高次元からのデータ科学への挑戦状

矢野 恵佑

統計数理研究所 統計基盤数理研究系

@ 統計数学X情報X物質セミナー②~高次元データの計測と統計解析~

自己紹介

▶愛媛出身

- ▶3/2017 :東京大学大学院情報理工学系研究科 (博士情報理工学)
- ▶4/2017-3/2020:東京大学計数工学科助教
 ▶4/2020- :統計数理研究所准教授

• 専門

- 統計学・機械学習→データ科学
- 地震学・測地学・プラズマ物理でのデータ解析
- 「データ科学技術」とその数理メカニズムを解明するのが好き
 応用ごとに技術を開発・拡張したりするのも好き

今日のデータ科学における「データ」

首都圏稠密地震観測網(MeSO-net)での連続波形記録

E.TACM U where the second of t
E.MDIMN
E.YMKM N WYNHAN WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
E.SSHMU

データの整理

- •多種多様(空間データ・時間データ・時空間データ・・・)
- •「変数の個数」(次元)と「サンプルサイズ」に注目して整理

犯罪発生件数マップ

観測 $X = (X_1, \dots, X_{978})$:東京8区の978町丁における犯罪発生件数

978個の変数が12年分存在

d = 978, n = 12

希少な遺伝子頻度

観測 $X = (X_1, \dots, X_{551})$: 551のゲノム位置の希少遺伝子頻度

首都圏地震観測網の連続波形

観測 $X(t) = (X_1(t), \dots, X_{296}(t))$: 首都圏地震観測網の連続波形

0.005秒という高頻度で観測される→観測変数を連続な関数として扱える

ここでの「高次元」の定義

■有限次元

変数の次元固定,サンプルサイズ→∞

変数の次元 → ∞

変数&サンプルサイズ→∞

■無限次元 変数が関数自由度をもつ

本日の内容

高次元のデータ解析のアイデア

11

本日の内容

多変量データの可視化

変数名	ペアプロット(2変数散布図)+層別化													
アルコール度数		-		•	(-		_ / /		•)	• —		
リンゴ酸							- Martin		Ser.					
灰													No.	
灰のアルカリ度														-
マグネシウム														
全フェノール											1			-
フラボノイド						M								-
非フラボノイドフェノール	to the second seco									1		N. A.S.	Less'	larget - 0 - 1 - 2
プロアントシアニジン					「「「「」」			, Ber						-
色の濃さ														-
色相							5. 5. 5.						10	-
希釈ワインの吸光度の比)														-
プロリン							1				-	A		-
ワインの点数	and the second s	a a a a a a a a a a a a a a a a a a a		D D D D D D D D D D D D D D D D D D D	9 10 10 menerica	Marine and	M	0 02 04 05 03	prostinguing 4	a the state	N 12 13	atarontiti, et annet sine		0

From UCI Wine Dataset

*しばらく、主成分分析の復習になります

行列を使ったデータの整理

特異値分解

任意の行列 $X \in \mathbb{R}^{n \times d}$ は直交行列 $U \in \mathbb{R}^{n \times n}, V \in \mathbb{R}^{d \times d}$ を用いて

 $X = U\Sigma V^{\top}$

* Σ は対角行列 Δ とゼロ行列0で $\Sigma = \begin{pmatrix} \Delta \\ 0 \end{pmatrix}$

特異値分解の見方

特異値分解の見方

特異値分解における左特異ベクトル

$$X = \sum_{i=1,\dots,r} \sigma_i \ u_i \ v_i^{\mathsf{T}}$$

特異値分解における右特異ベクトル

特異値分解における特異値

主成分分析 (Principal Component Analysis; PCA)

特異値の絶対値が大きい成分を使ったデータの次元縮約

PCAの適用例:波形特徴量の抽出

PCAの適用例:波形特徴量の抽出

PCAの適用例:波形特徴量の抽出

実は、**ナイーブな主成分分析**は高次元では注意が必要

二通りのシナリオでそのことを検証 (Simulation 1)

二通りのシナリオでそのことを検証 (Simulation 1)

32

二通りのシナリオでそのことを検証 (Simulation 2)

二通りのシナリオでそのことを検証 (Simulation 2)

ナイーブな主成分分析の結果

Simulation 2の結果

Simulation 1の結果

Simulation 2の結果

Simulation 2の結果

ナイーブな主成分分析では明らかに不一致

高次元小標本を生かした補正: Yata and Aoshima (2012)

Yata and Aoshima (2012)は高次元小標本性を生かした補正法(ノイズ掃き出し法)を提案

高次元小標本を生かした補正: Yata and Aoshima (2012)

Yata and Aoshima (2012)は高次元小標本性を生かした補正法(ノイズ掃き出し法)を提案

* 青嶋・矢田(2019)「高次元の統計学」

* Yata and Aoshima (2012) Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations

主成分分析における「双対表現」

主成分分析ではデータの縮約に二つの表現が可能

主成分分析における「双対表現」

主成分分析ではデータの縮約に二つの表現が可能

主成分分析における「双対表現」

主成分分析ではデータの縮約に二つの表現が可能

「高次元」データの集中現象 (Hall and Marron, 2005; Ahn et al., 2007; Yata and Aoshima, 2012)

ベクトル
$$w_j = \left(\frac{n}{\sum_i \lambda_i}\right) S_{\text{dual}} u_j(S_{\text{dual}}) \in \mathbb{R}^n \quad \textit{idd} \to \infty$$
で球に集中

データは簡単のためガウスベクトルとする

「高次元」データの集中現象 (Hall and Marron, 2005; Ahn et al., 2007; Yata and Aoshima, 2012)

ベクトル
$$w_j = \left(\frac{n}{\sum_i \lambda_i}\right) S_{\text{dual}} u_j(S_{\text{dual}}) \in \mathbb{R}^n \quad \textit{idd} \to \infty$$
で球に集中

d = 100 \mathbf{t} プル3 サンプル

データは簡単のためガウスベクトルとする

「高次元」データの集中現象 (Hall and Marron, 2005; Ahn et al., 2007; Yata and Aoshima, 2012)

データは簡単のためガウスベクトルとする

「高次元」データの集中現象を利用した補正
一般に、固有値は重要な固有値,それ以外の多くの固有値に分かれる
$$S_{\text{dual}} \in \mathbb{R}^{d \times d} = \sum_{i=1,...,r} \sigma_i^2 u_i u_i^{\mathsf{T}} + \sum_{i=r+1,...,d} \sigma_i^2 u_i u_i^{\mathsf{T}}$$

たくさんある!(ノイズ)

「高次元」データの集中現象を利用した補正
一般に、固有値は重要な固有値,それ以外の多くの固有値に分かれる
$$S_{dual} \in \mathbb{R}^{d \times d} = \sum_{i=1,...,r} \sigma_i^2 u_i u_i^{\mathsf{T}} + \sum_{i=r+1,...,d} \sigma_i^2 u_i u_i^{\mathsf{T}}$$

たくさんある! (ノイズ)
ノイズ部分の集中現象を利用することで固有値・固有ベクトルを推定可能
 $\check{\lambda}_i = \sigma_i^2 - \frac{\operatorname{tr}(S_{dual}) - \sum_{j=1,...,i} \sigma_i^2}{n-1-i}$

$$h_i = \frac{1}{\sqrt{(n-1)\tilde{\lambda}_i}} X u_i(S_{\text{dual}})$$

高次元小標本を生かした補正: Yata and Aoshima (2012)

Yata and Aoshima (2012)は高次元小標本性を生かした補正法(ノイズ掃き出し法)を提案

天文学への応用: Takeuchi et al. (2024)

ALMA望遠鏡で撮影された銀河NGC 253の分光マップへの適用 →銀河の分子ガス噴き出しをデータ駆動的に抽出

Figure 4. Velocity map of NGC 253 estimated from HCN(4–3) (top), HNC(4–3) (middle), and CS(7–6) (bottom). The systemic velocity of 243 km s⁻¹ is subtracted

From Takeuchi et al. (2024) https://doi.org/10.3847/1538-4365/ad2517

高次元データの「グラフ表現|

非線形圧縮で活躍するのは高次元データの「グラフ表現」

t-distributed Stochastic Neighbor Embedding (*t*-SNE) データの隣接関係をできる限り保ったまま低次元空間に埋め込む手法 低次元空間 №2 データのグラフ表現 $p_{i,j}$ 低次元でのグラフ表現 $q_{i,j}$ $p_{j \to i} = \frac{\exp(-||X_i - X_j||^2 / (2\sigma^2))}{\sum_{k \neq j} \exp(-||X_i - X_j||^2 / (2\sigma^2))}$ $q_{i,j} = \frac{\left(1 + ||Y_i - Y_j||^2\right)^{-1}}{\sum_{k \in \mathcal{V}_k \neq j} (1 + ||Y_k - Y_j||^2)^{-1}}$ $p_{i,j} = \frac{p_{j \to i} + p_{i \to j}}{2N}$

* Van der Maaten and Hinton (2008) Visualizing Data using t-SNE

t-distributed Stochastic Neighbor Embedding (*t*-SNE) データの隣接関係をできる限り保ったまま低次元空間に埋め込む手法 低次元でのグラフ表現 データのグラフ表現 $p_{i,j}$ $q_{i,j}$ Y_i $p_{j \to i} = \frac{\exp(-||X_i - X_j||^2 / (2\sigma^2))}{\sum_{k \neq j} \exp(-||X_i - X_j||^2 / (2\sigma^2))}$ $p_{i,j} = \frac{p_{j \to i} + p_{i \to j}}{2N}$ $q_{i,j} = \frac{\left(1 + ||Y_i - Y_j||^2\right)^{-1}}{\sum_{k,l:k\neq l} (1 + ||Y_k - Y_l||^2)^{-1}}$

この二つのグラフが近くなるような $Y_1, ..., Y_N \in \mathbb{R}^2$ (埋め込み)を見つける

* *t*-distributed Stochastic Neighbor Embedding (*t*-SNE)

データの隣接関係をできる限り保ったまま低次元空間に埋め込む手法

低次元でのグラフ表現

$$\min_{y_1,\dots,y_N} D(p,q) = \sum_{i,j} p_{i,j} \log \frac{p_{i,j}}{q_{i,j}}$$
を確率的勾配法によって求める

t-SNEの適用例

先ほどPCAではうまくいかなった手書き数字認識の例で使ってみると

From https://www.tensorflow.org/datasets/catalog/mnist?hl=ja

綺麗にラベルと対応した埋め込み

Uniform Manifold Approximation and Projection (UMAP)

t-SNEは「遠いものは遠く」なるわけではない →この結果を解消し、解釈しやすい次元圧縮を行うのがUMAP

* McInnes et al. (2018) UMAP: Uniform Manifold Approximation and Projection * 酒井・寺田・高橋 (2024) 重力波観測における突発性雑音の教師なし分類

Uniform Manifold Approximation and Projection (UMAP)

データの局所構造・大域構造を保ったまま低次元空間に埋め込む手法

Uniform Manifold Approximation and Projection (UMAP)

データの局所構造・大域構造を保ったまま低次元空間に埋め込む手法

低次元でのグラフ表現

データのグラフ表現

* Uniform Manifold Approximation and Projection (UMAP)

データの局所構造・大域構造を保ったまま低次元空間に埋め込む手法

低次元でのグラフ表現

データのグラフ表現

Takahashi, Y., and Kano (2025)

高次元データとはいえ、データに関する事前知識は重要

高次元のデータ解析のアイデア

グラフ構造

本日の内容

スパース推定

*川野・松井・廣瀬(2018)「スパース推定法による統計モデリング」

Least Absolute Shrinkage of Selection Operators (LASSO)

回帰モデルの回帰係数のスパース推定 (Tibshirani, 1996; Chen et al., 1998) • 1次元の予測値と*d*次元の共変量の組 {(*y_i*, *x_i*): *i*, ..., *n*}

$$\hat{\theta}_{\lambda} \coloneqq \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} \sum_{i=1,\dots,n} \left(y_i - x_i^{\mathsf{T}} \theta \right)^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} ||Y - X\theta||^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\}$$

Least Absolute Shrinkage of Selection Operators (LASSO)

回帰モデルの回帰係数のスパース推定 (Tibshirani, 1996; Chen et al., 1998) • 1次元の予測値と*d*次元の共変量の組 {(*y_i*, *x_i*): *i*, ..., *n*}

$$\hat{\theta}_{\lambda} \coloneqq \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} \sum_{i=1,\dots,n} \left(y_i - x_i^{\mathsf{T}} \theta \right)^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} ||Y - X\theta||^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\}$$

Least Absolute Shrinkage of Selection Operators (LASSO)

回帰モデルの回帰係数のスパース推定 (Tibshirani, 1996; Chen et al., 1998) • 1次元の予測値と*d*次元の共変量の組 {(*y_i*, *x_i*): *i*, ..., *n*}

$$\hat{\theta}_{\lambda} \coloneqq \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - x_i^{\mathsf{T}} \theta \right)^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} ||Y - X\theta||^2 + \frac{\lambda}{n} ||\boldsymbol{\theta}||_1 \right\}$$

LASSOの仲間: Generalized LASSO

$$\underset{\theta}{\operatorname{argmin}} \left\{ \frac{1}{2n} ||Y - X\theta||_{2}^{2} + \frac{\lambda}{n} ||D\theta||_{1} \right\}$$

• Fused LASSO: 隣接制約

$$D = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}$$

• *l*₁trend filtering:区分微分可能関数

$$D = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & \cdots & 0 & -1 & 1 \end{pmatrix}$$

LASSOの仲間: Generalized LASSO

• *l*₁trend filtering:区分微分可能関数

$$\underset{\theta}{\operatorname{argmin}} \left\{ \frac{1}{2n} ||Y - X\theta||_{2}^{2} + \frac{\lambda}{n} ||D\theta||_{1} \right\}$$

• Fused LASSO: 隣接制約

*LASSOの仲間: Square-root LASSO (Belloni, Chernozhukov, Wang, 2011)

- 実際のLASSOの性能は観測分散σに依存する (λの取り方等)
- •LASSOの定式化を少し変更することでこの依存がなくせる

$$\operatorname{argmin}_{\theta} \left\{ \frac{1}{2n} ||Y - X\theta||^2 + \frac{\lambda}{n} ||\theta||_1 \right\} \qquad \operatorname{argmin}_{\theta} \left\{ \frac{1}{\sqrt{2n}} ||Y - X\theta|| + \frac{\lambda}{n} ||\theta||_1 \right\}$$

Square-root LASSO!

• Distributionally Robust Optimizationとの関連 (Blanchet, Kang, Murthy, 2019)

$$\min_{\theta} \left\{ \frac{1}{\sqrt{2n}} ||Y - X\theta|| + \frac{\lambda}{n} ||\theta||_1 \right\} = \min_{\theta} \max_{P:D_{\infty}(P,P_n) \le \frac{4\lambda}{n}} E_P[||Y - X\theta||^2]$$

$$D_{\infty}(P, P_n) \coloneqq \inf_{\pi \in \Pi(P, P_n)} E_{\pi}[||Z_1 - Z_2||_{\infty}]$$

l_1 トレンドフィルタリングを活用した現象発見 (Yano and Kano, 2023)

λの取り方が適切でないとスパース推定の技法は実際には使えない

正規分布の部分積分:Steinの等式

• Steinの等式: 正規分布に関する「部分積分」[Stein (1973)]

 $E[(X - \mu)f(X)] = \sigma^2 E[f'(X)], \qquad X \sim N(\mu, \sigma^2)$

Mallows' C_p / Stein's unbiased risk estimate

Steinの等式を利用すると

LASSOの予測二乗誤差の「良い推定量」を作ることができる

定理 (Zou, Hastie, Tibshirani, 2007) 観測ノイズがガウスであるとき、 $E[||\tilde{Y} - X\hat{\theta}_{\lambda}||^{2}] = E[||Y - X\hat{\theta}_{\lambda}||^{2} + 2\sigma^{2}||\hat{\theta}_{\lambda}||_{0}]$

*二宮 (2023) 「LASSOに対するSURE理論に基づく情報量規準」

LASSOの確率的挙動:LASSOの別の定式化

残差2乗和は次の最大化問題に帰着できる:

$$\frac{1}{2}||x||^{2} = \max_{u} \left\{ u^{T}x - \frac{1}{2} ||u||^{2} \right\}$$

Legendre \overline{z} \underline{b}

LASSOはmin-max問題として定式化できる:

$$\min_{\theta \in \mathbb{R}^d} \left\{ \frac{1}{2n} ||Y - X\theta||_2^2 + \frac{\lambda}{n} ||\theta||_1 \right\} = \min_{\theta \in \mathbb{R}^d} \max_{u \in \mathbb{R}^n} \left\{ \frac{-1}{2n} u^\top X\theta + u^\top Y - \frac{1}{2n} ||u||_2^2 + \frac{\lambda}{n} ||\theta||_1 \right\}$$

$$\mathsf{PO} = \min_{\theta \in \mathbb{R}^d} \max_{u \in \mathbb{R}^n} \left\{ \frac{-1}{2n} u^{\mathsf{T}} X \theta + \psi_{\lambda}(u, \theta) \right\}$$

LASSOの確率的挙動:LASSOの補助問題

Min-max問題の二次形式 $u^T X \theta$ は $g, h \sim N(0, \sigma^2)$ を用いて確率的に分離可能

PO~ AO =
$$\min_{\theta \in \mathbb{R}^d} \max_{u \in \mathbb{R}^n} \left\{ \frac{1}{2n} ||u|| g^{\mathsf{T}}\theta + ||\theta|| h^{\mathsf{T}}u + \psi_{\lambda}(u,\theta) \right\}$$

* Convex Gaussian min-max theorem (Thrampoulidis, Omyak, Hassibi, 2015)
* Hayakawa (2023) Asymptotic Performance Prediction for ADMM-Based Compressed Sensing

LASSOの確率的挙動:LASSOの一次元問題への帰着 補助問題は比例的高次元 $(d/n \rightarrow \gamma)$ で「一次元のmax-min問題」に帰着可能 $\max_{b\geq 0} \min_{\tau\geq \sigma} \psi_{\lambda}(b,\tau)$ where $\psi_{\lambda}(b,\tau) := \left(\frac{\sigma^2}{\tau} + \tau\right) \frac{b}{2} - \frac{b^2}{2} + \frac{1}{\delta} \mathbb{E} \left| \min_{\omega \in \mathbb{R}} \left\{ b \frac{\omega^2}{2\tau} - b \omega W + \lambda |\omega + \Theta| - \lambda |\Theta| \right\} \right|$ しかし、実は解ける 複雑な式に見える・・・ $\tau_*^2 = \sigma^2 + \frac{1}{\delta} \mathbb{E} \left| \left\{ S_{\frac{\tau_*}{b_*}\lambda}(\Theta + \tau_* W) - \Theta \right\}^2 \right|,$ $b_* = \tau_* \left\{ 1 - \frac{1}{\delta} \Pr\left(|\Theta + \tau_* W| \ge \frac{\tau_*}{b_*} \lambda \right) \right\}.$

* Miolane and Montanari (2021) The distribution of the Lasso...

LASSOの高次元での確率的挙動

・先ほどの解_t。は次の形で簡単に推定可能

比例

スパース推定量の(高次元での)確率的な挙動が明らかになった

* Han and Shen (2023) Universality of regularized regression estimators in high dimensions * Sawaya, Uematsu, Imaizumi (2024) HIGH-DIMENSIONAL SINGLE-INDEX MODELS

高次元のデータ解析のアイデア

78

本日の内容

ベイズ統計

「ベイズの定理」に基づき推定から不確実性評価までを一気貫通

80

ベイズ統計の利用:逆解析

緊急地震速報では震源をその推定の不確実性も込みで評価している →推定結果の不確実性評価・多峰性の対処 すべり推定などでも活躍

近年は高次元逆問題や関数自由度をもつ推定問題でのベイズの利用が注目 →推定結果の不確実性評価・安定性解析

Monard et al., AoS, 2020

Deringer, et al., chemical reviews, 2021

近年は高次元逆問題や関数自由度をもつ推定問題でのベイズの利用が注目 →推定結果の不確実性評価・安定性解析

FIG 4. Example 2. Left to right. Top row: If_1 ; If_1 noisy (with β on the horizontal axis and α on the vertical axis). Bottom row: posterior mean; cross-section on $\{x_2 = 0\}$ of 2000 posterior samples.

Monard et al., AoS, 2020

Deringer, et al., chemical reviews, 2021

83

高次元・無限次元でのベイズの不確実性評価は妥当な不確実性評価?

*話の詳細はリーディングDAT無料講座で公開中 https://sites.google.com/view/leadingdatism/

事後分布と繰り返し抽出での不確実性の不一致

関数自由度をもつ事前分布を利用するとき(e.g., ガウス過程)

事後分布 繰り返し抽出での推定量分布
$$\sqrt{n}(f-\hat{f}) \mid X = x$$
の分布 $\neq \sqrt{n}(\hat{f}-f_0) \mid f_0$ の分布 as $n \to \infty$

事後分布と繰り返し抽出での不確実性の不一致

関数自由度をもつ事前分布を利用するとき(e.g., ガウス過程)

事後分布

$$\sqrt{n}(f - \hat{f}) \mid X = x$$
の分布 $\neq \sqrt{n}(\hat{f} - f_0) \mid f_0$ の分布 $\operatorname{as} n \to \infty$

* Cox (1993) An Analysis of Bayesian Inference for Nonparametric Regression

Castillo & Nickl (2013) のアイデア:積分の利用

比較の際に「高周波成分」が邪魔をする

→ 積分することで高周波成分の影響を減らして考える

Castillo and Nickl (2013) Nonparametric Bernstein–von Mises theorems in Gaussian white noise Castillo and Nickl (2014) On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures Castillo & Nickl (2013) のアイデア : weak norm

必要な回数積分する操作を一般化し、

以下のような高周波成分を低減するようなノルムを考える:

strong inner-product
$$\langle f,g \rangle_2 = \sum_i \langle f,\phi_i \rangle \langle g,\phi_i \rangle$$

weak inner-product $||f||_w^2 = \sum_i w_i \langle f,\phi_i \rangle \langle g,\phi_i \rangle$ with $w_i \to 0$
*弱い内積によるヒルベルト空間を升(w)と書く

一致の「位相」を変える

Castillo and Nickl (2013, 2014):分布の一致を||・||_wで定義し直すことで

数値実験による検証:信用区間と信頼区間の幅の評価

 $||f - \hat{f}||_2 \geq ||\hat{f} - f_0||_2 \sigma \leq \lambda \leq \lambda$

$||f - \hat{f}||_{w} \geq ||\hat{f} - f_{0}||_{w}$ のヒストグラム

* Yano and Kato (2019) On frequentist coverage errors of Bayesian credible sets in moderately high dimensions

ベイズにおけるモデルと事前分布の選択

ベイズでは「尤度関数」の設計と「事前分布」の設計が必要

 $p(X_1, \dots, X_N \mid \theta) \qquad \qquad \gg \pi(\theta \mid X_1, \dots, X_N)$ $\pi(\theta)$ Х

ここではベイズの交差検証法・汎化誤差推定の観点で説明

交差検証法 (Leave-one-out CV; LOOCV)

- データを検証用と学習用にランダム分割し、学習用での学習結果を検証用で評価
 機械党羽エデルのチームングパラメタアセルのデフラクトスタングード
- 機械学習モデルのチューニングパラメタ選択のデファクトスタンダード

ベイズモデルの評価:広く使える情報量規準(WAIC)

WAIC (Watanabe, 2010) は汎化のためのモデル評価規準

$$WAIC_{2} = \frac{1}{n} \sum_{i} \{ \underbrace{\mathbf{E}_{pos}[-\log p(X_{i} \mid \theta)]}_{i} + \frac{1}{n} \sum_{i} \underbrace{\mathbf{V}_{pos}[\log p(X_{i} \mid \theta)]}_{i} + \frac{1}{n} \underbrace{\sum_{i} \underbrace{\mathbf{V}_{pos}[\log p(X_{i} \mid \theta)]}_{i}}_{i} + \frac{1}{n} \underbrace{\sum_{i} \underbrace{\mathbf{V}_{pos}[\log p(X_{i} \mid \theta)]}_{$$

- ・「全ての量が事後標本のみで計算可能」
- ・多峰の事後分布でも汎化損失の妥当な推定値になっている
- 一個抜き交差検証法の近似になっている

ベイズモデルの評価:事後共分散型情報量規準

評価する損失は対数尤度だけではなく、ユーザーが指定したい

→ Iba and Y. (2023,2024) Posterior Covariance Information Criterionを提案

$$PCIC_{G} = \frac{1}{n} \sum_{i=1,...,n} \underbrace{\frac{E_{pos}[l(X_{i},\theta)]}{\uparrow} - \frac{1}{n} \sum_{i} \underbrace{\frac{Cov_{pos}[l(X,\theta),\log p(X_{i} \mid \theta)]}{\uparrow}}_{i}$$

事後分布による期待値 事後分布による共分散

WAICのもつ良い性質を保ったまま任意の損失を扱えるように

Iba and Yano (2023) Posterior Covariance Information Criterion for Weighted Inference Iba and Yano (2024) Posterior covariance information criterion for general loss functions, R & R

WAICやPCICは「高次元」でも機能するのだろうか?

ベイズニューラルネットワーク・深層学習

高次元データ

高次元線形回帰でのWAIC

高次元線形回帰では WAICは良い汎化推定量

Theorem 1 in Okuno and Y. (2023)

$$X_1, ..., X_n$$
:独立同一に共分散行列 Σをもつガウス分布に従う共変量
 $\xi = tr(\Sigma) \& b = d^{1/2} ||\beta||_{\infty}$
この時、任意の $\varepsilon > 0$ に対し
 $Pr(|WAIC - G_G| > \varepsilon) \le C_{\xi,b}\left(\frac{1}{n}\right)$

*次元数によらない収束 *収束スピードは共変量共分散の対角和

と回帰係数の大きさ bで決まる

* Okuno and Yano (2023) A generalization gap estimation for overparameterized models via Langevin functional variance

高次元こそPCICやWAICが光る?

他の汎化誤差の指標との比較

高次元のデータ解析のアイデア

99

まとめ

高次元データの解析技法を三つの観点で整理・紹介

100