linearized strain tensor

εp : Ω × (0, Te) → S3 – the plastic strain tensor, D : S3 → S3 – the elasticity
tensor (symmetric, > 0)
Inelastic constitutive relation

εpt (x, t) ∈ f
(
ε(x, t), εp(x, t)

)

f : D(f ) ⊂ S3 × S3 → P(S3) – a given constitutive multifunction

3

Table of contents

1. Theory of inelastic deformations - short introduction

2. Elasto-perfect plasticity

3. Safe-load condition

4. Energy estimates without safe-load condition

2

Plasticity – Modeling and mathematical Analysis

Krzysztof Chelmiński, Konrad Kisiel

Faculty of Mathematics and Information Science

Warsaw University of Technology

Workshop on Mathematics for Industry

Warszawa, 25-29 September, 2023
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3. Safe-load condition

Definition 2 (quasistatic case)

The given data F, gN satisfy the safe-load condition if there exists g∗D such that the
unique solution (u∗, T ∗) of the linear system

divx T
∗(x, t) = −F (x, t)

T ∗(x, t) = Dε(u∗(x, t))

u∗(x)|ΓD = g∗D(x, t) , T ∗(x) · n(x)|ΓN = gN(x, t) .

have the regularity:
u∗ ∈ W1,∞(H1), T ∗ ∈ W1,∞(L2) and there exists δ > 0 such that

{T ∗ + σ : |σ| ≤ δ} ⊂ D(g)

and there exist uniformly bounded in L∞(L2) selections of the sets g(T ∗ + σ).

For the Prandtl-Reuss model with the Hencky flow rule this condition is equivalent
to: there exists δ > 0 such that |dev T ∗| ≤ k − δ .

6

2. Elasto - perfect plasticity (the Prandtl–Reuss model)

εpt (x, t) ∈ ∂IK
(
T (x, t)

)
, K = devK × {c · I : c ∈ R}

where dev T = T − 1/3 (trT ) · I. Moreover, devK is convex with 0 ∈ int (K) .

Hencky flow rule devK = B(0, k) ⇔ ∀ S ∈ K |dev S| ≤ k .
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S ∈ ∂IK(T ) ⇔ (S, T − τ ) ≥ 0 ∀ τ ∈ K
∂IK(T ) is monotone and 0 ∈ ∂IK(0)

5

Models of premonotone type

Prof. Dr. Dr. h.c. Hans-Dieter Alber in the monograph Materials with memory
LNM 1998 has defined a very large class of models: models of premonotone type.

Definition 1
A model is called of premonotone type if the inelastic constitutive relation is in the
form

εpt ∈ g
(
− ρ∇εpψ(ε, ε

p)
)

where ψ(ε, εp) = 1
2D(ε− εp) · (ε− εp) is the free energy function and

g : D(g) ⊂ S3 → P(S3) is a given inelastic multifunction satisfying:

∀z ∈ D(g) g(z) · z ≥ 0 (∗)

If we additionally assume that g(0) ∋ 0 (∗) ⇔ monotonicity at the point 0. All
models used in practice are of premonotone type.

Models of monotone type ⇔ g is additionally monotone

4
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Let us recall the definition of the space LD(Ω).

Definition 3

LD (Ω) =
{
u ∈ L1

(
Ω;R3

)
: ε (u) ∈ L1

(
Ω;S3

)}

LD (Ω) is the Banach space equipped with the standard norm

∥u∥LD(Ω) = ∥u∥L1(Ω) + ∥ε (u)∥L1(Ω) .

Theorem 2

Assume that Ω ⊂ R3 is open, bounded and ∂Ω ∈ C1. Then, there exists a bounded
linear operator

γ : LD (Ω) → L1
(
∂Ω;R3

)
,

such that γ (u) = u|∂Ω for every φ ∈ LD (Ω) ∩ C0
(
Ω
)
. Hence

∃CLD > 0 ∀u ∈ LD (Ω) ∥γ (u)∥L1(∂Ω) ⩽ CLD ∥u∥LD(Ω).

Moreover, the following embedding theorem holds,

∃CELD > 0 ∀u ∈ LD (Ω) ∥u∥L3/2(Ω) ⩽ CELD ∥u∥LD(Ω).

9

4. Energy estimates without safe-load condition

Let us consider for simplicity the quasistatic Prandtl-Reuss model .

−divxT = F,

T = D (ε− εp) ,

εpt ∈ ∂IK (T ) ,

Our approach is to modify only the inelastic constitutive equation and consider the
following problem

−divx T
λ =F,

T λ =D
(
ελ − εp,λ

)
,

εp,λt =Mλ
(
Tλ

)
,

where Mλ : S3 → S3 denotes the Yosida approximation of the maximal-monotone
operator ∂IK.

8

Theorem 1
If the given data satisfy the safe-load condition then the sequences {εp,kt } , {εkt } from
a “good enough” approximation are bounded in the space L∞(L1).

Remark 1
Without any additional geometrical conditions for g the strains are weakly relatively
compact in the space L∞(M) where M is the space containing bounded measures.

Remark 2
C. Johnson in 1976 was the first mathematician, which has formulated the safe-load
condition for the Prandtl-Reuss model. The condition of Johnson is a little bit weaker
as presented in this lecture.

The Johnson safe-load condition for the Prandtl-Reuss model

There exists a stress field S∗ such that

−divS∗ = F , S∗·n = gN and ∃ δ > 0 S∗ + B(0, δ) ⊂ K ⇔ |dev S∗| ≤ k − δ .

7
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11

Theorem 3 Assume that the data are regular enough and boundary data gN is
admissible or in the quasistatic case gN and F are admissible. Then there exists a
positive constant C, independent of λ, such that in the dynamical case

E
(
uλt , ε

λ, εp,λ
)

,

t∫

0

∫

Ω

εp,λt · Tλ , E
(
uλtt, ε

λ
t , ε

p,λ
t

)
,
∥∥∥εp,λt

∥∥∥
L∞(L1)

≤ C.

where 2E
(
uλt , ε

λ, εp,λ
)
=
∫
Ω(ρ|uλt |2 +D(ελ − εp,λ) · (ελ − εp,λ)) dx

and in the quasistatic case

E
(
ελ, εp,λ

)
,

t∫

0

∫

Ω

εp,λt · Tλ , E
(
ελt , ε

p,λ
t

)
,
∥∥∥εp,λt

∥∥∥
L∞(L1)

≤ C.

where 2E
(
ελ, εp,λ

)
=
∫
ΩD(ελ − εp,λ) · (ελ − εp,λ) dx

10

We observed that in order to obtain proper energy estimates it is enough to assume
the admissibility of the Neumann boundary data and the external force, which means

Definition 4 (Admissibility of forces)

We say that in the dynamical case the Neumann boundary data gN is admissible if

CLD ∥gN∥L∞(0,Te;L∞(ΓN )) < C∗,

where CLD is a positive constant from the trace theorem in the space LD (Ω). The
constant C∗ depends on the maximal monotone inelastic multifunction only (for the
Prandtl-Reuss model with the Hencky flow rule C∗ is equal to the yield constant k.)

We say that in the quasi-static case the Neumann boundary data gN and the external
force F are admissible if

CELD∥F∥L∞(0,Te;L3(Ω)) + CLD ∥gN∥L∞(0,Te;L∞(ΓN )) < C∗,

where the constant CELD is from the embedding theorem for the space LD(Ω) and
the constant C∗ is the same as in the dynamical case.

10
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Developable surfaces with curved folds and
applications

Miyuki Koiso

Institute of Mathematics for Industry, Kyushu University, Japan

A developable surface is a surface which is isometric to a planar region, that is, there ex-
ists a continuous bijective mapping from the surface to a planar region which preserves
the length of every curve. If the considered surface is smooth, then it is developable
if and only if its Gaussian curvature vanishes everywhere. Moreover, in this case, the
surface can be continuously and isometrically deformed until the planar region. In this
talk, we discuss developable surfaces with curved folds, which are naturally appear
as origami works and have many applications in manufacturing objects. We discuss
intrinsic and extrinsic singular points (such as vertices and points in edges), curvatures
at each singular point, and the existence and nonexistence of continuous isometric de-
formations from such a surface to a planar region. We also discuss applications and
discretization of these objects.
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Developable surfaces

3

Def. 1. A PW-smooth surface 𝑀𝑀 is said to be 
developable if it is isometric to a planar region 𝑅𝑅 (that 
is, there exists a continuous bijective mapping 𝐹𝐹 from 
𝑀𝑀 onto 𝑅𝑅 that preserves the length of each curve).

Remark 1. It is well-known that a smooth surface 𝑀𝑀 is 
developable if and only if the Gaussian curvature 
𝐾𝐾 𝑝𝑝 of 𝑀𝑀 vanishes at any point 𝑝𝑝 ∈ 𝑀𝑀. 

F𝑀𝑀 𝑅𝑅

Plan of the talk
We consider oriented piecewise smooth (PW smooth) 
surfaces 𝑀𝑀 = ∑!𝑀𝑀! in 𝔼𝔼". Here 𝑀𝑀 is a 2-dimensional manifold, 
each 𝑀𝑀! is a smooth surface with boundary, and locally the 
number of 𝑀𝑀! is finite. 

2

Developable surfaces
 A specific class of PW smooth developable 

surfaces called “pillow boxes”, and a 
variational problem for them. 

A double flat rectangle
A pillow box

Bend, and 
fold along curves

 Continuous isometric deformations from pillow boxes to planar 
regions

 Application

PE1
E2

E4

E5

E3

P3P
P1 P2

P4

P5 P6

P7
P8

PE1
E2

E4

E5

E3

P
E
M1

M2
M3

M4

M5

M1

M2
M3 M4

M5

M1

M2
M3

M4

M5𝑀𝑀

WORKSHOP on Mathematics for Industry 2023

September 26, 2023, Warsaw University of Technology, Poland

Miyuki Koiso （（Kyushu University, Japan））

Developable surfaces with curved folds 
and applications*

1

*This work is supported by JST CREST Grant Number JPMJCR1911 
and JSPS KAKENHI Grant Number JP20H01801.

Collaborated with:
J. Mitani (information science), T. Homma (architecture), 
Y. Yokosuka (architecture), T. Kitahata (physics), 
M. Yasumoto (discrete geometry), Y. Jikumaru (geometry) 
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Theorem 1 (K)：For any given double rectangle 𝑅𝑅(2𝑎𝑎, 2𝑏𝑏) with 
side lengths 2𝑎𝑎, 2𝑏𝑏 (see the picture below) there exists a unique 
pillow box 𝑀𝑀(2𝑎𝑎, 2𝑏𝑏) (which we call the optimal pillow box) that 
encloses the largest volume. It has an explicit representation 
using elliptic integrals. It consists of four (generalized) cylinders 
(of 𝐶𝐶)class) of which the base curves (the top and the bottom 
half of Γ# and two blue curves in the picture below right) are 
congruent and they are elastic curves.  

6

Existence and uniqueness of the optimal pillow box

isometric

Pillow box
A double 
rectangle

𝑅𝑅(2𝑎𝑎, 2𝑏𝑏)

−𝑎𝑎
𝑎𝑎

Γ%
𝑀𝑀(2𝑎𝑎, 2𝑏𝑏)

Remark 2.
(1) lim

1→)
𝑀𝑀 2𝑎𝑎, 2𝑏𝑏 = a 

right circular cylinder with 
radius 2𝑎𝑎/𝜋𝜋.
(2) lim

3→)
𝑀𝑀 2𝑎𝑎, 2𝑏𝑏 = two 

parallel rectangles with 
width 𝑏𝑏 and infinite length.

2𝑏𝑏

A variational problem for developable surfaces
“Find the optimal pillow box ! ”

5

A double flat rectangle 
(topologically,  2-spere 𝑆𝑆$) 
made of paper

Fold 
along curves

Q: For a given double rectangle, find the pillow box with 
the maximal volume. A: We will give a (rigorous) answer.

Pillow box

What is a pillow box?

Def. 2 (Pillow box)．A pillow box is a compact PW-smooth surface 
without boundary with genus 0 that consists of four parts of 
(generalized) cylinders and that is isometric to a double rectangle. 

isometric

Pillow boxA double rectangle

𝑅𝑅

𝑀𝑀!

𝑀𝑀"

𝑀𝑀#

𝑃𝑃$

𝑃𝑃"

𝑃𝑃#

𝑄𝑄$

𝑄𝑄#

𝑄𝑄"
𝑎𝑎

𝑎𝑎

𝑃𝑃! 𝑀𝑀$𝑄𝑄!

Smooth developable surfaces
（smooth surfaces with 0-Gaussian curvature）

4

Fact 1. Smooth developable surfaces in 𝔼𝔼" are the following:
(1) cylinders, (2) cones, (3) tangent developable surfaces.

Since developable surfaces can be constructed by bending 
a flat sheet, they are important in manufacturing objects 
from sheet metal, cardboard, and plywood (consists of 
three or more layers of veneer).

cylinder cone tangent developable surface

𝛤𝛤# 𝛤𝛤#

𝛤𝛤#

𝑃𝑃
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9

Outline of the proof of Theorem 1 (3) --- Step 3, 4, 5---

Step3. We derive the boundary condition for our ODE:

(1 + (𝑓𝑓8)$)9
!
"𝑓𝑓88 = $:

1 𝑓𝑓 − 𝜇𝜇. ⋯ 1
in order that the solution gives a (local) maximum of volume.  The 
result is: the curve Γ#:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 must be orthogonal to the 𝑥𝑥𝑥𝑥 plane.

1/4 of a pillow box．

bend Φ$:fold

along Γ4

Step4. We solve our ODE (1) for the curve Γ#:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 under the 
boundary condition that the curve Γ# is orthogonal to the 𝑥𝑥𝑥𝑥 plane.

a rectangle

Step5 (final step). We prove the existence of the (global) maximum of 
the volume of pillow boxes for any given double rectangle 𝑅𝑅 2𝑎𝑎, 2𝑏𝑏 .

8

Outline of the proof of Theorem 1 (2) --- Step 2---

1/4 of a pillow box．

bend Φ$:fold

along Γ4

Step2. We consider the following variational problem for plane curves.
For a given surface area, we maximize the enclosed volume of the 
pillow box given by a plane curve Γ#:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 . Using the method of  
Lagrange multiplier, we derive the Euler-Lagrange equation for Γ#:𝑧𝑧 =
𝑓𝑓 𝑥𝑥 which gives a critical point of the functional “Area +𝜇𝜇・Volume”. 
The result is the following ODE:

(1 + (𝑓𝑓8)$)9
!
"𝑓𝑓88 = $:

1 𝑓𝑓 − 𝜇𝜇. ⋯ 1
This equation means that the curvature 𝜅𝜅 of Γ# is a linear function of 
the height, which implies that Γ# is an elastic curve. 

A rectangle

7

Step1. We observe that, for any pillow box 𝑀𝑀, the base curves of 
the four cylinders of which 𝑀𝑀 consists are all congruent. We denote 
one of them by Γ#:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 (−𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐) (see the picture below), 
and it is sufficient to study only 1/4 of the pillow box.

1/4 of a pillow box．

bend Φ$:fold
along Γ4

Therefore, our problem becomes a problem for plane curves!

isometric
Pillow box

A double 
rectangle

𝑅𝑅(2𝑎𝑎, 2𝑏𝑏) Γ%

−𝑎𝑎
𝑎𝑎

Γ%

Outline of the proof of Theorem 1 (I) --- Step 1---

𝑀𝑀

A rectangle (𝑥𝑥, 0, 𝑓𝑓 𝑥𝑥 ) (𝑥𝑥, 𝑓𝑓 𝑥𝑥 , 𝑓𝑓 𝑥𝑥 )
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Continuous isometric (i.e. not expanding,not contracting) 
deformation from a planar double rectangle to a pillow box

𝑅𝑅

𝑀𝑀

An isometric deformation from 𝑅𝑅 to𝑀𝑀

For application, it is important to obtain the explicit 
representation from a planar region to a developable surface. 

12

We can deform the initial double rectangle 𝑅𝑅 to any given pillow 
box 𝑀𝑀 which is isometric to 𝑅𝑅 continuously and isometrically. 
However, the crease pattern (the red curves in the pictures below) 
is changed, which is not good for application. 

11

Representation of the optimal pillow box (II) 
--- surface and volume ---

Hence, the volume 𝑉𝑉(𝑓𝑓) of the optimal pillow box is

𝑉𝑉 𝑓𝑓 = 4F
9;

;
𝑓𝑓 𝑥𝑥 𝑏𝑏 − 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥	 ⋯ 5

The parts 𝑆𝑆4, 𝑆𝑆$ of the ¼ of the optimal pillow box are represented as 

J
𝑆𝑆4 = { 𝑥𝑥, 𝑓𝑓 𝑥𝑥 , 𝑧𝑧 ; −𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑓𝑓 𝑥𝑥 }
𝑆𝑆$ = { 𝑥𝑥, 𝑦𝑦, 𝑓𝑓 𝑥𝑥 ;−𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐, 𝑓𝑓(𝑥𝑥) ≤ 𝑦𝑦 ≤ 𝑏𝑏} ⋯ 4

1/4 of a pillow box．

bend Φ$:fold

along Γ4
𝑧𝑧!

𝑆𝑆 𝑆𝑆$
𝑆𝑆&

Let Γ#:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 be the base curve of the optimal pillow box given 
in the previous slide.  

A rectangle

Representation of the optimal pillow box (I) --- base curves---

The base curve Γ!:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 of the optimal pillow box is represented as follows. 

&
𝑥𝑥 = −𝐼𝐼" 𝑧𝑧 + 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧!, 0 ≤ 𝑥𝑥 ≤ 𝑐𝑐

𝑥𝑥 = 𝐼𝐼" 𝑧𝑧 − 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧!, −𝑐𝑐 ≤ 𝑥𝑥 ≤ 0
⋯ 2

where，𝐼𝐼" 𝑧𝑧 ≔ ∫!
# $"% &$!"

&$ "% &$!"
#
𝑑𝑑𝜁𝜁 > 0, (0 < 𝑧𝑧 < 𝑏𝑏), 𝑧𝑧! ≔

'
(
1 − 1 − )

' "
, 

𝑐𝑐:= 𝐼𝐼" 𝑧𝑧! ．𝜇𝜇 (< 0) is the curvature of 𝛤𝛤! at the end points that is determined by 
the following.

𝑎𝑎 = ∫!
#$ *%

&$ "% &$!"
#
 ⋯ 3

1/4 of a pillow box．

bend Φ$:fold

along Γ4
𝑧𝑧!

𝑆𝑆 𝑆𝑆$
𝑆𝑆&

A rectangle
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Future works

15

 For application, it is important to discuss “good” 
discretization of surfaces with curved folds.

 Discuss continuous isometric deformations from a 
general developable surface with curved folds to 
planar regions.

14

𝑆𝑆$
𝑆𝑆4

Next, set 𝑝𝑝! 𝑠𝑠, 𝜏𝜏 = 𝐶𝐶! 𝑠𝑠 − 𝜏𝜏𝛽𝛽! 𝑠𝑠 ,
0 ≤ 𝑡𝑡 ≤ 1, 0 ≤ 𝑠𝑠 ≤ 𝐿𝐿, − 𝜁𝜁 𝑠𝑠 ≤ 𝜏𝜏 ≤ 0,

Where 𝐶𝐶! 𝑠𝑠 = 𝜑𝜑! 𝑠𝑠 , 𝜁𝜁 𝑠𝑠 , 𝑡𝑡𝜁𝜁 𝑠𝑠 , 𝛽𝛽! 𝑠𝑠 = 0, !
!"#
!!$#

, "%!
!!$#

.

Then, 𝑝𝑝C gives an isometric deformation from  ΩB to 𝑆𝑆B .
𝑝𝑝C with  𝑞𝑞C (in the previous 
page) gives an isometric 
deformation from a rectangle 
to 1/4 of the pillow box. 

By extending the above deformation using the reflection 
with respect to the plane 𝑦𝑦 = 𝑏𝑏 , we obtain an isometric 
deformation from a single rectangle to 1/2 of the pillow box. 

Ω$

Ω4
𝛾𝛾#

Isometric deformation from the single rectangle to 1/2  
of the pillow box without changing crease pattern! (II)

Γ4

13

𝑆𝑆$
𝑆𝑆&

The crease Γ4 of a pillow box is represented as 𝜂𝜂 𝑠𝑠 , 𝜁𝜁 𝑠𝑠 , 𝜁𝜁 𝑠𝑠 ,  

0 ≤ 𝑠𝑠 ≤ 𝐿𝐿 , where 𝑠𝑠 is arc-length parameter of  Γ4 . Set

𝜑𝜑< 𝑠𝑠 = F
#

=
1 − 1 + 𝑡𝑡$ 𝜁𝜁8 𝑠𝑠 $𝑑𝑑𝑠𝑠 − 𝑐𝑐,

𝐶𝐶< 𝑠𝑠 = 𝜑𝜑< 𝑠𝑠 , 𝜁𝜁 𝑠𝑠 , 𝑡𝑡𝜁𝜁 𝑠𝑠 , 0 ≤ 𝑡𝑡 ≤ 1,
𝑞𝑞< 𝑠𝑠, 𝜏𝜏 = 𝐶𝐶< 𝑠𝑠 + 𝜏𝜏 W (0, 1, 0), 0 ≤ 𝜏𝜏 ≤ 𝑏𝑏 − 𝜁𝜁(𝑠𝑠).

Ω$
𝛾𝛾&

Isometric deformation from the single rectangle to 1/2  
of the pillow box without changing crease pattern! (I)

Then, 𝐶𝐶A=𝛾𝛾B, 𝐶𝐶B=ΓB, and 𝑞𝑞C gives an isometric 
deformation from  ΩD to 𝑆𝑆D .
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16

 We gave the definition of developable surfaces.
 We gave the existence, uniqueness, and representation formula 

of the optimal pillow box. 
 We gave a continuous isometric deformation (concretely) from a 

planar region to a pillow box.
 We mentioned an application to architecture and discretization 

in the talk in the workshop. Because this work is in progress, its 
details are not included in this article. 

Summary
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Learning Permutation Symmetry of a Gaussian
Vector

Bartosz Ko	lodziejek

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

The study of hidden structures in data presents challenges in modern statistics and
machine learning. We introduce a Bayesian model selection approach, which allows to
identify permutation subgroup symmetries in Gaussian vectors. In other words, given a
finite iid sample of a p-dimensional Gaussian vector Z = (Z1, . . . , Zp)

�, we are looking
for a permutation subgroup Γ acting on {1, . . . , p} such that

(Zi)
p
i=1 and (Zσ(i))

p
i=1 have the same distributions

for any σ ∈ Γ. We also find the maximum likelihood estimate of the covariance matrix
in a Gaussian model obeying such symmetry restrictions. The talk is based on [1] and
[2].

References

[1] Graczyk, P., Ishi, H., Ko�lodziejek, B. and Massam, H. (2022) Model selection in the space of
Gaussian models invariant by symmetry. Ann. Statist. 50, no. 3, pp. 1747-1774.

[2] Graczyk, P., Ishi, H. and Ko�lodziejek, B. (2022) Graphical Gaussian models associated to a
homogeneous graph with permutation symmetries, Physical Sciences Forum, 5(1), 20, pp. 1-9.
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Supercoiled structure of DNA and hyperelliptic
functions

Shigeki Matsutani

Institute of Science and Engineering, Kanazawa University, Japan

The geometry of DNA has a helical structure as well as a more global supercoiled
structure. The geometry of this supercoiled structure is dominated by weak elastic
forces, but its geometry has not yet been mathematically described. Geometric models
that minimize its elastic energy, known as elasticae (elastic curves), cannot describe
the shape of DNA, even if three-dimensional effects are considered. Since 1997, the
speaker has been working to mathematically represent this shape by considering finite
temperature effects [1]. It is known from elementary considerations that the shape of
elastic curves under a finite temperature can be described by the hyperelliptic solution
of the modified KdV equation, which is a nonlinear integrable equation, in the two-
dimensional plane, and of the nonlinear Schrodinger equation in the three-dimensional
space. However, Abelian function theory, including hyperelliptic function theory, had
not reached the level where hyperelliptic function solutions could be specifically de-
scribed and concretely treated at all as of 1997. Therefore, the speaker, together with
late Emma Previato since 2003, has restructured the Abelian function theory to the
level of elliptic function theory, and has also developed related theories [2]. With Pre-
viato, he obtained certain shapes in 2022, albeit incomplete [3]. Although incomplete
means that it does not fully satisfy the reality condition, we were able to produce
mathematically shapes that have some features of the supercoiled structure of DNA,
albeit tentatively. This talk will describe the results obtained in 2022 and the process
that led to them.

The speaker has been studied novel devies and materials mathematically in research
and development of devices and materials for 27 years in Canon Inc. The usefulness
of mathematics, including the theory of singularity, in modern society will be briefly
discussed.

References

[1] S. Matsutani, Statistical mechanics of elastica on a plane: origin of the MKdV hierarchy ,
J. Phys. A: Math. & Gen., 31 (1998) 2705-2725.

[2] S. Matsutani, E. Previato, The Weierstrass sigma function in higher genus and applications to
integrable equations, (in preparation).

[3] S. Matsutani, E. Previato, An algebro-geometric model for the shape of supercoiled DNA Physica
D 430 (2022) 133073
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Real World

Y.Shi, et.al, Physics Procedia 32 ( 2012 ) 389-394

Point Process
Quasi-conf
Conformal

How to do this?

We live in an age in which we can create a 
new reality by translating the real world into 
mathematical language and investigating it.

Math World

Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task

Supercoiled structure of DNA and 
hyperelliptic functions

Shigeki Matsutani
Kanazawa University

WORKSHOP on Mathematics for Industry 2023
September 28, (Thursday) 2023
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Energization
Change over 

time

A Crack 
appears

Conductive 
particles

Electron emission devices

Y.Shi, et.al, Physics Procedia 32 ( 2012 ) 389-394

Production 
Process of 
each emitter

100μm

experiment computation

Orbits by 
Numerical 

Comp.

Electron emission devices

M. Okuda, S. Matsutani, A. 
Asai, A. Yamano, K. Hatanaka, 
T. Hara, and T. Nakagiri

Caustics（singularity）

Electron emission devices

1986-２０１０
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Stratification
Inf. Lie. Alg.
Phase field

浅井朗 ながれ 2244（2005)

{0} ⊂V1⊂ V2

Real World

How to do this?

Math World

We live in an age in which we can create a 
new reality by translating the real world into 
mathematical language and investigating it.

Computational Fluid Dynamics

１[V]

0[V]

●conductive particle
□high resistance matter

Electron emission devices

１．Scatter the conductive particles
as a Monte-Carlo computation.

２．Solve the Dirichlet-Neumann 
problem,

div(γ・grad u)=0
numerically.
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Modeling the fluid in the discharge section of the 
inkjet printer

2004 M Japan Patent2006-30060
2011 M-Nakano-Shinjo

discharge section

We regard it as stratification for the modeling

Triple phase interface is singular
Triple phases: solid, liquid and gas.
How to model the triple junction?

heater

{0} ⊂V1⊂ V2

Computational Fluid Dynamics

Asai, ながれ 2244（2005)

Computation

Observation

Modeling the fluid in the discharge section of the 
inkjet printer

2004 M Japan Patent2006-30060
2011 M-Nakano-Shinjo

discharge section

We regard it as stratification for the modeling

Triple phase interface is singular
Triple phases: solid, liquid and gas.
How to model the triple junction?

heater

{0} ⊂V1⊂ V2

Computational Fluid Dynamics

Watanabe-Shinjo：
日本機械学会誌 2012

Ink-drop

gas-drop

Ink-dropgas-drop

Modeling the fluid in the discharge section of the 
inkjet printer

2004 M Japan Patent2006-30060
2011 M-Nakano-Shinjo

discharge section

We regard it as stratification for the modeling

Triple phase interface is singular
Triple phases: solid, liquid and gas.
How to model the triple junction?

heater

{0} ⊂V1⊂ V2

Computational Fluid Dynamics

Watanabe-Shinjo：
日本機械学会誌 2012

Ink-drop

gas-drop
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Nano-matrials

Material design of key components of LBPs
Mathematical modeling using percolation theory.

2015M-Shimosako

Preparation and Some Properties of a Nanocomposite of 
Polyacrylonitrile with Acetylene Black Arjun Maity and Mukul Biswas 
Polymer Journal, Vol. 36 (2004) No. 10 pp.812-816

How to control the high 
resistivity by mixing 
conductive carbon 
nanoparticles with a high-
resistivity polymer matrix 
to preserve its property 
for a long time.

We live in an age in which we can create a 
new reality by translating the real world into 
mathematical language and investigating it.

Real World Math World

How to do this?

Point Process
Quasi-conf
Conformal

Preparation and Some Properties of a Nanocomposite of 
Polyacrylonitrile with Acetylene Black Arjun Maity and Mukul Biswas 
Polymer Journal, Vol. 36 (2004) No. 10 pp.812-816

Nano-matrials
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Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task

We live in an age in which we can create a 
new reality by translating the real world into 
mathematical language and investigating it.

Real World Math World

How to do this?

Point Process
Quasi-conf
ConformalPerspectives from industry, 

1. Cutting-edge technology 
requires cutting-edge mathematics.
2. Some of the mathematics for 
technology is so profound.

Nano-matrials

3D potential distribution
Computational simulation

3D potential distribution
Computational simulation

Material design of key components of LBPs
Mathematical modeling using percolation theory.

2015M-Shimosako
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Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task

DNA forms
・double coil structure and
・supercoil structure.

Supercoil structure is
・governed by weak elastic 
forces.
・But not an elastic curve

Supercoil in DNA

Electron microscope image of DNA

Supercoil in DNA
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tt  :=∂s Z :tangential vector, nn::==i i∂s Z:normal vector

∂s nn  = −k tt, s(∂2Z = ik∂s Z )

k := ∂s ϕ : curvature; k = 1/[curvature radius].

∂s tt = k nn, 2

What is an elastica (elastic curve)?

Curvature& Frenet-Serret relation

Z : N → C :analytic immersion (|∂s Z| = 1).

N=S 1 or =[0, 1]

s ：arclength

Z(s )= X(s )+ iY(s ),

(Φ ∈ Cω(N, R))

= cos ϕ+ i sin ϕ

k :=∂s ϕ : curvature; k = 1/[curvature radius].

ϕ n

Ｘ

Ｙ

C

tt  = ∂s Z = eiϕ,

What is an elastica (elastic curve)?

What is an elastica (elastic curve)?

Elastica is a curve on a (complex) 
plane determined by elastic forces.

ϕ n

Ｘ

Ｙ

C
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Static modified KdV equation

Infinitesimal isometric deformation

Elastica Problem is to find the shape of the 
curve whose curvature obeys the static 
modified KdV equation

It is a prototype of the nonlinear 
integrable system.

Static modified KdV equation

Infinitesimal
variation:

::

Infinitesimal isometric deformation

Curvature& Frenet-Serret relation

tt  :=∂s Z :tangential vector, nn::==i i∂s Z:normal vector

∂s nn  = −k tt, s(∂2Z = ik∂s Z )

k := ∂s ϕ : curvature; k = 1/[curvature radius].

∂s tt = k nn, 2

What is an elastica (elastic curve)?

Elastica Problem (Jacob/Daniel Bernoulli-Euler (1691-1744))

Determine the shape of the elastic curve that 
exists on the plane mathematically!

⇔ Find the shape that minimizes the energy 

under the iso-arc length.
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Elliptic curve

Infinitesimal isometric deformation

Elliptic curve

Infinitesimal isometric deformation
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Elastica (Elastic curve):

Euler’s solutions

It is a solution of MKdV equation 
from a modern point of view.

Elastica is expressed by the elliptic functions!

Meromorphic function 
over elliptic curve

＝Elliptic function

x

y

e1 e2 e3

x,y are regarded as complex numbers

x→ x +x’√ , y→ y +y’√-1 -1

∞

Elliptic curve
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The geometric structure of the parameter 
space (moduli) of a shape is unknown:

Find orbits with iso-energy.
E.Previato2015 SM 1997

Statistical mechanics of elastica

:

Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task

Real transcendental curves

Elastica (Elastic curve):

Euler’s sketch by numerical comp.(1744)
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MKdV equation

Solutions of the MKdV equation preserve

for the time-development

The time t is not physical time but a parameter 
in the moduli of the immersion of the curve 

Formulation of iso-energetic geometry

Analytic, isometric

Find orbits with the iso-energy.

E.Previato2015 SM 1997

Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task
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1. The MKdV equation has hyperelliptic 
function solutions.
2. Due to the higher genus of hyperelliptic 
curves (compact Riemann surfaces), the 
solutions are expected to express more 
complicated (elastic) curves.

MKdV equation

Find orbits with iso-energy

E.Previato2015 SM 1997

Statistical mechanics of elastica

:

Find higher-order solutions of the 
MKdV equation!

MKdV equation contains the static MKdV
equation of elastica as t=s.
⇔ It is a natural generalization of elastica

MKdV equation
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M 1997, M-Onishi 2001, M-Previato 2015

Assign the appropriate topology in the parameter space 
of the geometry (moduli),formulate the above integral 
in terms of the measures determined from the 
Boltzmann weights of the Euler-Bernoulli energy 
functional, and perform the integration.

Statistical mechanics of elastica

1. To Construct solutions to the 
MKdV equation

2. To find real part" of hyperelliptic 
Jacobi variety as the moduli of 
"real" hyperelliptic curves.

If hyperelliptic function theory had the 
same level of sophistication and 
concreteness as Weierstrass’ elliptic 
function theory, this problem would be 
solved! but it is not at that level.

Reconstruct the theory of hyperelliptic 
(Abelian) functions to have the same level 
as the theory of elliptic functions.

The main theme is a reconstruction of 
Abelian function theory with E.Previato

1. Construct hyperelliptic solutions to 
the MKdV equation of higher genus.

2. Extract "real" part of hyperelliptic 
Jacobi variety as the moduli of 
"real" hyperelliptic curves over C.

M 1997, M-Onishi 2001, M-Previato 2015

Assign the appropriate topology in the parameter space 
of the geometry (moduli),formulate the above integral 
in terms of the measures determined from the 
Boltzmann weights of the Euler-Bernoulli energy 
functional, and perform the integration.

Statistical mechanics of elastica

states

1.42

1.00

0.00

4.00

5.70

E
la

st
ic

 e
n

er
gy

ggrroouunndd  
ssttaattee

elliptic solution of 
static MKdV equation

hyperelliptic solution 
of MKdV equation

eexxcciitteedd  
ssttaattee
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They satisfy the SMKdV eq.e2S1

e1
e3

Review the genus one case:

MKdV solutions of genus two

・Review the genus one case

・Step to genus two

S.M., and Emma Previato, 
An algebro-geometric model for the 
shape of supercoiled DNA
Physica D, 2022

Menu
1. Self Introduction
2. Continuation of Self-Introduction
3. Supercoiled structure of DNA
4. Elastic curves
5. Statistical Mechanics of Elastic Curves
6. Excited states of elastic curves and the 

MKdV equation
7. MKdV hyperelliptic curve solution for 

genus 2
7.1 Review of the case of genus 1
7.2 Review of the case of genus 2

8. Future task
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e2S1

e1
e3

Num.Comp.

Euler  
method

Review the genus one case:

SMKdV eqを満たすe2S1

e1
e3

Review the genus one case:

Review the genus one case:

Elastica is expressed by the elliptic functions!

Meromorphic function 
over elliptic curve

＝Elliptic function
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MKdV solutions of genus two

・Review the genus one case

・Step to genus two

S.M., and Emma Previato, 
An algebro-geometric model for the 
shape of supercoiled DNA
Physica D, 2022

Closed elasticae

g=0

g=1

a=1.2 a=1.25

289



b2S1

b1
b3

b4

b5

Genus two case:

b2S1

b1
b3

b4

b5

Genus two case:

x

y

b1 b2 b3 b4 b5 ∞

y

xe1 e2 e3 ∞

Genus1

Genus2
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It is a direct 
generalisation.

Shape of elastica is determined by 
hyperelliptic functions

２
Meromorphic function over 
hyperelliptic curve

＝Hyperelliptic function

Genus two case:

b2S1

b1
b3

b4

b5

ＭKdV equation/C

Genus two case:
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ＭKdV equation/Ｒ

ＭKdV equation with gauge field/Ｒ

Genus two case:

4=Dim. of parameter space 
of hyperelliptc curve g=2

Dim of sol. of 
MKdV(t&s)=2

4 conditions

ＭKdV equation/Ｒ

ＭKdV equation with gauge field/Ｒ

Genus two case:

ＭKdV equation/C

ＭKdV equation with gauge field/Ｒ

Genus two case:
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Need to adjust the parameters (bi) of the 
curve itself to find the situation where the 
conditions are degenerate
⇒ Extremely difficult

(only possible with more than genus 3?)

First, loosen the conditions,
Investigate the properties of g = 2

ＭKdV equation/Ｒ

4=Dim. of parameter space 
of hyperelliptc curve g=2

Dim of sol. of 
MKdV(t&s)=2

4 conditions

ill-posed

Genus two case:

We conclude that in this stage, the 
hyperelliptic curves X with genus two cannot 
exhibit the generalized elastica well because 
we cannot extract the real parts in both X 
and its Jacobi variety JX over CC. S.M., and  

(S.M. ,E. Previato, Physica D, 2022)

Need to adjust the parameters (bi) of the 
curve itself to find the situation where the 
conditions are degenerate
⇒ Extremely difficult

(only possible with more than genus 3?)

First, loosen the conditions,
Investigate the properties of g = 2

ＭKdV equation/Ｒ

4=Dim. of parameter space 
of hyperelliptc curve g=2

Dim of sol. of 
MKdV(t&s)=2

4 conditions

ill-posed

Genus two case:

ＭKdV equation/Ｒ

ＭKdV equation with gauge field/Ｒ

Genus two case:

4=Dim. of parameter space 
of hyperelliptc curve g=2

Dim of sol. of 
MKdV(t&s)=2

4 conditionsill-posed
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b2S1

b1
b3

b4

b5

Genus two case:

b2S1

b1
b3

b4

b5

Genus two case:

a=1.2

3 conditions

ＭKdV equation/C

Genus two case:
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(a)

(b)
(c)

(d)

(f)

(e)

M. Previato
Physica D, 2022

Genus two case:

They are solutions of MKdV
equation over C but not over R

b2S1

b1
b3

b4

b5

b4

Genus two case:

Num.Comp.

Euler  
method

b2S1

b1
b3

b4

b5

Genus two case:
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Future tasks:
1. to investigate the cases of g > 3.
2. to evaluate the moduli space of 

generalized elastica analytically and 
numerically 

3. to extend them to a generalized 
elasitca in R3 by finding  the 
hyperelliptic solutions of non-linear 
Schrodinger equation in our novel 
approach with Emma Previato.

g = 2
S.Matsutani E.Previato, 2021

Fundamentals of Biochemistry: Life at the Molecular 
Level, 3rd Ed. D. Voet, J. Voet, C. Pratt

Electron Micrographs of DNA

The orbit s on the complex plane

M. Previato
Physica D, 2022

Genus two case:

s

C
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Thank you!
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Information geometry of positive measures

Naomichi Nakajima

Faculty of Science and Engineering, Waseda University, Japan

Information geometry brings a united geometric insight into various aspects of statisti-
cal science, machine learning and so on by regarding the parameter space of a statistical
model as a Riemannian manifold equipped with the Fisher-Rao metric. The dually flat
structure on a Riemannian manifold introduced by Amari-Nagaoka takes a central role
in information geometry. It is known that the space of probability distributions on a fi-
nite set naturally has the dually flat structure. For this space, Amari has characterized
the dually flat structure from the viewpoint of statistics through defining the space of
positive measures simply by removing the normalization condition. On the other hand,
we have developed the counterpart for the space of transition probabilities of a given
Markov chain, which may provide a new geometric insight into Markov chains. In this
presentation, I would like to talk about Amari’s theory and our theory for Markov
chains.
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Summary of my talk

• On the other hand, information geometry of Markov chains has been studied by

Nagaoka and others using the dually flat structure of the space of transition

probabilities.

• In comparison with information geometry of P(S), roughly speaking, the studies

above are on information geometry of the space of conditional probabilities.

▶ Main topic of my talk.

We will investigate the counterpart for a Markov chain of Amari’s theory of positive

measures. This study does not only investigate information geometry of the specific

model, a Markov chain, but also suggests a new direction of statistics of conditional

probabilities.

3 / 23

Summary of my talk

• Information geometry brings a united geometric insight on various fields such as

statistics, machine learning, optimization theory and so on. In information geometry,

a statistical model is regarded as a Riemannian manifold endowed with the

Fisher-Rao metric and two kinds of affine connections satisfying
�
a

��������
certain

��������
duality,

called a statistical manifold.

• A dually flat manifold is a statistical mfd with flat connections, that takes a

central role in information geometry, introduced by Amari-Nagaoka.

• Regarding dually flat structures, there is a well established theory of positive

measures on a finite set S due to Amari. It investigates dually flat structures of the

space P(S) of probability distributions on S in terms of some “asymmetric distance

function” on P(S), called a divergence.

2 / 23

Information geometry of positive measures

Naomichi Nakajima

Waseda University, Japan

Sep. 29th, 2023

WORKSHOP on Mathematics for Industry

@Warsaw University of Technology

supp.: JSPS KAKENHI Grant Number 22KJ0052, 22KK0034
1 / 23
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Statistical manifolds, dually flat manifolds and divergences

We call ρ a contrast function if it satisfies



(i) ρ[−|−](r) = ρ(r, r) = 0,

(ii) ρ[X|−](r) = ρ[−|X](r) = 0,

(iii) −ρ[X|Y ] : pseudo-Riemannian metric on M.

We call ρ a weak contrast function if it satisfies only (i) and (ii) ([N.-Ohmoto2021]).

Contrast 
Functions

Statistical 
Manifoldsmulti : 1

restores 

[Eguchi1992]

[Matumoto1993]

6 / 23

Statistical manifolds, dually flat manifolds and divergences

Let (M,h) be a pseudo-Riem. mfd and ∇ a torsion-free affine connection of TM .� �
• The triplet (M,h,∇) is a statistical mfd if the cubic tensor C := ∇h is

totally symmetric. Then C is called the Amari-Chentsov tensor [3, 4].

• The dual connection ∇∗ of ∇ w.r.t. h is defined by

Xh(Y, Z) = h(∇XY, Z) + h(Y,∇∗
XZ) (X,Y, Z ∈ X(M))

� �

Also, an “asymmetric distance” ρ : M ×M → R induces (h,∇,∇∗) on M as follows.

For vector fields X1, · · · , Xk, Y1, · · · , Yl on M , define the function

ρ[X1 · · ·Xk|Y1 · · ·Yl] : M → R,
ρ[X1 · · ·Xk|Y1 · · ·Yl](r) = (X1)p · · · (Xk)p(Y1)q · · · (Yl)q(ρ(p, q))|p=q=r.

5 / 23

Contents

• Backgrounds

• Statistical manifolds, dually flat manifolds and divergences

• Amari’s theory of positive measures on a finite set [Amari]

• Information geometry of transition probabilities of a given Markov chain [Nagaoka]

• Our theory for transition probabilities [N]

[N] The space of positive transition measures of a Markov model, in preparation.

[Amari] S. Amari, α-divergence is unique, belonging to both f -divergence and Bregman divergence

classes, IEEE Trans. Inform. Theory 55 (2009), 4925–4931.

[Nagaoka] H. Nagaoka, The exponential family of Markov chains and its information geometry,

Proceedings of The 28th Symposium on Information Theory and Its Applications

(SITA2005) (2005). 4 / 23
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Example: the space of discrete distributions

• S = {0, 1, · · · , n}: a finite set

• P(S) = {(p0, p1, · · · , pn) ∈ Rn+1 | pi > 0 and
∑n

i=0 pi = 1}
We call P(S) the space of discrete distributions on S. Take a system of coordinates

(p1, · · · , pn) (p0 = 1− p1 − · · · pn). We regard it as flat coordinates (∇, η = (ηi)
n
i=1):

ηi := pi (the expectation parameters).

Then

ϕ(η) =
∑n

i=1 pi log pi

is a convex function, known as the negative entropy in statistics.

Hence the metric h is defined by

h( ∂
∂ηi

, ∂
∂ηj

) = ∂2ϕ
∂ηi∂ηj

.

Therefore, (P(S), h, (∇, η),ϕ(η)) is a dually flat mfd (Hessian mfd). 9 / 23

Statistical manifolds, dually flat manifolds and divergences

A dually flat mfd (M,h,∇,∇∗) has the canonical contrast function D : M ×M → R,
called the Bregman divergence:

D(p, q) = f(θ(p))− f(θ(q)) +
∂f

∂θ
(θ(q))T (θ(q)− θ(p)) (p, q ∈ M),

where f(θ) is a potential function of M . (strictly speaking, D is defined on an open

neighborhood of the diagonal set of M)

Remark:

• The definition of D is independent of the choice of (θ, f(θ)).

• D restores the dually flat structure (h,∇,∇∗), i.e.,{
h(X,Y ) = D[X|Y ],

h(∇XY, Z) = −D[XY |Z], h(∇∗
XY, Z) = −D[Z|XY ].

8 / 23

Statistical manifolds, dually flat manifolds and divergences

For a statistical mfd (M,h,∇), ∇ is flat ⇐⇒ its dual connection ∇∗ is flat.

Definition (Amari-Nagaoka [3, 4])

A statistical mfd (M,h,∇,∇∗) is a dually flat mfd if ∇ is flat. Then we also call

(h,∇,∇∗) the dually flat structure of M .

We write θ = (θ1, · · · , θn) for ∇-affine coords. Put ∂i :=
∂
∂θi

. Then there exists a

potential function f(θ) on θ s.t.

1. the metric h is locally given by the Hessian matrix of f(θ): h(∂i, ∂j) = ∂i∂jf ,

2. the gradient map η = (η1, · · · , ηn) (ηi :=
∂f
∂θi

) gives ∇∗-affine coordinates, called

the dual coordinates of θ,

Another definition (Hessian structure [Shima]):

Given a (M,h, (∇, θ), f(θ)) with h = ∂i∂jf

� define the dual flat connection and the dual coord (∇∗, η = (ηi)) by ηi :=
∂f
∂θi 7 / 23
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The space of positive measures on a finite set and F -divergences

• S = {0, 1, · · · , n}: a finite set

• P̄(S) = {(p0, p1, · · · , pn) ∈ Rn+1 | pi > 0} ⊃ P(S) = {pi > 0 and
∑n

i=0 pi = 1}

We call P̄(S) the space of positive measures on S.

Given a strictly convex function F : (0,∞) → R with

F (1) = F ′(1) = 0 and F ′′(1) = 1,

called a standard convex function [Amari], the function DF : P̄(S)× P̄(S) → R
defined by

DF (p, q) =
n∑

i=0

piF

(
qi
pi

)

is called the F -divergence on P̄(S), where p = (p0, · · · , pn), q = (q0, · · · , qn).

12 / 23

The space of positive measures on a finite set

• Amari has introduced the space P̄(S) of positive measures on S as an extended

space of P(S) and investigated the problem above by finding the Bregman and

F -divergence on P̄(S) suitably.

• An F -divergence DF on P̄(S) is a contrast function, and it is known that the

statistical manifold structure induced by DF of P̄(S) satisfies statistical invariance.

• In [Amari], Amari has shown that the KL-divergence DKL on P̄(S) is the only

contrast function such that

– it is both a Bregman divergence and an F -divergence,

– it and its restriction to P(S) induce the dually flat structures of P̄(S) and P(S),

respectively.

11 / 23

Example: the space of discrete distributions

Importantly, the Bregman divergence D : P(S)× P(S) → R induced by ϕ is the

KL-divergence on P(S), i.e.,

D(p, q) =
n∑

i=0

pi log
pi
qi

=: KL[p, q],

where p = (p0, · · · , pn), q = (q0, · · · , qn) ∈ P(S).

• We consider the following problem: are there any other contrast functions to derive

a dually flat structure of P(S)?

• Of course, for example, we consider a quadratic function as a potential function, and

then it derives another dually flat structure of P(S).

• We are interested in the dually flat structure with “statistical invariance”, which is a

certain condition required from statistics.

10 / 23
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Information geometry of the space of transition probabilities

We assume that E is strongly connected, that is, for any x, y ∈ X there exist

(x1, x2), (x2, x3), · · · , (xN−1, xN) ∈ E such that x1 = x, xN = y (N ≥ 2).

By this assumption, for every f ∈ F+ we can apply the Perron-Frobenius theorem to

A(f) = [aij(f)]0≤i,j≤d, aij(f) =

{
f(i, j) (i, j) ∈ E
0 (i, j) /∈ E

Then we get a unique real value r(f) > 0 and vector µf = (µf (0), · · · , µf (d))
T

satisfying

• r(f) is the Perron-Frobenius root, which is an eigenvalue of A(f),

• µf is a left eigenvector associated with r(f) such that µf (i) > 0 for any i, and∑d
i=0 µf (i) = 1.

We call the vector µf the stationary distribution for f .
15 / 23

Information geometry of the space of transition probabilities

� Setting:

• X = {0, 1, · · · , d}: a finite set

• E ⊂ X × X : a subset

� We regard (X , E) as a direct graph.

• F+ = {f : E → R | f(x, y) > 0 for any (x, y) ∈ E}
• W = {w ∈ F+ | ∑y:(x,y)∈E w(x, y) = 1 for any x ∈ E} ⊂ F+

We call w ∈ W a transition probability on E (the word “transition probability” comes

from Markov chains).

14 / 23

The space of positive measures on a finite set and F -divergences

In the case where F (t) = − log t+ (t− 1), the F -divergence DF is the KL-divergence

on P̄(S):

DF (p, q) =
n∑

i=0

pi log

(
pi
qi

)
+

n∑

i=0

qi −
n∑

i=0

pi.

• In fact, P̄(S) has the dually flat structure; its flat coordinates are η = (p0, · · · , pn)
and the potential function ϕ(η) is given by

ϕ(η) =
n∑

i=0

pi log pi.

• For p, q ∈ P(S), it holds that
∑n

i=0 pi =
∑n

i=0 qi = 1, which yields

DF (p, q) =
n∑

i=0

pi log

(
pi
qi

)
= KL[p, q].

13 / 23
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Positive transition measures on W (our work)

Definition ([N])

Let F : (0,∞) → R be a strictly convex function with F (1) = F ′(1) = 0 and F ′′(1).

We define the F -divergence on F+ as DF : F+ × F+ → R,
DF (f, g) =

∑
(x,y)∈E µf (x)f(x, y)F

(
g(x,y)
r(g)

/
f(x,y)
r(f)

)
.

Proposition ([N])

The F -divergence DF has the following properties:

1. DF (f, g) ≥ 0.

2. DF (f, g) = 0 if and only if g = af for some a > 0.

3. DF is a weak contrast function on F+. Let hF denote the symmetric (0, 2)-tensor

on F+ induced by DF .

4. The null space of hF at f ∈ F+ is the tangent space of the halfline

{af | a > 0} ⊂ F+.
18 / 23

Positive transition measures on W (our work)

▶ Aim: We construct the counterpart of Amari’s picture in (P(S), P̄(S)) for W .
▶ Main results:

• We extend W to the bigger space F+.

• We define an F -divergence on F+ and a diffeomorphism T̄ between F+ and M .

• We give a divergence that is both a Bregman divergence and an F -divergence.

• Actually, the potential function ϕ̄ has a 1-dimensional kernel of its Hessian matrix at

every point of M , thus we take a hyperplane section M̃ in M so that a genuine dually

flat structure is defined on it. That induces a hypersurface W̃ in F+.

F+

⋃
T̄

∼ �� M
⋃ ϕ̄

��
W̃

��

T̄ |W̃

∼ �� M̃

��

ϕ̄|M̃
�� R

W
T

∼ �� M ϕ
�� R 17 / 23

Information geometry of the space of transition probabilities

We consider the following two spaces:

M = {η = (ηxy)(x,y)∈E ∈ R|E| | ηxy > 0},
M = {η = (ηxy)(x,y)∈E ∈ M | ∑

(x,y)∈E ηxy = 1 and∑
y:(x,y)∈E ηxy =

∑
y:(y,x)∈E ηyx for any x ∈ X}.

In [Nagaoka], it is shown that W is a dually flat manifold, and its expectation

parameter space is M .

Theorem ([Nagaoka])

1. The mapping T : W → M , w �→ (µw(x)w(x, y))(x,y)∈E is a diffeomorphism.

2. There exists a convex function ϕ : M → R; the Bregman divergence

D : W ×W → R induced by ϕ is

D(w1, w2) =
∑

(x,y)∈E

µw1(x)w1(x, y) log
w1(x, y)

w2(x, y)
.

16 / 23
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Positive transition measures on W (our work)

We see that the Hessian matrix of ϕ̄ at every point η ∈ M has the 1-dimensional

kernel spanned by the numerical vector η ∈ R|E| ∼= TηM .

Therefore, by imposing only the normalization condition
∑

(x,y)∈E ηxy = 1 on M , we

have the hyperplane section M̃ in M so that ϕ̄ is strictly convex on it:

M̃ := {η = (ηxy) ∈ M | r(η) = 1}.
Using the relation r(f) = r(η) with T̄ (f) = η , we get the genuine dually flat manifold

W̃ = {f ∈ F+ | r(f) = 1},
which is an extended space of W as a hypersurface in F+.

21 / 23

Positive transition measures on W (our work)

Theorem ([N])

Let F (t) = − log t+ (t− 1). Then the F -divergence is the Bregman divergence

given by the following potential function on M :

ϕ̄(η) =
∑

(x,y)∈E

ηxy log ηxy −
∑

x∈X

ηx log η
x. (1)

For w1, w2 ∈ W we see

DF (w1, w2) =
∑

(x,y)∈E µw1(x)w1(x, y)F
(

w2(x,y)
w1(x,y)

)

=
∑

(x,y)∈E µw1(x)w1(x, y) log
w1(x,y)
w2(x,y)

+
∑

(x,y)∈E µw1(x)(w2(x, y)− w1(x, y))

=
∑

(x,y)∈E µw1(x)w1(x, y) log
w1(x,y)
w2(x,y)

: the divergence by Nagaoka

20 / 23

Positive transition measures on W (our work)

We set

T̄ : F+ → M, f �→ (µf (x)f(x, y))(x,y)∈E .

We also set for η = (ηxy)(x,y)∈E ∈ M

r(η) :=
∑

(x,y)∈E

ηxy.

Lemma ([N])

T̄ has the following properties:

1. T̄ is a diffeomorphism, and T̄ |W = T : W ∼→ M .

2. T̄ (af) = aT̄ (f) for f ∈ F+ and a > 0.

3. r(f) = r(η) with T̄ (f) = η.

19 / 23
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Thank you for your attention!

23 / 23

Summary and future plans

• We have defined the class of F -divergences on F+ and given a divergence which is

both a Bregman divergence and an F -divergence. Moreover, we have given a dually

flat manifold W̃ which is an extension of W by analyzing the kernels of the potential

function ϕ̄ on M .

• In order to completely establish the counterpart of Amari’s theory for the pair

(W , W̃), we need some discussions from the view point of statistics.

• In the first place, the “statistical invariance” for conditional probabilities must be

discussed.

• Then, F -divergences should be characterized by the statistical invariance above.

• Besides, a divergence on W̃ which is both a Bregman divergence and an

F -divergence may be uniquely determined under certain conditions.

23 / 23

Positive transition measures on W (our work)

Theorem ([N])

The hypersurface W̃ has the dually flat structure induced by the potential function

ϕ̃ := ϕ̄|M̃ on M̃ ; the restriction of this dually flat structure to W restores the dually

flat structure of [Nagaoka]. We call W̃ the space of positive transition measures.

Moreover F -divergences on W̃ are written as

DF (f, g) =
∑

(x,y)∈E µf (x)f(x, y)F
(

g(x,y)
f(x,y)

)
(f, g ∈ W̃).

F+

⋃
T̄

∼ �� M
⋃ ϕ̄

��
W̃

��

T̄ |W̃

∼ �� M̃

��

ϕ̄|M̃
�� R

W
T

∼ �� M ϕ
�� R

22 / 23
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Multivariate Hawkes processes with graphs

Mariusz Nieweg�lowski

Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland

A very interesting and important class of stochastic processes was introduced by Alan
Hawkes in [1]. These processes, called now Hawkes processes, are meant to model
self-exciting and mutually-exciting random phenomena that evolve in time. The self-
exciting phenomena are modeled as univariate Hawkes processes, and the mutually-
exciting phenomena are modeled as multivariate Hawkes processes. The Hawkes pro-
cesses have been applied to modeling in meany areas of science, including: insurance,
finance, seismology and neurology. In this talk we provide some results on marko-
vianity of the Generalized Multivariate Hawkes Processes (GMHP) introduced in our
earlier papers. GMHP are multivariate marked point processes that add an important
feature to the family of the (classical) multivariate Hawkes processes: they allow for ex-
plicit modelling of simultaneous occurrence of excitation events coming from different
sources, i.e. caused by different coordinates of the multivariate process. We propose
that this structure of mutual excitations is specified in terms of the excitation graph.
We provide results which show that under some conditions on its kernels the intensities
of GMHP’s are functions of a Markov processes. Moreover we show that it is possible
to compute their Laplace transform by means of system of ODE’s. The talk is based
on [4].

References

[1] A.G. Hawkes, ”Spectra of Some Self-Exciting and Mutually Exciting Point Processes”, Biometrika
58(1):83–90, 1971.

[2] T.R. Bielecki, J. Jakubowski, M. Nieweg�lowski, ”Construction and Simulation of Generalized
Multivariate Hawkes Processes”, Methodology and Computing in Applied Probability (2022)
24:2865-2896

[3] T.R. Bielecki, J. Jakubowski, M. Nieweg�lowski, ”Multivariate Hawkes processes with simultane-
ous occurrence of excitation events coming from different sources”, Stochastic Models (2022) online

[4] T.R. Bielecki, J. Jakubowski, M. Nieweg�lowski, ”Markovianization of Multivariate Hawkes
processes”, preprint
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On envelopes created by circle families in the plane

Takashi Nishimura

Faculty of Environment and Information Sciences,
Yokohama National University, Japan

(joint work with Yongqiao Wang)

Envelopes of planar curve families have fascinated many pioneers since the dawn of
differential analysis. In most typical cases, straight line families have been studied.
However, even for envelopes created by straight line falimies, to our surprize, there
were several unsolved problems until very recently. In my talk at WAAS, recently
discovered answers to these problems were explained.

On the other hand, circle families in the plane are non-negligible families because
the envelopes of them have already had important applications to Industry. In this
talk, firstly, as one of important applications of envelopes of circle families to Industry,
the so-called “Mohr failure envelope” is introduced. After that, a general theory for
envelopes of circle families shall be explained.

323



§1. Soil Mechanics

Circle families in the plane are non-negligible families

because the envelopes of them have already had im-

portant applications. As one of application of circle

family in the plane, Let me first explain the so-called

Mohr failure envelope in the field “Soil Mechanics”.

2

Reference

[WN] Yongqiao Wang and T.N., Envelopes created by

circle families in the plane, preprint.

(available at https://arxiv.org/abs/2301.04478)

1

On envelopes created by circle families in the

plane (a joint work with Yongqiao Wang)

Takashi Nishimura

(Yokohama National University)
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Figure 1

5

The stress state of a soil can be represented by a Mohr

circle which is defined by the effective principal stresses

σ1 and σ2. The center and the radii of the Mohr cir-

cle are (σ1+σ2
2 ,0) and σ1−σ2

2 , respectively. By experi-

ments, one can obtain some values of effective principal

stresses σ1 and σ2 at failure. The Mohr circles in terms

of effective principal stress are drawn in Figure 1.

4

In analysis of the stability of soil masses, the shear

strength τf of a soil at a point on a particular plane

is expressed as a linear function of the effective normal

stress σf at failure:

τf = σf tanφ+ c,

where φ and c are the angle of shearing resistance and

cohesion intercept respectively. A method using Mohr

circles to obtain the shear strength parameters φ and c

can be found (for instance) in “R.F. Craig, Craig’s soil

mechanics, Seventh edition, Taylor and Francis Group

Press, New York, 2004. ISBN: 9780415332941”. A

brief description of this method is given as follows.

3
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The so-called ”liquefaction phenomenon” is one of con-

temporary important problems especially in the coun-

try where people can not avoid large-scale earthquakes.

Therefore, Mohr failure envelope is a significant notion

for industry.

In order to understand the mechanism of ”liquefaction

phenomenon” well and in order to find an effective mea-

sure against real liquefaction phenomena, it seems im-

portant to construct a general theory of the envelopes

created by circle families.

8

Figure 2

7

The envelope created by Mohr circles is called the Mohr

failure envelope which may be a slightly curved curve.

Then the shear strength parameters φ and c can be

obtained by approximating the curved envelope to a

straight line, namely the slope of the straight line equals

tanφ and the intercept of straight line on the vertical

axis is c (see Figure 2).

6

326



In this talk, the following is adopted as the definition

of an envelope created by a circle family.

Definition 2 Let C(γ,λ) be a circle family. A mapping

f : I → R2 is called an envelope created by C(γ,λ) if the

following two hold for any t ∈ I.

(1) df
dt(t) · (f(t)− γ(t)) = 0.

(2) f(t) ∈ C(γ(t),λ(t)).

11

It is reasonable to assume that at each point γ(t) the

normal vector to the curve γ is well-defined. Thus, we

easily reach the following definition.

Definition 1 A curve γ : I → R2 is called a frontal

if there exists a mapping ν : I → S1 such that the

following identity holds for each t ∈ I, where S1 is the

unit circle in R2.

dγ

dt
(t) · ν(t) = 0.

For a frontal γ, the mapping ν : I → S1 given above is

called the Gauss mapping of γ.

Hereafter, the curve γ : I → R2 for a circle family C(γ,λ)
is assumed to be a frontal.

10

§2. Envelopes of circle families

For a point P of R2 and a positive number λ, the circle

C(P,λ) centered at P with radius λ is naturally defined

as follows, where the dot in the center stands for the

standard scalar product.

C(P,λ) =
{
(X,Y ) ∈ R2

∣∣∣ ((X,Y )− P ) · ((X,Y )− P ) = λ2
}
.

For a curve γ : I → R2 and a positive function λ : I →
R+, the circle family C(γ,λ) is naturally defined as fol-

lows. Here, R+ stands for the set consisting of positive

real numbers.

C(γ,λ) =
{
C(γ(t),λ(t))

}
t∈I

.

9
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Set F (x, y, t) =
(
x− t3

)2
+

(
y − t6

)2
−1 . Then, we have

the following.
{
(x, y) ∈ R2

∣∣∣ ∃t s.t. F (x, y, t) =
∂F

∂t
(x, y, t) = 0

}

=
{
(x, y) ∈ R2

∣∣∣ ∃t s.t.
(
x− t3

)2
+
(
y − t6

)2
− 1 = −6t2

(
x− t3

)
− 12t5

(
y − t6

)
= 0

}

=
{
(x, y) ∈ R2

∣∣∣ ∃t s.t.
(
x− t3

)2
+
(
y − t6

)2
− 1 = t2

((
x− t3

)
+2t3

(
y − t6

))
= 0

}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{
(x, y) ∈ R2

∣∣∣ (x− t3
)2

+
(
y − t6

)2
− 1 = 0, x = t3 − 2t3

(
y − t6

)}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{
(x, y) ∈ R2

∣∣∣ (−2t3
(
y − t6

))2
+
(
y − t6

)2
= 1, x = t3

(
1− 2y +2t6

)}

=
{
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

⋃{(
t3 ∓

2t3√
4t6 + 1

, t6 ±
1√

4t6 + 1

)
∈ R2

∣∣∣∣∣ t ∈ R

}
.

14

Example 1 Let γ : R → R2 be the mapping defined by

γ(t) =
(
t3, t6

)
. Set ν(t) = 1√

4t6+1

(
−2t3,1

)
. It is clear

that the mapping γ is a frontal with Gauss mapping

ν : R → S1. Let λ : R → R+ be the constant function

defined by λ(t) = 1. Then, it seems that the circle

family C(γ,λ) creates envelopes. Thus, we can expect

that the created envelopes can be obtained by the well-

known method.

13

Problem 1 Let γ : I → R2 be a frontal with Gauss

mapping ν : I → S1 and let λ : I → R+ be a positve

function.

(1) Find a necessary and sufficient condition for the

circle family C(γ,λ) to create an envelope in terms

of γ, ν and λ.

(2) Suppose that the circle family C(γ,λ) creates an en-

velope. Then, find a parametrization of the enve-

lope created by C(γ,λ) in terms of γ, ν and λ.

12
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The following definition is the key of this talk.

Definition 3 ([WN], KEY DEFINITION) Let γ : I →
R2, λ : I → R+ be a frontal with Gauss mapping ν : I →
S1 and a positive function respectively. Then, the cir-

cle family C(γ,λ) is said to be creative if there exists

ν̃ : I → S1 such that the following identity holds for any

t ∈ I.

dλ

dt
(t) = −β(t) (ν̃(t) · µ(t)) .

17

In order to solve Problem 1, we prepare several termi-

nologies which can be derived from a frontal γ : I → R2

with Gauss mapping ν : I → S1 and a positive function

λ : I → R+. For a frontal γ : I → R2 with Gauss map-

ping ν : I → S1, following “T. Fukunaga and M. Taka-

hashi, Existence and uniqueness for Legendre curves,

Journal of Geometry, 104 (2013), 297–307”, set

µ(t) = J(ν(t)),

where J is the anti-clockwise rotation by π/2. Then we

have a moving frame {µ(t), ν(t)}t∈I along the frontal γ

. Set

ℓ(t) =
dν

dt
(t) · µ(t), β(t) =

dγ

dt
(t) · µ(t).

16

15
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Example 2 We examine Example 1 by applying The-

orem 1. In Example 1, γ : R → R2 is given by γ(t) =(
t3, t6

)
. Thus, we can say that ν : R → S1 and µ : R →

S1 are given by ν(t) = 1√
4t6+1

(
−2t3,1

)
and µ(t) =

1√
4t6+1

(
−1,−2t3

)
respectively. Moreover, the radius

function λ : R → R is the constant function defined by

λ(t) = 1. Thus,

dλ

dt
(t) = 0.

By calculation, we have

β(t) =
dγ

dt
(t) · µ(t) =

−3t2(1 + 4t6)√
4t6 + 1

.

19

By definition, any family of concentric circles with smoothly

expanding radii is not creative, and it is clear that such

the circle family does not create an envelope.

Theorem 1 ([WN]) Let γ : I → R2 be a frontal with

Gauss mapping ν : I → S1 and let λ : I → R+ be a

positive function. Then, the following hold.

(1) The circle family C(γ,λ) creates an envelope if and

only if C(γ,λ) is creative.

(2) Suppose that the circle family C(γ,λ) creates an en-

velope f : I → R2. Then, the created envelope f is

represented as follows.

f(t) = γ(t) + λ(t)ν̃(t).

18

330



Thank you for your listening!

23

By the assertion (2) of Theorem 1, f is parametrized

as follows.

f(t) = γ(t) + λ(t)ν̃(t)

=
(
t3, t6

)
±

1√
4t6 + 1

(
−2t3,1

)

=


t3 ∓

2t3√
4t6 + 1

, t6 ±
1√

4t6 + 1


 .

22

Therefore, the unit vector ν̃(t) ∈ S1 satisfying

dλ

dt
(t) = −β(t) (ν̃(t) · µ(t))

exists and it must have the form

ν̃(t) = ±ν(t) =
±1√

4t6 + 1

(
−2t3,1

)
.

Hence, by the assertion (1) of Theorem 1, the circle

family C(γ,λ) creates an envelope f : R → R2.

21
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Calcium waves sustained by calcium influx through
mechanically activated channels in the cell

membrane

Zbigniew Peradzyński

Military Technological University and Institute of Fundamental Technological
Research PAS, Poland

(joint work with Bodan Kaźmierczak and S�lawomir Bia�lecki)

The work is devoted to the mathematical modeling of fast calcium waves propagating in
some cells. According to the suggestion of biologists, this type of waves exists due to the
complicated mechanisms of the influx of calcium from the extracellular space through
mechanically operated calcium channels placed in the cell membrane. A change in the
concentration of calcium in the cell causes the reorganization of the network composed
of actin-myosin filaments. Under the influence of local forces exerted by these fibers,
ion channels in the cell membrane are opened. At the same time, excess calcium is
pumped out of the cell by several types of pumps located in the cell membrane. All this
together leads to the possibility of wave propagation in the form of homoclinic pulses
of calcium concentration. We start from the construction of the model in 3-D. Then
we derive 1-D nonlocal approximation, which as it turns out, can be still approximated
by a FitzHugh Nagumo type of system. The theoretical model will also be supported
by numerical calculations.
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It turns out that plants or their parts can communicate with each other (e.g by 
sending sigals calcium waves), preparing thus for unpleasant consequences 

PPrroovvooccaattiivvee qquueessttiioonn::  
Can plants be aware of the danger?

Please see the video:   
https://www.youtube.com/watch?app=desktop&&v=7-3yFcZSyvo

„”Supplying glutamate directly to the tip of one leaf creates a strong wave of calcium 
across the entire plant, visualized by fluorescent light. This video is part of research 
by UW–Madison botany professor Simon Gilroy that shows how waves of calcium 
crisscrossing a plant help it respond to attacks by preparing for future threats. 
The work was published in Science in September of 2018”.

Calcium waves sustained by calcium influx 
through mechanically activated channels

in the cell membrane

Zbigniew Peradzyński * ,Bogdan Kaźmierczak**, Sławomir Białecki**,
* Warsaw Military University of Technology (earlier in

Faculty of Mathematics, Informatics and Mechanics, University of 
Warsaw),

**Institute of Fundamental Technological Research.
Workshop on Mathematics for Industry 2023, Warsaw 
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Bistable case; the  wave speed is uniquely determined! 

𝐹𝐹 𝑢𝑢 = −𝐴𝐴(𝑢𝑢 − 𝑢𝑢1)(𝑢𝑢 − 𝑢𝑢2)(𝑢𝑢 − 𝑢𝑢3)

                                F(u) 

                            𝑢𝑢1                               𝑢𝑢2 𝑢𝑢3       u

Fig. An example of a bistable source function:

F(u) has two stable: 𝑢𝑢1, 𝑢𝑢3 and one unstable (𝑢𝑢2) equilibrium.

If  u(t,x) – density of individuals, F(u) = ru(1-u/K), then one can 
speak of a simple model  in  population dynamics.  The 
diffusive term reflects the fact that individuals are moving  
erratically. The reaction term F(u) is responsible for the birth 
and death processes.
Here travelling wave solutions  are   heteroclinic fronts. As F is 
monostable,  because u=0 is unstable equilibrim, there are 
solutions for an arbitrary speed ≥  𝑐𝑐0 . 

Single reaction –diffusion equation
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑢𝑢 = 𝐷𝐷∆𝑢𝑢 + 𝐹𝐹(𝑢𝑢)

By waves we mean travelling waves, 
special solutions: 𝒖𝒖 = 𝑼𝑼(𝑥𝑥 − 𝑐𝑐𝑐𝑐) to   
Reaction-Diff. equations (c-const )

• Waves are usually associated  with the wave equation or
with hyperbolic systems. However hyperbolic equations
are  almost nonexisting in biology. One predominantly
encounters parabolic equations or semilinear parabolic
systems – Reaction-Diffsion Systems. 

• The travelling waves  in R-D eqs are appearing as an 
interplay between the diffusion and nonlinearity.
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Theory based on single reaction diffusion equation predicts 
travelling waves in the form of heteroclinic fronts, joining two 
stable (in the bistable case) equilibria of the source term, whereas 
observed experimentally calcium waves are of homoclinic type. 
Thus, such simplified theory describes properly only the front part 
of the wave. To obtain the shape of a homoclinic, the additional 
equation for “recovery variable” is usually added. 
In the proposed here theory for CICI waves this additional equation 
appears in a natural way.

Monostable reaction term – waves can propagate with an arbitrary 
speed grater then some 𝑣𝑣0. The minimal speed makes physical sense) 

The case of   F(u)= ru(1-u/K)  is a good example of    a 
monostable reaction term. It has two zeros:  

Unstable state u=0  and stable state  u=K

Just look at    𝑢𝑢𝑢 =  𝑟𝑟𝑢𝑢(1 − 𝐾𝐾/𝑢𝑢)

An example of a travelling front 

𝝏𝝏
𝝏𝝏𝝏𝝏 𝒖𝒖 = 𝑫𝑫 𝝏𝝏𝟐𝟐

𝝏𝝏𝝏𝝏𝟐𝟐 𝒖𝒖 − 𝑨𝑨 𝒖𝒖(𝒖𝒖 − 𝒂𝒂)(𝒖𝒖 − 𝟏𝟏)

The following bistable reaction diffusion equation with 
a cubic   (bistable) source  term

has  (D=1, A=1) following travelling front solutions 

𝑢𝑢 = 1

1 + exp ±𝑥𝑥 − 𝑣𝑣𝑣𝑣
2

 

where   𝑣𝑣 = 2 (1
2 − 𝑎𝑎)   defines the propagation speed.
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Comments on a multistable case

MONOTONE SYSTEMS

Ecology,   Population dynamics
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The calcium wave through moving amoebae. 
Speed  15 𝜇𝜇m/s. (L. Jaffe)

• Signals can be transmitted by various means – calcium concentration 
waves among the others.  After the fertilization of an egg the wave
sprading on its surface is generated, which changes the status of an 
egg. The second sperm can not enter the egg.    

CCaallcciiuumm  wwaavveess  wweerree ddiissccoovveerreedd
iinn  11997777  oonn  mmeeddaakkaa ffiisshh eegggg..

John C. Gilkey, Lionel f. Jaffe, Ellis B. Ridgway, 
and George T. Reynolds „A FREE CALCIUM 
WAVE TRAVERSES THE ACTIVATING EGG OF 
THE MEDAKA, ORYZIAS LA TIPES”,, Journ. Cell 
Biology" Vol. 76, 1978
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The  mechanism of propagation of CICR waves is based on  
autocatalytic release of calcium from the internal  stores (e.g.
endoplasmic reticulum) located in the  cells.

CICI waves. According to L. Jaffe this cannot explain the 
speed of the  second  group  of „fast waves” . Their speed 
can be by two orders higher. Such  waves are also  
observed in cells not having internal stores of calcium. 
Thus: Stretch-activated ion channels in the membrane are 
responsible for the calcium delivery from the extracellular 
space.

CICI WAVES

CCaallcciiuumm  wwaavveess  ((ffiirrsstt  sseeeenn  oonn  tthhee  ffeerrttiilliizziinngg  mmeeddaakkaa  eegggg  ))  ttuurrnneedd  oouutt  ttoo  bbee  qquuiittee  ccoommmmoonn..
TThheeyy  ccaann  pprrooppaaggaattee  bbootthh  iinn  iinnddiivviidduuaall  cceellllss  aanndd  iinn  ttiissssuueess..  TThhee  rraannggee  ooff  tthheeiirr  ssppeeeedd::  
11nnmm//ss  –– 3300  ccmm//ss  ((nneeaarrllyy  aa  bbiilllliioonn  ffoolldd))  ffaalllliinngg  iinnttoo  ffoouurr  ssppeeeedd  ––bbaasseedd  ggrroouuppss ((aafftteerr  LL..  JJaaffffee))

In our lecture we will be interestet in CICI fast waves (see diagram below).  

From L. Jaffe 
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Model of a cell

(from the lecture by Kizylvova)

Inside the cel we have

1. Cytoplasm 
2. Actin filaments 
3. Internal stores of calcium (endoplasic reticulum) 
4. Other important ingredients as: ion channels and ion pumps located in 

the cell membrane.  
• As the Ca concentration increases, the filaments are increasingly

connected by myosin bridges and the filament network contracts. 

• The filaments also serve as routes along which various materials in bags
(vesicles) are transported by appropriate motors. (  F=2.7 pN). See for 
example : https://learn.genetics.utah.edu/content/cells/vesicles/

CELL is extremally complex! (Nobel Prize 2013). 
The cell membrane is equipped with
a) ion channels (MECHANICALLY, chemically or electrically controlled) 

through which ions are admitted into the cell interior. 
b) There are pumps in the membrane - at least two types:
• ATP type - efficient at low  𝐶𝐶𝐶𝐶++  concentrations
• sodium-calcium exchangers; very efficient at high 𝐶𝐶𝐶𝐶++   concentrations.
 Thanks to them, balance in the cell can be restored.

 Mechanically operated ion channels (stretch activated) 
are opened when the membrane is stretched. 
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There are already well known and well researched  CICR waves i.e. 
„Calcium Induced Calcium Released” waves (L. Jaffe) . The simplest 
theoretical description is based on single reaction diffusion equation 
with a bistable source term.  For a small excess of calcium above 
the equilibrium concentration, 
calcium is absorbed into internal
stores. After exceeding a certain 
threshold value (the second zero 
of the source function) calcium is 
released from the internal stores of the cell in an autocathalitic 
reaction, untill its concentration reaches the next equilibrium value (the 
third zero of source function).   

CCoommiinngg  bbaacckk ttoo  CCaa  wwaavveess  
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Calcium pumps

Calcium pumps are ion transporters found in the cell
membrane. They are responsible for active transport
of calcium out of the cell, keeping the intracellular
calcium concentration 10 000 times lower than the
extracellular. The plasma membrane Ca2+ ATPase
and sodium-calcium calcium exchanger are the main
regulators of intracellular Ca2+ concentration. The
first type is efficient at low Ca concentration, whereas
the second type is extremely efficient at higher
concentrations.
They also seem to play the crucial role in supporting 
the CICI Waves! 

HHyyppootthheettiiccaall  CCIICCII  WWaavveess  ––
tthhee  ssuubbjjeecctt  ooff  oouurr  mmooddeelllliinngg

• Accorfing to L. Jaffe in this case 
calcium from the extracellular space 
enters the cell through mechanicaly
activated ion channels located in the 
cell membrane. In the extracellular 
space 𝑪𝑪𝑪𝑪++ concentration is by two 
orders higher than in the cell internal 
stores. The channels are opened when 
the membrane is stretched.    

LLiioonneell  JJaaffffee  HHyyppootthheessiiss
According to L. Jaffe, the CICR mechanism cannot be responsible 
for high speed of CICI waves (see diagram).
It is known that:  
 Stretching the membrane activates the ion channels and calcium 
can enter the cell from the extracellular space. 
Hypothesis: when the calcium concentration grows the actin-
myosin network is reorganized – the filament network contracts. 
Consequently, filaments are pulling the membrane. Mechanically 
stimulated channels are opened and calcium enters the cell. This 
mechanism (calcium induced calcium influx) supports the wave 
propagation. 
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When the wave passes, the cell radius shrinks. So how can 
we have stretching ?  locally we expect the following picture

As the calcium concentration increases, the myosin 
filaments become more and more connected through the 
increasing number of myosin Bridges. This leads to the 
contraction of the filament network. 
This contraction influences the shape of the cell. If we 
imagine the ideal cell of a cylindrical shape, then the cell 
radius will be reduced. Therefore, at first glance, we should 
not expect any stretching of the cell membrane. 
This is however macroscopic view. Microscopically the 
membrane will be very unsmooth. Funnel-shaped 
depressions will appear under the influence of pulling 
forces, in places where the filaments are anchored. So in 
spite of this that the average radiuce gets smaller we will 
have the membrane stretching as its shape becames more 
complex. 
 
     

 

Assumptions.
1. The contraction of the actomyosin network  results in appearing  of so 
called “traction forces”. However, the effect  of contraction  following the 
increase of calcium concentration appears with  some delay –relaxation time 
is needed  to  form the myosin  bridges

2.  The calcium can enter  from  the intercellular space through  the 
mechanically stimulated ion channels located in the cell membrane 

3.  The mechanical stimulation of the membrane is caused by the 
actomyosin network  - cortex.  The  fibers of the cortex as well as the rest of 
actomyosin network in the cell are subject to the contraction whenever  the 
calcium concentration in the cell cytoplasm increases.
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Taking into account the pumps p(c)

𝑝𝑝 𝑐𝑐 :

This is the boundary condition  for the Ca diffusion equation.

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝑡𝑡++ 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 ~ 𝜕𝜕
𝜕𝜕𝜕𝜕 (𝒏𝒏 ∙ 𝑭𝑭)

+
 − 𝑝𝑝(𝑖𝑖) -

H.1. Therefore, if n is an internal unit vector normal to the cell 
membrane and F is the force acting on  unit membrane area, 
then the calcium influx (flux per unit area) is proportional to 
the positive  part of the time derivative of the force acting on 
the unit surface.

𝐶𝐶𝐶𝐶++ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ~ 𝜕𝜕
𝜕𝜕𝜕𝜕 (𝒏𝒏 ∙ 𝑭𝑭)

+
Positive part, because only stretching counts. One can show 
that otherwise the Ca concentration may become negative !

Suppose, the ion channels are openned whenever the  
membrane is streched. Then permanent stretch  :

High calcium concentration over a long period of time would 
lead to the cell death. Therefore, a permanent state of stretch 
should not result in a continuous influx of calcium. 
Experiment: oscillatory stretching leads to 𝐶𝐶𝐶𝐶++ influx 
proportional to the amplitude and oscillations frequency. 
This suggests that the calcium influx should rather be related to 
the speed of membrane stretching !
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The system consists of 
1. The equation of motion of the viscoelastic body, i.e  cytoplasm with 
the filament network. The  equation of motion (linear approximation) for 
the displacement vector 𝒖𝒖(𝒕𝒕, 𝒙𝒙)  must  be equipped with proper 
boundary conditions. Under the influence of traction forces the 
membrane is deflected. So basically, we should know the elasticity of 
the membrane. However, to estimate the forces acting on the 
membrane, one can  assume that the membrane is stiff and not 
deformed. In such a case we have simple b-dry condition: u(R) = 0 
Let us remind that if the initial position of a material point is 𝒙𝒙 and it 
position changes to 𝒙𝒙 then 𝒖𝒖 𝒙𝒙 = 𝒙𝒙 − 𝒙𝒙.
 

Continuum mechanical approach ?

b) In mathematical biology  (Murray, Mathematical Biology) , 
the cell is often treated as an elastic (or viscoelastic) body, and 
the forces associated with the contraction (traction forces) are 
expressed by the traction tensor. This description is very 
similar to termo-elasticity.  𝑪𝑪𝑪𝑪++concentration plays the role 
of the temperature (in fact −𝑻𝑻). 
Applying this idea, we arrive at a system of three equations.  

NNooww  wwee  aarrrriivveedd  aatt  tthhee    MECHANICAL PROBLEM:  
Determine the forces acting on the membrane ; i.e. forces 
resulting from the actin filaments attached to it.  
In principle two approaches  seem to be possible:

a) Calculate the distribution of forces on each filament of the 
contracting network due to the appearance of myosin 
bridges. In particular those anchored in the membrane. Then 
find the shape of deformed membrane. 

This seems hopelessly difficult !
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Comment. The first equation, the equation of motion  can be 

simplified by omitting the dynamical term 𝝆𝝆 𝝏𝝏𝟐𝟐
𝝏𝝏𝒕𝒕𝟐𝟐 𝒖𝒖 and possibly the 

viscouse terms     𝝂𝝂𝟐𝟐∆ ሶ𝒖𝒖 + 𝝂𝝂𝟏𝟏 + 𝝂𝝂𝟐𝟐 𝛁𝛁𝛁𝛁𝛁𝛁𝛁𝛁 ሶ𝒖𝒖 .
Then one obtains an eliptic system for the displacement  𝒖𝒖(𝑡𝑡, 𝑥𝑥). 

In principle it is possible to solve the above system numerically. For 
reasons discussed below, we decided on a slightly roundabout but 
simpler route.       

TTrreeaattiinngg ((iiddeeaalliizzeedd))  cceellll  aass  aann  IInnffiinniittee  ccyylliinnddeerr  wwee  ccoouulldd  ttrryy ttoo  ssoollvvee::

(1)  𝝆𝝆 𝝏𝝏𝟐𝟐
𝝏𝝏𝒕𝒕𝟐𝟐 𝒖𝒖 − 𝝂𝝂𝟐𝟐∆ ሶ𝒖𝒖 + 𝝂𝝂𝟏𝟏 + 𝝂𝝂𝟐𝟐 𝛁𝛁𝛁𝛁𝛁𝛁𝛁𝛁 ሶ𝒖𝒖 =μ ∆ 𝒖𝒖 + 𝝁𝝁 + 𝝀𝝀 𝜵𝜵𝜵𝜵𝜵𝜵𝜵𝜵𝒖𝒖 + 𝜵𝜵𝜵𝜵𝜵𝜵 𝑻𝑻(𝒄𝒄)

with b-dry condition:   𝒖𝒖 𝑡𝑡, 𝑅𝑅 = 0

(2)          𝜕𝜕𝜕𝜕𝜕𝜕
𝑻𝑻 = 𝛽𝛽[𝑻𝑻∗ 𝒄𝒄 − 𝑻𝑻],      where  𝑻𝑻∗ 𝒄𝒄 - known (e.g. linear) 

(3)          𝜕𝜕𝜕𝜕𝜕𝜕 𝑐𝑐 = 𝐷𝐷∆𝑐𝑐 inside the cell

𝐷𝐷 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐 𝑡𝑡, 𝑅𝑅, 𝑧𝑧 = 𝑄𝑄 𝑑𝑑

𝑑𝑑𝜕𝜕 𝜎𝜎𝜕𝜕𝜕𝜕 (𝑡𝑡, 𝑅𝑅, 𝑧𝑧)
+
− 𝑝𝑝(𝑢𝑢) on the b-dry

suplied by initial conditions for 𝑢𝑢, 𝑇𝑇, 𝑐𝑐 .

2. Relaxation equation for the traction tensor 𝑻𝑻   with a given      equilibrium 
form 𝑻𝑻∗ 𝒄𝒄 .  We have 𝑻𝑻(𝑡𝑡, 𝒙𝒙) = 𝑻𝑻∗ 𝒄𝒄(𝑡𝑡, 𝒙𝒙)  for very slow changes of the 
concentration  𝒄𝒄(𝒕𝒕, 𝒙𝒙).
3. The diffusion equation for calcium concentration 𝒄𝒄(𝑡𝑡, 𝒙𝒙) and nonlinear 
boundary condition expressing the influx of calcium (by ion channels and ion 
pumps) caused by positive part of time derivative of traction forces acting on 
the membrane.  
In fact, the diffusion of calcium in the cell is quite a complicated process 
because of the buffers - proteins that can attach and release calcium ions. This 
can be described by a system of equations for the diffusion reaction. If we use 
one equation as here, D should be treated as the effective diffusion 
coefficient.  
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Since the Ca influx is proportional to time derivative of 𝜎𝜎𝑟𝑟𝑟𝑟

𝜕𝜕
𝜕𝜕𝑡𝑡 𝜎𝜎𝑟𝑟𝑟𝑟 𝑡𝑡, 𝑅𝑅 = 1

𝜋𝜋𝜋𝜋2 0
𝜋𝜋 𝜕𝜕
𝜕𝜕𝑡𝑡 𝜏𝜏 𝑡𝑡, 𝑟𝑟 2𝜋𝜋𝑟𝑟𝑑𝑑𝑟𝑟

we have 𝜕𝜕
𝜕𝜕𝑡𝑡 𝜏𝜏 = 𝛽𝛽 [𝜏𝜏∗ 𝑐𝑐 − 𝜏𝜏] , so

𝜕𝜕
𝜕𝜕𝑡𝑡 𝜎𝜎𝑟𝑟𝑟𝑟 𝑡𝑡, 𝑅𝑅 = 𝛽𝛽

𝜋𝜋𝑅𝑅2 න
0

𝜋𝜋

[𝜏𝜏∗ 𝑐𝑐 − 𝜏𝜏] 2𝜋𝜋𝑟𝑟𝑑𝑑𝑟𝑟

Intermediate way, Here 𝑻𝑻 = 𝜏𝜏I
Instead, we chose the intermediate solution. By solving the equations
of mechanical equilibrium,

μ ∆ 𝒖𝒖 + 𝝁𝝁 + 𝝀𝝀 𝜵𝜵𝜵𝜵𝜵𝜵𝜵𝜵𝒖𝒖 + 𝜵𝜵𝜵𝜵𝜵𝜵 𝑻𝑻 𝒄𝒄 = 𝟎𝟎

assuming that the solution is independent of the axial variable, and for 
isotropic traction tensor 𝑻𝑻 = 𝜏𝜏𝐈𝐈 we can estimate the forces acting on 
the membrane as

𝜎𝜎𝑟𝑟𝑟𝑟 𝑡𝑡, 𝑅𝑅 = 1
𝜋𝜋𝑅𝑅2 න

0

𝑅𝑅

𝜏𝜏 𝑡𝑡, 𝑟𝑟 2𝜋𝜋𝑟𝑟𝑑𝑑𝑟𝑟

In presented here equations we assumed the medium to be isotropic. 
However, the anisotropy, can be important as it can greatly influence the 
speed of waves. Indeed, the network structure - the way the filaments are 
connected, affects the transfer of forces acting on the membrane through 
the interconnected fibers. 
Depending on the way the filament network is interconnected, calcium 
channels may be opened in places more or less distant from the front of the 
wave of increased calcium concentration. Thus, we should solve systems 
with different degree of anisotropy. 
 To avoid all these complications, we chose a slightly different modeling 
route.

347



Nonlocal 
mechanism of 
propagation

 

                                                                   membrane 

                                                                                                                                                                                                                                                                                                                                                                   

                                                                                                          actin network 

 

 

 

                                                                                                   cortex                                                                                        
• This mechanizm is nonlocal. The filaments 

are  interconnected by myosin bridges. 
Their number grows with Ca concentration.  

• The force that appears in one place is
transferred by the tangled fibers to other
neighboring ones.  Thus the channels are 
openned ahead of the propagating wave of 
𝐶𝐶𝐶𝐶++ concentration. This accelerates the 
wave propagation.  

   
                                                                                      
                                                                           

                                                                          actin network                                                                               

Schematic  view of simplest model of actin fibers network in 2D.
  When Ca concentration increases the fibers contract pulling
 the membrane.  This arrangment of fibers corresponds to completely    
anisotropic case ( no myosin bridges between filaments). The force is not 
transfered between filaments – local mechanism.
                                         
                                                 𝐾𝐾~ 𝛿𝛿(𝑥𝑥)
     

membrane

Smearing the force (interconnected filaments)
The previous step do not include transmition of force from one point to 
another by interconnected filaments. To take this into account we introduce a 
kind of smearing out of forces acting on the membrane through an averaging 
integral operator (convolution wit 𝐾𝐾𝜎𝜎) 

𝐷𝐷 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐 𝑡𝑡, 𝑅𝑅. 𝑧𝑧 = 𝐴𝐴 𝐾𝐾𝜎𝜎 ∗

2
𝑅𝑅2 න

0

𝑅𝑅

𝜏𝜏∗(𝑐𝑐 𝑡𝑡, 𝜕𝜕, 𝑧𝑧 ) − 𝜏𝜏 𝑡𝑡, 𝜕𝜕, 𝑧𝑧 𝜕𝜕𝑟𝑟𝜕𝜕
+

− 𝑝𝑝(𝑐𝑐)

where in numerical simmulations we took 𝐾𝐾𝜎𝜎 = 1
𝜎𝜎 2𝜋𝜋 exp(− 𝑧𝑧2

2𝜎𝜎2).      

This non-local mechanism embodies the idea of L. Jaffe
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33DD    NNUUMMEERRIICCAALL  SSIIMMMMUULLAATTIIOONNSS  l

Assuming cylindical symmetry we solved numerically the system :

 𝝏𝝏
𝝏𝝏𝝏𝝏 𝒄𝒄 = 𝑫𝑫∆𝒄𝒄 in Ω ,

            𝑫𝑫 𝒏𝒏 ∙ 𝛁𝛁𝛁𝛁 = 𝑨𝑨{ 𝑲𝑲𝝈𝝈
𝛛𝛛
𝛛𝛛𝛛𝛛 𝛕𝛕

+
− 𝒑𝒑 𝒄𝒄 } on 𝜕𝜕Ω,

𝛛𝛛
𝛛𝛛𝛛𝛛 𝛕𝛕 = 𝛃𝛃[𝛕𝛕∗ 𝛁𝛁 − 𝛕𝛕]        in Ω 

Source term for 𝜏𝜏 = 0
For 𝜏𝜏 = 0 we must have bistable case! 

Numerical computations

All numerical computations were done for the diffusion coefficient D=1. 
The source term:
[𝑲𝑲 𝟎𝟎, 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟎𝟎. 𝟏𝟏𝟐𝟐𝟐𝟐 − 𝝉𝝉 ]+−𝒑𝒑(𝟐𝟐) where 
𝒑𝒑 𝟐𝟐 = 𝟐𝟐 𝟐𝟐𝟐𝟐 − 𝟏𝟏. 𝟏𝟏𝟐𝟐𝟐𝟐 + 𝟎𝟎. 𝟐𝟐
For K=id and 𝜏𝜏 ≡ 0 the source term takes form    

𝑢𝑢 𝑢𝑢 − 0,25)(𝑢𝑢 − 1
Eq.      𝜕𝜕𝜕𝜕𝜕𝜕 𝑢𝑢 = 𝜕𝜕2

𝜕𝜕𝜕𝜕2 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 − 0,25)(𝑢𝑢 − 1 has heteroclinic solutions
(travelling fronts) of the form
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Averaging  our  diffusion equation with respect to r : 
and similarly, the equation for the traction, we arrive at
the one dimensional problem                                 

𝝏𝝏
𝝏𝝏𝝏𝝏 𝒖𝒖 = 𝑫𝑫 𝝏𝝏𝟐𝟐

𝝏𝝏𝝏𝝏𝟐𝟐 𝒖𝒖 + 𝟐𝟐𝟐𝟐
𝑹𝑹 𝛃𝛃𝐊𝐊𝟐𝟐 ∗ [𝛕𝛕∗ 𝐮𝐮 − 𝛕𝛕] − 𝒑𝒑(𝒖𝒖)

𝛛𝛛
𝛛𝛛𝛛𝛛 𝛕𝛕 = 𝛃𝛃[𝛕𝛕∗ 𝐮𝐮 − 𝛕𝛕]

where

𝑢𝑢(𝑡𝑡, 𝑥𝑥) = 1
𝜋𝜋𝑅𝑅2 0

𝑅𝑅 2𝜋𝜋𝜋𝜋 𝑐𝑐 𝑡𝑡, 𝑥𝑥, 𝜋𝜋 𝑑𝑑𝜋𝜋

ONE DIMENSIONAL APPROXIMATION

Numerical computations

All numerical computations were done for the diffusion coefficient D=1. 
The source term:
[𝑲𝑲 𝟎𝟎, 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟎𝟎. 𝟏𝟏𝟐𝟐𝟐𝟐 − 𝝉𝝉 ]+−𝒑𝒑(𝟐𝟐) where 
𝒑𝒑 𝟐𝟐 = 𝟐𝟐 𝟐𝟐𝟐𝟐 − 𝟏𝟏. 𝟏𝟏𝟐𝟐𝟐𝟐 + 𝟎𝟎. 𝟐𝟐
For K=id and 𝜏𝜏 ≡ 0 the source term takes form    

𝑢𝑢 𝑢𝑢 − 0,25)(𝑢𝑢 − 1
Eq.      𝜕𝜕𝜕𝜕𝜕𝜕 𝑢𝑢 = 𝜕𝜕2

𝜕𝜕𝜕𝜕2 𝑢𝑢 − 𝑢𝑢 𝑢𝑢 − 0,25)(𝑢𝑢 − 1 has heteroclinic solutions
(travelling fronts) of the form

NNuummeerriiccaallllyy  ddeetteerrmmiinneedd  ttrraavveelllliinngg  hhoommoocclliinniicc  wwaavveess  ((mmoovviinngg  ttoo  tthhee  rriigghhtt))
𝐶𝐶𝐶𝐶++ concentration (for different 𝜎𝜎)
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FFiittzzhhuugghh ––NNaagguummoo ttyyppee ooff  aapppprrooxxiimmaattiioonn

The influence of the variance 𝜎𝜎 of 𝐾𝐾𝜎𝜎 on the wave velocity. 

Expanding :

𝐊𝐊𝟐𝟐 ∗ 𝛕𝛕∗ 𝐮𝐮 we arrive to easier, local system of equations

𝝏𝝏
𝝏𝝏𝝏𝝏𝒘𝒘 = 𝝏𝝏𝟐𝟐

𝝏𝝏𝝏𝝏𝟐𝟐 𝑫𝑫𝒘𝒘 + 𝑨𝑨
𝑹𝑹𝝈𝝈

𝟐𝟐 𝝉𝝉∗ 𝒘𝒘 + 𝟐𝟐𝑨𝑨
𝑹𝑹 𝝉𝝉∗ 𝒘𝒘 − 𝝉𝝉 + − 𝒑𝒑(𝒘𝒘)

𝝏𝝏
𝝏𝝏𝝏𝝏 𝝉𝝉 = 𝜷𝜷[𝝉𝝉∗ 𝒘𝒘 − 𝝉𝝉]

with larger diffusivity. The wave velocity is ~ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

On the left: wave profiles and wave velocities in 1-D simulations for A=1, and (a) 𝜎𝜎=40, (b) 𝜎𝜎=20, (c) 
𝜎𝜎=10, (d) 𝜎𝜎=0 and for 𝛽𝛽=0.001205 (=0.1 𝛽𝛽0). On the right: 3D simulations for A=1, R=2, and  β=0,001205  
and the same values of σ. Propagation velocities with respect to the heteroclinic case ( 𝑣𝑣0 = 2/4)  are: 
(a)13.7,(b) 6.96, (c) 3.63 , (d) 0.978 

Waves profiles at r=R, (R=2)  for different ββ: (a) ββ=0,1𝜷𝜷𝟎𝟎, (b) ββ=0,2𝜷𝜷𝟎𝟎,  (c) ββ=0,3𝜷𝜷𝟎𝟎
etc.   where the reference 𝜷𝜷 is 𝜷𝜷𝟎𝟎 = 𝟎𝟎, 𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.  On the left for σσ=10. On the right 
for σσ=20.
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Conclusions
1. It seems that the idea of F. Jaffe works 
a) Wave velocity grows as 𝜎𝜎 . 𝜎𝜎 – range of mechanical 

interactions due to actin-myosin fiber network.  
b) The concentration of Ca in extracellular space is 

100 times bigger than in endoplasmic reticulum, so 
flux through ion channel can be quite high. Again,
wave velocity grows as 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2.  1-D approximation seems to work quite well ! It 
well reproduces the 3-D simulations.   

F-N model is simple and gives good wave speed.

This F-N model we studied (with J. Napiokowska) for a particular shape
of the source term  step like 𝝉𝝉∗ 𝒘𝒘 and linear 𝒑𝒑(𝒘𝒘).
• In this case the existence of homoclinic waves is proven for some

range of 𝛽𝛽 < 𝛽𝛽0 , 
• For 𝛽𝛽 > 𝛽𝛽0 there are no homoclinic waves.
• There are two solutions for given 𝛽𝛽 < 𝛽𝛽0. Narrow one unstable and 

wider which is stable. 
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Thank you for your attention 
                        and 
the organizers for the invitation.
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WORKSHOP on Mathematics for Industry 2023

September 25-29, 2023, Warsaw, Poland

Generalization of Reeb spaces and application to
data visualization

Osamu Saeki

Institute of Mathematics for Industry, Kyushu University, Japan

In many cases, data sets can be considered to be discrete samples of differentiable maps
between manifolds. For a differentiable multivariate function into Rp with p ≥ 2, its
Reeb space is the space of connected components of its fibers. This is a generalization
of the notion of Reeb graphs for univariate functions in the case of p = 1. It has been
known that Reeb spaces are often very useful for visualizing the given multivariate
function. In this talk, we generalize the Reeb space in such a way that it captures
more of the topological features of the fibers, not only their connected components.
This theoretical part essentially relies on the global singularity theory of differentiable
maps between manifolds developed mainly by the author. Such techniques have been
used for efficiently visualize large scale data. If time permits, we will also discuss an
application to multi-objective optimization problems.
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§1. Fiber

§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

Who am I?
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

2 / 23

Got PhD in Mathematics in 1992.
“On 4-manifolds homotopy equivalent to the 2-sphere”

Main interest: Singularity Theory, 3- and 4-Dimensional Topology
I proposed the Theory of Singular Fibers of Differentiable Maps.
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Osamu Saeki
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κ = 3

My recent interests include collaboration with computer scientists on
enhancing visualization of multi-variate data from the viewpoint of
topology or singularity theory.

Generalization of Reeb Spaces and
Application to Data Visualization

Osamu Saeki
(Institute of Mathematics for Industry,

Kyushu Univ., Japan)

September 29, 2023
WORKSHOP on

Mathematics for Industry

Warsaw University of Technology
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Classification of singular fibers
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

6 / 23

For certain dimensions, we can classify singular fibers of generic maps.

Example 1.1 Classification results for (n,m) with n−m = 1.
For simplicity, we assume the domain Nn is orientable.
We will ignore regular fiber components.

1. (n,m) = (2, 1) [Folklore] κ = 1 (codimension)

2. (n,m) = (3, 2) [Kushner–Levine–Porto, 1984]

κ = 1

κ = 2

Singular points and Jacobi set
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

5 / 23

f : Nn → Rm (n ≥ m) C∞ map
For p ∈ Nn, consider the differential dfp : TpN

n → Tf(p)R
m.

The set of singular points J(f) = {p ∈ Nn | rank dfp < m} is called the
Jacobi set of f . Generically, dim J(f) = m− 1.
Jacobi set image f(J(f)) divides the range Rm into some regions.

Topology of fibers changes along the Jacobi set image.
Singular fiber is a fiber f−1(y) with y ∈ f(J(f)).
It is important to know topological changes of fibers near a singular fiber.

Setting
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

4 / 23

Nn : C∞ manifold (e.g. bdd domain in Rn), f : Nn → Rm C∞ map
We can write f = (f1, f2, . . . , fm) multi-variate data
We assume f is generic (C∞ stable, C0 stable, finite codimension, etc.)
We are interested in the topology of fibers f−1(y), y ∈ Rm.
Generically, dim f−1(y) = n−m. We usually assume n ≥ m.

f

N R

We can grasp global feature of data by chasing fibers (or level sets).
We have singular fibers (or critical level sets) where topological
transitions of fibers occur.
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Reeb space
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

9 / 23

For a C∞ map f : Nn → Rm, n > m, the space Rf obtained by contracting
each connected component of a fiber to a point is called the Reeb space of
f [Edelsbrunner–Harer–Patel, 2008].

f

Nn Rm

Rf

f̄qf

When m = 1, it is also called the Reeb graph.

§2. Reeb Space

§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

Singular fibers for (n,m) = (4, 3)
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

7 / 23

3. (n,m) = (4, 3) [S.]

κ = 1

κ = 2

κ = 3

4. (n,m) = (5, 4) [Yamamoto–S.]
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User interface
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond
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Implemented by Daisuke Sakurai (Kyushu Univ.)

Applications
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

11 / 23

An example of an application of Reeb graphs:
[Takahashi–Takeshima–Fujishiro, 2004] Topological Volume
Skeletonization and its Application to Transfer Function Design
See Fig. 4 of [STSWKCDY].

Explicit example: Atom collision
See Fig. 5 of [STSWKCDY].

Application of singular fibers: Hurricane Isabel data
See Fig. 15 of [STSWKCDY].

Reference:
[STSWKCDY] O. Saeki, S. Takahashi, D. Sakurai, Hsiang-Yun Wu,
K. Kikuchi, H. Carr, D. Duke, and T. Yamamoto, Visualizing multivariate
data using singularity theory, The Impact of Applications on Mathematics,
Proceedings of Forum “Math-for-Industry” 2013, pp.51–65, Springer, 2014.

Local structures of Reeb spaces
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

10 / 23

Classification of fibers
⇒ Characterization of local structures of Reeb spaces

Example 2.1 1. (n,m) = (2, 1)

2. (n,m) = (3, 2) [Kushner-Levine-Porto, 1984]

3. (n,m) = (4, 3) [Hiratuka, 2001]
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Reeb graph for (n,m) = (3, 1)
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

15 / 23

Case with (n,m) = (3, 1).

S2 = Σ0

Σg1 Σg2

Σg1+g2

Σg

Σg+1

g1 g2

g

Regular fibers for n−m = 2
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

14 / 23

How about the case n−m = 2 ?
We assume the domain Nn is orientable, compact, and w/o boundary.
Regular fibers are closed orientable surfaces.

g

Σg

Σg : closed orientable surface of genus g

§3. Case with n−m = 2 and
Beyond

§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond
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Reeb diagram
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

18 / 23

This idea can be extended to homology groups of any dimension (or
homotopy groups, if you want).

Hi(f
−1(y1)) → Hi(f

−1(y)) ← Hi(f
−1(y2))

a b c d

Hi(a) Hi(b) Hi(c) Hi(d)

α

β

γ
δ

Hi(α)
Hi(β)

Hi(γ)
Hi(δ)

=⇒ Notion of Reeb diagram.

0-th Homology
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

17 / 23

Reeb space describes the connected components of fibers and their
“adjacencies”.

yy1 y2

I

H0(f
−1(y1)) −−−→ H0(f

−1(I)) ←−−− H0(f
−1(y2))

∼=
⏐⏐� ∼=

⏐⏐� ∼=
⏐⏐�

Z⊕ Z H0(f
−1(y)) Z

∼=
⏐⏐�
Z

Reeb space for (n,m) = (4, 2)
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

16 / 23

Each regular “stratum” has its own label (genus of the corresponding regular
fiber component). [Furuya, 1986]

g
g

g g

g

g1

g1g1g1

g1

g2g2g2

g2

g3

g3
g3

g3

g1 = g2 + g3g1 = g2 + g3

g1 = g2 + g3

g + 1g + 1

g + 1

g + 1

g + 2

0

0

g1 + 1g1 + 1

g2 + 1
g4

g1 + g4

g2 = g3 + g4

g = g1 + g2
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Monodromy in Reeb diagram
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

21 / 23

Given a generic map f : Nn → Rm, we can subdivide Rm (or the Reeb space
Rf) so that each stratum is contractible.
In this case, the monodromy is hidden in the Reeb diagram.

K1

K2

K3

K4

K5

K6

H1 H2

H3

H4H5

H6

π1(B, b0) → MCG(S) → Aut(H∗(S))

Problem 3.2 Formulate all these, including monodromy! Category theory?
How to compute Reeb diagram and/or monodromy?

Monodromy
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

20 / 23

If a stratum is not contractible, we need to consider monodromy.
Suppose π : E → B is a C∞ fiber bundle with fiber S.
MCG(S) = π0(Diff+(S)) mapping class group
Associated to π is the monodromy π1(B, b0) → MCG(S).
This measures the “twist” of the fibers along a loop in the base B.

S
E

Bb0

π

Categorical formulation
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

19 / 23

G

G

H1

H1

H2

H2

H3 H4

K1

K1

K2

K2

K3

K4

In a certain categorical formulation of a Reeb space, this can be considered
to be a functor.

Remark 3.1 This makes sense if each stratum is contractible.
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Ending
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

23 / 23

Thank you for your attention!

Acknowledgements to collaborators:
Takahiro Yamamoto (Tokyo Gakugei Univ.),
Daisuke Sakurai (Kyushu Univ.),
Shigeo Takahashi (Univ. of Aizu),
Hamish Carr & David Duke (Univ. of Leeds),
Hsiang-Yun Wu (St. Pölten Univ. of Applied Sciences),
Keisuke Kikuchi

Possible application
§1. Fiber §2. Reeb Space §3. Case with n − m = 2 and Beyond

22 / 23

Let us consider a multi-ojective optimization problem.
Such a problem can be formulated in terms of a C∞ muti-function
f = (f1, f2, . . . , fm) : Nn → Rm.

For example, given a bench-mark problem of multi-optimization, we can
evaluate its complexity or certain characteristics in terms of its Reeb space,
or more generally, its Reeb diagram.
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COE Lecture Note Vol.19 Ichiro Suzuki The Pattern Formation Problem for Autonomous Mobile Robots 
―Special Lecture in Functional Mathematics―　23pages

April 30, 2009

COE Lecture Note Vol.20 Yasuhide Fukumoto 
Yasunori Maekawa

Math-for-Industry Tutorial: Spectral theories of non-Hermitian 
operators and their application　184pages

June 19, 2009

COE Lecture Note Vol.21 Faculty of Mathematics,  
Kyushu University

Forum “Math-for-Industry” 
Casimir Force, Casimir Operators and the Riemann Hypothesis　
95pages

November 9, 2009

COE Lecture Note Vol.22 Masakazu Suzuki 
Hoon Hong 
Hirokazu Anai 
 Chee Yap 
Yousuke Sato 
Hiroshi Yoshida

The Joint Conference of ASCM 2009 and MACIS 2009:  
Asian Symposium on Computer Mathematics Mathematical Aspects of 
Computer and Information Sciences  436pages

December 14, 2009

COE Lecture Note Vol.23 荒川　恒男 
金子　昌信

多重ゼータ値入門　111pages February 15, 2010

COE Lecture Note Vol.24 Fulton B.Gonzalez Notes on Integral Geometry and Harmonic Analysis　125pages March 12, 2010

COE Lecture Note Vol.25 Wayne Rossman Discrete Constant Mean Curvature Surfaces via Conserved Quantities  
130pages

May 31, 2010

COE Lecture Note Vol.26 Mihai Ciucu Perfect Matchings and Applications　66pages July 2, 2010
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COE Lecture Note Vol.27 九州大学大学院 
数理学研究院

Forum “Math-for-Industry” and Study Group Workshop 
Information security, visualization, and inverse problems, on the basis 
of optimization techniques　100pages

October 21, 2010

COE Lecture Note Vol.28 ANDREAS LANGER MODULAR FORMS, ELLIPTIC AND MODULAR CURVES 
LECTURES AT KYUSHU UNIVERSITY 2010　62pages

November 26, 2010

COE Lecture Note Vol.29 木田　雅成 
原田　昌晃 
横山　俊一

Magmaで広がる数学の世界　157pages December 27, 2010

COE Lecture Note Vol.30 原　　　隆 
松井　　卓 
廣島　文生

Mathematical Quantum Field Theory and Renormalization Theory　
201pages

January 31, 2011 

COE Lecture Note Vol.31 若山　正人 
福本　康秀 
高木　　剛 
山本　昌宏

Study Group Workshop 2010 Lecture & Report　128pages February 8, 2011

COE Lecture Note Vol.32 Institute of Mathematics  
for Industry, 
Kyushu University

Forum “Math-for-Industry” 2011 
“TSUNAMI-Mathematical Modelling” 
Using Mathematics for Natural Disaster Prediction, Recovery and 
Provision for the Future　90pages

September 30, 2011

COE Lecture Note Vol.33 若山　正人 
福本　康秀 
高木　　剛 
山本　昌宏

Study Group Workshop 2011 Lecture & Report　140pages October 27, 2011

COE Lecture Note Vol.34 Adrian Muntean 
Vladimír Chalupecký

Homogenization Method and Multiscale Modeling　72pages October 28, 2011

COE Lecture Note Vol.35 横山　俊一 
夫　　紀恵 
林　　卓也

計算機代数システムの進展　210pages November 30, 2011

COE Lecture Note Vol.36 Michal Beneš 
Masato Kimura 
Shigetoshi Yazaki

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010 
107pages

January 27, 2012 

COE Lecture Note Vol.37 若山　正人 
高木　　剛 
Kirill Morozov 
平岡　裕章 
木村　正人 
白井　朋之 
西井　龍映 
栄　伸一郎 
穴井　宏和 
福本　康秀

平成23年度 数学・数理科学と諸科学・産業との連携研究ワーク
ショップ　拡がっていく数学　～期待される “見えない力”～ 
154pages

February 20, 2012
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COE Lecture Note Vol.38 Fumio Hiroshima 
Itaru Sasaki 
Herbert Spohn 
Akito Suzuki

Enhanced Binding in Quantum Field Theory　204pages March 12, 2012

COE Lecture Note Vol.39 Institute of Mathematics  
for Industry,  
Kyushu University

Multiscale Mathematics: Hierarchy of collective phenomena and 
inter relations between hierarchical structures　180pages

March 13, 2012

COE Lecture Note Vol.40 井ノ口順一 
太田　泰広 
筧　　三郎 
梶原　健司 
松浦　　望

離散可積分系・離散微分幾何チュートリアル2012　152pages March 15, 2012

COE Lecture Note Vol.41 Institute of Mathematics 
for Industry,
Kyushu University

Forum “Math-for-Industry” 2012 
“Information Recovery and Discovery”　91pages

October 22, 2012

COE Lecture Note Vol.42 佐伯　　修
若山　正人
山本　昌宏

Study Group Workshop 2012 Abstract, Lecture & Report　178pages November 19, 2012

COE Lecture Note Vol.43 Institute of Mathematics 
for Industry, 
Kyushu University

Combinatorics and Numerical Analysis Joint Workshop　103pages December 27, 2012

COE Lecture Note Vol.44 萩原　　学 モダン符号理論からポストモダン符号理論への展望　107pages January 30, 2013

COE Lecture Note Vol.45 金山　　寛 Joint Research Workshop of Institute of Mathematics for Industry 
(IMI), Kyushu University 
“Propagation of Ultra-large-scale Computation by the Domain-
decomposition-method for Industrial Problems (PUCDIP 2012)”　
121pages

February 19, 2013

COE Lecture Note Vol.46 西井　龍映
栄　伸一郎
岡田　勘三
落合　啓之
小磯　深幸
斎藤　新悟
白井　朋之

科学・技術の研究課題への数学アプローチ
―数学モデリングの基礎と展開―　325pages

February 28, 2013

COE Lecture Note Vol.47 SOO TECK LEE BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE 
COMPLEX CLASSICAL GROUPS　40pages

March 8, 2013

COE Lecture Note Vol.48 溝口　佳寛
脇　　隼人
平坂　　貢
谷口　哲至
島袋　　修

博多ワークショップ「組み合わせとその応用」　124pages March 28, 2013
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COE Lecture Note Vol.49 照井　　章
小原　功任
濱田　龍義
横山　俊一
穴井　宏和
横田　博史

マス・フォア・インダストリ研究所　共同利用研究集会 II
数式処理研究と産学連携の新たな発展　137pages

August 9, 2013

MI Lecture Note Vol.50 Ken Anjyo
Hiroyuki Ochiai
Yoshinori Dobashi
Yoshihiro Mizoguchi
Shizuo Kaji

Symposium MEIS2013:
Mathematical Progress in Expressive Image Synthesis　154pages

October 21, 2013

MI Lecture Note Vol.51 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2013
“The Impact of Applications on Mathematics”　97pages

October 30, 2013

MI Lecture Note Vol.52 佐伯　　修
岡田　勘三
髙木　　剛
若山　正人
山本　昌宏

Study  Group  Workshop  2013 Abstract,  Lecture  &  Report　
142pages

November 15, 2013

MI Lecture Note Vol.53 四方　義啓
櫻井　幸一
安田　貴徳
Xavier Dahan

平成25年度　九州大学マス・フォア・インダストリ研究所　
共同利用研究集会　安全・安心社会基盤構築のための代数構造
～サイバー社会の信頼性確保のための数理学～　158pages

December 26, 2013

MI Lecture Note Vol.54 Takashi Takiguchi
Hiroshi Fujiwara

Inverse problems for practice, the present and the future　93pages January 30, 2014 

MI Lecture Note Vol.55 栄　伸一郎
溝口　佳寛
脇　　隼人
渋田　敬史

Study Group Workshop 2013 数学協働プログラム Lecture & Report
98pages

February 10, 2014

MI Lecture Note Vol.56 Yoshihiro Mizoguchi
Hayato Waki
Takafumi Shibuta
Tetsuji Taniguchi
Osamu Shimabukuro
Makoto Tagami
Hirotake Kurihara
Shuya Chiba

Hakata Workshop 2014
~ Discrete Mathematics and its Applications ~　141pages

March 28, 2014

MI Lecture Note Vol.57 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2014:
“Applications + Practical Conceptualization + Mathematics = fruitful 
Innovation”　93pages

October 23, 2014

MI Lecture Note Vol.58 安生健一
落合啓之

Symposium MEIS2014:
Mathematical Progress in Expressive Image Synthesis　135pages

November 12, 2014



シリーズ既刊

Issue Author／Editor Title Published

MI Lecture Note Vol.59 西井　龍映
岡田　勘三
梶原　健司
髙木　　剛
若山　正人
脇　　隼人
山本　昌宏

Study  Group  Workshop  2014  数学協働プログラム 
Abstract, Lecture  &  Report　196pages

November 14, 2014

MI Lecture Note Vol.60 西浦　　博 平成26年度九州大学 IMI共同利用研究・研究集会（I）
感染症数理モデルの実用化と産業及び政策での活用のための新
たな展開　120pages

November 28, 2014

MI Lecture Note Vol.61 溝口　佳寛
Jacques Garrigue
萩原　　学
Reynald Affeldt

研究集会　
高信頼な理論と実装のための定理証明および定理証明器
Theorem proving and provers for reliable theory and implementations 
(TPP2014)　138pages

February 26, 2015

MI Lecture Note Vol.62 白井　朋之 Workshop on “β-transformation and related topics”　59pages March 10, 2015

MI Lecture Note Vol.63 白井　朋之 Workshop on “Probabilistic models with determinantal structure”　
107pages

August 20, 2015

MI Lecture Note Vol.64 落合　啓之
土橋　宜典

Symposium MEIS2015:
Mathematical Progress in Expressive Image Synthesis　124pages

September 18, 2015

MI Lecture Note Vol.65 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2015
“The Role and Importance of Mathematics in Innovation”　74pages

October 23, 2015

MI Lecture Note Vol.66 岡田　勘三
藤澤　克己
白井　朋之
若山　正人
脇　　隼人
Philip Broadbridge
山本　昌宏

Study  Group  Workshop  2015 Abstract, Lecture  &  Report　
156pages November 5, 2015

MI Lecture Note Vol.67 Institute of Mathematics 
for Industry, Kyushu 
University

IMI-La Trobe Joint Conference
“Mathematics for Materials Science and Processing”
66pages

February 5, 2016

MI Lecture Note Vol.68 古庄　英和
小谷　久寿
新甫　洋史

結び目と Grothendieck-Teichmüller群
116pages

February 22, 2016

MI Lecture Note Vol.69 土橋　宜典
鍛治　静雄

Symposium MEIS2016:
Mathematical Progress in Expressive Image Synthesis　82pages

October 24, 2016

MI Lecture Note Vol.70 Institute of Mathematics 
for Industry,  
Kyushu University

Forum “Math-for-Industry” 2016
“Agriculture as a metaphor for creativity in all human endeavors”　
98pages

November 2, 2016

MI Lecture Note Vol.71 小磯　深幸
二宮　嘉行
山本　昌宏

Study Group Workshop 2016 Abstract, Lecture & Report　143pages November 21, 2016
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MI Lecture Note Vol.72 新井　朝雄
小嶋　　泉
廣島　文生

Mathematical quantum field theory and related topics　133pages January 27, 2017

MI Lecture Note Vol.73 穴田　啓晃
Kirill Morozov
須賀　祐治
奥村　伸也
櫻井　幸一

Secret Sharing for Dependability, Usability and Security of Network 
Storage and Its Mathematical Modeling　211pages

March 15, 2017

MI Lecture Note Vol.74 QUISPEL, G. Reinout W.
BADER, Philipp
MCLAREN, David I.
TAGAMI, Daisuke

IMI-La Trobe Joint Conference 
Geometric Numerical Integration and its Applications　71pages

March 31, 2017

MI Lecture Note Vol.75 手塚　　集
田上　大助
山本　昌宏

Study Group Workshop 2017 Abstract, Lecture & Report　118pages October 20, 2017

MI Lecture Note Vol.76 宇田川誠一 Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論
―Tzitzéica方程式の楕円関数解を出発点として―　68pages

August 4, 2017

MI Lecture Note Vol.77 松谷　茂樹
佐伯　　修
中川　淳一
田上　大助
上坂　正晃
Pierluigi Cesana
濵田　裕康

平成29年度　九州大学マス・フォア・インダストリ研究所
共同利用研究集会（I）　
結晶の界面，転位，構造の数理　148pages

December 20, 2017

MI Lecture Note Vol.78 瀧澤　重志
小林　和博
佐藤憲一郎
斎藤　　努
清水　正明
間瀬　正啓
藤澤　克樹
神山　直之

平成29年度　九州大学マス・フォア・インダストリ研究所
プロジェクト研究　研究集会（I）
防災・避難計画の数理モデルの高度化と社会実装へ向けて　
136pages

February 26, 2018

MI Lecture Note Vol.79 神山　直之
畔上　秀幸

平成29年度　AIMaPチュートリアル
最適化理論の基礎と応用　96pages

February 28, 2018

MI Lecture Note Vol.80 Kirill Morozov
Hiroaki Anada
Yuji Suga

IMI Workshop of the Joint Research Projects 
Cryptographic Technologies for Securing Network Storage
and Their Mathematical Modeling　116pages

March 30, 2018

MI Lecture Note Vol.81 Tsuyoshi Takagi
Masato Wakayama
Keisuke Tanaka
Noboru Kunihiro
Kazufumi Kimoto
Yasuhiko Ikematsu

IMI Workshop of the Joint Research Projects
International Symposium on Mathematics, Quantum Theory, 
and Cryptography　246pages

September 25, 2019

MI Lecture Note Vol.82 池森　俊文 令和2年度　AIMaPチュートリアル
新型コロナウイルス感染症にかかわる諸問題の数理　
145pages

March 22, 2021
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MI Lecture Note Vol.83 早川健太郎
軸丸　芳揮
横須賀洋平
可香谷　隆
林　　和希
堺　　雄亮

シェル理論・膜理論への微分幾何学からのアプローチと 
その建築曲面設計への応用　49pages

July 28, 2021

MI Lecture Note Vol.84 Taketoshi Kawabe
Yoshihiro Mizoguchi
Junichi Kako
Masakazu Mukai
Yuji Yasui

SICE-JSAE-AIMaP Tutorial
Advanced Automotive Control and Mathematics　110pages

December 27, 2021

MI Lecture Note Vol.85 Hiroaki Anada
Yasuhiko Ikematsu
Koji Nuida
Satsuya Ohata
Yuntao Wang

IMI Workshop of the Joint Usage Research Projects
Exploring Mathematical and Practical Principles of Secure Computation 
and Secret Sharing　114pages

February 9, 2022

MI Lecture Note Vol.86 濱田　直希
穴井　宏和
梅田　裕平
千葉　一永
佐藤　寛之
能島　裕介
加葉田雄太朗
一木　俊助
早野　健太
佐伯　　修

2020年度採択分　九州大学マス・フォア・インダストリ研究所
共同利用研究集会
進化計算の数理　135pages

February 22, 2022

MI Lecture Note Vol.87 Osamu Saeki, 
Ho Tu Bao, 
Shizuo Kaji, 
Kenji Kajiwara, 
Nguyen Ha Nam, 
Ta Hai Tung,
Melanie Roberts, 
Masato Wakayama, 
Le Minh Ha, 
Philip Broadbridge

Proceedings of Forum “Math-for-Industry” 2021
-Mathematics for Digital Economy-　122pages

March 28, 2022

MI Lecture Note Vol.88 Daniel PACKWOOD
Pierluigi CESANA, 
Shigenori FUJIKAWA, 
Yasuhide FUKUMOTO,
Petros SOFRONIS, 
Alex STAYKOV

Perspectives on Artificial Intelligence and Machine Learning in 
Materials Science, February 4-6, 2022　74pages

November 8, 2022
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MI Lecture Note Vol.89 松谷　茂樹
落合　啓之
井上　和俊
小磯　深幸
佐伯　　修
白井　朋之
垂水　竜一
内藤　久資
中川　淳一
濵田　裕康
松江　　要
加葉田雄太朗

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
材料科学における幾何と代数 III 　356pages

December 7, 2022

MI Lecture Note Vol.90 中山　尚子
谷川　拓司
品野　勇治
近藤　正章
石原　　亨
鍛冶　静雄
藤澤　克樹

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
データ格付けサービス実現のための数理基盤の構築　58pages

December 12, 2022

MI Lecture Note Vol.91 Katsuki Fujisawa
Shizuo Kaji
Toru Ishihara
Masaaki Kondo
Yuji Shinano
Takuji Tanigawa
Naoko Nakayama

IMI Workshop of the Joint Usage Research Projects
Construction of Mathematical Basis for Realizing Data Rating Service
610pages

December 27, 2022

MI Lecture Note Vol.92 丹田　　聡
三宮　　俊
廣島　文生

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
時間・量子測定・準古典近似の理論と実験
～古典論と量子論の境界～　150pages

Janualy 6, 2023

MI Lecture Note Vol.93 Philip Broadbridge
Luke Bennetts
Melanie Roberts
Kenji Kajiwara

Proceedings of Forum “Math-for-Industry” 2022
-Mathematics of Public Health and Sustainability-　170pages

June 19, 2023

MI Lecture Note Vol.94 國廣　　昇
池松　泰彦
伊豆　哲也
穴田　啓晃
縫田　光司

2023年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
現代暗号に対する安全性解析・攻撃の数理　260pages

Janualy 11, 2024
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