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Background: Kernel methods

Feature map ¢

*¢(z)

D complex-valued function
(temperature, traffic amount,...)
X RKHS?
(Finite dimensional sp.) (Infinite dimensional Hilbert sp.)
Nonlinear o, Linear

0... o Kernel PCA, Kernel SVM

e Learning complex-valued functions

Advantages of RKHS
® Nonlinearity in the original space is transformed into a linear one.

® We can compute inner products in RKHS exactly by computers.

1Schélkopf and Smola, MIT Press, Cambridge, 2001
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Background: Reproducing kernel Hilbert space (RKHS)

Let X beaset. Amap k: X x X — C is called a positive definite kernel if
it satisfies:

1. k(x,y) = k(y,z) for z,y € X and
2. 228:1077{7(%,%)65 >0 forneN, c,...,cn €C, zq,...,2, € X.

¢(z) := k(-,7) (¢ : X — C¥: feature map associated with k),
Hio:={> 1 d(@)ct| n€N, ¢ €C, € X}, (1)
We can define an inner product (-,-), : Hpo X Hio — C as
<ZZ:1 ¢($s)037 Zfz:1 ¢(yt)dt>k = 22:1 Zfszl Fsk(xsa yt)dt- (2)

Reproducing property: (¢(x),v), = v(x) for v € Hy and z € X
’ RKHS #,: completion of /Hk,O‘
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Background: Representer theorem in RKHSs

The representer theorem guarantees that solutions of a minimization
problem are represented only with given samples?.

Hki RKHS
Riy:={a€R | a>0}

Theorem 1 Representer theorem in RKHSs

Let 21,...,2, € X and a1,...,a, € C. Let h: X x C> — R, be an error
function and g : Ry — Ry satisfy g(¢) < g(d) for ¢ < d. Then, any

u € Hy minimizing Y1, h(xi, a;, w(x;)) + g(JJul|x) admits a
representation of the form > | ¢(x;)c; for some ¢q,. .., ¢, € C.

The result can be applied to supervised problems.

2Scholkopf et al., COLT 2001.
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Goal: Generalization of data analysis in RKHS to RKHM

Feature map ¢ °¢(2)
ple C*-algebra-valued function
(function, image,...)
X RKHM
(Structured data sp.) (Infinite dimensional Hilbert C*-module)
Nonlinear Linear + C*-algebra-valued inner product

Advantages of RKHM:

e (C*-algebra-valued inner products extract information of structures.
We constructed a framework of data analysis with RKHM.

® \We can reconstruct existing RKHSs by using RKHMs.

® We have shown fundamental properties for data analysis in RKHMs
(e.g. representer theorem, kernel mean embedding).
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C*-algebra

(C*-algebra : Banach space equipped with a product & an involution *
+ C*-property
eg.
® C(Z2) for a compact space Z
Norm : sup norm, Product : pointwise product,
Involution : pointwise complex conjugate

K(H) = {compact operators on a Hilbert space H}
Norm : operator norm, Product : composition, Involution : adjoint

L°°(Z) for a measure space Z
B(#H) = {bounded linear operators on a Hilbert space H}
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Review of reproducing kernel Hilbert C*-module

A: C*-algebra

RKHS (Hg):
e (C-valued positive definite kernel k
e (C-valued functions

e (C-valued inner product

RKHM over A (My):
e A-valued positive definite kernel k
e A-valued functions

e A-valued inner product
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Reproducing kernel Hilbert C*-module (RKHM)

Let X beaset. Amapk: X x X — A is called an A-valued positive
definite kernel if it satisfies:

1. k(x,y) = k(y,z)* for x,y € X and
2. 228:1 cik(ze,z5)cs >0 formeN, ¢p,...,cn €A 21,...,0p € X.

() := k(-,z) (¢ : X — A%: feature map associated with k),
My = {Z?:l ¢(xt)ct‘ neN, €A, x; € X}. (3)
We can define an A-valued inner product (-,-), : Mg o X Myo— A as
(X0 d(@s)es, Ximy dWe)de), = Sty Yiy k(s ye)ds. (4)

Reproducing property: (¢(x),v), = v(x) for v € My and z € X
’ RKHM M;,: completion of My, o ‘
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Representer theorem in RKHMs

To generalize complex-valued supervised problems to A-valued ones, we
show a representer theorem.

My RKHM over A, | - |x: absolute value in My
Ay :={a€ A | 3be Asuch that a = b*b}

Theorem 2 Representer theorem in RKHMs

Let A be a unital C*-algebra, z1,...,2, € X and aq,...,a, € A. Let
h:X x A% — A, be an error function and g : A, — A, satisfy

g(c) < g(d) for ¢ < d. If Span 4{¢(z;)}"_, is closed, any w € My,
minimizing f(w) := > ;" h(xi, a;, w(z;)) + g(|wlx) admits a
representation of the form """ | ¢(z;)c; for some ¢y, ..., ¢, € A.

Key point of the proof:

For a Hilbert C*-module M over a unital C*-algebra A and any finitely
generated closed submodule V of M, w € M is decomposed into

w = wy + wy where wy € V and ws € V*.
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Approximate representer theorem in RKHMs

If Ais a von Neumann algebra, we can show an approximate representer
theorem under mild conditions.

Theorem 3 Approximate representer theorem in RKHMs

Let A be a von Neumann-algebra, z1,...,2, € X and ay,...,a, € A.
Let h: X x A? — A, be a Lipschitz continuous error function with
Lipschitz constant L and g : Ay — A, satisfy g(c) < g(d) for ¢ < d.
Assume f(w) =" | h(xi, ai, w(z;)) + g(|w|k) has a minimizer w. Then,
for any € > 0, there exists v € My, of the form Y " | ¢(x;)c; such that
1f(v) = f(w)lla < Lne||wl|.a-

Key point of the proof:

If A is a von Neumann-algebra, we can apply the Gram—Schmidt
orthonormalization to construct a module approximating the module
generated by {¢(x;)} ;.
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Background: Challenge of applying RKHM

A challenge of kernel methods: choice of kernels

We focus on the case of X = C(T)? and A = C(T).
Typical examples of C/(T)-valued kernels for functional inputs:

1. Commutative kernels

o k(z,y)(2) = k(z(2),y(2)) for z,y € C(T)%,
where k : C? x C% — C is a complex-valued positive definite kernel.
k(x,y)(z) is determined only with x(2) and y(z).

We can only extract local dependencies of the output function on the input
function.
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Background: Challenge of applying RKHM

A challenge of kernel methods: choice of kernels

Typical examples of C(T)-valued kernels for functional inputs:
2. Separable kernels
* k(z,y) = k(z,y)a for z,y € C(T)?,

where & : C(T)? x C(T)¢ — C is a complex-valued positive definite kernel
and a € C(T) satisfies a > 0.

The dependency of the output function on the input function is determined
only with the fixed function a.
We can only extract global dependencies of the output function on the

input function.

Goal: Construct kernels that fill a gap between commutative and separable
kernels.
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Background: Spectral truncation

e;j(z) = €Y% (j € Z): Fourier function.
r € A= C(T), M,: multiplication operator w.r.t. 2 on L?(T)
P, projection onto Span{ey,...,e,}

Approximate M, by P,M,P,. The representtion matrix is

Rn(x)jJ = <€j, Mx€l>L2(T) = JT $(t)e_i(j_l)tdt. (5)

® R, (z) is a Toeplitz matrix ((j,)-element depends on j —1).
® Ry(z) corresponds to the coefficients of e_¢,_1),...,en_1.
Define S,, : C"*"™ — A by

n—1
Su(A)(2) =~ D Ayl ” (6)

7,=0
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Kernels with Toeplitz matrices

New class of kernels based on spectral truncation:

* Polynomial kernel: kPY:9(z, 1) <Zaz ;) Rn(yi)q>,

® Product kernel:

fprodid (5 4y = (HR (k1j(z,y)) ﬁ ))).

where k1 j, ko ;, are complex-valued positive deflnlte kernels,
xr =[z1,...,24), and a; > 0.

Input function
x

®
y
Prpjection ?

105, 8, ()" Ry (7)) QutPUt
Toeplitz matrixq T\ n function
\ R (x)

07 Ra(»)

> ‘ Rn(x) R,(¥) Matrix

Q fe >\
Span{e_(n-1), - €n
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The case of n = co: commutative kernel

where F2P(¢) = 1/n Z;":_ll > orejpza e is the generalized Fejér kernel
and P ={[ry,...,moq € R¥ | |31, 7| <1, 1 <m}.

Using this formula, we can show the proposed kernels are commutative if
n = oo (local dependencies).

Theorem 4

For z,y € A? and z € T, k2°Y9(z, y)(2) — kP4 (2, y)(2),
KR (2, 4)(2) — kProY4 (g, y)(2) as n — oo, where

kP9 (a,y)(2) = 2y @i@i(2)yi(2))? and

kProdd(z, y) (2) = [T, kuj(@(2), y(2) ka3 (2(2), y(2))-
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The case of n = 1: separable kernel

Since Ry (x) = [ (t)dt, we have
. kp"l”(x y) = Sn (1 @i Ru(2:)*) Ra(y:)°)
_Zz 1o [ dtqhy t)des,
o () = S (Tl Rulkr(e )" Ty Ra(hay(,9)
TT0_y [ by (a(t), y(8))dt [ ko j(2(t), y(2))dt,

The proposed kernels are separable if n = 1 (global dependencies)

— If 1 < n < oo, the proposed kernels can extract both local and global
dependencies.
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Fejér kernel

5 8
3
Fi (21, 25)

o

25

20 150

15 : 100

10 h » 50
» s
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Positive definiteness

Proposition 1

The kernel k2°%? is positive definite.

As for kB4 we cannot separate = and y as products. Thus, we modify
the kernel to guarantee the positive definiteness.

Proposition 2

Let B, > — mingers Fr®7 (). Let

kRO (2, y) = kp“’d"’(:v y)

| Hkl,j Y3 P (2(tas), (k).

Then, kRrod s positive definite.
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Numerical results

Image reconstruction task with MNIST.
Input (z;): Masked images, Output (a;): Recovered images
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Test error and the reconstructed images for different values of n.
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Conclusion

® RKHM is a natural generalization of RKHS.
e RKHMs are useful for analyzing image data and functional data.
® We constructed new class of kernels based on spectral truncation.

e The proposed kernels fill a gap between existing commutative and
separable kernels.

Spectral truncation % FU\/=BAEEH — RIL DIERK



	Motivation and Background
	Reproducing kernel Hilbert C*-module (RKHM) and representer theorem
	Constructing kernels based on spectral truncation
	Conclusion

