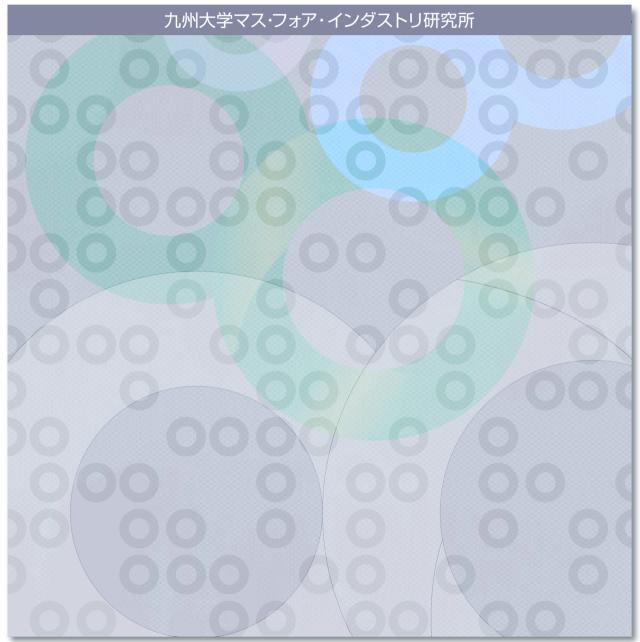


IMI Workshop of the Joint Usage Research Projects

Evolving Design and Discrete Differential Geometry: towards Mathematics Aided Geometric Design

Editors: Makoto Ohsaki and Yoshiki Jikumaru



MI Lecture Note Vol.101: Kyushu University

IMI Workshop of the Joint Usage Research Projects

Evolving Design and Discrete Differential Geometry: towards Mathematics Aided Geometric Design

Editors Makoto Ohsaki and Yoshiki Jikumaru

About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture Notes, which were published for the 21st COE Program "Development of Dynamic Mathematics with High Functionality," sponsored by Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lecture Note Series has published the notes of lectures organized under the following two programs: "Training Program for Ph.D. and New Master's Degree in Mathematics as Required by Industry," adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009; and "Education-and-Research Hub for Mathematics-for-Industry," adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) in April 2011 and the authorization of IMI's Joint Research Center for Advanced and Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI.

October 2022 Kenji Kajiwara Director, Institute of Mathematics for Industry

Evolving Design and Discrete Differential Geometry: towards Mathematics Aided Geometric Design

MI Lecture Note Vol.101, Institute of Mathematics for Industry, Kyushu University

ISSN 2188-1200

Date of issue: October 1st, 2025

Editors: Makoto Ohsaki and Yoshiki Jikumaru

Publisher:

Institute of Mathematics for Industry, Kyushu University Graduate School of Mathematics, Kyushu University Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN Tel +81-(0)92-802-4402, Fax +81-(0)92-802-4405 URL https://www.imi.kyushu-u.ac.jp/

Preface

The International Workshop on "Evolving Design and Discrete Differential Geometry - Towards Mathematics Aided Geometric Design" was convened during March 10–13, 2025, in Fukuoka, Japan, under the joint support by Institute of Mathematics for Industry (International Project Research: Workshop (I)) and JST CREST (JPMJCR1911).

Recently, we have been experiencing rapid developments in curved surface design in various fields of design and engineering including architectural design, industrial design, mechanical design, computer graphics, and data processing. In other words, we are facing a kind of paradigm shift in the design and manufacturing process; for example, some of the traditional subtractive manufacturing has been replaced by additive manufacturing. With the development of design tools, demand for designing complex surfaces has increased. Accordingly, design methods for manufacturing and constructing complex continuous/discrete surfaces are becoming important. In this situation, we have growing demand for coordination among the researchers and practitioners in artistic design, structural design, industrial design, as well as those in fabrication and construction.

Discrete differential geometry is an important field of mathematics with applications in curved surface design. The research group of JST CREST with the same title as this workshop has been working on the discrete forms of variational principle and non-Euclidian geometry, and has proposed various methods of designing discrete surfaces with properties such as foldable/retractable surfaces, constant mean curvature surfaces, polyhedral surfaces by rigid origami, aesthetically pleasing surfaces, etc. In order to provide the results of these studies in a publicly accessible form, a prototype of a platform has been developed for performing the design, analysis, and fabrication/construction in an interactive, cyclic, and bi-directional manner on the same surface model.

This meeting provided a forum to exchange information between researchers and practitioners on the theories and techniques underlying the development of design platforms that are based on mathematics, information science, architectural design, and engineering. To enable the design of a structure that has aesthetic value and ensure its safety, 66 researchers and practitioners including nine invited prominent speakers in the related fields discussed during a four day period of meeting to identify common issues through the presentations by experts from all over the world as well as those in the CREST project. The mathematical formulations for new shape design methods based on discrete differential geometry and the variational principle will open a new direction for curved surface design. This meeting has provided an important opportunity to reintegrate knowledge on the geometry of curves and surfaces using mathematics as a hub and sublimate it into a new field of discrete differential geometry for shape design, and to revive Japanese manufacturing, which produces precise and beautiful products but suffers from their high costs.

Chief Editor: Makoto Ohsaki (Kyoto University) April 2025 2024年度九州大学マス・フォア・インダストリ研究所 共同利用・共同研究 一般研究-研究集会(I)

Evolving Design and Discrete Differential Geometry:

towards Mathematics Aided Geometric Design

2025 3.10 mon > 3.13 thu

九州大学西新プラザ

〒814-0002 福岡市早良区西新2-16-23

URL:https://joint.imi.kyushu-u.ac.jp/post-15000/

運堂青仟者,組織委員

大崎 純(京都大学,責任者)

前川 卓(早稲田大学)

三浦 憲二郎(静岡大学)

梶原 健司(九州大学)

三谷 純(筑波大学)

横須賀 洋平(鹿児島大学)

滝沢 研二((早稲田大学)

中嶋 拓(大林組)

堺 雄亮(ソニーコンビュータサイエンス研究所)

招待講演者

Alexander Bobenko (Technische Universität, Berlin)

Yuri Suris (Technische Universität, Berlin)

Olivier Baverel (Ecole des Ponts ParisTech / Ecole nationale superieure d'architecture de Grenoble)

Robin Oval (Delft University of Technology)

Bert Juettler (Johannes Kepler University)

Rudrusamy U. Gobithaasan (Universiti Sains Malaysia)

Md Yushalify Misro (Universiti Sains Malaysia)

Toby Mitchell (Thornton Tomasetti)

Masaaki Miki (University of Tokyo)

問い合わせ先:共同利用・共同研究拠点事務室 主催:九州大学マス・フォア・インダストリ研究所 共催:JST CREST[数理情報活用基盤]設計の新バラダイムを拓く新しい離散的な曲面の幾何学

Program

March 10th (Mon.), 2025

9:00-9:30 Opening: Kenji Kajiwara

9:30-10:15 Keynote 1:Olivier Baverel

Make complex structures affordable

Chair: Kazuki Hayashi

10:45-11:30 Keynote 2:Robin Oval

An algebra for topology finding of surface patterns for structural design driven by similarity

Chair: Kazuki Hayashi

11:30-12:00 Kyoto Group 1

Kazuki Hayashi

Deployable auxetic surface structures: From optimized shape to detail design implementation

Chair: Yusuke Sakai

12:00-12:30 Kyoto Group 2

Kentaro Hayakawa

Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation

of rigid origami

Chair: Yusuke Sakai

13:45-14:30 Keynote 3:Bert Jüttler

Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis

Chair: Takashi Maekawa

14:30-15:00 Kyoto Group 3

Jingyao Zhang

Shape generation of free-form grid shells with polygonal panels

Chair: Kentaro Hayakawa

15:00-15:30 Kyoto Group 4

Yusuke Sakai

Tessellation as a design principle for mechanical metamaterial

Chair: Kentaro Hayakawa

16:00-16:30 Waseda Group 1

Takashi Maekawa and Felix Scholz

All you need is rotation: Construction of developable strips – Part 1 Theory

Chair: Kenjiro T. Miura

16:30-17:00 Waseda Group 2

Takashi Maekawa and Felix Scholz

All you need is rotation: Construction of developable strips – Part 2 Applications

Chair: Kenjiro T. Miura

17:00-17:30 Waseda Group 3

Maya Okada, Naoyuki Fujita, Takuya Terahara, Yastoshi Taniguchi, Kenji Takizawa and

Tayfun E. Tezduyar

Isogeometric Analysis of Membrane and Cable Structures: A Design of Umbrella Zero-Stress

State

Chair: Kenjiro T. Miura

17:30-18:00 Waseda Group 4

Takuya Terahara, Kenji Takizawa and Tayfun E. Tezduyar

Continuity and Smoothness in T-Splines Representations of Structures with Different

Parametric Dimensions

Chair: Kenjiro T. Miura

March 11th (Tue.),2025

9:30-10:00 Kyushu Group 1

Kenji Kajiwara

Generation of Aesthetic Shapes by Integrable Klein Geometry

Chair: Miyuki Koiso

10:00-10:30 Kyushu Group 2

Yoshiki Jikumaru

Geometry of Michell-Prager type structures and hanging membranes

Chair: Miyuki Koiso

10:45-11:30 Keynote 4: Yuri Suris

Discretization of quadrics and of elliptic coordinates

Chair: Yoshiki Jikumaru

11:30-12:00 Kyoto Group 5

Yoshihiro Kanno

Surface generation for confidence-based data-driven computing in elasticity with application to reliability-based truss topology optimization

Chair: Jingyao Zhang

12:00-12:30 Kyoto Group 6

Makoto Ohsaki

Optimization methods for continuum and latticed shells consisting of developable parts

Chair: Jingyao Zhang

14:00-14:30 Kyoto and Kyushu Group

Kentaro Hayakawa

Introduction to the software platform

Chair: Makoto Ohsaki

14:30-15:15 Keynote 5: Alexander I. Bobenko

Discrete conformality and beyond. Where geometry meets computer graphics and mathematical physics (Online)

Chair: Kenji Kajiwara

16:00-16:30 Tsukuba Group 1

Jun Mitani

Interactive Design and Efficient Simulation of Developable Surfaces with Curved Folds

Chair: Makoto Ohsaki

16:30-17:00 Tsukuba Group 2

Kosuke Horiuchi and Jun Mitani

Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the

Gaussian Sphere

Chair: Makoto Ohsaki

17:00-17:30 Tsukuba Group 3

Aida Safary and Jun Mitani

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype

Architectural Design

Chair: Makoto Ohsaki

17:30-18:00 Tsukuba Group 4

Higa Miyashiro Pamela, Yiyang Jia and Jun Mitani

Hoberman's Scissor Mechanism and Digital Fabrication

Chair: Makoto Ohsaki

March 12th (Wed.),2025

9:30-10:15 Keynote 6 Toby Mitchell

Surface Rationalization and Optimization in Structural Engineering Practice

Chair: Yohei Yokosuka

10:45-11:30 Keynote 7 Masaaki Miki

Variable Projection (VarPro) Method and Form-finding of Tension-compression Mixed Shells

Chair: Yohei Yokosuka

11:30-11:50 Kagoshima Group 1

Yohei Yokosuka

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/

Fabricability

Chair: Yoshiki Jikumaru

11:50-12:10 Kagoshima Group 2

Yohei Yokosuka

Lie Spherical Geometry and Design of Curved Surface Structures

Chair: Yoshiki Jikumaru

12:10-12:30 Kagoshima Group 3

Yohei Yokosuka

Form-finding of Composite Tensile Structures by Finite Element Technique based on Nodal

Coordinate Assumption

Chair: Yoshiki Jikumaru

14:00-14:30 Kyoto Group 7

Kazuki Hayashi

Piecewise constant mean curvature surfaces

Kentaro Hayakawa

From generation of rigid origami for approximating a curved surface

Chair: Makoto Ohsaki

14:30-15:00 Kyushu Group 4

Miyuki Koiso

Pillow boxes as developable surfaces with curved foldings

Chair: Makoto Ohsaki

15:00-15:30 Kagoshima Group 4

Yohei Yokosuka

Temporary structures with curved folding

Chair: Makoto Ohsaki

16:00-16:30 Poster Short Talks

16:30-18:00 Poster Session

Presenter # 1: Vishesh Bhat (Okinawa Institute of Science and Technology)

Shaping developables – a dual design recipe

Presenter # 2: Kaito Satake (Kanazawa University)

Title: On isothermic coordinate systems for CMC surfaces in the Lorentz-Minkowski 3-space

Presenter # 3: Sanako Suzuki (Mukogawa Women's University)

Title: Geometric Shape Generation by Singular Generalized Miura-ori with Canonical and

Non-canonical Arrangements

18:30- Banquet

March 13th (Thurs.),2025

9:30-10:15 Keynote8 Rudrusamy U. Gobithaasan

Local & global property quantification with persistent homology

Chair: Kenjiro T. Miura

10:45-11:30 Keynote 9 Md Yushalify Misro

Advancing precision and smoothness of shape preserving with quintic trigonometric Bézier

curves

Chair: Kenjiro T. Miura

11:30-12:00 Shizuoka Group 1

Kenjiro T. Miura

Extension of κ -curve

Chair: Takuya Terahara

12:00-12:30 Kyushu Group 5

Miyuki Koiso

Intrinsic and extrinsic singularities and curvatures of piecewise smooth surfaces

Chair: Shun Kumagai

12:30-13:00 Kyushu Group 6

Yoshiki Jikumaru

Geometric shape generation for ideal lighting

Chair: Shun Kumagai

13:00- Closing: Makoto Ohsaki

Contents

Preface ·····i
Poster Mathematics for Innovation in Information and Communication Technology iii
Workshop Program·····iv
Abstracts & Slides for Mini-courses
Olivier Baverel, Make complex structures affordable
Robin Oval, An algebra for topology finding of surface patterns for structural design driven by similarity
Kazuki Hayashi, Deployable auxetic surface structures: From optimized shape to detail design implementation 39
Kentaro Hayakawa, Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation of rigid origami 53
Bert Jüttler, Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis 65
Jingyao Zhang, Shape generation of free-form grid shells with polygonal panels
Yusuke Sakai, Tessellation as a design principle for mechanical metamaterial105
Takashi Maekawa and Felix Scholz, All you need is rotation: Construction of developable strips - Part 1 Theory
Takashi Maekawa and Felix Scholz, All you need is rotation: Construction of developable strips - Part 2 Applications
Maya Okada, Naoyuki Fujita, Takuya Terahara, Yastoshi Taniguchi, Kenji Takizawa and Tayfun E. Tezduyar, Isogeometric Analysis of Membrane and Cable Structures: A Design of Umbrella Zero-Stress State
Takuya Terahara, Kenji Takizawa and Tayfun E. Tezduyar, Continuity and Smoothness in T-Splines Representations of Structures with Different Parametric Dimensions

Kenji Kajiwara, Yoshiki Jikumaru and Shun Kumagai Generation of Aesthetic Shapes by Integrable Klein Geometry
Yoshiki Jikumaru, Kentaro Hayakawa, Kazuki Hayashi Kenji Kajiwara and Yohei Yokosuka Geometry of Michell-Prager structures and hanging membranes
Yuri B. Suris, Discretization of quadrics and of elliptic coordinates
Yoshihiro Kanno, Surface generation for confidence-based data-driven computing in elasticity with application to reliability-based truss topology optimization
Makoto Ohsaki, Optimization methods for continuum and latticed shells consisting of developable parts
Kentaro Hayakawa, Development of bidirectional circulative design platform
Alexander I. Bobenko, Discrete conformality and beyond. Where geometry meets computer graphics and mathematical physics (Online)
Jun Mitani, Interatice Design and Efficient Simulation of Developable Surfaces with Curved Folds
Kosuke Horiuchi and Jun Mitani, Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the Gaussian Sphere
Aida Safary and Jun Mitani, Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype Architectural Design
Higa Miyashiro Pamela, Yiyang Jia and Jun Mitani, Hoberman's Scissor Mechanism and Digital Fabrication
Toby Mitchell, Surface Rationalization and Optimization in Structural Engineering Practice
Masaaki Miki, Variable Projection (VarPro) Method and Form-finding of Tension-compression Mixed Shells

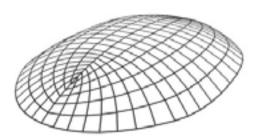
Yohei Yokosuka, Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability 34
Yohei Yokosuka, Lie Spherical Geometry and Design of Curved Surface Structures
Yohei Yokosuka, Form-finding of Composite Tensile Structures by Finite Element Technique based on Nodal Coordinate Assumption
Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya and Yohei Yokosuka Piecewise constant mean curvature surfaces
Kentaro Hayakawa, From generation of rigid origami for approximating a curved surface
Miyuki Koiso, Pillow boxes as developable surfaces with curved foldings
Yohei Yokosuka, Temporary structures with curved folding41
R. U. Gobithaasan and Kenjiro T. Miura Local & Global Property Quantification With Persistent Homology 43
Md Yushalify Misro, Advancing precision and smoothness of shape preserving with quintic trigonometric Bézier curves
Kenjiro T. Miura, Extension of κ -curve
Miyuki Koiso, Intrinsic and extrinsic singularities and curvatures of piecewise smooth surfaces
Yoshiki Jikumaru, Kentaro Hayakawa, Kazuki Hayashi, Miyuki Koiso and Shun Kumagai Geometric shape generation for ideal lighting
Hiroyuki Tagawa, Geometric Shape Generation by Singular Generalized Miura-ori with Canonical and Non-canonical Arrangements
49

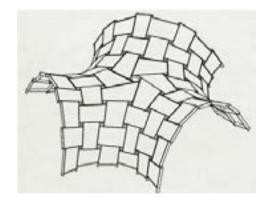
Make complex structures affordable

Olivier Baverel Ecole Nationale des Ponts et Chaussées / ENSAG

Abstract

The presentation focuses on research proposals that make complex structures more affordable constructions. By reinforcing the links between mechanics of materials, structural engineering, applied mathematics and life cycle analysis, new paths may be explored and building innovations proposed. First a focus is made on the life cycle analysis showing that CO2 is not the only parameter to tackle environmental problems. Secondly proposals based on a rigorous mathematical management of shapes and geometry to rationalize complex situations in a fully integrative way, including cladding and connections will be explained. These knowledges may help to find ways to reuse manufactured goods to limit the environmental impact of construction, many case studied will be shown. Finally, new digital and technological tools such as robot or 3D printing allow to revisit ancient techniques and to generate innovative solutions.



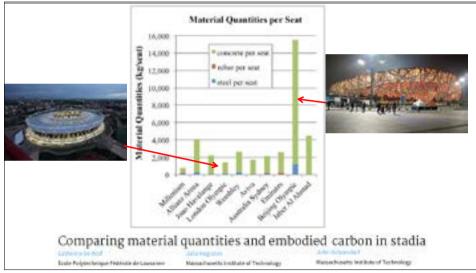


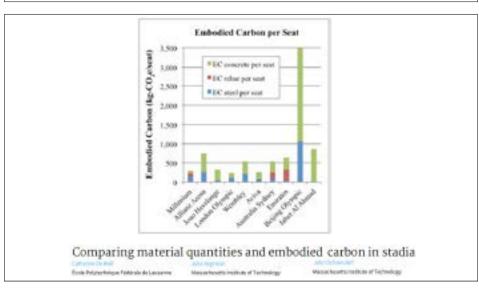
Make complex structures affordable

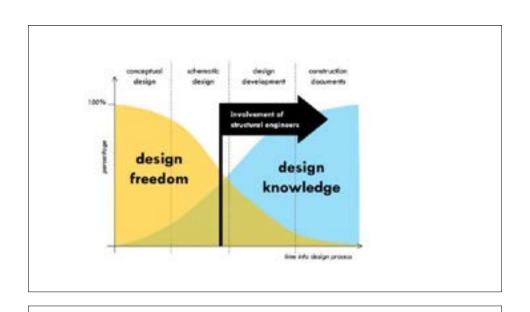
Prof. Olivier BAVEREL

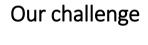
FIStructE

Prof. Ecole Nationale des Ponts et Chaussées Prof. ENS Architecture Grenoble Laboratoire Navier/GSA,









No method

No tool

But we have a strategy

Strategy for a structural innovation MECHANICS GEOMETRY TECHNOLOGY

20 YEARS OF RESEARCH ON ELASTIC GRIDSHELLS

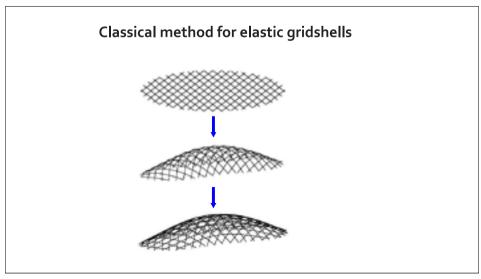
2007 Prototypes ENPC

2007 Prototypes ENPC

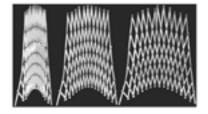
2011 Solidays Festival

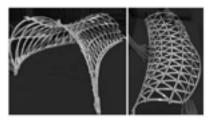
2016 Hybrid Structural Skin

2021



Construction with straight laths





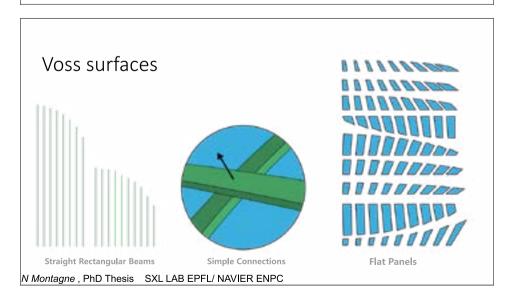
Geodesic gridshells

C. Haskell,

Geodesic gridshells

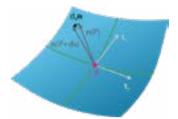
Voss Surfaces

N Montagne, PhD Thesis SXL LAB EPFL/ NAVIER ENPC



Mathematically

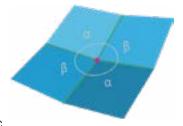
A Voss surface is a surface on which there exists two families of geodesic curves forming a conjugate network.

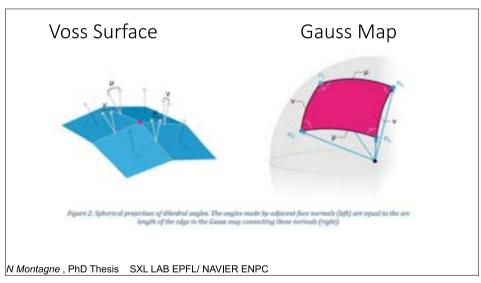


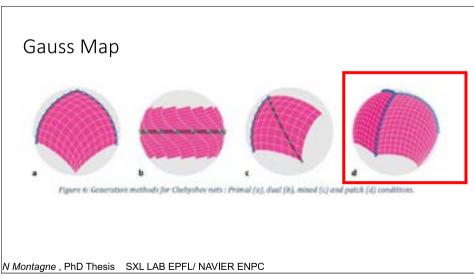
N Montagne, PhD Thesis SXL LAB EPFL/ NAVIER ENPC

Computationally

A discrete Voss surface in the family of quadrilateral meshes is formed by discrete geodesics and planar facets.

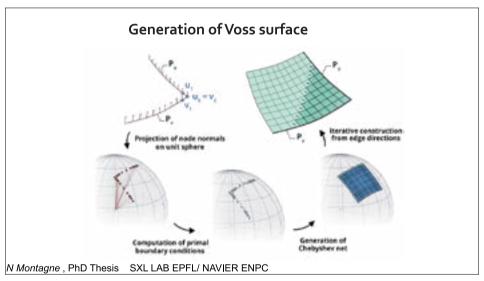


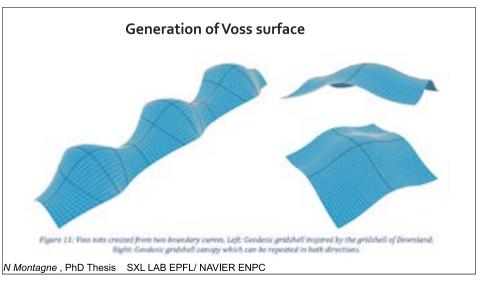


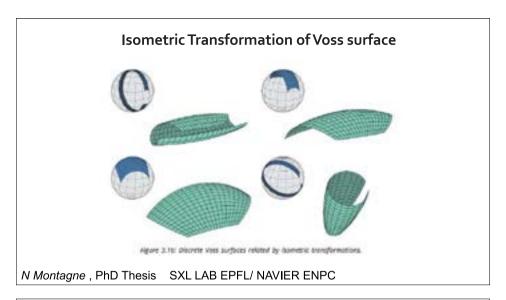


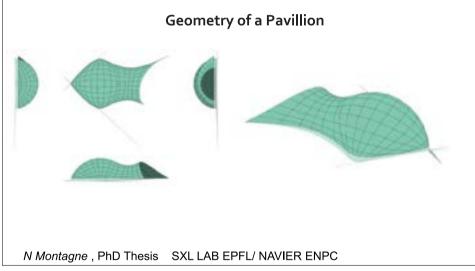
On a Cheybysev net the integral of curvature cannot exceed Pi

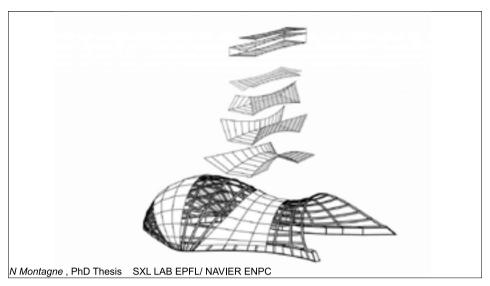
N Montagne, PhD Thesis SXL LAB EPFL/ NAVIER ENPC

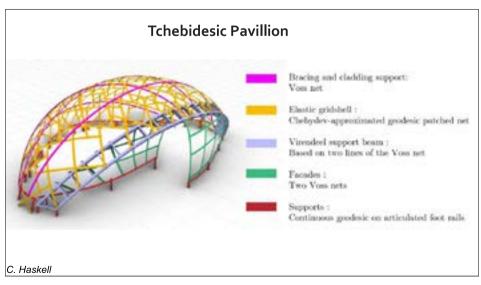












Need for a structural innovation MECHANICS GEOMETRY TECHNOLOGY

Asymptotic gridshells

Asymptotic gridshells

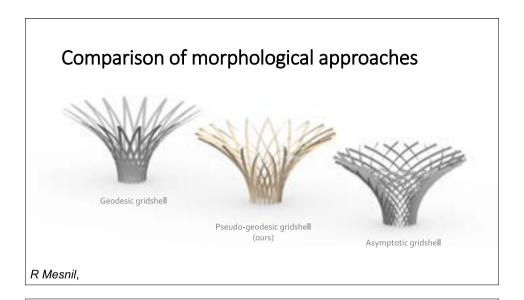
- Laths laid along asymptotic curves
- Zero normal curvature
- Laths laid 'perpendicular' to the surface

Asymptotic network on a minimal surface—Arch. Eike SCHLING

28

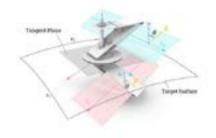
Can we get the best from both worlds?

Comparison of morphological approaches Geodesic gridshell Asymptotic gridshell Pseudo-geodesic gridshell (ours)



Congruent Connector Design

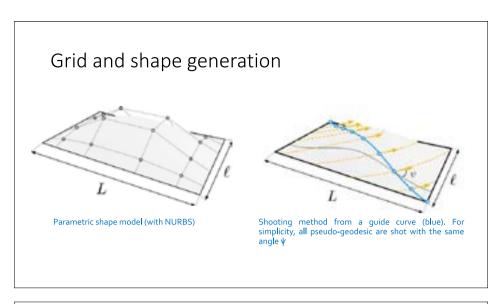
- Axis of connector aligned with surface normal
- Constant angle triangular plates
- Free degree of freedom in rotation
- Patent pending (Mesnil& Baverel 2021)



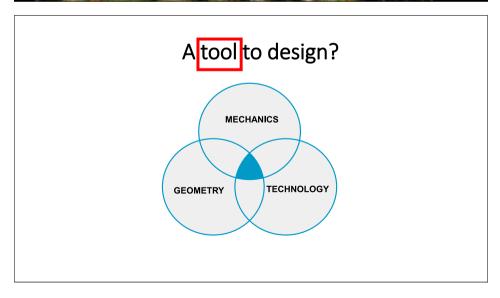
R Mesnil, O. Baverel

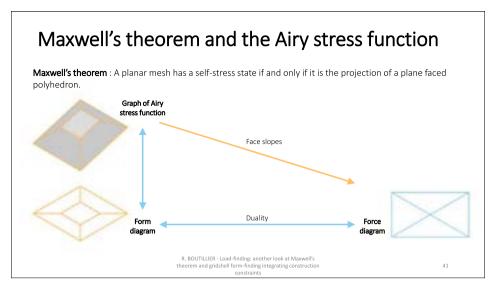
Implementation

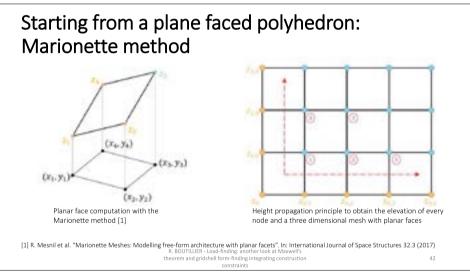
Mesnil, Romain; Muto, Takara; Walia; Krittika; Douthe, Cyril; Baverel, Olivier. « Design and construction of a pseudo-geodesic gridshell." *Advances in Architectural Geometry* 2023.

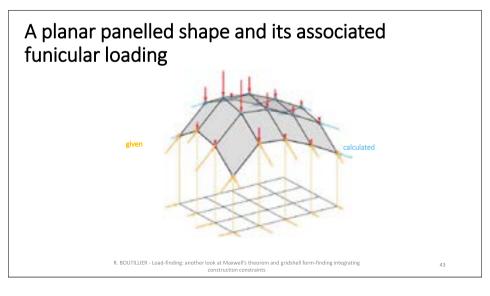


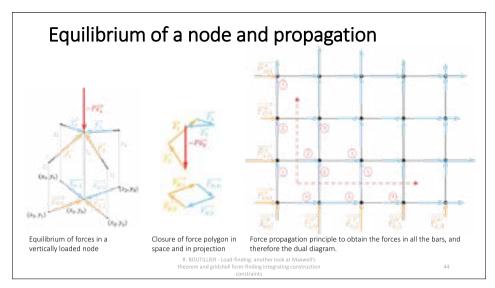


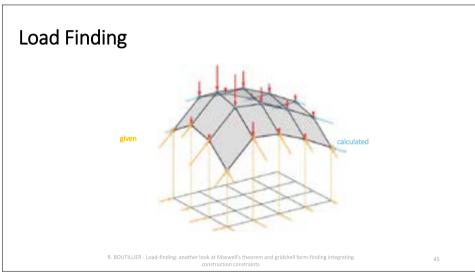


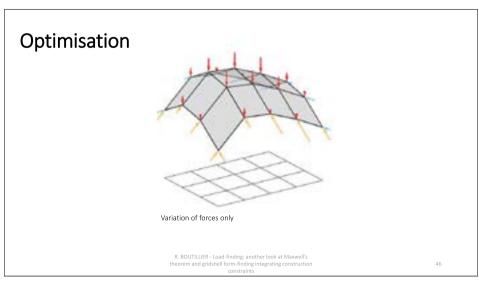


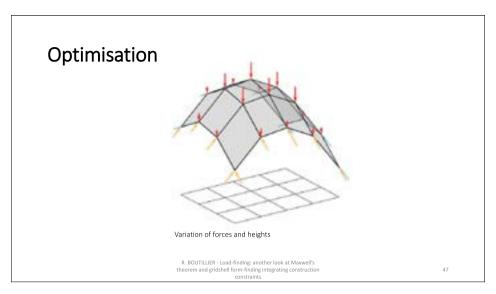


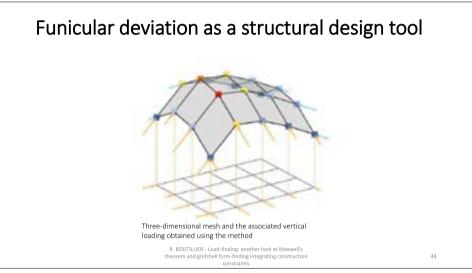


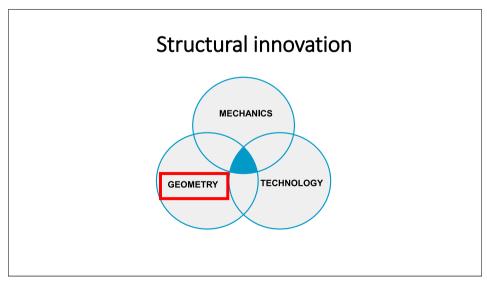


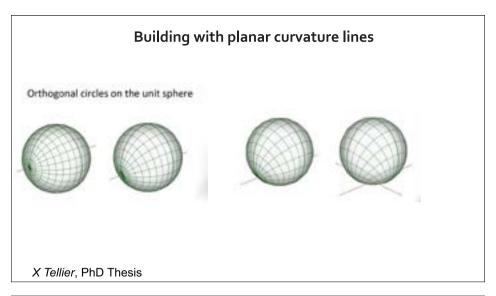


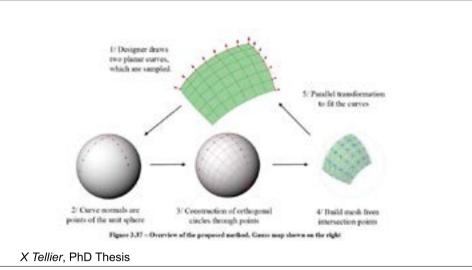


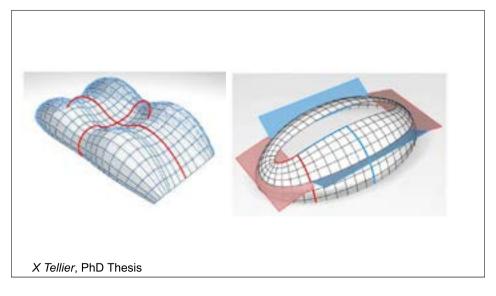


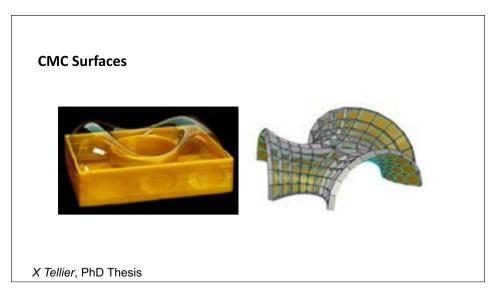


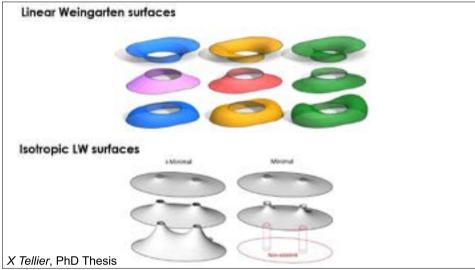


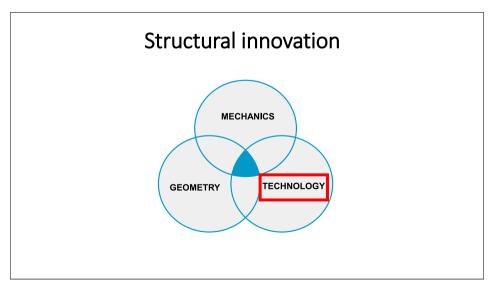


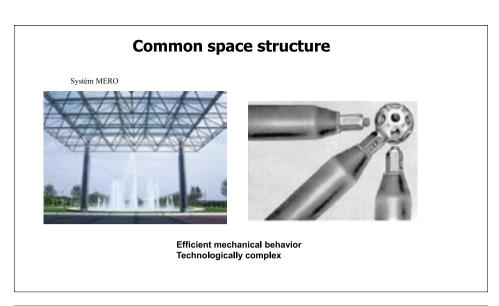


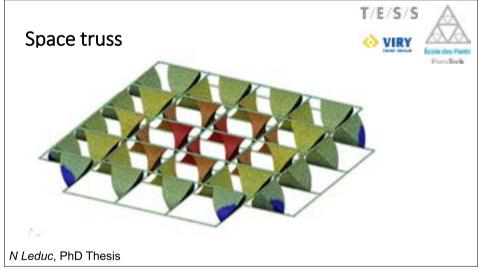




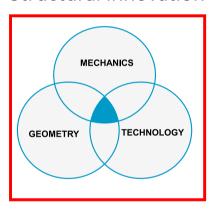


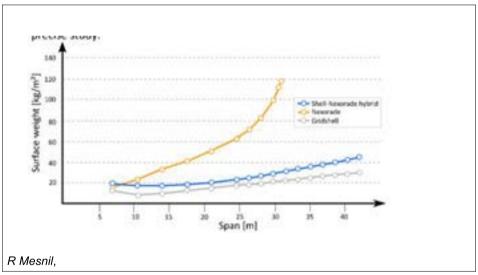


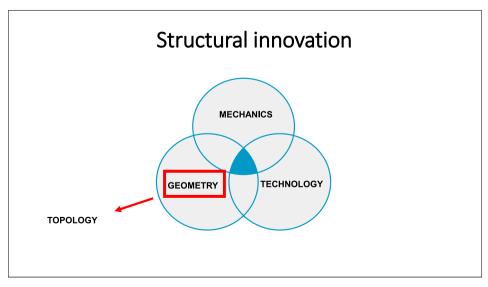




Structural innovation



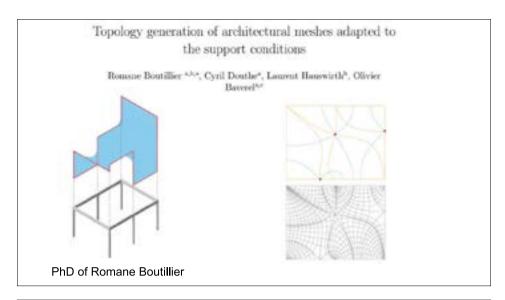


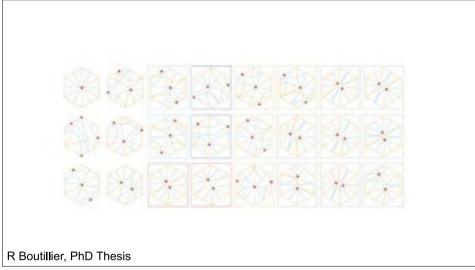


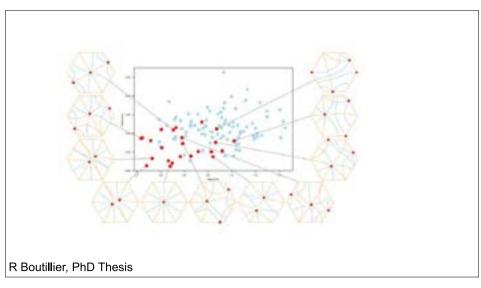
TOWARDS TOPOLOGICAL DESIGN

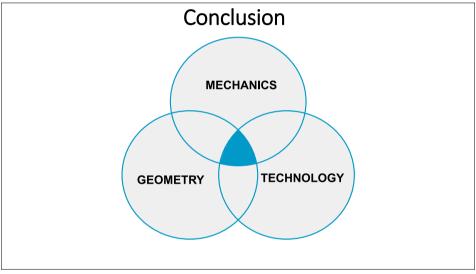
TOPOLOGICAL DESIGN

PhD of Robin Oval, in collaboration with the Block Research Group (ETH Zürich)







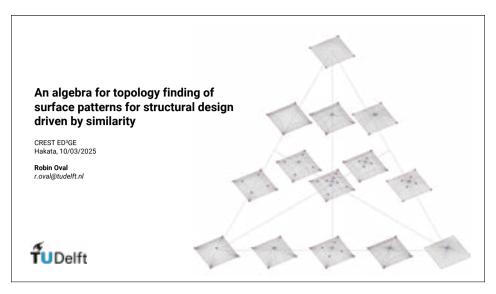


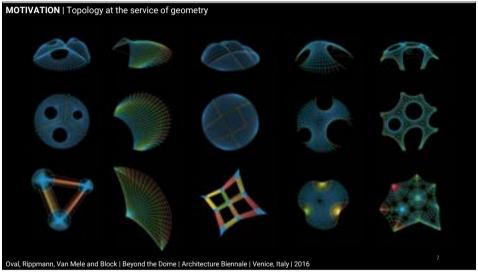
An algebra for topology finding of surface patterns for structural design driven by similarity

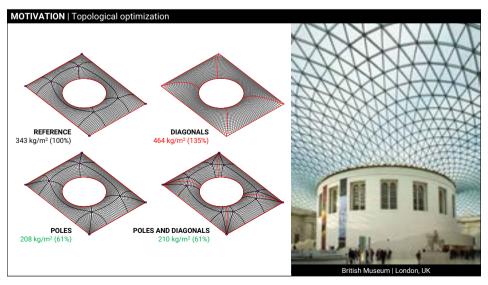
Robin Oval
Delft University of Technology, The Netherlands

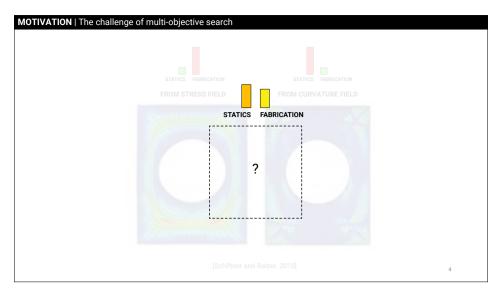
Abstract

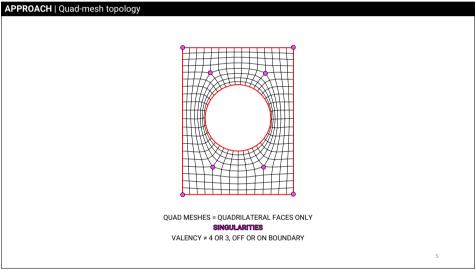
Structural design is a search for the best trade-off between multiple architecture, engineering, and construction objectives, not only mechanical efficiency or construction rationality. Producing hybrid designs from single-objective optimal designs to explore multi-objective trade-offs is common in the design of structural forms, constrained to a single parametric design space. However, producing topological hybrids offers a more complex challenge, as a combinatorial problem that is not encoded as a finite set of real numbers but as an unbonded series of grammar rules. This presentation will focus on a strategy for the generation of hybrid designs of quadmesh pattern topologies for surface structures. Based on a quad-mesh grammar, an algebra is introduced to measure the distance between designs, find their similar features, and enumerate designs with different degrees of topological similarity. To achieve this, the operators of topological distance, intersection and union of quad meshes will be defined. Structural design applications will be shown to highlight the use of topologically hybrid designs as a surrogate for obtaining multi-objective trade-offs.

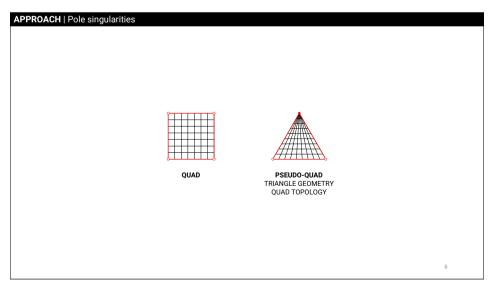


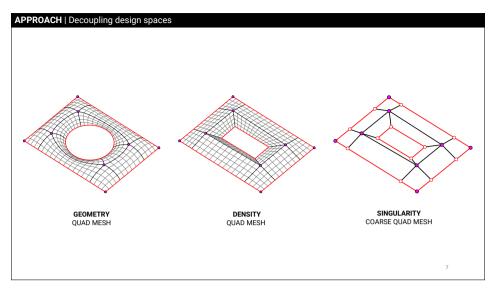


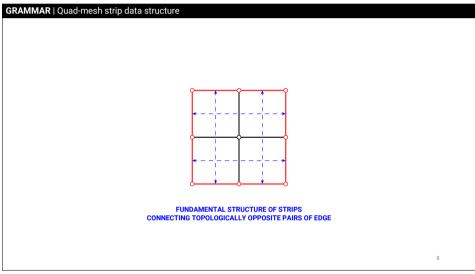


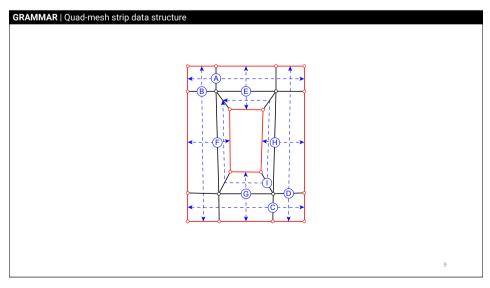


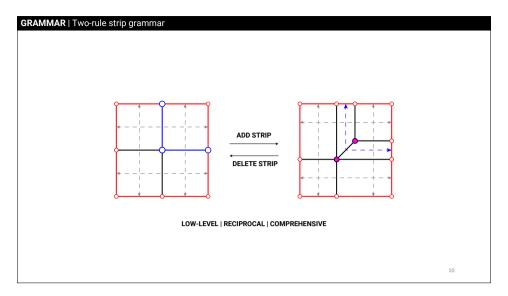


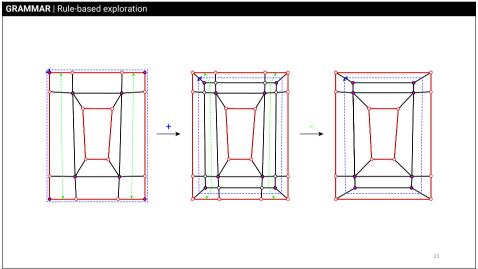


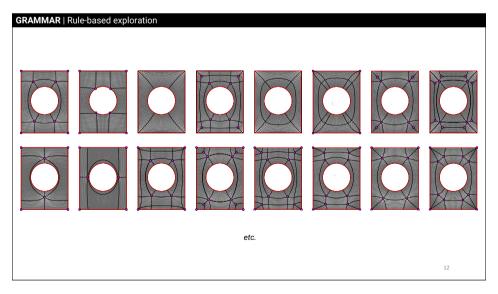


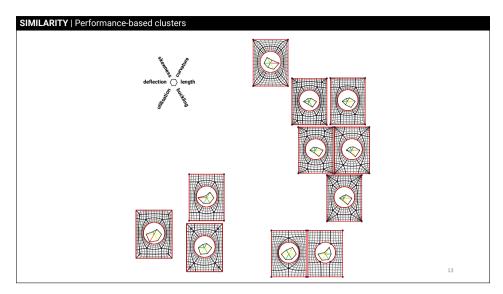


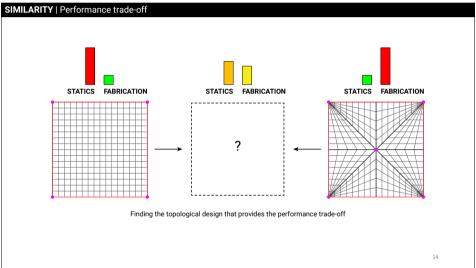


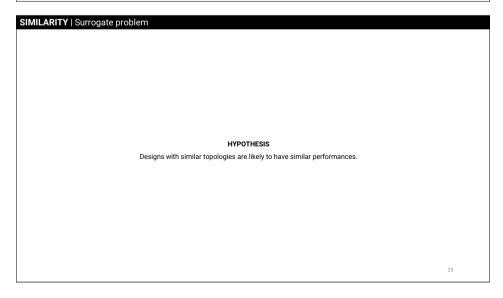


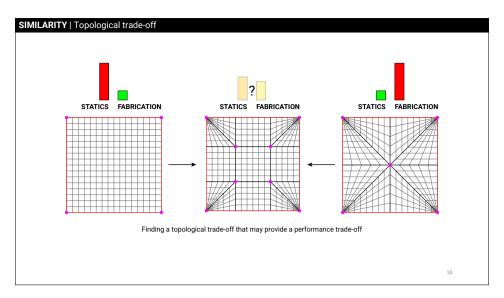


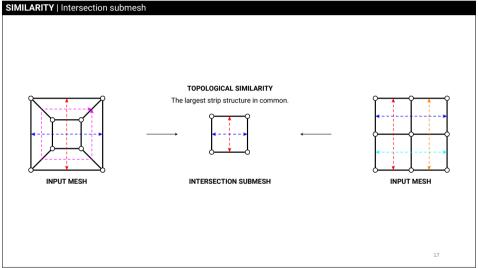


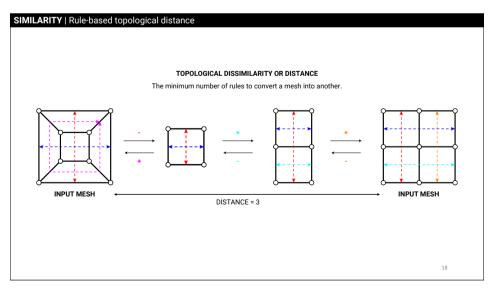


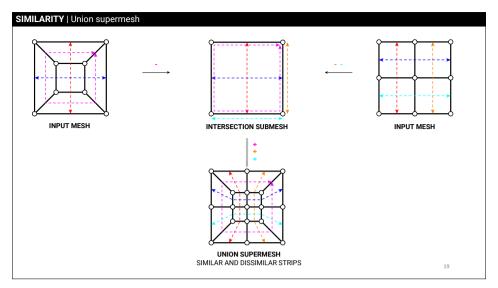


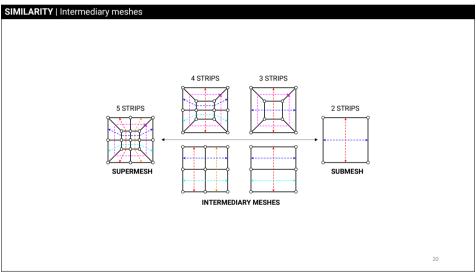


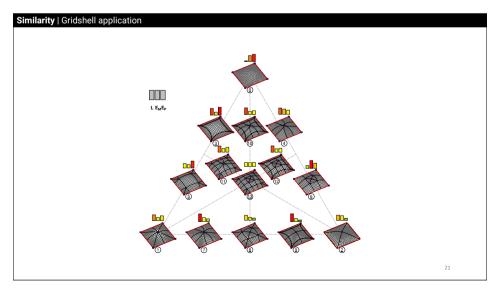


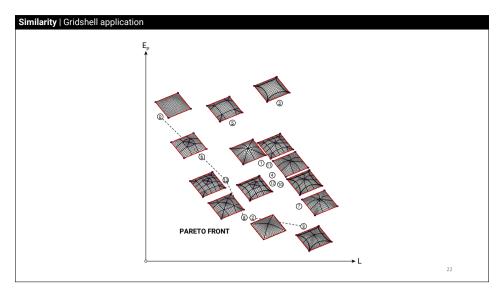


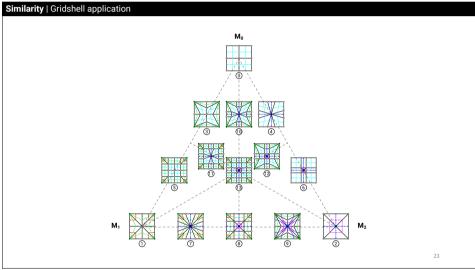


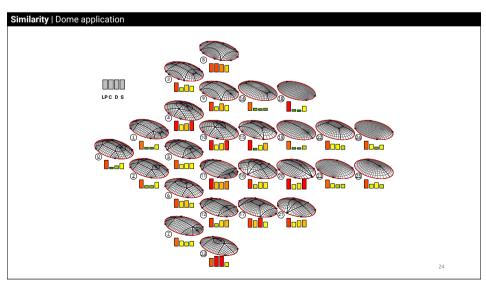


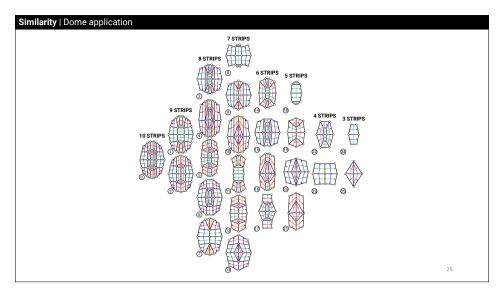


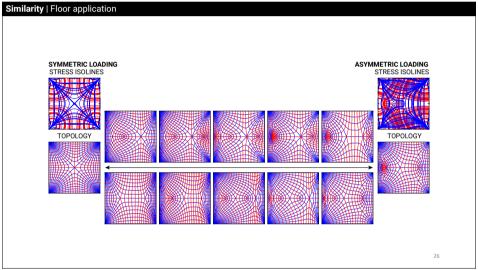












OUTRO | Summary

Algebra

Strip data structure, quad-mesh grammar, rule-based topological distance for (dis)similarity, intersection submesh and union supermesh

Application

Hybrid topological designs with variety of multi-objective trade-offs

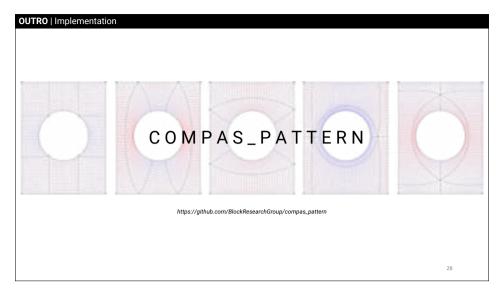
Performance depends on topology... and its post-processing into a design $% \left(1\right) =\left(1\right) \left(1\right) \left$

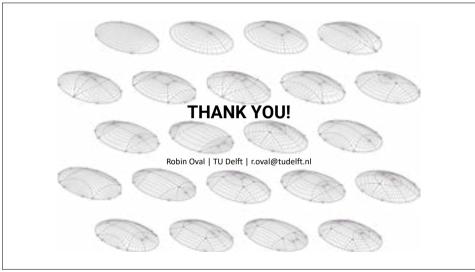
References

Oval, R., Rippmann, M., Mesnil, R., Van Mele, T., Baverel, O. and Block, P., 2019. Feature-based topology finding of patterns for shell structures. Automation in Construction, 103, pp.185-201.

Oval, R., Mesnil, R., Van Mele, T., Baverel, O. and Block, P., 2024. Similarity-driven topology finding of surface patterns for structural design. Computer-Aided Design, 176, p. 103751.

27





Deployable auxetic surface structures: From optimized shape to detail design implementation

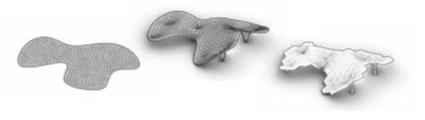
Kazuki Hayashi Kyoto University

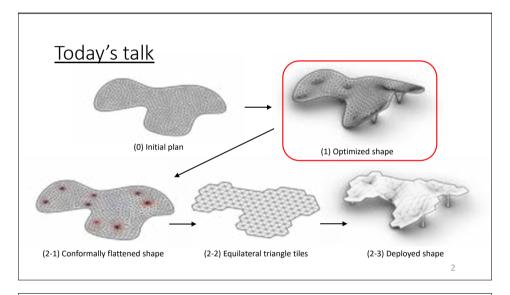
Abstract

This study presents a streamlined design framework for deployable auxetic surface structures, taking advantage of discrete differential geometry. The process begins by defining basis vectors, informed by a prescribed plan, support locations, and load conditions, to modify the structural shape via Dirichlet energy minimization. Next, a gradient-based optimization algorithm explores the optimal shape to minimize the linear strain energy, adjusting the weights of the basis vectors with gradients that are analytically derived through the chain rule. The final step aims to materialize the optimized geometry using a double-layer auxetic surface structure incorporating kerf joints. This approach achieves the flexibility required for deployment while providing the necessary stiffness for in-service performance.

Deployable auxetic surface structures: From optimized shape to detail design implementation

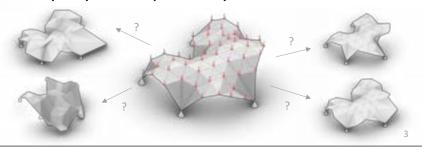
Kazuki Hayashi (Kyoto University, Japan)





Topic 1/2: Shape sensitivity analysis

- Suppose we have a triangle mesh representing the shell geometry. How to modify its shape to maximize the structural performance?
- Analytically derive shape sensitivity for thin shell structures



Chain rule for sensitivity analysis

• Chain-ruled computation allows for obtaining the gradient of objective function $(\partial F/\partial x)$

(Example)
$$\begin{cases} F(z) = 2z \\ z(y) = y^2 \\ y(x) = \sin x \end{cases} \xrightarrow{\partial F} \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

$$= 2 \cdot 2y \cdot \cos x$$

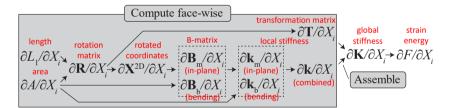
$$= 4 \sin x \cos x$$

(In our study) F: strain energy (flexibility indicator to be minimized) x: nodal locations

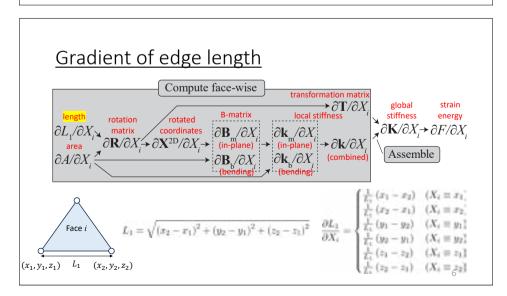
4

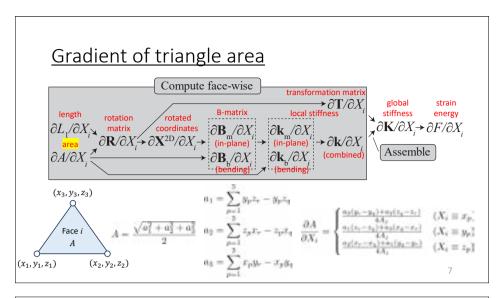
Chain rule for shape sensitivity analysis

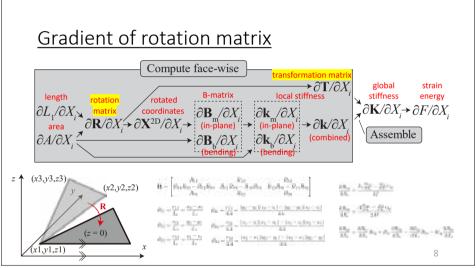
• Chain-ruled computation allows for obtaining the gradient of objective function $(\partial F/\partial x)$

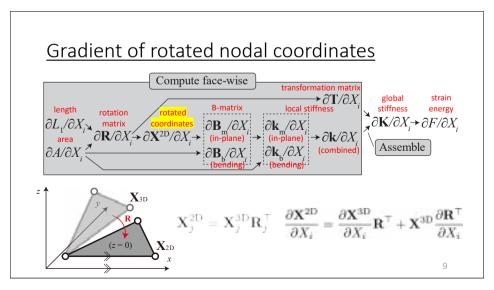


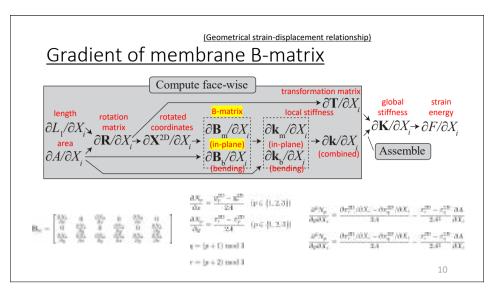
5

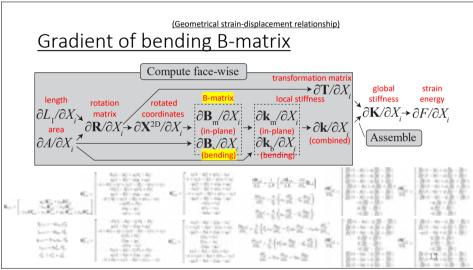


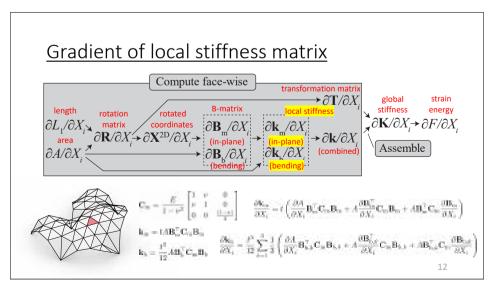


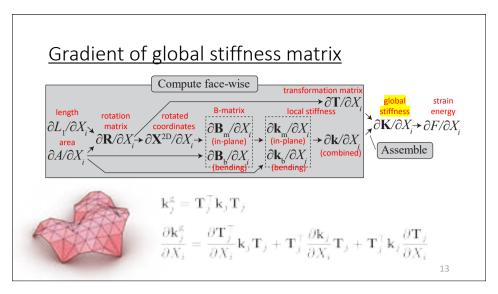


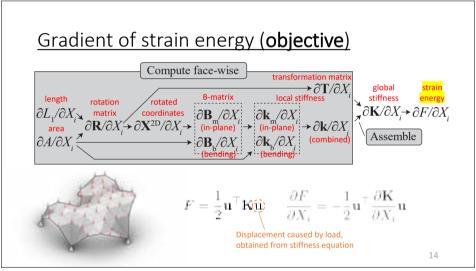


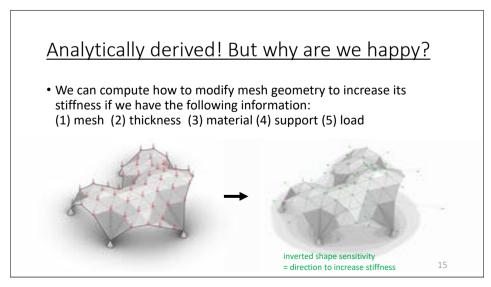


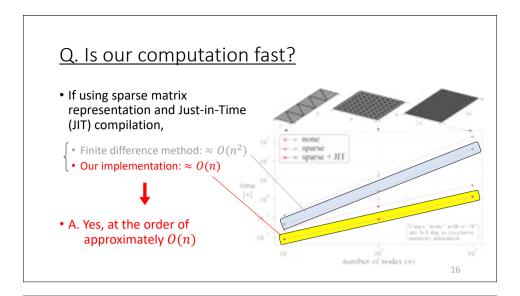






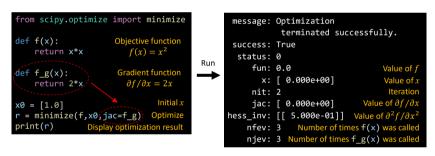




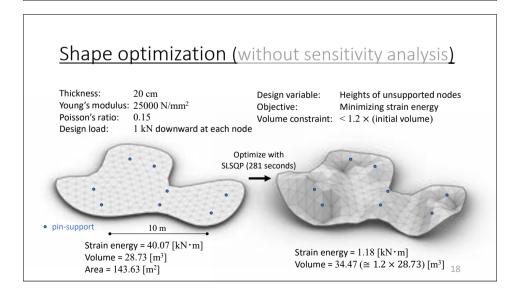


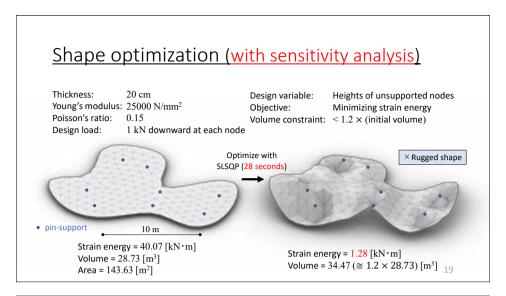
Gradient-based shape optimization

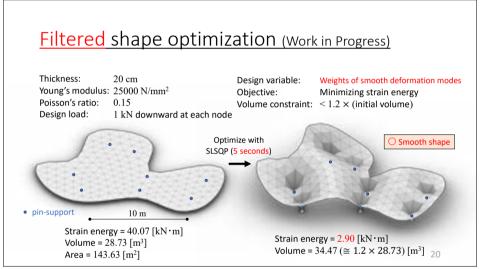
• Many libraries accept sensitivity analysis to speed up optimization

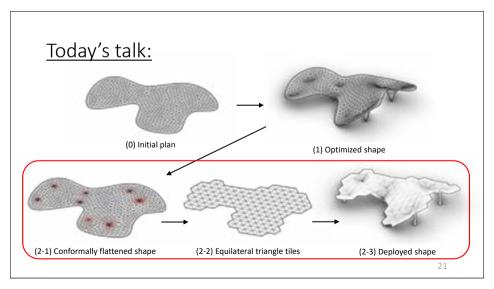


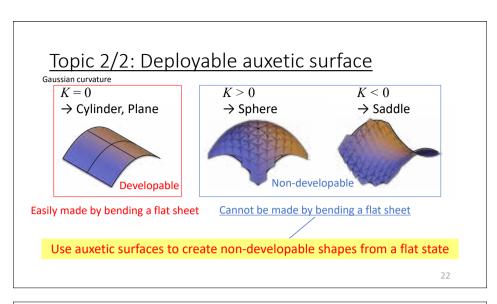
 $https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html\, 17$

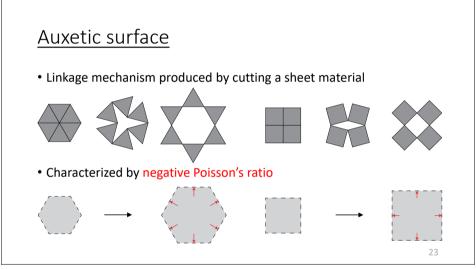


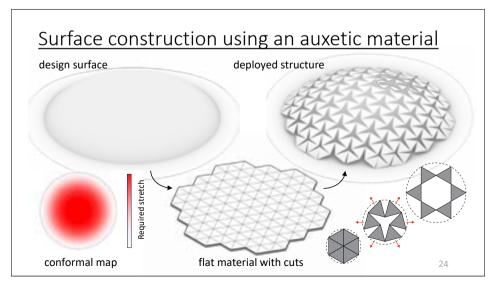


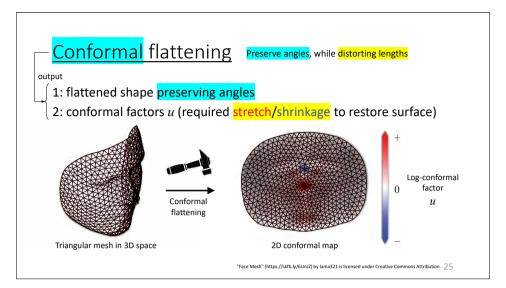


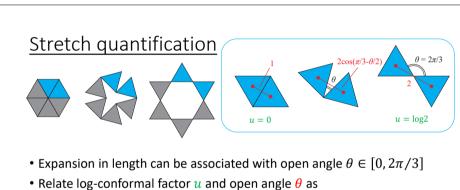


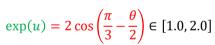


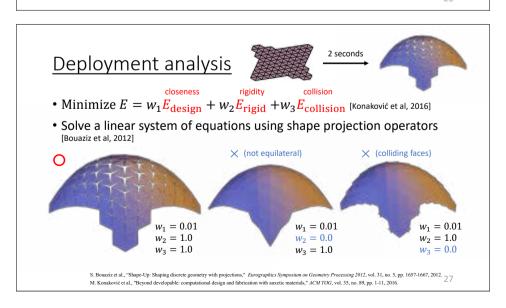




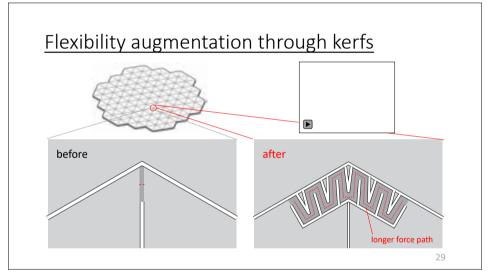


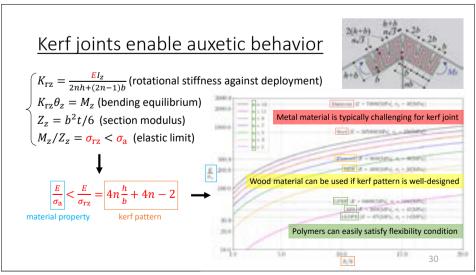


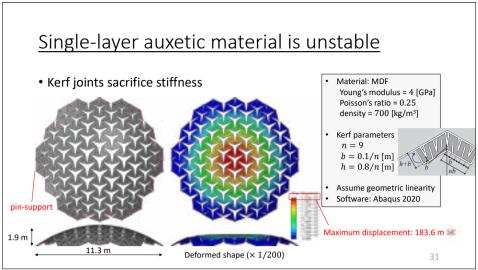


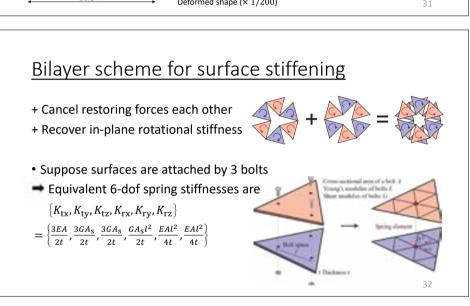


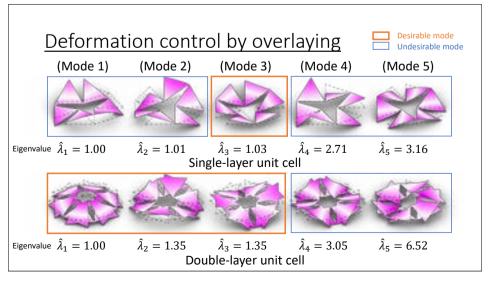
Elasticity condition of joints is too strict • $L/d > (\theta/2) \cdot (E/\bar{\sigma})$ Joint shape Material property • Ex.) Suppose $\theta = \pi/3$. Glass-Fiber-Reinforced Plastic (GFRP): E = 15 [GPa], $\bar{\sigma} = 250$ [MPa] + L/d > 31.4 Medium Density Fiberboard (MDF): E = 4 [GPa], $\bar{\sigma} = 20$ [MPa] + L/d > 104.7

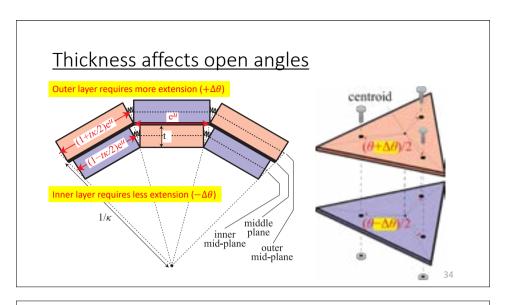


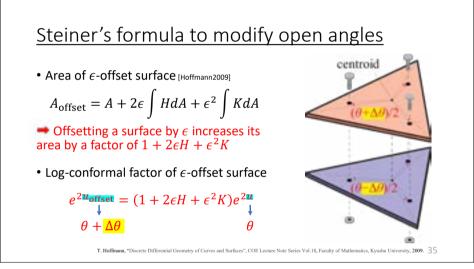


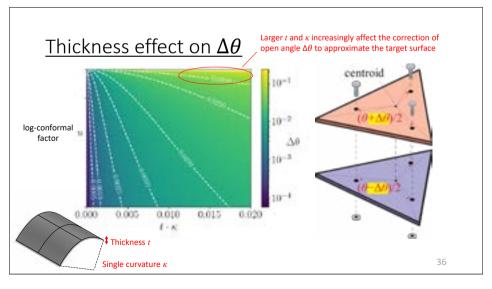


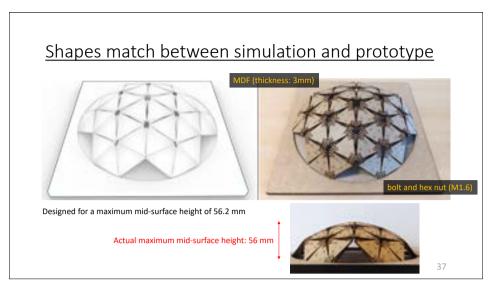












Conclusion

- Optimize the shape of shell structures using analytically derived shape sensitivity
- Leveraged conformal geometry to design double-layer deployable auxetic structures with kerf-bending joints

Contact: (Kazuki Hayashi) hayashi.kazuki@archi.kyoto-u.ac.jp

Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation of rigid origami

Kentaro Hayakawa Nihon University

Abstract

We investigate the kinematic bifurcation of rigid origami and approximate its folding path with polynomials through the second-order infinitesimal mechanism analysis of a truss model, the assemblage of the pinconnected bars. The motion of the model is constrained by the compatibility condition so that the bar length does not change. The second-order infinitesimal mechanism is obtained from the series expansion of the compatibility condition and its existence condition is the system of homogeneous quadratic equations. The bifurcated mechanisms of rigid origami correspond to the different solutions of the existence condition. In addition, we can use a solution to the existence condition for a polynomial approximation of the folding path of the truss model.

Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design

Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation of rigid origami

Kentaro Hayakawa

Kyoto Group, Nihon University

*Joint work with T. Ohba and M. Ohsaki @ Kyoto Univeristy

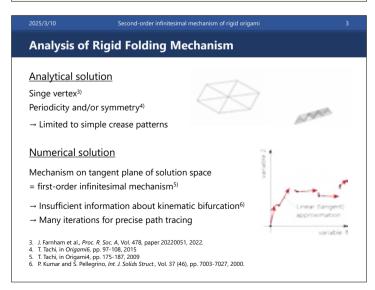
Rigid Origami for Engineering Application

Rigid-folding mechanism
Rigid panels + Rotational hinges
Solar panels on artificial satellite¹)
Portable shelter²)

Challenges
Efficient rigid-folding path tracing
Exploration of solution space of multidegree-of-freedom mechanism
especially with kinematic bifurcation

1. S. A. Zirbel et al., J. Mech. Des., Vol. 135 (11), paper
111005, 2013.
2. K. Ando et al., SN Appl. Sci., Vol. 2 (12), article 1994, 2020

(1)

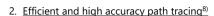


Higher-order Infinitesimal Mechanism

1. Kinematic bifurcation⁷⁾

Solution space at point of kinematic bifurcation that cannot be obtained from first-order mechanism

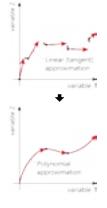
→ Prediction of possible folding pattern/motion



Polynomial expression of folding path with respect to path parameter

- → Small number of iterations for path tracing
- → Folding motion as continuous smooth function in certain range

K. Hayakawa, T. Ohba, and M. Ohsaki. *Mech. Mach. Theory*, 194 (2024), 105572 T. Ohba, K. Hayakawa, and M. Ohsaki. in Proc. 8OSME, 2024



Formulation for Truss Model

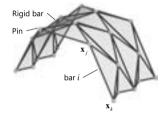
Compatibility equation for bar i

Constant bar length in folding motion

$$c_i = \frac{1}{2} \left(\left\| \mathbf{x}_j - \mathbf{x}_k \right\|^2 - l_i^2 \right) = 0$$

 $\mathbf{x}_{j_i} \mathbf{x}_k$: position vectors of endpoints of bar i

Initial length of bar i



Compatibility equation for entire model

$$C(X) = 0$$
 $\leftarrow c_i = 0$ for all bars

$$\mathbf{C}(\mathbf{X}) = \begin{pmatrix} c_1 \\ \vdots \\ c_{N_b} \end{pmatrix} \in \mathbb{R}^{N_b} \quad : \text{incompatibility vector}$$

$$\mathbf{C}(\mathbf{X}) = \begin{pmatrix} c_1 \\ \vdots \\ c_{N_{\mathbf{x}}} \end{pmatrix} \in \mathbb{R}^{N_{\mathbf{x}}} \quad \text{: incompatibility vector} \qquad \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{N_{\mathbf{x}}} \end{pmatrix} \in \mathbb{R}^{N_{\mathbf{x}}} \quad \text{: generalized position vector}$$

Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter t (time, arc length etc.)

$$\begin{split} \mathbf{C}(\mathbf{X}(t)) &= t \frac{\mathrm{d}\mathbf{C}}{\mathrm{d}t}\bigg|_{t=0} + \frac{t^2}{2} \frac{\mathrm{d}^2\mathbf{C}}{\mathrm{d}t^2}\bigg|_{t=0} + \frac{t^3}{6} \frac{\mathrm{d}^3\mathbf{C}}{\mathrm{d}t^3}\bigg|_{t=0} + \text{h.o.t.} \\ &= t \Big[\boldsymbol{\Gamma}^{(0)}\mathbf{X}^{(1)} \Big] + \frac{t^2}{2} \Big[\boldsymbol{\Gamma}^{(0)}\mathbf{X}^{(2)} + \boldsymbol{\Gamma}^{(1)}\mathbf{X}^{(1)} \Big] + \frac{t^2}{6} \Big[\boldsymbol{\Gamma}^{(0)}\mathbf{X}^{(3)} + 2\boldsymbol{\Gamma}^{(1)}\mathbf{X}^{(2)} + \boldsymbol{\Gamma}^{(2)}\mathbf{X}^{(1)} \Big] + \text{h.o.t.} \end{split}$$

$$\boldsymbol{\Gamma}^{(0)} = \begin{bmatrix} \frac{\partial c_1}{\partial X_1} & \dots & \frac{\partial c_1}{\partial X_{N_x}} \\ \vdots & \ddots & \vdots \\ \frac{\partial c_{N_x}}{\partial X_1} & \dots & \frac{\partial c_{N_x}}{\partial X_{N_x}} \end{bmatrix}_{t=0} \in \mathbb{R}^{N_x \times N_x} : \text{compatibility matrix} = \text{Jacobian of } \mathbf{C}(\mathbf{X}) \text{ w.r.t. } \mathbf{X}$$

$$\mathbf{X}^{(i)} = \begin{pmatrix} X_{1}^{(i)} \\ \vdots \\ X_{N_{\mathbf{X}}}^{(i)} \end{pmatrix} = \frac{d^{*}\mathbf{X}}{dt^{*}} \Big|_{\mathbf{c}=0} \in \mathbb{R}^{N_{\mathbf{X}}}, \qquad \mathbf{\Gamma}^{(i)} = \sum_{k=1}^{N_{\mathbf{X}}} X_{k}^{(i)} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} c_{N_{\mathbf{x}}}}{\partial X_{i} \partial X_{k}^{2}} & \cdots & \frac{\partial^{2} c_{1}}{\partial X_{N_{\mathbf{X}}} \partial X_{k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} c_{N_{\mathbf{x}}}}{\partial X_{i} \partial X_{k}^{2}} & \cdots & \frac{\partial^{2} c_{N_{\mathbf{x}}}}{\partial X_{N_{\mathbf{x}}} \partial X_{k}} \\ \end{bmatrix}_{i=0} \in \mathbb{R}^{N_{\mathbf{x}} \times N_{\mathbf{X}}} \quad (s \ge 1)$$

Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When
$$\mathbf{X}$$
 is a function of the path parameter t (time, arc length etc.)
$$\mathbf{C}(\mathbf{X}(t)) = t \left[\Gamma^{(0)} \mathbf{X}^{(1)} \right] + \frac{t^2}{2} \left[\Gamma^{(0)} \mathbf{X}^{(2)} + \Gamma^{(1)} \mathbf{X}^{(1)} \right] + \frac{t^2}{6} \left[\Gamma^{(0)} \mathbf{X}^{(3)} + 2 \Gamma^{(1)} \mathbf{X}^{(2)} + \Gamma^{(2)} \mathbf{X}^{(1)} \right] + \text{h.o.t.}$$

$$X^{(1)}$$
 satisfying $\Gamma^{(0)}X^{(1)} = 0$

→ $\mathbf{X}^{(1)}$ satisfying $\mathbf{\Gamma}^{(0)}\mathbf{X}^{(1)} = \mathbf{0}$: First-order infinitesimal mechanism

Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter t (time, arc length etc.)

$$\mathbf{C}(\mathbf{X}(t)) = t \left[\Gamma^{(0)} \mathbf{X}^{(1)} \right] + \frac{t^2}{2} \left[\Gamma^{(0)} \mathbf{X}^{(2)} + \Gamma^{(1)} \mathbf{X}^{(1)} \right] + \frac{t^2}{6} \left[\Gamma^{(0)} \mathbf{X}^{(3)} + 2\Gamma^{(1)} \mathbf{X}^{(2)} + \Gamma^{(2)} \mathbf{X}^{(1)} \right] + \text{h.o.t.}$$

$$\mathbf{X}^{(1)}$$
 satisfying $\mathbf{\Gamma}^{(0)}\mathbf{X}^{(1)}=\mathbf{0}$: First-order infinitesimal mechanism

$$\left(X^{(l)},X^{(2)}\right) \text{ satisfying } \begin{cases} \Gamma^{(0)}X^{(l)}=0 & : \text{Second-order infinitesimal} \\ \Gamma^{(0)}X^{(2)}+\Gamma^{(l)}X^{(l)}=0 & \text{mechanism} \end{cases}$$

Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

$$\mathbf{C}(\mathbf{X}(t)) = t \left[\Gamma^{(0)} \mathbf{X}^{(1)} \right] + \frac{t^2}{2} \left[\Gamma^{(0)} \mathbf{X}^{(2)} + \Gamma^{(1)} \mathbf{X}^{(1)} \right] + \frac{t^2}{6} \left[\Gamma^{(0)} \mathbf{X}^{(3)} + 2\Gamma^{(1)} \mathbf{X}^{(2)} + \Gamma^{(2)} \mathbf{X}^{(1)} \right] + \text{h.o.t.}$$

 $\mathbf{X}^{(1)}$ satisfying $\mathbf{\Gamma}^{(0)}\mathbf{X}^{(1)}=\mathbf{0}$: First-order infinitesimal mechanism

$$\left(X^{(l)},X^{(2)}\right) \text{ satisfying } \begin{cases} \Gamma^{(0)}X^{(l)}=0 & : \text{Second-order infinitesimal } \\ \Gamma^{(0)}X^{(2)}+\Gamma^{(l)}X^{(l)}=0 & \text{mechanism} \end{cases}$$

 $\left(\mathbf{X}^{(1)},...,\mathbf{X}^{(n)}\right) \text{ satisfying } \begin{cases} \Gamma & \mathbf{A} - \mathbf{G} \\ \Gamma^{(0)}\mathbf{X}^{(2)} + \Gamma^{(1)}\mathbf{X}^{(1)} = \mathbf{0} \\ \vdots & \vdots \\ \sum_{s=0}^{n-1} \binom{n-1}{s} \Gamma^{(s)}\mathbf{X}^{(n-s)} = \mathbf{0} \end{cases}$: n-th-order infinitesimal mechanism

2025/3/10

Second-order infinitesimal mechanism of rigid origami

10

First-order Infinitesimal Mechanism

Compatibility equation for first-order infinitesimal mechanism

$$\boldsymbol{\Gamma}^{(0)} \mathbf{X}^{(1)} = \mathbf{0}$$

Solution space of first-order infinitesimal mechanism

Space of $X^{(1)} \text{satisfying } \Gamma^{(0)} X^{(1)} = 0 \Leftrightarrow \text{Null space of } \Gamma^{(0)}$

Dimension of null space $N_{\rm F} = N_{\rm X} - {\rm rank}\, \Gamma^{(0)}$: Number of kinematic indeterminacy

Bases of null space $\xi_1, ..., \xi_{N_x} \in \mathbb{R}^{N_x}$: Infinitesimal mechanism modes

$$\mathbf{X}^{(1)} = a_1^{(1)} \boldsymbol{\xi}_1 + \dots + a_{N_r}^{(1)} \boldsymbol{\xi}_{N_r} = \begin{bmatrix} \boldsymbol{\xi}_1 & \dots & \boldsymbol{\xi}_{N_r} \end{bmatrix} \begin{pmatrix} a_1^{(1)} \\ \vdots \\ a_{N_r}^{(1)} \end{pmatrix} = \overline{\mathbf{X}} \mathbf{a}^{(1)}$$

0025/3/10

second-order infinitesimal mechanism of rigid origami

11

Second-order Infinitesimal Mechanism

Compatibility equation for second-order infinitesimal mechanism

$$\begin{cases} \boldsymbol{\Gamma}^{(0)} \boldsymbol{X}^{(1)} = \boldsymbol{0} \\ \boldsymbol{\Gamma}^{(0)} \boldsymbol{X}^{(2)} + \boldsymbol{\Gamma}^{(1)} \boldsymbol{X}^{(1)} = \boldsymbol{0} \\ & \qquad \qquad \qquad \\ &$$

Existence condition of second-order infinitesimal mechanism

($\Gamma^{(i)}X^{(i)}$ for first-order infinitesimal mechanism $X^{(i)}$) \in (vector space of $\Gamma^{(0)}X^{(2)}$) $\Leftrightarrow \Gamma^{(i)}X^{(i)} \perp$ (left null space of $\Gamma^{(0)}$)

Dimension of left null space $N_{\rm S} = N_{\rm B} - {\rm rank}\,\Gamma^{(0)}$: Number of statical indeterminacy

Bases of left null space $\mathbf{\omega}_{_{1}},...,\mathbf{\omega}_{_{N_{_{\mathbf{S}}}}} \in \mathbb{R}^{^{N_{_{\mathbf{B}}}}}$: Self-equilibrium force density modes

$$\begin{cases} \boldsymbol{\omega}_1^\mathsf{T} \, \boldsymbol{\Gamma}^{(1)} \mathbf{X}^{(1)} = 0 \\ \vdots \\ \boldsymbol{\omega}_{N_s}^\mathsf{T} \, \boldsymbol{\Gamma}^{(1)} \mathbf{X}^{(1)} = 0 \end{cases} \quad \Leftrightarrow \quad \left[\boldsymbol{\omega}_1 \ \cdots \ \boldsymbol{\omega}_{N_s} \, \right]^\mathsf{T} \, \boldsymbol{\Gamma}^{(1)} \mathbf{X}^{(1)} = \boldsymbol{\Omega}^\mathsf{T} \, \boldsymbol{\Gamma}^{(1)} \mathbf{X}^{(1)} = \boldsymbol{0} \end{cases}$$

2025/3/10

Second-order infinitesimal mechanism of rigid origami

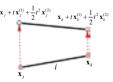
12

Physical Interpretation of Mechanism and Self-equilibrium Modes

Infinitesimal mechanism

$$\mathbf{X}^{(1)} = \frac{d\mathbf{X}}{dt}\Big|_{t=0}$$
: velocity, $\mathbf{X}^{(2)} = \frac{d^2\mathbf{X}}{dt^2}\Big|_{t=0}$: acceleration

 $\xi_1,\dots,\xi_{N_{\rm F}}$ ($\Gamma^{(0)}\xi_{_{\it I}}={\bf 0}$) : Nodal velocity modes without deformation of bars

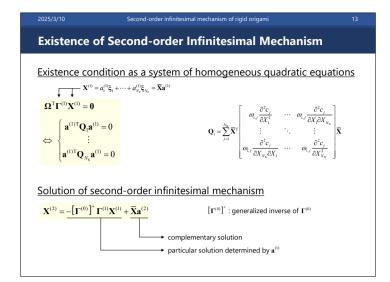


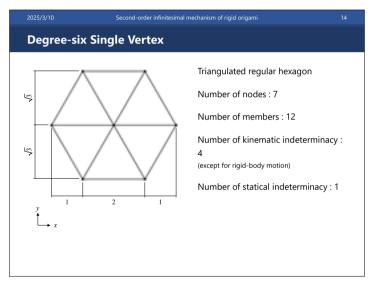
Self-equilibrium force density

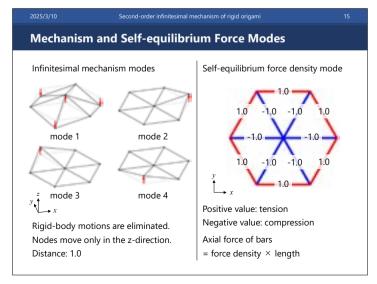
$$\mathbf{F}^{\mathsf{T}}\mathbf{\Gamma}^{(0)} = \mathbf{0} \quad \xrightarrow{\text{for node } j} \quad \sum_{i} F_{i} \Big(\mathbf{x}_{j} - \mathbf{x}_{k}\Big) = \mathbf{0} \quad \text{: equilibrium equation}$$

$$= \underbrace{\text{axial force}}_{\text{bar length}} = \text{force density}$$

 $\mathbf{\omega}_1, \dots, \mathbf{\omega}_{N_c}$ ($\mathbf{\omega}_i^{\mathrm{T}} \mathbf{\Gamma}^{(0)} = \mathbf{0}$): Self-equilibrium force density modes







/3/10 Second-order infinitesimal m

16

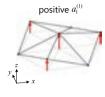
Existence Condition of Second-order Mechanism

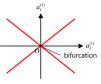
Quadratic equation for coefficients of mechanism modes

$$-9(a_1^{(1)})^2 + (a_2^{(1)})^2 + (a_2^{(1)})^2 + (a_2^{(1)})^2 + (a_2^{(1)})^2 = 0$$

$$\Rightarrow a_1^{(1)} = \pm \frac{1}{2} \sqrt{(a_2^{(1)})^2 + (a_2^{(1)})^2 + (a_2^{(1)})^2}$$

Kinematic bifurcation





2025/3/10

Second-order infinitesimal mechanism of rigid origami

7

Third-order Infinitesimal Mechanism

Compatibility equation for third-order infinitesimal mechanism

$$\begin{cases} \Gamma^{(0)} X^{(1)} = 0 \\ \Gamma^{(0)} X^{(2)} + \Gamma^{(1)} X^{(1)} = 0 \\ \Gamma^{(0)} X^{(3)} + 2\Gamma^{(1)} X^{(2)} + \Gamma^{(2)} X^{(1)} = \Gamma^{(0)} X^{(3)} + 3\Gamma^{(1)} X^{(2)} = 0 \end{cases} \qquad \left(\Gamma^{(2)} X^{(1)} = \Gamma^{(0)} X^{(2)} \right)$$

Existence condition of third-order infinitesimal mechanism

 $\mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(1)}\mathbf{\bar{X}}\mathbf{\underline{a}}^{(2)} = \mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(1)}\big[\mathbf{\Gamma}^{(0)}\big]^{\!+}\mathbf{\Gamma}^{(1)}\mathbf{X}^{(1)}$ unknown determined by the existence of second-order mechanism

2025/3/10

Second-order infinitesimal mechanism of rigid origami

18

Higher-order Infinitesimal Mechanism

Compatibility equation for n-th-order infinitesimal mechanism

$$\begin{cases} \Gamma^{(0)}\mathbf{X}^{(1)} = \mathbf{0} \\ \Gamma^{(0)}\mathbf{X}^{(2)} + \Gamma^{(1)}\mathbf{X}^{(1)} = \mathbf{0} \\ \vdots \\ \sum_{s=0}^{n-1} \binom{n-1}{s} \Gamma^{(s)}\mathbf{X}^{(n-s)} = \Gamma^{(0)}\mathbf{X}^{(n)} + \sum_{s=1}^{n-1} \binom{n-1}{s} \Gamma^{(s)}\mathbf{X}^{(n-s)} = \mathbf{0} \end{cases}$$

Existence condition of *n*-th-order infinitesimal mechanism

n-th-order mechanism: $\mathbf{\Omega}^{\mathsf{T}} \sum_{s=1}^{n-1} \binom{n-1}{s} \mathbf{\Gamma}^{(s)} \mathbf{X}^{(n-s)} = \mathbf{0}$

Higher-order Infinitesimal Mechanism

Reformulation of existence condition of *n*-th order mechanism ($n \ge 4$)

$$\sum_{s=1}^{n-1} {n-1 \choose s} \mathbf{\Omega}^{\mathrm{T}} \mathbf{\Gamma}^{(s)} \mathbf{X}^{(n-s)} = \mathbf{0}$$

$$\Leftrightarrow (n-1)\mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(1)}\mathbf{X}^{(n-1)} + \mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(n-1)}\mathbf{X}^{(1)} + \sum_{s=2}^{n-2} \binom{n-1}{s} \mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(s)}\mathbf{X}^{(n-s)} = \mathbf{0}$$

$$\Gamma^{(1)}\mathbf{X}^{(n-1)} = \Gamma^{(n-1)}\mathbf{X}^{(1)}$$

$$\Leftrightarrow n\mathbf{\Omega}^{\mathrm{T}}\mathbf{\Gamma}^{(1)}\mathbf{X}^{(n-1)} + \sum_{s=2}^{n-2} \binom{n-1}{s} \mathbf{\Omega}^{\mathrm{T}}\mathbf{\Gamma}^{(s)}\mathbf{X}^{(n-s)} = \mathbf{0}$$

$$\Leftrightarrow \mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(1)} \mathbf{\overline{X}} \mathbf{a}^{(n-1)} = \sum_{s=1}^{n-2} \binom{n-2}{s} \mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(1)} \left[\mathbf{\Gamma}^{(0)} \right]^{+} \mathbf{\Gamma}^{(1)} \mathbf{X}^{(n-s-1)} - \frac{1}{n} \sum_{s=2}^{n-2} \binom{n-1}{s} \mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(s)} \mathbf{X}^{(n-s)}$$

Existence of Finite Mechanism

Existence condition of *n*-th order mechanism

Second-order:
$$\mathbf{a}^{(1)^{T}} \mathbf{Q}_{1} \mathbf{a}^{(1)} = \cdots = \mathbf{a}^{(1)^{T}} \mathbf{Q}_{N_{S}} \mathbf{a}^{(1)} = 0$$

Third-order:
$$\Omega^T \Gamma^{(1)} \overline{X} a^{(2)} = \Omega^T \Gamma^{(1)} [\Gamma^{(0)}]^{\dagger} \Gamma^{(1)} X^{(1)}$$

$$\textit{n-th-order:} \quad \boldsymbol{\Omega}^{\mathsf{T}}\boldsymbol{\Gamma}^{(\mathsf{l})}\overline{\boldsymbol{X}}\overline{\boldsymbol{a}^{(n-\mathsf{l})}} = \sum_{s=\mathsf{l}}^{n-2} \binom{n-2}{s} \boldsymbol{\Omega}^{\mathsf{T}}\boldsymbol{\Gamma}^{(\mathsf{l})}\big[\boldsymbol{\Gamma}^{(0)}\big]^{+} \boldsymbol{\Gamma}^{(\mathsf{l})}\boldsymbol{X}^{(n-s-\mathsf{l})} - \frac{1}{n}\sum_{s=\mathsf{l}}^{n-2} \binom{n-1}{s} \boldsymbol{\Omega}^{\mathsf{T}}\boldsymbol{\Gamma}^{(s)}\boldsymbol{X}^{(n-s)}$$

Sufficient condition for existence of finite mechanism

Finite mechanism \Leftrightarrow Existence of $\mathbf{a}^{(1)},...,\mathbf{a}^{(n-1)}$ for arbitrary order of n

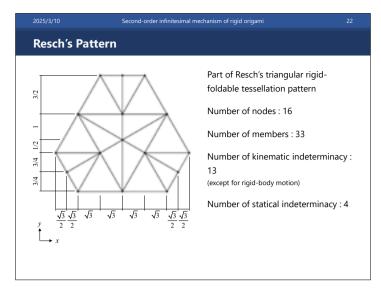
$$\Leftarrow \begin{cases} \mathbf{a}^{(1)\mathsf{T}} \mathbf{Q}_1 \mathbf{a}^{(1)} = \dots = \mathbf{a}^{(1)\mathsf{T}} \mathbf{Q}_{N_S} \mathbf{a}^{(1)} = 0 \\ \operatorname{rank} \left(\mathbf{\Omega}^\mathsf{T} \mathbf{\Gamma}^{(1)} \overline{\mathbf{X}} \right) = N_S \quad \text{(row full-rank)} \end{cases}$$

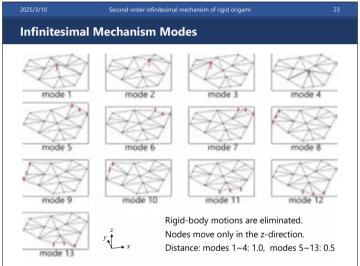
n-th Order Polynomial Approximation of Rigid-Folding Motion

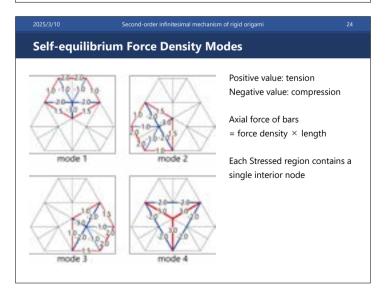
- 1. Calculate $\mathbf{X}^{(l)}$ using manually determined $\mathbf{a}^{(l)}$ satisfying $\begin{cases} \mathbf{a}^{(l)\mathsf{T}}\mathbf{Q}_{i}\mathbf{a}^{(l)} = \mathbf{0} \ (i=1,\dots,N_{s}) \\ \mathrm{rank} \left(\mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(l)}\overline{\mathbf{X}}\right) = N_{s} \end{cases}$
- 2. Calculate $\boldsymbol{a}^{(2)} = \left\lceil \boldsymbol{\Omega}^T \boldsymbol{\Gamma}^{(1)} \overline{\boldsymbol{X}} \right\rceil^+ \boldsymbol{\Omega}^T \boldsymbol{\Gamma}^{(1)} \left[\boldsymbol{\Gamma}^{(0)} \right]^+ \boldsymbol{\Gamma}^{(1)} \boldsymbol{X}^{(1)}$

(existence condition of X(3))

- 3. Calculate $\mathbf{X}^{(2)} = -[\Gamma^{(0)}]^{+} \Gamma^{(1)} \mathbf{X}^{(1)} + \overline{\mathbf{X}} \mathbf{a}^{(2)}$
- 4. Initialize k as $k \leftarrow 3$
- 5. Calculate $\mathbf{a}^{(k)} = \left[\mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(1)} \overline{\mathbf{X}}\right]^{+} \left\{ \sum_{s=1}^{k-1} \binom{k-1}{s} \mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(1)} \left[\mathbf{\Gamma}^{(0)}\right]^{+} \mathbf{\Gamma}^{(1)} \mathbf{X}^{(k-s)} \frac{1}{k+1} \sum_{s=2}^{k-1} \binom{k}{s} \mathbf{\Omega}^{\mathsf{T}} \mathbf{\Gamma}^{(s)} \mathbf{X}^{(k-s+1)} \right\}$
- 6. Calculate $\mathbf{X}^{(k)} = -\sum_{s=1}^{k-1} {k-1 \choose s} \left[\mathbf{\Gamma}^{(0)} \right]^+ \mathbf{\Gamma}^{(s)} \mathbf{X}^{(k-s)} + \overline{\mathbf{X}} \mathbf{a}^{(k)}$
- 7. Update k as $k \leftarrow k+1$ and go to 4 while $k \le n$
- 8. Calculate $\mathbf{X}(t) = \mathbf{X}^{(1)}t + \frac{1}{2}\mathbf{X}^{(2)}t^2 + \dots + \frac{1}{n!}\mathbf{X}^{(n)}t^n$







Existence Condition of Second-order Mechanism

Quadratic equations for coefficients of mechanism modes

$$\left(6a_{1}^{(1)}a_{2}^{(1)} - 9\left(a_{2}^{(1)}\right)^{2} + 2a_{2}^{(1)}a_{5}^{(1)} + 2\left(a_{6}^{(1)}\right)^{2} + 2\left(a_{7}^{(1)}\right)^{2} = 0$$

$$6a_1^{(1)}a_3^{(1)} - 9(a_3^{(1)})^2 + 2a_3^{(1)}a_8^{(1)} + 2(a_9^{(1)})^2 + 2(a_{10}^{(1)})^2 = 0$$

$$6a_1^{(1)}a_4^{(1)} - 9(a_4^{(1)})^2 + 2a_4^{(1)}a_{11}^{(1)} + 2(a_{12}^{(1)})^2 + 2(a_{13}^{(1)})^2 = 0$$

$$9(a_1^{(1)})^2 - 4(a_2^{(1)})^2 - 4(a_3^{(1)})^2 - 4(a_4^{(1)})^2 = 0$$

Existence Condition of Second-order Mechanism

Solution to the quadratic equations

$$a_1^{(1)} = \frac{2}{3} s_1 \sqrt{p_2^2 + p_3^2 + p_4^2}, \qquad a_2^{(1)} = s_2 p_2, \qquad a_3^{(1)} = s_3 p_3, \qquad a_4^{(1)} = s_4 p_4,$$

$$a_5^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_2\left(\frac{9}{2}p_2 - b_6^2 - b_7^2\right), \quad a_6^{(1)} = b_6\sqrt{p_2}, \quad a_7^{(1)} = b_7\sqrt{p_2},$$

$$a_8^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_3\left(\frac{9}{2}p_3 - b_9^2 - b_{10}^2\right), \quad a_9^{(1)} = b_9\sqrt{p_3}, \quad a_{10}^{(1)} = b_{10}\sqrt{p_3},$$

$$a_{11}^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_4\left(\frac{9}{2}p_4 - b_{12}^2 - b_{13}^2\right), \quad a_{12}^{(1)} = b_{12}\sqrt{p_4}, \quad a_{13}^{(1)} = b_{13}\sqrt{p_4}$$

 s_1, s_2, s_3, s_4 : -1 or 1

 p_2 , p_3 , p_4 : non-negative real value

 $b_6, b_7, b_9, b_{10}, b_{12}, b_{13}$: arbitrary real value

- 13 variables (= degrees of freedom)

Existence Condition of Second-order Mechanism

Solution to the quadratic equations

Solution to the quadratic equations
$$a_1^{(1)} = \frac{2}{2} s_1 \sqrt{p_2^2 + p_3^2 + p_4^2}, \quad a_2^{(1)} = s_2 p_2, \quad a_3^{(1)} = s_3 p_3, \quad a_4^{(1)} = s_4 p_4,$$

$$a_5^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_2\left(\frac{9}{2}p_2 - b_6^2 - b_7^2\right), \quad a_6^{(1)} = b_6\sqrt{p_2}, \quad a_7^{(1)} = b_7\sqrt{p_2},$$

$$a_8^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_3\left(\frac{9}{2}p_3 - b_9^2 - b_{10}^2\right), \quad a_9^{(1)} = b_9\sqrt{p_3}, \quad a_{10}^{(1)} = b_{10}\sqrt{p_3},$$

$$a_{11}^{(1)} = -2s_1\sqrt{p_2^2 + p_3^2 + p_4^2} + s_4\left(\frac{9}{2}p_4 - b_{12}^2 - b_{13}^2\right), \quad a_{12}^{(1)} = b_{12}\sqrt{p_4}, \quad a_{13}^{(1)} = b_{13}\sqrt{p_4}$$

 s_1, s_2, s_3, s_4 : -1 or 1 —

bifurcation of mechanism

 p_2 , p_3 , p_4 : non-negative real value b_6 , b_7 , b_9 , b_{10} , b_{12} , b_{13} : arbitrary real value

degrees of freedom after bifurcation

2025/3/10

Second-order infinitesimal mechanism of rigid origami

28

Sufficient Existence Condition of Finite Mechanism

Sufficient condition for existence of finite mechanism

$$\operatorname{rank}(\mathbf{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(2)}\overline{\mathbf{X}}) = 4$$

$$\boldsymbol{\Omega}^{\mathsf{T}}\mathbf{\Gamma}^{(2)}\widetilde{\mathbf{X}} = \begin{bmatrix} 3a_{1}^{(1)} & 3a_{1}^{(1)} - 9a_{2}^{(1)} + a_{3}^{(1)} & 0 & 0 & a_{2}^{(1)} & 2a_{8}^{(1)} & 2a_{2}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 \\ 3a_{1}^{(1)} & 0 & 3a_{1}^{(1)} - 9a_{1}^{(1)} + a_{3}^{(1)} & 0 & 0 & 0 & 0 & a_{2}^{(1)} & 2a_{3}^{(1)} & 2a_{3}^{(1)} & 2a_{3}^{(1)} & 0 & 0 & 0 \\ 3a_{4}^{(1)} & 0 & 0 & 3a_{1}^{(1)} - 9a_{1}^{(1)} + a_{1}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 & a_{4}^{(1)} & 2a_{1}^{(1)} & 2a_{1}^{(1)} \\ 9a_{1}^{(1)} & -4a_{2}^{(1)} & -4a_{3}^{(1)} & -4a_{4}^{(1)} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

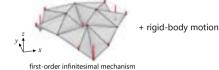
Example of solution

$$\mathbf{a}^{(i)} = \left(-\frac{2\sqrt{3}}{3}, \quad 1, \quad 1, \quad 1, \quad \frac{5+4\sqrt{3}}{2}, \quad 1, \quad -1, \quad \frac{5+4\sqrt{3}}{2}, \quad 1, \quad -1, \quad \frac{5+4\sqrt{3}}{2}, \quad 1, \quad -1\right)^T$$

29

Polynomial Approximation of Rigid-folding Path

Direction of first-order mechanism at the initial flat state



→ '

folded state

Folding motion by multiple polynomial approximation

2025/3/10

econd-order infinitesimal mechanism of rigid origami

30

Summary

1. Kinematic bifurcation

Existence condition of second-order infinitesimal mechanism

→ System of quadratic equations for coefficients of mechanism modes

2. Polynomial approximation of folding path

Sufficient condition for existence of finite mechanism

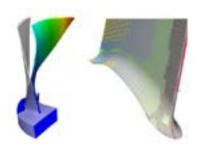
 Row full-rankness of matrix consisting of mechanism modes, self-equilibrium force modes, and Hessian of incompatibility vector

Series expansion of nodal position vector for path parameter

Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis

Bert Jüttler, Johannes Kepler University

Abstract



Isogeometric Analysis is a computational framework for numerical simulation, which was introduced by T.J.R. Hughes et al. in 2005 with the aim of bridging the gap between Design and Analysis, by adopting the prevailing mathematical technology of tensor product splines for discretizing of partial differential equations (PDEs). This presentation will address two of the many challenges that arise in this context. First, while the use of spline discretizations clearly offers advantages in terms of the number of degrees of freedom required compared to classical finite elements, these advantages are then compromised by the higher computational cost of matrix assembly in isogeometric analysis. We describe our methods for efficient matrix assembly, which make use of spline projection, pre-computed look-up tables and sum factorization to optimize the computational performance of the entire process. Second, since the rigid structure of tensor product splines is an obstacle to the use of adaptive refinement in isogeometric analysis, various generalizations of them have been proposed in the literature. These include T-splines (introduced by Sederberg et al. in 2003), hierarchical B-splines (invented by Forsey and Bartels in 1988) and the so-called "locally refined" splines (Dokken et al. 2013). In this presentation, we will analyze these approaches and compare them with the truncated variant of hierarchical B-splines, which reconciles the requirements of isogeometric analysis with those of geometric design.

References

- [1] C. Giannelli, B. Jüttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, J. Špeh, "THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis", Comput. Meth. Appl. Mech. Engrg., vol. 299, pp. 337–365, 2016.
- [2] M. Pan, B. Jüttler, A. Giust, "Fast formation of isogeometric Galerkin matrices via integration by interpolation and look-up", Comput. Meth. Appl. Mech. Engrg. vol. 366 (2020), 113005.

Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis

Bert Jüttler

JKU Linz, Austria

joint work with Carlotta Giannelli, Alessandro Giust, David Grossmann, Gabor Kiss, Angelos Mantzaflaris, Dominik Mokris, Maodong Pan, Bernd Simeon, Hendrik Speleers, . . .

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - LR B-splines
- Concluding remarks

Motivation: Numerical simulation in practice

The use of different geometric models causes different problems with data excannge.

Related experiences

Ship design: Bronsart et al. (2004):

"On average, generating the panel meshes takes up to 30% to 90% of the total time needed for wave resistance calculations".

Automotive industry: Farouki (SIAM News 1999) quotes Morgan, who

"presented the following 'typical' breakdown of the effort in a realistic CFD analysis: 1-4 weeks for geometry repair and preparation, 10-20 minutes for surface meshing, 3-4 hours for volume meshing, and about 1 hour for the actual flow analysis."

Isogeometric Analysis (IgA)

... is an approach to bridge the gap between

"Geometry" (CAD)

and

"Analysis" (FEM)

... was established by T.J.R. Hughes et al. 2005

Use the same representation for Design and Analysis! 🖘

A NURBS volume

$$G(r, s, t) = \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{k \in \mathcal{K}} R_{ijk}(r, s, t) \mathbf{d}_{ijk}, \quad (r, s, t) \in [0, 1]^3$$

with

$$R_{ijk}(r,s,t) = \frac{w_{ijk}\beta_{i,\mathcal{R}}(r)\beta_{j,\mathcal{S}}(s)\beta_{k,\mathcal{T}}(t)}{\sum\limits_{i'\in\mathcal{I}}\sum\limits_{j'\in\mathcal{J}}\sum\limits_{k'\in\mathcal{K}}w_{i'j'k'}\beta_{i',\mathcal{R}}(r)\beta_{j',\mathcal{S}}(s)\beta_{k',\mathcal{T}}(t)}$$

(de Boor) control points

 $\begin{array}{ll} \mathbf{d} = (\mathbf{d}_{ijk}) & \text{(de Boor)} \\ \beta_{i,\mathcal{R}}(r), \beta_{j,\mathcal{S}}(s), \beta_{k,\mathcal{T}}(t) & \text{B-splines} \\ \mathcal{R}, \mathcal{S}, \mathcal{T} & \text{knot vecto} \\ \mathcal{I}, \mathcal{J}, \mathcal{K} & \text{index sets} \end{array}$

knot vectors

 w_{ijk}

index sets of the control points

weights

IgA for a real-world example

D. Großmann (MTU Aero Engines) et al., CAGD 2012:

Comparison of Isogeometric and FEM simulations of turbine blades subject to centrifugal forces, pressure, and temperature (linear elasticity with temperaturedependent material properties)

Accuracy: IgA vs. FEM

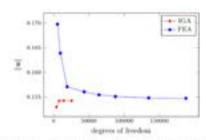
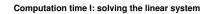


Figure 2.10: Displa to of the top corner at the builting edge of the blade corned by the instace prosours

 \sim same accuracy with \approx 10% of dofs



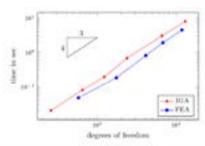


Figure 1.8: Computational time required to solve the linear system.

→ IGA needs slightly more time than FEM (increased bandwidth)

Computation time II: assembling the matrices (Gauss quadrature)

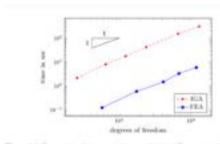


Figure 1.8: Computational time required to executive the stiffness matrix. A dualistic flar for the improperties method illustrates the executive non-nationized reals.

 \sim IGA assembly needs **significantly** more time than FEM assembly! (\approx 40 times)

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - LR B-splines
- Concluding remarks

Matrix generation challenge

- → Several approaches to address this challenge:
- (A) special quadrature rules for splines: Auricchio, Calabro, Hughes, Reali & Sangalli '12, Hughes, Reali, Sangalli '10, Schillinger, Hossain & Hughes '14, Barton & Calo '16. ...
- (B) computation re-use ("sum factorization"): Antolin, Buffa, Calabro, Martinelli & Sangalli '15 Calabro, Sangalli & Tani '16
- (A+B) weighted quadrature: Calabro, Sangalli & Tani'17, Hiemstra, Sangalli, Tani, Calabro, Hughes'19 Giannelli, Kanduc, Martinelli, Sangalli, Tani '22
- (C) isogeometric collocation: Schillinger, Evans, Reali, Scott & Hughes '13, De Lorenzis, Evans, Hughes & Reali '14, ...
- (D) spline projection: Mantzaflaris & J.'15, Pan, J.& Giust '20
- (E) tensor methods [based on (D)] Mantzaflaris, J., Khoromskij & Langer'17

Integration by Spline Projection

Example: Mass matrix

$$M_{ij} = \int_{[0,1]^d} \beta_i \beta_j w \mathrm{d}x, \quad w = \lambda |\det \hat{\nabla} F|. \tag{1}$$

Spline projection

$$w(x) \approx \sum_{k \in \mathcal{I}} w_k \beta_k(x)$$
 (2)

transforms elements into

$$M_{ij} \approx \int_{[0,1]^d} \beta_i \beta_j \sum_{k \in \mathcal{I}} w_k \beta_k \mathrm{d}x = \sum_{k \in \mathcal{I}} w_k \int_{[0,1]^d} \beta_i \beta_j \beta_k \mathrm{d}x. \tag{3}$$

Sum Factorization

Use look-up tables

$$L_{\ell,i_{\ell}j_{\ell}k_{\ell}} = \int_{0}^{1} \beta_{\ell,i_{\ell}}\beta_{\ell,j_{\ell}}\beta_{\ell,k_{\ell}} dx_{\ell}, \qquad (4)$$

and rewrite mass matrix elements as

$$M_{ij} \approx \sum_{k \in \mathcal{I}} w_k \prod_{\ell=1}^d L_{\ell, i_{\ell} j_{\ell} k_{\ell}}.$$
 (5)

Efficient evaluation via "sum factorization" (shown for d=3):

$$M_{ij} \approx \sum_{k_3} L_{3,i_3j_3k_3} \sum_{k_2} L_{2,i_2j_2k_2} \underbrace{\sum_{k_1} L_{1,i_1j_1k_1} w_{k_1k_2k_3}}_{= A_{(i_1j_1)(k_2k_3)}},$$

$$= B_{(i_1i_2)(j_1j_2)k_3}$$

$$\approx M_{(i_1i_2i_3)(j_1j_2j_3)}$$
(6)

Results: Theory

Symmetry is preserved (unlike weighted quadrature)

Accuracy of overall simulation: is preserved if spline projection uses the same degree as the discretization

Computational complexity: $O(Np^{d+1})$ (same as weighted quadrature, less than any other method)

Results: #flops per dof (d = 3):

	p = 1	p = 2	p = 3	p = 4	p = 5	asymptotics
GQ	1,672	60,534	794,688	5,890,750	30,326,616	$\mathcal{O}(p^9)$
EGS	512	7,047	47,104	209,375	715,392	$\mathcal{O}(p^7)$
IL	1,390	27,460	202,642	907,960	3,014,326	$\mathcal{O}(p^6)$
GGS	304	2,646	11,904	37,750	96,336	$\mathcal{O}(p^5)$
WQ	190	1,014	3,350	8,446	17,934	$16p^4 + \mathcal{O}(p^3)$
ILS	200	1,202	4,248	11,138	24,248	$24p^4 + \mathcal{O}(p^3)$
ILS-S	88	336	954	2,206	4,428	$3p^4 + \mathcal{O}(p^3)$

GQ: Gauss quadrature; EGS: element-wise GQ with SF, GGS: global GQ with SF, IL: Interpolation and Look-up, WQ: weighted quadrature, ILS: our method, ILS-S: with use of symmetry

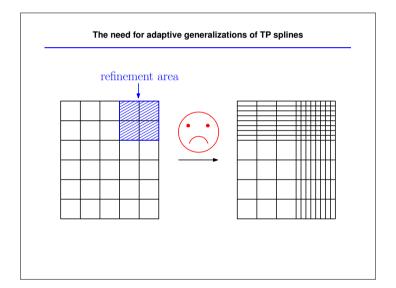
Results: Speedup (d = 3)

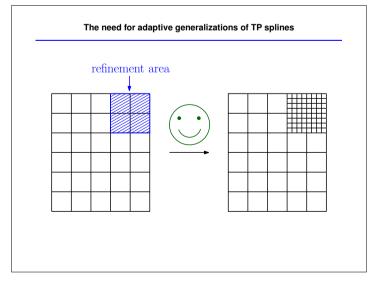
... on a particular geometry. Note that we compare with the highly optimized G+Smo implementation!

	p = 1	p = 2	p = 3	p = 4	p = 5
Predicted speedup	8.36	50.36	187.07	528.89	1250.69
Observed speedup	5.42	6.38	12.4	29.9	66.3

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HR-splines
 - LR B-splines
- Concluding remarks





The main competitors

- T-splines (splines with T-joints)
- Hierarchical B-splines
- LR splines (Locally Refined Splines)

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - LR B-splines
- Concluding remarks

T-splines: The most popular approach

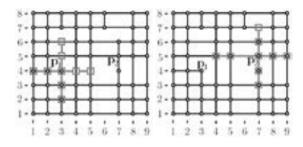
History:

- 2003: invented by Sederberg at al. (SIGGRAPH)
- approx. 2003: T-SPLINE INC. established
- T-spline plugin for the RHINO modeling software
- 2010: Use of T-splines in Isogeometric Analysis
- Dec. 2011: AUTODESK acquires T-SPLINE INC.
- 2018: U-splines

T-splines: Definition

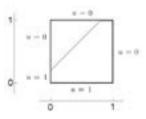
Blending functions (linear independence is not guaranteed!) associated with T-meshes are products of B-splines with local knot vectors

$$N_{i,j}(s,t) = B_{\sigma(i)}(s)B_{\tau(j)}(t)$$



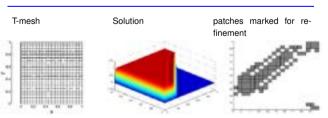
Example: Advection Dominated Advection-Diffusion

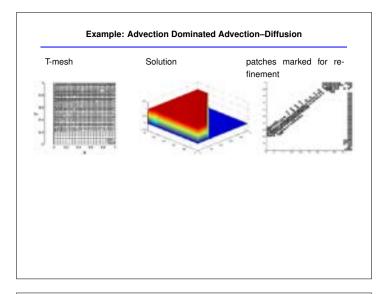
Solve $\kappa\Delta u+a\cdot\nabla u=0$ with diffusion coefficient $\kappa=10^{-6}$ and advection velocity $a=(\sin\theta,\cos\theta)$ for $\theta=45^\circ.$

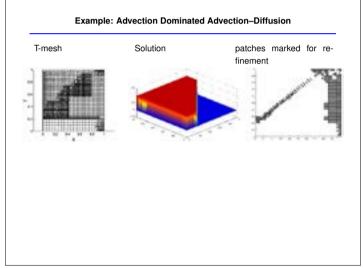


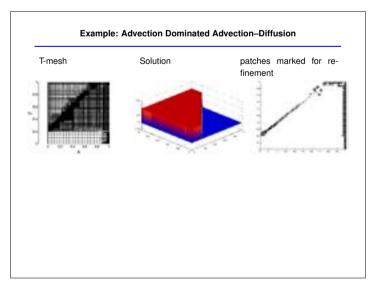
grey: estimated position of sharp layers is solved using SUPG stabilization

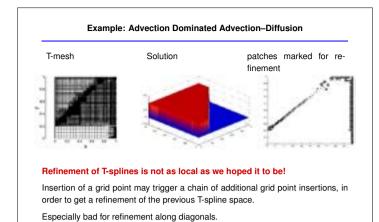
Example: Advection Dominated Advection-Diffusion











T-splines: Recent Advances

These problems triggered 521 citations and further research:

AST-splines: sub-class of "Analysis Suitable T-splines" (M. Scott et al. 2012), a.k.a. DCT-Splines: "Dual Compatible T-splines" (Pavia Group)

- are characterized by the fact that knot line extensions do not intersect
- are linearly independent
- have the expected approximation power
- possess a sub-sub-class that admits refinement with linear complexity (Morgenstern & Peterseim 2015)
- refinement algorithm in 3D?

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - LR B-splines
- Concluding remarks

H(ierarchical) B-splines: The classical approach ...

- ... with a new twist!
- Forsey & Bartels 1988: HB-spline as sums of B-spline functions
- Kraft 1997: defines a basis and a quasi-interpolant
- Vuong, Giannelli, J., Simeon 2011: Use in IGA, basis for weaker assumptions
- Giannelli, J., Speleers 2012: Truncated HB-splines a new basis with better properties
- Giannelli, J., Speleers 2013: strong stability & completeness
- Manni & Speleers 2015: Quasi-interpolant → approximation power
- Buffa, Giannelli, Morgenstern, Peterseim 2016: Complexity of mesh refinement

HB-splines: Definition

Hierarchy of **nested spline spaces** V^{ℓ} , spanned by B-spline bases B^{ℓ}

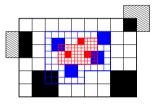
$$V^\ell = \mathrm{span} B^\ell \subset V^{\ell+1} = \mathrm{span} B^{\ell+1}$$

Hierarchy of nested domains $\Omega^\ell \subset \mathbb{R}^d$

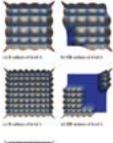
$$\Omega^\ell \supset \Omega^{\ell+1}$$

The Kraft basis is defined by a selection mechanism:

$$\mathcal{K} = \bigcup_{\ell} \{\beta \in B^{\ell} : \operatorname{supp} 0\beta \subseteq \Omega^{\ell}, \quad \operatorname{supp} 0\beta \not\subseteq \Omega^{\ell+1} \}$$



HB-Splines: 2D example (p=2)



HB-splines: Properties of the Kraft basis

Properties:

Linear independence is implied by local linear independence of B-splines

Weighted partition of unity

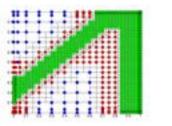
$$\sum_{\beta=1}^{\infty} w_{\beta}\beta = 1 \quad w_{\beta} > 0$$

 $\hbox{ under certain assumptions on the domain hierarchy } \\ \leadsto \hbox{ is required for geometric modeling!}$

s is required for geometric modeling

HB-Splines: First Use in IGA

.. by A.-V. Vuong et al. 2005 demonstrates the locality of the refinement:



refined grid for the advection-diffusion problem / T-splines

Several papers explore HB splines in IGA: Schillinger et al. 2012, Bornemann & Cirak 2013, Kuru et al. 2013, \dots

HB-Splines: Algebraic Completeness (AC)

Question: Given a hierarchical grid, does span $\mathcal K$ contain **any** piecewise polynomial function of degree $\mathbf p$ and smoothness $C^\mathbf s$?

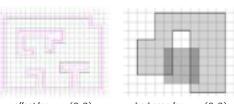
 $\Omega^0 \setminus \Omega^2$

 $\Omega^0 \setminus \Omega^3$

General answer: Only under certain conditions on the "rings" $\Omega^0 \setminus \Omega^{\ell+1}!$

HB-Splines: Answers to the AC question

• Answer for d=2, s=p-1, $\mathbf{p}=(p,p)$ (Giannelli & J. 2013): Yes if $\Omega^0 \setminus \Omega^{\ell+1}$ admits offset curves at distance (p-1)/2:



- offset for p = (2, 2)
- bad case for p = (3,3)
- Answer for d=3, s=p-1, $\mathbf{p}=(p,p,p)$ (Berdinsky & six co-authors 2014): Yes if $\Omega^0\setminus\Omega^{\ell+1}$ admits offset surfaces at distance (p-1)/2.
- Answer for any d, any s, any p, (Mokriš, J., Giannelli 2014): Yes if the supports of the basis functions in B^ℓ intersected with $\Omega^0 \setminus \Omega^{\ell+1}$ are all connected.

THB-Splines: A novel basis (Giannelli, J., Speleers 2012)

Any function of level ℓ admits a representation of level $\ell+1$:

$$\beta \in B^{\ell}, \quad \beta(x) = \sum_{\gamma \in B^{\ell+1}} c_{\gamma}(\beta)\gamma(x)$$

"two scale relation", basis of subdivision surfaces

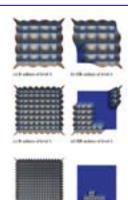
(very beautiful coefficients for uniform knots!)

We truncate the function by omitting the functions γ which are selected at the next level:

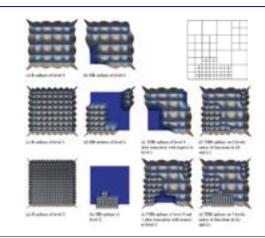
$$\mathrm{trunc}^{\ell+1}(\beta)(x) = \sum_{\gamma \in B^{\ell+1}, \mathrm{supp}\gamma \not\subseteq \Omega^{\ell+1}} c_{\gamma}(\beta)\gamma(x)$$

Applying this idea recursively defines the T(runcated) HB-spline basis ${\mathcal T}$

HB-Splines: 2D example (p = 2)



THB-Splines: 2D example (p = 2)



THB-Splines: Preservation of Coefficients (PoC)

THEOREM:

Any function in the THB-spline basis ${\mathcal T}$ has a unique mother:

$$\beta = \mathsf{mother}(\tau)$$
 if $\tau = \mathsf{trunc}(...\mathsf{trunc}(\beta)...)$

Consider a function f which has a representation at all levels:

$$f(x) = \sum_{\beta \in B^{\ell}} c_{\beta}\beta(x) \quad \ell = 0, 1, 2, \dots$$

The representation of f with respect to the THB-spline basis $\mathcal T$ preserves the coefficients of the mother functions:

$$f(x) = \sum_{\tau \in \mathcal{T}} c_{\mathsf{mother}(\tau)} \tau(x)$$

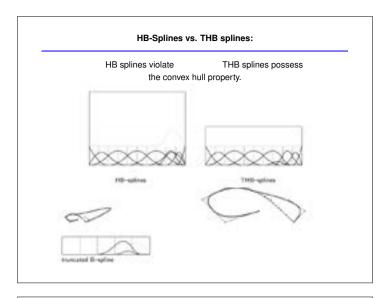
THB-Splines: PoC implies Partition of Unity

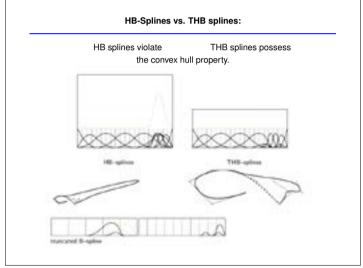
The B-spline basis form a partition of unity

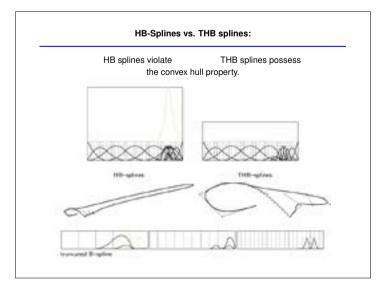
$$1 = \sum_{\beta \in B^{\ell}} 1 \cdot \beta(x) \quad \ell = 0, 1, 2, \dots$$

The representation of 1 with respect to the THB-spline basis $\mathcal T$ preserves the coefficients of the mother functions:

$$1 = \sum_{\tau \in \mathcal{T}} 1 \cdot \tau(x)$$







THB-Splines: PoC gives Greville points

Greville points (1D: abscissas) are the coefficients of the coordinate functions.

Used as collocation points in BEM

The Greville points of the B-spline basis are well known:

$$x = \sum_{\beta \in B^{\ell}} \xi_{\beta} \cdot \beta(x) \quad \ell = 0, 1, 2, \dots$$

The representation of x with respect to the THB-spline basis $\mathcal T$ preserves the coefficients of the mother functions:

$$x = \sum_{\tau \in \mathcal{T}} \xi_{\mathsf{mother}(\tau)} \cdot \tau(x)$$

The Greville point of a THB-spline function is equal to that of its mother!

THB-Splines: PoC implies strong stability

Theorem:

There exists constants C_1 and C_2 such that

$$C_1 \max\{c_\tau : \tau \in \mathcal{T}\} \leq \left\| \sum_{\tau \in \mathcal{T}} c_\tau \tau \right\|_\infty \leq C_2 \max\{c_\tau : \tau \in \mathcal{T}\}$$

The constants depend neither on the choice of the subdomains nor on the number of levels.

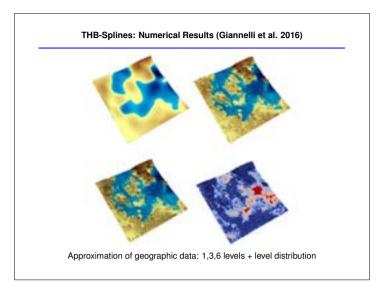
$$C_2 = 1$$

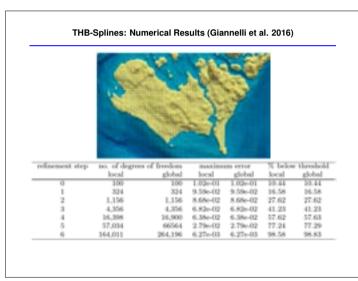
Proof by PoC.

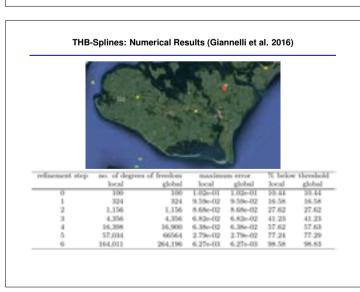
THB-Splines: Approximation Power

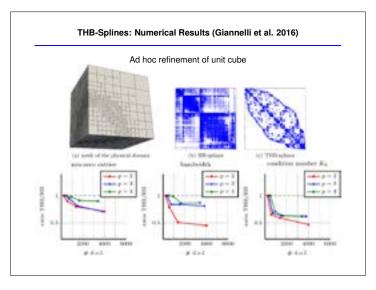
Manni & Speleers 2015:

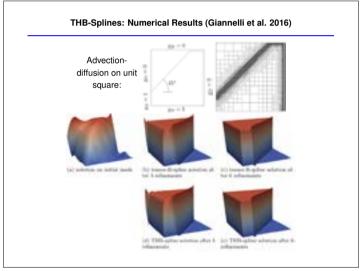
Using PoC, Quasi-Interpolation operators for THB-splines can be derived from those of standard B-splines and provide **optimal approximation power**.

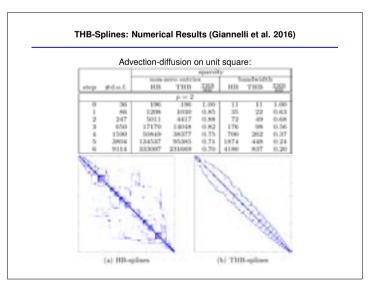


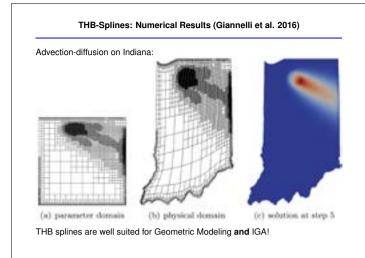


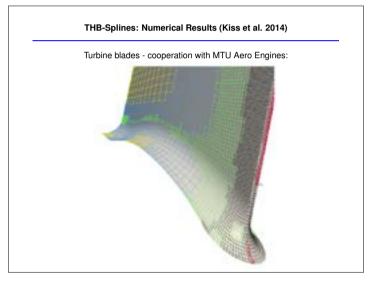


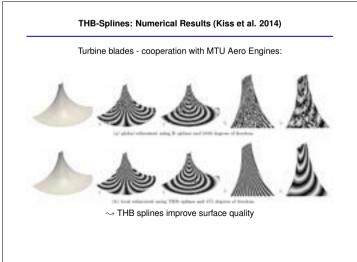




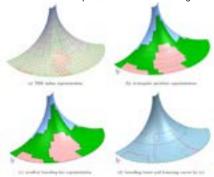








Turbine blades - cooperation with MTU Aero Engines:



Two strategies for CAD export

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - $\ \mathsf{LR} \ \mathsf{B}\text{-splines}$
- Concluding remarks

LR-splines: The Newcomer

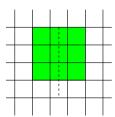
History:

- around 2010: Locally Refined Splines invented by Dokken et al.
- since 2010: presentations at various conferences and workshops
- around 2010: patented
- 2013: Theoretical paper appears in CAGD

start with a tensor-product mesh

insert meshline segments

split functions whose support is traversed by meshline segments



The set of LR splines is independent of the order of meshline insertions.

LR-splines: Properties

LR spline spaces on nested T-meshes are nested.

Linear independence is not guaranteed.

Detecting linear dependencies can be costly.

Current work (PhD thesis of Lisa Groiss, 2023): Mesh refinement for perfect LR B-splines bases (locally linearly independent, partition of unity)

Outline

- Isogeometric analysis
- Efficient matrix assembly
- Adaptive spline refinement
 - T-splines
 - HB-splines
 - LR B-splines
- Concluding remarks

Concluding Remarks

- ullet Sogeometric Analysis igtriangle
- Fast matrix assembly via spline projection and sum factorization
- Three approaches to adaptive spline refinement
- Ongoing work: Refinement ensuring local linear independence

Shape generation of free-form grid shells with polygonal panels

Jingyao Zhang Kyoto University

Abstract

This study addresses the shape generation of free-form grid shells with polygonal panels through two distinct approaches:

- (a) For the generation of triangulated meshes with a predefined Gaussian curvature distribution, e.g., Figures 1 and 2, we introduce an efficient two-step method that integrates discrete Ricci flow and optimization techniques [1, 2]. The first step is to find the feasible edge lengths satisfying the predefined Gaussian curvature distribution, making use of circular packings. The second step is to embed these edge lengths into a three-dimensional space, by solving an optimization problem.
- (b) For the generation of free-form planar meshes composed of polygonal panels, e.g., the planar quadrilateral mesh as shown in Figure , we propose a mechanical approach, modelling the mesh as a planar tensegrity structure. Self-equilibrated tensegrity units enable planarity of the panels, although this is not explicitly addressed as an objective in solving the form-finding problem.

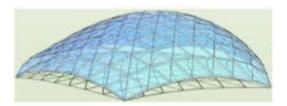


Figure 1: Surface with non-uniform Gaussian curvature



Figure 2: Globally developable surface

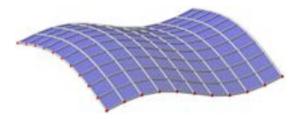


Figure 3: Planar quadrilateral mesh

References

- [1] J. Y. Zhang, M. Ohsaki, A design tool for globally developable discrete architectural surfaces using Ricci flow, Japan Architectural Review, Vol. 6 (1), 312410, 2023. 10.1002/2475-8876.12410
- [2] S. Kaji, J. Y. Zhang, Finetuning discrete architectural surfaces by use of circle packing, Journal of Asian Architecture and Building Engineering, Vol. 23 (1), pp. 188–203, 2024.

Shape generation of free-form grid shells with polygonal panels

Jingyao ZHANG

Ohsaki Group

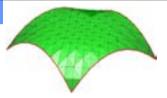
Kyoto University

2025/3/10

Grid shells (polygonal panels)

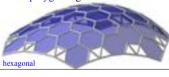
Triangular mesh:

- Globally developable discrete surfaces
- 2. Discrete surface with specified Gaussian curvature (with Prof. Kaji, Kyusyu Uni.)



Polygonal mesh:

3. Planar polygonal grid shell



Topic 1:

Globally developable discrete surface using Ricci flow

J.Y. Zhang, M. Ohsaki,

A design tool for globally developable discrete architectural surfaces using Ricci flow, Japan Architectural Review, Vol. 6 (1), 312410, 2023.

CP for Discrete Surface

- ➤ Conformality: keep corner angles too rigid!
- > Preserve intersection angle (edge weight) instead
- > Circle packing is defined at vertices of mesh



Radius at vertex Mean radius Edge weight Edge length

variable during fix

Discrete Ricci flow

- Chow, B., & Luo, F. (2003). Combinatorial Ricci flows on surfaces Journal of Differential Geometry, 63(1), 97-129.
- In the smooth case, the Gaussian curvature is determined by the Riemannian metric.
- \succ Two Riemannian metrics g_1,g_2 on a manifold are conformally equivalent if they are related by a positive scaling at each point.

$$g_2 = e^{2n}g_1, \quad n: M \to \mathbb{R}$$

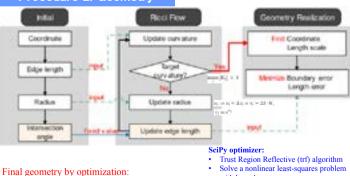
 \triangleright For a compact surface with Riemannian metric (X, g_{ij}) , Hamilton (1988) introduced the 2D Ricci flow

$$\frac{\mathrm{d}g_{ij}}{\mathrm{d}t} = -Kg_{ij}$$

- > It was further proved that for any closed surface with any initial Riemannian metric, the solution of the Ricci flow exists for all time (reference?).
- > After normalizing the solution to have fixed area, the solution converges to a constant curvature metric conformal to the initial metric as time goes to infinity.
- > Chow and Luo (2003) presented the analogous flow in the combinatorial setting, and showed that the discrete Ricci flow has solutions for all time for any initial metric and converges exponentially fast to the circle packing metric constructed by Thurston.

$$\sum_{i \in V} u_i = 0$$

Procedure 2: Geometry



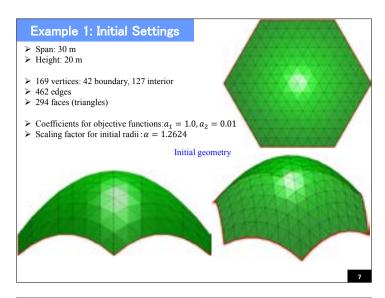
Final geometry by optimization:

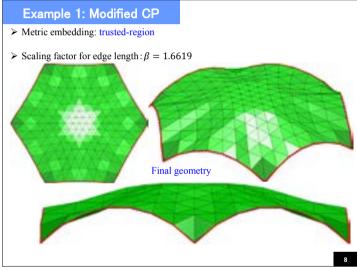
Opti Coordinates Coordinates
Boundary

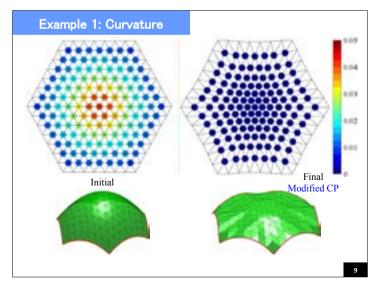
with bounds Simple but robust $\{s \in V\}$

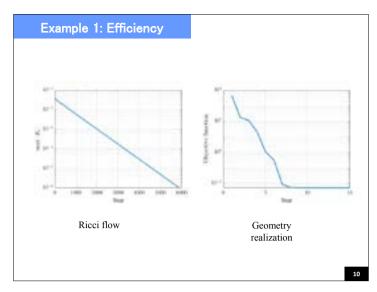
 $(v_i \in \mathcal{B})$ (N. 6 P)

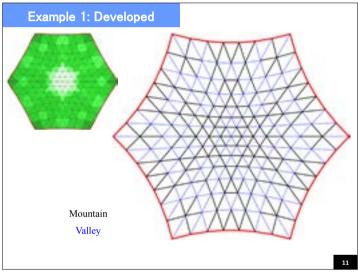
Edge length from Ricci flow

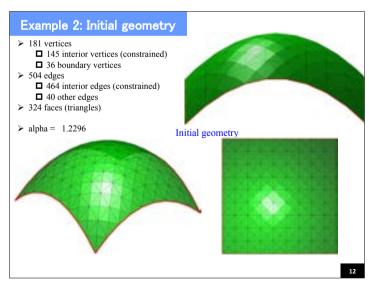


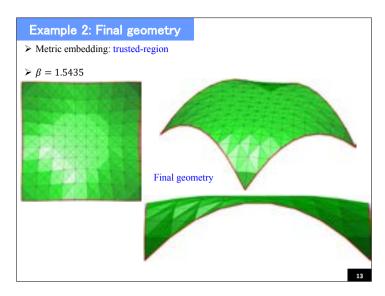


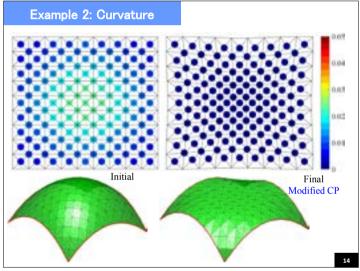


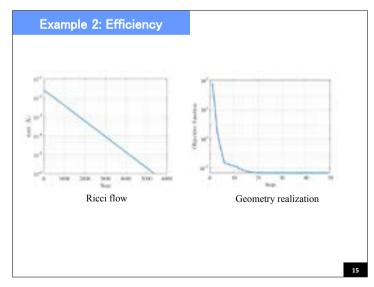


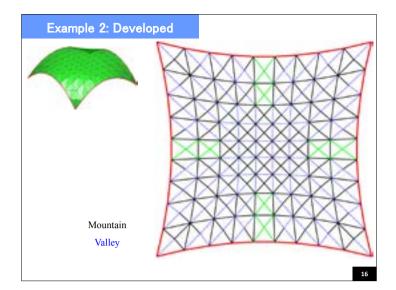












Remarks

Current Study:

- An efficient rool for designing discrete architectural surfaces, that are globally developable and span the prescribed boundary
- A simple modified circle packing scheme has better performance in conformality than traditional Thurston's CP

Future Studies:

- ➤ The final geometry is not close enough to the initial (usually desired) one -> Divide the surface into several components
- > Meshes of other shape
- Structural performance

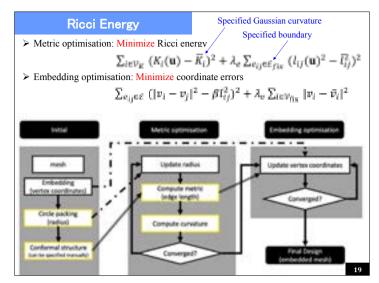
17

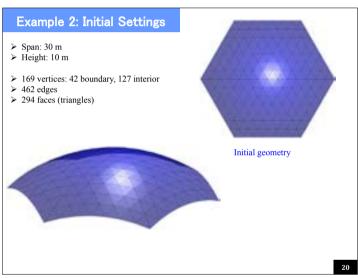
Topic 2:

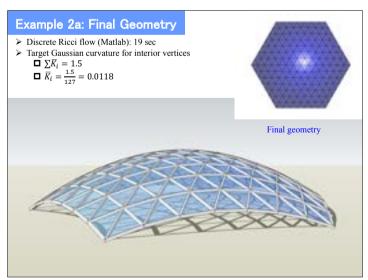
Discrete surface with user-defined Gaussian curvature using Ricci energy

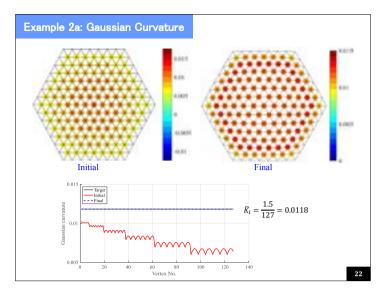
Joint work with Prof. Kaji, Kyusyu Uni.

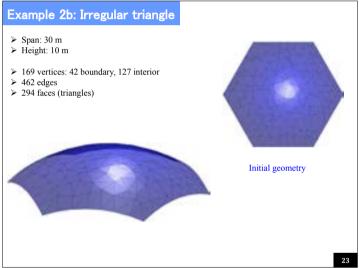
S. Kaji, J.Y. Zhang, Finetuning discrete architectural surfaces by use of circle packing, Journal of Asian Architecture and Building Engineering, Vol. 23 (1), pp. 188-203, 2024.

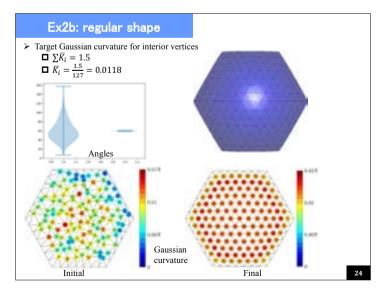


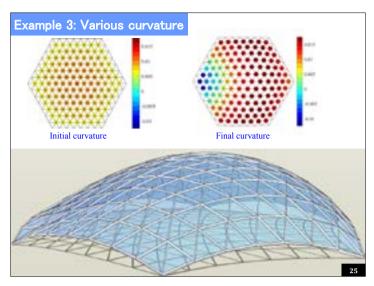


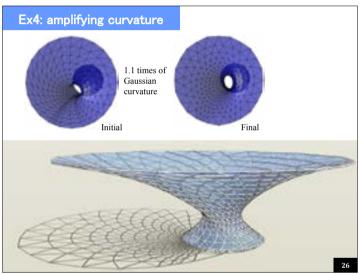


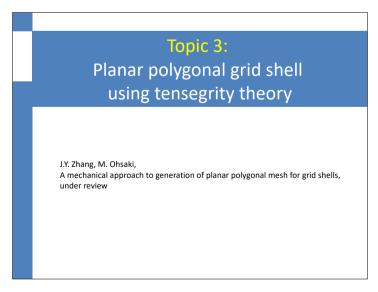


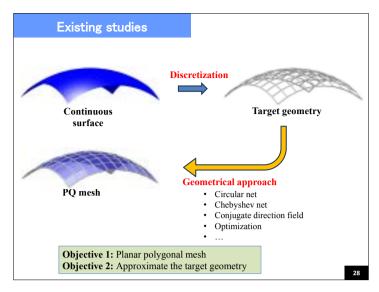


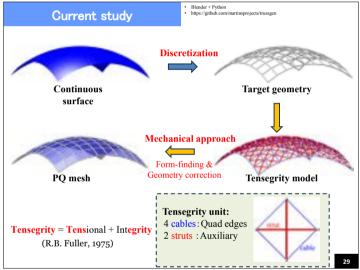


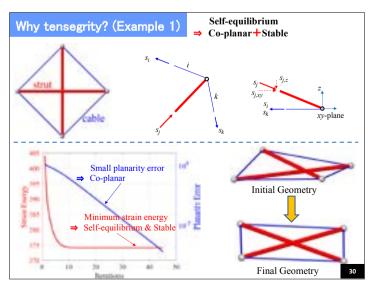








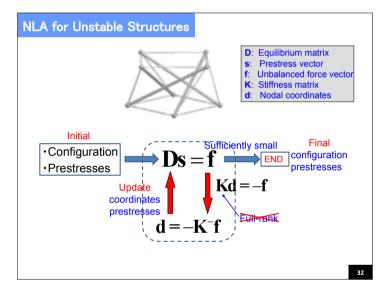


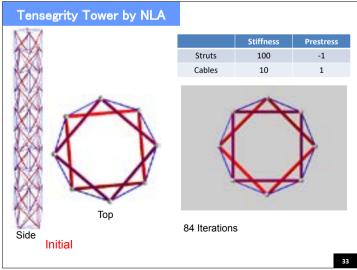


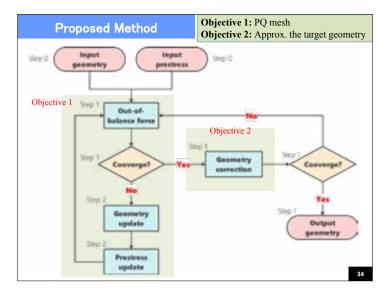
Form-finding Methods

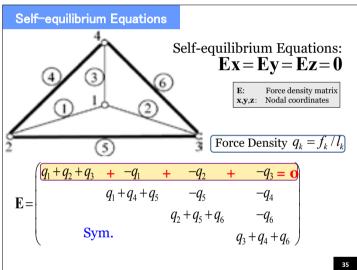
- ➤ Introduction to Tensegrity
- ➤ Applications
- ➤ Stability
- Form-finding (or Shape-finding)
 - ◆ Intuition Approaches
 - ◆ Analytical Approaches (using symmetry)
 - ◆ Numerical Approaches
 - Adaptive Force Density Method
 - Dynamic Relaxation Method
 - Non-linear Analysis (NLA) Method
 - Optimization Method

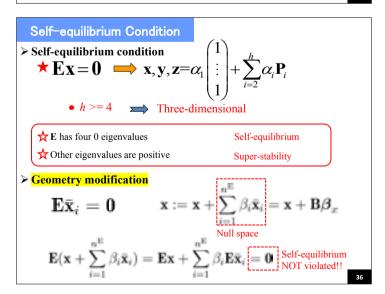
31











Geometry Correction

$$\mathbf{x} + \mathbf{B}\boldsymbol{\beta}_{\mathbf{x}} = \mathbf{x}_{0}$$
 Target geometry
$$\boldsymbol{\beta}_{\mathbf{x}} = \mathbf{B}(\mathbf{x}_{0} - \mathbf{x}) \text{ Least squared solution}$$
 New geometry
$$\mathbf{x} := \mathbf{x} + \sum_{i=1}^{n} \beta_{i} \mathbf{x}_{i} = \mathbf{x} + \mathbf{B}\boldsymbol{\beta}$$
 Geometry Geometry Correction

$$\mathbf{E}(\mathbf{x} + \sum_{i=1}^{n^{\mathrm{E}}} \beta_i \bar{\mathbf{x}}_i) = \mathbf{E}\mathbf{x} + \sum_{i=1}^{n^{\mathrm{E}}} \beta_i \mathbf{E} \bar{\mathbf{x}}_i = \mathbf{0}$$

37

Errors

> Planarity error

☐ Distance to approximated tangent plane

$$\begin{aligned} \text{distance}(\mathbf{v}_{i,j}) &= (\mathbf{v}_{i,j} - \mathbf{o}_i) \cdot \mathbf{n}_i \\ \text{Center Normal} \end{aligned}$$

☐ Sum squared distance

$$\varepsilon_i^q = -n_i(\mathbf{o}_i^{\top}\mathbf{n})^2 + \sum_{j=1}^{n_i} \mathbf{v}_{i,j}^{\top}(\mathbf{n}\mathbf{n}^{\top})\mathbf{v}_{i,j}$$

☐ Planarity error ((average distance)

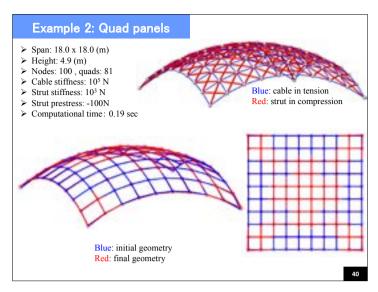
$$\varepsilon^{q} = \frac{1}{n_{q}} \sqrt{\sum_{i=1}^{n_{q}} \varepsilon_{i}^{q}}$$

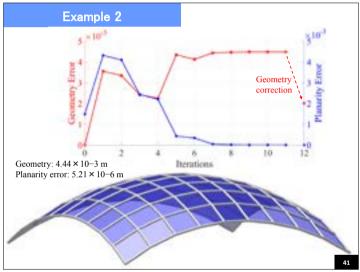
➤ Geometry error

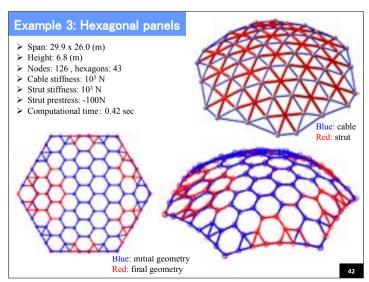
$$\varepsilon^{\varepsilon} = \frac{1}{3n} \sqrt{||\dot{\mathbf{x}} - \mathbf{x}_0||^2 + ||\dot{\mathbf{y}} - \mathbf{y}_0||^2 + ||\dot{\mathbf{z}} - \mathbf{z}_0||^2}}{\text{Final Target geometry geometry}}$$

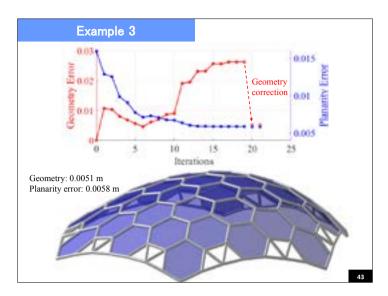
38

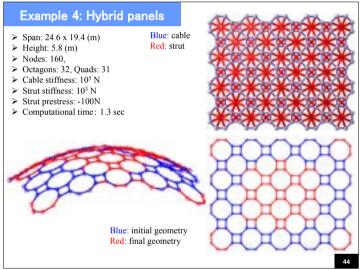
Tensegrity Model Quad Architectural surface Form-finding Find the geometry (& prestress) at the state of self-equilibrium Tensegrity model

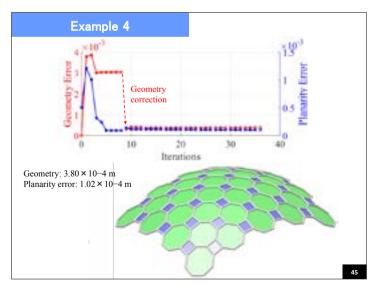










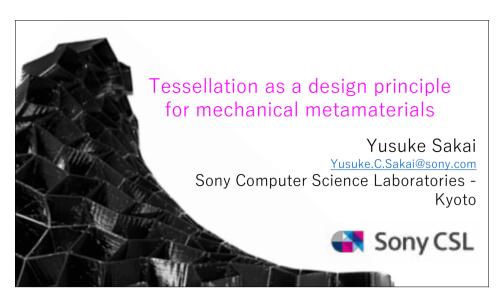


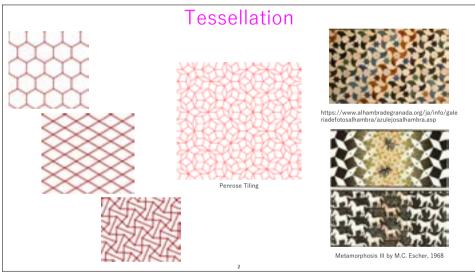
Tessellation as a design principle for mechanical metamaterials

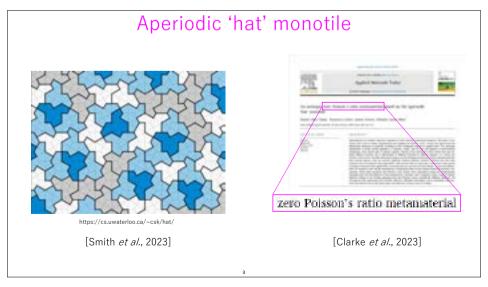
Yusuke Sakai Sony Computer Science Laboratories

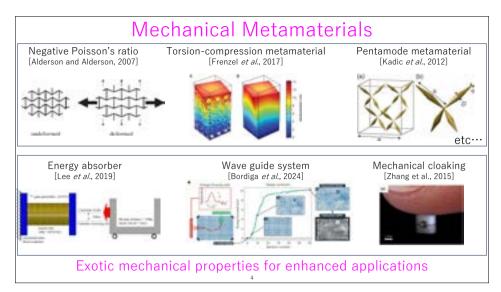
Abstract

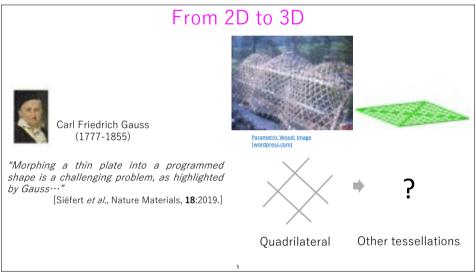
Tessellation, a geometric pattern filling a plane without any gaps or overlaps, serves as a powerful tool for designing mechanical metamaterials. Mechanical metamaterials are artificial structures engineered for unique and tunable mechanical characteristics. In this talk, we introduce how simple polygonal tessellations can define the internal units of metamaterials, allowing tailorable mechanical responses through geometric design. By adjusting geometric configurations, we demonstrate intuitive tunability in deformation behaviors, leading to applications in transformable curved surfaces and tubular structures with unique mechanical behavior. Designing tessellation offers a systematic design scheme for adaptive and programmable structures, expanding possibilities for applications in aesthetic architectural roofs and mechanical devices.

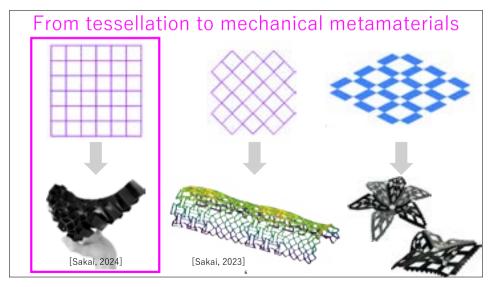


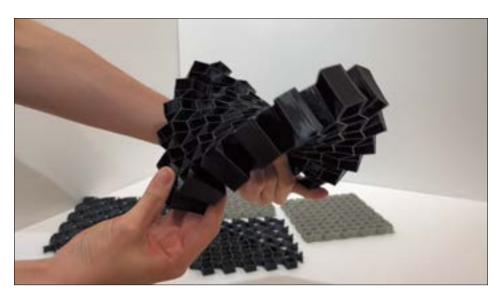


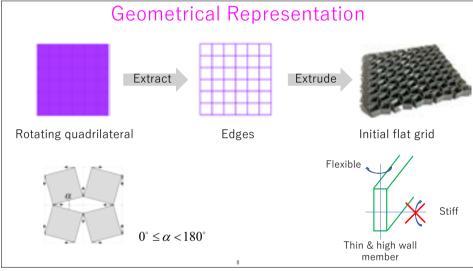


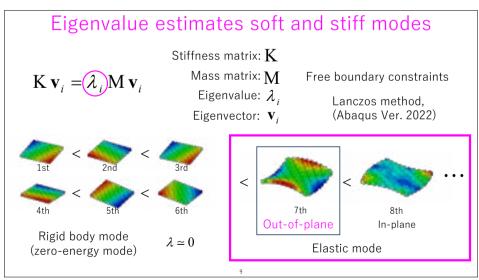


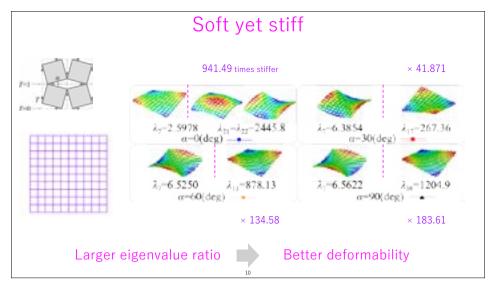


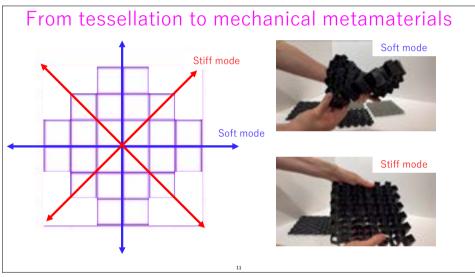


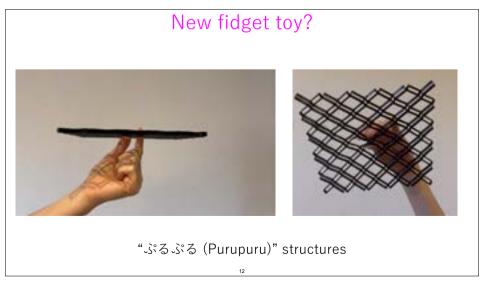


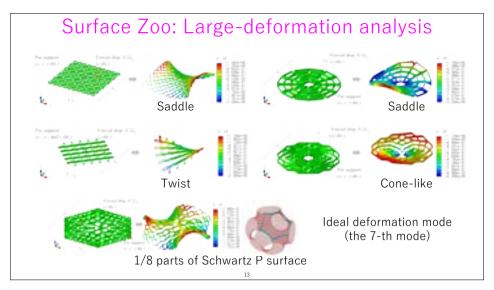


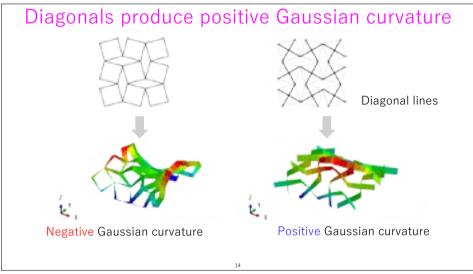


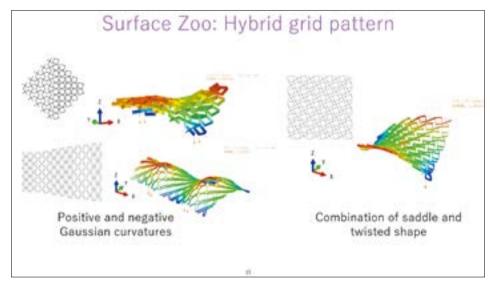


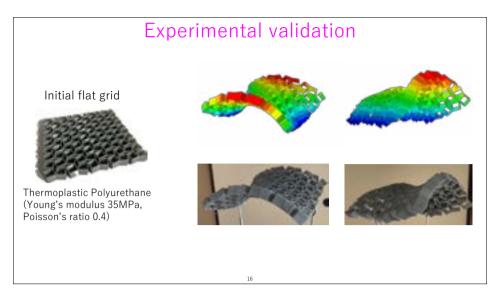


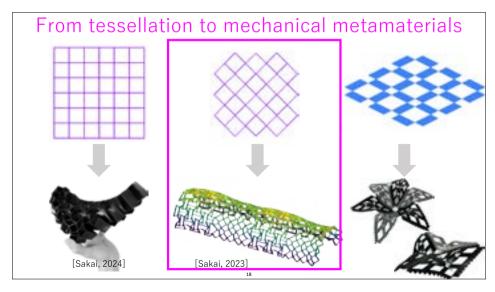


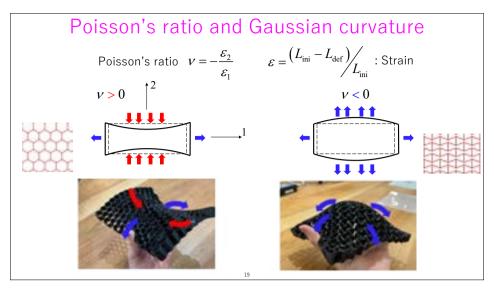


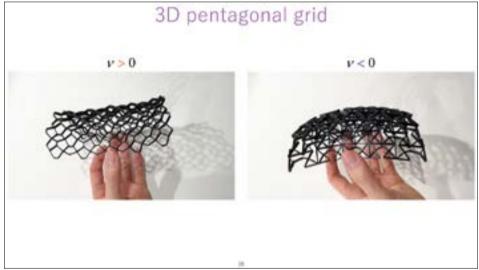


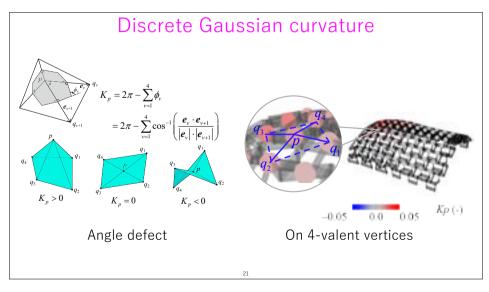


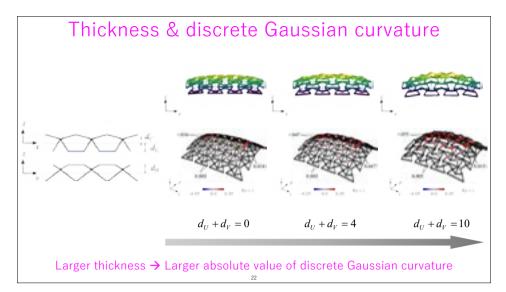


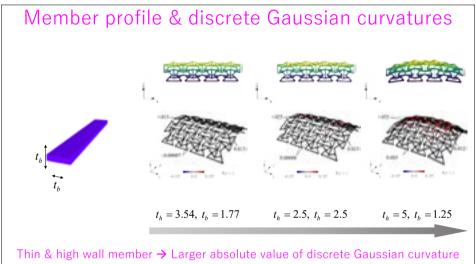


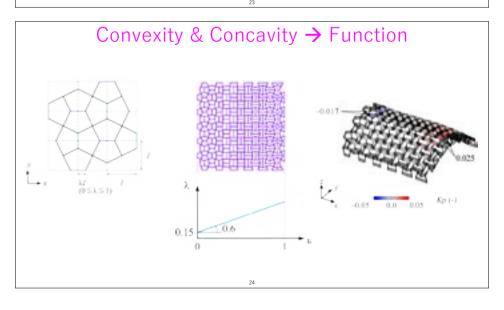


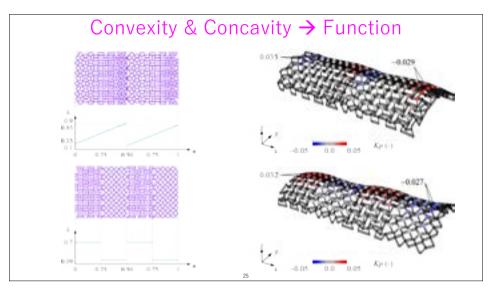


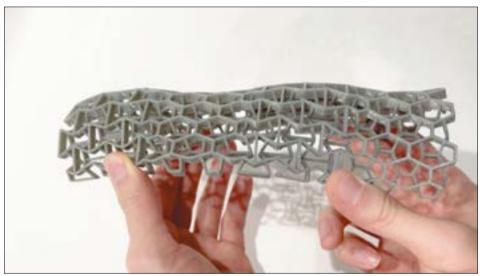


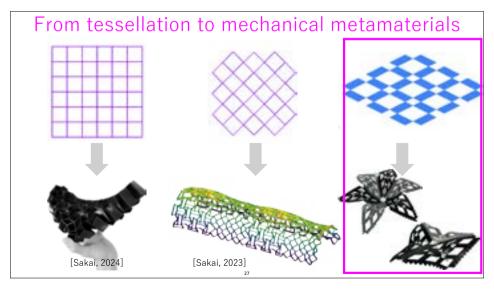


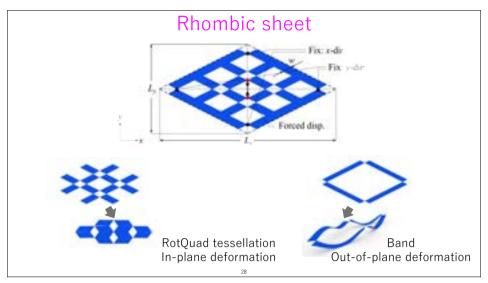


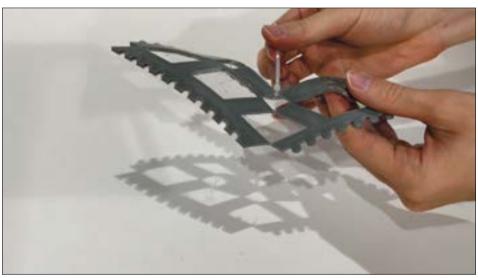


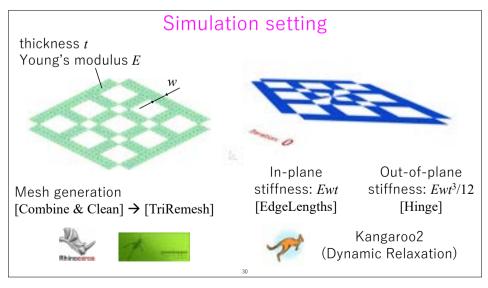


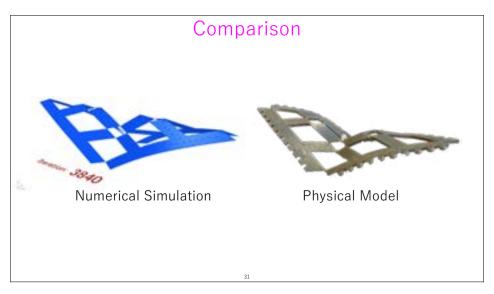


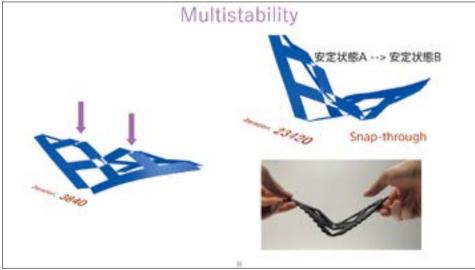


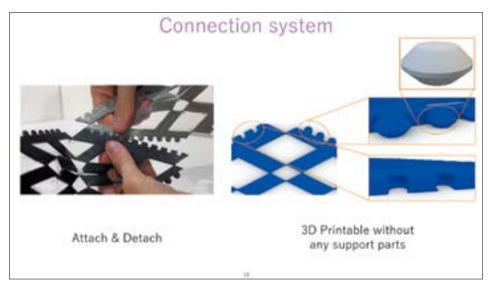


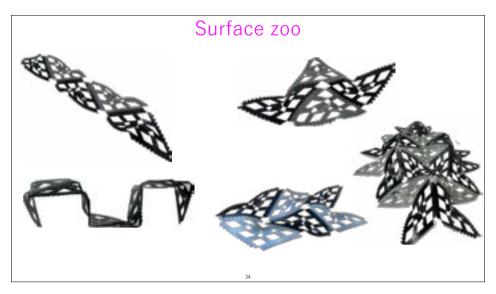




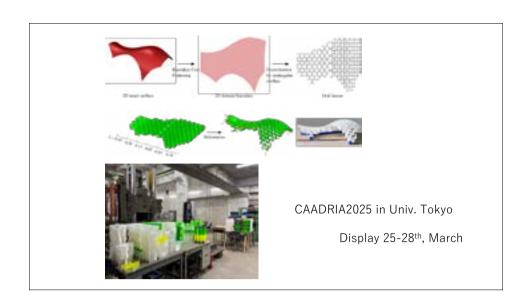






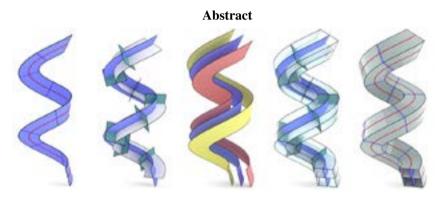






All you need is rotation: Construction of developable strips – Part 1 Theory

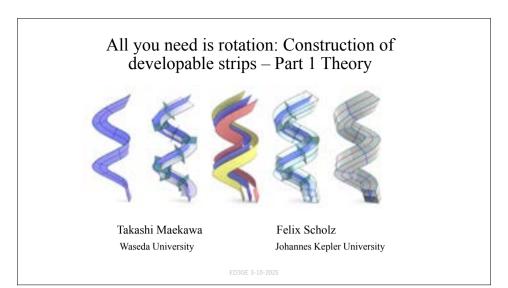
Takashi Maekawa Waseda University Felix Scholz Johannes Kepler University



We present a novel method for generating developable strips along a space curve, offering flexible design. Central to this approach is the rotation angle, which governs the relationship between the Frenet frame of the input space curve and the Darboux frame of the curve on the resulting developable strip [1]. By treating this angle as a free design parameter, represented by any differentiable function along the curve, our method enables the creation of diverse developable geometries. This generalization significantly expands the design space, allowing for developable strips that share a common directrix curve. The rotation angle can be specified in various forms, such as constants, linear variations, sinusoidal patterns, or solutions to initial value problems defined by ordinary differential equations. By introducing this versatile framework, we advance the theoretical understanding of developable surface design, providing a powerful toolset for exploring and manipulating developable geometries with exceptional flexibility.

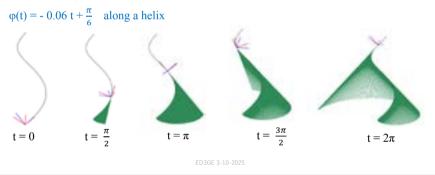
References

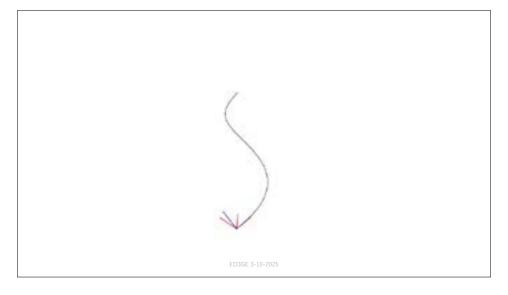
[1] T. Maekawa and Felix Scholz, "All you need is rotation: Construction of developable strips", ACM Transactions on Graphics, vol. 43, no. 6, 2024.

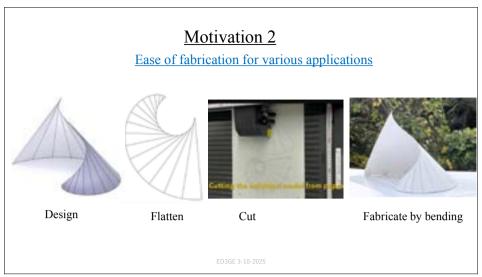


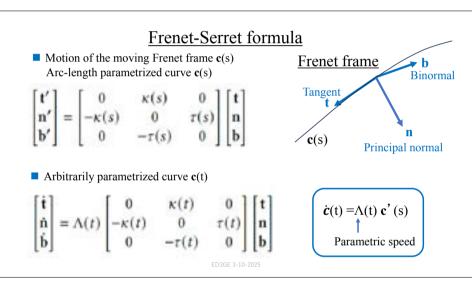
<u>Motivation 1</u> Ease of designing developable strips

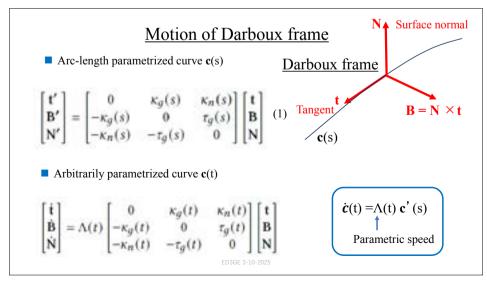
We generate developable strips along a given space curve by designing a suitable **rotation angle** between the Frenet and Darboux frames.



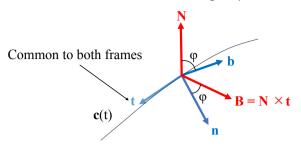








Rotation angle φ



Darboux frame
$$\begin{bmatrix} \mathbf{t} \\ \mathbf{B} \\ \mathbf{N} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{n} \\ \mathbf{b} \end{bmatrix}$$
 Frenet frame (2)

ED3GE 3-10-2025

$\kappa_n \kappa_g \tau_g$ in terms of ϕ

■ Plug (2) into (1)

$$\mathbf{B'} = -\kappa_0 \mathbf{t} - \tau_g \sin \varphi \ \mathbf{n} + \tau_g \cos \varphi \ \mathbf{b}$$

 $\mathbf{N'} = -\kappa_n \ \mathbf{t} - \tau_g \cos \varphi \ \mathbf{n} - \tau_g \sin \varphi \ \mathbf{b}$

Differentiate the second and third equations of (2)

$$\mathbf{B}' = -\kappa \cos \varphi \, \mathbf{t} - \sin \varphi \left(\tau + \frac{d\varphi}{ds} \right) \mathbf{n} + \cos \varphi \left(\tau + \frac{d\varphi}{ds} \right) \mathbf{b}$$

 $\mathbf{N}' = \kappa \sin \varphi \, \mathbf{t} - \cos \varphi \left(\tau + \frac{d\varphi}{ds} \right) \mathbf{n} - \sin \varphi \left(\tau + \frac{d\varphi}{ds} \right) \mathbf{b}$

■ By comparing B' and N' we get

$$\kappa_{\kappa} = -\kappa \sin \varphi$$
 $\kappa_{g} = \kappa \cos \varphi$ $\tau_{g} = \tau + \frac{d\varphi}{ds}$

FD3GF 3-10-2025

Key idea

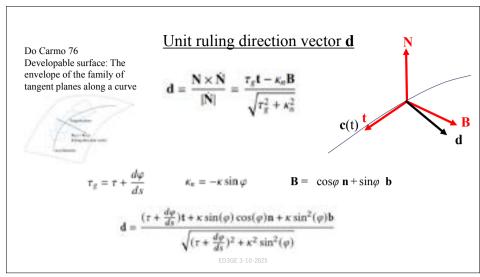
The Darboux frame generally exists only if there's a surface containing the curve.

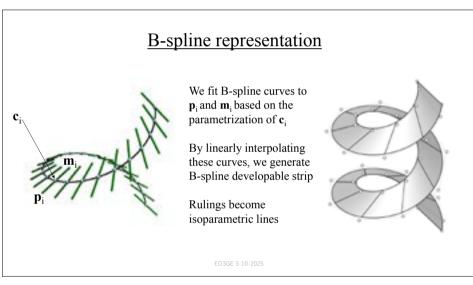
However, in this research, we take a **reverse** approach.

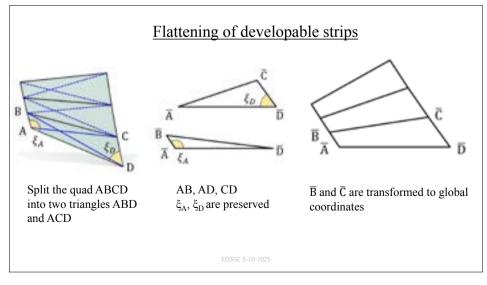
We first define the <u>rotation angle φ independently of the surface</u>.

Then construct the developable surface based on this rotation.

ED3GE 3-10-2025







Well-known rotation angles

Tangential developable (along helix) $\phi(t) = 0$

Rectifying developable (along helix) $\phi(t) = \frac{\pi}{2}$

Envelope of the family of tangent planes (along a helical curve on torus) $\phi(t) = \cos^{-1}(\mathbf{b} \cdot \mathbf{N})$

ED3GE 3-10-202

New rotation angles $\varphi(t)$

- $\phi(t) = q$ (constant)
- $\phi(t) = pt + q$ (linear function)
- $\phi(t) = psin(\omega t) + q$ (sinusoidal function)

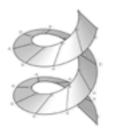
ED3GE 3-10-2025

$\varphi(t) = q \text{ (constant)}$

 $\varphi(t) = \frac{\pi}{4}$ along a cubic Bézier curve

Perspective view

Right view



 $\varphi(t) = \frac{\pi}{6}$ along a helix

Perspective view

Front view

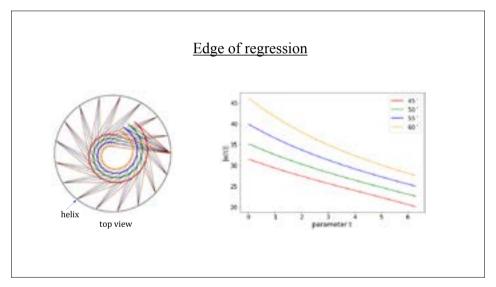
ED3GE 3-10-2025

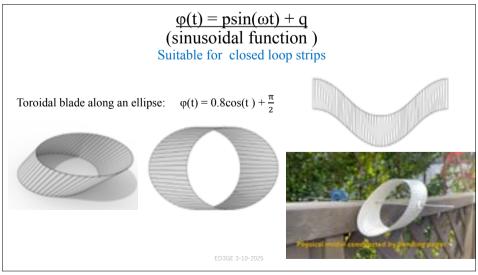
$$\phi(t) = pt + q \quad \text{(linear function)}$$

$$\phi(t) = -0.06t + q \quad \text{along a helix}$$

$$\text{dedge of regression}$$

$$q = \frac{\pi}{4}(45^\circ) \qquad q = \frac{10\pi}{36}(50^\circ) \qquad q = \frac{11\pi}{36}(55^\circ) \qquad q = \frac{\pi}{3}(60^\circ)$$





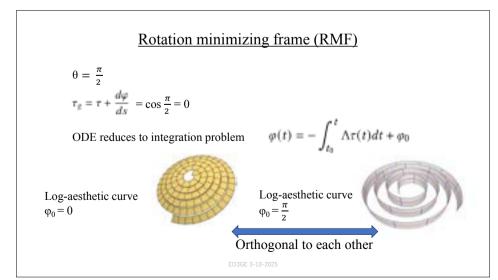
Approximate a surface using multiple developable strips (torus ω =3) $\mathbf{c}(t) = ((R + r \cos(\omega t)) \cos t, (R + r \cos(\omega t)) \sin t, r \sin(\omega t))$ $\varphi(t) = \cos^{-1}(\mathbf{b} \cdot \mathbf{N})$ Conventional method $\varphi(t) = p\sin(\omega t) - q$ $\varphi(t) = p\sin(\omega t) + q$ $\varphi(t) = p\sin(\omega t) + q$ $\varphi(t) = p\sin(\omega t) + q$

$$\frac{d\varphi(t)}{dt} = f(\varphi) \text{ (solution of o.d.e.)}$$

$$t \cdot d = \frac{(r + \frac{d\varphi}{ds})}{\sqrt{(r + \frac{d\varphi}{ds})^2 + \kappa^2 \sin^2(\varphi)}} = \cos(\theta) = \text{constant}$$

$$\frac{d\varphi}{ds} = \pm \frac{\kappa \sin(\varphi)}{\tan(\theta)} - r$$

$$\theta = \frac{\pi}{6} \qquad \theta = \frac{\pi}{4} \qquad \theta = \frac{\pi}{3} \qquad \frac{\theta = \frac{\pi}{2}, \quad \tau + \frac{d\varphi}{ds} = \tau_g = 0}{\text{Rotation minimizing frame}}$$
ED3GE 3-10-2025



Differential geometry of developable strips

Gaussian curvature
$$K = \frac{LN - M^2}{EG - F^2} = 0$$
 as $N = M = 0$

Principal curvatures
$$\kappa_{max} = H + |H|$$
 $\kappa_{min} = H - |H|$

$$H > 0$$
 $\kappa_{max} = 2H$ $\kappa_{min} = 0$ (ruling)

$$H = 0$$
 $\kappa_{max} = 0$ $\kappa_{min} = 0$

$$H < 0$$
 $\kappa_{max} = 0$ (ruling) $\kappa_{min} = 2H$

ED3GE 3-10-2025

Offsets of developable strip

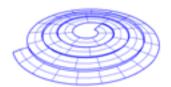
R: Gaussian curvature of offset surface

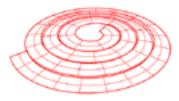
K: Gaussian curvature of developable strip

H: Mean curvature of developable strip

d: offset distance

The offset surface of a developable surface is also a developable surface





ED3GE 3-10-2025

Triply Orthogonal Structure (TOR)

RMF along helix with $\varphi_0 = 0$

RMF with $\phi_0 = \frac{\pi}{2}$ + square plates

Offsets of blue strip

Offsets of blue and silver strips are added

Triply orthogonal structure

ED3GE 3-10-2025

Summary & Conclusions

This work introduced a method for constructing developable strips along space curves by designing the rotation angle φ as a free design parameter.

The angle φ defines the relationship between the Frenet frame of the input curve and the Darboux frame of the curve on the resulting developable strip.

■ The approach has broad applicability, including in architecture, windmill blade design for papercraft models, and triply orthogonal structures, which will be discussed in Part 2 of the talk.

FD3GF 3-10-2025

All you need is rotation: Construction of developable strips – Part 2 Applications

Takashi Maekawa Waseda University Felix Scholz Johannes Kepler University

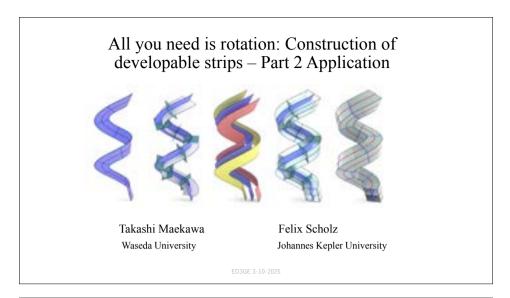
Abstract

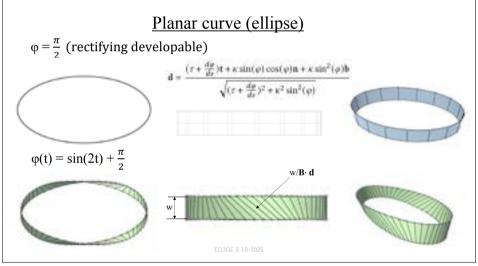
The versatility of the proposed method is demonstrated through both computational and physical examples, showcasing its broad range of applications. These include architecture, windmill blade design, curved folding, triply orthogonal structures, and the creation of surfaces with log-aesthetic curves. Such examples highlight the method's potential in fields like architectural design, industrial design, and papercraft modeling, offering a powerful tool for innovative surface design and fabrication. Specifically, we present:

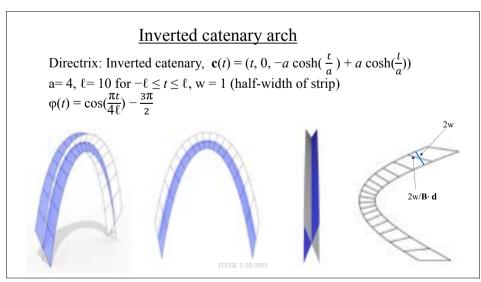
- Architectural Design: A helical structure spanning the parameter range $0 \le t \le 2\pi$
- Inverted Catenary Arch: A model composed of two developable surfaces intersecting to form the shape of an inverted catenary.
- Deltoid Evolute: A construction based on the evolute of a deltoid curve, which intriguingly forms another
 deltoid when viewed from above. This is expressed through developable surfaces aligned along the
 deltoid.
- Papercraft Windmill Blade: We designed a vertical papercraft model with a developable surface. Unlike horizontal-axis turbines, vertical-axis turbines are wind-direction insensitive, removing the need for yaw control.
- Additional examples demonstrating the versatility of the method will be presented during the talk.

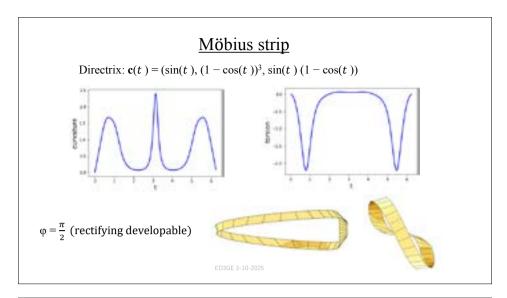
References

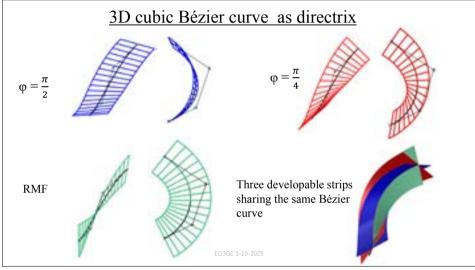
[1] T. Maekawa and Felix Scholz, "All you need is rotation: Construction of developable strips", ACM Transactions on Graphics, vol. 43, no. 6, 2024.

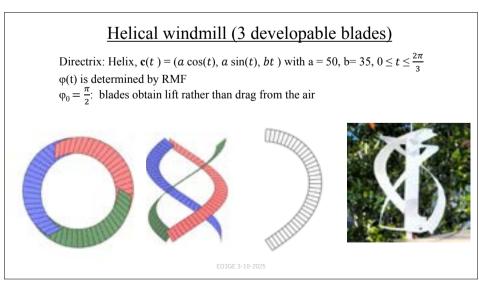


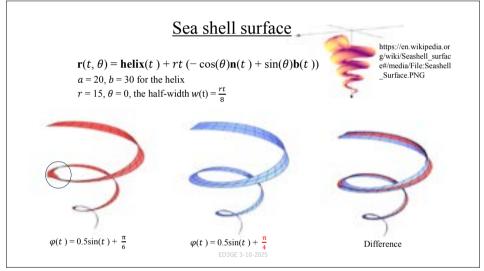


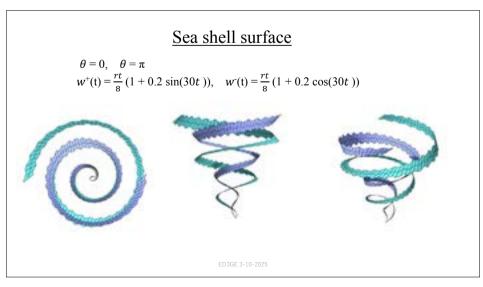


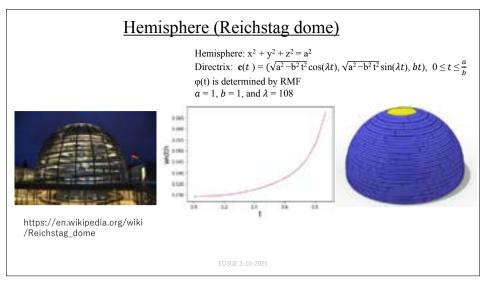


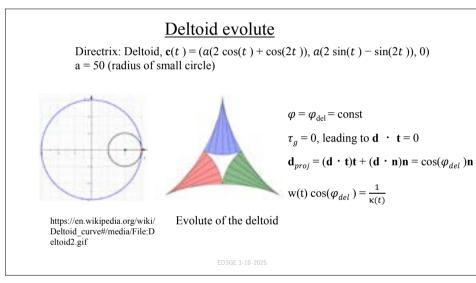


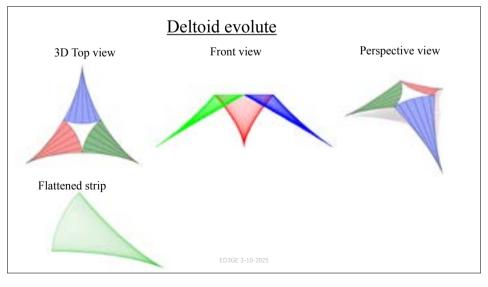






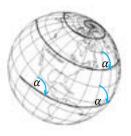






Loxodrome

A loxodrome is a curve on a sphere that intersects all meridians at the same angle α



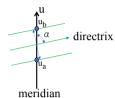
THE LOXODROME ON AN ELLIPSOID R. E. Deakin, 2010

Sphere: $\mathbf{r}(u, v) = (r \sin u \cos v, r \sin u \sin v, r \cos u)$, where $0 \le u \le \pi$ and $0 \le v \le 2\pi$

Directrix: Eqn. of loxodrome $v = \tan \alpha \ln \tan \frac{u}{2} + c$ (*c* is the integration constant)

$$u = 2 \arctan(e^{\frac{v-c}{a}})$$

$$w(v) = \cos(\frac{\pi}{2} - \alpha) \frac{r}{2} (u_b - u_a)$$



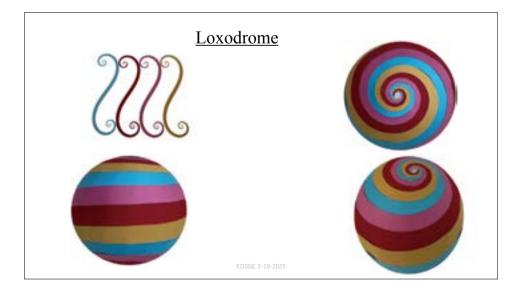
ED3GE 3-10-2029

Loxodrome

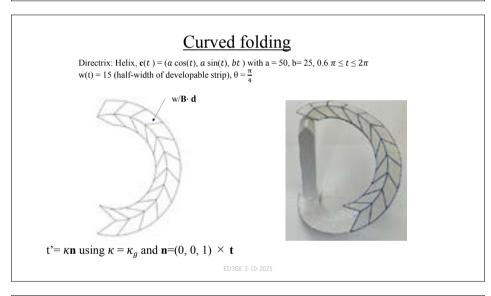
Integration constant: $c = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

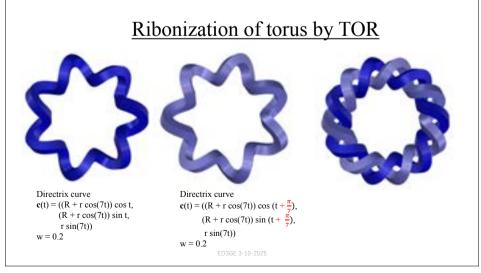
The maximum and average deviations from the sphere normalized by sphere's diameter are computed to be 0.629% and 0.327%, respectively

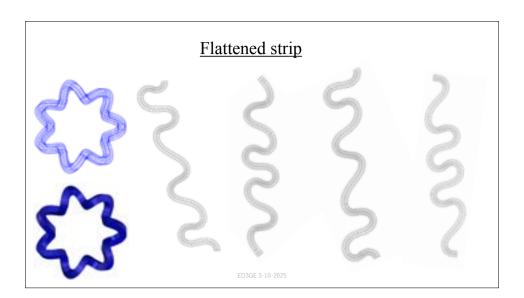
ED3GE 3-10-2025



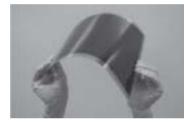
Directrix: Helix, $\mathbf{c}(t) = (a\cos(t), a\sin(t), bt)$ with $\mathbf{a} = 50, \mathbf{b} = 25, 0.6 \ \pi \le t \le 2\pi$ $\mathbf{Solve} \quad \frac{\mathbf{d}_{\mathbf{q}}}{\mathbf{d}\mathbf{s}} = \pm \frac{\mathbf{k} \cdot \mathbf{s} \sin(\theta)}{\mathbf{tan}(\theta)} - \mathbf{r} \quad \text{where } \theta = \frac{\pi}{4}$ $\mathbf{d}(\varphi) \qquad \mathbf{d}(\pi - \varphi)$ Bottom pair







Film-based Perovskite photovoltaic module



Todori, K., Miyauchi, H.: Film-based perovskite photovoltaic module with light weight and flexibility to accommodate various styles of installation. Toshba Rev. 76(3), 17–20 (2021)

Transparent PET films pasted on a 3Dprinted model of the approximated complete log-aesthetic surface.

PVC films of blue alternating with orange pasted on a 3D printed model.

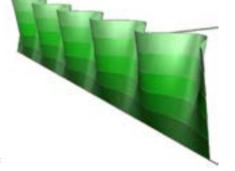
F. Scholz, S. Nishikawa, M. Takezawa, T. Mackawa, "Approximation of doubly curved surfaces by analysis-suitable piecewise surfaces with high Developability", The Visual Computer, 2022.

FD3GF 3-10-2025

Walls of Cristo Obrero

https://upload.wikimedia.org/wiki pedia/commons/1/19/Parroquia_d el_Cristo_Obrero_-_panoramio_%285%29.jpg

 $\begin{array}{l} \mathbf{r}\left(u,v\right)=\left(u,\,a\,\cos\left(\omega\nu\right)\frac{h-v}{\hbar},\,\,h\text{--}v\right),\,0\leq u\leq l,\,0\leq v\leq h\\ \text{When }v=\text{const.}\ \ \text{the isoparametric curve becomes planar.}\\ \text{Thus, }\tau_{g}=0,\,\text{and hence }\mathbf{d}=\textbf{-B} \end{array}$



Royan Central Market Hall

Google map: 45° 37' 39.53" N 1° 1' 52.67" W

Completion: 1956

Material: Reinforced concrete structure

Royan Central Market Hall B-spline: Consists of 13 doubly curved surfaces (Courtesy of Prof. Yokosuka)

Piecewise developable B-spline strips

Original model

Approximation by 5 piecewise developable strips per doubly curved surfaces using

 $\varphi(t) = \cos^{-1}(\mathbf{b} \cdot \mathbf{N})$

F. Scholz, S. Nishikawa, M. Takezawa, T. Maekawa, "Approximation of doubly curved surfaces by analysis-suitable piecewise surfaces with high Developability", The Visual Computer, 2022.

ED3GE 3-10-2025

Future work

- Explore more analytical functions and polynomial curves for rotation angles.
- Investigate the potential of triply orthogonal structures in framing freeform surface architecture.

ED3GE 3-10-2025

Isogeometric Analysis of Membrane and Cable Structures: A Design of Umbrella Zero-Stress State

Maya Okada / Naoyuki Fujita / Takuya Terahara / Yastoshi Taniguchi / Kenji Takizawa
Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan
Tayfun E. Tezduyar
Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

An umbrella is a common item that requires aesthetically and functionally good design. A wrinkle-free design is suitable in both directions, and for manufacturing reasons, zero-stress state (ZSS) of each membrane part is flat. We model an umbrella using T-splines, which we developed in [1], and using geometric knowledge [2] and steady-state structural mechanics. We use a newly developed Bézier simplex and combined T-splines to represent the membrane parts (see 1). To design the ZSS, we use the integration-point-based zero-stress state (IPBZSS) technique [3]. The bone parts are connected with the membrane with the method described in [1], and we newly developed the torsion representation (see 2 for a test) to stabilize the bone parts of the umbrella.

Figure 1: Simplex geometry with higher-order continuous Figure 2: Isogeometric analysis of cable structure and computational result

References

- [1] T. Terahara, K. Takizawa, and T.E. Tezduyar, "T-splines computational membrane-cable structural mechanics with continuity and smoothness: I. Method and implementation", Computational Mechanics, **71** (2023) 657–675.
- [2] T. Terahara, S. Nishikawa, A. Suzuki, K. Takizawa, and T. Maekawa, "Geometric modeling of umbrella surfaces", Computer-Aided Design, **175** (2024) 103750.
- [3] T. Sasaki, K. Takizawa, and T. E. Tezduyar, "Aorta zero-stress state modeling with T-spline discretization", Computational Mechanics, **63** (2019) 1315–1331.

Continuity and Smoothness in T-Splines Representations of Structures with Different Parametric Dimensions

Takuya Terahara / Kenji Takizawa

Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan

Tayfun E. Tezduyar Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

We present a computational method using T-splines discretization for structural mechanics with different parametric dimensions are connected with continuity and smoothness. The Isogeometric analysis (IGA) gives accuracy to structural mechanics computations [1], and higher-order continuity allows use of the higher-order differential equations, such as the Kirchhoff–Love shells [2]. In IGA, connecting a 1D structure, such as a cable, to a 2D structure, such as a shell, is not that straightforward. That is because the control points are not on the cables or surfaces. The simple approach requires an extra refinement to have C^0 continuity functions that represents the position on the cables or surfaces. We proposed a new discretization method using T-splines [3, 4]. We present computations of test and parachute deformation. The computations demonstrate how the method works.

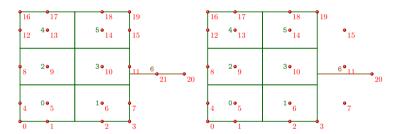
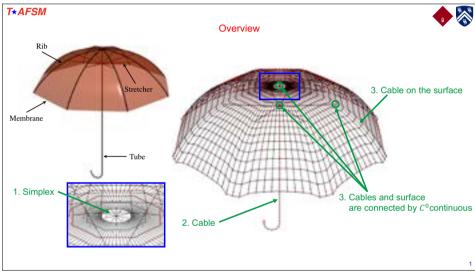


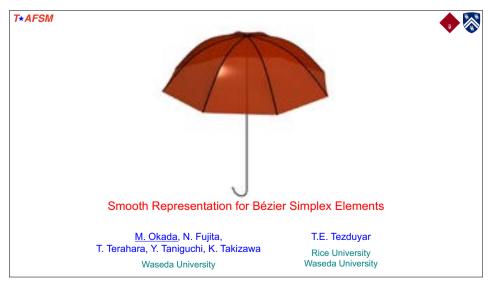
Figure 1: Membran–cable structures with C^0 and C^1 continuous

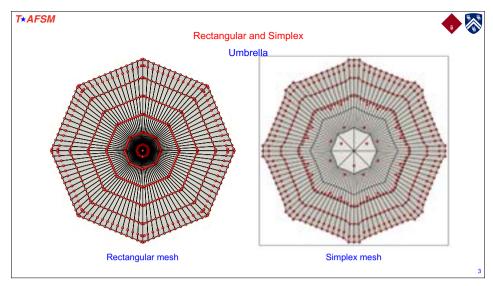
Figure 2: Parachute deformation

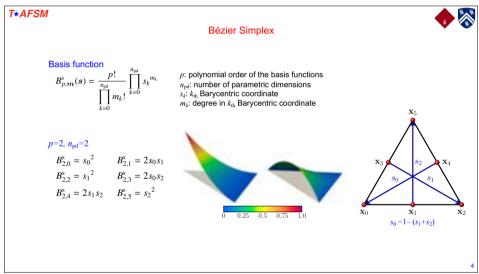
References

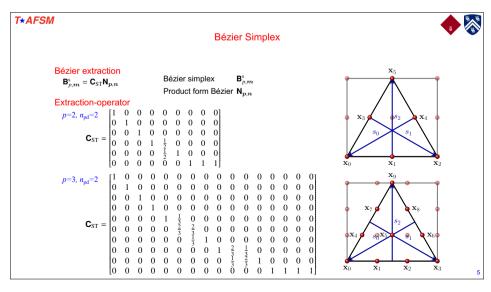
- [1] K. Takizawa, T. E. Tezduyar, and T. Terahara, "Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)", Computers & Fluids, **141** (2016) 191–200.
- [2] Y. Taniguchi, K. Takizawa, Y. Otoguro, and T.E. Tezduyar, "A hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal stress: I. Out-of-plane deformation", Computational Mechanics, 70 (2022) 247–280.
- [3] T. Terahara, T. Kuraishi, K. Takizawa, and T.E. Tezduyar, "Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact", Journal of Mechanics, **38** (2022) 185–194.
- [4] T. Terahara, K. Takizawa, and T.E. Tezduyar, "T-splines computational membrane-cable structural mechanics with continuity and smoothness: I. Method and implementation", Computational Mechanics, 71 (2023) 657-675.

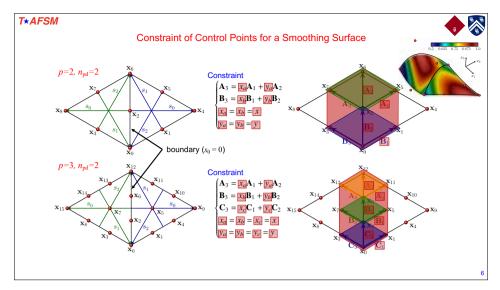


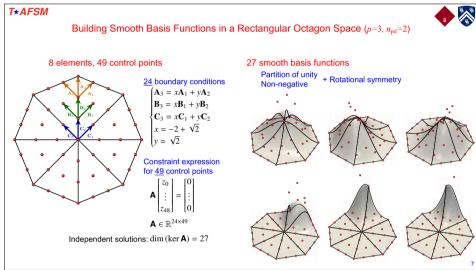


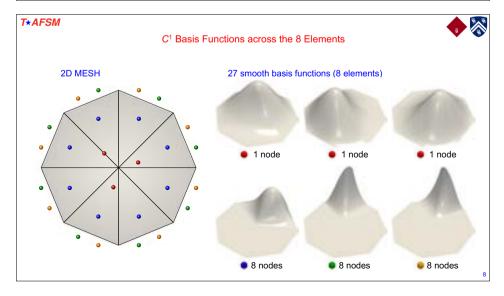


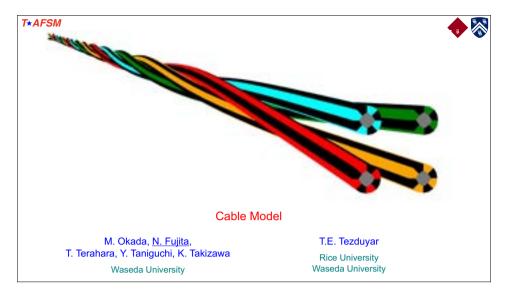


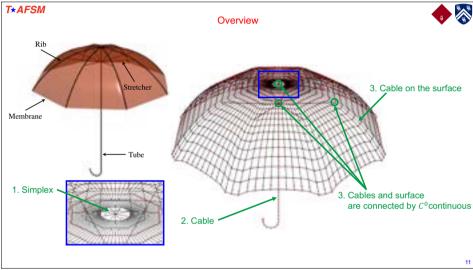


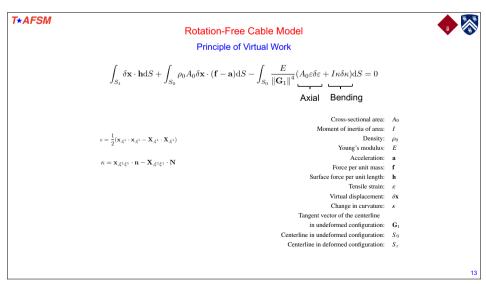












T*AFSM

Cable Model Considering Rotation

Geometric Description of Cable

$$\mathbf{X}^{3D}(\xi^1, \xi^2, \xi^3) = \mathbf{X}(\xi^1) + \xi^2 \mathbf{A}_2(\xi^1) + \xi^3 \mathbf{A}_3(\xi^1)$$

$$\mathbf{x}^{3D}(\xi^1, \xi^2, \xi^3) = \mathbf{x}(\xi^1) + \xi^2 \mathbf{a}_2(\xi^1) + \xi^3 \mathbf{a}_3(\xi^1)$$

· Two tensors for geometric description

$$\mathbf{\Lambda}(\mathbf{T}_0,\mathbf{t}) = (\mathbf{T}_0 \cdot \mathbf{t})\mathbf{I} + \frac{1}{1 + \mathbf{T}_0 \cdot \mathbf{t}} (\mathbf{T}_0 \times \mathbf{t}) + (\mathbf{T}_0 \times \mathbf{t}) \times \mathbf{I}$$

 $\boldsymbol{\varepsilon} = \frac{1}{2} (\mathbf{x}_{,\xi^1} \cdot \mathbf{x}_{,\xi^1} - \mathbf{X}_{,\xi^1} \cdot \mathbf{X}_{,\xi^1})$

 $\kappa_{\alpha\beta} = \mathbf{a}_{\beta,1} \cdot \mathbf{a}_{\alpha} - \mathbf{A}_{\beta,1} \cdot \mathbf{A}_{\alpha}$

$$\Lambda(\mathbf{T}_0, \mathbf{t}) = (\mathbf{T}_0 \cdot \mathbf{t})\mathbf{I} + \frac{1}{1 + \mathbf{T}_0 \cdot \mathbf{t}} (\mathbf{T}_0 \times \mathbf{t}) (\mathbf{T}_0 \times \mathbf{t}) + (\mathbf{T}_0 \times \mathbf{t}) \times \mathbf{I}$$

$$R_{\mathfrak{D}}(\theta) = I\cos(\theta) + \sin(\theta)T \times I$$

$$\bar{\mathbf{R}}_{\mathbf{t}}(\psi) = \mathbf{I}\cos(\psi) + \sin(\psi)\mathbf{t} \times \mathbf{I}$$

· Example of geometric description

$$\mathbf{A}_{\alpha} = \bar{\mathbf{R}}_{\mathbf{T}}(\Psi) \cdot \mathbf{\Lambda}(\mathbf{T}_{0}, \mathbf{T}) \cdot \mathbf{A}_{\alpha}^{0}$$

$$\mathbf{a}_{\alpha} = \bar{\mathbf{R}}_{\mathbf{t}}(\psi) \cdot \mathbf{\Lambda}(\mathbf{T}_{0}, \mathbf{t}) \cdot \mathbf{A}_{\alpha}^{0}$$

T*AFSM

Cable Model Considering Rotation

Principle of Virtual Work

$$\int_{S_{t}} \delta \mathbf{x} \cdot \mathbf{h} \mathrm{d}S + \int_{S_{0}} \rho_{0} A_{0} \delta \mathbf{x} \cdot (\mathbf{f} - \mathbf{a}) \, \mathrm{d}S - \int_{S_{0}} \left(\frac{E}{\|\mathbf{A}_{1}\|^{4}} \underbrace{\left(A_{0} \varepsilon \delta \varepsilon + I \kappa_{21} \delta \kappa_{21} + I \kappa_{31} \delta \kappa_{31}\right) + \frac{GI_{p}}{\|\mathbf{A}_{1}\|^{2}}} \underbrace{\left(\frac{1}{2} \kappa_{32} \delta \kappa_{32} + \frac{1}{2} \kappa_{23} \delta \kappa_{23}\right)} \right) \mathrm{d}S = 0$$

- Cross-sectional area: A₀ Moment of inertia of area: I
- Polar moment of inertia of area: Density:
- Young's modulus: Modulus of transverse elasticity:
- Acceleration:
 - Force per unit mass: Surface force per unit length:
 - Tensile strain:
 - Virtual displacement: δx
- Change in curvature: $\kappa_{21}, \kappa_{31}, \kappa_{23}, \kappa_{32}$ Tangent vector of the centerline
- in undeformed configuration: A1 Centerline in undeformed configuration: So
- Centerline in deformed configuration: S_t

T*AFSM

Yarn Spinning

Method

Principle of virtual work

$$\int_{S_{\delta}} \delta \mathbf{x} \cdot \mathbf{h} \mathrm{d}S + \int_{S_{0}} \rho_{0} A_{0} \delta \mathbf{x} \cdot (\mathbf{f} - \mathbf{a}) \, \mathrm{d}S - \int_{S_{0}} \left(\frac{E}{\|\mathbf{A}_{1}\|^{4}} \underbrace{\left(A_{0} \varepsilon \delta \varepsilon + I \kappa_{21} \delta \kappa_{21} + I \kappa_{31} \delta \kappa_{31}\right) + \frac{GI_{p}}{\|\mathbf{A}_{1}\|^{2}}}_{\mathbf{H} \mathbf{A}_{1} \|^{2}} \underbrace{\left(\frac{1}{2} \kappa_{32} \delta \kappa_{32} + \frac{1}{2} \kappa_{23} \delta \kappa_{23}\right)\right) \mathrm{d}S + \delta W_{\mathrm{contact}} = 0$$

- Cross-sectional area: Aa Moment of inertia of area:
- Polar moment of inertia of area:
 - Density: ρ_0
 - Young's modulus:
- Modulus of transverse elasticity: Acceleration:
 - Force per unit mass:
 - Surface force per unit length: Tensile strain:
 - Virtual displacement: δx
- Change in curvature: $\kappa_{21}, \kappa_{31}, \kappa_{23}, \kappa_{32}$
- Tangent vector of the centerline
- in undeformed configuration: A: Centerline in undeformed configuration: So Centerline in deformed configuration: S_t

19

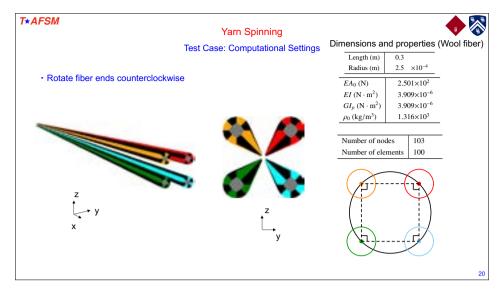
Augmented Lagrangian method

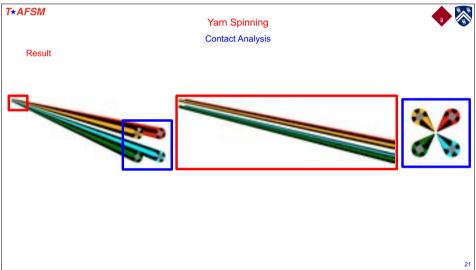
$$\delta W_{\text{contact}} = \int_{(S_t)_c} (\lambda_N + \epsilon d_N) \, \delta d_N dS$$

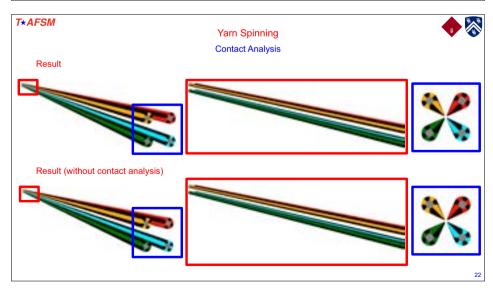
Penetrating length: d_N Penalty parameter:

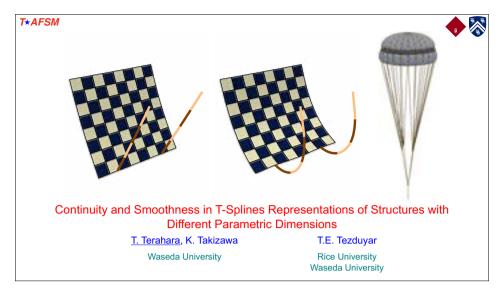
Lagrange multiplier: \(\lambda_N\)

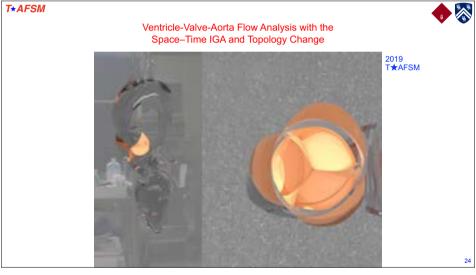
domain where contact force acts in deformed configuration: $(S_t)_c$

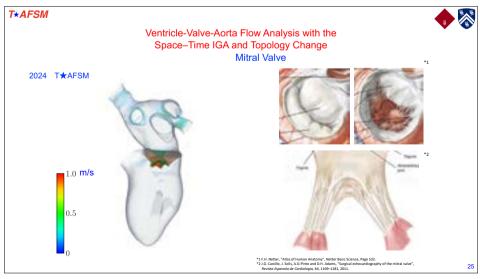


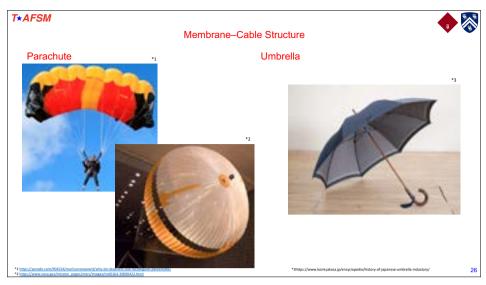


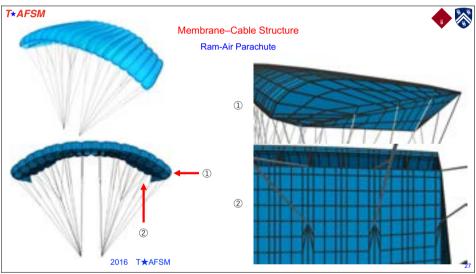


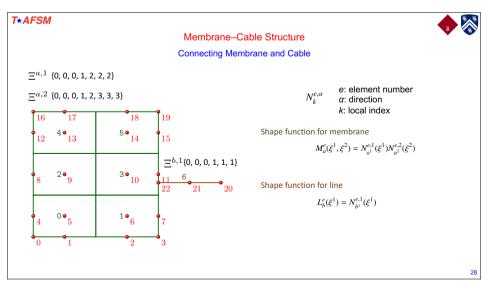








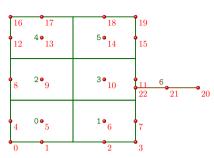




T*AFSM

Membrane-Cable Structure

Connecting Membrane and Cable



Bernstein polynomial

$$B_k^p(\xi) = \binom{p}{k} 2^{-p} (1+\xi)^k (1-\xi)^{p-k}$$

$$\binom{p}{k} - \frac{k!}{k!}$$

Bezier extraction operator

$$\mathbf{C}^{e,\alpha} = [C^{e,\alpha}_{lk}] \in \mathbb{R}^{(p^{e,\alpha}+1)\times(p^{e,\alpha}+1)}$$

Shape function written by Bezier extraction

$$N_l^{A,\alpha}(\xi) = \sum_{k=0}^{p^{A,\alpha}} C_{lk}^{e,\alpha} B_k^{p^{e,\alpha}}(\xi)$$

Bezier extraction row operators

$$\mathbf{C}_k^{e,\alpha} \in \mathbb{R}^{1 \times (p^{e,\alpha}+1)}$$

Example

T*AFSM

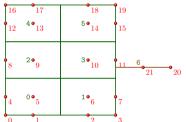
$$\mathbf{C}^{6,1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{C}_0^{6,1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{C}_1^{6,1} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

Membrane-Cable Structure

Connecting Membrane and Cable



Represent the shape function for line using the shape functions of membrane

$$\begin{split} \overline{L}^{B}_{\overline{b}}(\xi^{1}) &= \underline{N^{A}_{a^{2}}(\xi^{A,2}_{c})} N^{B,1}_{c}(\xi^{1}) \\ &= \underbrace{\left(\sum_{l=0}^{p^{A,2}} C^{A,2}_{a^{2}l} B^{p^{A,2}}_{l}(\xi^{A,2}_{c})\right)}_{\text{Scalar}} \left(\sum_{k=0}^{p^{B,1}} C^{B,1}_{ck} B^{p^{B,1}}_{k}(\xi^{1})\right) \end{split}$$

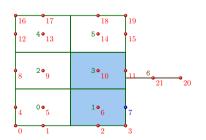
C⁰ continuous

A: element number of the membrane

B: element number of the cable

T*AFSM

Membrane-Cable Structure

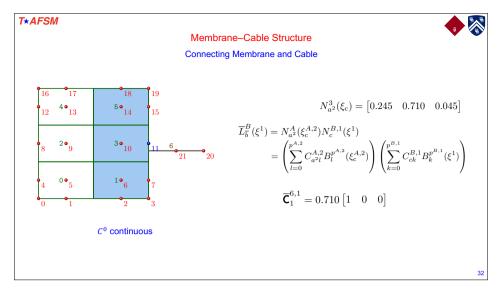


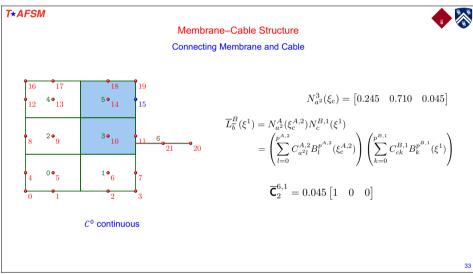
$$N_{a^2}^3(\xi_c) = \begin{bmatrix} 0.245 & 0.710 & 0.045 \end{bmatrix}$$

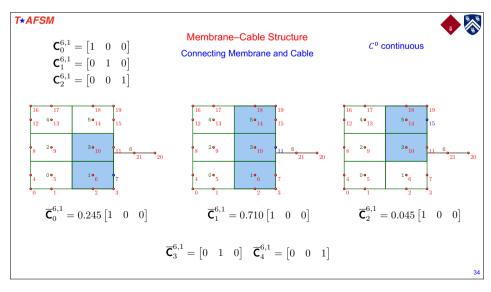
$$\begin{split} \overline{L}_{b}^{B}(\xi^{1}) &= N_{a^{2}}^{A}(\xi_{\mathrm{c}}^{A,2})N_{c}^{B,1}(\xi^{1}) \\ &= \left(\sum_{l=0}^{p^{A,2}} C_{a^{2}l}^{A,2}B_{l}^{p^{A,2}}(\xi_{\mathrm{c}}^{A,2})\right) \left(\sum_{k=0}^{p^{B,1}} C_{ck}^{B,1}B_{k}^{p^{B,1}}(\xi^{1})\right) \end{split}$$

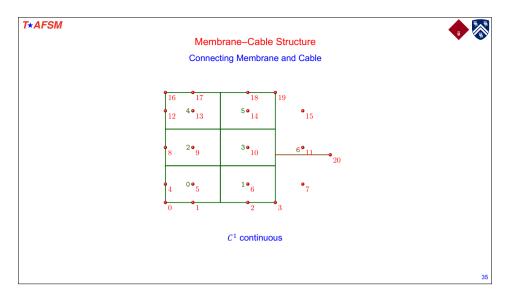
$$\overline{\mathbf{C}}_0^{6,1} = 0.245 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

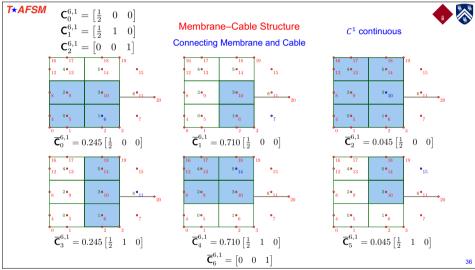
C⁰ continuous

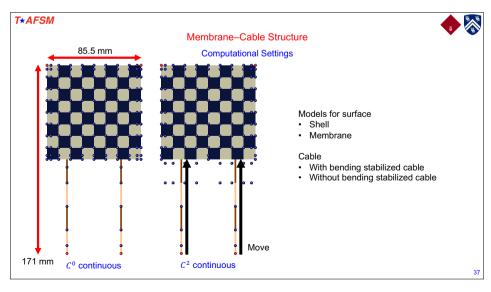


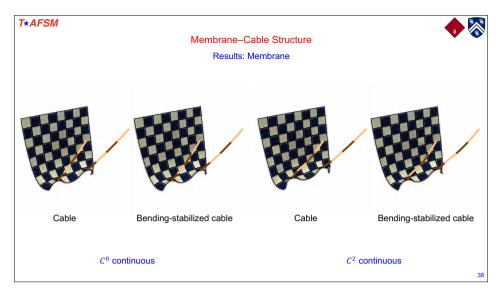


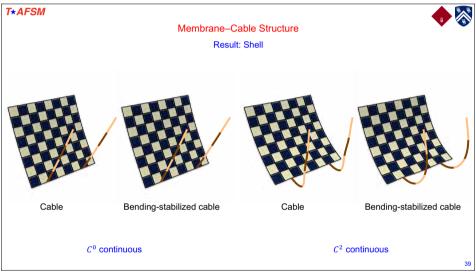


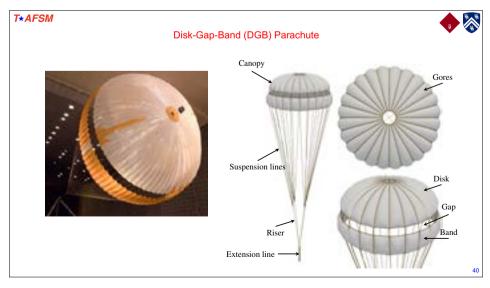


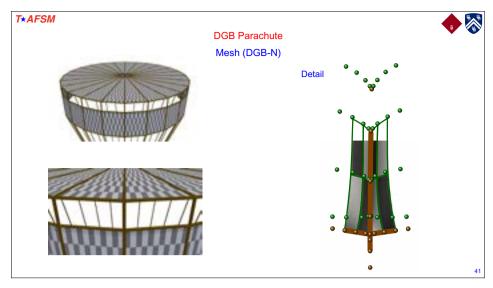


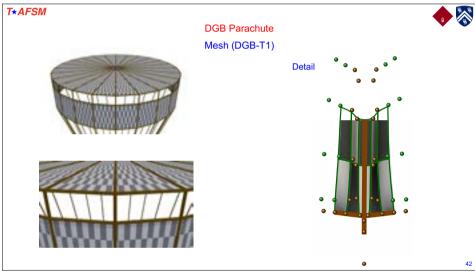


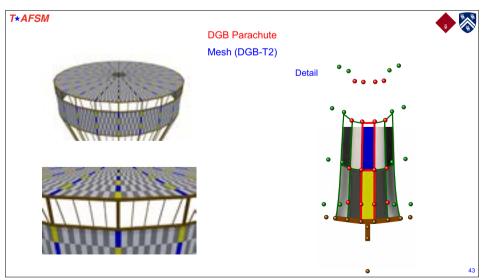


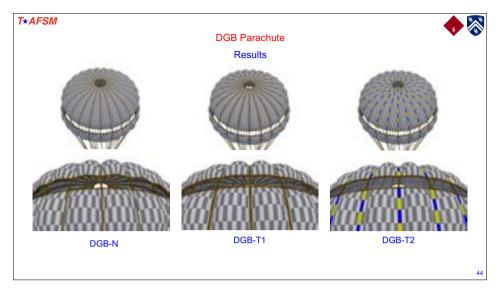


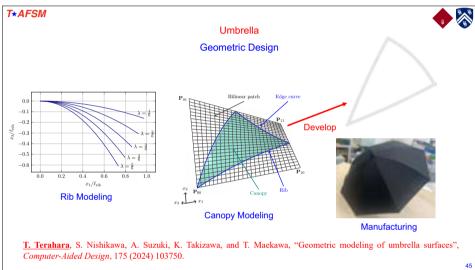


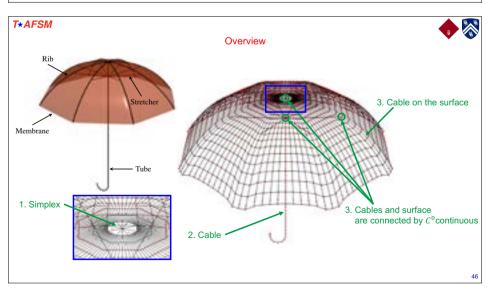


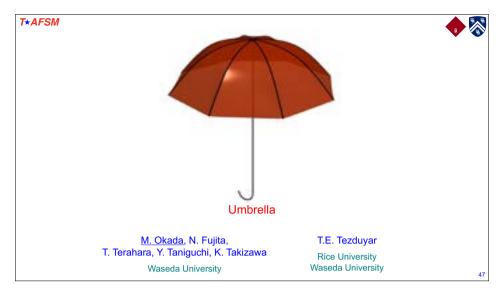


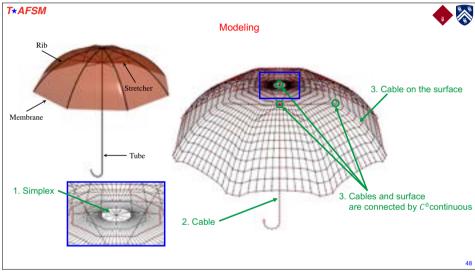


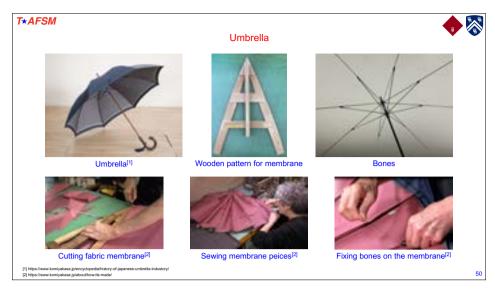


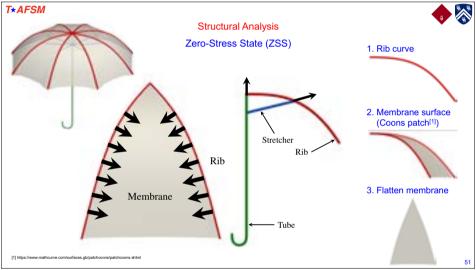


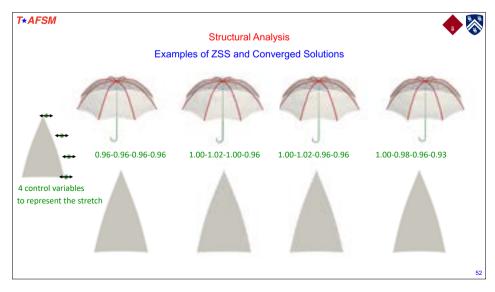












Generation of Aesthetic Shapes by Integrable Klein Geometry

Kenji Kajiwara Institute of Mathematics for Industry, Kyushu University, Japan

Yoshiki Jikumaru Faculty of Information Networking for Innovation and Design, Toyo University, Japan

> Shun Kumagai Hachinohe Institute of Technology, Japan

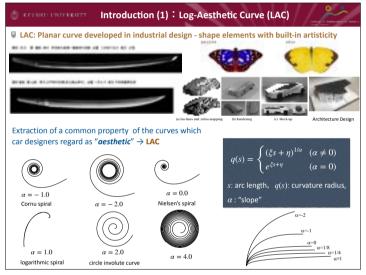
Abstract

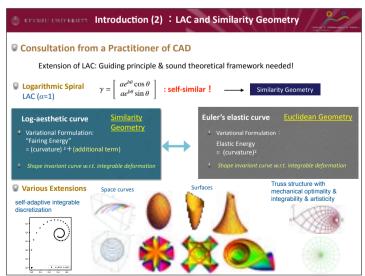
In this talk, we consider a class of plane curves called the log-aesthetic curves (LAC) and their generalizations which have been developed in industrial design as the curves obtained by extracting the common properties among thousands of curves that car designers regard as aesthetic. We consider these curves in the framework of similarity geometry (Klein geometry associated with $CO^+(2,\mathbb{R}) \simeq SO(2) \ltimes \mathbb{R}^+$) and characterize them as invariant curves under the integrable deformation of plane curves governed by the Burgers equation. We propose a variational principle for these curves, leading to the stationary Burgers equation as the Euler-Lagrange equation[1, 3]. We then extend the LAC to space curves by considering the integrable deformation of space curves under similarity geometry. The deformation is governed by the coupled system of the modified KdV equation satisfied by the similarity torsion and a linear equation satisfied by the curvature radius. The curves also allow the deformation governed by the coupled system of the sine-Gordon equation and associated linear equation. The space curves corresponding to the travelling wave solutions of those equations would give a generalization of the LAC to space curves. We also consider the surface constructed by the family of curves obtained by the integrable deformation of such curves. A special class of surfaces corresponding to the constant similarity torsion yields quadratic surfaces (ellipsoid, one/two-sheeted hyperboloid and paraboloid) and their deformations, which may be regarded as a generalization of the LAC to surface. We discuss the construction of such curves and surfaces together with their mathematical properties, including integration scheme of the frame by symmetries, and present various examples of curves and surfaces.

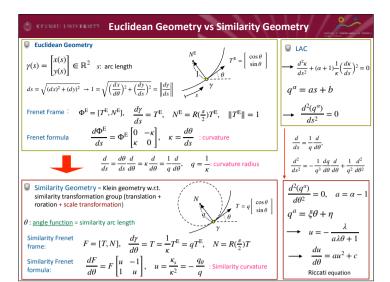
Finally we discuss the *self-affinity* of plane curves that has been proposed in the area of industrial design as a characteristic property of the LAC. After some investigations and extending the definition[3], we propose a new class of "aesthetic curves" with self-affinity, which includes the logarithmic spiral (special case of the LAC) and quadratic curves (parabola, hyperbola and ellipse) under the framework of *equiaffine geometry* (Klein geometry associated with $SL(2,\mathbb{R})$). It may be an interesting problem to investigate the similar class of curves in Möbius geometry.

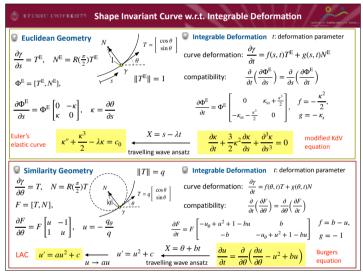
References

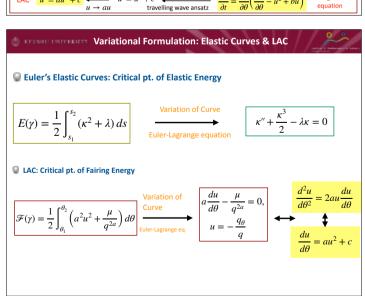
- [1] Jun-ichi Inoguchi, Kenji Kajiwara, Kenjiro T.Miura, Masayuki Sato, Wolfgang K.Schief and Yasuhiro Shimizu, Log-aesthetic curves as similarity geometric analogue of Euler's elasticae, Comp. Aided Geom. Design, **61** (2018) 1–5, https://doi.org/10.1016/j.cagd.2018.02.002.
- [2] Jun-ichi Inoguchi, Kenji Kajiwara, Kenjiro T. Miura, Yoshiki Jikumaru and Wolfgang K. Schief, Logaesthetic curves: similarity geometry, integrable discretization and variational principles, Comput. Aided Geom. Design 105(2023) 102233, https://doi.org/10.1016/j.cagd.2023.10223.
- [3] Shun Kumagai and Kenji Kajiwara, Self-affinities of planar curves: towards unified description of aesthetic curves, arXiv:2407.17008v1, https://doi.org/10.48550/arXiv.2407.17008, to appear in Japan J. Indust. Appl. Math. (2025).



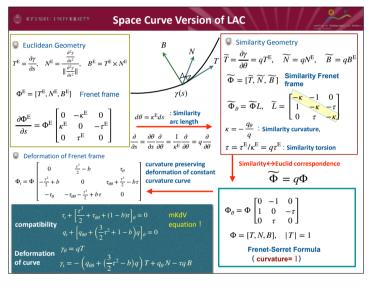


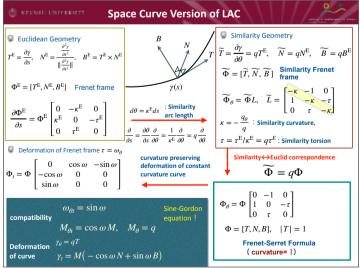


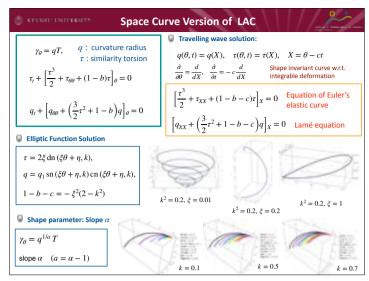


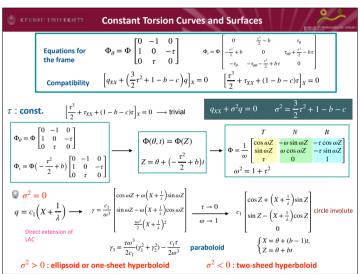


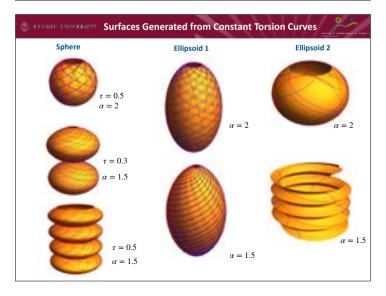
Extension to Space Curves and Surfaces by Similarity Geometry

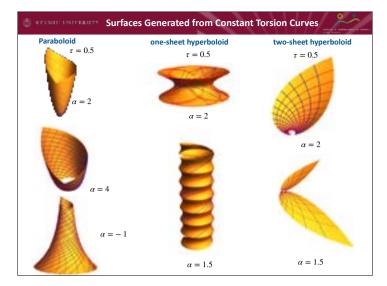


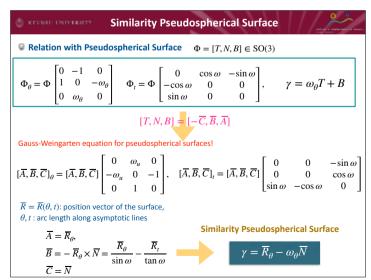


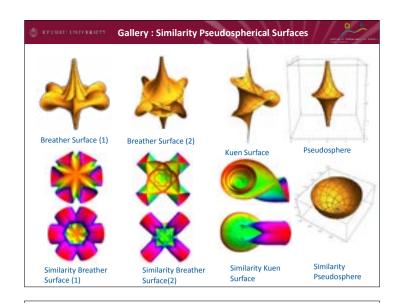




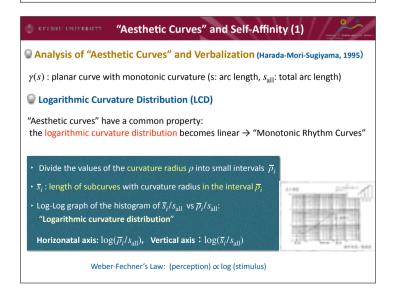


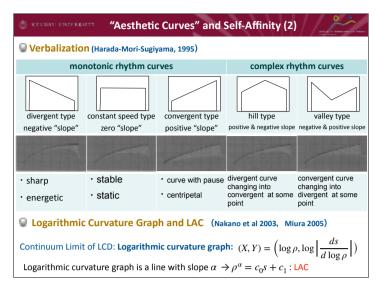


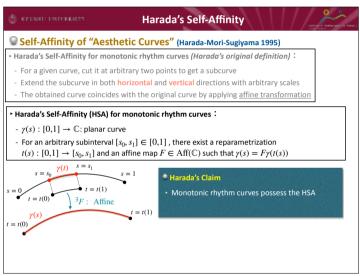


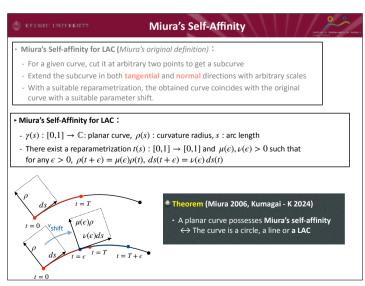


Self-Affinity of Aesthetic Curves









Harada's Self-Affinity

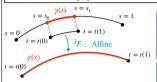
Self-Affinity of "Aesthetic Curves" (Harada-Mori-Sugiyama 1995)

Harada's Self-Affinity for monotonic rhythm curves (Harada's original definition):

- For a given curve, cut it at arbitrary two points to get a subcurve
- Extend the subcurve in both horizontal and vertical directions with arbitrary scales
- The obtained curve coincides with the original curve by applying affine transformation

► Harada's Self-Affinity (HSA) for monotonic rhythm curves:

- $\gamma(s): [0,1] \to \mathbb{C}$: planar curve
- For an arbitrary subinterval $[s_0,s_1] \in [0,\!1]$, there exist a reparametrization
- $t(s): [0,1] \to [s_0,s_1]$ and an affine map $F \in \mathrm{Aff}(\mathbb{C})$ such that $\gamma(s) = F\gamma(t(s))$



- Theorem (Kumagai K, 2024)
- A planar curve possesses the HSA
- ↔ The curve is a line, or a parabola

Harada's Self-Affinity (2)

Parabola has the HSA

$$\gamma(s) = \begin{bmatrix} s \\ s^2 \end{bmatrix}, \quad s \in [0,1]$$

$$0 \le {}^{\forall} s_0 < {}^{\forall} s_1 \le 1, \ t(s) = (s_1 - s_0)s + s_0, \ s \in [0, 1]$$

$$t \in [s_0, s_1], \quad s_0 = t(0), \quad s_1 = t(1)$$

Trivial identity:
$$t^2 = ((s_1 - s_0)s + s_0)^2 = (s_1 - s_0)\frac{2s^2}{s} + 2s_0(s_1 - s_0)\frac{s}{s} + s_0^2$$

$$\begin{bmatrix} t \\ t^2 \end{bmatrix} = \begin{bmatrix} s_1 - s_0 & 0 \\ 2s_0(s_1 - s_0) & (s_1 - s_0)^2 \end{bmatrix} \begin{bmatrix} s \\ s^2 \end{bmatrix} + \begin{bmatrix} s_0 \\ s_0^2 \end{bmatrix}$$

 $\rightarrow \gamma(s)$ has the HSA!

 $\exists F$: Affine

Equiaffine Geometry

Theorem (Miura 2006, Kumagai - K 2024)

- · A planar curve possesses Miura's self-affinity \leftrightarrow The curve is a circle, a line or **a LAC**
- Theorem (Kumagai K, 2024) · A planar curve possesses Harada's self-affinity \leftrightarrow The curve is a line, or a parabola

Similarity geometry:

$$\mathbf{p} \mapsto rA\mathbf{p} + \mathbf{b}, \quad r \in \mathbb{R}, A \in \mathbf{SO}(2), \mathbf{b} \in \mathbb{R}^2 \quad \kappa^{\text{Sim}} = -\frac{q_{\theta}}{q}$$

$$\text{circle: } \kappa^{\text{Sim}} = 0$$

line:
$$\kappa^{\text{Sim}} = \infty$$

logarithmic spiral: $\kappa^{Sim} = const$.

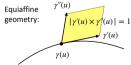
Equiaffine geometry:
$$\mathbf{p}\mapsto A\mathbf{p}+\mathbf{b}, \quad A\in \mathrm{SL}(2,\mathbb{R}), \ \mathbf{b}\in\mathbb{R}^2$$

parabola:
$$\kappa^{SA} = 0$$

line:
$$\kappa^{SA} = \infty$$

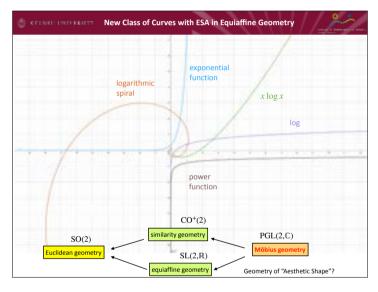
ellipse: $\kappa^{SA} = const.>0$

hyperbola: $\kappa^{SA} = const. < 0$



- $\Phi^{\mathrm{SA}}(u) = \left[\gamma_u, \gamma_{uu}
 ight] \quad ext{equiaffine Frenet frame}$
- $\Phi'(u) = \Phi(u) \begin{bmatrix} 0 & -\kappa^{\text{SA}} \\ 1 & 0 \end{bmatrix} \quad \text{equiaffine Frenet formula} \\ \kappa^{\text{SA}} : \text{equiaffine curvature}$
- t: arbitrary parameter s.t. $|\gamma_t \times \gamma_{tt}| \neq 0$
- $\rightarrow u = \left| \left| \gamma_t \times \gamma_{tt} \right|^{\frac{1}{3}} dt \right|$ "equiaffine arc length"
- $\kappa^{\text{SA}} = \frac{\gamma_{uuu}}{\gamma_{uu}} = \kappa^{\frac{4}{3}} + \frac{1}{3}\kappa^{-\frac{5}{3}}\kappa_{ss} \frac{5}{9}\kappa^{-\frac{8}{3}}\kappa_{s}^{2}$

Extendable Self-Affinity • Extendable Self-Affinity (rough outline): - For a given curve, cut it at arbitrary two points to get a subcurve - Apply a suitable reparametrization, and then arbitrary parameter shift by $\epsilon > 0$ - Then the obtained curve coincides with a certain affine map of the original subcurve. • Extendable Self-Affinity: - $\gamma(u): [0,1] \to \mathbb{C}$: planar curve (in equiaffine geometry: u = equiaffine arc length) - There exist a reparametrization $t(u): [0,1] \to [0,1]$ and an affine map $F_{\epsilon} \in \text{Aff}(\mathbb{C})$ such that for any $\epsilon > 0$, $\gamma(t + \epsilon) = F_{\epsilon}\gamma(t)$ • Theorem (Kumagai - K, 2024) • Choosing t = u, then a planar curve possesses ESA $\leftrightarrow \text{The curve is a parabola, or an ellipse or a hyperbola}$ • For general t, a planar curve possesses ESA $\leftrightarrow \text{The curve is a parabola, or an ellipse or a hyperbola}$ • For general t, a planar curve possesses ESA $\leftrightarrow \text{The curve is a parabola, or an ellipse or a hyperbola}$ • For general t, a planar curve possesses ESA $\leftrightarrow \text{The curve is a parabola, or an ellipse or a hyperbola}$ • For general t, a planar curve possesses ESA $\leftrightarrow \text{The curve is a parabola, or an ellipse or a hyperbola}$ • The curve is either of the following: (i) $y = x^a$, e^x (ii) $y = x \log x$ (iii) logarithmic spiral



Geometry of Michell-Prager structures and hanging membranes

Yoshiki Jikumaru

Faculty of Information Networking for Innovation And Design, Toyo University, Japan Kentaro Hayakawa

Department of Conceptual Design, College of Industrial Technology, Nihon University, Japan

Kazuki Hayashi

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Japan

Kenji Kajiwara
Institute of Mathematics for Industry, Kyushu University, Japan

Yohei Yokosuka

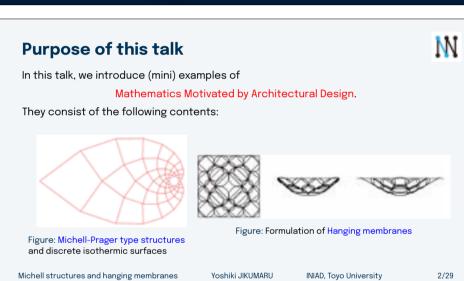
Department of Architecture and Architectural Engineering, Kagoshima University, Japan

Abstract

In this talk, we introduce some geometric objects motivated by the structures in architectural design. In the first part, we focus on so-called Michell-Prager-type structures. This is joint work with Yohei Yokosuka, Kazuki Hayashi, Kentaro Hayakawa, and Kenji Kajiwara [1]. Considering a quadrilateral mesh with such a structure on its diagonals, we can obtain the privileged discrete isothermic surfaces introduced by Bobenko and Pinkall. Their mechanical properties can be derived from the result by Schief. We also introduce the relation with the discrete log-aesthetic curves proposed in [3]. In the second part, we introduce the geometry of hanging membranes. This is joint work with Yohei Yokosuka [2]. We formulate the hanging membranes according to the classical shell membrane theory. Remarkably, the in-plane equilibrium condition can be characterized by the existence of a Combescure transformation of the membrane.

References

- [1] K. Hayashi, Y. Jikumaru, Y. Yokosuka, K. Hayakawa and K, Kajiwara, Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity. Struct. Multidisc. Optim. 67 41 (2024). https://doi.org/10.1007/s00158-024-03767-1
- [2] Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: shell membrane theory and variational principle, Int. J. Math. Ind. 14 (2022), https://doi.org/10.1142/S2661335222500046.
- [3] J. Inoguchi, K. Kajiwara, K. T. Miura, Y. Jikumaru and W. K. Schief, Log-aesthetic curves: similarity geometry, integrable discretization and variational principles, Comput. Aided Geom. Design 105(2023) 102233, https://doi.org/10.1016/j.cagd.2023.10223.



References

- K. Hayashi, Y. Jikumaru, Y. Yokosuka, K. Hayakawa and K. Kajiwara, Parametric generation of optimal structures through discrete exponential functions: unveiling connections between structural optimality and discrete isothermicity, *Struct. Multidisc. Optim.* 67, 41 (2024). https://doi.org/10.1007/s00158-024-03767-1
- J. Inoguchi, Y. Jikumaru, K. Kajiwara, K.-T. Miura, W. K. Schief, Log-aesthetic curves: Similarity geometry, integrable discretization and variational principles, *Comput. Aided Geom. Des.*, 105 (2023), 102233.

Michell structures and hanging membranes

Yoshiki JIKUMARU

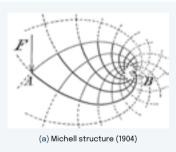
INIAD, Toyo University

3/29

Michell-Prager structures

Michell structures

The "optimal" structure when B is fixed and the load F acts on point A.



AB

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

(b) Acting Compression, Tension

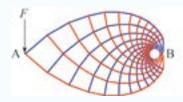
4/29

A characteristic property of the structure

A "well-known" property

There exists a constant C_0 , for every bar member e, we have

(Axial force acting on e) × (Length of e) = C_0 .



Michell structures and hanging membranes

Yoshiki JIKUMARU

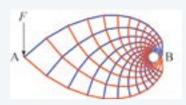
INIAD, Toyo University

A characteristic property of the structure

We will consider a class of truss structures that have this property in general:

(Axial force acting on
$$e$$
) × (Length of e) = C_0 .

We call such a structure as Michell-Prager type structure.



Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

6/29

Variational principle

We introduce the signature for each member:

$$q(e) = \begin{cases} +1 & e \text{ is a horizontal edge,} \\ -1 & e \text{ is a vertical edge.} \end{cases}$$

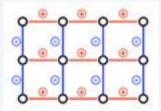


Figure: Definition of the signature q

In discrete differential geometry, q is called P-labelling.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

7/29

Variational principle

Proposition

Let us consider the following objective functional:

$$E = C_0 \sum_{e} q(e) \log |e|.$$

Then, in the equilibrium structure, the axial forces satisfying the following relation can be introduced:

(Axial force acting on e) × (Length of e) = C_0 .

- How to find the functional: the "prestressed cable-net structures".
- An example of discrete holomorphic quadratic differential? (Kenyon-Lam, 2019)
- Q. Relation with discrete harmonic functions?

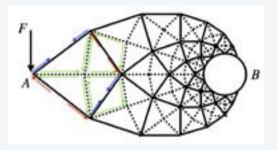
Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

A relation with discrete differential geometry

It is convenient to consider an "imaginary (dotted) mesh" like the following:



Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

9/29

A relation with discrete differential geometry

Moreover, we introduce the following labelling:

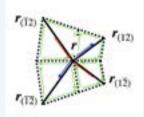


Figure: form diagram

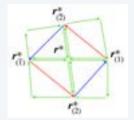


Figure: force diagram

Then, the defining equation for Michell-Prager type structures becomes:

$$\|\boldsymbol{r}_{(12)} - \boldsymbol{r}\| \cdot \|\boldsymbol{r}_{(2)}^* - \boldsymbol{r}_{(1)}^*\| = C_0.$$

(1)

Michell structures and hanging membranes

Yoshiki JIKUMARU

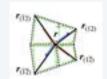
INIAD, Toyo University

10/29

A relation with discrete isothermic net

Michell-Prager condition:

$$\|\boldsymbol{r}_{(12)} - \boldsymbol{r}\| \cdot \|\boldsymbol{r}_{(2)}^* - \boldsymbol{r}_{(1)}^*\| = C_0.$$
 (2)



Theorem (Bobenko-Suris, 2009

If the quad mesh r constitute discrete isothermic net (constant cross ratio), then there exists a constant C_0 such that

$$\|\boldsymbol{r}_{(12)} - \boldsymbol{r}\| \cdot \|\boldsymbol{r}_{(2)}^* - \boldsymbol{r}_{(1)}^*\| = C_0.$$
 (3)

Remark: The constant C_0 is determined from the cross-ratio condition.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

"Pure shear" stress distribution

Theorem (Schief, 2014

Assume purely tangential forces acting on each edge of the circular net r. Then the quad mesh r is in equilibrium $\iff r$ constitutes a discrete isothermic net. Moreover, the Christoffel dual r^* corresponds to the "force diagram".

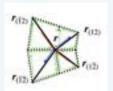


Figure: form diagram

Figure: force diagram

Therefore, we can generate structures from discrete isothermic nets!

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

12/29

Examples of the structure

Figure: A structure from discrete exponential function.

A trivial but "Interesting" Property

The discrete curves are discrete log-aesthetic curves (dLAC of slope 1, log-spiral).

Q. dLACs (governed by Riccati type eqn) are consistent with cross-ratio equation???

Michell structures and hanging membranes

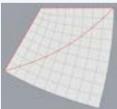
Yoshiki JIKUMARU

INIAD, Toyo University

13/29

Non-trivial example: discrete power functions

A discrete analogue of the function $z^{2/3}$:



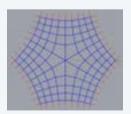


Figure: Force diagram

Figure: Form diagram

Figure: Form diagram

- In the Christoffel dual $z^{4/3}$, take a closed curve.
- Red vectors are loading or boundary reaction forces acting on blue structure.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

General problem (open)

In summary, we can propose a mathematical problem for shape generation:

General problem (open)

- 1. Find a suitable "boundary", consistent with the cross-ratio equation, which corresponds to the external force and the boundary reaction force.
- 2. Find the "internal mesh" for a given boundary, and take the Christoffel dual.

 By taking the diagonals of the dual, we have the Michell-Prager type structure.
- 3. From the variational point of view, for a given boundary, find the mesh that gives the critical point of the functional $\sum_e q(e) \log |e|$. (Interestingly, a similar problem is discussed in Kenyon-Lam (2019).)

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

15/29

M

Part 2: Hanging membranes

In this part...

M

We introduce:

- $\bullet\,$ A shell membrane theoretic formulation of hanging membranes.
- Our formulation is based on the assumption "stress lines = curvature lines".
- In-plane equilibrium
 existence of another surface (Combescure transform), which is similar to the theory of membrane 0 surfaces.
- Variational principles.

Reference:

Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: Shell membrane theory and variational principle, Int. J. Math. Ind. 14(01) 2250004 (2022).

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

Background 1 (Hooke's observation)

A model of hanging chain by Robert Hooke (1635-1703):

"Theorem" (Robert Hooke, 1676)

An ideal compression-only geometry for a rigid arch can be obtained by:

abcccddeeeeefggiiiiiiillmmmmnnnnooprrssstttttuuuuuuux.

Note: The anagram in No. 3

ceiiinosssttuu

is called Hooke's law:

ut tensio, sic vis

(as the extension, so the force).

2. The true Machinarical and Medianichal ferre of all manner of Archer for Enilling, such the true between nearfury freeds of Brown. A Problem which no drobing/finish Writter hath ever yet attempted, much left performed. above detected fig. initial linear monomorphy context representation. 3. The true Theory of Enaltheiry or Springingfield, and a particular Empleation thereof in feveral Subjects in minub it is to be found: dust the may of computing the velocity of Endless more of inform. cellinous state.

Figure: Hooke's article in 1676.

Michell structures and hanging membranes

Yoshiki JIKUMARU

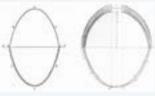
INIAD, Toyo University

17/29

Background 1 (Hooke's observation)

The solution of the anagram (Richard Waller, 1705)

Ut pendet continuum flexile, sic stabit contiguum rigidum inversum. (As hangs the flexible line, so but inverted will stand the rigid arch.)



(a) A sketch by Giovanni Poleni (1748)

(b) Gateway arch (Missouri, St. Louis)

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

18/29

Background 2 (Gaudi and Isler's hanging model)

Hanging models by Antoni Gaudi (1852-1926):

(a) Antoni Gaudi (1878)

(b) Sagrada Familia

(c) The model by Gaudi (Gaudi Museum)

Hanging models by Heinz Isler (1926-2009):

(a) A model by Heinz Isler

Michell structures and hanging membranes

(b) Gas station in Deitingen (Switzerland)

Yoshiki JIKUMARU INIAD, Toyo University

Background 3 (Previous researches)

Previous researches

- 1. Hanging membranes (with special symmetry): Novozhilov (1964), Brew-Lewis (2007).
- 2. Thrust Network Analysis: Block-Ochsendorf (2007).
 - → Graphic statics (horizontal, J. C. Maxwell (1867)),
 - + Force density method (vertical, H.-J. Schek (1974)).
- 3. Relation with isotropic geometry:

Vouga-Höbinger-Wallner-Pottmann (2012).

Singular minimal surfaces:
 Böhme-Hildebrandt-Tausch (1980), U. Dierkes (2003), R. Lopéz (2018).

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

20/29

Notations from classical surface theory

M

Let r = r(x, y) be a surface (patch) in \mathbb{R}^3 .

r = r(x, y): the model of the middle surface of a shell membrane.

Assume that the coordinates (x,y) are the curvature line coordinates.

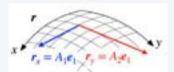
In this case, the 1st and 2nd fundamental forms are given by

$$I = A_1^2 dx^2 + A_2^2 dy^2, \quad II = \kappa_1 A_1^2 dx^2 + \kappa_2 A_2^2 dy^2.$$
 (4)

Denote

$$r_x = A_1 e_1, \quad r_y = A_2 e_2, \quad N = e_1 \times e_2, \quad (5)$$

that is, e_1 and e_2 are the unit tangent vectors and N is the unit normal on the surface.



Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University 21/29

Combescure transformation

Definition (Combescure, 1867)

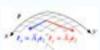
If the functions \overline{A}_1 and \overline{A}_2 satisfy the relations

$$\frac{(A_1)_y}{A_2} = \frac{(\overline{A}_1)_y}{\overline{A}_2}, \quad \frac{(A_2)_x}{A_1} = \frac{(\overline{A}_2)_x}{\overline{A}_1},$$
 (6)

then there exists a surface \overline{r} given by the relations

$$\overline{r}_x = \overline{A}_1 e_1, \quad \overline{r}_y = \overline{A} e_2.$$
 (7)

In particular, $r_x \parallel \overline{r}_x$ and $r_y \parallel \overline{r}_y$ at corresponding points. The surface \overline{r} is called the Combescure transformation of r.



Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

The equilibrium equation

The equilibrium condition for a membrane with "stress line = curvature line":

$$(A_{2}T_{1})_{x} - (A_{2})_{x}T_{2} + \langle \mathbf{q}, \mathbf{e}_{1} \rangle A_{1}A_{2} = 0,$$

$$(A_{1}T_{2})_{y} - (A_{1})_{y}T_{1} + \langle \mathbf{q}, \mathbf{e}_{2} \rangle A_{1}A_{2} = 0,$$

$$\kappa_{1}T_{1} + \kappa_{2}T_{2} + \langle \mathbf{q}, \mathbf{N} \rangle = 0,$$
(8)

where

- $\langle \cdot, \cdot \rangle$: the standard inner product in \mathbb{R}^3 .
- T_1, T_2 : normal stress (resultants) along x- and y-coordinate lines, respectively.
- q: the load (vector) acting on the unit area of the membrane. In this talk, you can assume the vertical load (self-weight).
- We call in-plane equilibrium and out-of-plane equilibrium conditions, resp.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

23/29

Existence of the Combescure transformation

M

The equilibrium condition for a membrane with "stress line = curvature line":

$$(A_{2}T_{1})_{x} - (A_{2})_{x}T_{2} + \langle \mathbf{q}, \mathbf{e}_{1} \rangle A_{1}A_{2} = 0,$$

$$(A_{1}T_{2})_{y} - (A_{1})_{y}T_{1} + \langle \mathbf{q}, \mathbf{e}_{2} \rangle A_{1}A_{2} = 0,$$

$$\kappa_{1}T_{1} + \kappa_{2}T_{2} + \langle \mathbf{q}, \mathbf{N} \rangle = 0.$$
(9)

In this case, we denote

$$\overline{A}_1 = A_1(T_2 + \langle \boldsymbol{q}, \boldsymbol{r} \rangle), \quad \overline{A}_2 = A_2(T_1 + \langle \boldsymbol{q}, \boldsymbol{r} \rangle).$$
 (10)

Then, if we assume q is constant vector (e.g., self-weight), we can verify

$$\frac{(\overline{A}_1)_y}{\overline{A}_2} = \frac{(A_1)_y}{A_2}, \quad \frac{(\overline{A}_2)_x}{\overline{A}_1} = \frac{(A_2)_x}{A_1},\tag{11}$$

that is, in-plane equilibrium condition \iff \exists Combescure transformation \overline{r} !

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

24/29

A similarity with membrane O surfaces

M

If $\langle {m q}, {m r} \rangle \approx 0$, that is, for a "shallow shell", we have

$$\overline{A}_1 = A_1 T_2, \quad \overline{A}_2 = A_2 T_1,$$
 (12)

and the out-of-plane equilibrium condition becomes the "bilinear form":

$$(H_{\circ} \quad A_{1} \quad \overline{A}_{1}) \begin{pmatrix} 0 & 0 & 1 \\ 0 & q_{n} & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} K_{\circ} \\ A_{2} \\ \overline{A}_{2} \end{pmatrix} = 0,$$
 (13)

where $q_n = \langle \boldsymbol{q}, \boldsymbol{N} \rangle$ is the normal loading.

Theorem (Rogers-Schief, 2003)

If q_n is constant, the surfaces r, \overline{r}, N constitute "membrane 0 surfaces".

Remark: the assumption "shallow" is not necessary in Rogers-Schief theory.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

Hanging membranes of "symmetric" case

Theorem

For constants λ , b, we assume the relations

$$T_1 + \langle \boldsymbol{q}, \boldsymbol{r} \rangle = \lambda \kappa_2 - b, \quad T_2 + \langle \boldsymbol{q}, \boldsymbol{r} \rangle = \lambda \kappa_1 - b.$$
 (14)

Then the in-plane equilibrium equation becomes "trivial (Mainardi-Codazzi eqn)". Moreover, the out-of-plane equilibrium equation gives the constraint

$$2\lambda \mathcal{K} - 2\mathcal{H}(\langle \boldsymbol{q}, \boldsymbol{r} \rangle + b) + \langle \boldsymbol{q}, \boldsymbol{N} \rangle = 0, \tag{15}$$

where we put $K = \kappa_1 \kappa_2$ (Gaussian curvature) and $H = (\kappa_1 + \kappa_2)/2$ (mean curvature).

If $\lambda=0$, we have $T_1=T_2=-(\langle {m q},{m r}\rangle+b)$ (known as "singular minimal" surfaces).

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

26/29

Variational principle

M

Theorem

Define the functional E as follows (λ , b: constants):

$$E(\mathbf{r}) = \int_{\Sigma} (-2\lambda \mathcal{H} + \langle \mathbf{q}, \mathbf{r} \rangle + b) \, dA. \tag{16}$$

Then, the first variation of E (for boundary-fixed variations) is given by:

$$\delta E = \int_{\Sigma} (2\lambda \mathcal{K} - 2\mathcal{H}(\langle \boldsymbol{q}, \boldsymbol{r} \rangle + b) + \langle \boldsymbol{q}, \boldsymbol{N} \rangle) \langle \delta \boldsymbol{r}, \boldsymbol{N} \rangle \, dA. \tag{17}$$

The Euler-Lagrange equation gives the out-of-plane equation.

Note: if $\lambda=0$, then E becomes the gravity under the area constraint condition (discussed in Koiso-Palmer (2005)).

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

27/29

Problems for shape generation

Problems

- Can we generate various shapes using the "form diagram r" and "force diagram \overline{r} (Combescure transform)" as Airy stress functions???
- Can we construct the variational principle in a general case?
- Can we discretize these formulations with "interesting" mathematics?

Figure: Examples of "discrete hanging membranes" by circular net.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

A summary of this talk

In this talk, we introduced (mini) examples of

Mathematics Motivated by Architectural Design.

They consisted of the following contents:

Figure: Michell-Prager type structures and discrete isothermic surfaces

Figure: Formulation of Hanging membranes

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University

Discretization of quadrics and of elliptic coordinates

Yuri B. Suris Institut für Mathematik, Technische Universität Berlin, Germany

Abstract

In this talk, I will review a recently found discretization of classical elliptic coordinate systems. These systems became prominent after Jacobi used them for integrating several famous problems of classical mechanics, including the two centers problem and the geodesics on an ellipsoid. A structure preserving discretization of these coordinate systems remained open for a long time and was finally tackled in Refs. [1, 2]. I will closely follow the history of this discovery. On the first step [1], a construction based on an integrable discretization of the Euler-Poisson-Darbox equation was used. The coordinate functions of the resulting discrete nets are given in terms of gamma functions. These nets enjoy separability property, their two-dimensional subnets being Koenigs nets with an additional novel discrete analog of the orthogonality property (thus, discrete isothermic, in a sense). On the second step [2], the novel orthogonality concept was put at the very basis of a more general construction. The latter is geometric, via polarity with respect to a sequence of classical confocal quadrics. The coordinate functions of discrete confocal quadrics were computed explicitly. This opens the possibility to close the cycle of historic development by applying discrete elliptic coordinate systems to discretize corresponding problems in classical mechanics in the structure preserving fashion.

References

- [1] A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. I. An integrable systems approach. *J. Integrable Systems*, 2016, **1**, No. 1, xyw005, 34 pp.
- [2] A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric approach to general parametrizations. *Internat. Math. Research Notices*, 2020, 2020, No. 24, 10180-10230.

Discretization of quadrics and of elliptic coordinates

Yuri B. Suris

(Technische Universität Berlin)

Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design, Fukuoka, 11.03.2025

Plan

Part 1: Discretizing equations. Based on:

A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. I. An integrable systems approach. J. Integrable Systems, 2016, 1, No. 1, xyw005, 34 pp.

Part 2: Discretizing geometry. Based on:

A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric approach to general parametrizations. Internat. Math. Research Notices, 2020, No. 24, 10180-10230.

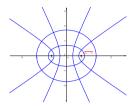
Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Part 1: Discretizing equations

Confocal quadrics

One-parameter family of quadrics: for given $a_1 > \cdots > a_N > 0$,

$$\mathcal{Q}_{\lambda} = \left\{ \boldsymbol{x} = (x_1, \dots, x_N) \in \mathbb{R}^N : \ \sum_{k=1}^N \frac{x_k^2}{a_k + \lambda} = 1 \right\}, \quad \lambda \in \mathbb{R}.$$



Discretization of quadrics and of elliptic coordinates

Confocal coordinates

For a given point $\mathbf{x} \in \mathbb{R}^N$ with $x_1 x_2 \dots x_N \neq 0$, equation $\sum_{k=1}^N x_k^2/(a_k + \lambda) = 1$ for λ has N real roots u_1, \dots, u_N in

$$\mathcal{U} = \{ \boldsymbol{u} \in \mathbb{R}^N : -a_1 < u_1 < -a_2 < u_2 < \ldots < -a_N < u_N \}.$$

They correspond to the N confocal quadrics that intersect at x:

$$\sum_{k=1}^{N} \frac{x_k^2}{a_k + u_i} = 1, \quad i = 1, \dots, N \quad \Leftrightarrow \quad \boldsymbol{x} \in \bigcap_{i=1}^{N} Q_{u_i}.$$

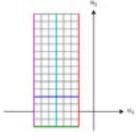
The coordinates (u_1, \ldots, u_N) are called *confocal coordinates* (or elliptic coordinates, following Jacobi (1826)). Expression of x_k^2 through u_1, \ldots, u_N :

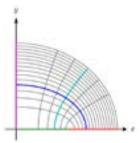
$$x_k^2 = \frac{\prod_{i=1}^{N} (u_i + a_k)}{\prod_{i \neq k} (a_k - a_i)}, \quad k = 1, \dots, N$$

(defines x_k up to sign).

Example: N = 2

$$x_1 = \frac{\sqrt{a_1 + u_1}\sqrt{a_1 + u_2}}{\sqrt{a_1 - a_2}}, \quad x_2 = \frac{\sqrt{-(a_2 + u_1)}\sqrt{a_2 + u_2}}{\sqrt{a_1 - a_2}}.$$





General properties

▶ The net $\mathbf{\textit{x}}:\mathcal{U}\to\mathbb{R}_+^{\textit{N}}$ satisfies the Euler-Poisson-Darboux

$$\frac{\partial^2 \textbf{x}}{\partial u_i \partial u_j} = \frac{\gamma}{u_i - u_j} \left(\frac{\partial \textbf{x}}{\partial u_j} - \frac{\partial \textbf{x}}{\partial u_i} \right) \tag{EPD}_{\gamma})$$

with $\gamma = \frac{1}{2}$. All two-dimensional coordinate surfaces of **x** are Koenigs nets.

▶ The net $\mathbf{x}: \mathcal{U} \to \mathbb{R}_+^N$ is orthogonal:

$$\left\langle \frac{\partial \mathbf{x}}{\partial u_i}, \frac{\partial \mathbf{x}}{\partial u_i} \right\rangle = 0.$$

All two-dimensional coordinate surfaces of x are curvature line parametrized.

All two-dimensional coordinate surfaces of **x** are isothermic.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Characterization

Theorem. Confocal coordinates $\mathbf{x}: \mathcal{U} \to \mathbb{R}^N_+$ are *characterized* by the following properties:

▶ All $x_k : \mathcal{U} \to \mathbb{R}_+$ (k = 1, ..., N) are separable solutions of (EPD_{γ}) with $\gamma = \frac{1}{2}$ satisfying boundary conditions

$$\lim_{u_k \searrow (-a_k)} x_k(u_1, \dots, u_N) = 0 \quad \text{for} \quad k = 1, \dots, N,$$

$$\lim_{u_{k-1}\nearrow(-a_k)} x_k(u_1,\ldots,u_N) = 0 \quad \text{for} \quad k=2,\ldots,N.$$

▶ The net $\mathbf{x}: \mathcal{U} \to \mathbb{R}_+^N$ is orthogonal:

$$\left\langle \frac{\partial \mathbf{x}}{\partial u_i}, \frac{\partial \mathbf{x}}{\partial u_j} \right\rangle = 0.$$

Discrete Euler-Poisson-Darboux equation

An integrable discretization of (EPD $_{\gamma}$):

$$\Delta_i \Delta_j \boldsymbol{x} = \frac{\gamma}{n_i + \epsilon_i - n_i - \epsilon_i} (\Delta_j \boldsymbol{x} - \Delta_i \boldsymbol{x}). \tag{dEPD}_{\gamma})$$

Introduced by Konopelchenko-Schief (2014).

Integrable in the sense of multidimensional consistency.

All two-dimensional subnets are Koenigs.

Discrete confocal coordinates

Definition. For $\alpha_1, \ldots, \alpha_N \in \mathbb{Z}$ with $\alpha_1 > \alpha_2 > \cdots > \alpha_N > 0$, set

$$\mathcal{U} = \mathbb{Z}^N \cap U, \quad \mathcal{U}^* = (\mathbb{Z}^*)^N \cap U,$$

where $\mathbb{Z}^* = \mathbb{Z} + \frac{1}{2}$ and

$$U = \{ \boldsymbol{u} \in \mathbb{R}^{N} : -\alpha_{1} \leq u_{1} \leq -\alpha_{2} \leq u_{2} \leq \cdots \leq -\alpha_{N} \leq u_{N} \},$$

Discrete confocal coordinate system is a net $\mathbf{x}: \mathcal{U} \cup \mathcal{U}^* \to \mathbb{R}^N_{\perp}$ such that

▶ all $x_k : \mathcal{U} \to \mathbb{R}_+$ (k = 1, ..., N) are separable solutions of (dEPD $_{\gamma}$) with $\gamma = \frac{1}{2}$, satisfying boundary conditions

$$x_k|_{n_k=-\alpha_k} = 0$$
 for $k = 1,..., N$,
 $x_k|_{n_{k-1}=-\alpha_k} = 0$ for $k = 2,..., N$;

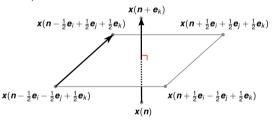
▶ all $x_k : \mathcal{U}^* \to \mathbb{R}_+$ $(k = 1, \dots, N)$ are separable solutions of (dEPD $_{\gamma}$) with $\gamma = \frac{1}{2}$ given by the same formulas as $x_k: \mathcal{U} \to \mathbb{R}_+$, extended to \mathcal{U}^* ;

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete confocal coordinates

and

▶ the net **x** is *orthogonal* in the sense that each edge of $\mathbf{x}(\mathcal{U}^*)$ is orthogonal to the dual facet of $\mathbf{x}(\mathcal{U})$ (and vice versa).



Explicit formulas

Discrete confocal coordinate systems are given by

$$x_k(n_1,\ldots,n_N) = D_k \prod_{i < k} \left(-n_i - \alpha_k - \frac{k-i}{2} + \frac{1}{2}\right)_{1/2} \prod_{i \geq k} \left(n_i + \alpha_k + \frac{k-i}{2}\right)_{1/2},$$

where the discrete square root function is defined by

$$(u)_{1/2}=\frac{\Gamma(u+\frac{1}{2})}{\Gamma(u)},$$

and

$$D_k^{-1} = \prod_{i < k} \sqrt{\alpha_i - \alpha_k + \frac{i - k}{2}} \cdot \prod_{i > k} \sqrt{\alpha_k - \alpha_i + \frac{k - i}{2}}.$$

Example: N = 2

Discrete elliptic coordinates in the plane:

$$x_1(\mathbf{n}) = \frac{(n_1 + \alpha_1)_{1/2}(n_2 + \alpha_2 - \frac{1}{2})_{1/2}}{\sqrt{\alpha_1 - \alpha_2 - \frac{1}{2}}},$$

$$x_2(\mathbf{n}) = \frac{(-n_1 - \alpha_2)_{1/2}(n_2 + \alpha_2)_{1/2}}{\sqrt{\alpha_1 - \alpha_2 - \frac{1}{2}}},$$

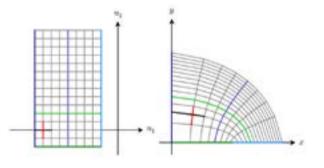
where

$$n_1, n_2 \in \frac{1}{2}\mathbb{Z}$$
.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: $N = 2 \ (\alpha_1 = 5, \, \alpha_2 = 1)$

$$\mathbf{x}:\left(\frac{1}{2}\mathbb{Z}\right)^2\cap U \to \mathbb{R}^2_+$$

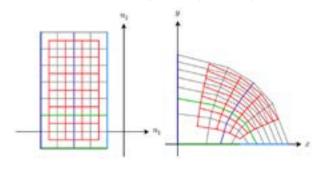


Yuri B. Suri

Discretization of quadrics and of elliptic coordinates

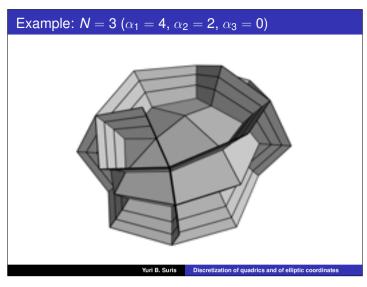
Example: $N = 2 \ (\alpha_1 = 5, \, \alpha_2 = 1)$

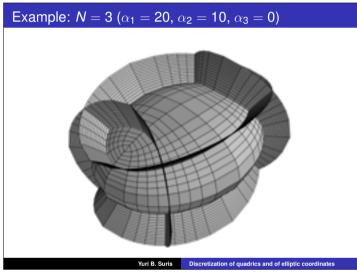
On two dual sublattices: $extbf{\emph{x}}: \left(\mathbb{Z}^2 \cup (\mathbb{Z}^*)^2\right) \cap U o \mathbb{R}^2_+$



Yuri B. Suris

Discretization of quadrics and of elliptic coordinates





Part 2: Discretizing geometry in arbitrary parametrization

Yuri B. Suris

Discretization of quadrics and of elliptic coordinate

Re-parametrizations

Useful to achieve single-valuedness and periodicity of the functions involved.

Example N=2: in

$$x_1 = \frac{\sqrt{a_1 + u_1}\sqrt{a_1 + u_2}}{\sqrt{a_1 - a_2}}, \quad x_2 = \frac{\sqrt{-(a_2 + u_1)}\sqrt{a_2 + u_2}}{\sqrt{a_1 - a_2}}$$

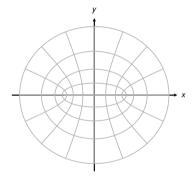
$$u_1 = -a_1 \sin^2 s_1 - a_2 \cos^2 s_1$$
, $u_2 = a_1 \sinh^2 s_2 - a_2 \cosh^2 s_2$,

$$x_1 = \sqrt{a_1 - a_2} \cos s_1 \cosh s_2$$
, $x_2 = \sqrt{a_1 - a_2} \sin s_1 \sinh s_2$.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example. N = 2

Classical elliptic coordinate system in the plane in terms of trigonometric/hyperbolic functions with $a_1 = 2$, $a_2 = 1$:



Yuri B. Suris Discretization of quadrics and of elliptic co

Fundamental restriction of DDG

For functions of a discrete variable, there is no natural notion of re-parametrization!

To find natural discrete analogs of confocal coordinates in arbitrary parametrization, need new ideas.

The main idea: a novel characterization of confocal coordinates, not based on (EPD_{γ}) in a special parametrization.

Novel characterization of confocal coordinates

Theorem. If a coordinate system $\mathbf{x}: \mathbb{R}^N \supset U \to \mathbb{R}^N$ satisfies two conditions:

i) **x**(**s**) factorizes, in the sense that

$$\begin{cases} x_1(\mathbf{s}) = f_1^1(s_1)f_2^1(s_2)\cdots f_N^1(s_N), \\ x_2(\mathbf{s}) = f_1^2(s_1)f_2^2(s_2)\cdots f_N^2(s_N), \\ \dots \\ x_N(\mathbf{s}) = f_1^N(s_1)f_2^N(s_2)\cdots f_N^N(s_N), \end{cases}$$

with all $f_i^k(s_i) \neq 0$ and $(f_i^k)'(s_i) \neq 0$;

ii) **x** is *orthogonal*, that is,

$$\langle \partial_i \mathbf{x}, \partial_i \mathbf{x} \rangle = 0$$
 for $i \neq j$,

then all coordinate hypersurfaces are confocal quadrics.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete confocal coordinates

As often in DDG, we turn a smooth theorem into a discrete

Definition. A discrete coordinate system $\mathbf{x}: \left(\frac{1}{2}\mathbb{Z}\right)^N \supset \mathcal{U} \to \mathbb{R}^N$ is called a discrete confocal coordinate system if it satisfies two

i) $\mathbf{x}(\mathbf{n})$ factorizes, in the sense that for any $\mathbf{n} \in \mathcal{U}$

$$\begin{cases} x_1(\mathbf{n}) = f_1^1(n_1)f_2^1(n_2)\cdots f_N^1(n_N), \\ x_2(\mathbf{n}) = f_1^2(n_1)f_2^2(n_2)\cdots f_N^2(n_N), \\ \cdots \\ x_N(\mathbf{n}) = f_1^N(n_1)f_2^N(n_2)\cdots f_N^N(n_N), \end{cases}$$

with all $f_i^k(n_i) \neq 0$ and $\bar{\Delta} f_i^k(n_i) = f_i^k(n_i) - f_i^k(n_i - 1) \neq 0$;

ii) **x** is discrete orthogonal in the above sense.

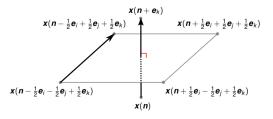
Yuri B. Suris Discretization of quadrics and of elliptic coordinate

Reminder: discrete orthogonality

Recall that we call a net x is orthogonal if, for each edge $[\boldsymbol{n}, \boldsymbol{n} + \boldsymbol{e}_k]$, all 2^{N-1} vertices of the dual facet,

$${\boldsymbol x}({\boldsymbol n}+\frac{1}{2}\sigma)$$
 for all $\sigma=(\sigma_1,\ldots,\sigma_N)\in\{\pm 1\}^N$ with $\sigma_k=1,$

lie in a hyperplane orthogonal to the line $(x(n), x(n + e_k))$:



Discretization of confocal quadrics equation

Theorem. For a discrete confocal coordinate system, there exist N real numbers a_k , $1 \le k \le N$, and N sequences $u_i: \frac{1}{2}\mathbb{Z} + \frac{1}{4} \to \mathbb{R}$ such that the following equations are satisfied for any $\mathbf{n} \in \mathcal{U}$ and for any $\sigma \in \{\pm 1\}^N$:

$$\sum_{k=1}^{N} \frac{x_k(\mathbf{n}) x_k(\mathbf{n} + \frac{1}{2}\sigma)}{a_k + u_i} = 1, \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i), \quad i = 1, \dots, N.$$

Equivalently.

$$x_k(\mathbf{n})x_k(\mathbf{n}+\frac{1}{2}\sigma) = \frac{\prod_{j=1}^N(u_j+a_k)}{\prod_{i\neq k}(a_k-a_i)}, \quad u_j=u_j(n_j+\frac{1}{4}\sigma_j), \quad k=1,\ldots,N.$$

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Converse statement

Theorem. For given sequences $u_i: \frac{1}{2}\mathbb{Z} + \frac{1}{4} \to \mathbb{R}, \ 1 \le i \le N$, consider functions $f_i^k(n_i)$ as solutions of the respective difference equations

$$f_i^k(n_i)f_i^k(n_i+\frac{1}{2}) = \begin{cases} u_i(n_i+\frac{1}{4}) + a_k, & k \leq i, \\ -(u_i(n_i+\frac{1}{4}) + a_k), & k > i. \end{cases}$$

The functions f_i^k , k = 1, ..., N are defined uniquely by prescribing their values at one point. Then, x defined by

$$x_k(\mathbf{n}) = \frac{\prod_{j=1}^{N} f_j^k(n_j)}{\prod_{i=1}^{k-1} \sqrt{a_i - a_k} \prod_{i=k+1}^{N} \sqrt{a_k - a_i}}, \quad k = 1, \dots, N$$

constitutes a discrete confocal coordinate system.

Geometric interpretation

The main formula

$$\sum_{k=1}^{N} \frac{x_k(\mathbf{n}) x_k(\mathbf{n} + \frac{1}{2}\sigma)}{a_k + u_i} = 1, \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i), \quad i = 1, \dots, N,$$

admits a remarkable geometric interpretation:

the point $\mathbf{x}(\mathbf{n} + \frac{1}{2}\sigma)$ lies in the intersection of the polar hyperplanes of $\mathbf{x}(\mathbf{n})$ with respect to the (smooth) confocal quadrics $Q(u_i)$, i = 1, ..., N:

$$\mathbf{x}(\mathbf{n}+\frac{1}{2}\sigma)=\bigcap_{i=1}^{N}Pol_{Q(u_i)}(\mathbf{x}(\mathbf{n})),\quad u_i=u_i(n_i+\frac{1}{4}\sigma_i).$$

Geometric construction

Input data.

▶ *N* sequences of quadrics of the confocal family is chosen, with the parameters

$$u_i: \left(\frac{1}{2}\mathbb{Z} + \frac{1}{4}\right) \cap \mathcal{I}_i \to \mathbb{R},$$

indexed by $n_i+\frac{1}{4}\in\mathcal{I}_i$, where $n_i\in\frac{1}{2}\mathbb{Z}$. Let $\mathcal{V},\,\mathcal{V}^*$ be the parts of the respective lattices $\mathbb{Z}^N,\,(\mathbb{Z}+\frac{1}{2})^N$ lying in the region $\prod_{i=1}^{N} \mathcal{I}_i$.

▶ An arbitrary point $\mathbf{x}(\mathbf{n}_0)$ for $\mathbf{n}_0 \in \mathcal{V} \cup \mathcal{V}^*$.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

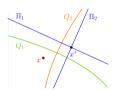
Recurrent construction

Suppose that x(n) = x is already known. Then for any neighboring vertex of the dual sublattice,

$$\mathbf{n}^* = \mathbf{n} + \frac{1}{2}\boldsymbol{\sigma}, \quad \boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_N), \quad \sigma_i = \pm 1,$$

the point $\mathbf{x}(\mathbf{n}^*) = \mathbf{x}^*$ is constructed as the intersection of Npolar hyperplanes

$$\mathbf{x}^* := \bigcap_{i=1}^N Pol_{Q(u_i)}(\mathbf{x}), \quad u_i = u_i(n_i + \frac{1}{4}\sigma_i).$$

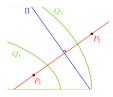


Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Origin of discrete orthogonality

Lemma. Let Π be a hyperplane. Then the poles of Π with respect to all quadrics of the confocal family lie on a line ℓ . This line ℓ is orthogonal to Π .

Example N = 2: if P_2 is related to P_1 via polarity in two confocal conics, that is, $\Pi = Pol_{Q_1}(P_1)$ and $P_2 = Pol_{Q_2}(\Pi)$, then the line through P_1 and P_2 is orthogonal to Π .



Example: N = 2

Discrete elliptic coordinates in the plane, in terms of triginometric/hyperbolic functions:

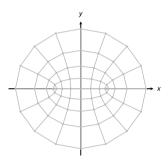
$$x_1(\mathbf{n}) = \sqrt{\frac{a_1 - a_2}{\cos(\frac{\delta_1}{2})\cosh(\frac{\delta_2}{2})}} \cos(\delta_1 n_1) \cosh(\delta_2 n_2),$$

$$x_2(\mathbf{n}) = \sqrt{\frac{a_1 - a_2}{\cos(\frac{\delta_1}{2})\cosh(\frac{\delta_2}{2})}} \sin(\delta_1 n_1) \sinh(\delta_2 n_2).$$

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

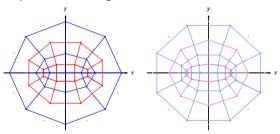
Example: N = 2 ($a_1 = 2$, $a_2 = 1$, $\delta_1 = \delta_2 = \frac{2\pi}{m}$, m = 8)

$$\mathbf{x}:\left(\frac{1}{2}\mathbb{Z}\right)^2 o \mathbb{R}^2$$



Example: N = 2 ($a_1 = 2$, $a_2 = 1$, $\delta_1 = \delta_2 = \frac{2\pi}{m}$, m = 8)

Two pairs of dual orthogonal sublattices:



Left: Sublattice on \mathbb{Z}^2 in blue and on $\left(\mathbb{Z}+\frac{1}{2}\right)^2$ in red. Right: Sublattice on $\mathbb{Z}\times(\mathbb{Z}+\frac{1}{2})$ in blue and on $(\mathbb{Z}+\frac{1}{2})\times\mathbb{Z}$ in pink.

Example: N = 3, smooth confocal coordinates

Elliptic coordinates in the 3D space, in terms of elliptic functions:

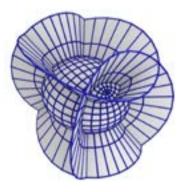
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \sqrt{a_1 - a_3} \begin{pmatrix} \operatorname{sn}(s_1, k_1) \operatorname{dn}(s_2, k_2) \operatorname{ns}(s_3, k_3) \\ \operatorname{cn}(s_1, k_1) \operatorname{cn}(s_2, k_2) \operatorname{ds}(s_3, k_3) \\ \operatorname{dn}(s_1, k_1) \operatorname{sn}(s_2, k_2) \operatorname{cs}(s_3, k_3) \end{pmatrix},$$

where

$$k_1^2 = k_3^2 = \frac{a_1 - a_2}{a_1 - a_3}, \quad k_2^2 = \frac{a_2 - a_3}{a_1 - a_3} = 1 - k_1^2.$$

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N = 3, $a_1 = 8$, $a_2 = 4$, $a_3 = 0$



Example: N = 3, discrete confocal coordinates

Discrete elliptic coordinates $\mathbf{x}: \left(\frac{1}{2}\mathbb{Z}\right)^3 \to \mathbb{R}^3$ in terms of elliptic functions:

$$x_1(\textbf{\textit{n}}) = \alpha_1\alpha_2\alpha_3 \operatorname{sn}(\delta_1 n_1, k_1) \operatorname{dn}(\delta_2 n_2, k_2) \operatorname{ns}(\delta_3 n_3, k_3),$$

$$x_2(\mathbf{n}) = \beta_1 \beta_2 \beta_3 \operatorname{cn}(\delta_1 n_1, k_1) \operatorname{cn}(\delta_2 n_2, k_2) \operatorname{ds}(\delta_3 n_3, k_3),$$

$$x_3(\mathbf{n}) = \gamma_1 \gamma_2 \gamma_3 \operatorname{dn}(\delta_1 n_1, k_1) \operatorname{sn}(\delta_2 n_2, k_2) \operatorname{cs}(\delta_3 n_3, k_3),$$

where the moduli k_1 , k_2 , k_3 are defined as solutions of the following transcendental equations:

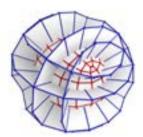
$$k_1^2 = \frac{a_1 - a_2}{a_1 - a_3} \cdot \frac{\text{dn}^2(\frac{\delta_1}{2}, k_1)}{\text{cn}^2(\frac{\delta_1}{2}, k_1)}, \quad k_2^2 = \frac{a_2 - a_3}{a_1 - a_3} \cdot \frac{\text{dn}^2(\frac{\delta_2}{2}, k_2)}{\text{cn}^2(\frac{\delta_2}{2}, k_2)}$$

$$k_3^2 = \frac{a_1 - a_2}{a_1 - a_3} \cdot \frac{\operatorname{dn}^2(\frac{\delta_3}{2}, k_3)}{\operatorname{cn}^2(\frac{\delta_3}{2}, k_3)}.$$

Example: N = 3 ($a_1 = 8$, $a_2 = 4$, $a_3 = 0$, $\delta_i = K(k_i)/4$)

Discrete quadrics from the pair of dual orthogonal sublattices \mathbb{Z}^3 and $(\mathbb{Z} + \frac{1}{2})^3$ are shown in blue and red respectively: • two two-sheeted hyperboloids for $n_1 = 1, 2$ $(n_2, n_3 \in \mathbb{Z})$,

- ▶ two one-sheeted hyperboloids for $n_2 = 1, 2$ ($n_1, n_3 \in \mathbb{Z}$),
- one ellipsoid for $n_3 = 3/2$ $(n_1, n_2 \in \mathbb{Z} + \frac{1}{2})$.



Surface generation for confidence-based data-driven computing in elasticity with application to reliability-based truss topology optimization

Yoshihiro Kanno The University of Tokyo, Japan

Abstract

Data-driven computational elasticity is an emerging field of computational mechanics. This study presents a method predicting a bound for structural response, where the material responses are supposed to possess uncertainty. The uncertainty set is constructed by generating piecewise affine surfaces from a data set of material responses. We show that the problems for finding upper and lower bounds for the structural response can be recast as a mixed-integer linear programming problem, which can be solved globally with a branch-and-cut method. Then a fundamental property of the order statistics guarantees the confidence level for the probability that the obtained bound includes the structural response is no smaller than the target reliability. Furthermore, we discuss application to the reliability-based design optimization of truss structures.

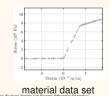
Surface Generation for Confidence-based Data-driven Computing in Elasticity with Application to Reliability-based Truss Topology Optimization

> Yoshihiro Kanno (The University of Tokyo)

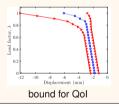
March 10–13, 2025
(Evolving Design and Discrete Differential Geometry: towards Mathematics Aided Geometric Design)

outline

- data-driven method for computational elasticity
- · uncertainty in material behavior
 - a data set of stress-strain observations
 - no modeling of probability distribution
- to find lower & upper bounds for Qol,
 - · segmented least squares for nonlinear material behaviour
 - mixed-integer programming for guarantee of tightness of the bound

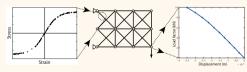


structure



data-driven equilibrium analysis in elasticity

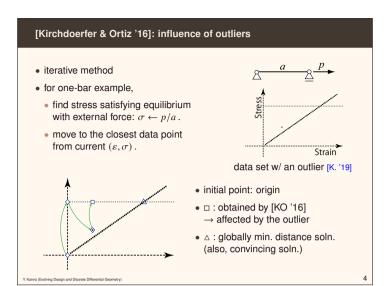
- T. Kirchdoerfer, M. Ortiz: Data-driven computational mechanics.
 Comp. Meth. Appl. Mech. Engrg., 304, pp. 81–101 (2016).
 - · use data of material experiments directly
 - instead of constitutive law (i.e., stress-strain relation)

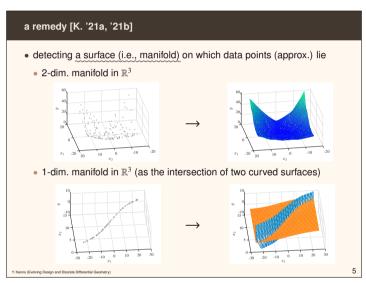


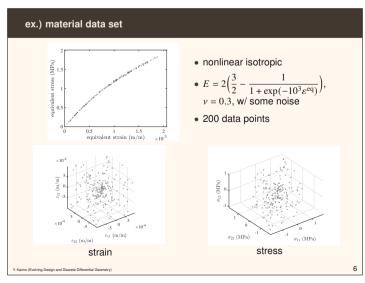
- subsequent related studies (a lot): [Kirchdoerfer & Ortiz '17], [Ibañez et al. '17], [Wang & Sun '18], [Nguyen & Keip '18], [Ayensa-Jiménez, Doweidar, Sanz-Herrera & Doblaré '18]
- tries to find "the closest point" in a data set

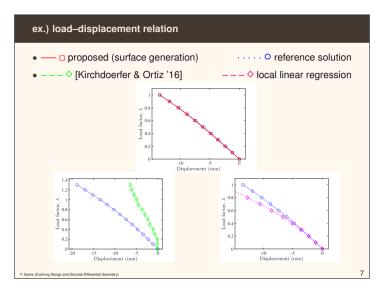
Kanno (Evolving Design and Discrete Differential Geomet

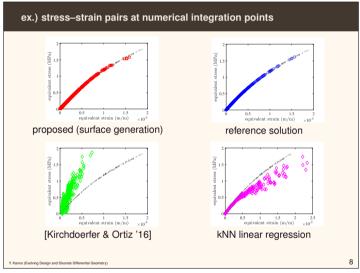
3

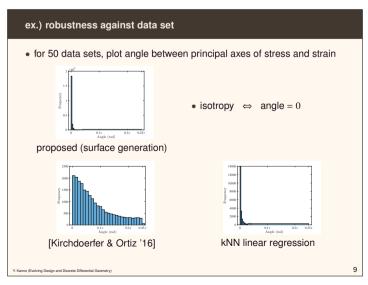












[Guo, Du, Liu & Tang '21]: another remedy using uncertainty analysis

- "A new uncertainty analysis-based framework for data-driven computational mechanics." J. Appl. Mech., 88, 111003 (2021).
 - construct an ellipsoid (an uncertainty set) including data points, and
 - find upper & lower bounds for structural response.
 - · avoid influence of outliers.

10

material data and uncertainty set

- [Guo et al. '21]: a set including all (= r) data points
- [K. '23]: a set C including \tilde{p} points among r data points
 - $\overline{s} := \max\{\mathsf{Qol} \mid (\varepsilon, \sigma) \in C \cap M\}$,
 - $s := \max\{QOI \mid (\varepsilon, \sigma) \in C \cap M\},$ $\underline{s} := \min\{QOI \mid (\varepsilon, \sigma) \in C \cap M\}.$ \leftarrow bounds
 - ullet M: compatibility & force-balance

• $\tilde{p} := \min \max \text{ natural number s. t.}$

• Fundamentals of order statistics yield

Strain

uncertainty set C

$\Pr \left\{ \overbrace{P_{(\varepsilon,\sigma) \sim F} \{ s \in [\underline{s},\overline{s}] \} \geq 1 - \epsilon}^{\text{reliability under } F} \geq 1 - \delta \right.$

- 1ϵ : target reliability 1δ : confidence level
- RBDO w/ uncertain distrib. [Moon et al. '17, '18], [Ito, Kim, & Kogiso '18]

material data and uncertainty set

- [Guo et al. '21]: a set including all (= r) data points
- [K. '23]: a set C including \tilde{p} points among r data points
 - $\tilde{p} := \text{minimum natural number s. t. } \sum_{k=\tilde{p}} {}_{r}C_{k}($
 - $\overline{s} := \max\{\text{Qol} \mid (\varepsilon, \sigma) \in C \cap M\}, \quad (\clubsuit)$ • $\underline{s} := \min\{\text{Qol} \mid (\varepsilon, \sigma) \in C \cap M\}. \quad (\clubsuit)$
 - M: compatibility & force-balance

uncertainty set C

- on local vs. global optimality
 - "local opt. of (*)": underestimate of "max. value of Qol"
 - ↑ non-conservative bound ③
 - global optimality
 - this talk: use mixed-integer programming for guarantee
 - w/ segmented least squares (C defined by piecewise-linear ineq.)

Canno (Evolving Design and Discrete Differential Geomet

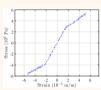
12

fiding a piecewise affine function fitting given data points

- unknown:
 - partition of the points
 - · coefficients of each affine function
- minimizing "(sum of squared errors) + γ (#affine functions)"

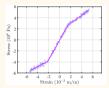
 $\gamma > 0$: penalty parameter

 $\bullet \to \mathsf{MIQP} \ (\mathsf{mixed}\text{-integer quadratic programming}) \quad \to \mathsf{global} \ \mathsf{optim}.$



material data set (stress-strain pairs)

 \rightarrow



segmented least squares (piecewise regression)

13

finding bound for structural response $s(u, \sigma)$

• upper bound: (lower bound: found by minimization)

Max. $s(u, \sigma)$

s. t. $\varepsilon = Bu$,

(compatibility)

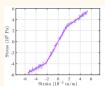
 $B\sigma = f$,

(force-balance)

 $(\varepsilon_i,\sigma_i)\in C$.

(inclusion in uncertainty set)

• can be reduced to MIP (mixed-integer programming) → global optim.!



segmented least squares (piecewise regression)

 \rightarrow

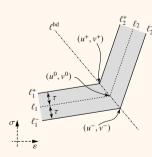
uncertainty set C

(including \tilde{p} data points)

14

Y. Kanno (Evolving Design and Discrete Differential Geometry

uncertainty set C w/ piecewise linear boundary

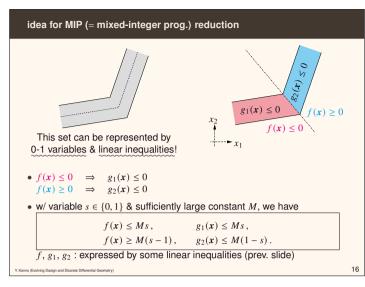


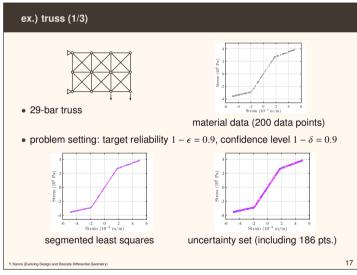
- single breakpoint case (for simplicity)
- boundary of C consists of
- ℓ_1^+ , ℓ_2^+ : $\alpha_i \varepsilon + \beta_i \sigma = \gamma_i \tau$
- ℓ_1^- , ℓ_2^- : $\alpha_i \varepsilon + \beta_i \sigma = \gamma_i + \tau$
- (α_i, β_i, γ_i: have been obtained by segmented least sq.)
- ℓ^{bd} : $p\varepsilon + q\sigma = r$
 - (p, q, r): can be found by elementary calculation)
- $(\varepsilon, \sigma) \in C$ iff

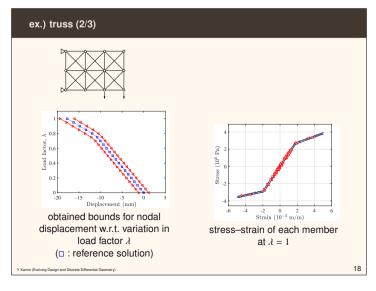
 $(\varepsilon,\sigma) \in \begin{cases} \text{btwn. } \ell_1^+ \ \& \ \ell_1^- & \text{if } p\varepsilon + q\sigma \leq r \,, \\ \text{btwn. } \ell_2^+ \ \& \ \ell_2^- & \text{if } p\varepsilon + q\sigma \geq r \,. \end{cases}$

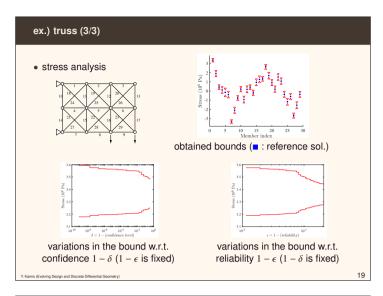
Kanno (Evolving Design and Discrete Differential Geomet

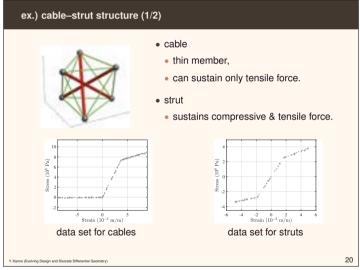
15

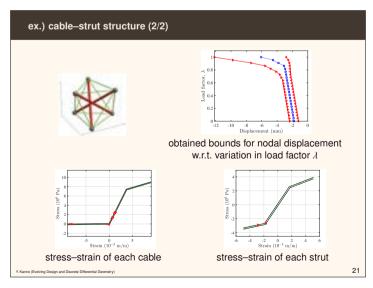












towords truss design optimization

- · constraint under uncertainty
 - uncertainty: material behavior (w/ unknown prob. distr.)
 - x : design var. (member cross-section areas)
 - $\pi(x)$: compliance (a measure of structural flexibility)

 \rightarrow random var.

$$\Pr_F \left\{ \overbrace{ \mathbf{P}_{(\varepsilon,\sigma)} \{ \pi(\mathbf{x}) \leq \bar{\pi} \} \geq 1 - \epsilon}^{\text{reliability w/ fixed distribution}} \geq 1 - \delta \ .$$
 treating uncertainty in distribution

- 1ϵ : target reliability 1δ : confidence level of reliability
- reliability-based design optim. w/ uncertain input distribution

[Moon et al. '17, '18], [Ito, Kim, & Kogiso '18]

[Jung, Cho, & Lee '19], [Jung, Cho, Duan, & Lee, 20]

[Wang, Hao, Yang, Wang, & Gao '20], [Hao et al. '22]

Y. Kanno (Evolving Design and Discrete Differential Geometry)

22

reduction of compliance constraint

$$P_{F_D}\left\{P_D\{\pi(\boldsymbol{x})\leq\bar{\pi}\}\geq 1-\epsilon\right\}\geq 1-\delta\,.$$

• sufficient condition (w/ uncertainty set C):

$$\bar{\pi} \geq \max f^{\top} u$$

s. t.
$$\varepsilon = Bu$$
,

$$H(x)\sigma=f\,,$$

 $(\varepsilon_i,\sigma_i)\in C$.

(inclusion in uncertainty set)

- ullet var.: member strains $oldsymbol{arepsilon}$, member stresses σ , nodal displacements u
- difficulty: constraint on optimal value (of linear programming)
- strong duality of LP yields equivalent cstr.:

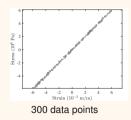
 \exists "Lagrange multiplier", (dual objective value) $\leq \bar{\pi}$.

• ↑ can be treated with conventional nonlinear programming!

Y. Kanno (Evolving Design and Discrete Differential Geometry

23

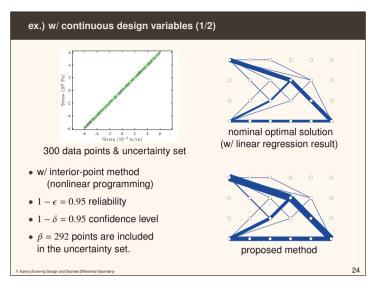
ex.) w/ continuous design variables (1/2)

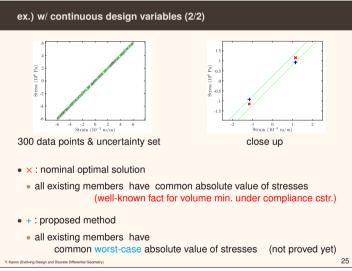


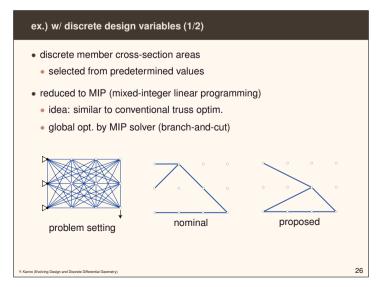
ground structure (188 members)

- w/ interior-point method (nonlinear programming)
- $1 \epsilon = 0.95$ reliability
- $1 \delta = 0.95$ confidence level
- $\tilde{p} = 292$ points are included in the uncertainty set.

f. Kanno (Evolving Design and Discrete Differential Geometr







ex.) w/ discrete design variables (2/2)

- discrete member cross-section areas
 - selected from predetermined values
- reduced to MIP (mixed-integer linear programming)
 - idea: similar to conventional truss optim.
 - global opt. by MIP solver (branch-and-cut)

problem setting

proposed

Y. Kanno (Evolving Design and Discrete Differential Geometry)

27

conclusion

- data-driven computational mechanics [Kirchdoerfer & Ortiz '16]
- introduction of uncertainty analysis [Guo, Du, Liu & Tang '21]
 - upper & lower bounds for structural response
- use of order statistics
 - <u>confidence</u> for <u>reliability</u> that the structural response belongs to the obtained bound
- segmented regression for nonlinear material data
- mixed-integer programming
 - can find a bound w/ global optimality®
 - ullet \leftrightarrow local opt. sol.: underestimate \odot of the structural response
- · application to truss design optimization
- reduction to nonlinear programming via duality of linear programming

Kanno (Evolving Design and Discrete Differential Geometry

Optimization methods for continuum and latticed shells consisting of developable parts

Makoto Ohsaki Kyoto University, Japan

Abstract

To reduce the cost and time for construction of continuum shells and latticed shells for covering large architectural space, it is important to design the structures as an assembly of developable parts. For this purpose, this presentation summarizes the following three optimization methods developed as part of the JST CREST ED³GE project:

- 1. A meshless and non-parametric two-level optimization approach is proposed for design of shell surfaces consisting of approximately developable patches. Developability is measured by the area of local Gauss map at the grid points. In the lower-level problem, the developability conditions are relaxed at some grid points to generate internal boundaries between approximately developable surface patches. In the upper-level problem, stiffness under the specified vertical loads is maximized. The design variables are the heights of the selected grid points, where developability conditions of some grid points are automatically relaxed. This way, a new class of structural shape optimization problem of shell surfaces consisting of piecewise developable surfaces is proposed to design shells with desirable geometrical characteristics in view of fabrication and construction.
- 2. In the design of latticed shell consisting of straight beams, it is important to have planarity of beam plates and surface panels while avoiding kinks at the joints. For this purpose, a hexagonal mesh consisting of straight beams connected at joints without torsion or kink is generated from Koebe mesh on a unit sphere obtained by spherical inversion in Möbius geometry. The parameters for Möbius transformation are optimized to obtain the latticed shell close to the target surface.
- 3. The cost and time for construction of gridshells consisting of quadrilateral meshes can be reduced by designing the shell as an assembly of planar beams. A gridshell with a planar quadrilateral mesh and planar curves is generated by discretizing an L-isothermic surface, where the directions of principal stresses coincide with the directions of principal curvatures under the uniform pressure load. The cross-sectional areas of gridshells are optimized to have the desired distribution of axial forces.

References

- [1] K. Hayakawa, M. Ohsaki and J. Y. Zhang, Meshless non-parametric shape design of piecewise approximately developable surfaces using discretized local Gauss map, J. Int. Assoc. Shell Spatial. Struct., Vol. 64, No. 1, pp. 5-14, 2024.
- [2] K. Kabaki, K. Hayakawa, M. Ohsaki, Y. Jikumaru and Y. Yokosuka, Design of gridshells consisting of planar curves using Laguerre geometry, Proc. IASS Symposium 2024, Zurich, Switzerland, Int. Assoc. Shell and Spatial Struct., Paper No. 340, 2024.
- [3] R. Watada and M. Ohsaki, Sequential generation method for hexagonal lattice shells with edge offset mesh, Proc. IASS Symposium 2024, Zürich, Int. Assoc. Shell and Spatial Struct., Paper No. 365, 2024.
- [4] M. Ohsaki, K. Hayakawa and J. Y. Zhang, Non-parametric structural shape optimization of piecewise developable surfaces using discrete differential geometry, Proc. Asian Congress of Structural and Multidisciplinary Optimization (ACSMO 2024), Zhengzhou, China, Paper B40314, 2024.

Optimization methods for continuum and latticed shells consisting of developable parts

Makoto Ohsaki (Kyoto University) Jingyao Zhang (Kyoto University) Ryo Watada (Osaka Sangyo University) Kentaro Hayakawa (Nihon University) Kohei Kabaki (Kyoto University)

Outline of presentation

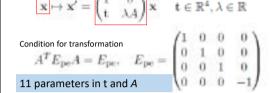
- Three topics from Kyoto Group of Crest project Related to "Optimization of shells consisting of developable parts"
- 1. Design of gridshells using Laguerre geometry
- 2. Design of latticed shells with hexagonal mesh using Möbius geometry
- 3. Structural optimization of shells consisting of piecewise developable parts

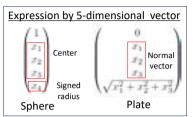
2

Design of gridshells using Laguerre geometry

Lie sphere geometry

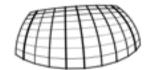
- Union of Möbius geometry and Laguerre geometry
- Directed sphere and plate in 5 or 6-dimensional vector
- Laguerre transformation:
 Expressed by 5 × 5 matrix satisfying condition in bilinear form





Purpose

- Design a grid shell with preferred axial force distribution
 - ⇒ Assign target force distribution and solve optimization problem
 - ⇒ <u>Difficult to assign feasible distribution</u>
 of axial forces at equilibrium for specified loads



- Design the shape based on Laguerre geometry
- In most of mathematical approaches, deformation against loads (material property) is not considered.
 - ⇒ Investigate effect of deformation by structural analysis

L-minimal generalized Dupin cyclide

W K Schief, A Szereszewski and C Rogers (2009)

• Envelop of sphere of variable radius translated along Cycloid (one parameter family of sphere)

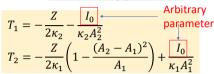
• One of the curvature lines is a circle

• Both of the curvature lines are planar

Constant uConstant uParameter (u, α) along curvature lines

Membrane forces against uniform normal loads

- Equilibrium to uniform normal load Z with membrane forces
- Principal stresses T_1 and T_2 in the directions of principal curvature lines
- 3rd fundamental form is ithothermic w.r.t. curvature lines
 ⇒ L-isothermic surface
 - \Rightarrow T_1 and T_2 are obtained explicitly from <u>local surface shape</u> and has <u>one arbitrary parameter</u>



Normal load

Curvature line 1 Curvature line 2

Tension T_2 Tension T_1

W K Schief, A Szereszewski and C Rogers (2009)

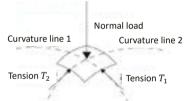
 A_1 , A_2 : Norm of tangent vector (Parametric speed) κ_1 , κ_2 : Principal curvatures

Assignment of parameter

- ullet Assign I_0 to have specific force distribution.
- Example: Force in one direction can vanish at a specific point

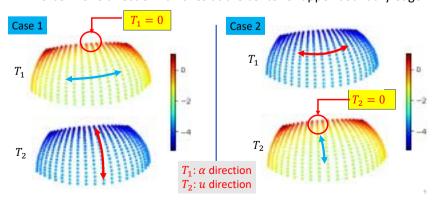
$$T_1 = 0 \Leftrightarrow I_0 = -\frac{1}{2}A_2^2Z$$

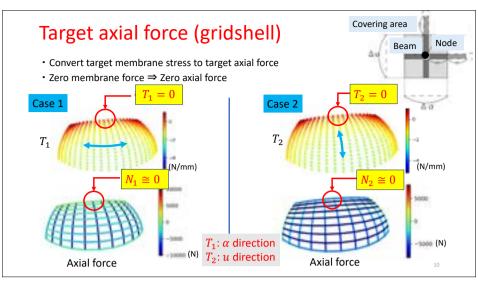
$$T_2 = 0 \Leftrightarrow I_0 = \frac{1}{2}(2A_1A_2 - A_2^2)Z$$



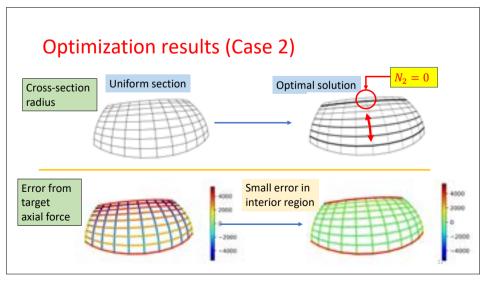
Target membrane force (continuum shell)

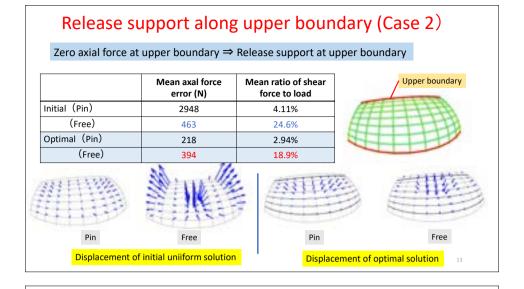
• Force in one direction vanishes at the center of upper boundary edge





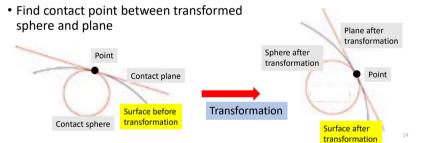






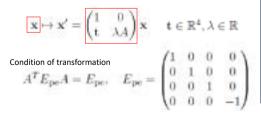
Laguerre transformation of surface

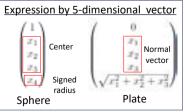
- Cannot transform point to point
- Define point on the surface as contact point between directed sphere and plate
- Apply Laguerre transformation on sphere and plane



Laguerre transformation of surface

- · Preserve invariants of Laguerre geometry
 - ⇒ Favorable properties of surface are preserved
 - ⇒ Curvature lines are transformed to curvature lines
 - ⇒ Constructability is maintained





Conversion by Laguerre transformation

- Inner product: $\langle \mathbf{x}, \mathbf{y} \rangle_{\mathrm{pe}} = \langle A\mathbf{x}, A\mathbf{y} \rangle_{\mathrm{pe}}$
- Directed sphere contacting the surface at **p**: $\binom{\mathbf{p}}{0} + a \binom{\mathbf{n}}{-1}$
- Laguerre transformation of directed sphere:

$$A\left[\binom{\mathbf{p}}{0} + a \binom{\mathbf{n}}{-1}\right] = A\binom{\mathbf{p}}{0} + a \binom{\widehat{\mathbf{n}}}{-\|\widehat{\mathbf{n}}\|}$$

- L-isothermic surface: $\langle \mathbf{n}_x, \mathbf{n}_x \rangle = \langle \mathbf{n}_y, \mathbf{n}_y \rangle = e^{2\theta}$, $\langle \mathbf{n}_x, \mathbf{n}_y \rangle = 0$
- Laguerre transformation of 3rd fundamental form (x, y): parameters):

III =
$$\langle d\mathbf{n}, d\mathbf{n} \rangle = e^{2\theta} (dx^2 + dy^2)$$

$$\widehat{\Pi} = \langle d\widehat{\mathbf{n}}, d\widehat{\mathbf{n}} \rangle = e^{2\widehat{\theta}} (dx^2 + dy^2), \ \hat{\theta} = \theta - \log \|\widehat{\mathbf{n}}\|$$

16

Examples of Laguerre transformation

Black: before transformation

Red: after transformation

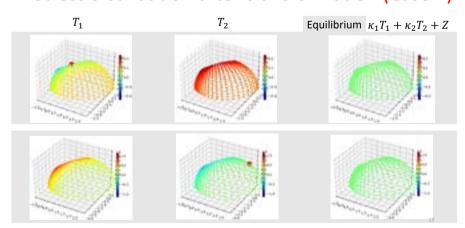
Rotation

Scaling

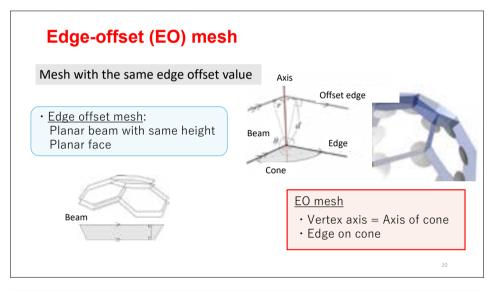
Rotation w.r.t. hyperbolic function in projective space

17

Stress distribution after transformation (Case 1)



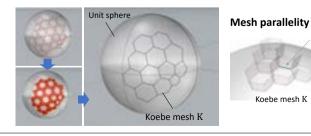
Design of latticed shells with hexagonal mesh using Möbius transformation

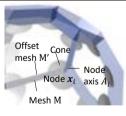


Generating EO mesh

Koebe mesh

- · All edges contact to a unit sphere
- · Generated from circle packing on the sphere
- EO mesh is parallel to Koebe mesh
- All edges contact the cone at vertex





Mesh M

Corresponding edges are all parallel

212

Koebe mesh K

Generating Koebe mesh

Projection of circle packing on a plane to unit sphere ⇒ Modify circle packing ⇒ Modify Koebe mesh

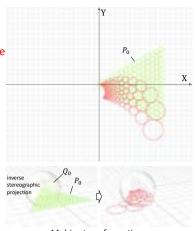
Möbius transformation:

$$f(z) = \frac{az+b}{cz+d}, \ (a,b,c,d \in \mathbb{C}, ad-bc \neq 0)$$

$$f(z) = \rho e^{i\theta} \left(\frac{1}{z + \alpha} + \beta \right),$$

$$(\alpha, \beta \in \mathbb{C}, \rho > 0, -\pi \le \theta < \pi)$$

- $\alpha = \alpha_R + i\alpha_I$, $\beta = \beta_R + i\beta_I$,
- ⇒ Mobius transformation can be determined by six real parameters $\alpha_R, \alpha_I, \beta_R, \beta_I, \rho, \theta \in \mathbb{R}$

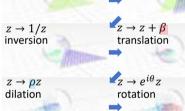


Mobius transformation

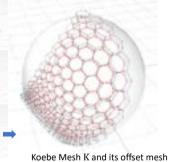
Möbius transformation

$$f(z) = \rho e^{i\theta} \left(\frac{1}{z + \alpha} + \beta \right), \ (\alpha, \beta \in \mathbb{C}, \rho > 0, -\pi \le \theta < \pi)$$

 $z \rightarrow z + \alpha$ translation

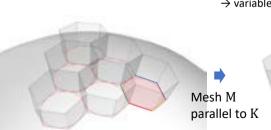


This is omitted as this only causes rigid body rotation



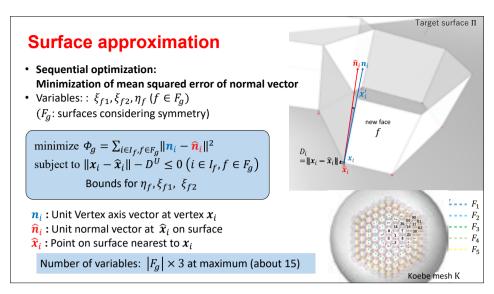
Sequential generation of EO mesh

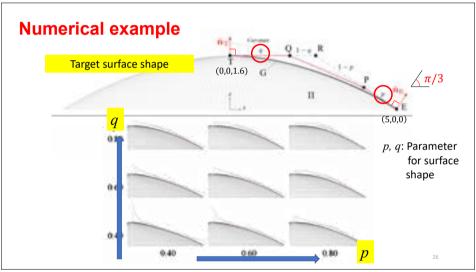
The number of neighboring faces: 1 \rightarrow variables : $\xi_{f1}, \xi_{f2}, \eta_f$

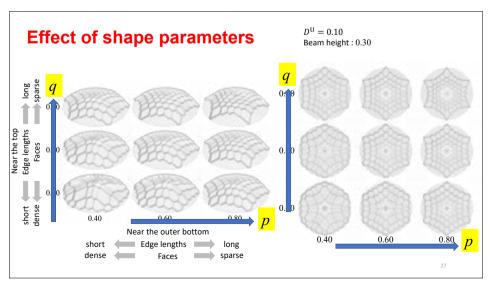


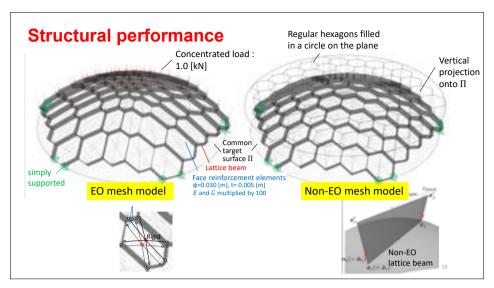
Pre-fixed Koebe mesh K

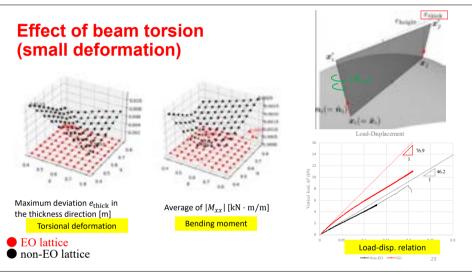
Generated EO mesh M

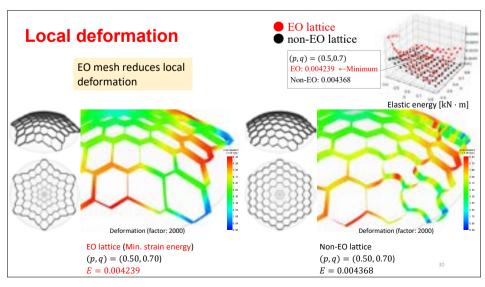


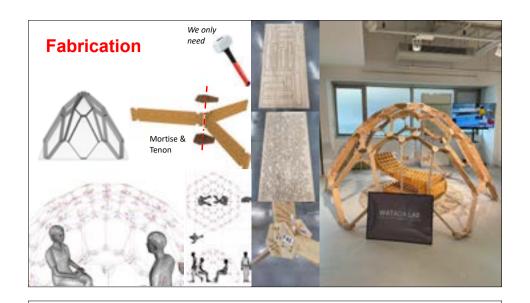












Structural optimization of shells consisting of piecewise developable surface

32

Background

Many methods for designing free-form shells for architectural roof and façade

Large construction cost:

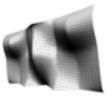
- cost for formwork for reinforced concrete (RC) shell

Developable surface for cost reduction:

- generated by bending plate

Use same mesh for design, analysis and optimization:

dependency of solutions on triangular mesh discretization



Assemblage of developable Bézier surface [1]

Discrete developable surfaces [2]

J. Cui and M. Ohsaki, J. Int. Assoc. Shell. Spatial Struct., Vol. 59 (3), pp. 199-214, 2018.
 M. Ohsaki and K. Hayakawa, J. Int. Assoc. Shell. Spatial Struct., Vol. 62 (2), pp. 93-101, 2021.

Purpose

Two-level shape optimization method of curved surfaces:

limited class of surface:

piecewise developable surfaces

Developability of the polyhedral surface:

- vanishing area of discretized local Gauss map at each vertex

Optimize locations of selected points on the surface:

- minimize compliance (maximize stiffness)

34

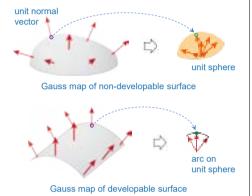
Gauss map and developable surface

Gauss map:

 mapping from point on the surface to a point on the unit sphere of unit normal vector

Vanishing area of Gauss map → developable surface:

plane: pointcylinder: arccone: arc

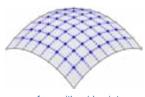


35

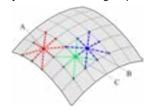
Meshless approach

Surface represented by grid points

- Mesh structure (global connectivity of edges): not specified.
- Auxiliary edges: tentatively arranged to construct a locally triangulated surface.
- Gauss map: defined locally at each interior grid point.



surface with grid points



grid points A, B, C and auxiliary edges connecting to their neighborhood points

Local gauss map

Discrete (polyhedral) Gauss map

Unit normal vector of triangular region between edges j and j+1

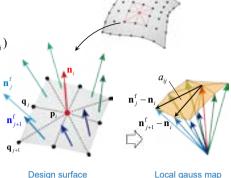
$$\mathbf{n}_{j}^{\mathrm{f}} = \frac{\hat{\mathbf{n}}_{j}^{\mathrm{f}}}{\left\|\hat{\mathbf{n}}_{j}^{\mathrm{f}}\right\|} \quad \hat{\mathbf{n}}_{j}^{\mathrm{f}} = (\mathbf{q}_{j} - \mathbf{p}_{i}) \times (\mathbf{q}_{j+1} - \mathbf{p}_{i})$$

Unit normal vector at point i

$$\mathbf{n}_i = \frac{\hat{\mathbf{n}}_i}{\|\hat{\mathbf{n}}_i\|} \qquad \hat{\mathbf{n}}_i = \frac{1}{m_i} \sum_{j=1}^{m_i} \mathbf{n}_j^{\mathrm{f}}$$

Area of local Gauss map

$$a_{ij} = \frac{1}{2} \left\| (\mathbf{n}_{j}^{\mathrm{f}} - \mathbf{n}_{i}) \times (\mathbf{n}_{j+1}^{\mathrm{f}} - \mathbf{n}_{i}) \right\|$$



Local gauss map

Lower-level optimization problem: Generate piecewise developable surface

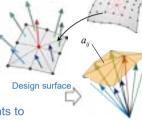
Minimization of the sum of area of local Gauss map

- prevention of divergence of gradients of a_{ij} at $a_{ij} \simeq 0$ by minimizing the sum of $(a_{ii})^2$ (developability error)

Lower level problem

Minimize
$$F(\mathbf{x}) = \sum_{i \in I} A_i$$
 $A_i = \sum_{j=1}^{m_i} (a_{ij})^2 = 0$ subject to $\mathbf{x} \in \mathcal{X}$

⇒ depelopability condition



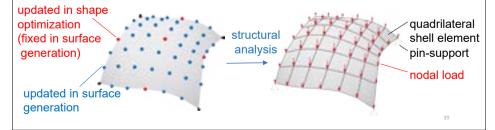
- exclusion of developability error at some selected points to generate interior boundaries between patches
 - ⇒ Piecewise developable surface
 - x : vector of variables (selected coordinates of grid points)
 - I: set of indices of selected grid points
 - χ : feasible region (upper and lower bounds) of x

Local gauss map

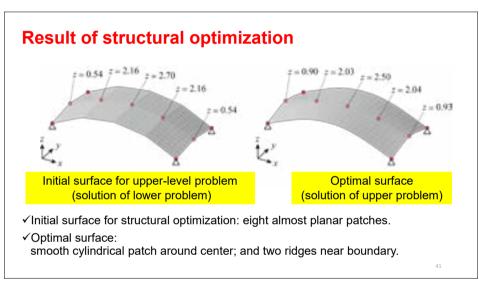
Two-level shape optimization of surface with limited class

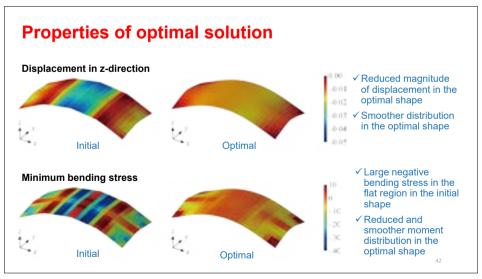
Stiffness maximization of the piecewise developable surface

- Upper problem: Minimization of compliance against static loads FE-model: grid points ⇒ guadrilateral mesh
- Lower problem: Generate piecewise developable surface



Initial shape **Example 1:** Lower Problem: Generation of piecewise developable surface bounds for z-coordinates Structural analysis Young's modulus, Poisson's ratio: 200 GPa, 0.2 load (self-weight): 1.0×10² kN/m², Shell thickness: 0.1 m **Upper Problem: Shape optimization** by simulated annealing • • • : fixed in lower-level problem max. number of steps: 200 : Ignored developability condition neighborhood search: 10 times at each temperature : updated in upper-level problem bounds for z-coordinates : pin-supported





Error concentration using tanh function

Difficulty in previous method:

specify points for ignoring developability

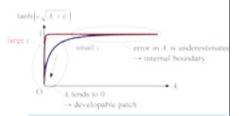
- ⇒ specify approximate locations of internal boundary
- ⇒ Method without prior assignment of internal boundary

automatic concentration of developability error

Lower problem

Minimize
$$F(\mathbf{x}) = \sum_{i \in I} A_i$$

Minimize $F(\mathbf{x}) = \sum_{i \in I_{in}} \tanh \left(\frac{c}{c} \sqrt{A_i(\mathbf{x}) + \varepsilon} \right)$

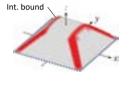


Underestimate large developability error

→ concentrate nondevelopable points

43

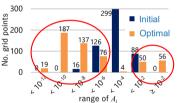
Example 2-1 (Shape generation: lower problem)



 $A_i = 4.9 \times 10^{-2}$ $A_i = 2.2 \times 10^{-14}$

c = 100Two internal boundariesCenter: cylinder

Side: plane A_i < 10⁻⁶: developable > 10⁻⁴: non-developable (int. boundary)



44

Example 2-2 (Shape generation: lower problem)

 $A_i = 2.3 \times 10^{-2}$ $A_i = 2.8 \times 10^{-11}$

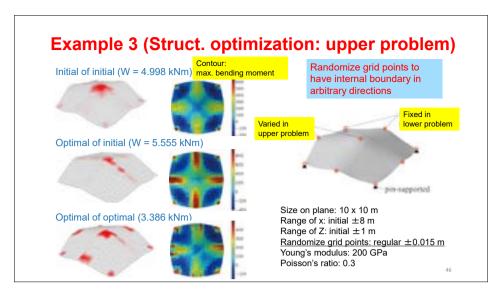
c = 50

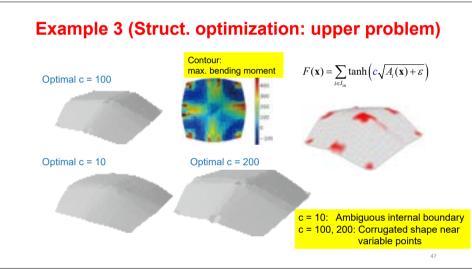
Center: non-developable Interior: 4 planes A_i : less than 10^{-6} (developable)

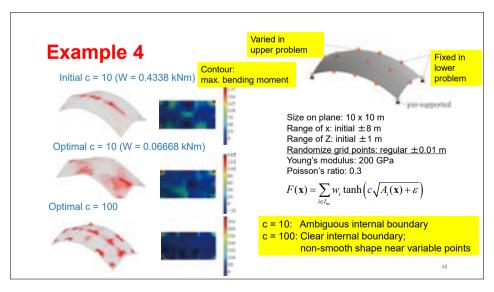
except center

300 284 299 Initial Optimal 88 200 0 0 0 0 16 24 4 0 1

range of A,







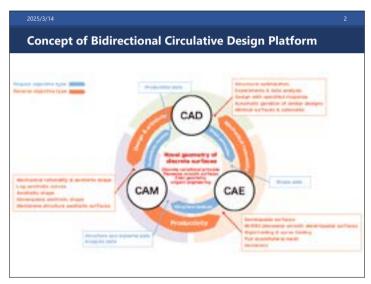
Summary

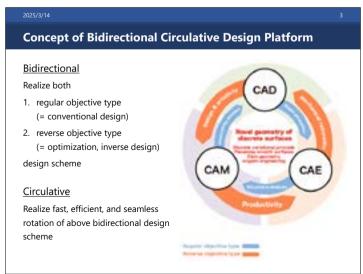
- Lie spherical geometry can be used to design lattice shells that has high constructability.
- Mathematical formulation does not incorporate the effect of deformation related to material properties that should be considered even for small deformation.
- Laguerre transformation preserves the preferable mechanical properties of L-isothemic surfaces.
- Edge-offset surfaces allow the design of lattice shells with excellent constructability and mechanical properties.
- Piecewise developable surface can be a new class of shell surfaces ensuring efficient structural performance and constructability.

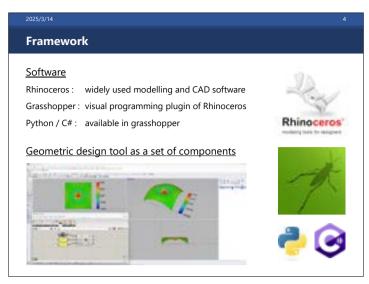
Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design

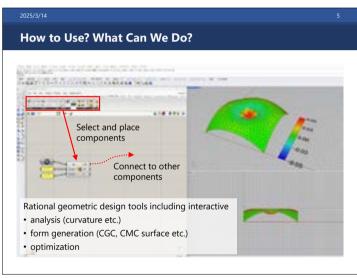
Development of Bidirectional Circulative Design Platform

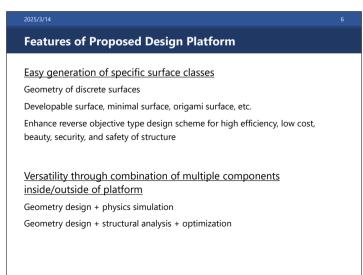
Presenter: Kentaro Hayakawa, Nihon Univ.

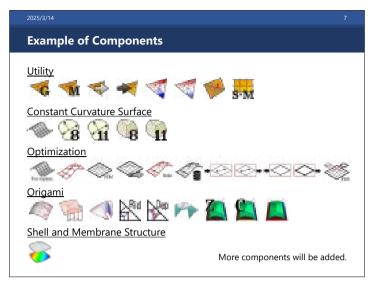


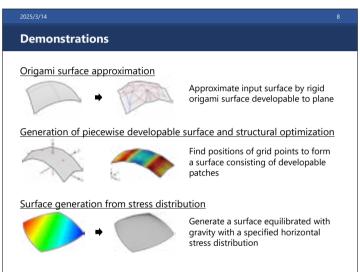


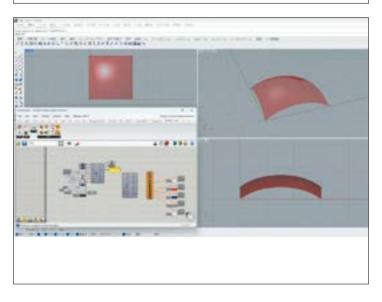


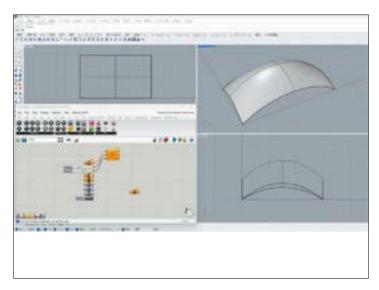


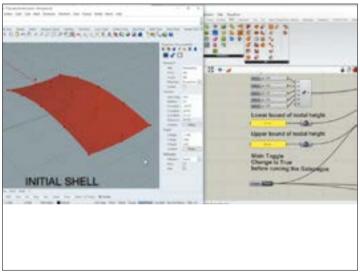


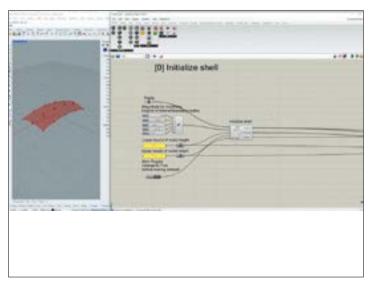


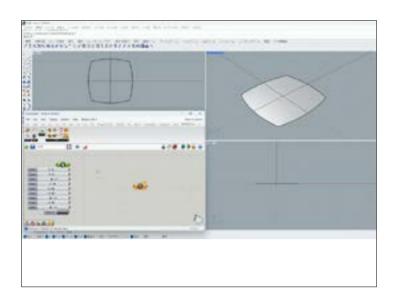












Development of bidirectional circulative design platform – case example (pillow box)

Shun Kumagai (Hachinohe Institute of Technology, Kajiwara group)

International Conference "Evolving Design and Discrete Differential Geometry
- towards Mathematics Aided Geometric Design"
2025/3/11

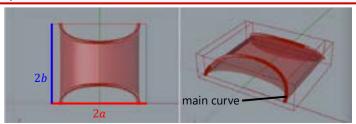
Context of this presentation

- This talk presents **a case example** of implementation and actual use of components in the bidirectional circulative design platform.
- The components are designed to handle "pillow box".
- For theoretical discussions and applications in architecture, please refer to **tomorrow's talks by Prof. Koiso and Prof. Yokosuka**.

Objective: pillow box of maximal volume

A pillow box is a closed, box-shaped surface formed by creasing a double rectangular sheet rigidly along given curves.

Theorem (Koiso). For any a, b > 0, there exists a unique pillow box with maximal volume that is isometric to the rectangle with width 2a and height 2b. It is represented by a developable surface that includes the "main curve" described on the next slide.



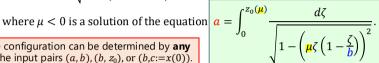
Formula for maximum-volume pillow box

The main curve of the pillow box of input (a, b) is described by:

$$x=x(z):=\pm I_{\mu}(z)\mp I_{\mu}(z_0),\quad 0\leq z\leq z_0,\quad \left(0\leq x\leq I_{\mu}(z_0)\right)$$

$$I_{\mu}(z) \coloneqq \int_0^z \frac{-\mu\zeta\left(1-\frac{\zeta}{b}\right)}{\sqrt{1-\left(\mu\zeta\left(1-\frac{\zeta}{b}\right)\right)^2}}d\zeta, \ \ z_0 = z_0(\mu) \coloneqq \frac{b}{2}\Bigg(1-\sqrt{1-\frac{4}{b|\mu|}}\Bigg),$$

The configuration can be determined by any of the input pairs (a, b), (b, z_0) , or (b, c = x(0)).



Formula for maximum-volume pillow box

The following description of the main curve represents one possible isometric transformation process (t = 0: rectangle, t = 1: pillowbox):

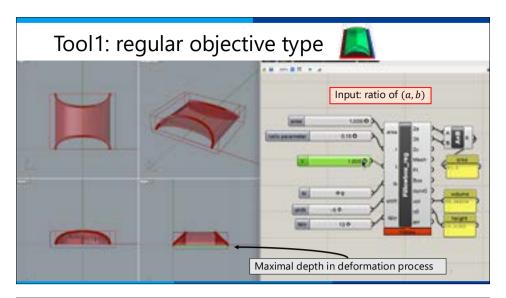
$$x_t = x_t(z) := \pm I_{\mu,t}(z) \mp I_{\mu}(z_{0,t}), \quad 0 \le z \le z_{0,t}, \quad (0 \le x \le I_{\mu}(z_{0,t}))$$

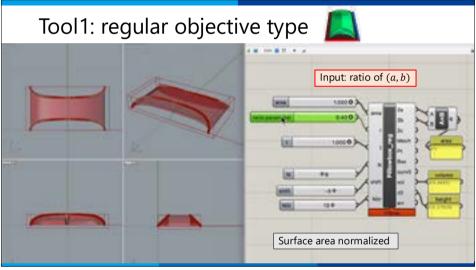
$$I_{\mu,t}(z) := \int_0^z \frac{-\mu \zeta \left(1 - \frac{\zeta}{b}\right) + t}{\sqrt{1 - \left(\mu \zeta \left(1 - \frac{\zeta}{b}\right) - t\right)^2}} d\zeta, \ \ z_{0,t} = z_{0,t}(\mu) := \frac{b}{2} \left(1 - \sqrt{1 - \frac{4(1 - t)}{b|\mu|}}\right),$$

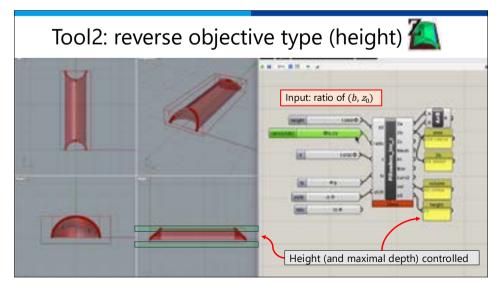
where $\mu < 0$ is a solution of the equation $a = \int_0^{z_{0,t}(\mu)} \frac{d\zeta}{\sqrt{1 - \left(\frac{\mu}{\mu}\zeta\left(1 - \frac{\zeta}{b}\right) - t\right)^2}}$

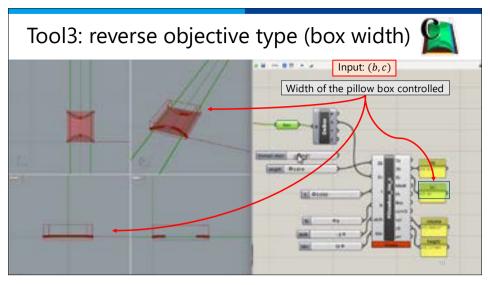
Pillow box components include an interactive solver for these equations, which corresponds to the given input. (built-in python script)

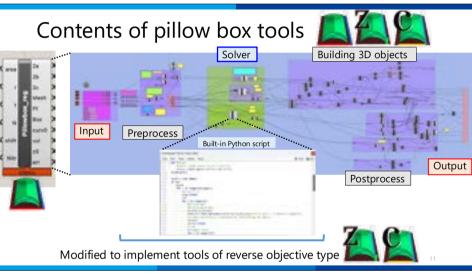
Tool1: regular objective type Parameters of the solver and the output process Maximal depth $z_1 \sim 0.053757 z_0$

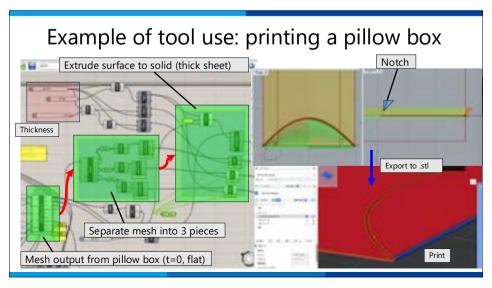


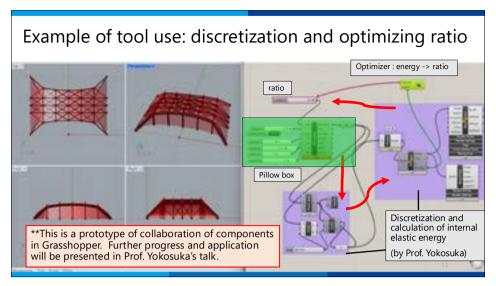


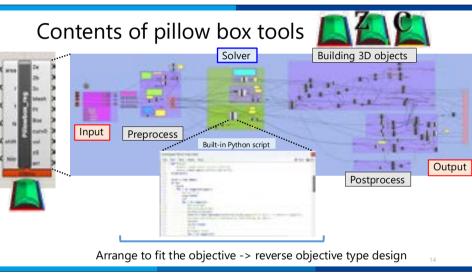












Discrete conformality and beyond. Where geometry meets computer graphics and mathematical physics

Alexander I. Bobenko Institute of Mathematics, Technische Universität Berlin, Germany

Abstract

Structure-preserving discretization in the field of geometry is the paradigm of discrete differential geometry. In some aspects, the discrete theory turns out to be even richer than its smooth counterpart. It focuses on developing constructive methods. The well-established theory of discrete conformal maps and circle patterns is related to discrete integrable models of mathematical physics and has found applications in geometry processing. We present their generalizations beyond the conformal limit: decorated discrete conformal maps [1, 2] and ring patterns [3, 4], which share the corresponding existence and uniqueness statements. The theory and construction methods are based on convex variational principles related to hyperbolic geometry. We define discrete constant mean curvature (cmc) surfaces (soap bubble surfaces) [5] in terms of sphere packings with orthogonally intersecting circles. These discrete cmc surfaces can be constructed from orthogonal ring patterns. The data used for the construction is purely combinatorial - the combinatorics of the curvature line pattern. Numerous virtual and printed models as well as animation movies will be demonstrated.

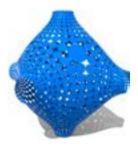


Figure 1: Left: Conformally parametrized tea pot costructed using discrete conformal mappings. Right: A discrete cmc surface constructed using orthogonal ring patterns [5].

References

- [1] A.I. Bobenko, C.O. Lutz, Decorated discrete conformal maps and convex polyhedral cusps, Intern. Math. Research Notices 2024:12 (2024), 9505-0534, doi.org/10.1093/imrn/rnae016
- [2] A.I. Bobenko, C. Lutz, Decorated discrete conformal equivalence in non-Euclidean geometries (2023) arXiv:2310.17529 [math.GT]
- [3] A.I. Bobenko, T. Hoffmann, T. Rörig, Orthogonal ring patterns in the plane, Geometria Dedicata (2023), doi.org/10.1007/s10711-023-00859-y
- [4] A.I. Bobenko, Spherical and hyperbolic orthogonal ring patterns: integrability and variational principles (2024) arXiv:2409.06573 [math.MG] [math.GT]
- [5] A.I. Bobenko, T. Hoffmann, N. Smeenk, Constant mean curvature surfaces from ring patterns: Geometry from combinatorics (2024) arXiv:2410.08915 [math.DG]

Discrete conformality and beyond. Where geometry meets computer graphics and mathematical physics

Alexander Bobenko

Technische Universität Berlin

Evolving Design and Discrete Differential Geometry towards Mathematics Aided Geometric Design, Fukuoka, March 2025

Discrete Differential Geometry.

Development of discrete equivalents of notions and methods of differential geometry.

- Structure preserving discretizations.
- ► Classical theory as a limit of refinements of the discretization.
- Constructive. Computational
- ► Applications: computer graphics
- ► Discrete (integrable) models in physics

Alexander Bobenko Discrete conformality and beyond

Conformal maps

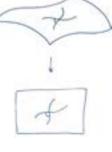
- ► conformal means angle preserving
- infinitesimal lengths scaled by conformal factor

 $|df| = e^{u} |dx|$

independent of direction

- ▶ in the small like *similarity* transformations
- Problem: surface in space $\xrightarrow{\text{conformally}}$ plane

Discrete conformality and beyond



Discrete conformal maps

(Orthogonal) circle patterns

- angle properties
- convergence to conformal
- maps in the plane

[Thurston, Stephenson, Schramm, He, AB, Springborn ... 1980'-]

Discrete conformal equivalence

- metric properties
- works for surfaces

[Luo, Springborn, Pinkall, Schröder, AB, Gu, Sun, Wu ... 2004-]

Alexander Bobenko Discrete conformality and beyond

Generalizations?

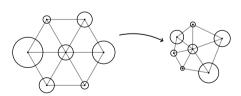
Conformal mappings very rigid:

- ► Computer Graphics: large variations of conformal factor, optimization of conformality and isometry, discretizations of quasi-conformal
- ► Physics: conformal models → massive models.
- ► Differential geometry: minimal $surfaces \rightarrow cmc surfaces$

Discrete models with a mathematical theory?

Alexander Bobenko Discrete conformality and beyond

I. Decorated discrete conformal mappings



Joint with Carl Lutz

Discrete conformal equivalence

▶ abstract surface triangulation M = (V, E, T)

A discrete metric on M is a function

$$\ell: E \to \mathbb{R}_{>0}, \quad ij \mapsto \ell_{ii}$$

satifying all triangle inequalities:

$$\forall ijk \in T: \qquad \ell_{ij} < \ell_{jk} + \ell_{ki}$$

$$\ell_{jk} < \ell_{ki} + \ell_{ij}$$

$$\ell_{ki} < \ell_{ij} + \ell_{jk}$$

Alexander Bobenko

Discrete conformality and beyond

Discrete conformal equivalence

Definition [Luo '04]

Two discrete metrics ℓ , $\tilde{\ell}$ on M are (discretely) conformally equivalent if

$$\tilde{\ell}_{ij} = e^{\frac{1}{2}(u_i + u_j)} \ell_{ij}$$

for some function $u:V\to\mathbb{R}$

• use
$$\lambda_{ij} = 2 \log \ell_{ij}$$
 $\tilde{\lambda}_{ij} = \lambda_{ij} + u_i + u_i$

Alexander Bobenko

Discrete conformality and beyond

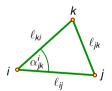
Mapping problem

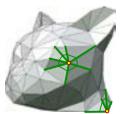
► angles sum around vertex i

$$\Theta_i = \sum_{ijk\ni i} \alpha^i_{jk}$$

▶ Given mesh M, metric $\ell_{ij} = e^{\frac{1}{2}\lambda_{ij}}$, and desired angle sums $\widehat{\Theta}_i$ Find conformally equivalent metric $\widetilde{\ell}_{ij}$ with

$$\widetilde{\Theta}_i = \widehat{\Theta}_i$$





Variational principle

$$S(u) \stackrel{\text{def}}{=} \sum_{ijk \in \mathcal{T}} \left(\tilde{\alpha}_{ij}^{k} \tilde{\lambda}_{ij} + \tilde{\alpha}_{jk}^{i} \tilde{\lambda}_{jk} + \tilde{\alpha}_{ki}^{j} \tilde{\lambda}_{ki} - \frac{\pi}{2} (\tilde{\lambda}_{ij} + \tilde{\lambda}_{jk} + \tilde{\lambda}_{ki}) + 2 \Pi(\tilde{\alpha}_{ij}^{k}) + 2 \Pi(\tilde{\alpha}_{jk}^{i}) + 2 \Pi(\tilde{\alpha}_{ki}^{j}) \right) + \sum_{i \in V} \widehat{\Theta}_{i} u_{i}$$

► Milnor's Lobachevsky function

$$\Pi(\alpha) = -\int_0^\alpha \log|2\sin t| \, dt$$

 $ilde{\ell}_{ij} = e^{rac{1}{2}(\lambda_{ij} + u_i + u_j)}$ solves mapping problem

$$u = (u_1, \dots, u_n)$$
 is critical point of $S(u)$

[Springborn-Pinkall-Schröder '08]

Alexander Bobenko Discrete conformality and beyond

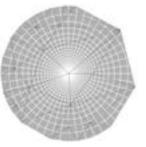
Ronkin function. Convexity

- $S(u) = \sum_{ijk \in T} \left(2f(\frac{\tilde{\lambda}_{ij}}{2}, \frac{\tilde{\lambda}_{jk}}{2}, \frac{\tilde{\lambda}_{ki}}{2}) \pi/2(\tilde{\lambda}_{ij} + \tilde{\lambda}_{jk} + \tilde{\lambda}_{ki}) \right) + \sum_{i \in V} \widehat{\Theta}_i u_i$
- $f(x_1, x_2, x_3) = \alpha_1 x_1 + \alpha_2 x_3 + \alpha_3 x_3 + \Pi(\alpha_1) + \Pi(\alpha_2) + \Pi(\alpha_3)$
- ► Ronkin function: free energy of the thermodynamic limit of a dimer model on hexagonal grid [Kenyon-Okounkov-Sheffield '06]

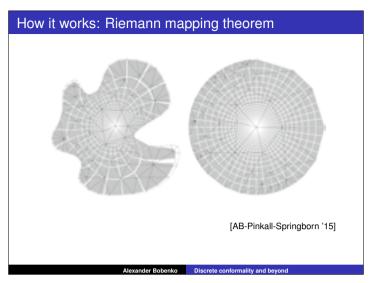
convex

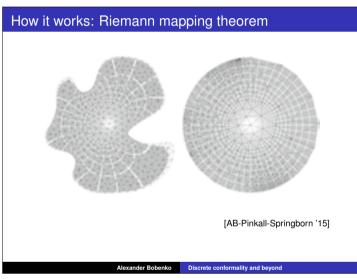
How it works: Riemann mapping theorem

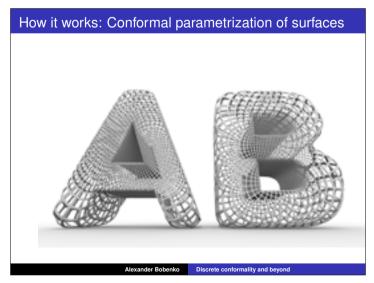




[AB-Pinkall-Springborn '15]







Discrete conformal KPM tea pot

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

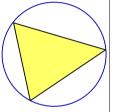
Discrete conformal KPM tea pot

Discrete conformal KPM tea pot

Induced hyperbolic metric

Origin: Hyperbolic geometry interpretation [AB, Pinkall, Springborn '15]

- circumcircle induces hyperbolic metric (Klein model)
- ▶ euclidean triangle → ideal hyperbolic triangle
- vertices at infinity (cusps)
- conformally equivalent discrete metrics ⇒ same hyperbolic metric (with cusps)
- ► Definition of conformally equivalent metrics with different triangulations ⇔ same hyperbolic metric



Alexander Bobenko Discrete conformality and beyond

Discrete Uniformization

Theorem. (Gu-Luo-Sun-Wu 2018)

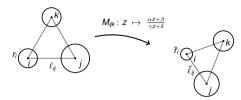
For any piecewise euclidean metric on a surface of genus g with n marked points and for any Θ_i satisfying the Gauss-Bonnet condition

$$\frac{1}{2\pi}\sum\Theta_i=2g-2+n$$

there exists a discretely conformally equivalent metric with the cone angles Θ_i . It is uniquely determined up to scale.

- ▶ **DG** [Gu-Luo-Sun-Wu '18] sequence of Delaunay triangulations.
- ▶ CG [Gillespie-Springborn-Crane '21] effective numerical realization.

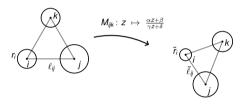
Decorated Discrete Conformal (DCE)



Möbius equivalent decorated triangles

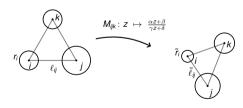
Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)



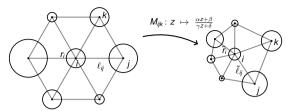
- Möbius equivalent decorated triangles
- ▶ Inversive distance invariant $I_{ik} = \frac{\ell_{ik}^2 r_i^2 r_k^2}{2r_i r_k}$
- two decorated triangles are Möbius equivalent iff the inversive distances of their sides coincide

Decorated Discrete Conformal (DCE)



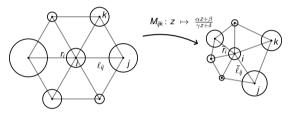
- Möbius equivalent decorated triangles
- Inversive distance invariant I_{ik} = <sup>ℓ²_{ik} ℓ²_{j-ℓk} / 2ℓ_jℓ_k
 two decorated triangles are Möbius equivalent iff the
 </sup>
- inversive distances of their sides coincide

Decorated Discrete Conformal (DCE)



- ► Möbius equivalent decorated triangles
- $$\begin{split} \tilde{r}_i &= e^{u_i} \, r_i \\ \tilde{\ell}_{ij}^2 &= \left(e^{2u_i} e^{(u_i + u_j)} \right) r_i^2 + e^{(u_i + u_j)} \, \ell_{ij}^2 + \left(e^{2u_j} e^{(u_i + u_j)} \right) r_j^2 \end{split}$$
- discretely conformally equivalent triangulated decorated PE-surfaces (same combinatorics)

Discrete Conformal as Special Case

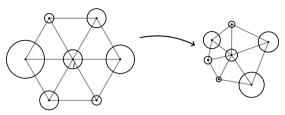


- any two triangles are Möbius equivalent, no inversive distance for r = 0
- ▶ infinitesimal circles $r_i \rightarrow 0$
- $\qquad \qquad \tilde{\ell}_{ij} = \mathrm{e}^{(u_i + u_j)/2} \, \ell_{ij}$

Decorated Discrete Conformal Maps

- ▶ Discrete conformal maps of inversive distance circle patterns [Bowers-Stephenson '04]. Existence and uniqueness?
- ► Numerical computations [Bowers-Hurdal '03]
- ▶ Unified discrete Ricci flow [Zhang et al. '14]
- ▶ Discrete conformal structures via duality structures [Glickenstein '11]
- ▶ Decorated discrete conformal maps [AB-Lutz '23]. Variable combinatorics. Existence and uniqueness theorems

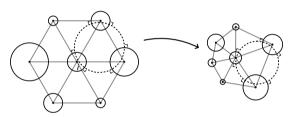
Decorated Discrete Conformal Mapping Problem



- Given:
 - a triangulation \mathcal{T} of the surface \mathcal{S}_a ,
 - a decorated PE-metric (ℓ, r) ,
 - and a desired angel sums Θ_i.
- Find: u_i such that the DCE-changed metric w.r.t. u_i has angle sums Θ_i .

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal Mapping Problem



Varying Combinatorics

- Consider PE-metrics $(\mathcal{T}, \ell) \leftrightarrow \operatorname{dist}_{\mathcal{S}_q}$
- · if circles non-intersecting, there exist weighted Delaunay triangulations (wDt), empty disc property
- · sequences of wDts
- non-decorated [Gu-Luo-Sun-Wu '18, Springborn '19]

Alexander Bobenko Discrete conformality and beyond

Uniformization theorem (AB, Lutz 2023)

Theorem

Given a hyperideally decorated PE-metric (dist S_a , r) on the closed marked genus g surface (S_g, V) . Then

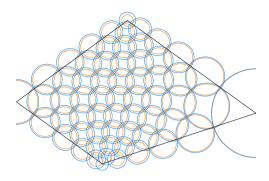
• (existence) a decorated PE-metric DCE to (dist S_a , r) realizing $\Theta \in \mathbb{R}^{V}_{>0}$ exists iff Θ satisfies the Gauß–Bonnet condition

$$\frac{1}{2\pi}\sum\Theta_i = 2g-2 + |V|.$$

- (uniqueness) there exists at most one decorated PE-metric DCE to (dist S_a , r) realizing $\Theta \in \mathbb{R}^{V}_{>0}$, up to scale.
- (variational principle) $u \in \mathbb{R}^V$ giving the change of metric minimizes the discrete convex Hilbert-Einstein functional (volume of a hyperideal hyperbolic tetrahedron).

The uniformization theorem by [Gu-Luo-Sun-Wu '18] is r = 0.

II. Orthogonal ring patterns



Joint with Tim Hoffmann, Nina Smeenk

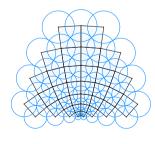
Orthogonal circle patterns



- Orthogonal circle patterns as discrete complex analysis [Schramm '97]
- Convergence to conformal maps
- Integrable equations

$$|f_X| = |f_Y|, \quad f_X \perp f_Y.$$

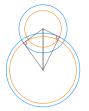
Orthogonal circle patterns

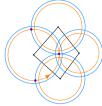


- Orthogonal circle patterns as discrete complex analysis [Schramm '97]
- Convergence to conformal maps
- Integrable equations

 $|f_X| = |f_Y|, \quad f_X \perp f_Y.$

Orthogonally intersecting rings





- ▶ A ring is a pair of concentric circles C_i , c_i of radii: r_i and R_i
- ▶ The outer circle C_i intersects the inner circle c_i orthogonally
- Orthogonal rings have the same area

Alexander Bobenko Discrete conformality and beyond

Orthogonal ring patterns in a sphere [AB '24]

- $ightharpoonup q = \frac{\cos R}{\cos r}$ is global invariant
- ightharpoonup circle pattern limit $q \rightarrow 1$
- ▶ parametrization in elliptic functions of modulus $q \le 1$, $\sin r = \operatorname{cn}(\rho, q), \ \sin R = \operatorname{dn}(\rho, q)$

Alexander Bobenko Discrete conformality and beyond

Q4 integrable equation

$$\begin{split} &\frac{\sin\frac{1}{2}(\rho+\rho_1+iK')}{\sin\frac{1}{2}(\rho-\rho_1+iK')}\frac{\sin\frac{1}{2}(\rho+\rho_2+iK')}{\sin\frac{1}{2}(\rho-\rho_2+iK')}\times\\ &\frac{\sin\frac{1}{2}(\rho+\rho_3+iK')}{\sin\frac{1}{2}(\rho-\rho_3+iK')}\frac{\sin\frac{1}{2}(\rho+\rho_4+iK')}{\sin\frac{1}{2}(\rho-\rho_4+iK')} = 1. \end{split}$$

- ► Radii of spherical (hyperbolic) orthogonal ring patterns
- ► Master integrable equation in the ABS-classification ['09]
- $ightharpoonup \Delta u \pm \sinh u = 0$ in the smooth limit
- Variational principle [AB '24]. Elliptic generalization of dilogarithms, hyperbolic volumes?

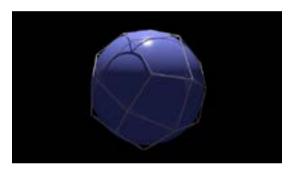
Koebe polyhedra and orthogonal circle patterns

- ▶ Orthogonal circle pattern

 Koebe polyheder
- Circumscribed polyhedron with touching edges

[Koebe, Andreev, Thurston,...]

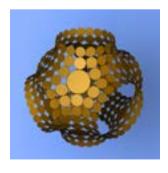
Koebe polyhedra and minimal surfaces



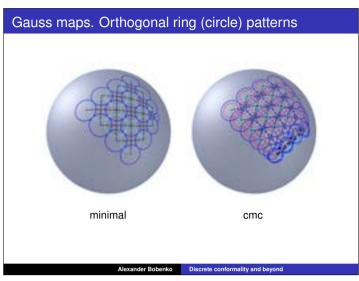
- ► Koebe polyhedron as Gauss map of minimal surface [AB-Hoffmann-Springborn, Annals '06]
- Animation film [AB-Newjoto-Techter '18]

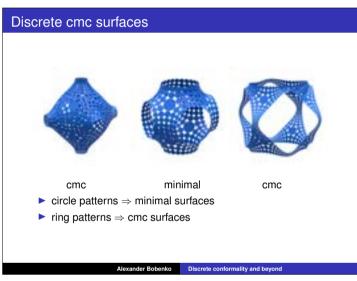
Alexander Bobenko Discrete conformality and beyond

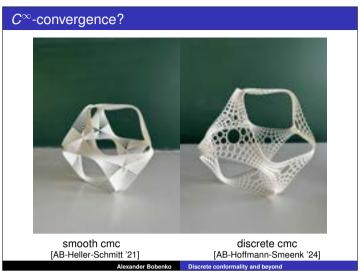
Koebe polyhedra and minimal surfaces

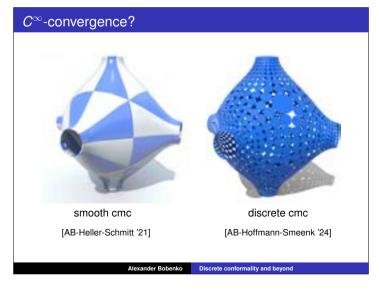


- Koebe polyhedron as Gauss map of minimal surface [AB-Hoffmann-Springborn, Annals '06]
- Animation film [AB-Newjoto-Techter '18]









Papers

- ► AB, Lutz, Decorated discrete conformal maps and convex polyhedral cusps, IMRN 2024:12 (2024)
- ► AB, Lutz, Decorated discrete conformal equivalence in non-Euclidean geometries, DCG (2025)
- ▶ AB, Hoffmann, Rörig, Orthogonal ring patterns in the plane, Geom. Dedicata (2023)
- ▶ AB, Spherical and hyperbolic orthogonal ring patterns: Integrability and variational principles (2024) arXiv:2409.06573
- AB, Hoffmann, Smeenk, Constant mean curvature surfaces from ring patterns: Geometry from combinatorics (2024) arXiv:2410.08915
- ► AB, Heller, Schmitt, Constant mean curvature surfaces based on fundamental quadrilaterals, MPAG (2021)

Interactive Design and Efficient Simulation of Developable Surfaces with Curved Folds

Jun Mitani University of Tsukuba, Japan

Abstract

Developable surfaces with curved folds are widely used in engineering, architecture, digital fabrication, and computational design. However, their strict geometric constraints make both modeling and simulation nontrivial tasks. This talk introduces two complementary research approaches that address these challenges by focusing on interactive 3D modeling and efficient crease pattern-based simulation.

The first approach, proposed by Mitani and Ohashi [1], presents an interactive 3D modeling framework that enables users to directly manipulate curved fold structures in three-dimensional space. This method introduces a novel user interface based on a *handle curve*, which serves as an auxiliary control element for shaping the developable surface. By specifying both a crease curve (the curved fold) and a handle curve, users can intuitively deform the surface while ensuring developability and avoiding ruling collisions. This technique provides direct control over the 3D shape, making it particularly useful for interactive design applications in CAD modeling and digital fabrication.

In contrast, the second approach, developed by Sasaki and Mitani [2], focuses on efficiently generating 3D folded structures from 2D crease patterns. Instead of direct 3D manipulation, this method takes a given crease pattern, approximates curved folds using polylines, and applies a ruling-aware triangulation to construct a 3D model that accurately simulates the folded state. Implemented in a web-based Origami Simulator [3], this approach enables fast and computationally efficient simulation, making it ideal for applications where the input is a crease pattern rather than a predefined 3D model. The method allows for quick evaluation of different folding scenarios and helps designers explore complex curved fold structures without manual 3D adjustments.

By integrating these two methods—interactive modeling and efficient simulation—we provide a powerful framework for designing and analyzing developable surfaces with curved folds. This talk will discuss the theoretical foundations, algorithmic implementations, and potential applications of these techniques in digital fabrication, CAD modeling, and origami design.

References

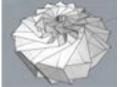
- [1] Jun Mitani, Kaoru Ohashi, "Interactive Curved Fold Modeling using a Handle Curve", Computer-Aided Design and Applications, **20(2)** (2022) 275–289, https://doi: 10.14733/cadaps.2023.275-289.
- [2] Kosuke Sasaki, Jun Mitani, "Simple implementation and low computational cost simulation of curved folds based on ruling-aware triangulation", Computers & Graphics, **102** (2021) 213–219, https://doi:10.1016/j.cag.2021.09.012.
- [3] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, "Fast interactive origami simulation using gpu computation", Origami 7 (2018) 1151–66.

Interactive Design and Efficient Simulation of Developable Surfaces with Curved Folds

Jun Mitani University of Tsukuba, JAPAN

Today's talk

- Provide topics related to shape modeling of origami.
- The main focus is on introducing several origami design applications that we have developed so far.
- There will be no novel points in view of mathematics (sorry), but focusing on interactive design approach for origami shapes.



Geometry of ruled surfaces

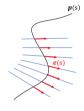
The trajectory traced by the continuous movement of a straight element (ruling).

$$X(s,t) = p(s) + t \cdot e(s)$$

p(s): A curve that represents the movement of a straight line.

 $\boldsymbol{e}(s)$: A unit vector representing the direction of a straight line.

s: arc length



Ex: Hyperbolic Paraboloid

X(s,t) = p(s) + t(q(s) - p(s))p(s) and q(s) are two skew lines.

Developable surface

 $\mathbf{X}(s,t) = \boxed{\mathbf{p}(s)} + t \cdot \boxed{\frac{\mathbf{p}''(s) \times \mathbf{p}'''(s)}{|\mathbf{p}''(s)|^2}}$ geodesic on a surface direction of rulings

p": principal normal direction

Another expression $r(s) = \tau T + \kappa B$

 $\tau :$ torsion, $\kappa :$ curvature, T : unit tangent vector, B : unit binormal vector

$$X(s,t) = p(s) + t(p''(s) \times p'''(s))$$

Geometry of Curved Folds

- (1) $\kappa_{2D}(s) = \kappa(s) \cos \alpha(s)$
- (2) $\cot \beta_L(s) = \frac{\alpha(s)' \tau(s)}{\kappa(s) \sin \alpha(s)}$
- (3) $\cot \beta_R(s) = \frac{-\alpha(s)' \tau(s)}{\kappa(s) \sin \alpha(s)}$

[lacili 20

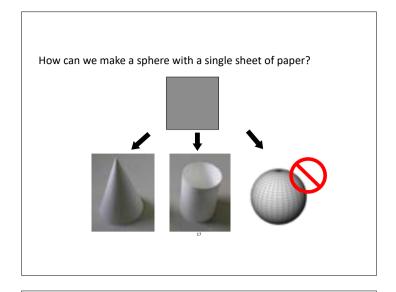
- (a) 3D crease curve (defined by $\kappa(s)$ and $\tau(s)$) (b) 2D crease curve (defined by $\kappa_{2D}(s)$)
- (c) Fold angle ($\alpha(s)$)

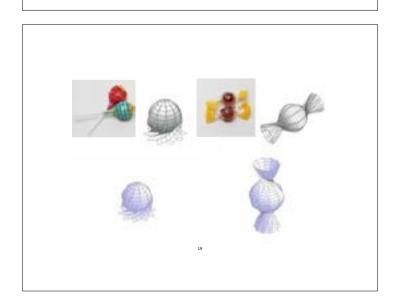
Two of above parameters (a),(b),and(c) define the other one.

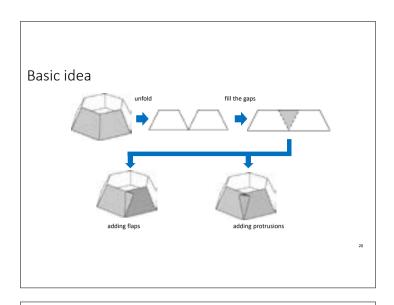
Even though the mathematics of curve fold geometry is revealed, we still do not know how to design *attractive* curved origami.

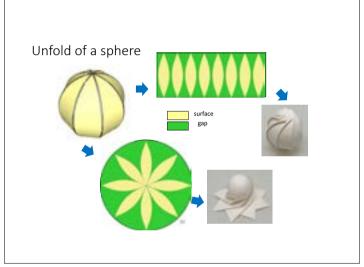
Following Topics

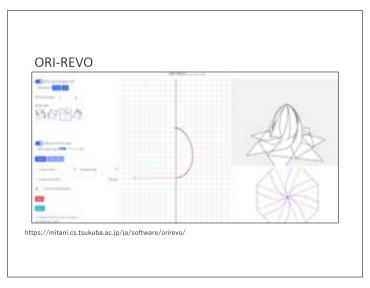
- 1. Three design tools we developed before
- 2. Curved folds on Origami Simulator
- 3. Design interface for a space curved fold

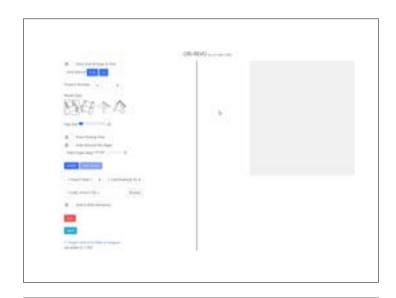


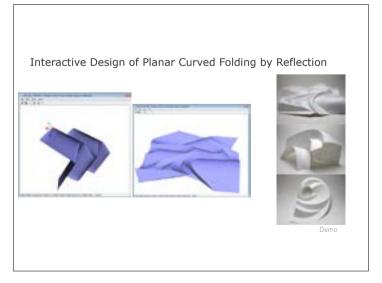


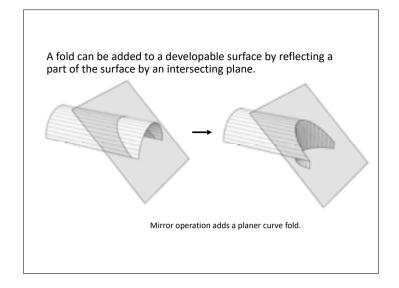


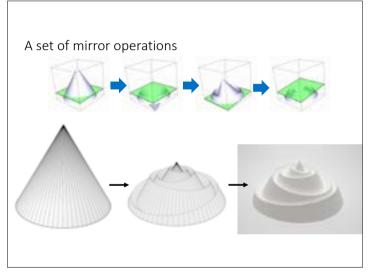


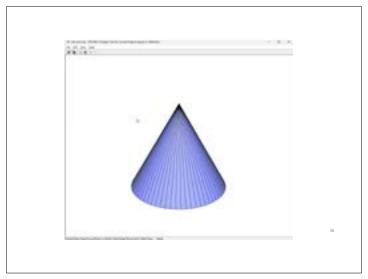


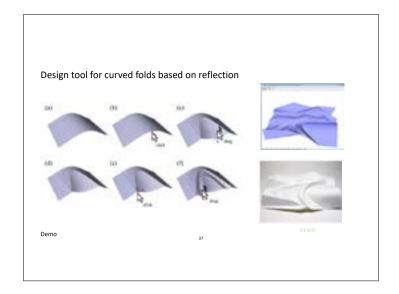


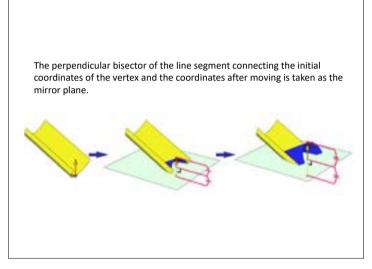


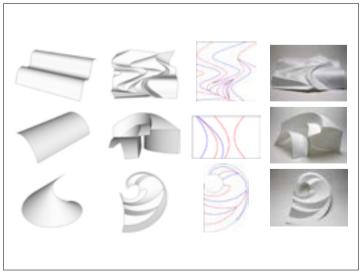


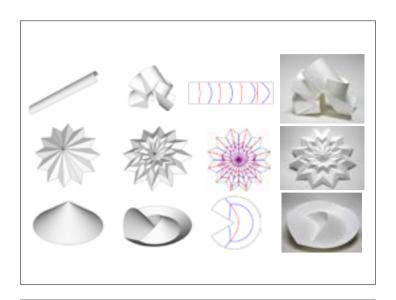








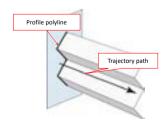




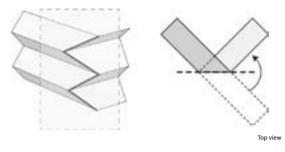
Column-shaped Origami Design Based on Mirror Reflections

Making a cylindrical surface by a sweep operation

- Elements deciding the shape
 - Profile polyline: lying on a vertical plane
 - Trajectory path: perpendicular to the vertical plane

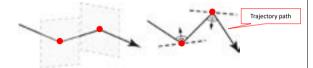


Add a fold by a reflection



Reflection planes are placed according to the Trajectory path

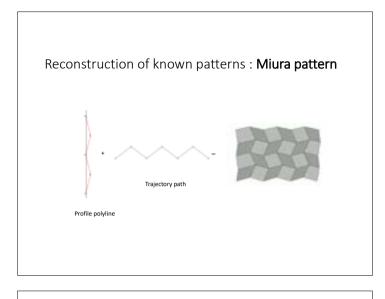
- A reflection plane is positioned so that each corner of the polyline lies on it.
- Then the reflection plane is orientated so that its normal vector coincides with the bisector of the corner angle.

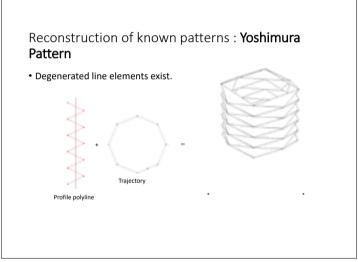


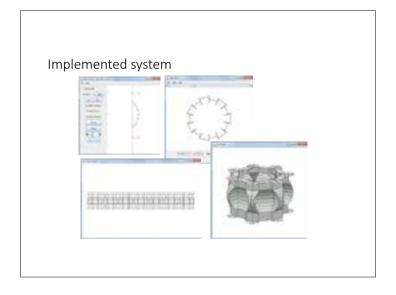
Trajectory path looks like a bounce trajectory of light rays by reflection planes.

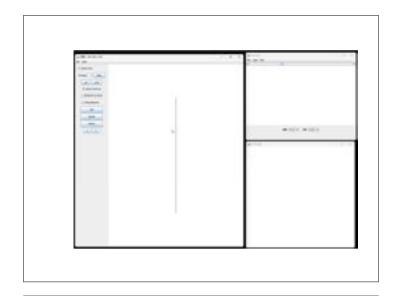
The profile polyline and the trajectory path defines the shape

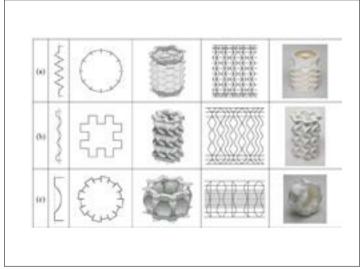
The Trajectory path represents the final shape as seen from above

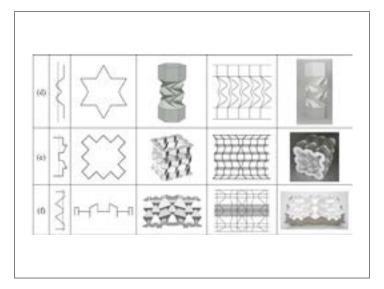


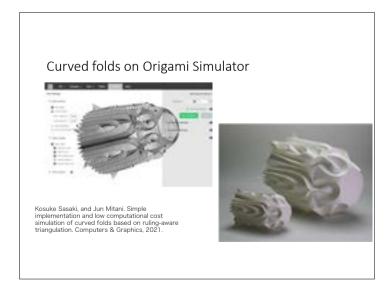


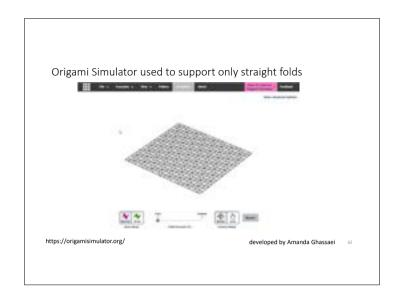


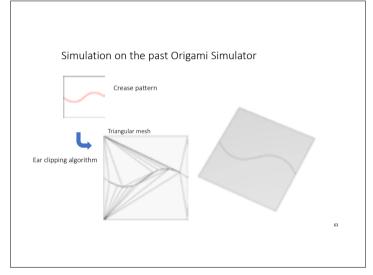


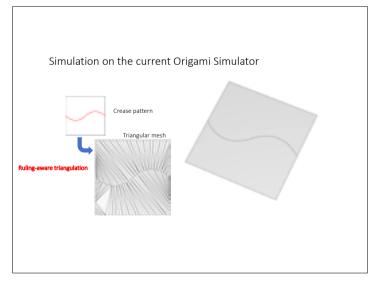




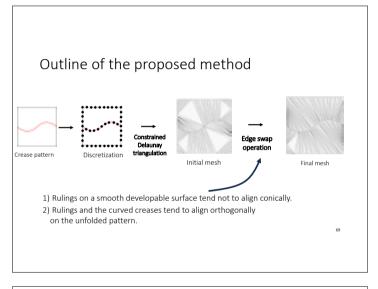


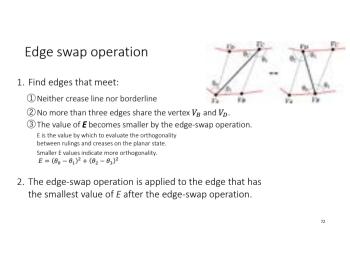


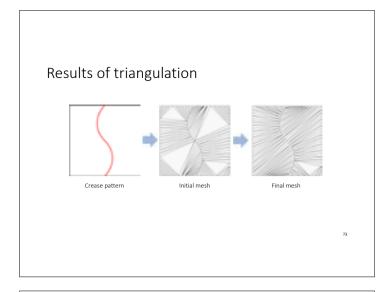


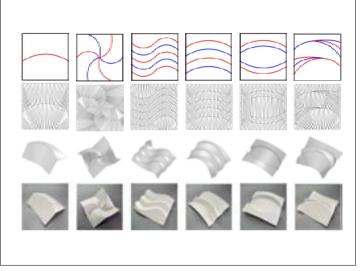


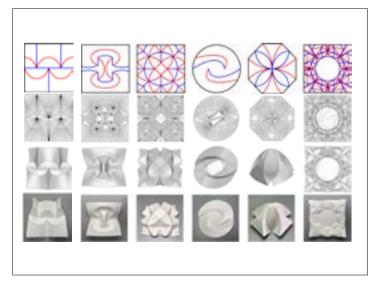
Better triangular mesh for curved folds Developable surface and its rulings Folded paper Without rulings With rulings

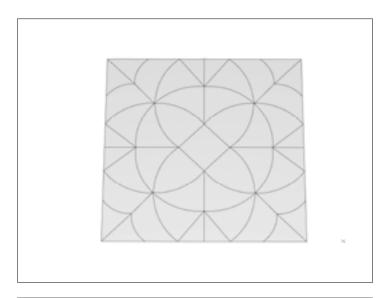


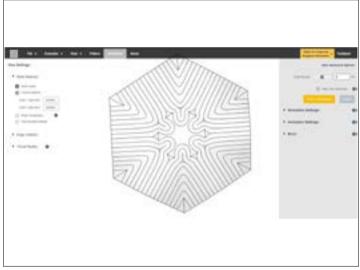


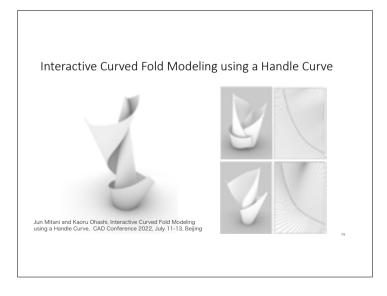












Target shape

Developable surfaces with a single curved fold (not limited a planer curved fold but a space curved fold is allowed)

This shape is also made with a single crease curve

Q: How can we create this 3D model on a CAD/CG software?

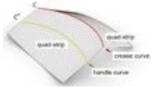
Proposed method

Input: (1) Crease curve

(2) Handle curve \leftarrow a copy of the crease curve

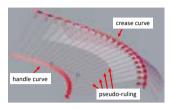
Edit: Handle curve

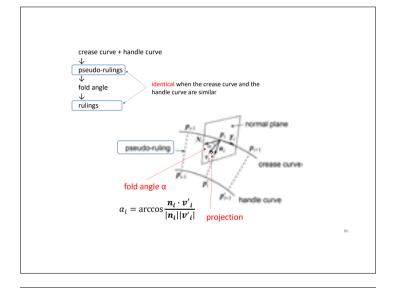
Output: Curved surface such that the handle curve <u>almost</u> rides on it with the specified crease curve.



pseudo-ruling

Lines connect the points on the crease curve and the handle curve.





Shape and orientation of the handle curve

$$C' = sC + t$$

$$s = 1$$

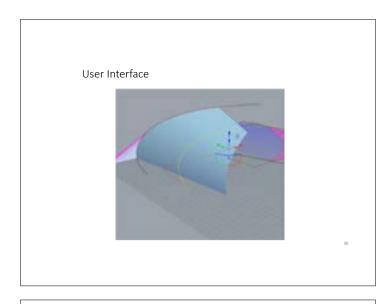
$$congruent$$

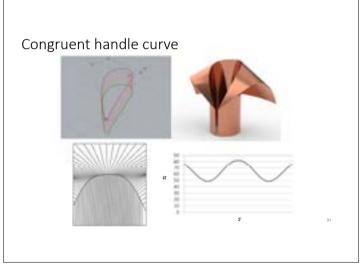
$$\Rightarrow cylindrical surface$$

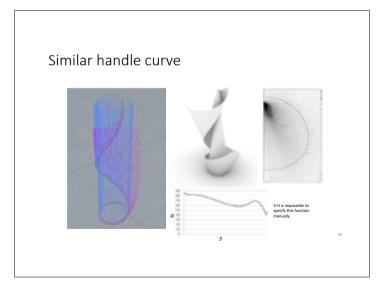
$$s \neq 1$$

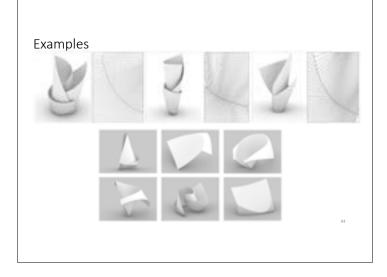
$$similar$$

$$\Rightarrow conical surface$$



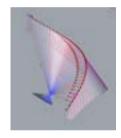






Summery

- The geometry of curve folding has become quite clear in mathematics.
- A user interface is crucial for designing artistic shapes.
- We developed several design tools for curved folds, and created various shapes.



Future Work

- Many artworks are made by the minute expansion and contraction at the folds to achieve expressive shapes
- A shape modeling tool that allows for minute distortion in folds is desirable
- Research and development using heat-deforming materials that take into account manufacturing processes such as self-folding is desirable

Jun MITANI University of Tsukuba, JAPAN http://mitani.cs.tsukuba.ac.jp/

Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi University of Tsukuba, Japan Jun Mitani University of Tsukuba, Japan

Abstract

In recent years, industries such as manufacturing and architecture have increasingly adopted CAD software for shape modeling and product design. This shift minimizes the cost and effort associated with physical prototyping. Despite advancements, designing developable surfaces while maintaining intuitive and precise interfaces remains a challenge. Developable surfaces, characterized by zero Gaussian curvature, are created by twisting or bending unstretchable sheet materials. They are represented through a trajectory of straight line elements called rulings. One remarkable technique is "Non-Crease", which generates complex curvature without traditional folds by creating indentations called breaks, which are degenerated creases with zero length. By enabling the computational design of Non-Crease surfaces, it is expected to facilitate the digital archiving, analysis, and creation of art pieces.

This research aims to support the design of developable surfaces with a break by proposing an interface that integrates Gauss sphere-based trace diagrams[1]. These diagrams map the behavior of surface normal vectors onto the Gauss sphere, aiding in the visualization of curvature distribution around vertices. A key property of trace diagrams on the Gauss sphere for developable surfaces is that the areas enclosed by the traces sum to zero. By editing these diagrams, users can intuitively create and modify developable surfaces with breaks.

The methodology involves starting with a predefined template for developable surfaces with a break. The trace diagram corresponding to this template is visualized and editable. Users adjust trace lengths and angles to create their desired shapes, with the system performing optimizations to ensure the areas enclosed by traces on the Gauss sphere sum to zero, a key constraint of developable surfaces. Trace intersections and the enclosed areas are calculated in real-time to guide this process. Post-editing, the interface generates a crease pattern. Finaly, crease pattern is validated 3D shape and physical realization, supported by Origami Simulator[2].

Results show that this interface enables effective control over the ruling angles and the creation of various developable surface shapes. Optimizations minimize area discrepancies in trace diagrams, enhancing the accuracy of the resultant designs.

Future work will address extending the system to handle shapes with multiple convex and concave regions, improving usability, and reducing optimization errors. This study highlights the potential of trace diagrambased modeling as a powerful tool for designing intricate and mathematically accurate developable surfaces.

References

- [1] David Huffman, "Curvature and Creases: A Primer on Paper", IEEE Trans. on Computer, Vol. C-25, No. 10, pp. 1010–1019, 1976.
- [2] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, "Fast, Interactive Origami Simulation using GPU computation", Origami, Vol. 7, pp. 1151–1166, 2018.

Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi Jun Mitani University of Tsukuba, JAPAN

Background

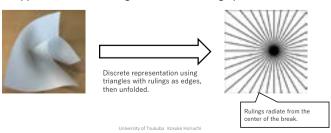
- Shape modeling products such as CAD have become widespread.
- This research proposes an interface to support the design of developable surface modeling.
- A developable surface is a type of curved surface created by twisting and bending a single, inextensible sheet of material.
- It is represented by the trajectory of straight-line elements called "rulings."

2025/3/1

University of Tsukuba Kosuke Horiuchi

Background

- Non-Crease: A technique that enables the complex curvature of paper by creating indentations called "breaks", which are degenerated creases with zero length instead of folds.
- Expected applications in archiving artworks and design production.



2025/3/11

Background

- However, existing CAD software makes it difficult to intuitively design surfaces while maintaining developable surface constraints.
- "Non-Crease" shapes are created using trace diagrams on the Gaussian sphere [1].
- These diagrams help understand the curvature distribution and shape around a single vertex.
- The method is well-suited for "Non-Crease" design, where surfaces curve around a break.

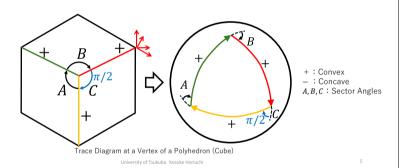
2025/3/11

University of Tsukuba Kosuke Horiuchi

[1] David. Huffman, ``Curvature and Creases: A Primer on Paper", IEEE Trans. on Computer, Vol. C-25, No. 10, pp. 1010-1019, 1976.

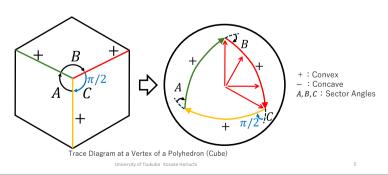
Trace Diagram on the Gaussian Sphere

 A mapping of how surface normal vectors change in space, projected onto a unitradius Gaussian sphere.



Trace Diagram on the Gaussian Sphere

 A mapping of how surface normal vectors change in space, projected onto a unitradius Gaussian sphere.



2025/3/11

Trace Diagram on the Gaussian Sphere

- The area enclosed by a trace represents Gaussian curvature, clockwise is positive, counterclockwise: negative
- At any point on a developable surface, Gaussian curvature is 0, and the sum of sector angles is 2π .

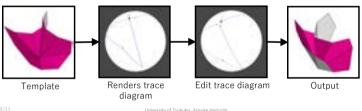


Trace Diagrams at a Vertex of a Polyhedron (Cube) and a Developable Surface Vertex

University of Tsukuba Kosuke Horiuchi

Overview of the Interface and Modeling Process

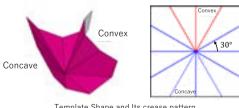
- 1. The user selects a base shape template.
- 2. The system renders the trace diagram.
- 3. The user edits the trace diagram.
- 4. The system optimizes the trace diagram.
- 5. The final shape is output as a crease pattern.



Trace Diagram Rendering

Other shapes will be considered at the end.

- Prepare the template trace diagram.
- The developable surface used has one convex and one concave part.
- Crease pattern consists of 12 rulings.
- Sector angles (angles between rulings) are all 360/12 = 30°.



Template Shape and Its crease pattern

University of Tsukuba Kosuke Horiuchi

Trace Diagram Rendering

1. Compute the normal vectors of each developable surface face.

$$\mathbf{n_i} = \mathbf{p_i} \times \mathbf{p_{i+1}}$$

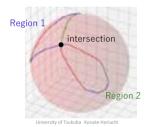
2. Connect vertices corresponding to normal vectors in order.

2025/3/11

iversity of Tsukuha Kosuke Horiuchi

Trace Diagram Region Segmentation

- The trace diagram forms a figure-eight shape.
- Two regions exist, and their areas indicate curvature.
- To compute the area of each region, segmentation is performed.
- Each region is divided by intersection points of traces.



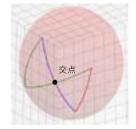
2025/3/1

11

Intersection Determination Procedure

Input: List of vertex coordinates plotting traces in connection order.

- 1. Check for intersections between all trace pairs.
- 2. After finding an intersection, determine whether the point belongs to both traces.



2025/3/11

University of Tsukuba Kosuke Horiuch

Intersection Determination Procedure

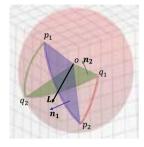
Input: List of vertex coordinates plotting traces in connection order.

- 1. Check for intersections between all trace pairs.
 - Let the endpoints of two traces be p_1,p_2 and q_1,q_2 , respectively.
 - If the two traces intersect, the intersection line of their planes passes through the center of the sphere.
 - The direction vector L of this intersection line is given by the cross product of the normal vectors of the two planes.

$$L = n_1 \times n_2 \quad (n_1 = p_1 \times p_2, \quad n_2 = q_1 \times q_2)$$

• The intersection line L has two intersection points I_1 and I_2 .

$$I_1 = \frac{L}{|L|}, I_2 = -I_1$$



2025/3/11

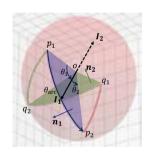
niversity of Tsukuba Kosuke Horiuchi

13

Intersection Determination Procedure

2. After finding an intersection, determine whether the point belongs to both traces.

$$\begin{split} |\theta_{\mathrm{arc}} - (\theta_1 + \theta_2)| &< \epsilon \\ \theta_{arc} = \cos^{-1}(\frac{p_1 \cdot p_2}{\|p_1\|\|p_2\|}) \\ \theta_1 &= \cos^{-1}(\frac{p_1 \cdot I_1}{\|p_1\|\|I_1\|}) \\ \theta_2 &= \cos^{-1}(\frac{p_2 \cdot I_1}{\|p_2\|\|I_1\|}) \end{split}$$



2025/3/11

University of Tsukuba Kosuke Horiuchi

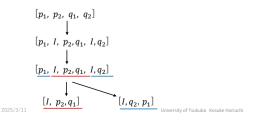
14

Region Segmentation

After computing intersection points, traces are divided into positive and negative regions.

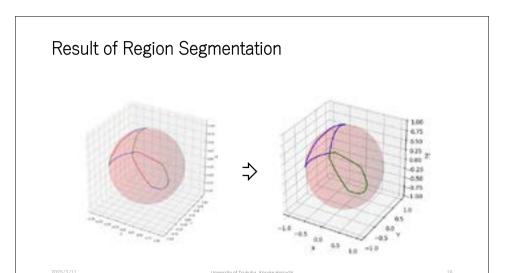
Insert intersection coordinates into the vertex list.

Split the coordinate list into sections based on the intersection points.



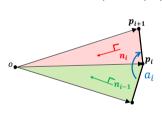
 q_2 p_1 q_1 p_2

15



Trace Diagram Area Calculation

- The enclosed region in a trace diagram forms a spherical polygon, and its area is computed using spherical excess.
- The interior angle a_i of a spherical polygon is obtained from the dot product of adjacent normal vectors n_{i-1} and n_i .
- The area A of a spherical polygon is calculated as:



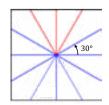
$$A = \sum_{i=1}^{n} \underline{a_i} - (n-2)\pi$$

(n : number of vertices in the spherical polygon)

sity of Tsukuba Kosuke Horiuchi

Result of Trace Diagram Area Calculation

- The areas of the two enclosed regions in a trace diagram should be equal, but discrepancies arise.
- These differences are likely due to surface shape errors and rounding errors in computation.
- Sector angles result in multiples of 30°.



Region 1: 0.5592 Region 2: 0.5953 Area difference: 0.0061

University of Tsukuba Kosuke Horiuc

2025/3/11

Trace Diagram Optimization

• Objective Function

$$\frac{f(\mathbf{v}) = |A_1(\mathbf{v}) - A_2(\mathbf{v})|}{\text{Areas of the two regions}} + \lambda_1 \underbrace{P_{\text{angle}}(\mathbf{v})}_{\text{Penalty for violating angle}} + \lambda_2 \underbrace{P_{\text{examps}}(\mathbf{v})}_{\text{Penalty for vertex movement distance}}$$

• Angle constraint penalty: Enforce angle constraints so that adjacent trace angles belong to $T = \{30, 150, 210, 330^\circ\}$

$$P_{
m angle}({f v}) = \sum_{i=1}^m \min_{t \in T} |\phi_i - t| \quad rac{m}{\epsilon}$$
: Number of Vertices of the Spherical Polygon ϕ_i : Magnitude of the Interior Angles of the Spherical Polygon

2025/3/11

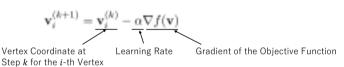
University of Tsukuba Kosuke Horiuchi

Trace Diagram Optimization

Distance constraint penalty:
 To minimize displacement from initial vertex positions, a penalty function is used.

$$P_{
m distance}({f v}) = \sum_{i=1}^m |{f v}_i - {f v}_i^0|^2$$
 m : Number of Vertices of the Spherical Polygon

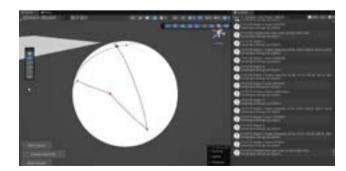
· Vertex positions are updated using gradient descent.



2025/3/1

University of Tsukuba Kosuke Horiuchi

Trace Diagram Optimization



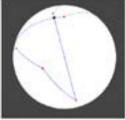
Before Editing

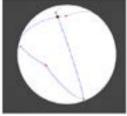
After Editing & Optimization

2025/3/11

University of Tsukuba Kosuke Horiuch

Trace Diagram Optimization





Before Editing

After Editing

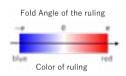
After Optimization

	Before Editing	After Editing	After Optimization
Region 1 [rad]	0.5592	0.7111	0.8172
Region 2 [rad]	0.5953	0.6144	0.8236
Difference [rad]	0.0061	0.0967	0.0064

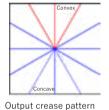
University of Tsukuba Kosuke Horiuch

Controlling Rulings and Development Diagram Output

- Origami Simulator is used to specify fold angles along rulings.
- Mountain folds are red, and valley folds are blue.
- Fold angle magnitude is represented by transparency.



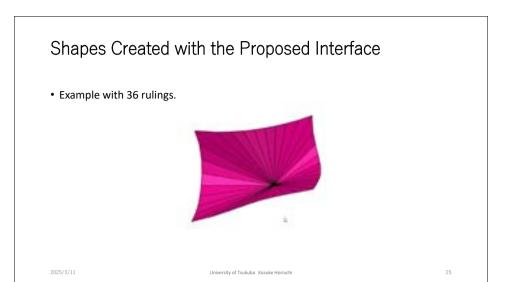
Correspondence Between Ruling Fold Angle and Color

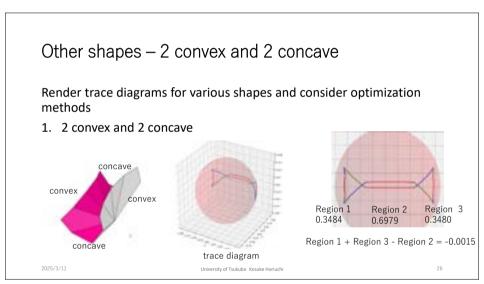


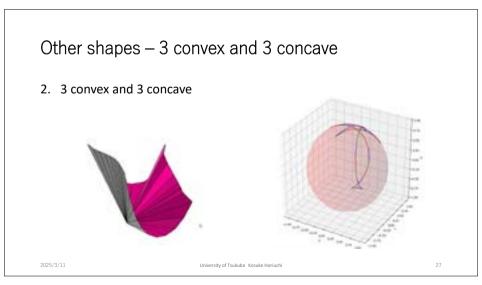
Comparison of Surface Before and After Editing

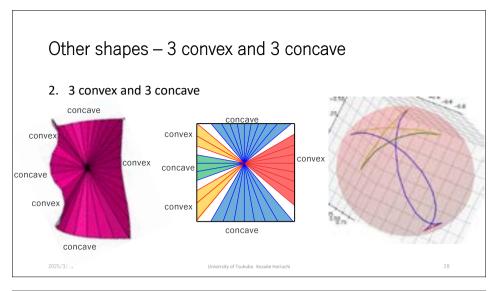
• The development diagram is observed using Origami Simulator.

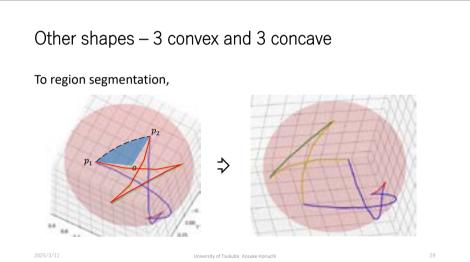
After Editing & Optimization











Summary

- This research proposed a shape modeling method for developable surfaces using trace diagrams.
- Implemented functionalities for rendering, editing, and optimizing trace diagrams.
- Confirmed that ruling control and developable surface creation are possible through trace diagram editing.

2025/3/11

niversity of Tsukuba Kosuke Horiuchi

Future Work

- Further minimize the area difference between trace regions.
- Support for various shapes (currently limited to one convex and one concave part).
- Implement partial shape modification.
- Evaluate and improve usability.

2025/3/11

University of Tsukuba Kosuke Horiuchi

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype Architectural Design

Aida Safary University of Tsukuba, Japan Jun Mitani University of Tsukuba, Japan

Abstract

In this research, we produce digital parametric tools of 3D origami-based architectural elements, enabling the users to modify and manipulate basic geometrical features of these tools to explore and create extended geometric variability options of the mentioned structures. In our first project, we designed a module for the One-Fold project by Patkau architects with specific options for changing the shape parameters to give users the ability to generate various structures of architectural shelters of the same 3D shape. The One-Fold project consists of a rectangular or square plane with a single fold as of its diagonal line, which creates conic curve borders when folded [1]. As our second research project, we developed a digital system for the parametric design of David Huffman's design with ellipses of two-degree two-vertices. In this design tool, we apply parameters for changing the fold angle, the size of the structure, and the rotation of curved lines inside our 3D shape. In this design tool, we applied an approach similar to the additive algorithm method for generating our shape step by step as a quad mesh structure [2, 3]. In our future research project, we intend to compare our digital tools with physical prototypes using 3D scanners, evaluate the Elastica curves of both models and use the RMSE method for surface error analysis.

References

- [1] Aida Safary, Hamid Shafieasl, and Jun Mitani, "Geometric design tool for One-Fold, a curved origami with a single fold", J. Geom. Graph., **28** (2024) 89–101.
- [2] Erik D. Demaine, Martin L. Demaine, and Duks Koschitz, "Reconstructing David Huffman's legacy in curved-crease folding", Origami **5** (2011) 39–52.
- [3] Levi H. Dudte, Gary P. T. Choi, and L. Mahadevan, "An additive algorithm for origami design", Proc. Natl. Acad. Sci., 118 (2021) e2019241118.

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype Architectural Design

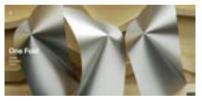
University of Tsukuba 2025.03.11

Aida SAFARY-Mitani Lab

1

Research Background and Objective:

The primary aim of this research is to develop digital parametric tools for 3D origami-inspired
architectural components, allowing users to adjust and customize fundamental geometric
characteristics of these tools to investigate and generate a broader range of geometric variations
for the structures described.



https://www.patkau.ca/projects/one-fold

Demaine, Erik D., Martin L. Demaine, and Duks Koschitz. "Reconstructing David Huffman's legacy in curved-crease folding." *Origami* 5 (2011): 39-52.

2

Table of Contents- Research Projects

- $1\mbox{-}$ Geometric Design Tool for One-Fold, a Curved Origami with a Single Fold.
- 2-Parametrized Folded State shape Modeling of David Huffman's Ellipse.
- 3- Comparison and Calculation of Error Value Between Digital models and Physical Prototypes of Digital Systems.

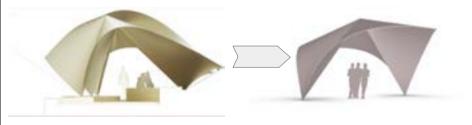
Research Title:

Geometric Design Tool for One-Fold, a Curved Origami with a Single Fold.

4

Main Idea-Objective

To replicate the original pavilion model called one-fold, inspired by Paul Jackson's "One-Crease" artwork, By Patkau Architects, as A digital model.



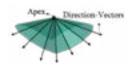
Original Prototype

Our Digital System Render

5

Steps of Methodology

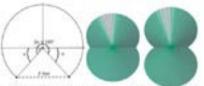
- 1. Creation of Direction-Curve.
- 2. The apex would be the vertex of a cone.
- 3. Creation of Direction Surface.
- 4. Creation of Direction Vectors.
- 5. Creation of Final Surface.



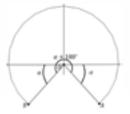
Direction Sectors(Curves)

Consider an arc of a circle with measure of θ where $\theta > 180^\circ$. The condition of being larger than 180° is important to be able to see that in the neighborhood of the fold line there is concavity. Then we change (the amount of α is given by the user) and transfer the sector of the circle such a way that it lies in the set.

$$\{(x, y, z) : x, z \in R \& y \in [0, +\infty)\}$$

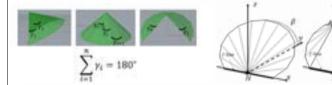


The value of 2α is inversely proportional to the length of the f-line



Finding the apex

After rotation of the circle we should find the apex point in a way that it would connect the sectors of the semicircle structure to the most appropriate point in the zaxis.



Finding the apex point.

3

Diagram of Process-Direction Surface vs Direction Vectors

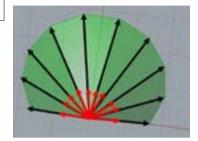
The steps of emerging Direction-Surface can be seen from left to right . The right surface appears upon when the apex is found and the Direction-Vectors are the vectors that overlaps on the indicated line on it.

Direction vectors-Direction Vector Unitization

Direction-Vectors = connecting the apex point with vertices of the Direction-Curve.

Direction-Vectors give direction to the final surface's ruling lines.

Final Surface = Unitize directionvectors to lengths from 2D plane.

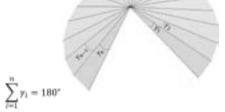


10

Conic Structures

Applying first developability condition.

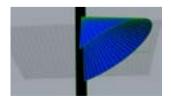


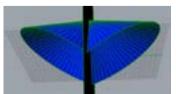


1

Direction-Surface

Reflexing the surface on the other side of the z-axis to create the overall completed Direction-Surface.

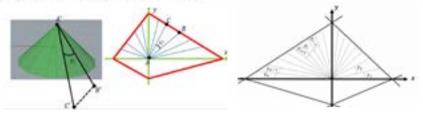




Any Possible Quadrilaterals

Onsider an arbitrary quadrilateral as below and divide half of it via pris The value of angles are obtained from Direction-Surface.

We extend the direction vectors on 3D surface using the length that we obtained from 2D surface, for instance in the following figure AB = A'B', AC = A'C' and two edges and one angle guarantee the congruence of triangles ABC, and A' B' C', as well.



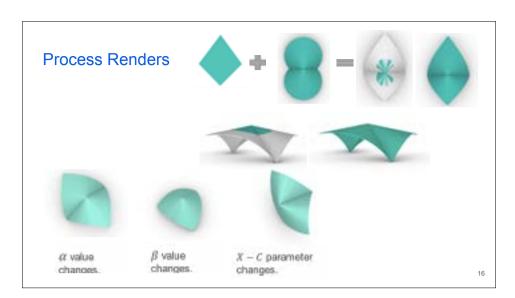
13

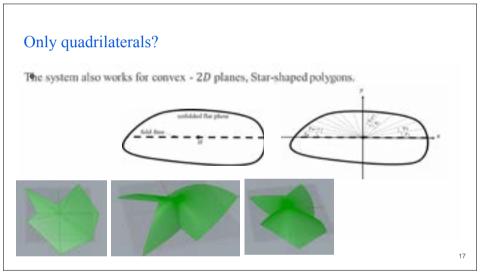
Direction-Surface vs Final Surface

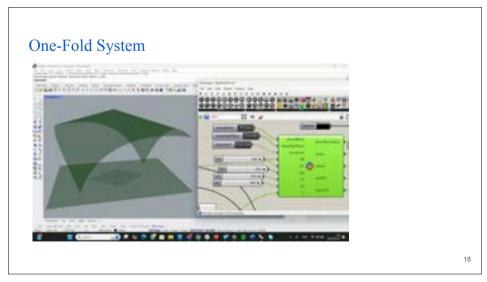
Final surfaces are according to the orientation of Direction-Vectors. Upper surfaces indicate the Direction-Surface and the lower surfaces are final surfaces.

Geometric Features

3 main geometric features define our shape: -α. $-\beta$. -Apex movement. $\beta = 25^{\circ}$ $\beta = 10^{\circ}$ 15







Construction of Physical Model

Base part

Side part

Front Part

9

Construction of Physical Model

Final Level

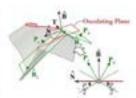
20

Research Title:

Parameterized Folded State Shape Modeling of David Huffman's Ellipse.

Huffman design using ellipses with 2 degree-2 vertices.

Demaine, Erik D., Martin L. Demaine, and Duks Koschitz. "Reconstructing David Huffman's legacy in curved-crease folding." *Origami* 5 (2011): 39-52.



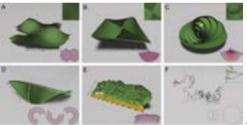
22

We decided to take a different approach.

A new approach called the Additive algorithm method.

Related paper:

Dudte, Levi H., Gary PT Choi, and L. Mahadevan. "An additive algorithm for origami design." *Proceedings of the National Academy of Sciences* 118.21 (2021): e2019241118.



23

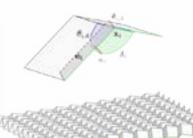
What is the idea of additive algorithm? What are the Steps?

The initial seed and extension of the seed are based on specific defined rules.

Consider our initial seed as the first raw of the crease pattern and x_1 as our initial point.

Parameters of x_i and e_i , $\theta_{i,3}$, $\theta_{i,4}$ are confirmed by default. we give the parameters for flap angle $|x_i|$ and $|\beta_i|$.

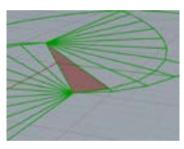
For the next seed creation the flap angle α and β are determined automatically.

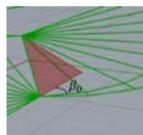


Step 1: Dividing the crease pattern. Dividing crease pattern

25

We select one of the following pieces:



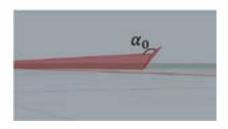


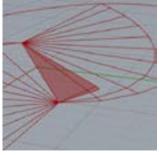
As the first user parameter: β_0 We rotate the selected piece by β_0

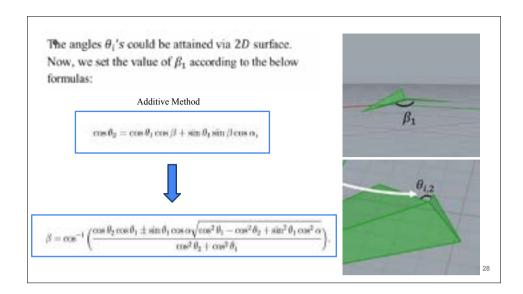
26

Step 3:

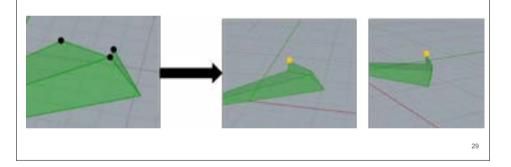
Select the following new piece in second strip and rotate it by (flap angle) α_0 .



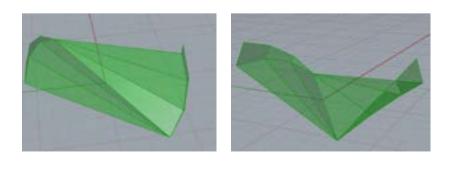




We use the three points shown in the left figure and find the fourth point shown in the right figures according to the corresponding lengths of unfolded surface.



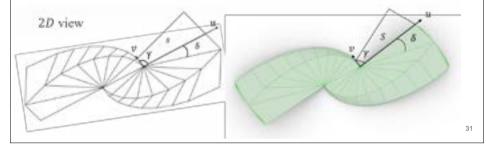
We follow the same process until the end until we get the desired shape.



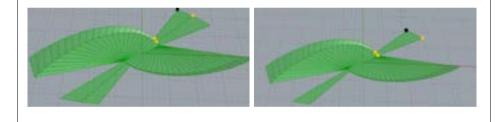
For the outer side of the ellipse.

Pirst, we evaluated the following angles (δ, γ) in the 2D state.

The first 3D line (Vector u) should be positioned in a state that the angles will be preserved in 3D state. Subsequently we rotate our first quad in region S around vector v in such a way that the mentioned angles after folding would be preserved.



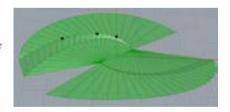
Find the 4th point in the 3D surface(black point) according to 3 points of quadrilateral(yellow points) as before and create the surface.



Repeating the process until the end.

We also evaluated the 360 s condition around the points on left-up and right-down, and the error is zero(see instances in the figure), and it is expected due to the nature of the implemented method.



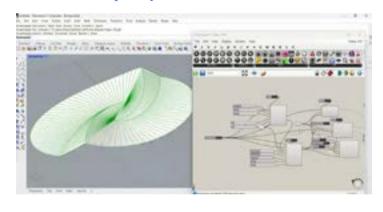


Final renders

The angle condition on each vertice is preserved.

4

Huffman's Ellipse System:



35

Research Title:

Comparison and Calculation of Error Value Between Digital Models and Physical Prototypes of Our Designed Digital Systems .

Types of Prototypes

Different techniques:

- 1-Traditional Physical Models.
- 2-Modern Digital Models (CAD models).
- 3-3D printing.

Archdaily.com

7

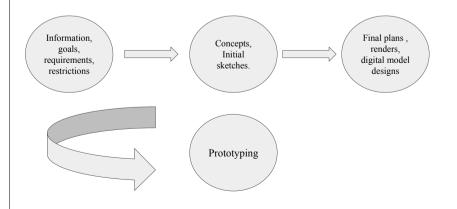
Prototype that we intended to create.

One-Fold: The original project is made of metal sheets but we deal with fabric in our own prototype.

Patkau.ca

38

From concept and sketches to prototyping:



Our example:

Fabric Structure,

Joint finishing master slim cables.

White sheet roll fabric.

40

3D printing and Error Evaluation

1.03D scanning, collecting data points, surface reconstruction.

2- Adjusting the scales of 3D printed digital model with the original digital model.

3-Using Cloud compare software to calculate the error value.

 $\begin{aligned} & \text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} \\ & \text{Where:} \\ & \text{n is the number of observations,} \\ & y_i \text{ is the actual observed value,} \\ & \hat{y}_i \text{ is the predicted value.} \end{aligned}$

Digital Model Scanned Model of Physical Prototype

41

Cloud-compare Evaluation

1-Loading the models, selecting the models, aligning models.

2- Model alignment.

One model should be used as a reference, one model should be an aligned target.

Energy Minimization & Bending energy

Smoothing energy = minimization.

Minimize energy = minimize area.

The goal is to minimize the energy of a membrane, which corresponds to minimizing its surface area. This is mathematically expressed through the integrals shown in the image.

Elastica curves describe the equilibrium shape of thin, flexible rods or plates under bending.

The energy associated with these curves is **bending energy**, given by:

ves is bending
$$\int_{\Omega} ||\mathbf{p}_{n}||^{2} + ||\mathbf{p}_{n}||^{2} \, du dv \longrightarrow \min$$

$$E_{k} = \frac{1}{2} \int K^{2} \, du$$

where K is the curvature, and $d\mathbf{x}$ is the arc length.

43

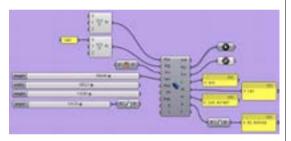
We developed a Related Grasshopper Algorithm

They key to formulas used in this script are elliptical integrals of the first kind, k(m) and the second kind E(m).

K: The modulus (or eccentricity parameter), $0 \le K \le 1$

 θ : Tangent angle of the bending beam.

$$K(k) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

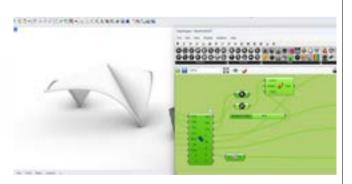


$$E(k) = \int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} d\theta$$

44

We developed a Related Grasshopper Algorithm

X (protype) = 98.99 X (digital) = 98.99



Conclusion and Future Work

- 1-Our project illustrated the efficiency of combining digital and physical prototyping in architectural design.
- 2-Challenges included considering the accuracy of construction or the complexity of the surfaces.
- 3-In the future, certain refinements will be undertaken in our methods and materials to continue the advancement of design and construction..

Hoberman's Scissor Mechanism and Digital fabrication

Higa Miyashiro Pamela University of Tsukuba, Japan Yiyang Jia Japan Women's University, Japan Mitani Jun University of Tsukuba, Japan

Abstract

The Hoberman mechanism, developed by Chuck Hoberman, is renowned for its applications in toys and architecture. The Hoberman Sphere, a collapsible toy, exemplifies the mechanism's versatility through its use of circular elements with scissor-like linkages to expand and contract. These linkages are fundamental to the mechanism's deployment, which is also evident in architectural applications, most notably in the Hoberman Arch, showcased at the 2002 Winter Olympics. This structure, composed of segmented arcs arranged in multiple layers, highlights the scalability and adaptability of the mechanism. Our research on the Hoberman mechanism spans geometric principles, movement profiles, and deployment constraints [1, 2, 3]. In this study, we combine theoretical research, digital modeling, and physical prototyping. Using tools such as Rhinoceros and Grasshopper, we facilitated digital simulations of scissor mechanisms. Additionally, we employed digital fabrication techniques to create physical prototypes. We tested three configurations: an irregular polyline, a regular dodecagon, and a circumscribed irregular dodecagon. These models allowed us to explore how geometry impacts movement and to address the challenges posed by irregular configurations. We focused specifically on the irregular dodecagon model, as its closed and irregular geometry highlights the constraints of the method. By maintaining proportional link lengths and angular relationships, we ensured proper deployment of the mechanism. A physical prototype of the irregular dodecagon was fabricated, and its movement matched the predictions from the simulations. Inspired by the Hoberman Arch, which incorporates multiple layers of Hoberman mechanisms into a discretized semicircle, we added additional layers to the irregular dodecagon model. However, the multi-layered design exhibited resistance and deformation during movement, suggesting the presence of over-constraints in the model. To further investigate, we simulated the movement of the doublelayered irregular dodecagon. The simulation, combined with an in-depth geometric analysis, revealed that multi-layered designs using irregular polygons inherently lead to over-constraints. Overall, our study demonstrates the Hoberman mechanism's adaptability in toys, architecture, and deployable structures. However, we also identified limitations in the shapes that can successfully support multi-layered Hoberman mechanisms, particularly in irregular configurations.

References

- [1] Gomez, Alfonso, "Deployable Domes Based on Angulated Scissors: A Method of Design Based on Geometrical Construction", The International Journal of Designed Objects, 9 (2015) 1.
- [2] Asefi, Maziar, Ebadia, Atefeh, and Ghasemib, Azam, "Geometry feasibility of angulated scissor-like elements in a constant perimeter", (2019).
- [3] Sun, Xuemin, Yao, Yan-An, and Li, Ruiming, "Novel method of constructing generalized Hoberman sphere mechanisms based on deployment axes", Frontiers of Mechanical Engineering, **15** (2020) 89–99.

Hoberman's Scissor mechanism and its fabrication.

CREST ED3GE meeting 2025

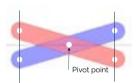
筑波大学

Higa Pamela CGG Mitani Group 2025/03

Scissor Mechanism

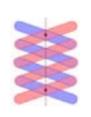
Scissor mechanism unit

- Forms an X shape
- Pair of interconnected rigid links.
- Links joined by a pivot point



Multiple connected units

- Deployable structures
- Controlled transformation
- One degree of freedom



2

Origami and Scissor Mechanism

- Origami and scissor mechanism have similar movement behavior.
- Long term goal is to develop a system for hybrid structure: Scissor mechanism and origami

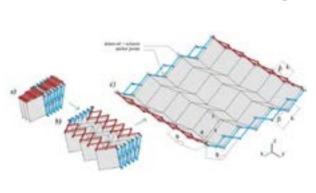
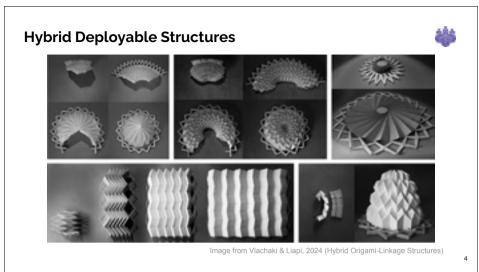
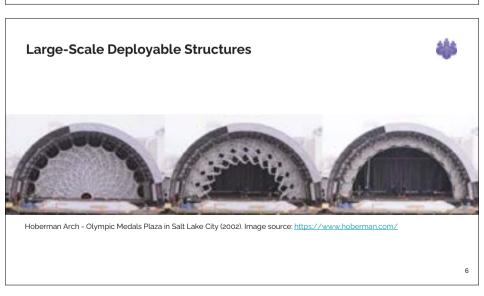


Image from Vlachaki et al., 2021 (Hybrid Deployable Structures)



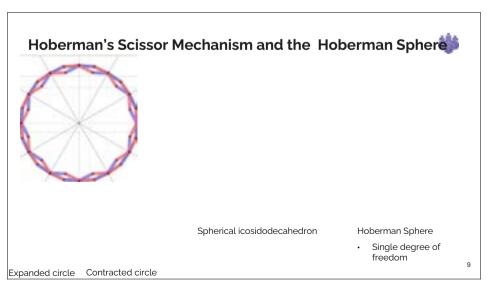


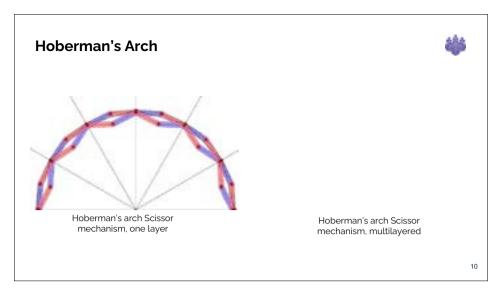
Research Goals

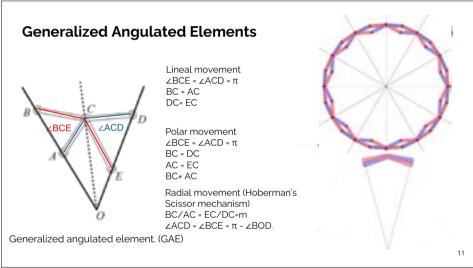
- Study and understand Scissor mechanism, specifically Hoberman's scissor mechanism for close polygons and close polyhedral with radial movement.
- Simulate movement trajectories and analyze constraints.
- Fabricate physical models to compare with simulation

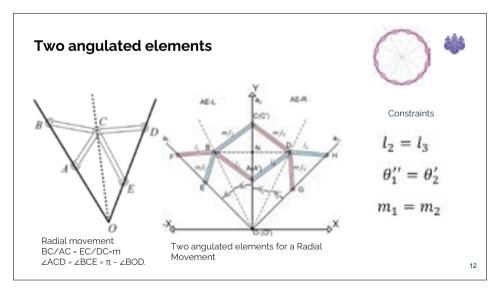
7

• Linear movement • Polar movement • Radial (Hoberman Scissor mechanism)









Pantographic Grasshopper script

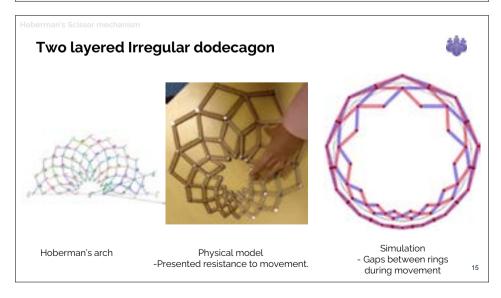
To study the movement of Hoberman Mechanism, we used a modified version of Pantographic script for Rhinoceros- Grasshopper.

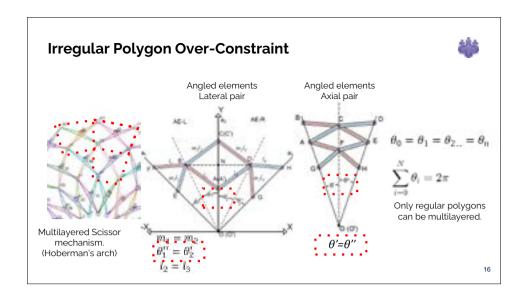
Input: polyline

The script takes the points of the polyline and places them as pivot points, and the midpoints of each polyline segment as the connections between units.

13

Construction irregular dodecagon Geometry construction Movement simulation with trajectory path. Physical model





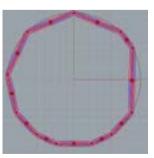
 Gap at the pivot point provides enough flexibility to accommodate the over-constraint.

Physical model

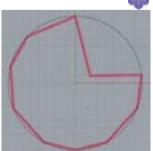
17

Radial movement

 Any pivot point that lies on the circle will move towards the center of the circumcircle



Circumscribed Polygon with Random Tangent Points

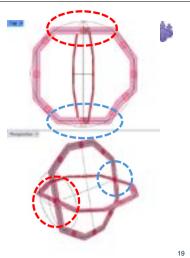


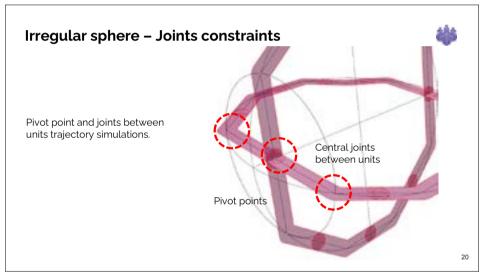
Polygon with all but one vertex on a circle.

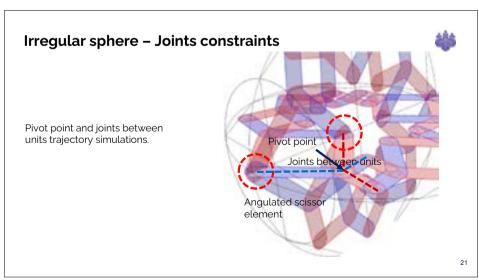
18

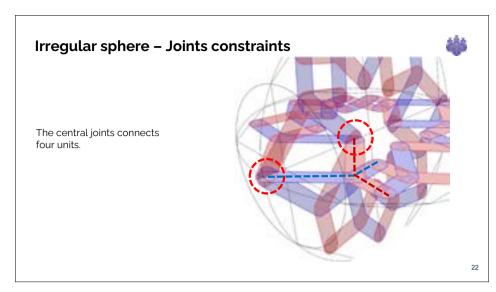
Irregular sphere

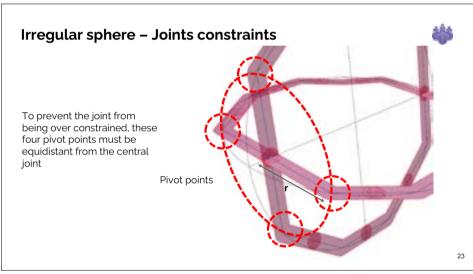
- Exploring Irregularity:
- Applied irregular polygon concepts to create a polyhedral structure with radial movement toward the circumscribed sphere's center.
- Construction Process: Arranged circles of equal radius around a common circumcenter.
- Circumscribed irregular polygons around these circles to form the structure.

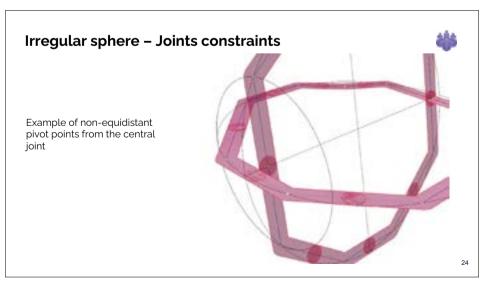






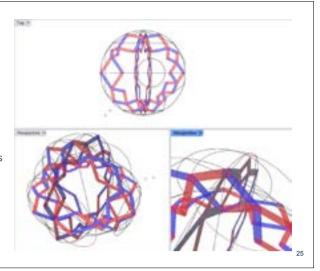




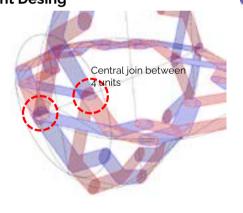


Sphere from irregular polygons for fabrication

- A sphere was designed to show irregularity limits in a Hoberman mechanism.
- The sphere is made of three irregular polygons.
- Two polygons lie on planes that are not perpendicular to each other.
- One polygon has a concave corner.



Sphere Fabrication - Joint Desing



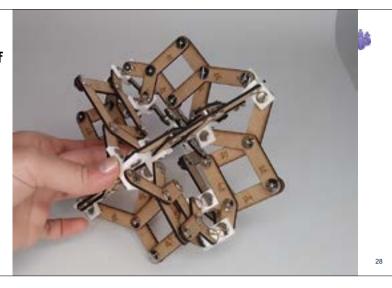
26

Sphere Fabrication - Joint Desing

- The joint adds degrees of freedom to the movement when the joint is considered independently.
- But when the whole system is assembled, the system has 1 degree of freedom.

27

Physical model of regular sphere



Summary

This work is in an early stage of development. This section of the research aimed to understand the degree of irregularity achievable with shapes constructed with Hoberman mechanism.

- Found limitations for the multilayer mechanism.
- · Study the joints constraints for a polyhedral
- · Fabricated irregular polyhedral.

29

Future work

- Study the movement and trajectory path of scissor mechanism that includes lineal, polar and radial movement.
- Apply the method on to wide variety of irregular shapes.
- Wider the possibilities for origami + Scissor mechanism hybrid structures.

30

Surface Rationalization and Optimization in Structural Engineering Practice

Toby Mitchell
Thornton Tomasetti, Chicago, United States

Abstract

In this talk, we examine the nuances and challenges of deploying the techniques of architectural geometry and discrete differential geometry in commercial structural engineering practice. By contrast to the academic context, structural design of surface structures in building practice involves multiple overlapping optimization objectives, many of which are not easily quantifiable, and many of which are not fully clear at the outset of the design process. Instead, the particular mathematical techniques appropriate for a given design problem must be uncovered by engineers working together with architects and other specialists in an iterative design process that integrates structural and construction performance goals with other technical objectives as well as subjective design intent. The author will examine approaches that have proven successful in his work on practical engineering projects, such as

- 1. The use of graphic statics in the design of the flat-paneled negatively-curved grid shell of the Hangzhou Greenland Center (which recently won the CTBUH's Best Tall Building award in the Asian region [1]).
- 2. The use of the Airy stress function in structural design of the flat-paneled quad-dominant grid shell of the Columbus, Ohio John Glenn airport renovation, and the utility of self-Airy shells in incorporating multiple panelization objectives while retaining structural performance [2].
- 3. The use of the static-kinematic duality in the design of rigidly-foldable structural origami such as SOM's MAK pavilion, and in the design of doubly-curved flat-paneled cable nets [3]

In addition to discussing the specific mathematical techniques used in these projects, the author will focus on the practical aspects of deploying architectural geometry and structural form-finding in design practice, such as the need to educate engineers on specialized techniques that are not typically part of their education, the need to solicit buy-in and facilitate authorship of architectural designers, the phasing of project development that necessitates the use of "lightweight" mathematical methods that do not rely on extensive information that will not be available in the early phases of design development, and the need to respond to input from contractors which often comes at the very end of a design process and may necessitate substantial design revisions.

References

- [1] "SOM Wins Seven Awards of Excellence from the Council on Tall Buildings and Urban Habitat", https://www.som.com/news/ctbuh-awards-24/.
- [2] Cameron Millar, Toby Mitchell, Arek Mazurek, Ashpica Chhabra, Alessandro Beghini, Jeanne N. Clelland, Allan McRobie, and William F. Baker, On designing plane-faced funicular gridshells, Int. J. Space Structures, vol. 38, issue 1 (2022), https://doi.org/10.1177/09560599221126656.
- [3] Toby Mitchell, Arek Mazurek, Christian Hartz, Masaaki Miki, and William F. Baker, Structural Applications of the Graphics Statics and Static-Kinematic Dualities: Rigid Origami, Self-Centering Cable Nets, and Linkage Meshes, Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Graphic statics, pp. 1-8(8)

Variable Projection (VarPro) Method and Form-finding of Tension-compression Mixed Shells

Masaaki Miki The University of Tokyo, Japan

Abstract

This presentation reviews recent advances in the form-finding of tension-compression mixed shells. Although purely compressive stress states are traditionally considered ideal for shell structures, we propose that allowing a mix of tension and compression can expand the range of feasible shell geometries. The key challenge lies in the fact that the equilibrium problem becomes a hyperbolic boundary value problem, which is notoriously difficult to solve. We point out that the introduction of the Airy's stress function reveals that the equilibrium equation is a bilinear partial differential equation (PDE). We then indicate that this PDE can be solved using the Variable Projection (VarPro) method—developed specifically for bilinear problems. We also demonstrate that the alignment of stress and curvature directions is governed by a bilinear PDE, which can be solved concurrently with the equilibrium equation using the VarPro method.

SIGGRAPH ASIA 2022

Form-finding of T/C mixed shells using Airy stress function and NURBS

 Reported that the problem can be solved using the Variable Projection (VarPro) method, a Leastsquares and Gauss-Newton based method specifically designed to solve a system of bilinear equations.

SIGGRAPH 2024

Alignment of conjugate stress and curvature nets in a NURBS-based T/C mixed shell form-finding

Reported that the alignment condition can be solved using VarPro as well.

BACKGROUND

SYSTEM

A system is a structure based on a simple and stable geometry, assembled with repeating and easily manufactured components and standardized detailing; it allows to create a variety of shapes.

Left: a skeleton inside the Statue of Liberty, engineered by Gustave Eiffel.

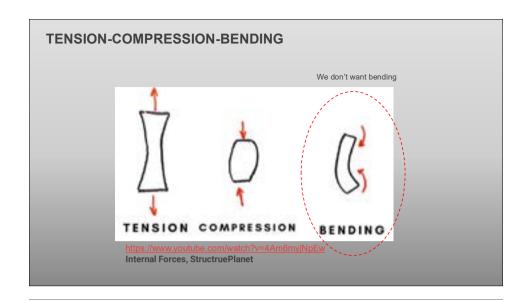
WHAT DO WE SEE VALUE IN

A good system allows us to build arbitrary shapes effectively. If the statue of Liberty is possible, the Stanford Bunny at an architectural scale should also be possible.

However, this is not what "we" do, because "we" don't see any value in it.

uildepedia aha Hadid's Heydar Aliyev Cultural

I THINK THIS IS BEAUTIFUL. IT FOLLOWS THE PRINCIPLES OF MECHANICS, RIGHT?. CAN WE DO THIS? - NO. -



"We" see value in shapes that follow the principles of mechanics.

There are a few existing precedents whose geometry follows the principles of mechanics. However, they are extremely rare because their construction is too expensive. They cost too much because they lack systems easy to construct.

WHAT IS A GOOD DESIGN IN ARCHITECTURE?

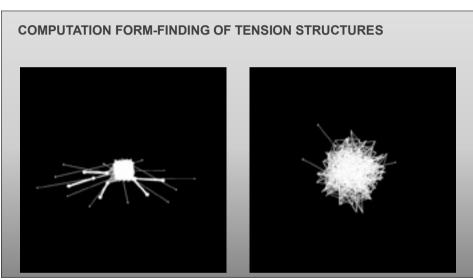
Good architecture should involve both

- 1. a structurally efficient shape, and
- 2. a good system that is easy to construct

For example,

Minimal surface = a structurally efficient shape

Partitioning with geodesic lines = a good system that is easy to construct





CATENARY ARCH (COMPRESSION) The Gateway Arch, Earo Saarinen, St. Louis

H. Isler, Typologie und Technik der modernen Schalen, 198:

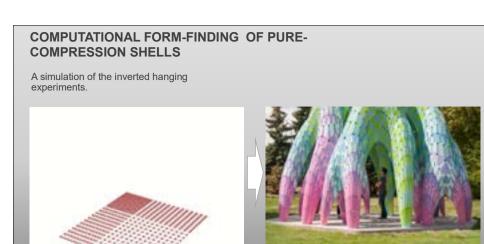
© Chriusha (Хрюша) / СС-ВҮ-SA-3.0

Heinz Isler

FORM-FINDING BY INVERTED HANGING EXPERIMENTS (COMPRESSION)

KK Clark, https://adventures-of-kk.blogspot.com/2012/05/day-8-bike-tour-gaudi.html

Sagrada Familia, Bernard Gagnon, 2009, Licensed under CC BY-SA 3.0 via Wikimedia Commons



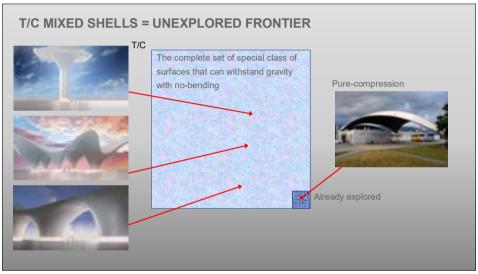
PURE-COMPRESSION DOMES

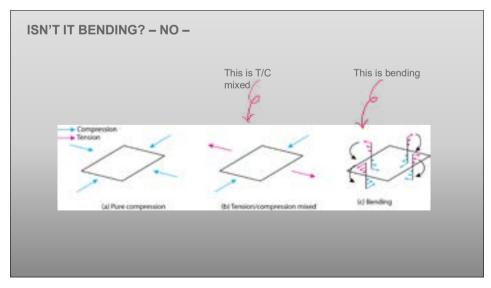
Masterpieces by engineers

© Designboom, MARC FORNES/THEVERYMANY fabricates vaulted willow pavilion in edmonton

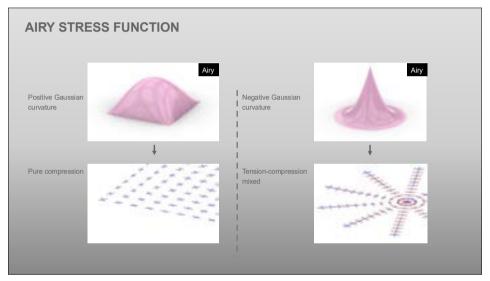
SHELL-LIKE STRUCTURES BY ARCHITECTS

Perhaps they are not pure shells, but they are beautiful.





CORE CONCEPTS IN SHELL FORM-FINDING



(VERTICAL) EQUILIBRIUM EQUATION OF A SHELL $\bar{\phi}(x,y), \text{ Airy stress function} \qquad (\text{given}) \\ \bar{\rho}(x,y), \text{ vertical load} \qquad (\text{given}) \\ z(x,y), \text{ shell} \qquad (\text{unknown to be identified})$ $\frac{\partial^2 \bar{\phi}}{\partial y^2} \frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 \bar{\phi}}{\partial x \partial y} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 \bar{\phi}}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = -\bar{\rho}$

TYPES OF 2ND-ORDER PDES

Elliptic problem

e.g.,
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 1$$

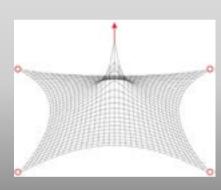
Laplace's equation

Hyperbolic problem

e.g.,
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 1$$

Wave equation

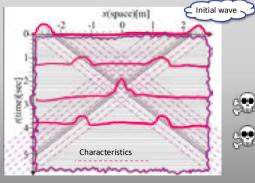
LAPLACE EQUATION



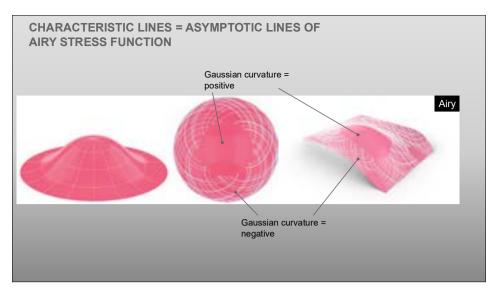
- Typically solved as a boundary value problem.
- A solution is a smooth averaging between the boundary values in general.

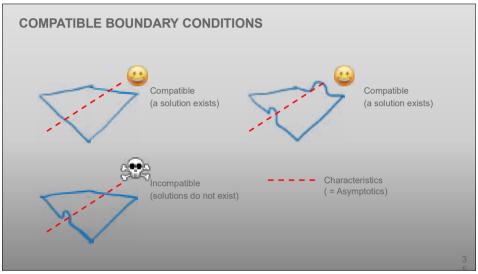
Easy to solve.

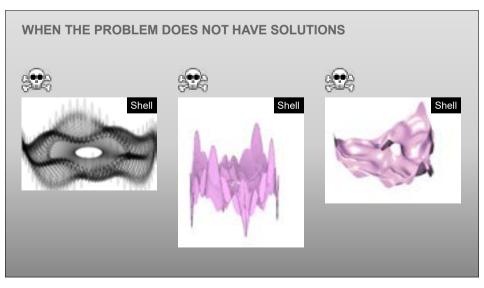
WAVE EQUATION

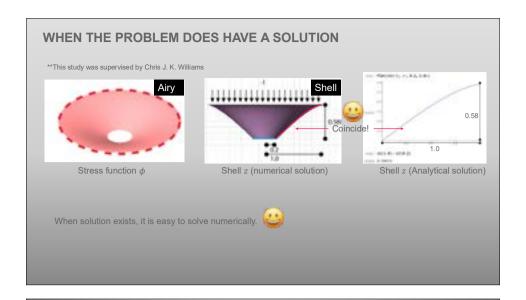


- Typically solved as an initial value problem.
- A solution is a wave propagation over time. In the time-space domain, the waves run along
- characteristic lines (diagonal lines in the left
- Normally solved by incrementing the state of the wave step by step by incrementing the time with a small time step.
- Normally, <u>it is not a good idea to solve it as a boundary value problem</u> because you cannot prescribe the past and future at the same time.
 - Unfortunately, a T/C mixed form-finding is a hyperbolic boundary value problem

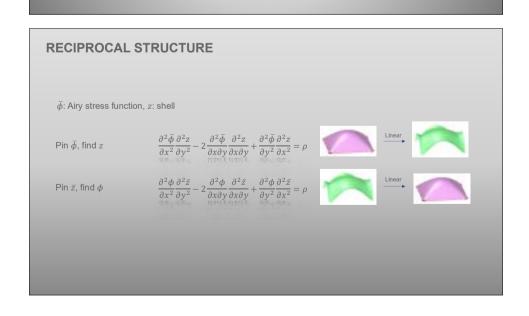








FORM-FINDING (OUR APROACH)



IDEA: UNPIN STRESS FUNCTION

φ: stress function (unknown function to be identified) (unknown function to be identified)

$$\frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - 2 \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 z}{\partial x^2} = \rho$$

We now have two unknown functions against one condition. This means there are many solutions.

CONCLUSION: IT IS A BILINEAR PDE

$$\frac{\partial^2 \phi}{\partial x^2} \frac{\partial^2 z}{\partial y^2} - 2 \frac{\partial^2 \phi}{\partial x \partial y} \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 \phi}{\partial y^2} \frac{\partial^2 z}{\partial x^2} = \rho$$

with one condition for two unknown functions.

BILINEAR LEAST SQAURES PROBLEM

Full Problem (Bilinear)

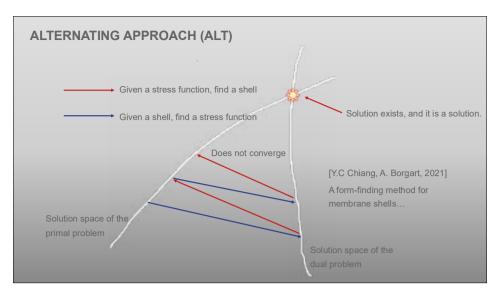
Find
$$\{\phi,z\}$$
 such that $\int \left(\frac{1}{g}(\nabla_{11}\phi\nabla_{22}z-\nabla_{12}\phi\nabla_{12}z+\nabla_{22}\phi\nabla_{11}z)+\rho\frac{\sqrt{\det g_{ij}}}{\sqrt{\det \bar{g}_{ij}}}\right)^2\mathrm{d}a\to \min$

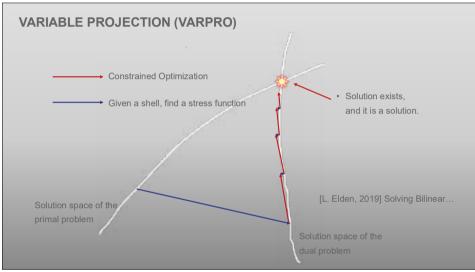
Primal Subproblem (Linear)

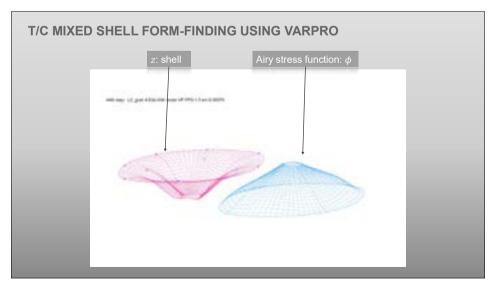
Given
$$\overline{\phi}$$
, find z such that $\int \left(\frac{1}{g}(\nabla_{11}\overline{\phi}\nabla_{22}z - \nabla_{12}\overline{\phi}\nabla_{12}z + \nabla_{22}\overline{\phi}\nabla_{11}z) + \rho\frac{\sqrt{\det g_{ij}}}{\sqrt{\det g_{ij}}}\right)^2 \mathrm{d}a \to \min$

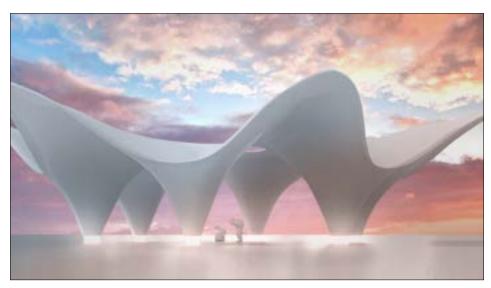
Dual Subproblem (Linear)

Given
$$\bar{z}$$
, find ϕ such that $\int \left(\frac{1}{g}(\nabla_{11}\phi\nabla_{22}\bar{z} - \nabla_{12}\phi\nabla_{12}\bar{z} + \nabla_{22}\phi\nabla_{11}\bar{z}) + \rho\frac{\sqrt{\det g_{ij}}}{\sqrt{\det \bar{g}_{ij}}}\right)^2 \mathrm{d}a \to \min$









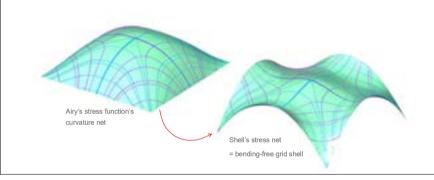
CONJUGATE CURVATURE NET

- Tracings of local frames on a surface that gives no local warping and Can be used for planar quadrilateral panelization.
- · Lines of curvature are special conjugate curvature nets in which two directions intersect orthogonally.



CONJUGATE STRESS NET

- Tracings of local frames on a surface that give no shear stress Can be used for the basis geometry of a bending-free grid shell.
- · Principal stress trajectories are a special case of conjugate stress net in which two directions intersect orthogonally.
- It is a conjugate curvature net of an Airy stress function.



ALIGNING TWO SYMMETRIC MATRICES

A: 2x2 real symmetric matrix

B: 2x2 real symmetric matrix

A + B is symmetric

− B is symmetric

AB is not symmetric

$$AB = \text{symm}$$

⇔ When AB is symmetric, it represents a special state in which eigenvectors of two matrices point to the same directions.

$$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
(symm)

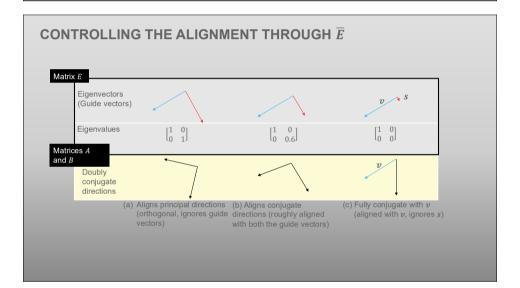
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$$
(symm)

ALIGNMENT BETWEEN THREE MATRICES

- A: 2x2 real symmetric matrix
- B: 2x2 real symmetric matrix
- E: 2x2 real symmetric positive (semi) definite matrix
- $e: R_{90}ER_{90}^{T}$

AEB = symm

 \Leftrightarrow When E is positive (semi)definite, a conjugate pair that is simultaneously conjugate with A,B and e exists.



BILINEAR PDES

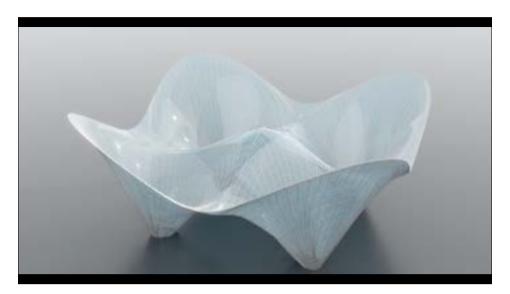
Equilibrium equation:

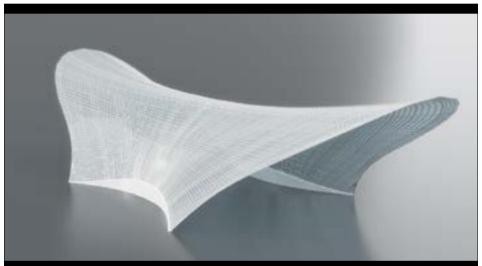
$$\frac{\partial^2 z}{\partial x \partial x} \frac{\partial^2 \phi}{\partial y \partial y} - 2 \frac{\partial^2 z}{\partial x \partial y} \frac{\partial^2 \phi}{\partial x \partial y} + \frac{\partial^2 z}{\partial y \partial y} \frac{\partial^2 \phi}{\partial x \partial x} = \rho$$

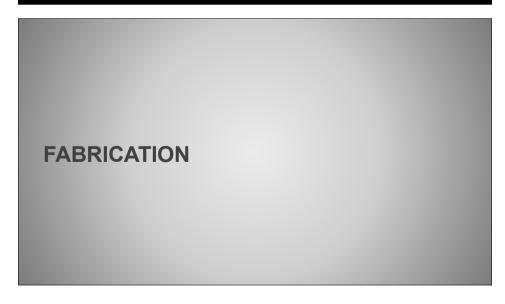
Alignment condition:

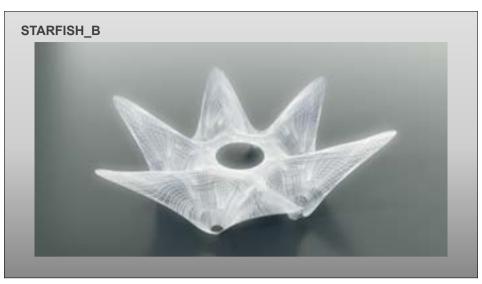
 $\frac{\partial^{2}z}{\partial x\partial x}\bar{E}_{xx}\frac{\partial^{2}\phi}{\partial x\partial y} + \frac{\partial^{2}z}{\partial x\partial x}\bar{E}_{xy}\frac{\partial^{2}\phi}{\partial y\partial y} + \frac{\partial^{2}z}{\partial x\partial y}\bar{E}_{yx}\frac{\partial^{2}\phi}{\partial x\partial y} + \frac{\partial^{2}z}{\partial x\partial y}\bar{E}_{yy}\frac{\partial^{2}\phi}{\partial y\partial x} = \frac{\partial^{2}z}{\partial y\partial y}\bar{E}_{xx}\frac{\partial^{2}\phi}{\partial x\partial x} + \frac{\partial^{2}z}{\partial y\partial x}\bar{E}_{xy}\frac{\partial^{2}\phi}{\partial y\partial x} + \frac{\partial^{2}z}{\partial y\partial y}\bar{E}_{yy}\frac{\partial^{2}\phi}{\partial y\partial x} + \frac{\partial^{2}z}{\partial y\partial y}\bar{E}_{yy}\frac{\partial^{2}\phi}{\partial y\partial x}$

- · Both conditions are bilinear PDEs.
- · Can be solved using VarPro.









ASSEMBLING DEVELOPABLE STRIPS

FORMWORK ASSEMBLY IS READY

INGREDIENTS

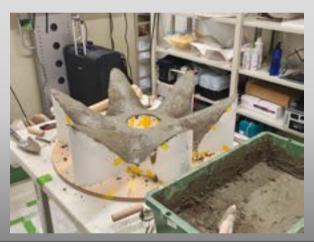
Cement

Steel fibers (Staples)

Tough binder (Nvlon fibers)

CONCRETE PLACEMENT

CONCRETE PLACEMENT

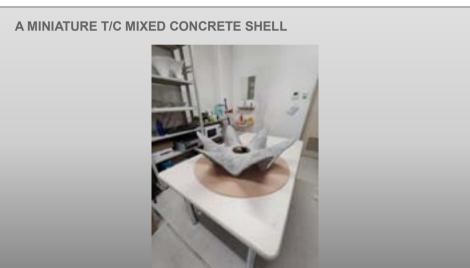


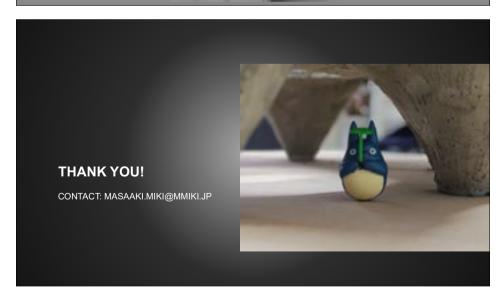
24HRS

48HRS

FORMWORK REMOVAL

CLEANING





Yohei Yokosuka Kagoshima University, Japan

Abstract

There are geometrically defined classes of surfaces and curves suitable for each surface shape, such as membrane structures that resist tensile stress and shell structures that resist compressive stress. These surface and curve classes are categorized as mechanically motivated and those motivated by constructability and member fabrication. From a mechanical point of view, F. Otto uses an extremely minimal curved surface for the membrane structure and H. Isler applied a suspended curved surface for the shell structure, designing a curved surface structure that is mechanically rational. F. Candela uses HP curved surfaces in curved structures, designing curved structures that are superior from constructability. In recent years, there has been progress in research on the design of curved surface structures that rediscover the properties of both the mechanical and constructional perspectives from geometry by means of discrete differential geometry. This presentation will introduce a class of surfaces and curves that can be applied to curved structures in architecture.

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Yohei YOKOSUKA¹⁾, Yoshiki JIKUMARU²⁾, Kazuki HAYASHI³⁾, Kentaro HAYAKAWA⁴⁾, Yusuke SAKAI⁵⁾

Graduate School of Science and Engineering, Kagoshima University
 Information Networking for Innovation And Design, Toyo University
 3) Graduate School of Engineering, Kyoto University
 Ollege of Industrial Technology Department of Conceptual Design, Nihon University
 5) Sony Computer Science Laboratories, Inc

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- Overview
- 1. Close relationship between shell and spatial structures and geometry
- 2. Research Case Studies
 - 2.1 Discrete isothermic minimal surfaces
 - 2.2 Discrete membrane O surface
 - 2.3 Willmores surface and Möbius transformation
 - 2.4 Airy stress function and Laguerre geometry
- 3. Conclusion

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures

(Static Mechanics · Constructability/Fabricability)

⇔ Shell structures: Doubly ruled surface

⇔ Cooling tower, Tower: Doubly ruled surface

Classical Surfaces Classes

Minimal surface
Geodesic line
CMC surface
Catenary curve

⇔ Suspension Membrane Structure: Pure tension
⇔ Membrane cutting line and cable placement: Shear free
⇔ Pneumatic membrane structures: Pure tension
⇔ Reversed Hanging curve/membrane: Pure compression

Hyperbolic paraboloid surface Rotational hyperboloid

Ruled surface

⇔ Beam structures: Ruled surface

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures

(Static Mechanics · Constructability/Fabricability)

Minimal surface

⇔ Suspension Membrane Structure: Pure tension

Geodesic line

⇔ Membrane cutting line and cable placement: Shear free

CMC surface ⇔ Pneumatic membrane structures: Pure tension

Catenary curve

⇔ Reversed Hanging curve/membrane: Pure compression

How can these surfaces be characterized?

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures (Static Mechanics)

Minimal surface

⇔ Suspension Membrane Structure: Pure tension

Geodesic line

⇔ Membrane cutting line and cable placement: Shear free

CMC surface

⇔ Pneumatic membrane structures: Pure tension

Catenary curve

⇔ Reversed Hanging curve/membrane: Pure compression

How can these surfaces be characterized?

⇒ Critical points for variational problems

⇒ At arbitrary boundary conditions, a certain functional is defined and the solution that minimizes the functional is obtained.

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures

(Static Mechanics)

Minimal surface

⇔ Minimization of curved surface area

Geodesic line ⇔ Minimization of curve length on a surface

CMC surface ⇔ Minimize curved surface area by specifying inner volume

How can these surfaces be characterized?

- ⇒ Critical points for variational problems
- ⇒ At arbitrary boundary conditions, a certain functional is defined and the solution that minimizes the functional is obtained.

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry
O Shell and Spatial Structures
(Constructability/Fabricability)

Hyperbolic paraboloid surface
Rotational hyperboloid
Ruled surface
Ruled surface

How can these surfaces be characterized?

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

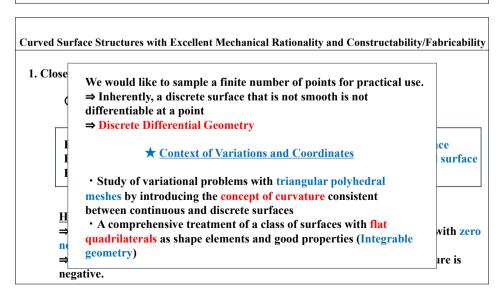
1. Close relationship between shell and spatial structures and geometry

○ Geometry

○ Shell and Spatial Structures
(Constructability/Fabricability)

Hyperbolic paraboloid surface ⇔ Shell structures: Doubly ruled surface ⇔ Cooling tower, Tower: Doubly ruled surface Ruled surface ⇔ Beam structures: Ruled surface

How can these surfaces be characterized?
⇒ Focusing on the direction of coordinate lines are taken, coordinate lines with zero normal curvature are chosen.
⇒ Asymptotic direction, which is limited to the case when Gaussian curvature is negative.



- 2. Research Case Studies
- 2.1 Discrete isothermic minimal surfaces
- Architecture: Form-finding of membrane structure

Otto, F. (1973): Application to tension structures

Schek, H.J (1974): Force density method Barnes, M.R (1977): Dynamic relaxation

■ Mathematics

Courant, R(1950): Problem to minimize Dirichlet integration (Dirichlet energy)
Hinata, M., Shimasaki, M., and Kiyono, T(1974): Discretization by finite element method
Tsuchiya, T(1992): Discretization of Dirichlet energy by finite element method
Pinkall, U., Polthier, K.(1993): Dirichlet energy discretization (cotan formula)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.1 Discrete isothermic minimal surfaces

Functional (Dirichlet energy)

$$E = \frac{1}{2} \iint_{\Omega} \left(f_u^2 + f_v^2 \right) du dv \tag{1}$$

 f_u, f_v : Tangent vector of u, v coordinates on the surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.1 Discrete isothermic minimal surfaces

Minimal surface

⇔ Minimization of curved surface area

⇔ Dirichlet energy minimization and isothermic

⇔ Mean curvature is 0 and isothermic

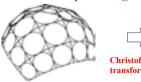
★ Coordinates issue

· Isothermic properties of continuous curved surfaces

$$f_u \perp f_v, ||f_u|| = ||f_v|| \tag{1}$$

 f_u, f_v : Tangent vector of u, v coordinates on the surface

- 2. Research Case Studies
- 2.1 Discrete isothermic minimal surfaces
- Bobenko et al. constructed a Koebe polyhedron with a three-dimensional sphere S² from known minimal surfaces, and showed that it is possible to construct different discrete isothermic minimal surfaces by giving their Christoffel duals (transformations).
- ⇒ Christoffel's theorem that a surface constructed from a Gauss map of minimal surfaces by a transformation preserving isothermality is a minimal surface.

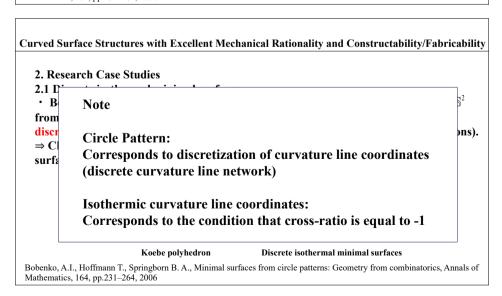


Koebe polyhedron

Discrete isothermal minimal surfaces

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of Mathematics, 164, pp.231-264, 2006

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability 2. Research Case Studies 2.1 D · B Note: from discr ons). • This method showed that different minimal surfaces can be \Rightarrow C obtained by applying a coordinate-preserving transformation. surfa ⇒ Transformation itself is essential. Koebe polyhedron Discrete isothermal minimal surfaces Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of Mathematics, 164, pp.231-264, 2006



- 2. Research Case Studies
- 2.2 Membrane O surfaces
- The canopy of Tokyo Midtown is composed of multi-layered curved surfaces and vertical members connecting between the curved surfaces. The orientation of the curved surface members adopts the principal direction, and in one compartment, four sides are flat surfaces.

Principal direction - curvature line coordinates in the direction that follows the principal curvature

The canopy of Tokyo Midtown

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies2.2 Membrane O surfaces
- Discrete curvature line network ⇒ A curved surface covered by quadrilaterals to which a circle is circumscribed. The quadrilateral connecting the intersections is flat.
- Vertex Offset ⇒ In a discrete curvature line network, the normals defined by the points are mirrored in the plane orthogonal to the edge, and the sides spanned by the normals are flat without torsion.
- Curved surface structures consisting of flat quadrilaterals have excellent properties in the view of Constructability/Fabricability.

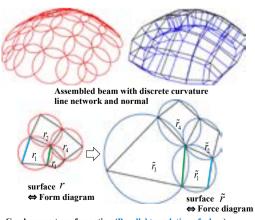
Assembled beam with discrete curvature line network and normal

Schief, W. K.: Integrable structure in discrete shell membrane theory, Proc. R. Soc. A (2014) 470: 20130757, 2014

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies2.2 Membrane O surfaces

- Membrane O surfaces \Rightarrow A class of curved surfaces that are equilibrium by in-plane membrane stress without bending moment and in-plane shear when a constant load is applied in the normal direction.
- · Equilibrium equation of in-plane
 - ⇒ Dual surface exists in the Combescure transformation
 - ⇒ Corresponds to the force diagram and form diagram of Graphic statics



Combescure transformation (Parallel translation of edges)

- 2. Research Case Studies
- 2.2 Membrane O surfaces
- Mem of curve by in-pl bending when a o

· Equil

- **Discrete Membrane O surfaces**
- A discrete curvature line network always has a surface \tilde{r} .
- The out-of-plane equilibrium equation is expressed by the orthogonal conditionals for surfaces r and \tilde{r} .
- ⇒ Corresponds to the torce diagram and form diagram of Graphic statics

⇔ Form diagram

surface \tilde{r} \Leftrightarrow Force diagram

Combescure transformation (Parallel translation of edges)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.3 Willmore surface and Möbius transformation
- · Klein geometry
 - ⇒A geometry characterized by transformations and invariants in those transformations.
 Möbius geometry is a type of Klein geometry.
- · Möbius transformation
 - ⇒ A transformation that maps a circle to a circle, and cross-ratio is invariant under the Möbius transformation.
 - ⇒ A discrete curvature line network can be mapped to a discrete curvature line network.

Felix C. Klein (1849-1925)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.3 Willmore surface and Möbius

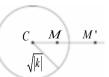
transformation

· Inversion ⇒ Typical operations with Möbius tranformation

$$\begin{cases}
C, M, M ' a ligned \\
|CM| |CM'| = k
\end{cases}$$
(2)

C: Center of a circle
M: Points before
transformation
M': Points after
transformation

transformation |k|: Radius of circle



Inversion

Mesnil, R., Douthe, C., Baverel, O., Leger, B.: Generalised Cyclidic Nets for Shape Modelling in Architecture, International Journal of Architectural Computing, Volume 15, Issue 2, pp.1-22, 2017

- 2. Research Case Studies
- 2.3 Willmore surface and Möbius
- · Willmore Energy
 - ⇒ Invariant functional with Möbius transformation

$$\Omega = \int_{S} H^2 - K \, dA \quad (3)$$

H: Mean Curvature K: Gaussian Curvature

- · Willmore surface
 - ⇒ Critical point of Willmore energy
 - ⇒ Möbius transformation allows Willmore surfaces to be mapped to Willmore surfaces.

Willmore energy

minimization

pressure load: 100 N/m2

membrane thickness: 1.0 mm elastic modulus: 100 N/mm shear elastic modulus: 60 N/mm²

ratio of poisson: 0.3

	tomax (N/mm²) Principal stress	tomin (N/mm²) Principal stress			
max	1.4643	0.4123			
min	0.5832	0.2668			

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

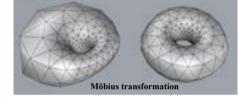
Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.3 Willmore surface and Möbius
- · Willmore Energy
 - ⇒ Invariant functional with Möbius transformation

$$\Omega = \int_{S} H^2 - K \, dA \quad (3)$$

H: Mean Curvature K: Gaussian Curvature

- · Willmore surface
 - ⇒ Critical point of Willmore energy
- ⇒ Möbius transformation allows Willmore surfaces to be mapped to Willmore surfaces.



ARK NOVA (Arata Isozaki, Anish Kapoor)

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies

Note:

- 2.3 Will
- Willr
 - ⇒ In

• It is not guaranteed that the Willmore surfaces are theoretically equilibrium by the membrane stresses. It is necessary to consider the connection between the membrane O surface and the Willmore surface.

H: Mea

- ⇒ Critical point of Willmore energy
- ⇒ Möbius transformation allows

Willmore surfaces to be mapped to

Willmore surfaces.

Arknova (Arata Isozaki, Anish Kapoor)

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

- 2. Research Case Studies
- 2.4 Airy stress function and Laguerre geometry
- · Hanging membrane
- Architecture

Ramm, E., Bletzinger, K.-U., Reitinger, R.(1993): Minimization of Shell structures Block, P. and Ochsendorf, J.(2007): Thrust Network Analysis Miki, M., Igarashi, Block, P. (2015): Airy stress function in parametric surface

■ Mathematics

Vouga, E. Höbinger, M. Wallner, J. Pottmann, H.(2012): Isotropic geometry Koiso, M., Palmer, B.(2005): Smooth hanging curve and Euler-Lagrange equation Jikumaru, Y., Yokosuka, Y.(2022): Hanging membrane of isotropic stress

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.4 Airy stress function and Laguerre geometry
- · Laguerre geometry
 - ⇒ The object of Laguerre geometry is a plane.
- ⇒ The normal is defined and the plane is the set of points that have the same perpendicular distance from the origin.
 - ⇒ Laguerre transform acts on a plane
- · Laguerre functional
 - ⇒ invariant functional of Laguerre transformation

$$\Omega = \int_{S} \frac{H^2 - K}{K} dA \qquad (4)$$

H: Mean Curvature K: Gaussian Curvature

· Airy stress function

⇒ Stress function equilibrium by in-plane membrane stress when a constant vertical load is applied to a curved surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.4 Airy stress function and Laguerre geometry
- · Pottmann et al. showed the relationship between L-minimal surfaces and Airy stress functions minimizing the Laguerre functional.

Airy stress function is biharmonic function

L-minimal surface expressed by isotropic model is biharmonic function

- Isotropic geometry
 - \Rightarrow Geometry of a surface represented as a function graph of z = f(x, y)
 - ⇒ No distance metering in height direction

[42] Pottmann, H., Grohs, P., Mitra, N., J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity, Advances in Computational Mathematics volume 31, Article number: 391, pp.391-419, 2009

- 2. Research Case Studies
- 2.4 Airy stress function and Laguerre geometry
 - Mean curvature and Gaussian $K_i = \det(\nabla^2 f) = f_{xx} + f_{yy} f_{xy}^2$ (9) curvature in isotropic geometry $2H_i = \operatorname{trace}(\nabla^2 f) = f_{xx} + f_{yy}$ (10)
 - Equilibrium equations and compatibility conditionals introducing Airy stress functions
- Equilibrium equations in isotropic geometry

$$\operatorname{div}(M\nabla s) = F, \operatorname{div}M = 0 \quad (11)$$

$$M = \operatorname{adj}(\nabla^2 \phi) \quad (12)$$

$$\Leftrightarrow \qquad 2K_{\phi}H^{rel} = F \quad (13)$$

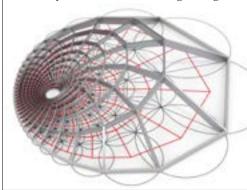
S: height $\phi:$ Airy stress function M: stress tensor F: vertical load

Vouga, et al

Fraternali, et al

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

- 2. Research Case Studies
- 2.4 Airy stress function and Laguerre geometry



- Möbius transformation allows circles to be mapped to circles.
- Lines of connecting the center of circles become force diagram.

Equilibrium in plane can be obtained parametrically by Möbius transformation.

Temporary Structures with Curved Folding

Conclusion

- This presentation introduces four topics: discrete isothermal minimal surfaces, discrete membrane O surfaces, Willmore surfaces and Möbius transforms, Airy stress functions and Laguerre geometry.
- The viewpoints and representations of surfaces in non-Euclidean geometry are important not only in conventional Euclidean geometry, but also in non-Euclidean geometry, showing that invariant quantities and properties in transformations, and the "transformations" themselves that preserve these properties, are of great importance.

Yohei Yokosuka Kagoshima University, Japan

Abstract

The purpose of this study is to employ discrete surfaces as shape elements and to construct a design method for curved surface structures by parametric deformation using Lie spherical transformations. NURBS surfaces and Bézier surfaces are useful parametric surface generation methods as surface design tools. However, the properties of the cross ratio and the developability of the surfaces covered by the coordinate lines are not preserved. Lie spherical geometry can perform Lie spherical transformation, which maps curvature line coordinates to curvature line coordinates. Curvature line coordinates can be represented by discrete surfaces filled with circles on the surface; the Möbius transform, one of the Lie spherical transforms, allows transformations that preserve the cross ratio, and isothermal coordinates can be mapped to isothermal coordinates. This presentation will describe the method of generating 3-D and 2-D surfaces and the mechanical properties of isothermal coordinates.

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Lie Sphere Geometry and Design of Curved Surface Structures

Yohei YOKOSUKA¹⁾, Junichi INOGUCHI²⁾, Makoto OHSAKI³⁾, Toshio HONMA¹⁾ Yoshiki JIKUMARU⁵⁾

Graduate School of Science and Engineering, Kagoshima University
 Department of Mathematics, Hokkaido University
 Graduate School of Engineering, Kyoto University
 Information Networking for Innovation And Design, Toyo University

Lie Sphere Geometry and Design of Curved Surface Structures

· Recent studies on discrete surfaces

- It is possible to generate discrete curved surfaces with extremely good properties by Möbius geometry and Laguerre geometry.
- These curved surface with excellent fabricability and constructability can be constructed.

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no. 3, pp.681–689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

· Recent studies on discrete surfaces

- It is possible to generate discrete curved surfaces with extremely good properties by Möbius geometry and Laguerre geometry.
- These curved surface with excellent fabricability and constructability can be constructed.

- In this presentation, we introduce the formulation of Lie sphere geometry and the method of modelling for gridshell structures.
- we demonstrate the structural analysis of curved surface found by Lie sphere geometry whether the curved surface has the similar mechanical performance.

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no. 3, pp.681–689, 2006

· Klein geometry

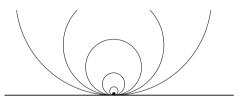
Klein geometry classifies geometry by the operation of transformations on a set.

· Lie sphere geometry

Lie sphere geometry has a large group in Klein geometry.

Lie sphere geometry considers points and planes as part of spheres.

The curvature line coordinates are conserved by the Lie sphere transformation.



Lie Sphere Geometry and Design of Curved Surface Structures

• Oriented sphere: S(c,r)

$$S(c,r) = \{x \in \mathbb{R}^3; |x-c| = r\}$$
 (1)

$$S(c,r) = \{x \in \mathbb{R}^3; |x-c|^2 = r^2\}$$
 (2)

x: point c: center point r: signed radius

• Oriented plane: P(v,d)

$$P(v,d) = \{x \in \mathbb{R}^3; v \cdot x = d\} \quad (3) \quad O$$

 ν : unit normal (inward) d: signed height

P(v,d)

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008 Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no. 3, no. 681–689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

· Natural basis:

$$e_{1} = (1,0,0,0,0,0), e_{2} = (0,1,0,0,0,0), e_{3} = (0,0,1,0,0,0), e_{4} = (0,0,0,1,0,0), e_{5} = (0,0,0,0,1,0), e_{6} = (0,0,0,0,0,1)$$
(4)

· Vector: ŝ

$$\hat{s} = (c_1, c_2, c_3, \frac{1}{2}(1 - |c|^2 + r^2), \frac{1}{2}(1 - |c|^2 - r^2), r)$$
(5)

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008 Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no. 3, pp.681–689, 2006

· Natural Basis:

$$c_1^2 + c_2^2 + c_3^2 + \{\frac{1}{2}(1 - |c|^2 + r^2)\}^2 - \{\frac{1}{2}(1 - |c|^2 - r^2)\}^2 - r^2 = 0$$

introduce an scalar product
$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4 - x_5 y_5 - x_6 y_6$$

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008 Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no 3, pp.681–689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

· Natural basis:

$$e_{1} = (1,0,0,0,0,0), e_{2} = (0,1,0,0,0,0), e_{3} = (0,0,1,0,0,0),$$

$$e_{4} = (0,0,0,1,0,0), e_{5} = (0,0,0,0,1,0), e_{6} = (0,0,0,0,0,1)$$
(4)

· Vector: ŝ

an oriented sphere

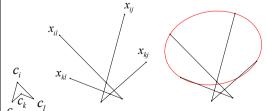
$$\hat{s} = (c_1, c_2, c_3, \frac{1}{2}(1 - |c|^2 + r^2), \frac{1}{2}(1 - |c|^2 - r^2), r)$$
(5)

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.

Lie Sphere Geometry and Design of Curved Surface Structures

• Two oriented spheres S_1 and S_2 are in oriented contact if and only if

$$\langle \hat{s}_1, \hat{s}_2 \rangle = 0.$$



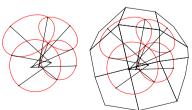


Figure 2: Möbius and Laguerre geometry

· Equations generating Circular nets

$$\langle \hat{s}_i, \hat{s}_j \rangle = 0 \quad \langle \hat{s}_j, \hat{s}_k \rangle = 0 \quad \langle \hat{s}_k, \hat{s}_l \rangle = 0 \quad \langle \hat{s}_l, \hat{s}_i \rangle = 0 \quad (6)$$

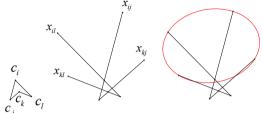


Figure1: One unit

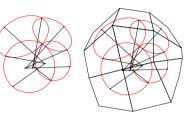
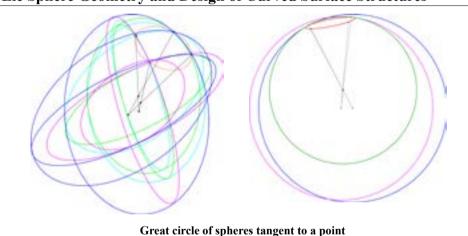
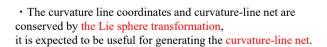


Figure2: Möbius and Laguerre geometry

Lie Sphere Geometry and Design of Curved Surface Structures

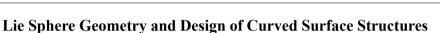


Lie Sphere Geometry and Design of Curved Surface Structures



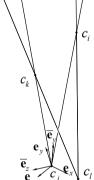
Great circle of spheres tangent to a point

Lie Sphere Geometry and Design of Curved Surface Structures · How to configure Circular net 1. The set of four center points constitute minimum unit. 2. The network of center points are expanded to two directions of X,Y. 3. When the network expand, the plane including the center m = 1, n = 1point is rotated. To solve the equation, find a new center 4. If all center points are found, all radius can be found also. the constituent nodes of the circular nets can be found.



 $m=2\sim M, n=1$

· How to configure Circular net



1. The set of four center points constitute minimum unit.

Figure 3: center points and orthonomal basis vector

- 2. The network of center points are expanded to two directions of *X*, *Y*.
- 3. When the network expand, the plane including the center point is rotated. To solve the equation, find a new center point.
 4. If all center points are found,

all radius can be found also. the constituent nodes of the circular nets can be found.

Figure 3: center points and orthonomal basis vector

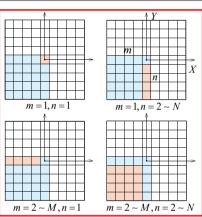
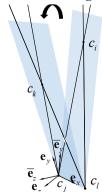


Figure 4: grid number and symmetry condition

Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

· How to configure Circular net



- 1. The set of four center points constitute minimum unit.
- 2. The network of center points are expanded to two directions of *X*, *Y*.
- 3. When the network expand, the plane including the center point is rotated. To solve the equation, find a new center point.
- 4. If all center points are found, all radius can be found also. the constituent nodes of the circular nets can be found.

Figure 3: center points and orthonomal basis vector

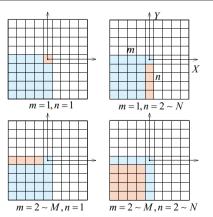
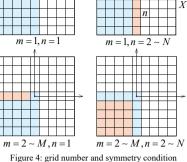


Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures · How to configure Circular net For example: $m = 2 \sim M, n = 1$ m = 1, n = 1Rotation of a plane Find c_{ν} $\mathbf{R}(\mathbf{e}_{x},\theta)$: Rodrigues's rotation

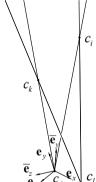
matrix

Figure 3: center points and orthonomal basis vector



Lie Sphere Geometry and Design of Curved Surface Structures

· How to configure Circular net



- 1. The set of four center points constitute minimum unit.
- 2. The network of center points are expanded to two directions of X,Y.
- 3. When the network expand, the plane including the center point is rotated. To solve the equation, find a new center 4. If all center points are found,

all radius can be found also. The constituent nodes of the circular nets can be found.

Figure 3: center points and orthonomal basis vector

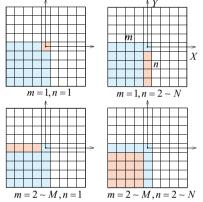


Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

· How to configure Circular net

Table1: Symbols

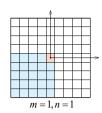
$f_1, f_2, f_3, f_4 \in \mathbb{R}$:Nonlinear equation contact to oriented sphere	$[\hat{s}_i,\hat{s}_j,\hat{s}_k,\hat{s}_l \in \mathbb{R}^{4,2}:$ Projective model of oriented sphere		
$c_i, c_j, c_k, c_l \in \mathbb{R}^3$: Center point of oriented sphere	$r_i, r_j, r_k, r_l \in \mathbb{R}$: Signed radius of the oriented sphere		
$\overline{r} \in \mathbb{R} $: Reference radius	m, n: Grid number in X, Y direction		
M, N: Number of grids in X, Y direction	\mathbf{e}_{x} , $\mathbf{e}_{y} \in \mathbb{R}^{3}$: Orthonormal basis vector		
$x,y \in \mathbb{R}$: Unkwon parameter in 2D plane	$ heta \in \mathbb{R}$: Specified angle		
$\mathbf{R}(\mathbf{e}_{x}, \mathbf{ heta})$: Rodrigues's rotation matrix	$lpha,eta,\gamma\in\mathbb{R}$: Specified parameter		
$\xi \in \mathbb{R}$: Unkwon parameter in 1D line	$x_{ij}, x_{il}, x_{kj}, x_{kl} \in \mathbb{R}^3$: Constituent nodes of circular nets		

• How to configure Circular net • m = 1, n = 1

Initial values (radius and center point):

$$\overline{r}, c_i^{1,1}, c_j^{1,1}, c_k^{1,1}, c_l^{1,1}, c_l^{1,1}, r_i^{1,1} = \overline{r}, r_j^{1,1} = \overline{r} + \left| c_i^{1,1} - c_j^{1,1} \right|, r_k^{1,1} = \overline{r}, r_l^{1,1} = \overline{r} + \left| c_i^{1,1} - c_l^{1,1} \right|$$
 (7)

Specified values: $\alpha^{1,1}, \beta^{1,1}$



Define next initial value: $c_i^{2,1}$, $c_i^{2,1}$, $c_i^{2,1}$, $r_i^{2,1}$, $r_i^{2,1}$, $r_i^{2,1}$

$$c_{i}^{2,1} = c_{k}^{1,1}, c_{j}^{2,1} = c_{j}^{1,1} + \alpha^{1,1} \frac{c_{j}^{1,1} - c_{k}^{1,1}}{\left|c_{j}^{1,1} - c_{k}^{1,1}\right|}, c_{i}^{2,1} = c_{i}^{1,1} + \beta^{1,1} \frac{c_{i}^{1,1} - c_{k}^{1,1}}{\left|c_{i}^{1,1} - c_{k}^{1,1}\right|}$$
(8)

$$r_i^{2,1} = r_k^{1,1}, \ r_i^{2,1} = r_i^{2,1} + \left| c_i^{2,1} - c_i^{2,1} \right|, \ r_i^{2,1} = r_i^{2,1} + \left| c_i^{2,1} - c_i^{2,1} \right|$$

$$\tag{9}$$

Lie Sphere Geometry and Design of Curved Surface Structures

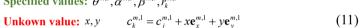
• How to configure Circular net • $m = 2 \sim M$, n = 1

Equations(Nonlinear equations):

$$f_3 = \left\langle \hat{s}_k^{m,1}, \hat{s}_j^{m,1} \right\rangle = \left\langle c_k^{m,1}, c_j^{m,1} \right\rangle - \frac{1}{2} \left\{ \left| c_k^{m,1} \right|^2 + \left| c_j^{m,1} \right|^2 - (r_k^{m,1})^2 - (r_j^{m,1})^2 \right\} - r_k^{m,1} r_j^{m,1} = 0$$

$$f_{4} = \left\langle \hat{s}_{k}^{m,1}, \hat{s}_{l}^{m,1} \right\rangle = \left\langle c_{k}^{m,1}, c_{l}^{m,1} \right\rangle - \frac{1}{2} \left\{ \left| c_{k}^{m,1} \right|^{2} + \left| c_{l}^{m,1} \right|^{2} - (r_{k}^{m,1})^{2} - (r_{l}^{m,1})^{2} \right\} - r_{k}^{m,1} r_{l}^{m,1} = 0$$

Specified values: $\theta^{m,1}, \alpha^{m,1}, \beta^{m,1}, r_i^{m,1}$



Define next initial value:
$$c_i^{m+1,1}, c_j^{m+1,1}, c_l^{m+1,1}, r_i^{m+1,1}, r_j^{m+1,1}, r_j^{m+1,1}, c_l^{m+1,1}$$

$$c_i^{m+1,1} = c_k^{m,1}, c_j^{m+1,1} = c_j^{m,1} + \alpha^{m,1} \frac{c_j^{m,1} - c_k^{m,1}}{\left|c_j^{m,1} - c_k^{m,1}\right|}, c_l^{m+1,1} = c_l^{m,1} + \beta^{m,1} \frac{c_l^{m,1} - c_k^{m,1}}{\left|c_l^{m,1} - c_k^{m,1}\right|}$$
(12)

$$\begin{vmatrix} |c_{j} - c_{k}| \\ |c_{i} - c_{k}| \end{vmatrix} = r_{i}^{m+1,1} = r_{i}^{m+1,1} = r_{i}^{m+1,1} + \begin{vmatrix} c_{i}^{m+1,1} - c_{j}^{m+1,1} \\ |c_{i}| \end{vmatrix}, r_{i}^{m+1,1} = r_{i}^{m+1,1} + \begin{vmatrix} c_{i}^{m+1,1} - c_{i}^{m+1,1} \\ |c_{i}| \end{vmatrix}$$

Lie Sphere Geometry and Design of Curved Surface Structures

• How to configure Circular net • $m = 1, n = 2 \sim N$

Equations(Nonlinear equations):

$$f_{1} = \left\langle \hat{s}_{i}^{1,n}, \hat{s}_{j}^{1,n} \right\rangle = \left\langle c_{i}^{1,n}, c_{j}^{1,n} \right\rangle - \frac{1}{2} \left\{ \left| c_{i}^{1,n} \right|^{2} + \left| c_{j}^{1,n} \right|^{2} - (r_{i}^{1,n})^{2} - (r_{j}^{1,n})^{2} \right\} - r_{i}^{1,n} r_{j}^{1,n} = 0$$

$$f_3 = \left\langle \hat{s}_k^{1,n}, \hat{s}_j^{1,n} \right\rangle = \left\langle c_k^{1,n}, c_j^{1,n} \right\rangle - \frac{1}{2} \left\{ \left| c_k^{1,n} \right|^2 + \left| c_j^{1,n} \right|^2 - (r_k^{1,n})^2 - (r_j^{1,n})^2 \right\} - r_k^{1,n} r_j^{1,n} = 0$$

Specified values: $\theta^{1,n}, \alpha^{1,n}, \beta^{1,n}, r_{\cdot}^{1,n}$

Unkown value:
$$x, y$$
 $c_i^{1,n} = c_i^{1,n} + x e_x^{1,n} + y e_y^{1,n}$ (14)

Define next initial value:
$$c_i^{1,n+1}, c_k^{1,n+1}, c_l^{1,n+1}, r_i^{1,n+1}, r_i^{1,n+1}, r_k^{1,n+1}, r_l^{1,n+1}$$

$$c_i^{1,n+1} = c_i^{1,n} + \alpha^{1,n} \frac{c_i^{1,n} - c_j^{1,n}}{\left|c_i^{1,n} - c_j^{1,n}\right|}, c_k^{1,n+1} = c_k^{1,n} + \beta^{1,n} \frac{c_k^{1,n} - c_j^{1,n}}{\left|c_k^{1,n} - c_j^{1,n}\right|}, c_i^{1,n+1} = c_i^{1,n}$$

$$r_i^{1,n+1} = r_i^{1,n} - \left|c_i^{1,n+1} - c_i^{1,n+1}\right|, r_i^{1,n+1} = r_i^{1,n} - \left|c_i^{1,n+1} - c_i^{1,n+1}\right|, r_i^{1,n+1} = r_i^{1,n}$$
(15)

• How to configure Circular net • $m = 2 \sim M$, $n = 2 \sim N$

Equations(Nonlinear equations):

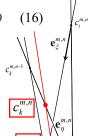
$$f_{1} = \left\langle \hat{s}_{i}^{m,n}, \hat{s}_{j}^{m,n} \right\rangle = 0, \ f_{3} = \left\langle \hat{s}_{k}^{m,n}, \hat{s}_{j}^{m,n} \right\rangle = 0, \ f_{4} = \left\langle \hat{s}_{k}^{m,n}, \hat{s}_{i}^{m,n} \right\rangle = 0 \tag{16}$$

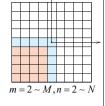
Specified values: γ

Unkown value: ξ, r_i, r_j

$$c_j^{m,n} = c_i^{m,n} + \xi \mathbf{e}_{\xi}^{m,n}, \ \mathbf{e}_{\xi}^{m,n} = \frac{c_j^{m-1,n} - c_i^{m,n}}{\left|c_j^{m-1,n} - c_i^{m,n}\right|}$$

$$c_k^{m,n} = c_l^{m,n} + (\xi + \gamma) \mathbf{e}_{\eta}^{m,n}, \ \mathbf{e}_{\eta}^{m,n} = \frac{c_k^{m,n-1} - c_l^{m,n}}{|c_k^{m,n-1} - c_l^{m,n}|}$$





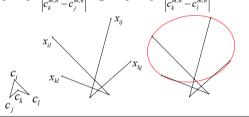
Lie Sphere Geometry and Design of Curved Surface Structures

(17)

· How to configure Circular net

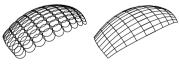
The constituent nodes of the circular net $x_{ij}, x_{il}, x_{kj}, x_{kl}$:

$$\begin{split} x_{ij}^{m,n} &= c_i^{m,n} + r_i^{m,n} \frac{c_i^{m,n} - c_j^{m,n}}{\left|c_i^{m,n} - c_j^{m,n}\right|}, \ x_{il}^{m,n} &= c_i^{m,n} + r_i^{m,n} \frac{c_i^{m,n} - c_l^{m,n}}{\left|c_i^{m,n} - c_l^{m,n}\right|} \\ x_{kj}^{m,n} &= c_k^{m,n} + r_k^{m,n} \frac{c_k^{m,n} - c_j^{m,n}}{\left|c_k^{m,n} - c_j^{m,n}\right|}, \ x_{kl}^{m,n} &= c_k^{m,n} + r_k^{m,n} \frac{c_k^{m,n} - c_l^{m,n}}{\left|c_k^{m,n} - c_l^{m,n}\right|} \end{split}$$



Lie Sphere Geometry and Design of Curved Surface Structures

· Numerical result of circular nets



$$\begin{array}{lll} \theta^{m,1}_{,}=0.15 & \alpha^{m,1}_{,}=0 & \theta^{1,n}_{,}=-0.15 & \alpha^{1,n}_{,}=0 \\ \beta^{m,1}_{,}=0 & r^{m,1}_{k}=10 & \beta^{1,n}_{,}=0 & \gamma=0 \end{array}$$

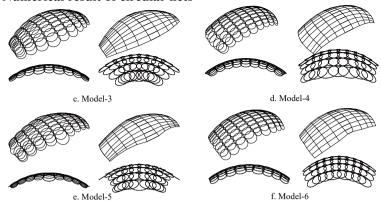
(18)

$$\begin{array}{lll} \theta^{m,l} = 0.15 & \alpha^{m,l} = 0 & \theta^{l,n} = -0.30 & \alpha^{l,n} = 0 \\ \beta^{m,l} = 0 & r_k^{m,l} = 10 & \beta^{l,n} = 0 & \gamma = 0 \end{array}$$

a. Model-1

b. Model-2

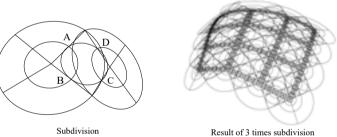
· Numerical result of circular nets



Lie Sphere Geometry and Design of Curved Surface Structures

· Subdivision

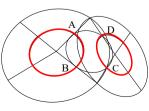
- 1. Create circles with half the diameter at the same position.
- 2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
- 3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
- 4. Repeat step1-3 to generate a gridshell structure.



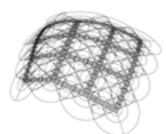
Lie Sphere Geometry and Design of Curved Surface Structures

· Subdivision

- 1. Create circles with half the diameter at the same position.
- 2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
- 3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
- ${\it 4. Repeat step 1-3 \ to \ generate \ a \ gridshell \ structure.}$



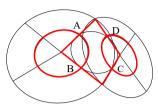
Subdivision

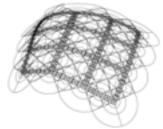


Result of 3 times subdivision

· Subdivision

- 1. Create circles with half the diameter at the same position.
- 2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
- 3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
- 4. Repeat step1-3 to generate a gridshell structure.



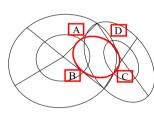


Result of 3 times subdivision

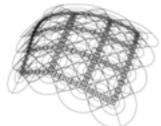
Lie Sphere Geometry and Design of Curved Surface Structures

· Subdivision

- 1. Create circles with half the diameter at the same position.
- 2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
- 3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
- 4. Repeat step1-3 to generate a gridshell structure.



Subdivision

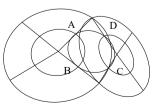


Result of 3 times subdivision

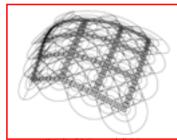
Lie Sphere Geometry and Design of Curved Surface Structures

· Subdivision

- 1. Create circles with half the diameter at the same position.
- 2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
- 3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
- 4. Repeat step1-3 to generate a gridshell structure.



Subdivision



Result of 3 times subdivision

· Subdivision

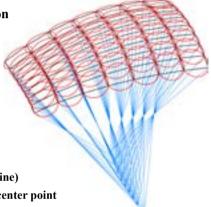
Gaussian curvature distribution (almost zero)

This result is considered as a discrete curvature line in which the discrete curved surface is subdivided along the curvature line. Therefore, it is possible to construct a curved member by bending only one axis.

This gridshell structure has a property of excellent fabricability of members.

Lie Sphere Geometry and Design of Curved Surface Structures

· Lie Sphere Transformation



Circular net (red line and black line)

Line connecting a point and the center point of the sphere (blue line)

Lie Sphere Geometry and Design of Curved Surface Structures

- · Lie Sphere Transformation
- · Conical net

Lie Sphere geometry includes Möbius and Laguerre geometry, with Möbius geometry constituting Circular nets and Laguerre geometry Conical nets.

The definition of a conical net is four planes having one shared point and tangent to a cone.

Once the circular net is constructed, the normals $v_{ij}, v_{jk}, v_{kl}, v_{li}$ are obtained by the following equation.

$$v_{ij} = -\frac{x_{ij} - c_i}{\left|x_{ij} - c_i\right|} = -\frac{x_{ij} - c_j}{\left|x_{ij} - c_j\right|}, v_{jk} = -\frac{x_{jk} - c_j}{\left|x_{jk} - c_j\right|} = -\frac{x_{jk} - c_k}{\left|x_{jk} - c_k\right|}$$

$$v_{kl} = -\frac{x_{kl} - c_k}{\left|x_{kl} - c_k\right|} = -\frac{x_{kl} - c_l}{\left|x_{kl} - c_l\right|}, v_{li} = -\frac{x_{li} - c_l}{\left|x_{li} - c_l\right|} = -\frac{x_{li} - c_i}{\left|x_{li} - c_i\right|}$$
(19)

- · Lie Sphere Transformation
- · Conical net

The height $d_{ii}, d_{ik}, d_{kl}, d_{kl}$ are obtained by the following equation

$$d_{ii} = \langle v_{ii}, x_{ii} \rangle, d_{ik} = \langle v_{ik}, x_{ik} \rangle, d_{kl} = \langle v_{kl}, x_{kl} \rangle, d_{li} = \langle v_{li}, x_{li} \rangle$$
 (20)

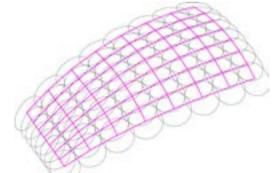
Conical nets are obtained by solving the following simultaneous equations for each circle in the circular nets

$$\begin{bmatrix} v_{ij} & v_{jk} & v_{kl} \end{bmatrix}^T \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} = \begin{Bmatrix} d_{ij} \\ d_{jk} \\ d_{kl} \end{Bmatrix}$$
(21)

Note that any three of the four planes are chosen, but any of the equations may be chosen.

Lie Sphere Geometry and Design of Curved Surface Structures

- · Lie Sphere Transformation
- · Conical net



Circles of circular nets and conical net points form a cone.

Lie Sphere Geometry and Design of Curved Surface Structures

· Lie Sphere Transformation

The Lie Sphere transformation is used for the coefficient matrix of the quadratic form of the projective space.

As $x, y \in \mathbb{R}^{4,2}$, consider a linear transformation $x \mapsto Ax$ As $x, y \in \mathbb{R}$, consider a linear that satisfies the following inner product

hat satisfies the following inner product
$$\langle Ax, Ay \rangle = \langle x, y \rangle$$
 (22)
However, limited to
$$A^T E_{4,2} A = E_{4,2}$$
 (23)
$$E_{4,2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$
In this case, A is the Lie Subero transformation.

In this case A is the Lie Sphere transformation.

T. E. Cecil, Lie Sphere Geometry with Applications to Submanifolds second edition, Springer New York, 2008. G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in Classical Geometries: A Treatment by Moving Frames, Springer, 2016.

· Lie Sphere Transformation

Inversion

The inversion of the Lie Sphere transformation acts on the point \mathbb{R}^3 . The mapping from \mathbb{R}^3 to \mathbb{S}^3 is obtained by

$$A_{I} = f_{+}^{-1} \circ T_{I} \circ f_{+} : \mathbb{R}^{3} \mapsto \mathbb{S}^{3}$$

$$f_{+}(x) = x + 1 \cdot e_{0} + |x|^{2} e_{\infty} + 0 \cdot e_{6}$$

$$= x + \frac{1 - |x|^{2}}{2} e_{4} + \frac{1 + |x|^{2}}{2} e_{5} + 0 \cdot e_{6}$$

$$f_{+}^{-1}(x + ue_{4} + ve_{5}) = \frac{1}{2}(x + ue_{4}) \qquad (24)$$

$$T_{I} = \begin{bmatrix} I_{3} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Lie Sphere Geometry and Design of Curved Surface Structures

· Lie Sphere Transformation

Inversion

The inversion of the Lie Sphere transformation acts on the point \mathbb{R}^3 . The mapping from \mathbb{R}^3 to \mathbb{S}^3 is obtained by

$$A_{I} = f_{+}^{-1} \circ T_{I} \circ f_{+} : \mathbb{R}^{3} \mapsto \mathbb{S}^{3}$$

$$f_{+}(x) = x + 1 \cdot e_{0} + |x|^{2} e_{\infty} + 0 \cdot e_{6}$$

$$= x + \frac{1 - |x|^{2}}{2} e_{4} + \frac{1 + |x|^{2}}{2} e_{5} + 0 \cdot e_{6}$$

$$f_{+}^{-1}(x + ue_{4} + ve_{5}) = \frac{1}{v}(x + ue_{4})$$

$$(24)$$

$$A_{I}(x) = \left(\frac{2x}{1 + |x|^{2}} + \frac{1 - |x|^{2}}{1 + |x|^{2}} e_{4}\right)$$
This mapping can be regarded as a Möbius transformation that maps point $x \in \mathbb{R}^{3}$ onto \mathbb{S}^{3} (the unit sphere) on \mathbb{R}^{4} using a sphere of radius $\sqrt{2}$ and center $(0,0,0,1)$

Lie Sphere Geometry and Design of Curved Surface Structures

· Lie Sphere Transformation

Inversion

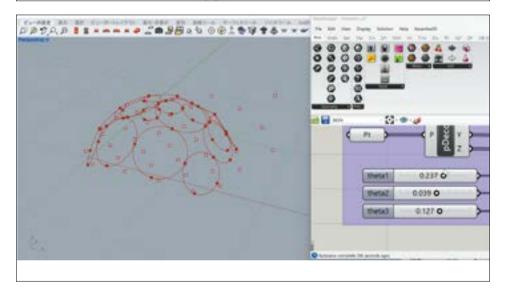
 $y \in \mathbb{R}^4$ is pulled back to \mathbb{R}^3 by the following transformation.

$$y \mapsto s + \frac{\rho^2}{\left|y - s\right|^2} (y - s) \tag{25}$$

$$s = (0, 0, 0, 1), \rho = \sqrt{2}$$
 Alternatively, you can use $s = (0, 0, 0, -1)$

Note that Inversion maps a point on the sphere of Lie Sphere geometry to a point on the sphere, but the center point of the sphere does not map to the center point of the sphere.

Lie Sphere Geometry and Design of Curved Surface Structures • Lie Sphere Transformation Inversion Before transformation • Rotated by Since There are three parameters.



Lie Sphere Geometry and Design of Curved Surface Structures

• Lie Sphere Transformation

The Offset of the Lie Sphere transformation acts on the **oriented plane**, which is a pair of **normals** and **points**.

The following map is acted on \hat{p} using the natural basis of the 6-dimensional space \mathbb{R}^6 .

$$T_{O} = \begin{bmatrix} I_{3} & 0 & 0 & 0 \\ 0 & 1 + \frac{t^{2}}{2} & \frac{t^{2}}{2} & t \\ 0 & -\frac{t^{2}}{2} & 1 - \frac{t^{2}}{2} & -t \\ 0 & t & t & 1 \end{bmatrix}$$

$$\hat{p} = v + 0 \cdot e_0 + 2de_{\infty} + 1 \cdot e_6 = v - 2de_4 + 2de_5 + 1 \cdot e_6$$

· Lie Sphere Transformation

The Offset of the Lie Sphere transformation acts on the **oriented plane**, which is a pair of **normals** and **points**.

The following map is acted on \hat{p} using the natural basis of the 6-dimensional space \mathbb{R}^6 .

To =
$$\begin{bmatrix} I_3 & 0 & 0 & 0 \\ 0 & 1 + \frac{t^2}{2} & \frac{t^2}{2} & t \\ 0 & -\frac{t^2}{2} & 1 - \frac{t^2}{2} & -t \\ 0 & t & t & 1 \end{bmatrix}$$
The height a obtained in $T_0(p)$ is used to obtain the coordinate values directly in the equation that forms the conical net.

$$\begin{bmatrix} v & v & v \\ v & t \end{bmatrix}$$

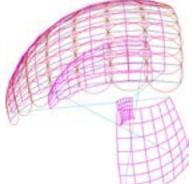
$$v + 0 \cdot e_0 + 2de_\infty + 1 \cdot e_6 = v - 2de_4 + 2de_5 + 1 \cdot e_6$$

$$\begin{bmatrix} v_y & v_{jk} & v_{kl} \end{bmatrix}^T \begin{Bmatrix} x \\ y \\ z \end{Bmatrix} = \begin{Bmatrix} d_y \\ d_{jk} \\ d_{kl} \end{Bmatrix}$$

 $\hat{p} = v + 0 \cdot e_0 + 2de_{\infty} + 1 \cdot e_6 = v - 2de_4 + 2de_5 + 1 \cdot e_6$

Lie Sphere Geometry and Design of Curved Surface Structures

· Lie Sphere Transformation Offset



Constant face offset **Face Offset Mesh**

It is possible to obtain a surface with the sign of the Gauss curvature reversed.

Lie Sphere Geometry and Design of Curved Surface Structures

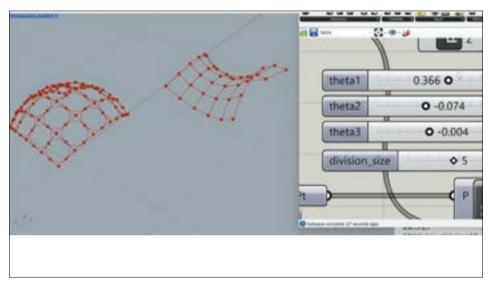
· Lie Sphere Transformation Offset

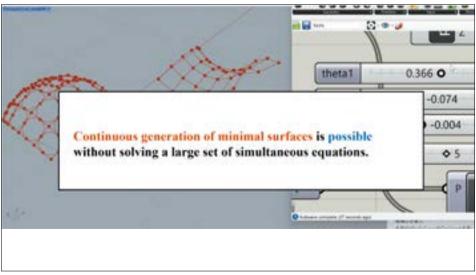
Note:

- · It was shown that various shapes can be obtained by manipulating Inversion and Offset.
- The number of parameters is only four: Inversion-3 and Offset-1. The Lie Sphere transformation can also be used as a parametric surface with fabricability properties.

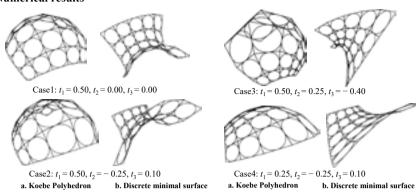
ı a of the ersed.

Christoffel Transformation Christoffel Transformation Christoffel Transformation Christoffel Transformation Christoffel transformation Christoffel transformation Discrete Minimal Surface Transformation that hold when the cross-ratio is -1 Lines of the same color parallel to each other Gaussian curvature from positive to negative





Numerical results



Lie Sphere Geometry and Design of Curved Surface Structures

Conclusion

- We introduced Lie sphere geometry, and indicated importance of Lie quadric to generate discrete curvature line. Next, we present the modeling technique of circular nets based on Lie sphere geometry.
- The following items regarding Lie sphere geometry were explained.
 How to construct a surface by Lie Sphere geometry.
 How to construct a conical net.
 The inversion and offset transformations of the Lie Sphere transformation are shown.
- We confirmed that various surfaces with discrete curvature line coordinates can be constructed by using only four parameters, three for inversion and one for offset.

Form-finding of Composite Tensile Structures by Finite Element Technique based on Nodal Coordinate Assumption

Yohei Yokosuka Kagoshima University, Japan

Abstract

In general, the finite element method used in structural analysis uses a finite element method assumed displacement in which the displacement of a node is formulated as an unknown function. On the other hand, the finite element technique based on nodal coordinate assumption can formulate the coordinates of nodes themselves as unknown functions and perform stress-deformation analysis and form-finding analyses. In this presentation, I derive a virtual work equation using embedded coordinates and explain the differences in strain and stress derived from the equilibrium equation after deformation. In the equilibrium equation, the displacement assumption corresponds to the first Piola-Kirchhoff stress tensor and the coordinate assumption corresponds to the Cauchy stress tensor. Therefore, when the before deformed configuration is used as the reference configuration, proposed method presents a natural formulation and is suitable for nonlinear analysis using the total Lagrange method. In addition, the form-finding analysis of composite tensile structures with beam, truss, and membrane elements using the nodal coordinate assumption based on finite element technique will be explained.

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Form-finding of Hybrid Tensile Structures with Active Bending Using Finite Element Technique Assuming Nodal Coordinates

Yohei YOKOSUKA¹⁾ Sakura TORIGOE²⁾ Toshio HONMA¹⁾

Graduate School of Science and Engineering, Kagoshima university
 Shimizu Corporation

1. Overview

- Bending-active structures¹⁻²⁾
 - It is possible to realize a lightweight structure with a self-equilibrium shape due to the tension of the membrane and cable and the temporary external force during construction.

Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of Space Structures, Vol.28, No. 3&4, pp. 187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
 Jienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp. 37-48, 2015.

1. Overview

- Bending-active structures¹⁻²⁾
 - · Two types of numerical analysis are required:
 - 1. Form-finding to obtain a self-equilibrium shape
 - 2. Stress displacement analysis to verify the structural performance when an external force is applied

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187

J. Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

2

1. Overview

- Bending-active structures¹⁻²⁾
 - Two types of numerical analysis are required: finding to obtain a self-equilibrium shane

hen an

· Inheritance of residual stress of beam elements by active bending is important in stress displacement analysis to verify structural performance.

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending. A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

1. Overview

- Finite Element Technique Assuming Nodal Coordinates³⁻⁴⁾
 - · Finite Element Technique Assuming Nodal Coordinates is a technique for formfinding of tension structures, and is a finite element technique in which coordinate values are directly unknown.
 - In this presentation, we introduce the discretization formulation of beam elements⁵⁾, and apply it to the form-finding problem of the composite tension structure by beam, membrane, and cable elements.

3) Honma, T., Ataka, N., Geometorically Nonlinear Structural Analysis by FEM Using the Coordinate Value on a Deformed Body, INFORMATION, 7(5), pp.569-583, 2004.
4) Honma, T., Gouda, Y., Ataka, N., A Method of Tension Structure Analysis by Finite Element Technique Using the Coordinate Value on a Deformed Body, Journal of Structural and Construction Engineering (Transactions of All), Vol.71, No.602, pp.161-169, 2006 (in Japanese)
5) Torigoe, S., Yokosuka, Y. and Honma, T.: From-Finding and Formula-ions of Finite Element Technique Assuming Nodal Coordinates, 15th Colloquium Analysis and Generation of Structural Shapes and 5) Torigoe, S., Yokosuka, Y. and Honma, T.: From-finding and Formula-Systems, pp.47-52, 2020 (in Japanese)

2. Formulation of beam elements

position coordinate vector r

$$\mathbf{r}(x, y, z) = \mathbf{S}(x, y, z)\mathbf{X} = \begin{bmatrix} r_X & r_Y & r_Z \end{bmatrix}^T \tag{1}$$

· shape function S



• generalized nodal coordinate vector X

 $\overline{\mathbf{S}} = \begin{bmatrix} \mathbf{S}_1 & \mathbf{S}_2 & \mathbf{S}_3 & \mathbf{S}_4 & \mathbf{S}_5 & \mathbf{S}_6 & \mathbf{S}_7 & \mathbf{S}_8 \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} X_i & \frac{\partial r_X}{\partial x} & \frac{\partial r_X}{\partial y} & \frac{\partial r_X}{\partial z} & X_j & \frac{\partial r_X}{\partial x} & \frac{\partial r_X}{\partial y} & \frac{\partial r_X}{\partial z} & \frac{\partial r_X}{\partial y} & \frac{\partial r_X}{\partial z} & \frac$

 $S_1 = 2\xi^3 - 3\xi^2 + 1$ $S_2 = L(\xi^3 - 2\xi^2 + \xi)$ $S_3 = L(1-\xi)\eta$ $S_4 = L(1-\xi)\zeta$

 $Y_i \frac{\partial r_Y}{\partial x} \Big|_i \frac{\partial r_Y}{\partial y} \Big|_i \frac{\partial r_Y}{\partial z} \Big|_i Y_j \frac{\partial r_Y}{\partial x} \Big|_i \frac{\partial r_Y}{\partial y} \Big|_i \frac{\partial r_Y}{\partial z} \Big|_i$

 $S_5 = -2\xi^3 + 3\xi^2$ $S_6 = L(\xi^3 - \xi^2)$

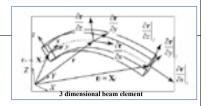
x, y, z: local coordinates, X, Y, Z: global coordinates,

L: initial length, $\xi = x/L$, $\eta = y/L$, $\zeta = z/L$: normalized coordinates

2. Formulation of beam elements

• Green-Lagrange strain γ_x

$$\gamma_x = \frac{1}{2} \left(\frac{\partial \mathbf{r}}{\partial x}^T \frac{\partial \mathbf{r}}{\partial x} - 1 \right) = \frac{1}{2L^2} \mathbf{X}^T \mathbf{G} \mathbf{X} - \frac{1}{2}$$
 (5)



• curvature κ_{v}, κ_{z}

$$\kappa_{y} = -\frac{\partial \mathbf{r}^{T}}{\partial z} \frac{\partial^{2} \mathbf{r}}{\partial x^{2}} = -\frac{1}{2L^{3}} \mathbf{X}^{T} \mathbf{H}_{y} \mathbf{X}$$

· strain-nodal coordinate relation, strain incrementnodal coordinate increment relation

$$\gamma_x = \mathbf{B}_{\gamma} \mathbf{X} - C$$

$$\delta \gamma_{\rm r} = {\bf B}^* \delta {\bf X}$$

$$\kappa_{y} = -\frac{1}{\partial z} \frac{1}{\partial x^{2}} = -\frac{1}{2L^{3}} \mathbf{X} \mathbf{H}_{y} \mathbf{X}
\gamma_{x} = \mathbf{B}_{y} \mathbf{X} - C \qquad \delta \gamma_{x} = \mathbf{B}_{y}^{*} \delta \mathbf{X}
\kappa_{z} = \frac{\partial \mathbf{r}}{\partial y} \frac{\partial^{2} \mathbf{r}}{\partial x^{2}} = \frac{1}{2L^{3}} \mathbf{X}^{T} \mathbf{H}_{z} \mathbf{X} \qquad (6a,b) \qquad \kappa_{y} = \mathbf{B}_{\kappa y} \mathbf{X}
\kappa_{z} = \mathbf{B}_{\kappa z} \mathbf{X} \qquad \delta \kappa_{z} = \mathbf{B}_{\kappa z}^{*} \delta \mathbf{X}$$

$$(6a,b)$$
 $\kappa_y = 1$

$$\delta \kappa_{y} = \mathbf{B}_{\kappa y}^{*} \delta \mathbf{X}$$

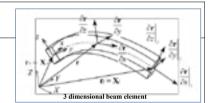
 G, H_v, H_z : constant matrix

6

2. Formulation of beam elements

· virtual work equation

$$\int_{V} \delta \gamma_{x} (\mathbf{X}, \xi) \tau (\mathbf{X}, \xi) dV + \int_{L} \delta \kappa_{y} (\mathbf{X}, \xi) m_{y} (\mathbf{X}, \xi) dx + \int_{L} \delta \kappa_{z} (\mathbf{X}, \xi) m_{z} (\mathbf{X}, \xi) dx = \delta \mathbf{X}^{T} \lambda \mathbf{f}$$
(8)



· discretized equilibrium equation

$$EAL \int_{0}^{1} \mathbf{B}_{\gamma}^{*T} \gamma_{x} d\xi + EI_{y} L \int_{0}^{1} \mathbf{B}_{\kappa y}^{*T} \kappa_{y} d\xi$$
$$+EI_{z} L \int_{0}^{1} \mathbf{B}_{\kappa z}^{*T} \kappa_{z} d\xi - \lambda \mathbf{f} = \mathbf{0}$$
(9)

· constitutive equation

$$\tau = E \gamma_x \qquad m_y = E I_y \kappa_y \label{eq:tau_scale}$$

$$m_z = E I_z \kappa_z \eqno(10 \text{a-c})$$

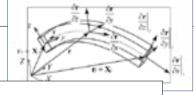
 τ : axial stress m_v, m_z : bending moment

7

2. Formulation of beam elements

· virtual work equation

$$\int_{V} \delta \gamma_{x} (\mathbf{X}, \xi) \tau (\mathbf{X}, \xi) dV + \int_{L} \delta \kappa_{y} (\mathbf{X}, \xi) m_{y} (\mathbf{X}, \xi) dx$$



Notes on numerical calculation

- · Gauss's three-point integration is adopted
- · Reference arrangement by this formulation follows the solution by the total
- Degree of freedom is reduced the reduction operation of $\partial \mathbf{r} / \partial y$, $\partial \mathbf{r} / \partial z$

· discretiz

· Strain and curvature cannot be separated into linear and nonlinear terms.

· No coordinate transformation required.

 $+EI_{z}L$

 m_v, m_z : bending moment

7

0a-c)

3. Comparison of numerical and analytical result (beam in 2D plane)

· second-order differential equation (post buckling)

$$EI\frac{d^{2}v/dx^{2}}{\left\{1+\left(dv/dx\right)^{2}\right\}^{3/2}}=P(\delta-v)$$
 (11)

Material property							
Elastic modulus	Cross-Sectional area	Moment of inertia	Beam length	Buckling load			
2.05×108 kN/m ²	1.0 × 10 ⁻² m ²	1.333×10 ⁶ m ⁴	10 m	26.97 kN			

Exact solution

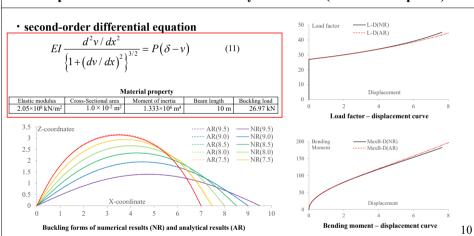
- · Analytical result is expressed by using curvature as rigorous definition.
- · Elliptic integral required.

Numerical solution

- · Numerical analysis uses finite element technique assuming nodal coordinates to trace the equilibrium path by the arc-length method.
- · Initial imperfection of the shape sin function is given.
- · Divide into 50 elements

9

3. Comparison of numerical and analytical result (beam in 2D plane)



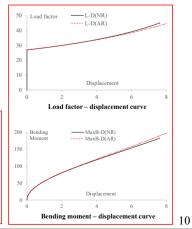
3. Comparison of numerical and analytical result (beam in 2D plane)

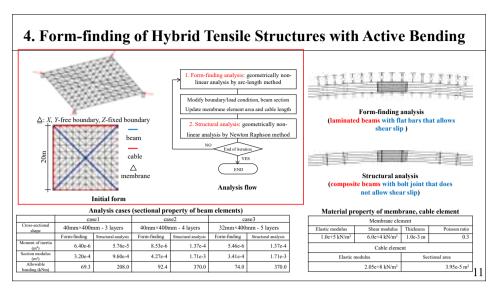
• second-order differential equation $EI = \frac{d^2v/dx^2}{dx^2} - P(\delta - v)$

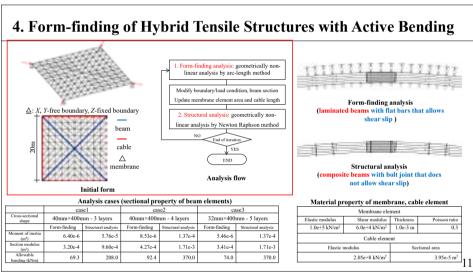
$$EI\frac{d^{2}v/dx^{2}}{\left\{1+\left(\frac{dv}{dx}\right)^{2}\right\}^{3/2}} = P(\delta-v)$$
 (11)

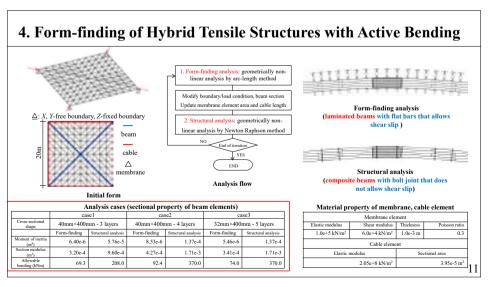
Material property

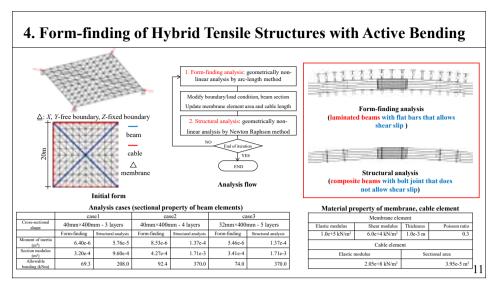
Elastic modulus	Cross-Sectional area	Moment of inertia	Beam length	Buckling load
2.05×108 kN/m2	1.0 × 10 ⁻² m ²	1.333×106 m ⁴	10 m	26.97 kN
3.5 Z-coordn	atee		AR(9.5)	NR(9.5)
3 -		annen de la companya del la companya de la companya	AR(9.0)	NR(9.0)
	MAN AND AND AND AND AND AND AND AND AND A		AR(8.5)	NR(8.5)
2.5 -			······ AR(8.0)	
2 -			AR(7.5)	
	///_	1		
1.5	/// _		1 1 1	
1 - ///			THE	
0.5			111	
0.3	V co	ordinate	1 1 //	
0	Λ=00	ordinate	1 1 1	$\overline{}$
0 1	2 3	4 5 6	7 8	9 10
Bucklin	g forms of numerica	al results (NR) and ar	nalytical results (.	AR)

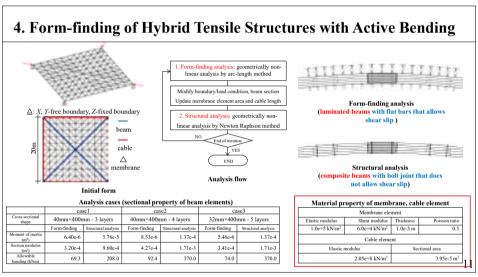


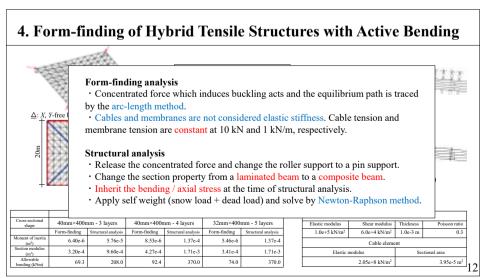


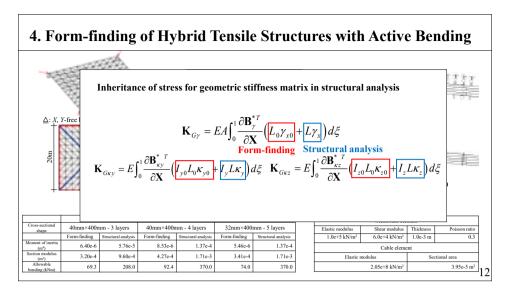


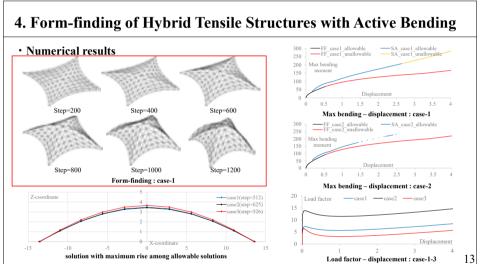


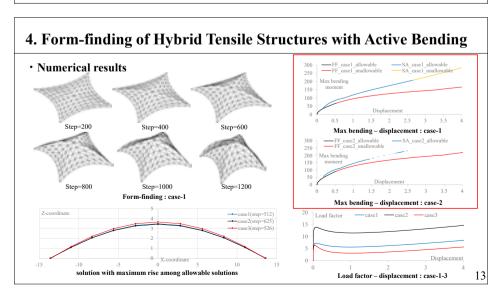




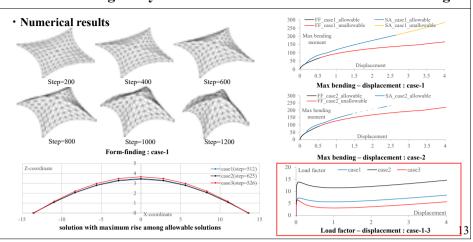




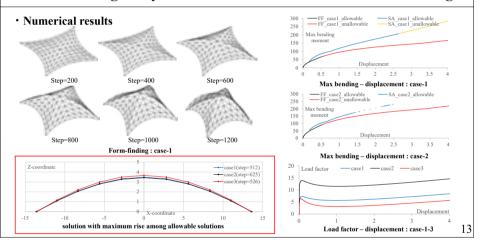




4. Form-finding of Hybrid Tensile Structures with Active Bending



4. Form-finding of Hybrid Tensile Structures with Active Bending



5. Conclusion

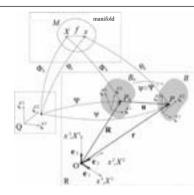
- We show the formulation of the beam element of the finite element technique assuming nodal coordinates, and show the validity of this method by comparing the analytical solution of the buckling form of the beam in the two-dimensional plane and the result of numerical analysis.
- We showed that allowable solutions for each analysis can be obtained by performing form-finding and stress displacement analysis of the hybrid tensile structure, and proposed a bending-active structure by using this method.
- It is possible to inherit the axial stress and bending stress by active bending even if the cross-sectional shape changes in each analysis by dividing it into two stages.

14

Nonlinear Finite Element Method by Embedded **Coordinates: Membrane Elements**

Yohei YOKOSUKA Graduate School of Science and Engineering, Kagoshima university

1.1 Coordinate systems and position vectors



The interior region of an object is regarded as a manifold M

An embedded coordinate system Q is given as local coordinates that describe arbitrary positions and physical quantities inside an object.

The global (Cartesian) coordinate system R is given as the coordinates in which the object is placed.

· Deformation :

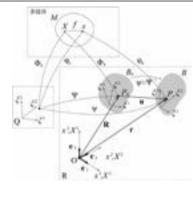
$$c = f(X) \tag{1}$$

* Embedded coordinates of points X, x are equal:

$$\Phi_{Q}(X) = \varphi_{Q}(f(X)) \tag{2}$$

• Mapping from embedded coordinates to global coordinates before/after deformation: $\Psi = \Phi_{R} \circ \Phi_{Q}^{-1}, \ \psi = \varphi_{R} \circ \varphi_{Q}^{-1} \qquad (3)$

1.1 Coordinate systems and position vectors



- · Global coordinate system
- X^1, X^2, X^3 (4)
- · Orthonormal basis in global
- $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ (5)
- · Embedded coordinates ξ^1,ξ^2,ξ^3
- · Position vectors before deformation
- $\mathbf{R} = X^i \mathbf{e}_i$
- · Position vectors after deformation $\mathbf{r} = x^i \left(X^1, X^2, X^3 \right) \mathbf{e}_i$ (8)
- · Displacement vectors
- (9) · Representation of Embedded coordinates
- $X^{i} = X^{i}(\xi^{1}, \xi^{2}, \xi^{3})$
- (10) $x^i = x^i \left(\xi^1, \xi^2, \xi^3 \right)^i$

1.2 Strain

· Transformation of continuum

Let the material point \mathbf{R} and its neighborhood $\mathbf{R} + d\mathbf{R}$ be a point.

Infinitesimal vector $d\mathbf{R}$:

$$\frac{\partial \mathbf{R}}{\partial X^{i}} = \mathbf{e}_{i}, \ d\mathbf{R} = \frac{\partial \mathbf{R}}{\partial X^{i}} dX^{i} = dX^{i} \mathbf{e}_{i}$$
 (11)

infinitesimal vector $\mathbf{d}\mathbf{R}$: $\frac{\partial \mathbf{R}}{\partial X^i} = \mathbf{e}_i, \quad \mathbf{d}\mathbf{R} = \frac{\partial \mathbf{R}}{\partial X^i} dX^i = dX^i \mathbf{e}_i \qquad (11)$ The infinitesimal vector after deformation is represented as a linear mapping of the infinitesimal vector before deformation as follows

Infinitesimal vector dr:

$$d\mathbf{r} = \mathbf{F} \cdot d\mathbf{R} \tag{12}$$

F : Deformation gradient tensor

Deformation gradient tensor ${\bf F}\,$:

$$\mathbf{F} = \frac{\partial x^i}{\partial X^j} \mathbf{e}_i \otimes \mathbf{e}_j \tag{131}$$

1.2 Strain

· Green-Lagrange strain1 (coordinate type)

Strain is defined as the difference in the inner product of an infinitesimal vector before and after

$$d\mathbf{r} \cdot d\mathbf{r} - d\mathbf{R} \cdot d\mathbf{R} = (\mathbf{F} \cdot d\mathbf{R}) \cdot (\mathbf{F} \cdot d\mathbf{R}) - d\mathbf{R} \cdot d\mathbf{R}$$

$$= d\mathbf{R}^{T} (\mathbf{F}^{T} \mathbf{F}) d\mathbf{R} - d\mathbf{R}^{T} d\mathbf{R}$$
(14)

$$= d\mathbf{R}^T (\mathbf{F}^T \mathbf{F} - \mathbf{I}) d\mathbf{R}$$

Green-Lagrange strain ${\bf E}$:

$$\mathbf{E} = \frac{1}{2} (\mathbf{F}^T \mathbf{F} - \mathbf{I}) \tag{15}$$

Green-Lagrange strain can be expressed in coordinates only, but the linear and nonlinear parts cannot be separated; when Green-Lagrange strain is employed, it becomes a nonlinear finite element method.

1.2 Strain

· Green-Lagrange strain2 (displacement type)

Deformation gradient tensor
$$\mathbf{Z}$$
:

$$\mathbf{Z} = \nabla \otimes \mathbf{u} = \frac{\partial u_i}{\partial X^j} \mathbf{e}_i \otimes \mathbf{e}_j$$
(16)

$$\nabla \equiv \frac{\partial}{\partial X^{j}} \mathbf{e}_{j} \tag{17}$$

whereas,
$$\mathbf{Z} \cdot \mathbf{dR} = \left(\frac{\partial u_i}{\partial X^J} \mathbf{e}_i \otimes \mathbf{e}_j\right) \cdot \mathbf{d}X^k \mathbf{e}_k = \frac{\partial u_i}{\partial X^J} \cdot \mathbf{d}X^k \left(\mathbf{e}_i \otimes \mathbf{e}_j\right) \cdot \mathbf{e}_k = \frac{\partial u_i}{\partial X^J} \cdot \mathbf{d}X^k \delta_{jk} \mathbf{e}_i$$

$$= \frac{\partial u_i}{\partial X^J} \cdot \mathbf{d}X^J \mathbf{e}_i = \frac{\partial \mathbf{u}}{\partial X^J} \cdot \mathbf{d}X^J = \mathbf{d}\mathbf{u}$$
(18)

$$(\mathbf{I} + \mathbf{Z}) \cdot d\mathbf{R} = d\mathbf{R} + d\mathbf{u} = d(\mathbf{R} + \mathbf{u}) = d\mathbf{r}, \quad (\mathbf{I} + \mathbf{Z}) = \mathbf{F}$$
(19)

1.2 Strain

 • Green-Lagrange strain 2 (displacement type) Green-Lagrange strain $\ E$:

Green-Lagrange statin
$$\mathbf{E}$$
.
$$\mathbf{E} = \frac{1}{2} \left\{ \nabla \otimes \mathbf{u} + \left(\nabla \otimes \mathbf{u} \right)^T + \left(\nabla \otimes \mathbf{u} \right)^T \cdot \left(\nabla \otimes \mathbf{u} \right) \right\}$$

$$= \frac{1}{2} \left(\frac{\partial u_i}{\partial X^J} + \frac{\partial u_j}{\partial X^I} + \frac{\partial u_k}{\partial X^J} \frac{\partial u_k}{\partial X^J} \right) \mathbf{e}_i \otimes \mathbf{e}_j$$
(20)

1.3 Embedded coordinates and covariant and contravariant bases

Covariant and Contravariant basis vectors

 • Covariant and Contravariant basis vectors Let the material point R and its neighborhood $R+\mbox{\rm d} R$ be a point.

Covariant basis vectors \mathbf{g}_i ,

Contravariant basis vectors g':

$$\mathbf{g}' \cdot \mathbf{g}_{j} = \delta'_{j}, \quad \begin{cases} \delta'_{j} = 1, \quad i = j \\ \delta'_{j} = 0, \quad i \neq j \end{cases}$$

$$\mathbf{g}' \cdot \mathbf{g}' = \mathbf{g}'', \quad \mathbf{g}_{i} \cdot \mathbf{g}_{j} = \mathbf{g}_{ij}$$

$$\mathbf{g}_{i} = \mathbf{g}_{ij} \mathbf{g}', \quad \mathbf{g}' = \mathbf{g}''' \mathbf{g}_{j}$$

$$(21)$$

The other basis vector is determined by determining \mathbf{g}_r or \mathbf{g}' from the geometric relationship. The vector \mathbf{V} in the figure can be expressed in two ways.

$$\mathbf{v} = v_i \mathbf{g}^i = v^i \mathbf{g}_i$$

$$v_i = g_{ii} v^j, v^i = g^{ij} v_i$$
(22)

1.3 Embedded coordinates and covariant and contravariant bases

· Covariant and Contravariant basis vectors

$$\mathbf{g}^{i} = \frac{\mathbf{g}_{j} \times \mathbf{g}_{k}}{(\mathbf{g}_{1} \times \mathbf{g}_{2}) \cdot \mathbf{g}_{3}}, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \quad (23)$$

Covariant and Contravariant basis vectors

1.3 Embedded coordinates and covariant and contravariant bases

The components of the infinitesimal vector $d\xi^i$, dX^i , dX^i have the following relationship

$$d\xi^{i} = \frac{\partial \xi^{i}}{\partial X^{j}} dX^{j}, \quad dX^{i} = \frac{\partial X^{i}}{\partial \xi^{j}} d\xi^{j}, \quad dx^{i} = \frac{\partial x^{i}}{\partial \xi^{j}} d\xi^{j}, \quad d\xi^{i} = \frac{\partial \xi^{i}}{\partial x^{j}} dx^{j}$$
 (24)

Covariant and contravariant basis vectors before transformation
$$\mathbf{G}_{i}$$
, \mathbf{G}' :
$$\mathbf{G}_{i} = \frac{\partial X'}{\partial \xi'} \mathbf{e}_{j} - \frac{\partial \mathbf{R}}{\partial \xi'}, \quad \mathbf{G}' = \frac{\partial \xi'}{\partial X'} \mathbf{e}' = G^{ij} \mathbf{G}_{j}$$
(25)

Infinitesimal vector with embedded coordinates before deformation dR:

$$d\mathbf{R} = \mathbf{G}_i d\xi^i = \mathbf{G}^i d\xi_i \tag{26}$$

Covariant and contravariant basis vectors after transformation $\mathbf{g}_{i}, \mathbf{g}^{i}$:

$$\mathbf{g}_{i} = \frac{\partial x^{i}}{\partial \xi^{g}} \mathbf{e}_{j} = \frac{\partial \mathbf{r}}{\partial \xi^{f}}, \ \mathbf{g}^{i} = \frac{\partial \xi^{f}}{\partial x^{i}} \mathbf{e}^{j} = g^{g} \mathbf{g}_{j}$$
Infinitesimal vector with embedded coordinates after deformation dr:

$$d\mathbf{r} = \mathbf{g}_i d\xi^i = \mathbf{g}^i d\xi_i \tag{28}$$

1.3 Embedded coordinates and covariant and contravariant bases

Product of covariant basis vectors before and after transformation

$$\mathbf{G}_i \cdot \mathbf{G}_j = G_{ij}, \ \mathbf{g}_i \cdot \mathbf{g}_j = g_{ij} \tag{29}$$

Green-Lagrange strain E:

$$E_{ij} = \frac{1}{2} (\mathbf{g}_{ij} - G_{ij}), \ \mathbf{E} = \frac{1}{2} (\mathbf{g}_{ij} - G_{ij}) (\mathbf{G}^i \otimes \mathbf{G}^j)$$

$$(30)$$

This can be considered as follows.

$$d\mathbf{R} = \mathbf{G}_i d\xi^i, \ d\mathbf{r} = \mathbf{g}_i d\xi^i$$

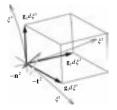
$$\mathbf{g}_i = (\mathbf{g}_i \otimes \mathbf{G}^i) \cdot \mathbf{G}_i$$

$$d\mathbf{r} = \mathbf{g}_i d\xi^i = (\mathbf{g}_i \otimes \mathbf{G}^i) \cdot \mathbf{G}_i d\xi^i = \mathbf{F} d\mathbf{R}$$
(31)

$$\mathbf{F} = \mathbf{g}_i \otimes \mathbf{G}^i, \ \mathbf{F}^T \mathbf{F} = \left(\mathbf{G}^i \otimes \mathbf{g}_i \right) \left(\mathbf{g}_j \otimes \mathbf{G}^j \right) = \mathbf{g}_i \cdot \mathbf{g}_j \left(\mathbf{G}^i \otimes \mathbf{G}^j \right) = \mathbf{g}_{ij} \left(\mathbf{G}^i \otimes \mathbf{G}^j \right)$$

$$\mathbf{I} = (\mathbf{G}^{i} \otimes \mathbf{G}_{i})(\mathbf{G}_{i} \otimes \mathbf{G}^{j}) = \mathbf{G}_{i} \cdot \mathbf{G}_{i}(\mathbf{G}^{i} \otimes \mathbf{G}^{j}) = G_{ii}(\mathbf{G}^{i} \otimes \mathbf{G}^{j})$$

2.1 Equilibrium of force



Parallel Hexahedron equilibrium

The equilibrium of force after deformation acting on a parallel hexahedron with a width of $d\xi^i$ in the direction from point $(\xi_0^1, \xi_0^2, \xi_0^3)$ to ξ^i in the object is

$$\left(\mathbf{t}^{i} + \frac{\partial \mathbf{t}^{i}}{\partial \xi^{i}} d\xi^{i}\right) ds_{i} - \mathbf{t}^{i} ds_{i} + \rho \mathbf{f} dv = \mathbf{0}$$
(32)

where \mathbf{t}^i : Cauchy stress vector, \mathbf{f} : force in unit volume, $\boldsymbol{\rho}$: density.

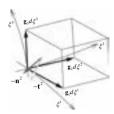
· Cauchy stress tensor T

$$T^{ij}(\mathbf{g}_i \otimes \mathbf{g}_j) \equiv \mathbf{T}, \ \mathbf{T}\mathbf{n}^i = \mathbf{t}^i$$
 (33)

· Equilibrium equation

$$\frac{\partial \mathbf{T}}{\partial \xi^{i}} \mathbf{n}^{i} ds_{i} d\xi^{i} + \rho \mathbf{f} dv = \mathbf{0}$$
(34)

2.1 Equilibrium of force



Parallel Hexahedron equilibrium

· Equilibrium equation

From the relation of the following equation

$$\mathbf{n}^{i} \mathbf{d} s_{i} \mathbf{d} \xi^{i} = \mathbf{g}^{i} \mathbf{d} v \tag{35}$$

The equilibrium equation becomes

$$\frac{\partial \mathbf{T}}{\partial \xi^i} \mathbf{g}^i \mathbf{d}v + \rho \mathbf{f} \mathbf{d}v = \mathbf{0}$$
 (36)

Furthermore, from the following formula defining nabla,

$$\nabla \equiv \mathbf{g}^{j} \frac{\partial}{\partial \xi^{j}} \tag{37}$$

The equilibrium equation becomes

$$(\nabla \cdot \mathbf{T} + \rho \mathbf{f}) dv = \mathbf{0}$$
 (38)

2.2 Second Piola-Kirchhoff Stress

The Cauchy stress tensor represents stress in a equilibrium state after deformation.

The second Piola-Kirchhoff stress is used to express stresses with respect to the shape before deformation. Consider pulling the Cauchy stress tensor back to its before deformation state.

The pullback of $t^{s}ds$ multiplied by the Cauchy stress vector multiplied by a infinitesimal area is

$$\mathbf{F}^{-1}\mathbf{T}\mathbf{n}\mathrm{d}s = \mathbf{S}\mathbf{N}\mathrm{d}S\tag{39}$$

The following Nanson formula is used here.

$$\mathbf{n}ds = (\det \mathbf{F})\mathbf{F}^{-\mathsf{T}}\mathbf{N}dS \tag{40}$$

From equations (39) and (40), the following equation can be derived

$$\mathbf{F}^{-1}\mathbf{T}(\det \mathbf{F})\mathbf{F}^{-T}\mathbf{N}dS = \mathbf{S}\mathbf{N}dS \tag{41}$$

The stress tensor $\, {f S} \,$ becomes

$$\mathbf{S} = \mathbf{F}^{-1} \mathbf{T} \big(\det \mathbf{F} \big) \mathbf{F}^{-T}$$

$$= (\det \mathbf{F}) T^{ij} (\mathbf{G}_i \otimes \mathbf{g}^i) (\mathbf{g}_i \otimes \mathbf{g}_j) (\mathbf{g}^j \otimes \mathbf{G}_j) = (\det \mathbf{F}) T^{ij} (\mathbf{g}^i \cdot \mathbf{g}_i) (\mathbf{g}_j \cdot \mathbf{g}^j) (\mathbf{G}_i \otimes \mathbf{G}_j)$$
(42)
$$= (\det \mathbf{F}) T^{ij} (\mathbf{G}_i \otimes \mathbf{G}_j)$$

2.2 Second Piola-Kirchhoff Stress

 ${\bf S}_-$ is the second Piola-Kirchhoff stress. If the component S^y of ${\bf S}$, we obtain the following equation.

$$\mathbf{S} = S^{ij} \left(\mathbf{G}_i \otimes \mathbf{G}_j \right) \tag{43}$$

The basis of the second Piola-Kirchhoff stress tensor shows a correspondence with the Green-Lagrange strain.

3.1 Constitutive equation of linear elastic body

From the relationship between the second Piola-Kirchhoff stress and Green-Lagrange strain components, the constitutive equation can be expressed as follows.

$$S^{ij} = C^{ijkl}E_{kl} \tag{44}$$

where the second Piola-Kirchhoff stress tensor $\, S \,$ and Green-Lagrange $E \,$ strain are expressed as

$$S = S^{ij}(G_i \otimes G_j), E = E_{ij}(G^i \otimes G^j)$$
(45)

The elasticity tensor is expressed as

$$\mathbf{C} = C^{ijkl} \left(\mathbf{G}_i \otimes \mathbf{G}_j \otimes \mathbf{G}_k \otimes \mathbf{G}_l \right)$$

The constitutive equation can be expressed as follows

$$= \mathbf{C} : \mathbf{E} \tag{47}$$

(46)

(48)

$$\mathbf{C}: \mathbf{E} = \left(C^{ijkl}\mathbf{G}_{i} \otimes \mathbf{G}_{j} \otimes \mathbf{G}_{k} \otimes \mathbf{G}_{l}\right): \left(E_{mn}\mathbf{G}^{m} \otimes \mathbf{G}^{n}\right)$$

$$= C^{ijkl} E_{mn} (\mathbf{G}_i \otimes \mathbf{G}_j \otimes \mathbf{G}_k \otimes \mathbf{G}_l) : (\mathbf{G}^m \otimes \mathbf{G}^n)$$

$$= C^{ijkl} E_{mn} (\mathbf{G}_i \otimes \mathbf{G}_j) (\mathbf{G}_k \cdot \mathbf{G}^m) (\mathbf{G}_l \cdot \mathbf{G}^n)$$

$$= C^{ijkl} E_{mn} \delta_k^m \delta_l^m (\mathbf{G}_i \otimes \mathbf{G}_j) = C^{ijkl} E_{kl} (\mathbf{G}_i \otimes \mathbf{G}_j)$$

3.2 Constitutive equation of linear elastic body

$$C^{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} \right) \tag{49}$$

where $\,\lambda\,,\mu$ are Lame constants, can be expressed using the elastic modulus $\,E\,$ and Poisson's ratio $\,V\,$ as follows.

$$\begin{cases} \lambda = \frac{vE}{(1+v)(1-2v)} \\ \mu = \frac{E}{2(1+v)} \end{cases}$$
 (50)

4.1 principle of virtual work

$$\int_{\Omega} (\nabla \cdot \mathbf{T} + \rho \mathbf{f}) \cdot \delta \mathbf{r} dv = 0$$
(51)

where $\delta {f r}$: virtual displacement, Ω : area of the object.

The following relationship exists.

$$\nabla \cdot (\mathbf{T} \delta \mathbf{r}) = \mathbf{T} : (\nabla \otimes \delta \mathbf{r}) + (\nabla \cdot \mathbf{T}) \cdot \delta \mathbf{r}$$
(52)

Using the above equation and Gauss' divergence theorem, the internal force work of the virtual work becomes

$$\int_{\Omega} (\nabla \cdot \mathbf{T}) \cdot \delta \mathbf{r} \, dv = -\int_{\Omega} \mathbf{T} : (\nabla \otimes \delta \mathbf{r}) \, dv + \int_{\Omega} \nabla \cdot (\mathbf{T} \delta \mathbf{r}) \, dv$$
(53)

The principle of virtual work is as follows.

$$-\int_{\Omega} \mathbf{T} : (\nabla \otimes \delta \mathbf{r}) d\nu + \int_{\Omega} \nabla \cdot (\mathbf{T} \delta \mathbf{r}) d\nu + \int_{\Omega} \rho \mathbf{f} \cdot \delta \mathbf{r} d\nu = 0$$

$$\Leftrightarrow \int_{\Omega} \mathbf{T} : (\nabla \otimes \delta \mathbf{r}) d\nu = \int_{\Omega} \nabla \cdot (\mathbf{T} \delta \mathbf{r}) d\nu + \int_{\Omega} \rho \mathbf{f} \cdot \delta \mathbf{r} d\nu$$

$$\Leftrightarrow \int_{\Omega} \mathbf{T} : (\nabla \otimes \delta \mathbf{r}) d\nu = \int_{\Gamma} \mathbf{n} \cdot (\mathbf{T} \delta \mathbf{r}) ds + \int_{\Omega} \rho \mathbf{f} \cdot \delta \mathbf{r} d\nu$$
(54)

4.1 principle of virtual work

From the symmetry of T, we obtain

$$\mathbf{T}: (\nabla \otimes \delta \mathbf{r}) = \frac{1}{2} \mathbf{T}: (\nabla \otimes \delta \mathbf{r}) + \frac{1}{2} \mathbf{T}^{T}: (\nabla \otimes \delta \mathbf{r})^{T}$$

$$= \frac{1}{2} \mathbf{T}: (\nabla \otimes \delta \mathbf{r}) + \frac{1}{2} \mathbf{T}: (\nabla \otimes \delta \mathbf{r})^{T} = \mathbf{T}: \frac{1}{2} \left\{ \left[(\nabla \otimes \delta \mathbf{r}) + (\nabla \otimes \delta \mathbf{r})^{T} \right] \right\}$$
(55)

The mechanical and geometric boundary conditions are given as follows

$$\mathbf{T}\mathbf{n} = \overline{\mathbf{t}} \quad (\text{on } \Gamma_t), \ \mathbf{r} = \overline{\mathbf{r}} \quad (\text{on } \Gamma_x)$$
 (56)

From the geometric boundary conditions, the following relationship holds

$$\delta \mathbf{r} = \mathbf{0} \quad \text{(on } \Gamma_x \text{)} \tag{57}$$

Based on the above, the principle of virtual work becomes

$$\int_{\Omega} \mathbf{T} : \left\{ \frac{1}{2} \left[(\nabla \otimes \delta \mathbf{r}) + (\nabla \otimes \delta \mathbf{r})^{T} \right] \right\} dv = \int_{\Gamma_{r}} \mathbf{\bar{t}} \cdot \delta \mathbf{r} \, ds + \int_{\Omega} \rho \mathbf{f} \cdot \delta \mathbf{r} \, dv$$
 (58)

4.2 Pulling back the principle of virtual work

Next, we derive the principle of virtual work in a microvolume before deformation.

The surface force vector $\frac{1}{\mathbf{t}}$ ds in a infinitesimal can be expressed as

$$\overline{\mathbf{t}}ds = \mathbf{T}\mathbf{n}ds = \mathbf{T}\left(\det\mathbf{F}\right)\mathbf{F}^{-T}\mathbf{N}dS = \frac{1}{\det\mathbf{F}}\mathbf{F}\mathbf{S}\mathbf{F}^{T}\left(\det\mathbf{F}\right)\mathbf{F}^{-T}\mathbf{N}dS = \mathbf{F}\mathbf{S}\mathbf{N}dS$$
(59)

From the law of conservation of mass before and after deformation, density ρ satisfies the following relation with density ρ_0 before deformation.

$$\rho dv = \rho_0 dV \tag{60}$$

As the interior region Ω_0 and boundary region Γ_{0r} , Γ_{0r} before deformation, the mechanical and geometric boundary conditions can be expressed as follows

$$\begin{aligned}
\mathbf{FSN} &= \tilde{\mathbf{t}} \quad \left(\text{on } \Gamma_{0r} \right) \\
\mathbf{r} &= \overline{\mathbf{r}} \quad \left(\text{on } \Gamma_{0x} \right)
\end{aligned} \tag{61}$$

4.2 Pulling back the principle of virtual work

Based on the above, the principle of virtual work becomes.

$$\int_{\Omega} \mathbf{T} : \left\{ \frac{1}{2} \left[(\nabla \otimes \delta \mathbf{r}) + (\nabla \otimes \delta \mathbf{r})^{T} \right] \right\} dv = \int_{\Gamma_{0_{\mathbf{i}}}} \tilde{\mathbf{t}} \cdot \delta \mathbf{r} dS + \int_{\Omega_{0}} \rho_{0} \mathbf{f} \cdot \delta \mathbf{r} dV$$
(62)

The internal force work on the left side can be expressed as

$$T: \left\{ \frac{1}{2} \left[\left(\nabla \otimes \delta \mathbf{r} \right) + \left(\nabla \otimes \delta \mathbf{r} \right)^{T} \right] \right\} dv$$

$$= \left(\frac{1}{\det \mathbf{F}} \mathbf{F} \mathbf{S} \mathbf{F}^{T} \right) : \left\{ \frac{1}{2} \left[\left(\mathbf{g}^{\prime} \frac{\partial}{\partial \xi^{r}} \otimes \delta \mathbf{r} \right) + \left(\delta \mathbf{r} \otimes \mathbf{g}^{\prime} \frac{\partial}{\partial \xi^{r}} \right) \right] \right\} (\det \mathbf{F}) dV$$

$$= \left(\frac{1}{\det \mathbf{F}} \mathbf{F} \mathbf{S} \mathbf{F}^{T} \right) : \left\{ \frac{1}{2} \left[\left(\mathbf{g}^{\prime} \otimes \frac{\partial \delta \mathbf{r}}{\partial \xi^{r}} \right) + \left(\frac{\partial \delta \mathbf{r}}{\partial \xi^{r}} \otimes \mathbf{g}^{\prime} \right) \right] \right\} (\det \mathbf{F}) dV$$

$$= \left(\frac{1}{\det \mathbf{F}} \mathbf{F} \mathbf{S} \mathbf{F}^{T} \right) : \left\{ \frac{1}{2} \left[\left(\mathbf{g}^{\prime} \otimes \delta \mathbf{g}_{r} \right) + \left(\delta \mathbf{g}_{r} \otimes \mathbf{g}^{\prime} \right) \right] \right\} (\det \mathbf{F}) dV$$

$$= \left(\mathbf{F} \mathbf{S} \mathbf{F}^{T} \right) : \left\{ \frac{1}{2} \left[\left(\mathbf{g}^{\prime} \otimes \delta \mathbf{g}_{r} \right) + \left(\delta \mathbf{g}_{r} \otimes \mathbf{g}^{\prime} \right) \right] \right\} dV$$

$$(63)$$

4.2 Pulling back the principle of virtual work

Transform the term
$$\left[(\mathbf{g}' \otimes \delta \mathbf{g}_s) + (\delta \mathbf{g}_s \otimes \mathbf{g}') \right]$$
.

$$\frac{1}{2} \left[(\mathbf{g}' \otimes \delta \mathbf{g}_s) + (\delta \mathbf{g}_s \otimes \mathbf{g}') \right]$$

$$= \frac{1}{2} \left[(\mathbf{g}' \otimes \delta \mathbf{g}_s) + (\delta \mathbf{g}_s \otimes \mathbf{g}') \right]$$

$$= \frac{1}{2} \left[(\delta_s' \otimes \mathbf{g}_s) (\mathbf{g}' \otimes \delta \mathbf{g}_s) (\mathbf{g}_s \otimes \mathbf{g}') + (\mathbf{g}' \otimes \mathbf{g}_s) (\delta \mathbf{g}_s \otimes \mathbf{g}') (\mathbf{g}_s \otimes \mathbf{g}^s) \right]$$

$$= \frac{1}{2} \left[(\delta_s' \cdot \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') + (\mathbf{g}_s \cdot \delta \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') \right]$$

$$= \frac{1}{2} \left[(\delta \mathbf{g}_s \cdot \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') + (\mathbf{g}_s \cdot \delta \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') \right]$$

$$= \frac{1}{2} \left[(\delta \mathbf{g}_s \cdot \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') + (\mathbf{g}_s \cdot \delta \mathbf{g}_s) (\mathbf{g}' \otimes \mathbf{g}') \right]$$
Here, the following relationship is used
$$(\mathbf{g}' \otimes \mathbf{g}_s) (\mathbf{g}_s \otimes \mathbf{g}') = \mathbf{g}_s \cdot \mathbf{g}_s (\mathbf{g}' \otimes \mathbf{g}') = \mathbf{I}$$
(65)

4.2 Pulling back the principle of virtual work

It can be expressed as a deformation gradient tensor ${\bf F}^T={\bf G}^i\otimes {\bf g}_i, {\bf F}={\bf g}_i\otimes {\bf G}^i$, and the internal force work can be expressed as

$$T : \left\{ \frac{1}{2} \left[(\nabla \otimes \delta \mathbf{r}) + (\nabla \otimes \delta \mathbf{r})^T \right] \right\} dv$$

$$= (\mathbf{F}\mathbf{S}\mathbf{F}^T) : \left[\frac{1}{2} (\delta \mathbf{g}_i \cdot \mathbf{g}_j + \mathbf{g}_i \cdot \delta \mathbf{g}_j) (\mathbf{g}^t \otimes \mathbf{g}^t) \right] dV$$

$$= \mathbf{S} : \mathbf{F}^T \left[\frac{1}{2} (\delta \mathbf{g}_i \cdot \mathbf{g}_j + \mathbf{g}_i \cdot \delta \mathbf{g}_j) (\mathbf{g}^t \otimes \mathbf{g}^t) \right] \mathbf{F} dV$$

$$= \mathbf{S} : \left[\frac{1}{2} (\delta \mathbf{g}_i \cdot \mathbf{g}_j + \mathbf{g}_i \cdot \delta \mathbf{g}_j) (\mathbf{G}^t \otimes \mathbf{g}^t) (\mathbf{g}_j \otimes \mathbf{g}^t) (\mathbf{g}_j \otimes \mathbf{G}^t) \right] dV$$

$$= \mathbf{S} : \left[\frac{1}{2} (\delta \mathbf{g}_i \cdot \mathbf{g}_j + \mathbf{g}_i \cdot \delta \mathbf{g}_j) (\mathbf{G}^t \otimes \mathbf{G}^t) \right] dV$$

$$= \mathbf{S} : \left[\frac{1}{2} (\delta \mathbf{g}_i \cdot \mathbf{g}_j + \mathbf{g}_i \cdot \delta \mathbf{g}_j) (\mathbf{G}^t \otimes \mathbf{G}^t) \right] dV$$

$$= \mathbf{S} : \left[\frac{1}{2} \delta (\mathbf{g}_i \cdot \mathbf{g}_j) (\mathbf{G}^t \otimes \mathbf{G}^t) \right] dV$$

4.2 Pulling back the principle of virtual work

Here, from the definition of Green-Lagrange strain, the internal force work can be expressed as follows

$$E_{y} = \frac{1}{2} (\mathbf{g}_{i} \cdot \mathbf{g}_{j} - \mathbf{G}_{i} \cdot \mathbf{G}_{j}) = \frac{1}{2} (\mathbf{g}_{i} \cdot \mathbf{g}_{j} - (\text{constant})),$$

$$\mathbf{S} : \left[\frac{1}{2} \delta (\mathbf{g}_{i} \cdot \mathbf{g}_{j}) (\mathbf{G}^{i} \otimes \mathbf{G}^{j}) \right] dV$$

$$= \mathbf{S} : \left[\delta E_{y} (\mathbf{G}^{i} \otimes \mathbf{G}^{j}) \right] dV = \mathbf{S} : \delta \mathbf{E} dV$$
(69)

From the above, the principle of virtual work in a small volume before deformation becomes $\int_{\Omega_k} \mathbf{S} \cdot \delta \mathbf{E} \mathrm{d} V = \int_{\Gamma_k} \tilde{\mathbf{t}} \cdot \delta \mathbf{r} \, \mathrm{d} S + \int_{\Omega_k} \rho_0 \mathbf{f} \cdot \delta \mathbf{r} \, \mathrm{d} V \tag{70}$

where a: virtual strain tensor. From the above equation deformation, we obtain from the balancing equation expressed in terms of the Cauchy stress tensor referring to after deformation, the second Piola-Kirchhoff stress tensor referring to before deformation, and the virtual work principle expressed in terms of Green-Lagrange strain.

4.2 Pulling back the principle of virtual work

Next, consider pulling back the equilibrium equation to the before deformation state using the virtual displacement $\delta {f u}$. However, instead of the Cauchy stress, the first Piola-Kirchhoff stress Virtual displacement θ . However, instead of the Catachy areas, the fact element after deformation as a stress vector translated before deformation and not including rotation.

$$\mathbf{\Pi} = \det(\mathbf{F})\mathbf{F}^{-1}\mathbf{T} = \mathbf{S}\mathbf{F}^{T}$$
(71)

 Π is not a symmetric tensor. Therefore, from Eq. (55),

$$\left(\frac{1}{\det \mathbf{F}}\mathbf{\Pi}\right)^{T} : (\nabla \otimes \delta \mathbf{u}) d\nu
= \mathbf{\Pi}^{T} : (\nabla \otimes \delta \mathbf{u}) dV = (\mathbf{S}\mathbf{F}^{T})^{T} : \delta \mathbf{Z} dV = (\mathbf{S}\mathbf{F}^{T})^{T} : \delta \mathbf{F} dV
= \mathbf{S}^{T} : \mathbf{F}^{T} \delta \mathbf{F} dV = \mathbf{S} : \mathbf{F}^{T} \delta \mathbf{F} dV = \mathbf{S} : \delta \left(\frac{1}{2}\mathbf{F}^{T}\mathbf{F}\right) dV
= \mathbf{S} : \delta \mathbf{E} dV$$
(72)

4.2 Pulling back the principle of virtual work

Following the strict formulation, $\delta \mathbf{r}$ obtain the clearer result.

The total Lagrange method with the reference configuration as the initial configuration is suitable for case $\delta {\bf r}$, and the updated Lagrange method with the reference configuration as the current configuration is suitable for case $\delta {\bf u}$.

5 References

- 1) Miyazaki, Y., An introduction Gossamer multi-body dynamics (in Japanese) https://stage.tksc.jaxa.jp/taurus/member/miyazaki/old/lecture/GMD.pdf 2) Yasuhisa Noguchi, Toshiaki Hisada, Fundamentals and Applications of Nonlinear Finite Element Methods, Matuzen, 1995 (in Japanese)
- 3) Green, A.E., W,Zerna, Theoretical Elasticity, 1968

Piecewise constant mean curvature surfaces

Kazuki Hayashi (Kyoto University)
Yoshiki Jikumaru (Toyo University)
Makoto Ohsaki (Kyoto University)
Takashi Kagaya (Muroran Institute of Technology)
Yohei Yokosuka (Kagoshima University)

Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169.

Mean curvature flow

• Move vertex positions using mean curvature and normal vector

 $\nabla \mathbf{p}_i = -(H_i - \overline{H})\vec{\mathbf{n}}_i$

 $abla \mathbf{p}_i$: Change in the location of node i

 H_i : Mean curvature at node i

 ${\it H}$: Target mean curvature

 $\vec{\mathbf{n}}_i$: Unit normal vector at node i

 $\nabla \mathbf{p}_i$ \mathbf{p}_i

Node i

• The stationary point of mean curvature flow has a constant mean curvature (CMC) $\bar{H}\,$ at each vertex

2

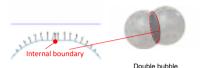
Can we benefit from constant mean curvatures?

- Bezier, NURBs, T-spline etc. (params.: control net)
 We can create almost any surface (≠ feasible as structural design)
- Mean curvature flow (params.: target mean curvatures)
- → satisfy equilibrium condition for pressure load

Havashi et al. "Mean curvature flow for generating discrete surfaces with piecewise constant mean curvatures". Computer Aided Geometric Design. 2023.

CMC with internal boundary

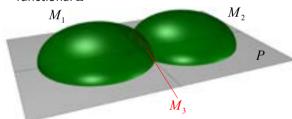
- The resulting surfaces are too simple when mean curvature flow is applied to a single closed surface
- By allowing G0 continuous internal boundaries, various shapes can be generated



⇒Derive curvature flow to obtain piecewise CMC (p-CMC) surfaces based on the variational principle

Variational problem (continuous case)

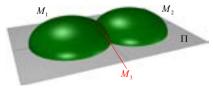
- Define a plane P and two patches M_1 and M_2
- Define another plane M_2 bounded by P and patch intersection
- Determine surface transformation from the variation of energy functional E



Volume of enclosed domain

Stationary condition

$$E = \sum_{i=1}^{3} \underbrace{\alpha_i}^{\text{volume}} \underbrace{A(M_i)}^{\text{volume}} - \underbrace{V(M_1, M_2, \Pi)}^{\text{volume}}$$



$$\delta E = \sum_{i=1}^{2} \int_{M_{i}}^{\text{velocity vector outer pointing unit normal vector}} \mathbf{v} \cdot (1 + 2\alpha_{i}H_{i}) \mathbf{v}_{i} dA \qquad \text{stationary condition}$$

$$- \int_{M_{3}}^{\mathbf{v}} \mathbf{v} \cdot (2\alpha_{3}H_{3}) \mathbf{v}_{3} dA \qquad (\delta E = 0)$$

$$+ \int_{\partial M_{1} \cap \partial M_{2} \cap \partial M_{3}} \mathbf{v} \cdot \sum_{i=1}^{2} (\alpha_{i}\mathbf{n}_{i}) ds \qquad \sum_{i=1}^{3} \alpha_{i}\mathbf{n}_{i} = 0$$

$$+ \int_{\partial M_{3} \cap P} \mathbf{v} \cdot (\alpha_{3}\mathbf{n}_{3}) ds \qquad \mathbf{t}_{3} \cdot \mathbf{n}_{i} = 0$$
Obtained variation of E and its stationary point

$$H_1 = \frac{-1}{2\alpha_1} \text{ on } M_1, \quad H_2 = \frac{-1}{2\alpha_2} \text{ on } M_2$$

$$H_3 = 0 \text{ on } M_3$$

$$\sum_{i=1}^3 \alpha_i \mathbf{n}_i = 0 \text{ on } \partial M_1 \cap \partial M_2 \cap \partial M_3$$

 $\mathbf{t}_3 \perp P$ on $\partial M_3 \cap P$

Stationary condition

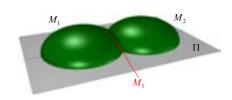
$$E = V(M_1, M_2, \Pi) + \sum_{i=1}^{3} \alpha_i A(M_i)$$

$$H_1 = \frac{-1}{2\alpha_1}$$
 on M_{1} , $H_2 = \frac{-1}{2\alpha_2}$ on M_2

$$(\delta E = 0) \qquad H_3 = 0 \text{ on } M_3$$

$$\sum_{i=1}^{3} \alpha_{i} \mathbf{n}_{i} = 0 \text{ on } \partial M_{1} \cap \partial M_{2} \cap \partial M_{3}$$

$$\mathbf{t}_3 \perp P$$
 on $\partial M_3 \cap P$



Shape at the stationary point is

- M_1 has a constant MC $-1/(2\alpha_1)$
- M_2 has a constant MC $-1/(2\alpha_2)$

•
$$M_3$$
 has zero MC
• $\frac{\sin \theta_1}{\alpha_1} = \frac{\sin \theta_2}{\alpha_2} = \frac{\sin \theta_3}{\alpha_3}$

• M_3 is orthogonal Π

The solution that satisfies the above uniquely exists

П

Discretization of energy

$$E = \underbrace{V(M_1, M_2, \Pi)}_{\text{volume}} + \sum_{i=1}^{3} \alpha_i \underbrace{A(M_i)}_{\text{area}}$$

$$E_{\mathrm{d}} = \left[\sum_{T(\mathbf{p}, \mathbf{q}, \mathbf{r}) \in M_1 \cup M_2} \frac{1}{6} \langle \mathbf{p}, \mathbf{q} \times \mathbf{r} \rangle + \sum_{i=1}^{3} \alpha_i \sum_{T(\mathbf{p}, \mathbf{q}, \mathbf{r}) \in M_i} \frac{1}{2} \left\| (\mathbf{q} - \mathbf{p}) \times (\mathbf{r} - \mathbf{p}) \right\| \right]$$

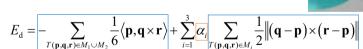
cone volume $\frac{1}{\mathbf{q}} \cdot \frac{1}{3} \langle \mathbf{p}, (\mathbf{q} - \mathbf{p}) \times (\mathbf{r} - \mathbf{p}) \rangle$

crete version of mean curvature flow can be obtained

9

 M_3

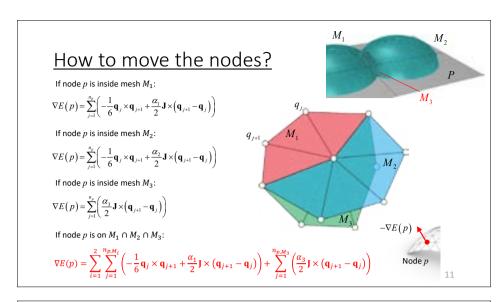
Discretization of energy variation

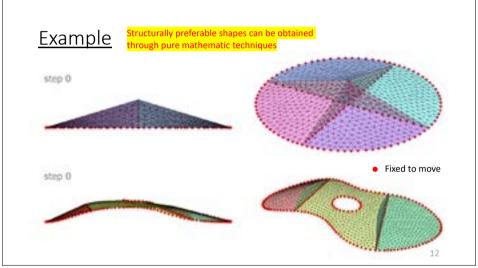


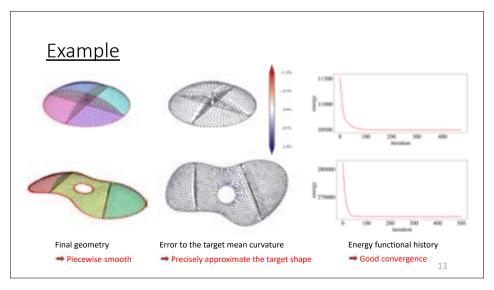
$$\delta E_{\rm d} = \sum_{p} \left\langle \nabla E(p), \mathbf{n}_{p} \right\rangle$$

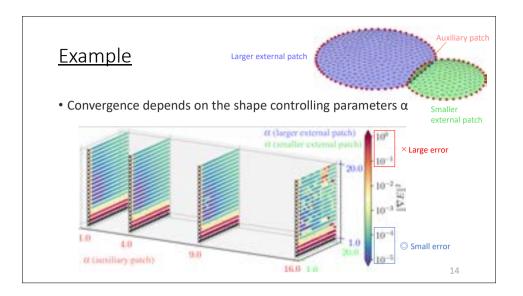
If node p is inside mesh M_1

$$\nabla E_{d}(p) = \sum_{j=1}^{n_{p}} \left(-\frac{1}{6} \mathbf{q}_{j} \times \mathbf{q}_{j+1} + \frac{\alpha_{1}}{2} \frac{(\mathbf{q}_{j} - \mathbf{p}) \times (\mathbf{q}_{j+1} - \mathbf{p})}{\|(\mathbf{q}_{j} - \mathbf{p}) \times (\mathbf{q}_{j+1} - \mathbf{p})\|} \times (\mathbf{q}_{j+1} - \mathbf{q}_{j}) \right) \xrightarrow{-\nabla E_{d}(p)}$$
Node p



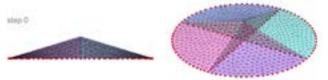






Conclusion

- Formulated mean curvature flow for meshes with internal boundaries
- Parametrically generated various piecewise CMC discrete surfaces
- Convergence property depends on the boundary condition
- Transformation behavior depends on hyperparameters



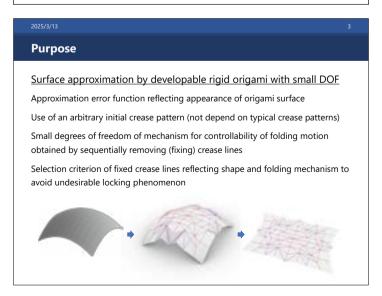
Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169. $_{15}$

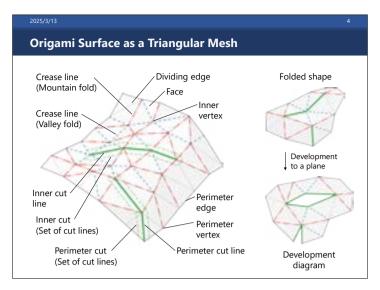
Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design

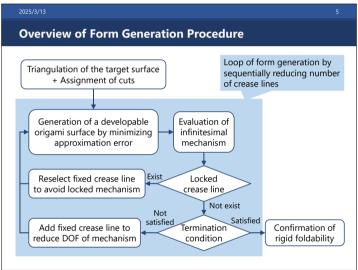
Form Generation of Rigid Origami for Approximating a Curved Surface

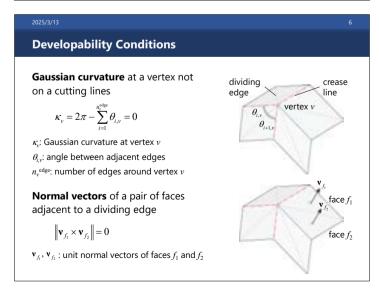
Kentaro Hayakawa Kyoto Group, Nihon University

*Joint work with M. Ohsaki @ Kyoto Univeristy









Developability Conditions

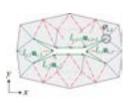
Direction vector of the edge going round a cutting line

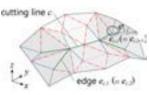
$$\mathbf{u}_{c,i+1} = \mathbf{R}(\varphi_{c,i} - \pi)\mathbf{u}_{c,i}$$

$$\downarrow \longleftarrow \mathbf{u}_{c,2n_c^{\text{out}}+1} = \mathbf{u}_{c,1}$$

$$\sum_{v=v^{\text{cut}}} \kappa_v = 2(1-k)\pi$$

 $\mathbf{u}_{c,i}$: direction vector of edge i $\varphi_{c,i}$: rotation angle between edge i and i+1 $\mathbf{R}(\theta)$: rotation matrix about angle θ n_c^{cut} : number of edges of cutting line c V_c^{cut} : set of vertices on cutting line c





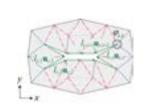
2025/3/13

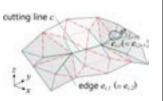
Developability Conditions

Closed loop of cutting lines on the development diagram

$$\begin{split} \sum_{i=1}^{2n_{c}^{\text{cut}}} I_{c,i} \mathbf{u}_{c,i} &= \mathbf{0} \\ \downarrow \\ \begin{cases} I_{c,1} + \sum_{i=1}^{2n_{c}^{\text{cut}} - 1} (-1)^{i} I_{c,i+1} \cos \left(\sum_{j=1}^{i} \varphi_{c,j} \right) = 0 \\ \\ \sum_{i=1}^{2n_{c}^{\text{cut}} - 1} (-1)^{i} I_{c,i+1} \sin \left(\sum_{j=1}^{i} \varphi_{c,j} \right) = 0 \end{cases} \end{split}$$

 $l_{c,i}$: length of edge i





Definition of Design Variables

Target surface: **Bézier surface**.

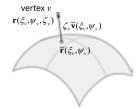
Parameters representing the position of vertex $\boldsymbol{\nu}$:

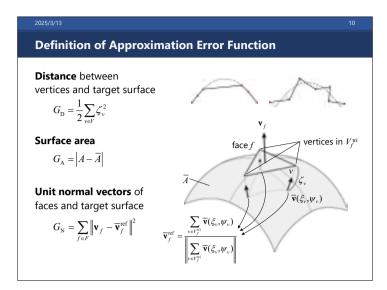
Bézier parameters ξ_v , ψ_v that define a point on the surface **Offset distance** ζ_v in the direction normal to the Bézier surface.

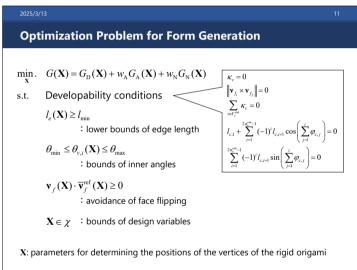
$$\frac{\mathbf{r}(\xi_{_{\boldsymbol{\nu}}}, \boldsymbol{\psi}_{_{\boldsymbol{\nu}}}, \boldsymbol{\zeta}_{_{\boldsymbol{\nu}}})}{\text{vertex } \boldsymbol{\nu}} = \frac{\overline{\mathbf{r}}(\xi_{_{\boldsymbol{\nu}}}, \boldsymbol{\psi}_{_{\boldsymbol{\nu}}}) + \underline{\zeta}_{_{\boldsymbol{\nu}}} \overline{\mathbf{v}}(\xi_{_{\boldsymbol{\nu}}}, \boldsymbol{\psi}_{_{\boldsymbol{\nu}}})}{\text{point on}}$$

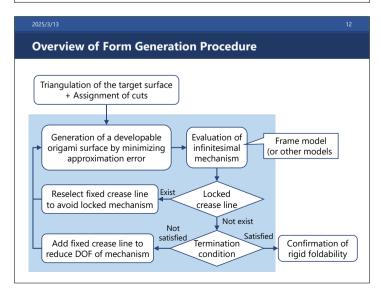
 $\mathbf{r}(\xi_{\mathbf{v}}, \psi_{\mathbf{v}}, \zeta_{\mathbf{v}})$: position vector of vertex \mathbf{v} $\mathbf{\bar{r}}(\xi_{\mathbf{v}}, \psi_{\mathbf{v}})$: position vector of the point on the target surface

 $\overline{\mathbf{v}}(\xi_{\mathbf{v}},\psi_{\mathbf{v}})$: unit normal vector at point $\overline{\mathbf{r}}(\xi_{\mathbf{v}},\psi_{\mathbf{v}})$









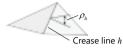
2023/3/13

Selection Criterion of Fixed Crease lines

Folding angle criterion

Fix a crease line with small folding angle

⇒ Small shape difference



Infinitesimal mechanism criterion

Fix a crease line with a large rotation in the infinitesimal mechanism

⇒ Small possibility of locking phenomenon

$$\sigma_{h}^{\mathrm{F}} = \frac{\max_{i} \left(\phi_{h}^{2}\right)}{\sum_{i=1}^{N} \max_{i} \left(\phi_{ij}^{2}\right)} \leftarrow \text{The larger the better}$$

2025/3/13

14

Selection Criterion of Fixed Crease lines

Mixed Criterion

Fix one or several crease lines with smallest scores

$$\sigma_h = \frac{\sigma_h^{\rm S}}{\sigma_h^{\rm F}} = \frac{\left({\rm Shape\ criterion}\right)}{\left({\rm Mechanism\ criterion}\right)}$$

Small shape difference

Small possibility of locking phenomenon

- ⇒ High possibility of successful termination in the succeeding optimization step without locked crease lines
- ⇒ Reduction in the number of times to solve optimization problems

2025/3/13

15

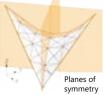
Examples of HP Surface

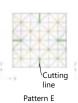
Design variables are selected so that the symmetry of the surface is preserved.

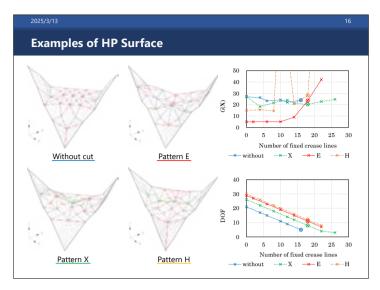
Optimization parameters are set as:

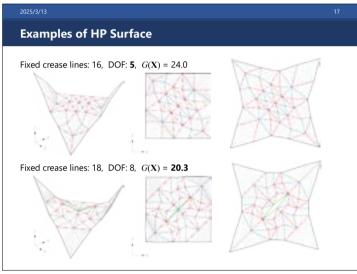
$$w_{\rm A} = 0.2, \quad w_{\rm N} = 1.0$$

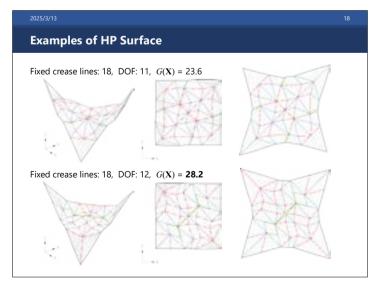
$$l_{\min} = 1.0, \ \theta_{\min} = \pi/6, \ \theta_{\max} = 5\pi/6, \ -5 \le \zeta_v \le 5$$

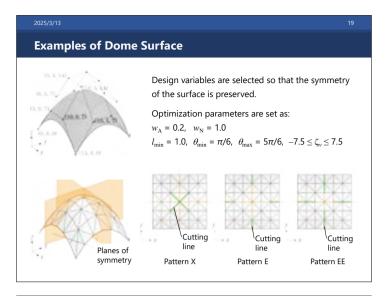


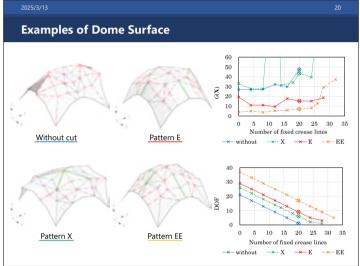


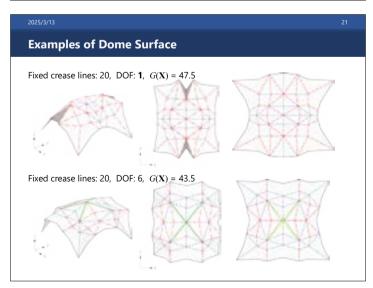


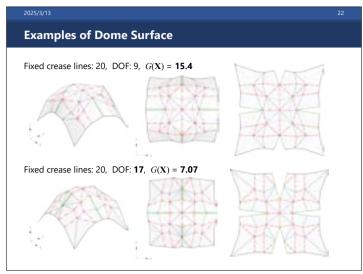


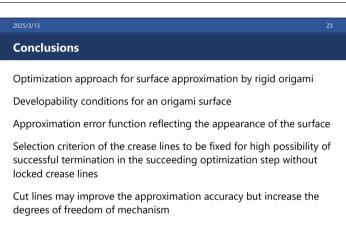












Pillow boxes as developable surfaces with curved foldings

Miyuki Koiso Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

Pillow boxes are surfaces created by folding a double rectangle. They are often used for gift boxes and packaging, and have architectural applications. In this talk, first we give the existence, uniqueness, and representation formula of the pillow box which encloses the largest volume among pillow boxes made out of a double rectangle with an arbitrary fixed size. The second topic is relating to a rigidity problem that is whether a piecewise smooth closed surface can be isometrically-deformed changing the enclosed volume. By definition, a pillow box is isometric to a double rectangle. We can construct a continuous isometric deformation of a half of any pillow box into a (single) rectangle which fixes the "crease pattern". However, we prove under a certain natural symmetry assumption that there is no global isometric deformation of the whole pillow box into the double rectangle which fixes the "crease pattern". This talk consists of a recent joint research with Hiroyuki Kitahata (Chiba U.), and another joint research with Atsufumi Honda (Yokohama National U.).

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Pillow boxes as developable surfaces with curved folds *

Miyuki Koiso (Kyushu University, Japan)

March 12, 2025, Nishijin Plaza, Kyushu University

*This work is supported by JST CREST Grant Number JPMJCR1911 and JSPS KAKENHI Grant Number JP20H01801.

Collaborators and papers

- I learned a lot on pillow boxes from Prof. Jun Mitani (U. of Tsukuba).
- Components of the bidirectional circulative design platform on the optimal pillow boxes were introduced and explained by Prof. Shun Kumagai yesterday.
- In the next talk, Prof. Yohei Yokosuka will explain discretization of pillow boxes and an application of them to temporary housing.

This talk includes some results from the following two papers. [1] A. Honda and M. Koiso, Isometric deformations of pillow boxes, preprint.

[2] H. Kitahata and M. Koiso, Optimal pillow boxes (tentative title), in preparation.

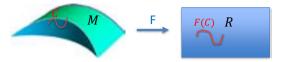
Plan of the talk

- 1. Introduction
- 2. A variational problem for developable surfaces "Find the optimal pillow box!"
- Continuous isometric (i.e. not expanding, not contracting) deformation from a planar double rectangle to a pillow box
- 4. Future works
- 5. Summary

3

1. Introduction: Developable surfaces

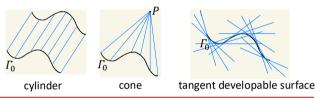
<u>Def. 1.</u> A piecewise (PW)-smooth surface M is said to be developable if it is isometric to a planar region R (that is, there exists a Lipschitz continuous bijective mapping F from M onto R that preserves the length of each curve).



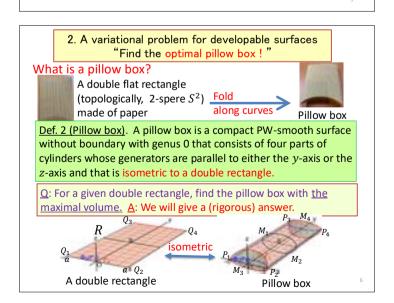
Remark 1. It is well-known that a smooth surface M is developable if and only if the Gaussian curvature K(p) of M vanishes at any point $p \in M$.

Real analytic developable surfaces (C^{ω} surfaces with 0-Gaussian curvature)

<u>Fact 1</u>. Real analytic developable surfaces in \mathbb{E}^3 are the following: (1) cylinders, (2) cones, (3) tangent developable surfaces.

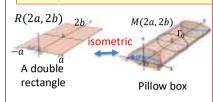


Since developable surfaces can be constructed by bending a flat sheet, they are important in manufacturing objects from sheet metal, cardboard, and plywood. Developable surfaces with curved folds (Ex. Pillow boxes) are also important!



Existence and uniqueness of the optimal pillow box

Theorem 1 (K): For any given double rectangle R(2a, 2b) with width 2a and height 2b (see the picture below) there exists a unique pillow box M(2a, 2b) (which we call the optimal pillow box) that encloses the largest volume. It has an explicit representation using elliptic integrals. It consists of four (generalized) cylinders (of C^{∞} class) of which the base curves (the top and the bottom half of Γ_0 and two blue curves in the picture below right) are congruent and they are elastic curves.

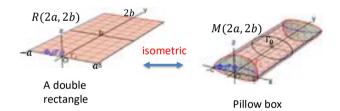


Remark 2.

- (1) $\lim_{h\to\infty} M(2a, 2b) = \text{a right}$ circular cylinder with radius $2a/\pi$.
- $(2)\lim_{a\to\infty}M(2a,2b)=\mathsf{two}$ parallel rectangles with width 2b and infinite length.

Remark on the optimal pillow box

Remark (Kitahata-K.): By numerical computation, we observe that, if a > b, then the volume of M(2a, 2b) is bigger than the volume of M(2b, 2a).

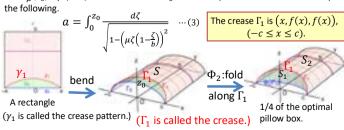


Representation of the optimal pillow box (I) --- base curves---

The base curve $\Gamma_0: z = f(x)$ of the optimal pillow box is represented as follows.

$$\begin{cases} x = -l_{\mu}(z) + c, & 0 \le z \le z_0, & (0 \le x \le c) \\ x = l_{\mu}(z) - c, & 0 \le z \le z_0, & (-c \le x \le 0) \end{cases} \dots (2)$$

 $c:=I_{\mu}(z_0)$. μ (< 0) is the curvature of Γ_0 at the end points that is determined by



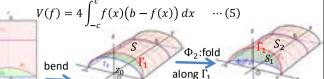
Representation of the optimal pillow box (II) --- surface and volume ---

Let Γ_0 :z = f(x) be the base curve of the optimal pillow box given in the previous slide.

The parts S_1 , S_2 of the $\frac{1}{2}$ of the optimal pillow box are represented as

$$\begin{cases} S_1 = \{(x, f(x), z); -c \le x \le c, 0 \le z \le f(x)\} \\ S_2 = \{(x, y, f(x)); -c \le x \le c, f(x) \le y \le b\} \end{cases} \dots (4)$$

Hence, the volume V(f) of the optimal pillow box is



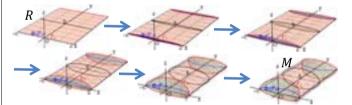
A rectangle

1/4 of a pillow box.

 $(\gamma_1 \text{ is called the crease pattern.})$ $(\Gamma_1 \text{ is called the crease.})$

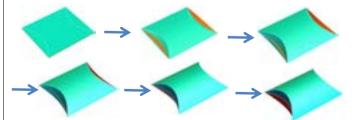
3. Continuous isometric (i.e. not expanding, not contracting) deformation from a planar double rectangle to a pillow box

Theorem 2 (K). We can deform the initial double rectangle R to any given pillow box M that is isometric to R continuously and isometrically if the crease pattern is permitted to be changed.



An isometric deformation from R to M. Here the crease pattern is changed, which is not good for application!

<u>Theorem 2 (Honda-K.).</u> There exists no continuous isometric deformation from a double rectangle to any pillow box without changing crease pattern.



A continuous isometric deformation from a double rectangle to a pillow box without changing the crease pattern. However, at each stage, the upper half and the lower half are separated and they intersect each other except the beginning and the end.

12

Future work

Prove the following conjecture:

Conjecture (a generalization of Bellows Conjecture). If a closed embedded piecewise-smooth surface M is deformed continuously and isometrically without changing the crease pattern, then the enclosed volume is preserved. Therefore, M can not be deformed to a planar region.

Remark. Pillow boxes are good examples for the above conjecture.

Remark. If a closed embedded polyhedron is deformed continuously and isometrically without changing the crease pattern (edges and vertices), then the enclosed volume is preserved (Connelly, R.; Sabitov, I.; and Walz, A. "The Bellows Conjecture." *Contrib. Algebra Geom.* **38**, 1-10, 1997).

13

Summary

- We gave the definition of developable surfaces and pillow boxes.
- We gave the existence, uniqueness, and representation formula of the optimal pillow box.
- We gave a continuous isometric deformation from a planar region to a pillow box with changing the crease pattern.
- We explained the non-existence of continuous isometric deformation from a planar region to any pillow box without changing the crease pattern.
- We mentioned a generalization of the Bellows Conjecture as a future work.

14

Yohei Yokosuka Kagoshima University, Japan

Abstract

Temporary housing needs to provide a large number of houses quickly after a disaster, so it is useful to have temporary structures using curved folds that are superior in space-saving stocking, portability, and quick construction, and can immediately expand flat plates into a three-dimensional structure. Koiso et al. derive an explicit expression for the maximum volume solution of the pillow box and show that the bottom curve of the pillow box is an elastic curve. In this presentation, a scaled experimental model of a temporary structure with curve folding is fabricated to show that curve folding is possible with rigid body deformation. Furthermore, an example of numerical analysis is shown where the generation of a curved surface shape that is the solution to the maximum volume of a pillow box is linked to structural analysis and applied to a multi-objective optimization problem where the volume evaluated as architectural planning performance and the maximum displacement evaluated as structural performance are used as indices.

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Temporary Structures with Curved Folding

Yohei YOKOSUKA¹⁾, Miyuki KOISO²⁾, Kento OKUDA³⁾, Shun KUMAGAI⁴⁾, Toshio HONMA¹⁾, Jun MITANI⁵⁾), Yudai HIYOSHI¹⁾

Graduate School of Science and Engineering, Kagoshima University
 Dinstitute of Mathematics for Industry, Kyushu University
 National Institute of Technology, Sasebo College
 Hachinohe Institute of Technology
 Information and Systems, University of Tsukuba

Temporary Structures with Curved Folding

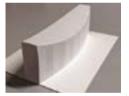
Propose temporary structures with excellent portability and stiffness using the curve folding in origami engineering.

In times of disaster, **temporary tents and housing** with safety need to be provided quickly and in large quantities.

This presentation shows a form-finding and potential applications for structures suitable for temporary housing by utilizing stiffness due to **curved surfaces formed by curve folding**.

Portable state





Unfolding state

Completed state

Temporary Structures with Curved Folding

Outline of Temporary Structures (Emergency Temporary Housing)

1995 Great Hanshin earthquake

Construction period – 32.43 days (Average) Number of houses built – 245.9 houses/day Worker – 7.4 persons/house Total number of construction – 48,300 houses

2011 Tōhoku earthquake

Total number of construction – 52,513 houses (Rental type emergency housing 67,877 houses)

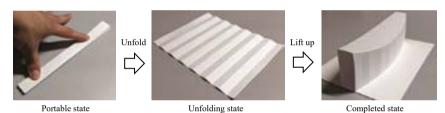
Types of Emergency Temporary Housings

- Construction Type Emergency Housing
 - ⇒ This type is possible to supply housing with excellent living performance. Difficult to provide it quickly.
- Rental Type Emergency Housing
 - ⇒ Local governments lease private housing.

 Difficult to secure numbers.
- Others (Container House, Trailer house)
 - ⇒ Need to secure a place to stock.

Temporary Structures with Curved Folding

Temporary Structures of Curved Folding



• Space-saving stock in portable condition • Rapid construction of roof structures

Temporary Structures with Curved Folding Maximum solution for internal volume of pillow box Rectangle in plane Ω vi) curvature κ in Γ_0 ii) curvature μ at both ends points in curve Γ_0 Γ_0 is orthogonal to x-axis at both end points $\kappa = \frac{\mu}{b}(b-2z)$ -a a uiii) integral $I_{\mu}(z)$, $\mu < 0, 0 < z < b$ $I_{\mu}(z) \coloneqq \int_0^z \frac{\mu \zeta \left(1 - \frac{\zeta}{b}\right)}{\left[1 - \left(\mu \zeta \left(1 - \frac{\zeta}{b}\right)\right)^2\right]^{1/2}} d\zeta$ Cylindrical surface S y Z $\Gamma_0 : z = f(x)$ $\Gamma_0 : z = f(x)$ Equation Γ_0 Equation

Maximum solution for internal volume of pillow box

Rectangle in plane Ω $\qquad \mathcal{V} \\ b$

a u

y

iv) Let μ satisfy the following equation

$$a = \int_0^{z_0} \left[1 - \left(\mu \zeta \left(1 - \frac{\zeta}{b} \right) \right)^2 \right]^{-1/2} d\zeta$$

Cylindrical surface S

v) Γ_0 is given by the following equation

$$\begin{cases} x = -I_{\mu}(z) + c, 0 \le z \le z_0 \ (0 \le x \le c) \\ x = I_{\mu}(z) + c, 0 \le z \le z_0 \ (-c \le x \le 0) \end{cases}$$

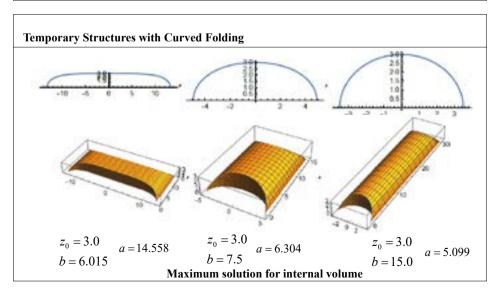
 $\Gamma_0: z = f(x)$ Γ_1 Γ_0

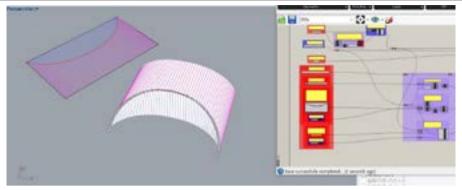
-a

Integral $I_{\mu}(z)$ is elliptic integral, Γ_0 is characterized by an elasticity curve

奥田 健斗, 小磯 深幸,ピロー型ボックスの体積最大解の存在と一意性, 異分野・異業種研究交流会2022

Temporary Structures with Curved Folding Γ_0 Γ_0 Γ_0 Γ_0 Γ_1 $\Gamma_1: Crease$ $Plane \ diagram$





Simulation of Plane diagram including curved folding (Jun MITANI)

Kosuke Sasaki, Jun Mitani, Simple implementation and low computational cost simulation of curved folds based on ruling-aware triangulation, Computers & Graphics, Volume 102, February 2022, Pages 213-219

Temporary Structures with Curved Folding

Problems of temporary structures with curved folding

- 1. Possibility of Rigid folding (Continuous isometric deformation)
- 2. Mechanism of Curved folding
- 3. Curved folding with thick surfaces
- 4. Structural stiffness

Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

If the cross-sectional curve of the surface is Crease, the folded shape can be generated by mirror-reversing the surface on one side. However, it is generally unknown that it is capable of continuous rigid folding.

· Continuous surface

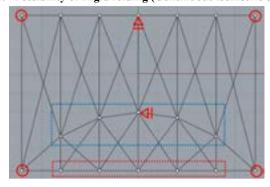
Koiso and Okuda parameterized continuously isometric deformable surfaces with boundary conditions only if they are cylindrical surface (ruling is parallel).

· Discrete surface

Numerically rigid folding is possible.

Rigid folding simulation with generalized inverse matrix can realize continuous isometric deformation.

1. Possibility of Rigid folding (Continuous isometric deformation)



Number of nodes: 19 Number of elements: 50

Number of boundary conditions: 6

Degree of freedom: 51

51 - 50 = 1

Model with one rigid body displacement mode

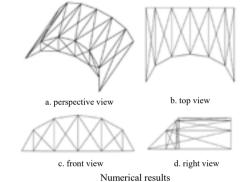
-Fixed in Z direction

←Fixed in X direction

・半谷裕彦,川口健一,形態解析 一般逆行列とその応用,培風館,1991

Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

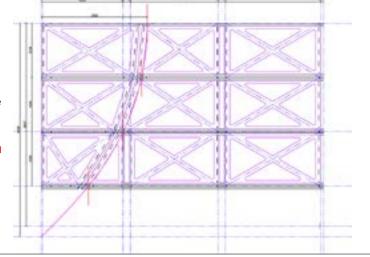


Potential energy

Convergence History

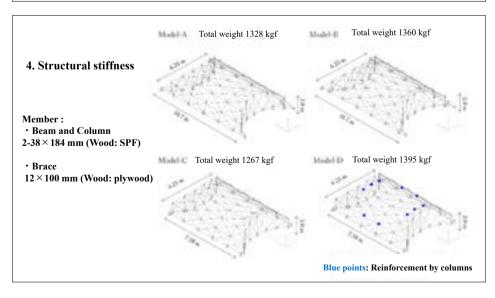
2. Mechanism of Curved folding

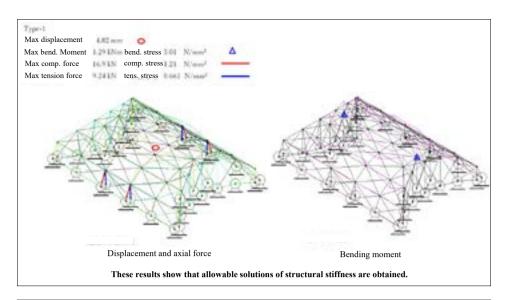
- Figure represents 1/4 region
- The pink line is the original curve.
- The rotation axes of the red lines are all parallel.
- → Possible if the curved surface is a cylindrical surface

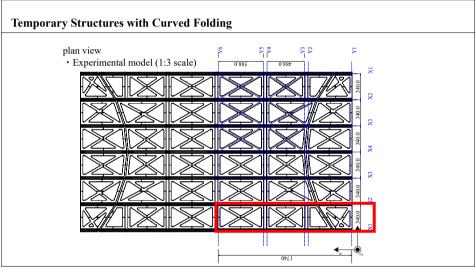


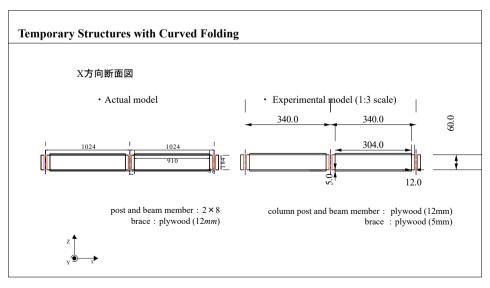
Temporary Structures with Curved Folding 3. Curved folding with thick surfaces • Members that become columns and beams are displaced without tilting. • The neutral plane of the blue line is rigid and displaced. • The cross-sectional shape of the box composed of braces allows for shear deformation. These boxes are connected to the columns and beams by hinges.

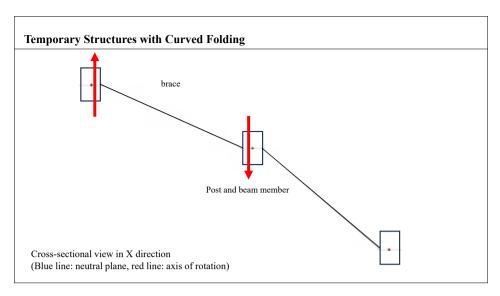
3. Curved folding with thick surfaces Scaled model

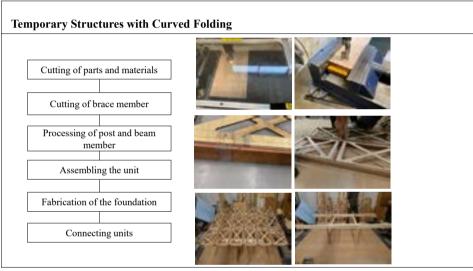


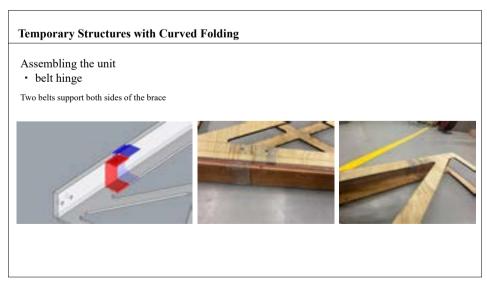












Assembling the unit

• Fixing belt hinges

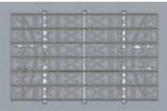
One unit

Temporarily fixed with a tacker

Wood, glue, and bolts to fix the main structure

Temporary Structures with Curved Folding

Fabrication of the foundation



Installation image

Foundation for beam material

Foundation for post material

Temporary Structures with Curved Folding

Connecting units

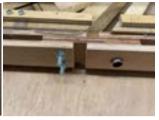
Connect at the position of the spacer Rotation axis through steel pipe

Connecting units

Adjustment of rotary shaft

Installation of rotary shaft

Connecting units



Connecting units

Pre-drilled spacers

Installation of rotary shaft

Temporary Structures with Curved Folding

Connecting units

Parallel installation on the foundation and unit connection

Installation on the foundation

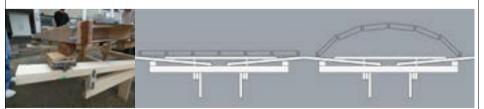
Connection between units

Installation of the whole area

Temporary Structures with Curved Folding

ユニット設置

土台とモデルの間にコロを挟む



コロ(台車)を介して設置

立ち上げ前断面

立ち上げ後断面

Experimental result:

- Thick models can be folded rigidly.
- push-up by a small number of people

Shape after bending

Front view

Side view

Temporary Structures with Curved Folding

Multi-objective optimization **Building planning performance**

· Space Utilization Efficiency

The most flattened surface of the pneumatic membrane structure with the condition that the rise at the boundary is vertical so that no dead space is created near the boundary.

· Main level living

In general, living area levels are recommended based on the number of household members.

- \Rightarrow Maximum solution for inner volume with constant surface area
- \Rightarrow There is a maximum solution for the inner volume that varies with r := a/b.

Effective Height

川口衞, 空気膜構造におけるしわなし最偏平回転曲面, 日本建築学会学術講演会梗概集, pp.1053-1054, 1978 Mamoru KAWAGUCHI, Wrinkle-free most flattened rotational surface in pneumatic membrane structure, 1978

Multi-objective optimization

Structural performance

• Maximum Deflection w_{\max}

The structural form adopted is a beam structures in the **depth** (b) **direction**. The larger the span (b) of the frame, the **greater the deformation and deflection** due to its self-weight, and thus the **lower the structural performance**.

- \Rightarrow The maximum solution for **the inner volume tends to increase** in volume as b increases.
- ⇒ There is a trade-off between **structural performance** and **building planning performance**, and a **Pareto solution** must be obtained through multi-objective optimization.

Temporary Structures with Curved Folding

Multi-objective optimization formulation

Find
$$r := a/b$$
 (1)

Minimize
$$f_1(r) := w_{\text{max}} / (b - z_0), \ f_2(r) := 1/V$$
 (2)

Subject to
$$\Gamma_0: z = f(x), \begin{cases} x = -I_{\mu}(z) + c, 0 \le z \le z_0 \ (0 \le x \le c) \\ x = I_{\mu}(z) + c, 0 \le z \le z_0 \ (-c \le x \le 0) \end{cases}$$
 (3.a,b)

$$|x = I_{\mu}(z) + c, 0 \le z \le z_{0} (-c \le x \le 0)$$

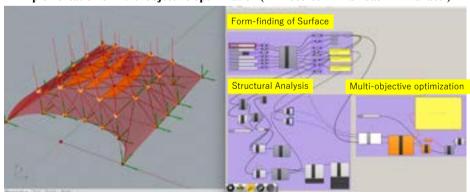
$$|z_{0}(\mu) := \frac{b}{2} \left(1 - \sqrt{1 - \frac{4}{b|\mu|}} \right), \ c := I_{\mu}(z_{0}), \ I_{\mu}(z) := \int_{0}^{z} \frac{\mu \zeta \left(1 - \frac{\zeta}{b} \right)}{\left[1 - \left(\mu \zeta \left(1 - \frac{\zeta}{b} \right) \right)^{2} \right]^{1/2}} d\zeta, A(S) = \overline{A}$$
 (3.c-f)

However, μ is the curvature of the endpoints of Γ 0determined from equation (4).

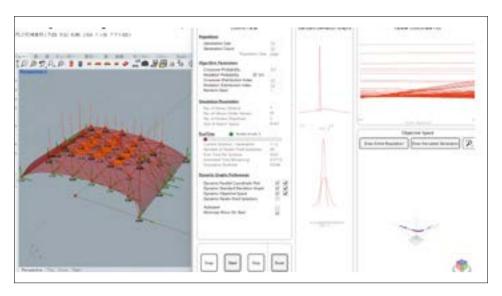
$$a = \int_0^{z_0} \left[1 - \left(\mu \zeta \left(1 - \frac{\zeta}{b} \right) \right)^2 \right]^{-1/2} d\zeta \tag{4}$$

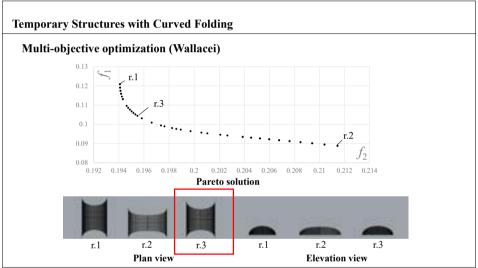
Temporary Structures with Curved Folding

Implementation of multi-objective optimization (Rhinoceros + Kramba3D + Wallacei)



bidirectional circulative design platform (Planning + Structure + Construction)





Conclusion

- $\boldsymbol{\cdot}$ The possibility concerning the application of temporary buildings by means of curve folding is presented.
- Rigid foldable curved surfaces and thickness should be considered.
- · A model with simplified joints was proposed.
- We presented an example of multi-objective optimization of a temporary structure with a pillow box curve folding geometry by using bidirectional circulative design platform.

Local & Global Property Quantification With Persistent Homology

R. U. Gobithaasan School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Kenjiro T. Miura

Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan.

Abstract

Topological Data Analysis (TDA) is a powerful algebraic topology framework that aims to understand the shape and structure of complex datasets, particularly those with high dimensionality point cloud data $X \in \mathbb{R}^d$ [1]. It has been successfully used for various types of Machine Learning tasks [2, 3]. Persistent Homology (PH), the main methodology in TDA, quantifies the shape and structure of complex datasets by representing the topological dan geometrical information of data in the form of Persistence Diagram denoted as $D_k(X)$. A $D_k(X)$ consisting of a set of 2-tuple $(b_i, d_i) \in \mathbb{R}^2$, corresponds to a pairing between the births of k^{th} homology class at b_i and its death at d_i along the filtration of X. $D_k(X)$ can be converted in the form of vector spaces that can be directly used as features for machine learning (ML) pipelines. It is known that topological features manifest as long-lived birth-death pairs in the $D_k(X)$, indicating their presence across multiple spatial scales. Recently it was found that (b_i, d_i) close to diagonal encodes the geometrical feature of X [4, 5]. The first part of this talks delves the law of composition [6] which makes an art beautiful and its relation to the types of shape analysis tools developed; hence leading to the development of Persistent Homology. We will then review the variety of framework for capturing geometrical and topological features across different spatial scales for understanding the underlying structure and relationships within the data. Overall, this talk provides insight into the implementation of PH framework not just as ML tasks, but also for the development of visually pleasing products.

References

- [1] G. Carlsson, "Topology and data", Bull. Amer. Math. Soc. 46, 255–308, (2009).
- [2] R. U. Gobithaasan, Zabidi Abu Hasan, et al., "Clustering Selected Terengganu's Rainfall Stations Based on Persistent Homology", Thai Journal of Mathematics, 197–211, (2022).
- [3] A. S. Shakthi Aswin, R. U. Gobithaasan, Kelin Xia, Kenjiro T. Miura. "The Efficacy of Weight Control in Persistence Vectors Detecting Geometrical and Topological Features from Point Cloud", AIP Journal Proceedings, to appear.
- [4] Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle, "Persistent homology detects curvature". Inverse Problems, **36**(2): 025008, (2020).
- [5] Renata Turkeš and Guido Montúfar and Nina Otter, "On the effectiveness of persistent homology", 2206.10551, arXiv, (2023).
- [6] John Ruskin, "The Elements of Drawing: In Three Letters to Beginners", https://www.gutenberg.org/files/30325/30325-h/30325-h.htm.

Local & Global Property Quantification With Persistent Homology

from Shape Quantification to Product Design

Miura Group

School of Mathematical Sciences, Universiti Sains Malaysia, Malaysia. Graduate School of Science and Technology, Shizuoka University, Japan.

 $10^{th} \text{ March.} - 13^{th} \text{March } 2025$

ロト (日) (注) (注) 注 り90

This talk covers on

- Part I: Fr Designer's Perspective to Mathematical defs.
 - Visually Pleasing Shapes at various resolution.
 - ▶ Shape Descriptors.
- 2 Part II: Intro to Topological Data Analysis:
 - ▶ One-Parameter
 - ► Multi-Parameter PH.
- Part III: WIP
 - ▶ Framework for Aesthetic Design.

ロ + 4日 + 42 + 42 + 2 9 9 9 9

Moving Forward: Simplified Life cycle of Aesthetic Design

Ideal Setup for Aesthetic Design (AD):

Solving the Puzzle: Putting Them Together

John Ruskin: philosopher, art historian and art critic

Laws of composition

- Global characteristics
- Local characteristics
- Loc. + Glo. characteristics

- Principality: dominant element
- Repetition: recurring shapes/colours or forms
- Continuity: natural visual flow
- Curvature: curved lines adds grace rather than rigid straight lines
- Radiation: emanate outward from a central point.
- Contrast: use of opposing elements.
- Interchange: elements are arranged to support one another.
- Consistency: in style and visual treatment.
- Harmony: shapes, lines, colors, light/ shadow—work together to create a pleasing visual.

frametitle Local Vs. Global Characteristics

- Local Characteristics: Geometry = Fine Details
- Global Characteristics: Topology = Global Properties

Figure: Great Wave off Kanagawa (Hokusai)

40 × 48 × 42 × 42 × 2 × 990

Shape Analysis: Local to Global Descriptors

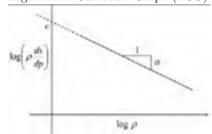
- \circ Shape analysis focuses on quantifying the properties of shapes to analyze, compare, and classify shapes. Three types of shape descriptors:
 - Geometrical Descriptors: Local descriptors that are invariant under rigid motions: geometric properties of a shape: area, perimeter and curvature
 - Neighborhood Descriptors: based on geodesic distance on the manifold around a point, e.g. density function
 - **Topological Descriptors**: analyze shapes based on their connected components and holes: Morphological Analysis, and **Persistent Homology**.

Geometrical Descriptors: Curvature

o Ruskin's proposal: beautiful curves [3]

• Farin's idea on fair curves: few monotonic curvature segments.

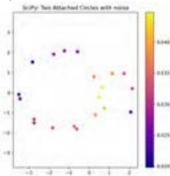
o Logarithmic Curvature Graph (LCG):



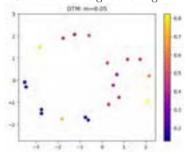
(D) (B) (E) (E) E 90(P

Neighbourhood Descriptors: Density Function

 \circ Gaussian kernel density estimate $(\mathrm{KDE})^1$



 \circ Distance-To-Measure (DTM) employs KDTRee Nearest Neighbor's Algo 2



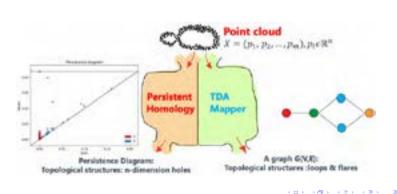
 b GUDHI's DTM: $m \longrightarrow 1 \approx \frac{1}{KDE}$

^aSciPy: gaussian_kde

Topological Descriptors: Connectivity & $n^{th}D$ holes

Topological Data Analysis (TDA)

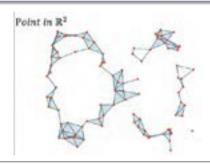
o TDA's theme: Data has shape, shapes has meaning.



Topological Descriptors: Euler Characteristics

Definition (Euler Characteristics)

Let \mathcal{K} be a simplical complex with $\beta_0, \beta_1, \beta_2, \ldots$ as Betti numbers denoting k^{th} dimensional holes. Then we define the Euler characteristic to be the alternating sum : $\chi(\mathcal{K}) = \sum_{0}^{n} (-1)^{n} \beta_{n}$.



$$\chi(\mathcal{K}) = 5 - 3 + 0 = 2$$

 \circ Alternatively, we can directly compute $\chi(\mathcal{K}) = \sum_{0}^{n} (-1)^{n} |\mathcal{K}^{n}|$, where $|\mathcal{K}^{n}|$ denotes the carnality of set of n-simplices.

(ロ) (B) (E) (E) (O)

Persistent Homology: One-Parameter Persistence

Input: (X, δ_X) :

1. Geometric Realization

construct an increasing family (X_t) of simplicial complex with single scale parameter $t \geq 0$.

2. Algebraic Topology

Compute the d-th homology vector spaces $\{H_d(X_t)|t\geq 0\}.$

3.Representation Theory

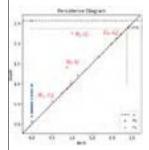
Output: produce a barcode or Persistence diagram \mathcal{D}_D

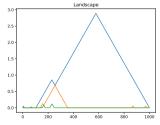
output: $\mathcal{D}_D = \{[b_1, d_1), \dots, [b_k, d_k)\}$, where $b_i \& d_i$ are birth and death of features, respectively.

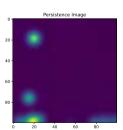
 \circ Lifespan = $d_i - b_i$.

40 + 48 + 42 + 42 + 2 990

Handcrafted Persistence Signatures (Vectors) for ML





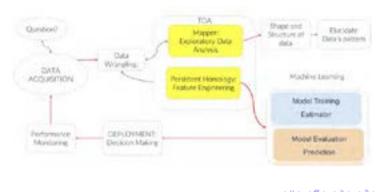


- Persistence Landscape: Peter Bubenik (Uni. Florida).
- Persistence Image: Hendry Adams et. al (Colorado State Uni.)

4 D > 4 B > 4 E > 4 B > 9 Q O

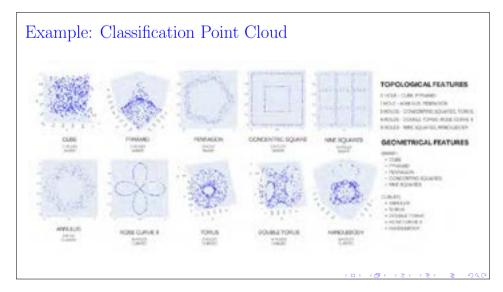
Topological Machine Learning (TML)

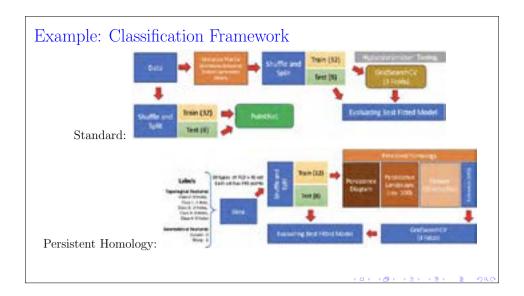
• (Many success stories) of TML in various field of study.



Why One-parameter PH is effective?

- PH detects topological information:
 - connected components & k^{th} dimensional holes.
 - Long lifespan detects topological information
- 2 Also detects geometric information:
 - ▶ curvature: (Bubenik et. al (2019) and Turkes et.al (2022))
 - (many) short lifespan detects geometrical information.
 - ▶ Accuracy: Outperformed PointNet & NN Deep.
- **9 Highly tunable one-parameter PH** for ML: {Signal (L+G), one-filtration (Types of Simplicial Complex), Signature(Types of Persistence Vectors)}





Example: Classification Results

Feature	SVM	RFC	L. Reg	k-NN	$\mathbf{PointNet}$	$_{ m PH}$
Geo	80.00	66.67	53.54	47.71	85.93	95.00
Topo	61.04	47.5	32.29	30.00	68.73	98.75

- Can we push further?
 - ▶ {Signal, one-filtration Multi-filtration, Signature}

Persistent Homology: Multi-parameter Persistence Input: (X, δ_X^t) :

1. Geometric Realization construct a family $\mathcal{F} = (\mathcal{F}_t)_{t \in \mathbb{R}^m}$ of subcomplexes $\mathcal{F}_t \subseteq \mathcal{K}$ that is increasing with respect to inclusions, i.e., such that $\mathcal{F}_t \subseteq \mathcal{F}_{t'}$ for any $t, t' \in \mathbb{R}^m$ with $t \leq t'$.

2.Alg. Topology & Repr. Theory

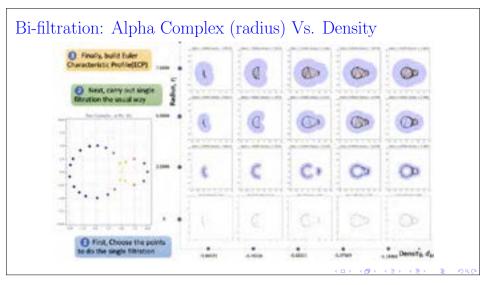
The Euler Characteristic Transform (ECT); also known as EC Profile of an m-parameter filtration $\mathcal F$ is the map:

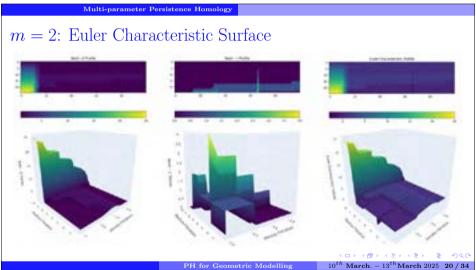
ECT $\chi_{\mathcal{F}}: t \in \mathbb{R}^m \mapsto \chi(\mathcal{F}_t)$

variations of output $\chi_{\mathcal{F}}$ include:

- $\overline{\circ Euler \ characteristic \ curve \ (ECC)} \ of \ \mathcal{F} \ when \ m=1,$
- \circ Euler characteristic surface (ECS) of \mathcal{F} when m=2.
- o Smooth ECP (SECT) [Munch et. al., Mic. St. Uni, USA] & Differentiable ECT (DECT) [Reick, et. al., TUM, Germany].

+ 다 > + 를 > + 를 > 이오





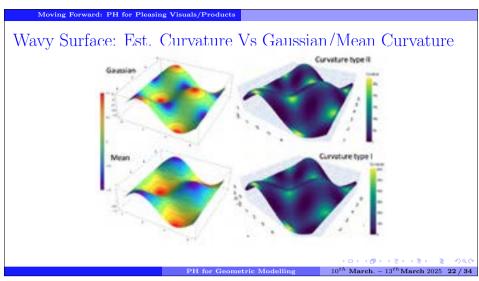
Moving Forward: PH for Pleasing Visuals/Products

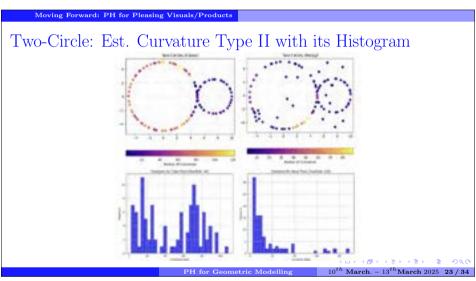
Scalable Curvature Estimate Beyond: $X \in \mathbb{R}^3$

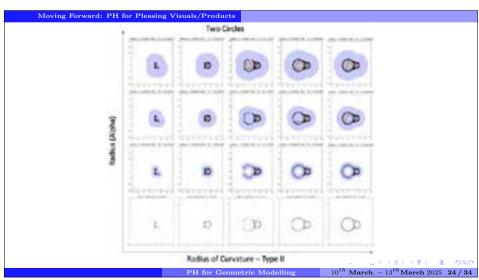
Idea: Principal Component Analysis (PCA)

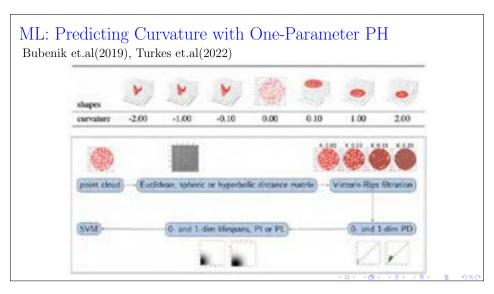
- Define a local neighborhood N_p for each point p (e.g., k-NN or fixed radius).
- **2** Calculate the covariance matrix C_p for points in N_p and compute its eigenvalues $\lambda_1 \leq \lambda_2 \leq \lambda_3$ and eigenvectors v_1, v_2, v_3 .
- **3** Estimate Curvature type I: $\kappa_I = \lambda_1$
- **9** Estimate Curvature type II: $\kappa_{II} = \frac{\lambda_1}{\lambda_1 + \lambda_2 + \lambda_3}$ (Normalized)
- **3** Radius of curvature, 2D: $(\rho_i = \frac{1}{\kappa_i})$, and 3D: $(\rho_i = \frac{1}{\sqrt{\kappa_i}})$ where i = I or II.

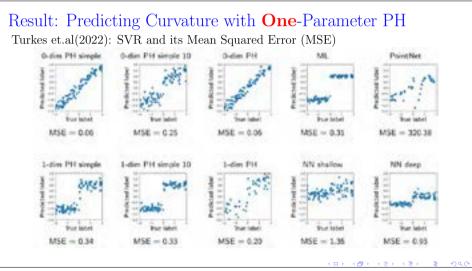
PH for Geometric Modelling 10^{th} March. -13^{th} March 2025 21/34

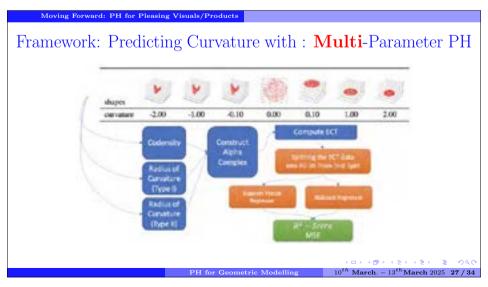


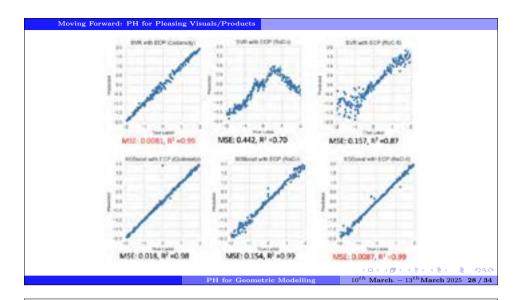












Moving Forward: Aesthetic Generative Design (AGD)

Towards for Aesthetic Design (AD):

$$\underbrace{ \begin{array}{c} \operatorname{LCG} \\ \operatorname{Shape \ Descriptor} \\ \operatorname{Persistent \ Homology} \end{array} } \xrightarrow{\operatorname{Local \ Characteristics}} \underbrace{ \begin{array}{c} \operatorname{Local \ Characteristics} \\ \operatorname{Signal} \\ \operatorname{Local \ + \ Neigh. + \ Global} \end{array} } \to \operatorname{Aesthetic \ Design}$$

Towards Aesthetic Generative Model

- ANN as a Computational Building Block
 - ► Generative Adversarial Network (GAN).
- **2** ANN as a Universal Function Approximator (UFA): $|f(x) \hat{f}(x)| < \epsilon$
 - Topological & Geometrical Loss.

40 x 48 x 42 x 42 x 2 990

Towards Aesthetic Generative Design (AGD) Framework

• Computational Building Block of GAN = Generator + Discriminator

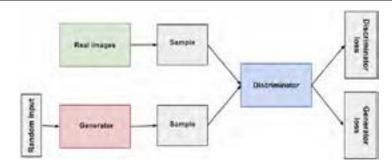


Figure: https://developers.google.com/machine-learning/gan/gan_structure

Towards Aesthetic Generative Design (AGD) Framework

• GAN's Function Approximator: Topological & Geometrical Loss.

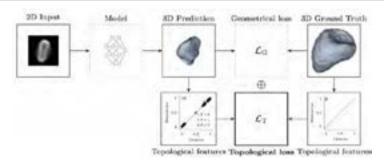
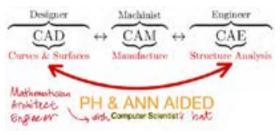


Figure: Waibel et al., 2022, Capturing Shape Information with Multi-Scale Topological Loss Terms for 3D Reconstruction

Solving the Puzzle: Seamless + Scalable



40 x 48 x 42 x 42 x 2 990

Thank You

- For your attention.
- Prof. Kenjiro Miura: for having me in the team
- CREST Team: Grant Number JPMJCR1911, Japan Science and Technology (JST) Agency.

・ロト ・日ト ・豆ト ・日ト ・ロト

References

Main References

- Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects curvature. Inverse Problems, 36(2):025008, (2020).
- Renata Turkeš and Guido Montúfar and Nina Otter, On the effectiveness of Persistent Homology, 2206.10551, arXiv, (2023).
- John Ruskin, The Elements of Drawing: In Three Letters to Beginners, https://www.gutenberg.org/files/30325/30325-h/30325-h.htm
- Olympio Hacquard and Vadim Lebovici, Euler Characteristic Tools for Topological Data, Journal of Machine Learning Research 25 (2024) 1-39 Analysis
- Erik J Amézquita et al., Quantifying the shape of barley seeds using the Euler characteristic transform, in silico Plants, 4(1), 2022.
- Waibel et al., 2022, Capturing Shape Information with Multi-Scale Topological Loss Terms for 3D Reconstruction, arXiv, 2203.01703v3, 2022.
- Ernst Roell and Bastian Rieck, Differentiable Euler Characteristic Transforms for Shape Classification, 2310.07630, arXiv, 2024.
- Elizabeth Munch, An Invitation to the Euler Characteristic Transform, 2310.10395, arXiv, 2023.
- Ghasemi P, Yuan C, Marion T, Moghaddam M. DCG-GAN: design concept generation with generative adversarial networks. Design Science. 2024.

443

Advancing Precision and Smoothness of Shape Preserving with Quintic Trigonometric Bézier Curve

Md Yushalify Misro School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.

Abstract

This study integrates an optimization technique into positivity- and monotonicity-preserving interpolation methods to enhance curve smoothness by refining free shape parameters. These parameters play a pivotal role in defining curve geometry, granting users the flexibility to fine-tune the final shape. However, selecting them arbitrarily can compromise both aesthetics and accuracy, leading to undesired results. To address this challenge, an optimization-driven approach is introduced to systematically determine the optimal shape parameters. Within this framework, three smoothness metrics —arc length minimization, strain energy minimization, and curvature variation energy minimization—are employed. The resulting curves are analyzed and compared to assess their ability to preserve data while maintaining smoothness. The findings affirm that this method not only optimizes free shape parameters effectively but also surpasses conventional techniques in computational efficiency.

Advancing Precision and Smoothness of Shape Preserving Interpolation with Quintic Trigonometric Bézier Curves

CREST SIMPOSIUM, Fukuoka | 10 - 13 March 2025

Associate Professor Dr. Md Yushalify Misro School of Mathematical Sciences, Universiti Sains Malaysia

Shape Preserving Interpolation

Shape-preserving interpolation used to maintain certain geometric properties of the original data

> **Ensures** the interpolated function for positive data remains positive

Data visualization

Avoid undesired oscillations

Misinterpretation of data

Unrealistic results

CAGD

Generate smooth curves and surfaces while maintaining nature of data

Mimic smooth transition of most physical phenomena

More stable for numerical computation

Image interpolation

Retain original edges, textures and overall structure.

Shape Preserving Types Positivity-preserving Convexity-preserving interpolation interpolation Range-restricted Monotonicity-preserving interpolation interpolation 3

Positivity-preserving interpolation

Dougherty et al. (1989)	 Used cubic and quintic Hermite interpolations. To guarantee positivity, modifications on the derivative values in the curve segments that are negative are required.
Butt and Brodlie (1993)	Used piecewise cubic Hermite interpolation. Insertion extra intermediate knots for curve segments that are not positive is necessary.
Harim et al. (2020), Zhu (2018)	 Rational quartic interpolation spline with shape parameters Positivity preserving condition was derived on one shape parameter. The developed interpolant are C¹ and C² continuous, respectively.
Hussain <i>et al.</i> (2018)	 Rational quintic function with 3 shape parameter to achieve ² continuity. Has 2 free parameters.

Range-restricted interpolation

Sarfraz et al. (2015)	 Preserved the shape of range-restricted data using quadratic trigonometric spline with three parameters. Derived shape preserving constraints on two parameters
Karim et al. (2019)	Rational cubic spline function (cubic/quadratic). Consists of three shape parameters with two free parameters to allow flexibility for curve enhancement.
Zakaria <i>et al</i> . (2016)	 Rational cubic Ball functions in the form of (cubic/quadratic). Used the arithmetic mean approach to estimate the derivative values in this study. The generated interpolation are C¹ continuous.
Tyada <i>et al.</i> (2021)	 C¹ rational cubic over cubic trigonometric fractal interpolation functions with 4 shape parameters. Data dependent constraints for shape preservation were derived on the scaling factors and shape parameters.

Monotonicity-preserving interpolation

Karim (2016), Tahat <i>et al.</i> (2016)	 Developed monotonicity-preserving interpolation schemes using rational cubic Ball function with three and four shape parameters. One shape parameter was constrained for shape preservation. C¹ continuity
Ahmad and Misro (2022)	 Integrated a rational cubic Ball curve. Examined the curvature profile to test the smoothness of their interpolations.
Ahmad et al. (2017)	Used multiquadric quasi-interpolation. Multiquadric quasi-interpolation was inappropriate for interpolating the dataset and did not generate a smooth curve.
Vijay and Chand (2023)	 Proposed novel method based on rational quadratic trigonometric fractal interpolation function constructed through iterated function system. Developed interpolant is C¹ continuous and offers no free parameter.

6

	Convexity-preserving interpolation
Hussain et al. (2016)	Used cubic polynomial interpolation with two shape parameters in Ball form. Convexity preserving constraints were developed on both parameters.
Han (2015)	 Developed C² interpolant using rational quartic spline with one shape parameter.

•	Presented a united form of the classical Hermite interpolation with up to \mathcal{C}^3 order continuity.
•	Convexity is preserved by setting the parameter on each subinterval with the given values.

•	Developed nonlinear Hermite interpolatory subdivision scheme
	based on quadratic rational Bernstein Bezier curves for curve
	interpolation.
	Condition of the development of the state of

- Conditions were developed for the limit curve to preserve convexity of data.
- The limit curve is C^1 continuous.

Han (2018)

Jena (2021)

Optimization

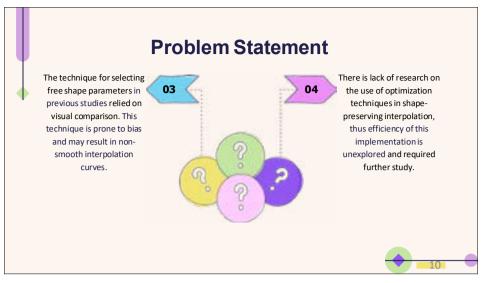
Hu et al. (2023) Zheng et al. (2022)	Optimize the shapes of rational quartic interpolation splines and quintic generalized Hermite interpolation curves Enhanced Tunicate Swarm Algorithm and Improved Grey Wolf Algorithm were implemented
Li and Li (2020)	Solved the nonlinear curve fitting problem by incorporating the Particle Swarm Optimization Optimization was used to find the optimal number of hidden knots with is the key factor to achieve a good generalization.
Hu et al. (2021)	Optimized the shape of shape-adjustable generalized cubic developable Ball surfaces by using an Improved Marine Predators Algorithm

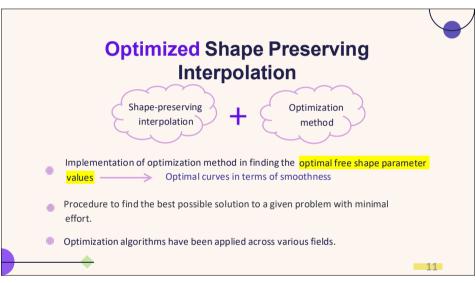
As of now, there is still lack of studies on the implementation of optimization in shape preserving interpolation.

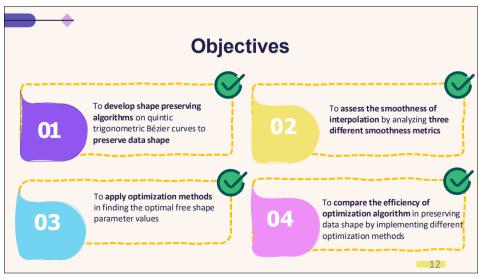
Problem Statement

Hussain et al. (2018) developed a shapepreserving scheme using a rational quintic function. However, the scheme is complex due to the rational form, which can make it more challenging to implement and compute

Previous studies on shapepreserving interpolation, such as Karim (2016) and Tahat et al. (2016), assessed the smoothness of their interpolation curves through visual comparison. However, this method is inadequate because visual assessments can be subjective and do not provide the precise metrics needed for a thorough analysis of the smoothness of the curves







Research Methodology

This study will implement the quintic trigonometric Bézier curve with two shape parameters introduced by Misro et al. (2017) given by:

$$s(x) \equiv s_i(x) = \sum_{j\neq i}^3 B_j f_j(x),$$

(1)

 $f_{i}(x) = (1 - \sin \theta)^{2} (1 - \alpha \sin \theta),$

$$f_1(x) = \sin \theta (1 - \sin \theta)^3 (4 + \alpha - \alpha \sin \theta),$$

$$f_2(x) = (1 - \sin \theta)^2 (1 - \cos \theta) (8 \sin \theta + 3 \cos \theta + 9).$$

$$f_i(x) = (1-\cos\theta)^2(1-\sin\theta)(8\cos\theta+3\sin\theta+9),$$

$$f_0(x) = \cos\theta(1 - \cos\theta)^2(4 + \beta - \beta\cos\theta).$$

$$f_i(x) = (1 - \cos \theta)^4 (1 - \beta \cos \theta),$$

of Bezier Curves:

Satisfy all the geometric properties

- 1. Non-negativity
- 2. Symmetry
- 3. Partition of unity

where $\theta = \frac{\pi f(x - x_0)}{2k_0}$ with $\theta \in [0, \frac{\pi}{2}]$.

The shape parameters α_{i} , $\beta_{i} \in (-4,1]$ are responsible in controlling each end of the curve.

13

Research Methodology

To ensure continuity (up to C^2 continuous), the following interpolating conditions will be applied to find the unknown control

$$y(x_i)\equiv y_{in}-y(x_{i+1})\equiv y_{i+1n}$$

$$s'(x_i)=d_i, \quad s'(x_{i+1})=d_{i+1},$$

$$\chi''(g_i)\equiv D_i, \quad \chi''(g_{i+1})\equiv D_{i+1}$$

Arithmetic Mean Method (AMM)

It is straightforward to establish that

$$B_{ii} = x_i$$

$$B_1 = y_i + \frac{2h_i d_i}{(A_i + c_i)^{\frac{1}{2}}},$$

$$B_{ij} = y_i$$
,
 $B_{ij} = y_j + \frac{2h_id_i}{(4 + ix_i)\pi}$,
 $B_{ij} = y_i + \frac{h_i(64 + ix_i)D_ih_i + 4(3 + ix_i)d_i\pi}{3(4 + ix_i)\pi^2}$,
where $h_i = y_{i+1} + F_i$

where
$$k_1 = x_{i+1} - x_i$$
.

$$B_{3} = \chi_{i+1} = \frac{h_{i}(i\beta_{i} - 4)D_{i-1}h_{i} + 4(3 + \beta_{i})d_{i+1}n)}{4d_{i+1}d_{i+2}}$$

$$B_{E} = \gamma_{c=1} - \frac{2k_{2}d_{c+1}}{44 + 8 \log r},$$
 (2)

$$B_{\mathcal{S}} \equiv \gamma_{(n)}$$

14

Research Methodology

Arithmetic Mean Method (AMM)

The first-order and second-order derivatives formula are obtained from Hussain et al. (2018).

First-order derivatives

$$d_1 = \Delta_0 + (\Delta_1 - \Delta_2) \cdot \frac{h_T}{}$$

$$\begin{split} d_1 &= \Delta_0 + (\Delta_0 - \Delta_2) \frac{h_1}{k_1 + k_2}, & D_1 &= M_1 + \varepsilon M_1 - M_2) \frac{h_1}{h_1 + h_2}, \\ d_1 &= \frac{\Delta_0 + \Delta_{0-1}}{2} \text{ for } i = 2, 3, \dots, n-1, \\ d_n &= \Delta_{n-1} + (\Delta_{n-1} - \Delta_{n-2}) \frac{k_{n-1}}{k_{n-1} + k_{n-2}}, & D_0 &= M_{n-1} + (M_{n-1} - M_{n-2}) \frac{k_{n-1}}{h_{n-1} + h_{n-2}}, \\ \text{where } \Delta_0 &= \frac{K_{n-1} - I_0}{h_1}, & \text{with } M_1 &= \frac{d_{n-1} - d_0}{h_1}. \end{split}$$

$$d_{x} = \Delta_{x-1} + (\Delta_{x-1} - \Delta_{x-2}) \frac{A_{x-1}}{k_{x-1} + k_{x-2}}$$

where
$$\Delta_i = \frac{y_{i+1} - y_i}{\hat{y}_i}$$

Second-order derivatives

$$D_i = \frac{M_i + M_{i+1}}{2}$$
 for $i = 2, 3, ..., n-1$.

$$D_d = M_{d-1} + (M_{d-1} - M_{d-2}) \frac{h_{d-1}}{h_{d-1} + h_{d-2}}$$

with
$$M_i = \frac{d_{i+1} - d_i}{b_i}$$

Methodology

The C^2 quintic trigonometric Bézier curve with two shape parameters in Eq (1) defined over each subinterval I_i can be written as:

$$\begin{aligned} g(x) &= \sum_{j=0}^{3} B_{ij} f_{j}(x) = y_{i}(1 - \sin\theta)^{2} \left(1 - \alpha_{i} \sin\theta\right) + \left[y_{i} + \frac{2h_{i} f_{i}}{(4 + \alpha_{i})\sigma}\right] \sin\theta(1 - \sin\theta)^{2} \\ &= \left(4 + \alpha_{i} - \alpha_{i} \sin\theta\right) + \left[y_{i} + \frac{h_{i}((4 + \alpha_{i})D_{i}h_{i} + 4(\beta + \alpha_{i})d_{i}\sigma)}{3(4 + \alpha_{i})\sigma}\right] (1 - \sin\theta)^{2} \left(1 - \cos\theta\right) \\ &= \left(8 \sin\theta + 3\cos\theta + 9\right) + \left[y_{i+1} + \frac{h_{i}((4 + \beta_{i})D_{i+1}h_{i} - 4(\beta + \beta_{i})d_{i+1}\pi)}{3(4 + \beta_{i})\sigma^{2}}\right] (1 - \cos\theta)^{2} \\ &= \left(1 - \sin\theta\right) \left(8\cos\theta + 3\sin\theta + 9\right) + \left(y_{i+1} - \frac{2h_{i}h_{i}\pi}{(4 + \beta_{i})\sigma^{2}}\right)\cos\theta\left(1 - \cos\theta\right)^{2} \\ &= \left(4 + \beta_{i} - \beta_{i}\cos\theta\right) + y_{i+2}\left(1 - \cos\theta\right)^{4} \left(1 - \beta_{i}\cos\theta\right), \end{aligned}$$

16

Shape Preserving Constraints

- The interpolant in Eq (3) does not guarantee to preserve the shape of data.
- This section derive data dependent constraints on the shape parameter α_i for the four shape preservation.
- Four theorems for shape preservation are provided.

17

Positivity Preserving Interpolation

Theorem 1

The C^2 quintic trigonometric Besier curves interpolation defined over the interval $[x_1, x_n]$ preserve the positivity of positive data if the shape parameters α_i, β_i in each subinterval I_i satisfy the following sufficient conditions:

 $\beta_i \in (-4,1]$ that produce positive and smooth interpolating curve,

$$\begin{aligned} &\alpha_i \bigotimes_{\mathbf{a}} \max \left\{ \frac{-2\delta_0 d_0}{\pi y_i}, \frac{4\pi \delta_0 d_0}{3\pi^2 y_i + \delta_1 (4\pi d_0 + D_0 \delta_0)} \right\} \\ &\text{with } \delta_0 = \frac{\delta_0}{k_0} \text{ and } k_0 \bigotimes_{\mathbf{a}} \max \left\{ 0, \frac{-2d_0 \delta_0 + \sqrt{\delta_0 d_0^2 k_0^2 - 3D_0 y_0 k_0^2}}{3\pi y_0} \right\}, \end{aligned}$$

Proof: Mahzir, S. S., & Misro, M. Y. (2023). Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves. Alexandria Engineering Journal, 80, 122-133.

Positivity Preserving Interpolation

Remark

The sufficient conditions in Theorem 1 can be rewritten as:

 $\beta_i \in [-4,1]$ that produce positive and smooth interpolating curve,

$$\begin{split} &\alpha \bigcap \max \left\{ \frac{-2h_id_i}{\pi y_i}, \frac{4\pi h_id_i}{3\pi^2 y_i + h_i(3\pi d_i + D_ih_i)} \right\} + w \\ &\text{with } h \bigcap \frac{h_i}{k_i} \text{ and } k_i = \max \left\{ 0, \frac{-2d_ih_i + \sqrt{kd_i^2h_i^2 - 3D_iy_ih_i^2}}{3\pi y_i} \right\} + w. \end{split}$$

The free parameters wand ware positive real numbers added to inequalities (12) and (13) so that the more than signs '>' can be changed to the equal signs '='.

19

Range-restricted Interpolation

Theorem 2

For data lying above a straight line, the C^2 quintic trigonometric Bézéer interpolating spline curve defined over the interval $|x_0, x_n|$ also lies above the straight line if the shape parameters α_i, β_i in each subinterval satisfy the following sufficient conditions:

J, c (-4.1) which produce smooth interpolating curve that lies above the straight line.

$$\begin{split} \alpha_k > \max \left\{ & \frac{2 \delta_0(d_t - m)}{-(g_t - a_t)\pi} \cdot \frac{4 \pi \delta_1(d_t - m)}{3 \pi^2(g_t - a_t) + 4 \pi d_t \delta_1 + D_t \delta_1^{*2} - 4 \pi m \delta_0} \right\}, \\ & \left\{ \begin{aligned} & \delta_1 = \delta_n^* = \frac{k_0}{k_0}, & \text{if } d_1 < 0 \text{ and } D_t < 0, \\ & \delta_1 = \frac{k_0}{k_0}, \delta_n^* = k_t, & \text{if } d_1 < 0 \text{ and } D_t > 0, \\ & \delta_1 = \delta_0^* = k_0, & \text{otherwise.} \end{aligned} \right. \\ & \delta_2 > \max \left\{ 0, \frac{-2 \delta_1(d_t - m) + \sqrt{h_t^2(4(d_t - m))^2 - 3 D_t(g_t - a_t))}}{3 \pi (g_t - a_t)} \right\}. \end{split}$$

Proof. Mahzir, S. S., & Misro, M. Y. (2023). Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves. Alexandria Engineering Journal, 80, 122-133.

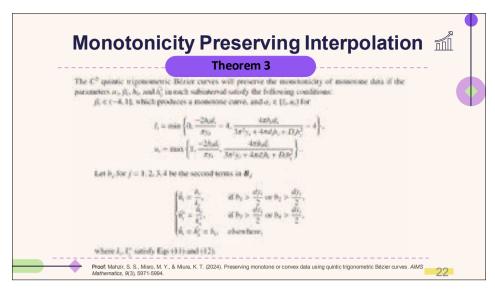
Range-restricted Interpolation

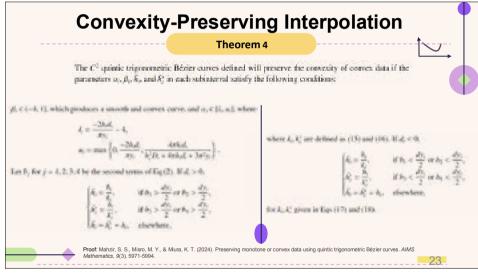
Remark 2

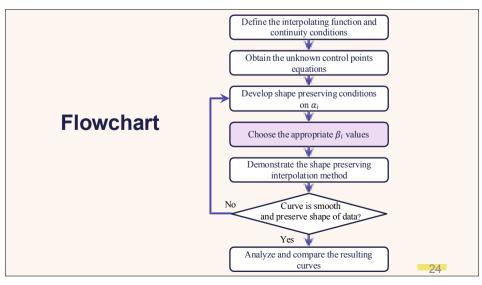
The sufficient conditions in Theorem 2 can be rewritten as:

 $A \in \{-1,1\}$ which produce a smooth interpolating curve that lies above the straight line,

$$\begin{split} u_{ii} &= \max \left\{ \frac{2h_{i}(d_{i} - i\sigma)}{-(y_{i} - a_{i})\pi}, \frac{3\pi \tilde{h}_{i}(d_{i} - i\sigma)}{3\pi^{2}(y_{i} - x_{i}) + 4\pi d_{i}h_{i} + D_{i}h_{i}^{*2} - 4\pi mh_{i}} \right\} + u, \\ \begin{cases} \tilde{h}_{ii} &= \tilde{h}_{ii}^{*} &= \tilde{h}_{ii}^{*}, & \text{if } d_{i} < 0 \text{ and } D_{i} < 0, \\ \tilde{h}_{ii} &= \frac{\tilde{h}_{ii}}{\tilde{h}_{ii}}, \tilde{h}_{ii}^{*} = h_{ii}, & \text{if } d_{i} < 0 \text{ and } D_{i} > 0, \\ \tilde{h}_{ii} &= \tilde{h}_{ii}^{*} = h_{ii}, & \text{otherwise}, \end{cases} \\ \tilde{k}_{ij} &= \max \left\{ 0, \frac{-2h_{i}(d_{i} - m) + \sqrt{h_{i}^{*}(4(d_{i} - m)^{2} - 3D_{i}(y_{i} - a_{i}))}}{3\pi (y_{i} - x_{i})} \right\} + w. \end{split}$$





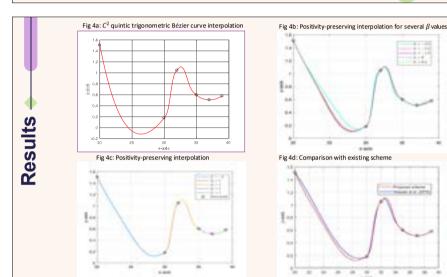


Example 1 – Positivity-preserving Interpolation

Table 1: Amount of creatinine in the blood of six individuals from Hussain et al. (2018)

i	1	2	3	4	5	6
x_i (years)	20	30	32	35	37	39
$y_i (mg/dl)$	1.51	0.18	1.06	0.6	0.51	47

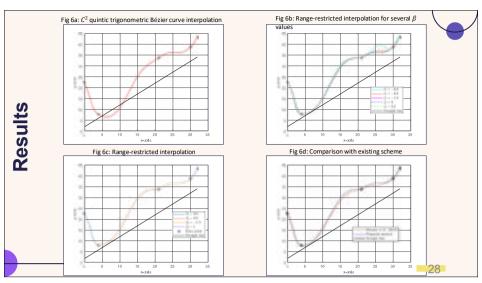
The normal creatinine level for an adult should be between 0.50 – 1.10 mg/dL.

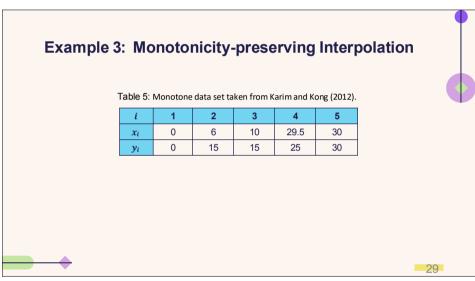


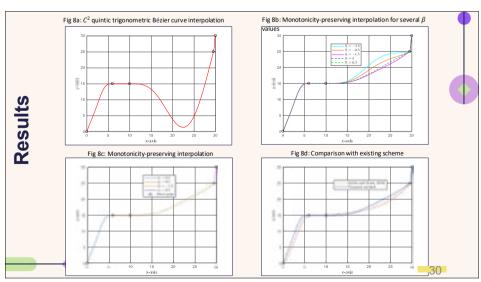
Example 2 – Range-restricted Interpolation

Table 3: Data lying above y = x + 2 from Hussain et al. (2018)

i	1	2	3	4	5
x_i	0	4	21	30	32
y_i	22.8	8	33.9	38.9	43.6



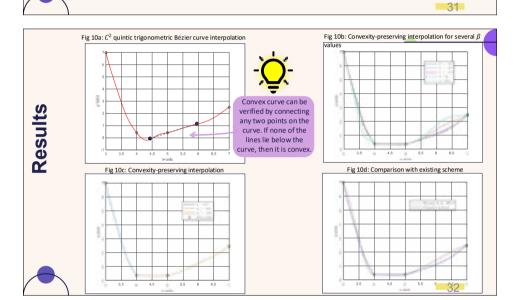




Example 4: Convexity-preserving Interpolation

Table 7: Convex data set taken from Hussain et al. (2014)

i	1	2	3	4
x_i	3	4	5	7
y_i	7	0.4	0.4	2.5



Conclusion

- 1 This study developed shape preserving conditions on the quintic trigonometric Bezier curves
- 2 This method reduced the complexity of previous study
- $\textbf{3} \quad \text{Optimization method ensure optimal } \beta_i \\ \text{values and helps in reducing time}$

Future Works

- To apply optimization methods for α_i parameter and compare their effectiveness
- 2 Can be extended to shape preservation of surfaces

Extension of κ -curve

Kenjiro T. Miura Graduate School of Science and Technology, Shizuoka University, Japan

Abstract

The κ -curve[1, 2] is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. We extend this representation to control the magnitudes of local maximum curvature in a new scheme called *extended*- or $\epsilon \kappa$ -curves.

 κ -curves have been implemented as the curvature tool in Adobe Illustrator[®] and Photoshop[®], and are highly valued by professional designers. However, because of the limited degrees of freedom of quadratic Bézier curves, it provides no control over the curvature distribution.

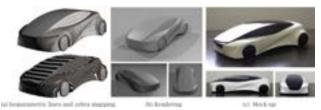
We propose new methods that enable the modification of local curvature at the interpolation points by degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By using $\epsilon \kappa$ -curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our examples.

References

- [1] Yan, Z., Schiller, S., Wilensky, G., Carr, N., Schaefer, "κ-curves: Interpolation at local maximum curvature", ACM Transactions on Graphics **36**(4), Article 129 (2017).
- [2] Yan, Z., Schiller, S., Schaefer, S., "Circle reproduction with interpolatory curves at local maximal curvature points". Computer Aided Geometric Design **72**(6), 98–110 (2019).

Log-aesthetic Curve and Similarity Geometry + κ-Curve

Kenjiro T. Miura Shizuoka University, Japan



Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

Today's talk

Two topics

a. Log-aesthetic curve + Similarity geometry:

Standard curve for aesthetic design

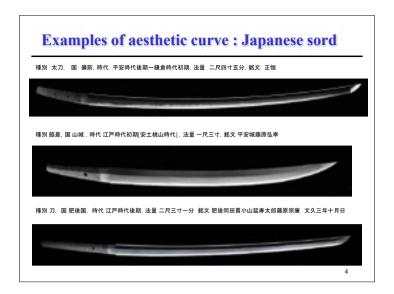
b. κ-curve

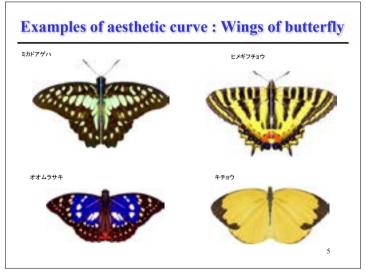
- 1. Aesthetic curve
- 2. Cute curve

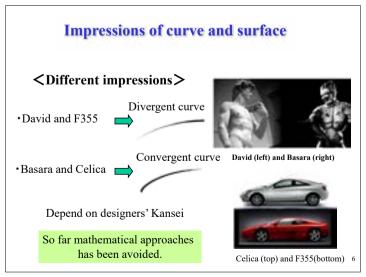
Examples of aesthetic surfaces: Sculpture

David statue

Basara statue(伐折羅)







Researches on aesthetic curves and surfaces

Fairness metrics

using Bézier B-spline NURBS etc. Construction
Evolute
Typical curve
Class A Bézier

Aesthetic curves

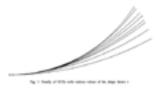
Logarithmic spiral Clothoid curve Quaternion IC GCS Log-aesthetic curve GLAC

7

Aesthetic curves

- · Clothoid curve
 - D. S. Meek and D. J. Walton, The use of Cornu spirals in drawing planar curves of controlled curvature, Journal of Computational and Applied Mathematics 25(1989), 69-78.
- GCS (generalized Cornu spiral)

A. Jamaludin et al., The generalised Cornu spiral and its application to span generation, Journal of Computational and Applied Mathematics Vol.102, No.1, P-37-47, 1999.



GCS

The curvature profile is given by

$$v(s) = \frac{p + \eta s}{s + rs}$$

where κ : curvature, s: arc length, S:total length, p, q, r: cnst > 1 The domain of the curve $0 \le s \le S$.

The sign of the curvature derivative is always positive or negative, so the curvature is monotonically increasing/ decreasing.

$$\frac{ds(s)}{ds} = \frac{sn - \rho r}{(s + rs)^2}$$

Unit Quaternion Integral Curve

K.T. Miura, Unit Quaternion Integral Curve: a new type of fair free-form curves, CAGD, 17(2000) 39-58.

$$C(t) = P_0 + \int_0^t q(t)vq(t)^{-1}dt$$

where q is a unit quaternion.

Miura, K.T., "Unit Quaternion Integral Curve: A New Type of Fair Free-Form Curves," Computer Aided Geometric Design, vol.17, no.1, pp.39-58, 2000

10

GLAC

Gobithaasan, R.U. (2010). The Development of Planar Curves with High Aesthetic Value (Doctoral dissertation, Universiti Sains Malaysia, Jan. 2010).

Radius of curvature-shifted GLAC

$$\rho(s) = (cs + d)^{\frac{1}{2}} + t$$

Curvature-shifted GLAC

$$v(\cdot) = (\cdot x + a) \cdot (+ a)$$

Difference

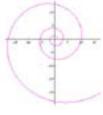
Directional angle of ROC-shifted GLAC : hypergeometric function

Directional angle of curvature-shifted GLAC : integrable

Example of aesthetic curves

Typical example of aesthetic curves logarithmic (equiangular) spiral

Nautilus

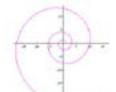


Logarithmic spiral

Counterexample: Archimedean spiral

$$r = r_0 + a\theta$$

Logarithmic spiral



Logarithmic spiral

General expression

$$C(t) = e^{(a+ib)t}, \quad (t \ge 0)$$

Main property

$$\rho = c_0 s + c_1$$

 ρ : radius of curvature,

s: arc length

Self-similarity

$$C'(t) = C(t+1)$$

 $=e^{a}e^{ib}C(t)$

Reasons to be aesthetic

Self-similarity

Golden ratio

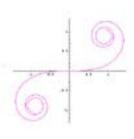
$$\phi = \frac{\sqrt{5} + 1}{2} = 1.618033989...$$

Golden spiral: a kind of logarithmic spirals

About the fixed point (intersection of red lines) rotate by 90 degrees clockwise and scale by $1/\phi$

14

Clothoid curve



General expression

$$C(t) = \int_{0}^{t} e^{iat^2} dt, \quad (t \ge 0)$$

Main property

$$\rho^{-1} = c_0 s + c_1$$

 ρ : roc, s: arc length

Self-affinity

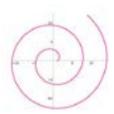
Clothoid curve

Reparametarize as
$$s(t) = c_1(e^{\beta t} - 1)/c_0$$

$$\rho'(t) = e^{-\beta} \rho(t+1)$$

$$s'(t) = s(t+1) - s(1) = e^{\beta} s(t)$$

Circle involute curve



Circle involute curve

General expression

 $C(t) = (\cos t + t \sin t, \sin t - r \cos t)$

Main property

$$\rho^2 = c_0 s + c_1$$

 ρ : roc, s: arc length

Self-affinity

D

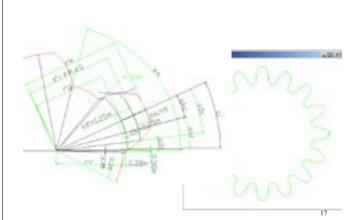
Reparametrize as
$$t = c_1(e^{\beta t} - 1)/c_0$$

$$\rho'(t) = \rho(t+1) = e^{\beta/2}\rho(t)$$

$$s'(t) = s(t+1) - s(1) = e^{\beta} s(t)$$

16

Involute gear



Self-affinity

[Ref: Mathematics of shape, Ryuji Takagi]

Extension #2 Self-affinity

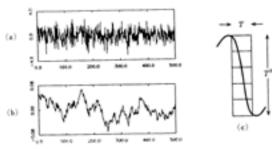


图 2.24 乱雑信号

(a),(b) コンピューターによる波形 (Turcotte, 1988)²⁰, (c) 波形の被覆,

Logarithmic Curvature Histogram #1

Logarithmic curvature histogram

Horizontal axis:log of radius of curvature
Vertical axis:log of small change of arc length with respect to small
change of log of radius of curvature

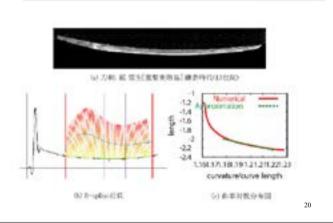
$$\log(\frac{ds}{d(\log \rho)})$$

rhythm	α	elem. func.	impressions
	-	sin, cubic cur.	sharp, strong
simple	0	(not found)	stable
- Language	+	parabola, log, log, spiral	gathering centripetal
complex	$+ \rightarrow -$	sin	diverge to converge
	$-\rightarrow +$	(not found)	converge to diverge

Table 1: LCH lines' slopes α and their impressions

19

Logarithmic Curvature Histogram #2



A general equation of aesthetic curves

$$\log(\rho \frac{ds}{d\rho}) = \alpha \log \rho + C, \quad \rho^{\alpha} = c_0 s + c_1, \quad \rho = c_0 e^{c_1 s}$$

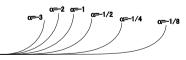
The fundamental equation of aesthetic curves

Logarithmic spiral α=1

Clothoid curve $\alpha = -1$

Circle involute $\alpha = 2$

Nielsen's spiral $\alpha = 0$



Parametric expression

$$\rho(s) = (c_0 s + c_1)^{\frac{1}{\alpha}}$$

$$\frac{dx}{ds} = \cos \theta, \quad \frac{dy}{ds} = \sin \theta$$

$$\frac{d\theta}{ds} = (c_0 s + c_1)^{-\frac{1}{\alpha}}$$

$$C(s) = P_{s-1} e^{ic_2} \int_0^s e^{\frac{i\alpha(c_0 s + c_1)^{\frac{\alpha}{\alpha}}}{(\alpha - 1)c_0}}$$

$$C(s) = P_0 + e^{ic_2} \int_0^s e^{i\frac{\alpha(c_0 s + c_1)^{\frac{\alpha - 1}{\alpha}}}{(\alpha - 1)c_0}} ds$$

Extended clothoid curve

22

Self-affinity

Main property

$$\rho^{\alpha} = c_0 s + c_1$$

 ρ : radius of curvature, s: arc length

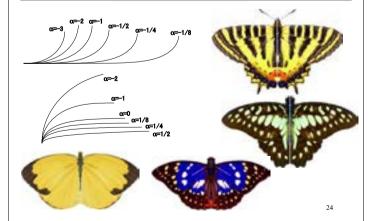
The curve without head portion C(t)

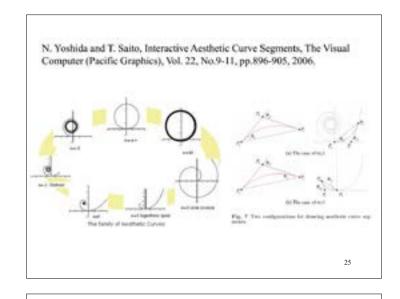
Self-affinity

$$\rho'(t) = e^{\frac{\beta}{\alpha}} \rho(t+1)$$

$$s'(t) = s(t+1) - s(1) = e^{\beta} s(t)$$
where $s(t) = c_1(e^{\beta t} - 1) / c_0$
The original curve $C(s)$

Butterfly's wings





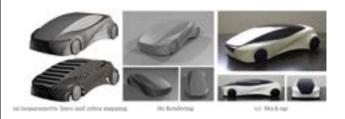
INTERACTIVE DESIGN USING LAC

26

Compound-Rhythm LAC Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-10327

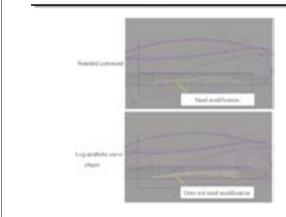
G² C-Shape & S-Shape with LAC triplets Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032₂₈

LAC as plugin for Rhino 3D



Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

Design examples



Applications for Archtecture

SIMILARITY GEOMETRY

32

Similarity Geometry of the Plane Curve #1

Since we know that the arc length s may vary, thus the representation of plane curves is parameterized by direction angle θ which is invariant by scaling.

We assume the curve is not a straight line. Let a plane curve be given as a function of its direction angle by $C(\theta)$ and let a unit tangent vector T^{sim} and a unit normal vector N^{sim} . Then

$$T^{sim}(\theta) = \frac{dC}{ds}\frac{ds}{d\theta} = \frac{1}{\kappa(s)}T(s)$$

$$N^{sim}(\theta) = \frac{1}{\kappa(s)}N(s)$$

Similarity Geometry of the Plane Curve #2

Similarity Frenet frame $F^{sim}(\theta) = (T^{sim}(\theta), N^{sim}(\theta))$

$$\frac{d}{d\theta}F^{sim}(\theta) = F^{sim}(\theta) \begin{pmatrix} -\kappa^{sim}(\theta) & -1 \\ 1 & -\kappa^{sim}(\theta) \end{pmatrix}$$

where

Similarity curvature
$$S(\theta) = \kappa^{sim}(\theta) = \frac{1}{\kappa^2} \frac{d\kappa}{ds} = -\frac{d\rho}{ds} = -\frac{1}{\rho} \frac{d\rho}{d\theta}$$

Similarity curvature is a similarity geometry invariant!

34

Similarity Curvature of LAC and its evolute

$$\frac{dS}{d\theta} = (\alpha - 1)S^2$$

 $S(\theta) = L(\alpha, \lambda; \theta) = -\frac{\lambda}{(\alpha-1)\lambda\theta+1}$ LAC: general solution

$$\frac{dS(\theta)}{d\theta} = S(\theta)^2 - T\left(\theta + \frac{\pi}{2}\right)S(\theta)$$

where $S(\theta)$: similarity curvature of LAC, $T(\theta+\pi/2)$:that of its evolute

Assume that $T(\theta+\pi/2)=(2-\alpha)L(\alpha, \lambda, \theta)=L(1/(2-\alpha), (2-\alpha)\lambda, \theta)$. ROC-shift GLAC: general solution

$$S(\theta) = \frac{L(\alpha,\lambda;\theta)}{1 + C((\alpha - 1)\lambda\theta + 1)^{\frac{1}{1-\alpha}}} = \frac{L(\alpha,\lambda;\theta)}{1 + \nu((\alpha - 1)\lambda\theta + 1)^{\frac{1}{1-\alpha}}}$$

Similarity Radius of Curvature

$$\frac{dV}{d\theta} = 1 - \alpha$$

LAC: general solution $V(\theta) = M(\alpha, \lambda; \theta) = -\frac{(\alpha - 1)\lambda \theta + 1}{\lambda}$

$$\frac{dV(\theta)}{d\theta} = T\left(\theta + \frac{\pi}{2}\right)V(\theta) - 1$$

where $V(\theta)=1/S(\theta)$: Similarity ROC of LAC

General solution of $V(\theta)$: $V(\theta) = \frac{1 + C((\alpha - 1)\lambda\theta + 1)^{\frac{1}{1-\alpha}}}{L(\alpha,\lambda;\theta)}$

Similarity ROC of Curvature-shift GLAC:

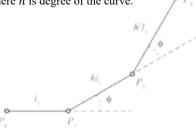
islarity ROC of Curvature-shift GLAC:
$$V_{K-GALC}(\theta) = -\frac{\frac{\alpha}{((\alpha-1)\lambda\theta+1)^{\alpha-1}(v+((\alpha-1)\lambda\theta+1)^{\frac{1}{1-\alpha}})}}{\lambda}$$
$$V(-\theta) = -\frac{\frac{\beta}{((\beta-1)\lambda\theta+1)^{\beta-1}(c+((\beta-1)\lambda\theta+1)^{\frac{1}{1-\beta}})}}{\lambda} = M(\beta,\lambda;-\theta)(1+v((1-\beta)\lambda\theta+1)^{\frac{1}{\beta-1}})$$

where $\beta=2-\alpha$

Similarity Curvature of Typical Curve

$$\frac{dS}{d\theta} = -\frac{-1}{n+1}S^2 - \frac{n+1}{(n-1)^2}$$

where n is degree of the curve.



Sato, M., & Shimizu, Y. (2016). Generalization of log-aesthetic curves by Hamiltonian formalism. JSIAM Letters, 8, 49-52.

7

σ-Curve and **τ-Curve**

Fig. 3. A Your diagram illustrating relationship between theorier and become

Kenjiro T. Miura, Sho Suzuki, R.U. Gobithassan, Shin Usuki, Jun-ichi Inoguchi, Masayuki Sato, Kenji Kajiwara, Yasuhiro Shimizu, "Fairness metris of plane curves defined with similarity geometry invariants," Computer-Aided Design and Applications, DOI:10.1080/16864360.2017.1375677, 2017.

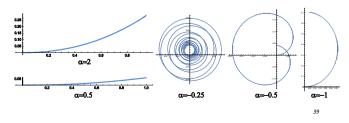
K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithassan, τ-curve-Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 2020, 7(2), 155-164.

σ-Curve

We define σ curve by its Cesàro equation as follows:

$$\sigma = \rho^{\alpha} = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$
 (5.13)

In the above equation, $\sigma=\rho^{\alpha}$ is given by a polynomial function of arc length s.



σ-Curve

$$\kappa^{-\alpha} = as^2 + bs + c$$

where a,b and c are constants. By differentiating both sides of the above equation with respect to s three times and assuming $\kappa \neq 0$, we obtain

$$-(\alpha+1)(\alpha+2)\kappa_{\nu}^{2}+3(\alpha+1)\kappa\kappa_{\nu}\kappa_{\nu}\kappa_{\nu}-\kappa^{2}\kappa_{\nu\nu}=0 \label{eq:equation:equat$$

From Eq.(23) $\kappa_i = d\kappa/ds = \kappa^2 S$ and

$$\kappa_{ee} = \frac{d^2K}{dx^2} = \kappa^2(S_0 + 2S^2)$$

$$\kappa_{ee} = \frac{d^3K}{dx^2} = \kappa^4(6S^3 + 7SS_0 + S_{00})$$
(20)

By substituting the above equations in Eq.(99), we have the following second-order nonlinear ordinary differential equation for S.

$$S_{\alpha\alpha} + (4 - 3\alpha)SS_{\alpha} + (\alpha - 1)(\alpha - 2)S^{3} = 0$$
 (71)

τ-Curve

According to the discussion so far, it is desirable to use direction angle $\theta(s)$ to introduce points with infinite curvature to a curve. Similar to the σ -curve definition, the power β of $\theta(s)$ is given by a polynomical function of six length s, i.e.

$$\operatorname{sgn}(\theta)\theta^{p} = b_{n}s^{n} + b_{n-1}s^{n-1} + \cdots + b_{1}s + b_{2}$$
 (19)

40

Supposing $F \ge 0$,

$$\theta = \{b_n s^n + b_{n-1} s^{n-1} + \dots + b_0 s + b_0\}^{\frac{1}{2}}$$
(26)

In this research, the curve whose direction angle $\theta(s)$ is given in this way is called τ -curve. Similar to σ -curve n is called the degree of τ -curve.

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, τ-curve-Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 2020, 7(2), 155-164.

τ-Curve

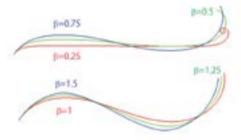


Figure 9. Quadratic r surror, length=4.5, $\theta^2=(s^2-4s+3)/3=(s-1)(s-3)/3$

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, τ-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 2020, 7(2), 155-164.

τ-Curve

The direction angle θ of a quadratic θ -curve powered by β is given by

where a and θ are constants. As in the quadratic θ -curve, by differentiating both sides of the above equation with respect to a three times and assuming $\kappa \neq 0$, we obtain the

Indicating first-order tentional ordinary differential again-

$$(\beta-1)(\beta-2) + 3(\beta-1)\theta \delta + \theta^2 \delta_\phi + 2\theta^2 \delta^2 = 0$$

Even though the above differential equation is non-linear, fortunately we can got its analytical solution as follows:

$$S \approx \frac{-\frac{3\sqrt{\beta^2}\gamma_1}{\sqrt{\beta^2}+\gamma_2} + \sqrt{\beta^2} - 3\beta + 4}{4\epsilon}$$
 (102)

43

K-CURVE

Kawaii Engineering

Kawaii Engineering, editor: Michiko Ohkura, Springer 2019.

Japanese word: "かわいい"

English word: cute, lovable, charming, (cool)

For 2D and 3D objects, kawaii preference for curved shape is in common.

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, "κ-Curves: Interpolation at Local Maximum Curvature," TOG, 36(4), 129, 2017.

εκ-Curves: Controlled Local Curvature Extrema

K.T. Miura et al. εκ-Curves: Controlled Local Curvature Extrema, The Visual Computer, 2021.

Kenjiro T. Miura¹
R.U. Gobithaasan²
Péter Salvi³
Dan Wang¹
Tadashi Sekine¹
Shin Usuki¹
Jun-ichi Inoguchi⁴
Kenji Kajiwara⁵
¹Shizuoka University
²University Malaysia Terenggan
³Budapest U. of T. and E.
⁴University of Tsukuba

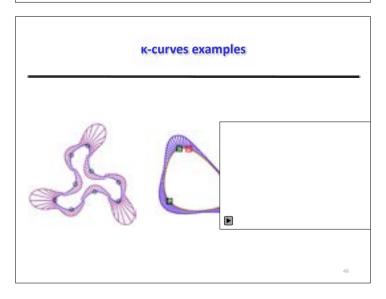
⁵Kyushu University

κ-curves

The κ -curve is a recently published interpolating spline which consists of quadratic Bézier segments passing through input points at the loci of local curvature extrema. [Yan2017]. It has the following properties:

- 1. It passes through all input point.
- 2. All the curvature extremum points are input points.
- 3. Curvature continuity (G² continuity) is guaranteed except for inflection points.

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, "κ-Curves: Interpolation at Local Maximum Curvature," TOG, 36(4), 129, 2017.



Disadvantages of κ-curves and its improvement

The values of curvature extrema can't be controlled!

[Yan2019]

Increase DOF by using rational quadratic Bézier curve.

Proposed method

Increase DOF by elevating degree from quadratic to cubic.

Advantage

Not only rational quadratic Bézier, but also other various type of curves

Z. Yan, S. Schiller, and S. Schaefer, "Circle reproduction with interpolatory curves at local maximal curvature points," Computer Aided Geometric Design, vol. 72, no. 6, pp. 98–110, 2019.

40

εκ-curves: extended κ-curves

Constrained cubic curve

 $\frac{d\kappa}{dt} = 0$: polynomial of degree 9 in terms of parameter t

For one curve segment

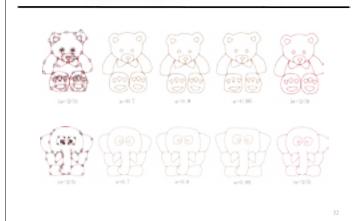
- 1. Proof of at most one curvature extremum[1]
- 2. Uniqueness of the solution passing the input point[2]

[1] K. T. Miura, "One peak," November 2020. [Online]. Available: https://mc2-lab.com/KTMiuraOnePeak.pdf

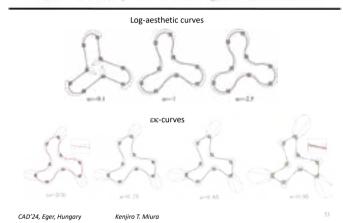
[2]K. T. Miura , "Unique solution," November 2020. [Online]. Available: https://mc2lab.com/KTMiuraUniqueSolution.pdf

a=0.85 a=0.85 All a=0.85

єк-curves: Global modifications



εκ-curves: Comparison with Log-Aesthetic Curves



εκ-curves: Sample code in Julia and Movie file

Contributions

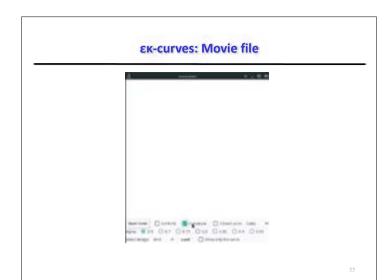
- 1. Inherent nice properties of κ -curve
- 2. Applicable for various curves(polynomial, rational, trigonometric, etc.)
- 3. Not necessary to increase # of input points to control curvature extrema
- 4. Global and local control of curvature extrema
- 5. As fast as $\kappa\text{-curves}$

Prototype in Julia

P. Salvi, (2020, November) ex-curves. [Online] Available: https://github.com/salvipeter/ekcurves/tree/master

Movie file

[Online] Available: https://mc2-lab.com/ek-curves.mp4



Future works

Surface

- 1. Log-aesthetic surface?
- 2. Not K-surface, but κ-surface?

K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema (2023) Tobias Djuren, Maximilian Kohlbrenner, Marc Alexa ACM Transactions on Graphics (Proc. of Siggraph Asia)

Intrinsic and extrinsic singularities and curvatures of piecewise smooth surfaces

Miyuki Koiso Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

We study piecewise-smooth (PS in short) surfaces which are two-dimensional topological manifolds made by connecting finitely many smooth surfaces. We discuss intrinsic and extrinsic singular points of such surfaces and give new definitions which represent curvature and sharpness at each point in the 'edges' and at each 'vertex' of such a surface. Especially, the intrinsic singularities are defined intrinsically by using a generalization of the classical Bertrand-Puiseux Theorem, which gives a power series expansion of the length of the geodesic circle with respect to the radius. Then, as an application of the new concepts mentioned above, we represent the well-known Gauss-Bonnet Theorem that gives a relationship between curvatures and topology for surfaces in a simple form. We discuss also the definition and characterization of PS developable surfaces which are locally isometric to planar domains. Our definitions of intrinsic curvatures can estimate how far a PW-smooth surface is from being developable.

International Conference "Evolving Design and Discrete Differential Geometry - towards Mathematics Aided Geometric Design"

Intrinsic and extrinsic singularities and curvatures of piecewise smooth surfaces*

Miyuki Koiso (IMI, Kyushu University, Japan)

March 13, 2025, Nishijin Plaza, Kyushu University

*This work is supported by JST CREST Grant Number JPMJCR1911 and JSPS KAKENHI Grant Number JP20H01801.

Plan of talk

- 1. Motivation
- 2. Bertrand-Puiseux Theorem and its generalization
- Definitions of intrinsic singular points and curvatures
- 4. Gauss-Bonnet Theorem.
- Idea of the proof of the generalized Bertrand-Puiseux Theorem
- 6. Summary

1. Motivation

<u>Definition (Piecewise smooth surface)</u>.

Let $M=\bigcup_{i=1}^k M_i$ be a 2-dim. connected oriented C^∞ - manifold included in \mathbb{R}^3 . If M satisfies the following conditions (i) - (iii), we call M a piecewise smooth (PW-smooth in short) surface in \mathbb{R}^3 .

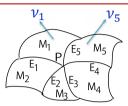
- (i) Each M_i is an oriented connected smooth submanifold with piecewise smooth boundary ∂ M_i and unit normal vector field v_i in \mathbb{R}^3 .
- (ii) If $i \neq j$, then $M_i \cap M_j = \partial M_i \cap \partial M_j$ holds.
- (iii) For each i, the unit normal v_i satisfies the following condition: For any local coordinates (u_1, u_2) ,
- $\left\{ rac{\partial}{\partial u_1}, rac{\partial}{\partial u_2},
 u_i
 ight\}$ gives the canonical orientation of \mathbb{R}^3 .

1. Motivation (continuation)

Definition (Extrinsic singular points).

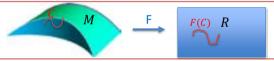
Let $M = \bigcup_{i=1}^k M_i$ be a PW-smooth surface.

- (i) If $M_i \cap M_j \neq \phi$ and $i \neq j$, then $M_i \cap M_j$ is called an extrinsic edge (or simply, edge) of M.
- (ii) If $p=M_1\cap\cdots\cap M_N\in M^o$ $(M_1,...,M_N$ are all different, and $N\geq 3$) is called an extrinsic vertex (or simply, vertex) of M.



1. Motivation (continuation)

<u>Def. 1.</u> A piecewise (PW)-smooth surface M is said to be developable if it is isometric to a planar region R (that is, there exists a Lipschitz continuous bijective mapping F from M onto R that preserves the length of each curve).



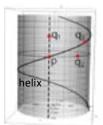
Remark 1. It is well-known that a smooth surface M is developable if and only if the Gaussian curvature K(p) of M vanishes at any point $p \in M$.

Question. Estimate how far a PW-smooth surface is from being developable.

2. Bertrand-Puiseux Theorem and its generalization

Let M be a PW-smooth surface. For $p,q\in M$, $\mathrm{dist}(p,q):=$ the smallest length of PW C^∞ curves connecting p and q in M.

Remark. A shortest path is not necessarily smooth!



Cylinder and geodesics

pA is a straight line segment.

Aq is a part of a helix.

Cylinder covered with a disc and its non-smooth shortest path connecting p, q.

2. B-P Theorem and its generalization (continuation)

Let M be a PW-smooth surface. The Gaussian curvature of M at a regular point $p \in M$ is denoted by K(p). The geodesic circle in M with center at p and radius r is defined as $C(p;r) = \{q \in M | \operatorname{dist}(q,p) = r\}, \text{ and the }$ length of C(p;r) is denoted by L(p;r).

Bertrand (1848. For general R-mfd, Gray1974). If $p \in M$ is a regular point, then for small r > 0, $L(p;r) = 2\pi r - \frac{\pi}{3}K(p)r^3 + o(r^3).$

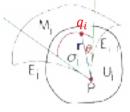
Rem. If M is a plane, C(p;r) is a round $|_{K(p)} < 0$ circle with radius r and $L(p; r) = 2\pi r$.

2. B-P Theorem and its generalization (continuation)

Next, let $M = \bigcup_i M_i$ be a PW-smooth surface.

And let $p = M_1 \cap \cdots \cap M_N$.

saddle



In a neighborhood U_i of a point $p \in M_i$, we use the geodesic polar coordinate (r, θ) to represent any point as $q_i = q(r, \theta) \in M_i \cap U_i$, $(\vartheta_1^i(r) \le \theta \le \vartheta_2^i(r)).$

 σ_i is the inner angle of M_i at p, $K_i(p)$ is the Gaussian curvature of M_i at p, $k_{a1}^i(\mathbf{r})$ is the signed geodesic curvature of the edge $M_i \cap M_{i-1}$ and $k_{a2}^i(\mathbf{r})$ is that of $M_i \cap M_{i+1}$.

2. B-P Theorem and its generalization (continuation)

Let $M = \bigcup_i M_i$ be a PW smooth surface. And let $p \in M^o$.

vertex of M. then $L(p;r) = (\sum_{i=1}^{N} \sigma_i)r$ — $\frac{1}{2}\sum_{i=1}^{N} \left(k_{a1}^{i}(0) + k_{a2}^{i}(0)\right) r^{2} \frac{1}{6} \sum_{i=1}^{N} \left(K_i(p) \sigma_i + (k_{g1}^i)'(0) + (k_{g2}^i)'(0) \right) r^3 + o(r^3).$

Theorem 1 (Koiso) (1) Let $p = M_1 \cap \cdots \cap M_N$ be a

(2) Let p be an interior point of an edge $E = M_1 \cap$ M_2 . Denote by $k_i(p)$ the geodesic curvature of $E \subset$ M_j at p w.r.t. the inner normal. Then, $L(p; r) = 2\pi r (k_1(p) + k_2(p))r^2 - \frac{\pi}{6}(K_1(p) + K_2(p))r^3 + o(r^3).$

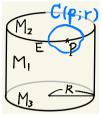
Cor. 1. The area of geodesic discs are given by integrating L(p; r) with respect to r.

2. B-P Theorem and its generalization (continuation)

For a regular arc $\gamma\subset M$, the signed geodesic curvature k_g is expressed as $k_g=rac{\det(\dot\gamma\ \ddot\gamma\
u)}{|\dot\gamma|^3}$.

Example 1. $M=M_1\cup M_2\cup M_3$, $p\in E=M_1\cap M_2$, where M_1 is a part of a cylinder with radius R, M_2 and M_3 are flat disks with radius R. Then,

$$L(p;r) = 2\pi r - \frac{1}{R}r^2 + o(r^4).$$

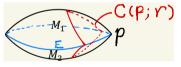


10

2. B-P Theorem and its generalization (continuation)

Example 2. Let M be a cube. Then, for each vertex p, $L(p;r) = \frac{3}{2}\pi r$.

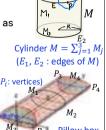
Example 3. $M = M_1 \cup M_2$, $p \in E = M_1 \cap M_2$, $L(p; r) = 2\pi r - 2\frac{\cot \theta}{R}r^2 - \frac{\pi}{3R^2}r^3 + o(r^3)$



3. Definition of intrinsic singular points and curvatures (cont.)

Let $M=\bigcup_j M_j$ be a PW-smooth surface. Let $p\in M^o$. Represent the length L(p;r) of the geodesic circle C(p;r) in M with center at p and radius r as $L(p;r)=a_1(p)r+a_2(p)r^2+a_3(p)r^3+o(r^3)$.

Def. 1(K). (i) If $a_1(p) \neq 2\pi$, we call p an intrinsic vertex of M. (ii) We call the set of points that satisfy both $a_1(p) = 2\pi$ and $a_2(p) \neq 0$ intrinsic edges of M.



<u>Def. 2 (K).</u> (i) We call $S(p) \coloneqq 2\pi - a_1(p)$ the sharpness of M at p. (ii) We call $k_e(p) \coloneqq -a_2(p)$ the <u>edge curvature</u> of M at p.

(iii) We call $K(p) \coloneqq -(3/\pi)a_3(p)$ the Gaussian curvature of M at p.

Theorem 2 (K). A PW-smooth surface is locally developable. $\Leftrightarrow S(p) = k_e(p) = K(p) = 0, \forall p \in M.$

4. Gauss-Bonnet Theorem

The classical Gauss-Bonnet Theorem can be represented as follows.

Proposition 1 (K). Let M be a closed PW-smooth surface with Euler characteristic γ . And let \tilde{E} be the union of all intrinsic edges of M. Then, it holds that

 $\int_{M} K dA + \int_{\tilde{E}} k_{e} ds + \sum_{p \in M} S(p) = 2\pi \chi,$

where dA is the area element of M and ds is the line element at regular points of \widetilde{E} .

5. Idea of the proof of the generalized Bertrand-Puiseux Theorem

Let M be a PW-smooth surface. And let $p=M_1\cap\cdots\cap$ $M_N \in M^o$. Near the point $p \in M_i$, we use the geodesic polar coordinate (r,θ) to represent any point as $q_i=q(r,\theta)$, $(\vartheta_1^i(r)\leq\theta\leq\vartheta_2^i(r))$, and metric $ds^2=dr^2+h^2d\theta^2$, where

 $h=(q_{\theta}\cdot q_{\theta})^{rac{1}{2}}$. Then, $L(p;r)pprox \sum_{i=1}^{N}\int_{artheta_{i}^{i}(r)}^{artheta_{i}^{i}(r)}h(r, heta)d heta$.

 $L(p;r) = a_1(p)r + a_2(p)r^2 + a_3(p)r^3 + o(r^3).$ Then, using L'Hopital's rule, we obtain

$$\begin{split} a_1 &= \lim_{r \to 0} \frac{1}{r} \left(\sum_{i=1}^N \int_{\vartheta_1^i(r)}^{\vartheta_2^i(r)} h(r,\theta) d\theta \right) = \\ &\lim_{r \to 0} \left(\sum_{i=1}^N \int_{\vartheta_1^i(r)}^{\vartheta_2^i(r)} h_r d\theta \right) = \sum_{i=1}^N (\vartheta_2^i - \vartheta_1^i) = \text{the sum of the} \end{split}$$
inner angles around p, here we used $\lim_{r\to 10} h_r = 1$.

 M_5

5. Idea of the proof of the generalized Bertrand-Puiseux Theorem (continuation)

Recall the length of the geodesic circle C(p; r) is

$$L(r) \coloneqq L(p;r) = a_1(p)r + a_2(p)r^2 + a_3(p)r^3 + o(r^3)$$

 $pprox \sum_{i=1}^N \int_{artheta_i^l(r)}^{artheta_i^l(r)} h(r, heta) d heta.$ Then, using L'Hopital's rule again,

$$a_2 = \lim_{r \to +0} \frac{L(r) - a_1 r}{r^2} = \lim_{r \to +0} \frac{L''(r)}{2} = \frac{-1}{2} \sum_{i=1}^{N} \left(\left(k_g \right)_2^i + \left(k_g \right)_1^i \right)$$

$$a_3 = \lim_{r \to +0} \frac{L(r) - a_1 r - a_2 r^2}{r^3} = \lim_{r \to +0} \frac{L''(r) - 2a_2}{6r}$$

$$= -\frac{1}{6} \sum_{i=1}^{N} \left(\sigma_i K_i(p) + \lim_{r \to 0} \left((k_{g1}^i)'(r) + (k_{g2}^i)'(r) \right) \right),$$

where σ_i is the inner angle of M_i at p. Moreover we estimate the error term. From these we obtain the result.

6. Summary

 We generalized the classical Bertrand-Puiseux Theorem to PWsmooth surfaces (say M). For example,

let $p = M_1 \cap \cdots \cap M_N$ be a vertex of M. Then the length of the geodesic circle C(p;r) in M with center at p and radius r is $L(p;r) = (\sum_{i=1}^{N} \sigma_i)r - \frac{1}{2}\sum_{i=1}^{N} (p_i^i + p_i^i) + \frac{1}{2}\sum_{i=1}^{N} (p_i^i +$

$$L(p;r) = \left(\sum_{i=1}^{N} \sigma_i\right) r - \frac{1}{2} \sum_{i=1}^{N} \left(k_{g1}^i(0) + k_{g2}^i(0)\right) r^2 - \frac{1}{6} \sum_{i=1}^{N} \left(K_i(p)\sigma_i + (k_{g1}^i)'(0) + (k_{g2}^i)'(0)\right) r^3 + o(r^3),$$

where K_i is the Gauss. curvature, and k_{gj}^i is the geodesic curvature.

- We defined intrinsic singular points (edges and vertices) and curvatures of PW-smooth surfaces.
- We gave a simple representation of the Gauss-Bonnet Theorem using the intrinsic singular points at curvatures there.
- We explained ideas of the proof of the main result.

Geometric shape generation for ideal lighting

Yoshiki Jikumaru

Faculty of Information Networking for Innovation And Design, Toyo University, Japan

Kentaro Hayakawa

Department of Conceptual Design, College of Industrial Technology, Nihon University, Japan

Kazuki Hayashi

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Japan

Miyuki Koiso

Institute of Mathematics for Industry, Kyushu University, Japan

Shun Kumagai

Hachinohe Institute of Technology, Japan

Abstract

In this talk, we propose a geometric shape generation of roof design for ideal lighting. The idea is based on the variational problem for anisotropic energy, originally proposed as a mathematical model for crystal growth. In our implementation, users can intuitively specify the direction in which they want to improve lighting. Moreover, our approach allows us to generate shapes with natural "internal boundary". While the main idea will be introduced in the smooth setting, we also propose a discretization for triangulated surfaces and shape generations.

Let \mathbb{S}^2 be the unit sphere in the 3-dimensional Euclidean space \mathbb{R}^3 and $\gamma: \mathbb{S}^2 \to \mathbb{R}$ be a positive-valued smooth function. For a smooth surface M in \mathbb{R}^3 , we define the *anisotropic energy* $\mathcal{F}_{\gamma}(M)$ as follows:

$$\mathcal{F}_{\gamma}(M) = \int_{M} \gamma(N) \, dA,$$

where N denotes the unit normal vector field along M and dA denotes the area element. The minimizer of the anisotropic energy among all closed "surfaces" enclosing the same volume is called the *Wulff shape*. Moreover, a critical point of the anisotropic energy under volume-preserving variations can be characterized as a "constant anisotropic curvature" condition. If $\gamma \equiv 1$, the functional gives the area, and therefore, this situation can be regarded as a generalization of constant mean curvature (CMC) surfaces, which gives a mathematical model of soap bubbles. The above model of "generalization of soap bubbles" is useful for shape generation in the following two ways:

- While soap bubbles are "homogeneous", Wulff shapes, in general, "change the size of the faces according to the direction of the normal vector", which can be used to specify the "direction of lighting".
- While soap bubbles have "no edges", Wulff shapes generally have "edges", and natural "internal boundaries" can be generated without connecting several surface pieces.

References

[1] Miyuki Koiso and Bennett Palmer, Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana University Mathematics Journal **54** (2005), 1817–1852.

Geometric shape generation for ideal lighting

CREST ED3GE International Conference

Yoshiki Jikumaru (Toyo University)

Collaborators: Kazuki Hayashi (Kyoto University), Kentaro Hayakawa (Nihon University), Miyuki Koiso (Kyushu University), Shun Kumagai (Hachinohe Institute of Technology)

Faculty of Information Networking for Innovation And Design Toyo University

March 13, 2025

The "target" objects

Figure: London City Hall

Figure: Entrance of Metro Bilbao

https://hash-casa.com/2021/09/08/londoncityhall/

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

2/26

A "summary" of this talk

A "summary" of this talk

- Shape generation with "corners" without connecting surface patches.
- The user specifies the direction in which they want to create more faces by changing the parameters ("ideal lighting").
- The idea came from the geometry of anisotropic energy, which originates the crystal growth model.

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Introduction: Isoperimetric problem

Isoperimetric problem (2D, 等周問題)

The following problems are equivalent and called the isoperimetric problem:

Isoperimetric problem (Queen Dido's problem)

- Among all "closed curves" in the plane of fixed perimeter, which curve maximizes the area of its enclosed region?
- Among all "closed curves" in the plane enclosing a fixed area, which curve minimizes the perimeter?

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

4/26

Isoperimetric problem (2D, 等周問題)

The following problems are equivalent and called the isoperimetric problem:

Isoperimetric problem (Queen Dido's problem)

- Among all "closed curves" in the plane of fixed perimeter, which curve maximizes the area of its enclosed region?
- Among all "closed curves" in the plane enclosing a fixed area, which curve minimizes the perimeter?

The answer is the circle. (the "most symmetric" shape)

Mathematically, we must clarify the class of "curves".

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Isoperimetric problem (3D)

Isoperimetric problem ("Mathematical soap bubbles")

Among all "closed surfaces" enclosing a fixed volume, which surface minimizes the area?

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

5/26

"Anisotropic" isoperimetric problem

Can we consider the following types of "anisotropic" objects (e.g., crystals)?

Figure: An alum crystal

They have some "preferred" directions (faces) → "anisotropic" energy

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

6/26

"Anisotropic" isoperimetric problem

Anisotropic isoperimetric problem ("Mathematical crystals")

Among all "closed surfaces" enclosing a fixed volume, which surface minimizes the "anisotropic" energy?

 \rightarrow the answer is called the Wulff shape ("anisotropic sphere").

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

A mathematical formulation

A brief review of the area functional

M

Let M be a 2-dimensional manifold and ${m r}:M\to \mathbb{R}^3$ be an immersion.

For the (local) coordinates (x, y), define the area element dA as follows:

$$dA = \|\boldsymbol{r}_x \times \boldsymbol{r}_y\| \, dx dy. \tag{1}$$

The area A and (algebraic) volume V enclosed by the surface are defined as follows:

$$A = \int_{M} dA, \quad V = \frac{1}{3} \int_{M} \langle \boldsymbol{r}, \boldsymbol{N} \rangle \, dA,$$
 (2)

where N denotes the unit normal.

"Solution" of the isoperimetric problem

Among all "closed surfaces" enclosing a fixed volume, the sphere minimizes the area.

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

8/26

A brief review of the area functional

M

Theorems

ullet For a small perturbation (variation) $m{r}_{arepsilon}=m{r}+arepsilon m{V}+O(arepsilon^2),$ we have

$$\frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} A(\boldsymbol{r}_{\varepsilon}) = \lim_{\varepsilon \to 0} \frac{A(\boldsymbol{r}_{\varepsilon}) - A(\boldsymbol{r})}{\varepsilon} = -2 \int_{M} \mathcal{H}\langle \boldsymbol{V}, \boldsymbol{N} \rangle \, dA, \tag{3}$$

for boundary-fixed variations. Here \mathcal{H} : mean curvature, N: unit normal.

- A stationary point of the area for volume-preserving variations must be CMC.
- If a closed CMC surface r is "stable (2nd var. ≥ 0)", then r must be the sphere.

J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature. Math Z. 185, 339–353 (1984).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Anisotropic energy

Definition (anisotropic energy)

For a function $\gamma: S^2 \to \mathbb{R}_{>0}$, the anisotropic energy \mathcal{F}_{γ} for a surface r is defined by

$$\mathcal{F}_{\gamma}(\mathbf{r}) = \int_{M} \gamma(\mathbf{N}) dA.$$
 (4)

Theorem (J. E. Taylor, 1978)

Among all "closed surfaces" enclosing a fixed volume, the minimizer of \mathcal{F}_{γ} is given by the Wulff shape:

$$W_{\gamma} = \partial \bigcap_{N \in S^2} \{ x \in \mathbb{R}^3 \mid \langle x, N \rangle \le \gamma(N) \}.$$
 (5)

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

10/26

Examples

M

A trivial choice: $\gamma=1$. Then $\mathcal{F}_{\gamma}=A$, and W_{γ} becomes the sphere.

$$\gamma = |N_1| + |N_2| + |N_3|$$
:

 $\gamma = 1$:

$$\gamma = (N_1^8 + N_2^8 + N_3^8)^{1/8}$$
:

Figure: Wulff shape

Figure: Wulff shape

Figure: Wulff shape

→ The anisotropy naturally generates the "corners" (without connecting patches).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

11/26

Cahn-Hoffman map

The Cahn-Hoffman map gives a "parametrization" of the Wulff shape.

Definition (Cahn-Hoffman, 1972)

For a function $\gamma: \mathbb{S}^2 \to \mathbb{R}_{>0}$, define the Cahn-Hoffman map ξ_{γ} as follows:

$$\xi_{\gamma}(\mathbf{N}) = D\gamma + \gamma(\mathbf{N})\mathbf{N}, \quad \mathbf{N} \in \mathbb{S}^2,$$
 (6)

where $D\gamma$ denotes the gradient on \mathbb{S}^2 at N.

Trivial example: if $\gamma = 1$, then $\xi_{\gamma}(N) = N$.

 L^p -norm example: if $\gamma(N_1, N_2, N_3) = (N_1^p + N_2^p + N_3^p)^{1/p}$, then

$$\xi_{\gamma}(\mathbf{N}) = \xi_{\gamma}(N_1, N_2, N_3) = (N_1^p + N_2^p + N_3^p)^{(1-p)/p} (N_1^{p-1}, N_2^{p-1}, N_3^{p-1}). \tag{7}$$

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

CAMC condition

Proposition and Definition

The first variation of the anisotropic energy (fixed boundary):

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \mathcal{F}_{\gamma} = -2 \int_{M} \Lambda \langle \boldsymbol{V}, \boldsymbol{N} \rangle \, dA. \tag{8}$$

Here, Λ is called anisotropic mean curvature.

As in the "soap bubble" case, a stationary point of \mathcal{F}_{γ} under volume-preserving variations must have constant anisotropic mean curvature (CAMC).

M. Koiso and B. Palmer. Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54 (2005), 1817–1852

 \rightarrow a story analogous to CMC surfaces!

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

13/26

M

A discretization

Discrete anisotropic energy

For a triangular mesh M in \mathbb{R}^3 , the anisotropic energy \mathcal{F}_γ is given by

$$\mathcal{F}_{\gamma} = \sum_{T} \gamma(\mathbf{N}_{T}) A(T), \tag{9}$$

where A(T) is the area of the triangle T.

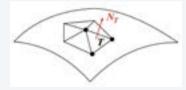


Figure: A triangular mesh and the unit normal $oldsymbol{N}_T$ on a triangle T.

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

First variation

Let us consider a variation of vertices (v_n : "variation vector"):

$$p(\varepsilon) = p + \varepsilon v_p + O(\varepsilon^2). \tag{10}$$

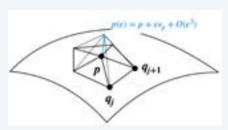


Figure: A variation of vertices

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

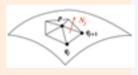
15/26

First variation

Theorem

Then, the first variation formula can be written as follows:

$$\begin{split} \frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} \mathcal{F}_{\gamma} &= \sum_{p} \langle \nabla_{p} \mathcal{F}_{\gamma}, v_{p} \rangle, \\ \nabla_{p} \mathcal{F}_{\gamma} &= \frac{1}{2} \sum_{T=(p, q_{j}, q_{j+1}) \in \text{star}\,(p)} \xi_{\gamma}(\boldsymbol{N}_{j}) \times (q_{j+1} - q_{j}). \end{split}$$



Note: if $\gamma = 1$, the privileged cotangent formula is retrieved.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57-60.

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Exper. Math. 2(1): 15-36 (1993).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

16/26

Discrete CAMC surface

Definition

For a given constant Λ_0 , a triangular mesh is called ${\rm CAMC}\text{-}\Lambda_0$ if

$$\nabla_n \mathcal{F}_\gamma + 2\Lambda_0 \nabla_n V = 0, \tag{11}$$

holds away from the boundary.

The CAMC- Λ_0 condition is defined without defining the discrete anisotropic mean curvature. The idea originates discrete CMC surfaces by Polthier-Rossman.

K. Polthier and W. Rossman, Discrete constant mean curvature surfaces and their index J. reine und angew. Math. 549(549):47-77 (2002).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Basic properties

Theorem

For a closed CAMC- Λ_0 surface, the Minkowski-type formula holds:

$$\sum_{T} (\gamma(\mathbf{N}_{T}) + \Lambda_{0}\langle p, \mathbf{N}_{T}\rangle) A(T) = 0 \iff \mathcal{F}_{\gamma} + 3\Lambda_{0}V = 0.$$
 (12)

Theorem

Let $\gamma:\mathbb{S}^2\to\mathbb{R}_{>0}$ be of class C^2 and "convex". If a discrete CAMC surface has only one interior vertex, then the second variation is non-negative.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57-60.

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

18/26

Example of shape generation: $\gamma = (N_1^8 + N_2^8 + N_3^8)^{1/8}$

M

For each triangle, we can compute the Cahn-Hoffman map:

$$\xi_{\gamma}(\mathbf{N}) = \xi_{\gamma}(N_1, N_2, N_3) = (N_1^8 + N_2^8 + N_3^8)^{-7/8} (N_1^7, N_2^7, N_3^7).$$
 (13)

The energy gradient:

$$\nabla_p \mathcal{F}_{\gamma} = \frac{1}{2} \sum_{T = (p, q_j, q_{j+1})} \xi_{\gamma}(\boldsymbol{N}_j) \times (q_{j+1} - q_j). \tag{14}$$

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

19/26

M

Technical part for shape generation

General setting

In general, if the unit normal N is parametrized by

$$N = (N_1, N_2, N_3) = (\cos x \cos y, \cos x \sin y, \sin x), \tag{15}$$

then the Cahn-Hoffman map for $\gamma = \gamma(x, y)$ is given by

$$\xi_{\gamma} = \gamma_x \boldsymbol{X} + \frac{\gamma_y}{\sqrt{N_1^2 + N_2^2}} \boldsymbol{Y} + \gamma \boldsymbol{N}, \tag{16}$$

where the unit tangent vectors X, Y are given

$$\boldsymbol{X} = \left(-\frac{N_1 N_3}{\sqrt{N_1^2 + N_2^2}}, -\frac{N_2 N_3}{\sqrt{N_1^2 + N_2^2}}, \sqrt{N_1^2 + N_2^2} \right), \quad \boldsymbol{Y} = \left(-\frac{N_2}{\sqrt{N_1^2 + N_2^2}}, \frac{N_1}{\sqrt{N_1^2 + N_2^2}}, 0 \right). \tag{17}$$

 \rightarrow if $\gamma = \gamma(x, y)$ is given, we can compute ξ_{γ} .

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

20/26

Energy density determined by the Gielis formula

We use the so-called Gielis' (super)formula to generate various shapes in a parameter-controllable setting.

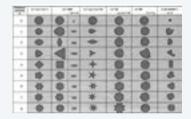


Figure: Various shapes generated by the formula, motivated by botany.

J. Gielis, A generic geometric transformation that unifies a large range of natural and abstract shapes, Amer. J. Botany, 90(3), 333-338 (2003).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

21/26

Energy density determined by the Gielis formula

For example, define r_1 and r_2 as follows:

$$r_1 = ((N_1^2 + N_2^2)^{k_1} + N_3^{2k_1})^{1/(2l_1)}, \quad r_2 = \left(\frac{N_1^{2k_2} + N_2^{2k_2}}{(N_1^2 + N_2^2)^{k_2}}\right)^{1/(2l_2)}. \tag{18}$$

In this case, the user can specify 4 parameters.

Then for the energy density $\gamma = r_1 r_2$, we have

$$\xi = Ar_2 \mathbf{X} + \frac{r_1 B}{\sqrt{N_1^2 + N_2^2}} \mathbf{Y} + r_1 r_2 \mathbf{N}.$$
 (19)

Here, A and B are given on the next page:

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Energy density determined by the Gielis formula

Although the expressions are complicated, all quantities can be computed explicitly.

$$A = \frac{k_1}{l_1}((N_1^2 + N_2^2)^{k_1} + N_3^{2k_1})^{1/(2l_1) - 1} \left(N_3^{2k_1 - 1} \sqrt{N_1^2 + N_2^2} - N_3(N_1^2 + N_2^2)^{k_1 - \frac{1}{2}}\right),$$

$$B = \frac{k_2}{l_2} \left(\frac{N_1^{2k_2} + N_2^{2k_2}}{(N_1^2 + N_2^2)^{k_2}} \right)^{1/(2l_2) - 1} \left(\frac{N_1 N_2^{2k_2 - 1} - N_1^{2k_2 - 1} N_2}{(N_1^2 + N_2^2)^{k_2}} \right),$$

$$r_1 = ((N_1^2 + N_2^2)^{k_1} + N_3^{2k_1})^{1/(2l_1)}, \quad r_2 = \left(\frac{N_1^{2k_2} + N_2^{2k_2}}{(N_1^2 + N_2^2)^{k_2}}\right)^{1/(2l_2)}.$$

$$\boldsymbol{X} = \left(-\frac{N_1 N_3}{\sqrt{N_1^2 + N_2^2}}, -\frac{N_2 N_3}{\sqrt{N_1^2 + N_2^2}}, \sqrt{N_1^2 + N_2^2} \right), \quad \boldsymbol{Y} = \left(-\frac{N_2}{\sqrt{N_1^2 + N_2^2}}, \frac{N_1}{\sqrt{N_1^2 + N_2^2}}, 0 \right).$$

GSG for ideal lighting

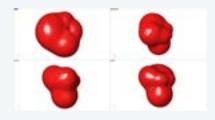
Yoshiki JIKUMARU

INIAD, Toyo University

23/26

Which direction do you want to create larger faces?

The direction in which the user wants to create more surfaces becomes "bigger":



The surface is called the Frank shape.

- Convex direction: large faces ("preferable" directions).
- Concave direction: small faces ("unpreferable" directions).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

24/26

Demonstration video

M

Let's take a look at a demonstration (link).

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Summary

Summary

- Shape generation with "corners" without connecting surface patches.
- The user specifies the direction in which they want to create more faces by changing the parameters ("ideal lighting").
- The idea came from the geometry of anisotropic energy, which originates the crystal growth model.

GSG for ideal lighting

Yoshiki JIKUMARU

INIAD, Toyo University

Geometric Shape Generation by Singular Generalized Miura-ori with Canonical and Non-canonical Arrangements

Hiroyuki Tagawa Department of Architecture, Mukogawa Women's University, Japan

Abstract

Generalized Miura-ori with the canonical arrangement, including well-known Miura-ori as well as proposed arc- and spiral-shaped Miura-ori [1], can be folded flat without causing self-intersections. A total of 26 patterns of singular generalized Miura-ori, which is defined as the generalized Miura-ori that has symmetry and regularity in included angles to enable rigid flat-foldability with linked one degree-of-freedom motion, is counted for the canonical arrangement as follows: 11 patterns for $K_1 = K_4$, $K_2 = K_3$, 11 patterns for $K_1 = K_2$, $K_3 = K_4$, and 4 patterns for $K_1 = K_2 = K_3 = K_4$ [2]. Among 26 patterns, the arc- and spiral-shaped Miura-ori, which are classified as $K_1 = K_2$, $K_3 = K_4$, are the only patterns in which all the fold lines are not parallel to each other. Non-canonical arrangement is obtained by exchanging the included angles at the diagonal positions of the Units 2 and 3 in the canonical arrangement and accordingly changing the mountain and valley folding directions as shown in Fig. 1. These exhibit 3D cylindrical or vault shape while satisfying the linked folding conditions. A total of 17 patterns of singular generalized Miura-ori is counted for the above non-canonical arrangement as follows: 11 patterns for $K_1 = K_4$, $K_2' = K_3'$, 2 patterns for $K_1 = K_2'$, $K_3' = K_4$, and 4 patterns for $K_1 = K_2' = K_3' = K_4$. Huffman tessellation and the dual of Miura-ori (Hourglass mode) are classified as $K_1 = K_2' = K_3' = K_4$. Cylindrical closed shape is obtained by the optimization on included angles of the quadrilaterals and deployment angle as shown in Fig. 2.

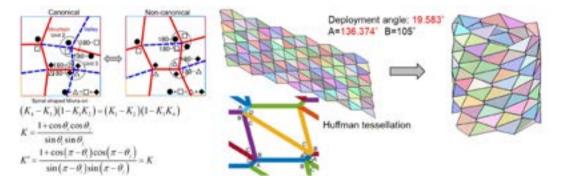


Fig. 1 Dual conversions

Figure 3: *
Fig. 2 Cylindrical closed shape obtained by optimization

References

- [1] H. Tagawa, N. Yoshioka, T. Suzuki, "Proposal of arc- and spiral-shaped Miura-ori and its application to the design of large roof architecture", Proceedings of the IASS symposium 2022, Beijing, China, 2022.
- [2] H. Tagawa, A. Sugimura, A. Mukai, K. Inomata, "Counting-up and classification of all combination patterns of singular generalized Miura-ori", Proceedings of the IASS symposium 2024, Zurich, Switzerland, 2024.

MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは、文部科学省 21 世紀 COE プログラム「機能数理学の構築と展開」(H15-19 年度) において作成した COE Lecture Notes の続刊であり、文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」(H19-21 年度) および、同グローバル COE プログラム「マス・フォア・インダストリ教育研究拠点」(H20-24 年度) において行われた講義の講義録として出版されてきた。平成 23 年 4 月のマス・フォア・インダストリ研究所(IMI)設立と平成 25 年 4 月の IMI の文部科学省共同利用・共同研究拠点として「産業数学の先進的・基礎的共同研究拠点」の認定を受け、今後、レクチャーノートは、マス・フォア・インダストリに関わる国内外の研究者による講義の講義録、会議録等として出版し、マス・フォア・インダストリの本格的な展開に資するものとする。

2022 年 10 月 マス・フォア・インダストリ研究所 所長 梶原 健司

2024年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 設計の新パラダイムを拓く新しい離散的な曲面の幾何学

発 行 2025年10月1日

編集 大崎純,軸丸 芳揮

発 行 九州大学マス・フォア・インダストリ研究所 九州大学大学院数理学府 〒819-0395 福岡市西区元岡744 九州大学数理・IMI 事務室 TEL 092-802-4402 FAX 092-802-4405 URL https://www.imi.kyushu-u.ac.jp/

印刷 城島印刷株式会社 〒810-0012 福岡市中央区白金2丁目9番6号 TEL 092-531-7102 FAX 092-524-4411

Issue	Author / Editor	Title	Published
COE Lecture Note	Mitsuhiro T. NAKAO Kazuhiro YOKOYAMA	Computer Assisted Proofs - Numeric and Symbolic Approaches - 199pages	August 22, 2006
COE Lecture Note	M.J.Shai HARAN	Arithmetical Investigations - Representation theory, Orthogonal polynomials and Quantum interpolations- 174pages	August 22, 2006
COE Lecture Note Vol.3	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005 155pages	October 13, 2006
COE Lecture Note Vol.4	宮田 健治	辺要素有限要素法による磁界解析 - 機能数理学特別講義 21pages	May 15, 2007
COE Lecture Note Vol.5	Francois APERY	Univariate Elimination Subresultants - Bezout formula, Laurent series and vanishing conditions - 89pages	September 25, 2007
COE Lecture Note Vol.6	Michal BENES Masato KIMURA Tatsuyuki NAKAKI	Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006 209pages	October 12, 2007
COE Lecture Note Vol.7	若山 正人 中尾 充宏	九州大学産業技術数理研究センター キックオフミーティング 138pages	October 15, 2007
COE Lecture Note Vol.8	Alberto PARMEGGIANI	Introduction to the Spectral Theory of Non-Commutative Harmonic Oscillators 233pages	January 31, 2008
COE Lecture Note Vol.9	Michael I.TRIBELSKY	Introduction to Mathematical modeling 23pages	February 15, 2008
COE Lecture Note Vol.10	Jacques FARAUT	Infinite Dimensional Spherical Analysis 74pages	March 14, 2008
COE Lecture Note Vol.11	Gerrit van DIJK	Gelfand Pairs And Beyond 60pages	August 25, 2008
COE Lecture Note Vol.12	Faculty of Mathematics, Kyushu University	Consortium "MATH for INDUSTRY" First Forum 87pages	September 16, 2008
COE Lecture Note Vol.13	九州大学大学院 数理学研究院	プロシーディング「損保数理に現れる確率モデル」 — 日新火災・九州大学 共同研究2008年11月 研究会 — 82pages	February 6, 2009

Issue	Author/Editor	Title	Published
COE Lecture Note Vol.14	Michal Beneš, Tohru Tsujikawa Shigetoshi Yazaki	Proceedings of Czech-Japanese Seminar in Applied Mathematics 2008 77pages	February 12, 2009
COE Lecture Note Vol.15	Faculty of Mathematics, Kyushu University	International Workshop on Verified Computations and Related Topics 129pages	February 23, 2009
COE Lecture Note Vol.16	Alexander Samokhin	Volume Integral Equation Method in Problems of Mathematical Physics 50pages	February 24, 2009
COE Lecture Note Vol.17	矢嶋 徹 及川 正行 梶原 健司 辻 英 福本 康秀	非線形波動の数理と物理 66pages	February 27, 2009
COE Lecture Note Vol.18	Tim Hoffmann	Discrete Differential Geometry of Curves and Surfaces 75pages	April 21, 2009
COE Lecture Note Vol.19	Ichiro Suzuki	The Pattern Formation Problem for Autonomous Mobile Robots —Special Lecture in Functional Mathematics— 23pages	April 30, 2009
COE Lecture Note Vol.20	Yasuhide Fukumoto Yasunori Maekawa	Math-for-Industry Tutorial: Spectral theories of non-Hermitian operators and their application 184pages	June 19, 2009
COE Lecture Note Vol.21	Faculty of Mathematics, Kyushu University	Forum "Math-for-Industry" Casimir Force, Casimir Operators and the Riemann Hypothesis 95pages	November 9, 2009
COE Lecture Note Vol.22	Masakazu Suzuki Hoon Hong Hirokazu Anai Chee Yap Yousuke Sato Hiroshi Yoshida	The Joint Conference of ASCM 2009 and MACIS 2009: Asian Symposium on Computer Mathematics Mathematical Aspects of Computer and Information Sciences 436pages	December 14, 2009
COE Lecture Note Vol.23	荒川 恒男 金子 昌信	多重ゼータ値入門 111pages	February 15, 2010
COE Lecture Note Vol.24	Fulton B.Gonzalez	Notes on Integral Geometry and Harmonic Analysis 125pages	March 12, 2010
COE Lecture Note Vol.25	Wayne Rossman	Discrete Constant Mean Curvature Surfaces via Conserved Quantities 130pages	May 31, 2010
COE Lecture Note Vol.26	Mihai Ciucu	Perfect Matchings and Applications 66pages	July 2, 2010

Issue	Author / Editor	Title	Published
COE Lecture Note Vol.27	九州大学大学院 数理学研究院	Forum "Math-for-Industry" and Study Group Workshop Information security, visualization, and inverse problems, on the basis of optimization techniques 100pages	October 21, 2010
COE Lecture Note Vol.28	ANDREAS LANGER	MODULAR FORMS, ELLIPTIC AND MODULAR CURVES LECTURES AT KYUSHU UNIVERSITY 2010 62pages	November 26, 2010
COE Lecture Note Vol.29	木田 雅成 原田 昌晃 横山 俊一	Magma で広がる数学の世界 157pages	December 27, 2010
COE Lecture Note Vol.30	原 隆 松井 卓 廣島 文生	Mathematical Quantum Field Theory and Renormalization Theory 201 pages	January 31, 2011
COE Lecture Note Vol.31	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2010 Lecture & Report 128pages	February 8, 2011
COE Lecture Note Vol.32	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2011 "TSUNAMI-Mathematical Modelling" Using Mathematics for Natural Disaster Prediction, Recovery and Provision for the Future 90pages	September 30, 2011
COE Lecture Note Vol.33	若山 正人 福本 康秀 高木 剛 山本 昌宏	Study Group Workshop 2011 Lecture & Report 140pages	October 27, 2011
COE Lecture Note Vol.34	Adrian Muntean Vladimír Chalupecký	Homogenization Method and Multiscale Modeling 72pages	October 28, 2011
COE Lecture Note Vol.35	横山 俊一 夫 紀恵 林 卓也	計算機代数システムの進展 210pages	November 30, 2011
COE Lecture Note Vol.36	Michal Beneš Masato Kimura Shigetoshi Yazaki	Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010 107pages	January 27, 2012
COE Lecture Note Vol.37	若山 正人 高木 剛 Kirill Morozov 平岡 裕章 木村 正人 白井 朋之 西井 龍中 京井 宏 京井 康秀	平成23年度 数学・数理科学と諸科学・産業との連携研究ワークショップ 拡がっていく数学 〜期待される"見えない力"〜154pages	February 20, 2012

Issue	Author/Editor	Title	Published
COE Lecture Note Vol.38	Fumio Hiroshima Itaru Sasaki Herbert Spohn Akito Suzuki	Enhanced Binding in Quantum Field Theory 204pages	March 12, 2012
COE Lecture Note Vol.39	Institute of Mathematics for Industry, Kyushu University	Multiscale Mathematics; Hierarchy of collective phenomena and interrelations between hierarchical structures 180pages	March 13, 2012
COE Lecture Note Vol.40	井ノ口順一 太田 泰広 寛 三郎 梶原 健司 松浦 望	離散可積分系・離散微分幾何チュートリアル2012 152pages	March 15, 2012
COE Lecture Note Vol.41	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2012 "Information Recovery and Discovery" 91pages	October 22, 2012
COE Lecture Note Vol.42	佐伯 修 若山 正人 山本 昌宏	Study Group Workshop 2012 Abstract, Lecture & Report 178pages	November 19, 2012
COE Lecture Note Vol.43	Institute of Mathematics for Industry, Kyushu University	Combinatorics and Numerical Analysis Joint Workshop 103pages	December 27, 2012
COE Lecture Note Vol.44	萩原 学	モダン符号理論からポストモダン符号理論への展望 107pages	January 30, 2013
COE Lecture Note Vol.45	金山 寛	Joint Research Workshop of Institute of Mathematics for Industry (IMI), Kyushu University "Propagation of Ultra-large-scale Computation by the Domain-decomposition-method for Industrial Problems (PUCDIP 2012)" 121pages	February 19, 2013
COE Lecture Note Vol.46	西井 龍映 栄 伸一郎 岡田 勘三 落合磯 深幸 斎藤 新悟 白井 朋之	科学・技術の研究課題への数学アプローチ 一数学モデリングの基礎と展開— 325pages	February 28, 2013
COE Lecture Note Vol.47	SOO TECK LEE	BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE COMPLEX CLASSICAL GROUPS 40pages	March 8, 2013
COE Lecture Note Vol.48	溝口 佳寛 脇 隼人 平坂 貢 谷口 哲至 島袋 修	博多ワークショップ「組み合わせとその応用」 124pages	March 28, 2013

Issue	Author / Editor	Title	Published
COE Lecture Note Vol.49	照井 章 小原 功任 濱田 龍義 横山 俊一 穴井 宏和 横田 博史	マス・フォア・インダストリ研究所 共同利用研究集会 II 数式処理研究と産学連携の新たな発展 137pages	August 9, 2013
MI Lecture Note Vol.50	Ken Anjyo Hiroyuki Ochiai Yoshinori Dobashi Yoshihiro Mizoguchi Shizuo Kaji	Symposium MEIS2013: Mathematical Progress in Expressive Image Synthesis 154pages	October 21, 2013
MI Lecture Note Vol.51	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2013 "The Impact of Applications on Mathematics" 97pages	October 30, 2013
MI Lecture Note Vol.52	佐伯 修 岡田 勘三 髙木 剛 若山 正人 山本 昌宏	Study Group Workshop 2013 Abstract, Lecture & Report 142pages	November 15, 2013
MI Lecture Note Vol.53	四方 義啓 櫻井 幸一 安田 貴徳 Xavier Dahan	平成25年度 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 安全・安心社会基盤構築のための代数構造 〜サイバー社会の信頼性確保のための数理学〜 158pages	December 26, 2013
MI Lecture Note Vol.54	Takashi Takiguchi Hiroshi Fujiwara	Inverse problems for practice, the present and the future 93pages	January 30, 2014
MI Lecture Note Vol.55	栄 伸一郎 溝口 佳寛 脇 隼人 渋田 敬史	Study Group Workshop 2013 数学協働プログラム Lecture & Report 98pages	February 10, 2014
MI Lecture Note Vol.56	Yoshihiro Mizoguchi Hayato Waki Takafumi Shibuta Tetsuji Taniguchi Osamu Shimabukuro Makoto Tagami Hirotake Kurihara Shuya Chiba	Hakata Workshop 2014 ~ Discrete Mathematics and its Applications ~ 141pages	March 28, 2014
MI Lecture Note Vol.57	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2014: "Applications + Practical Conceptualization + Mathematics = fruitful Innovation" 93pages	October 23, 2014
MI Lecture Note Vol.58	安生健一 落合啓之	Symposium MEIS2014: Mathematical Progress in Expressive Image Synthesis 135pages	November 12, 2014

Issue	Author / Editor	Title	Published
MI Lecture Note Vol.59	西井 龍映 間田 東 龍 高 木 正 工 上 人 上 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 七 日 七	Study Group Workshop 2014 数学協働プログラム Abstract, Lecture & Report 196pages	November 14, 2014
MI Lecture Note Vol.60	西浦 博	平成26年度九州大学 IMI 共同利用研究・研究集会 (I) 感染症数理モデルの実用化と産業及び政策での活用のための新 たな展開 120pages	November 28, 2014
MI Lecture Note Vol.61	溝口 佳寛 Jacques Garrigue 萩原 学 Reynald Affeldt	研究集会 高信頼な理論と実装のための定理証明および定理証明器 Theorem proving and provers for reliable theory and implementations (TPP2014) 138pages	February 26, 2015
MI Lecture Note Vol.62	白井 朋之	Workshop on "β-transformation and related topics" 59pages	March 10, 2015
MI Lecture Note Vol.63	白井 朋之	Workshop on "Probabilistic models with determinantal structure" 107pages	August 20, 2015
MI Lecture Note Vol.64	落合 啓之 土橋 宜典	Symposium MEIS2015: Mathematical Progress in Expressive Image Synthesis 124pages	September 18, 2015
MI Lecture Note Vol.65	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2015 "The Role and Importance of Mathematics in Innovation" 74pages	October 23, 2015
MI Lecture Note Vol.66	岡田 勘三 藤澤 克己 白井 朋之 若山 正人 脇 隼人 Philip Broadbridge 山本 昌宏	Study Group Workshop 2015 Abstract, Lecture & Report 156pages	November 5, 2015
MI Lecture Note Vol.67	Institute of Mathematics for Industry, Kyushu University	IMI-La Trobe Joint Conference "Mathematics for Materials Science and Processing" 66pages	February 5, 2016
MI Lecture Note Vol.68	古庄 英和 小谷 久寿 新甫 洋史	結び目と Grothendieck-Teichmüller 群 116pages	February 22, 2016
MI Lecture Note Vol.69	土橋 宜典 鍛治 静雄	Symposium MEIS2016: Mathematical Progress in Expressive Image Synthesis 82pages	October 24, 2016
MI Lecture Note Vol.70	Institute of Mathematics for Industry, Kyushu University	Forum "Math-for-Industry" 2016 "Agriculture as a metaphor for creativity in all human endeavors" 98pages	November 2, 2016
MI Lecture Note Vol.71	小磯 深幸 二宮 嘉行 山本 昌宏	Study Group Workshop 2016 Abstract, Lecture & Report 143pages	November 21, 2016

Issue	Author / Editor	Title	Published
MI Lecture Note Vol.72	新井 朝雄 小嶋 泉 廣島 文生	Mathematical quantum field theory and related topics 133pages	January 27, 2017
MI Lecture Note Vol.73	穴田 啓晃 Kirill Morozov 須賀 祐治 奥村 伸也 櫻井 幸一	Secret Sharing for Dependability, Usability and Security of Network Storage and Its Mathematical Modeling 211pages	March 15, 2017
MI Lecture Note Vol.74	QUISPEL, G. Reinout W. BADER, Philipp MCLAREN, David I. TAGAMI, Daisuke	IMI-La Trobe Joint Conference Geometric Numerical Integration and its Applications 71pages	March 31, 2017
MI Lecture Note Vol.75	手塚 集 田上 大助 山本 昌宏	Study Group Workshop 2017 Abstract, Lecture & Report 118pages	October 20, 2017
MI Lecture Note Vol.76	宇田川誠一	Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論 —Tzitzéica 方程式の楕円関数解を出発点として— 68pages	August 4, 2017
MI Lecture Note Vol.77	松谷 茂樹 佐伯 修 中川 淳一 田上 大助 上坂 正晃 Pierluigi Cesana 濱田 裕康	平成29年度 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 (I) 結晶の界面, 転位, 構造の数理 148pages	December 20, 2017
MI Lecture Note Vol.78	瀧澤 重志 和博 佐藤藤 正明 間瀬 正正啓 藤澤 直 直 東山 直 東 山 直 之	平成29年度 九州大学マス・フォア・インダストリ研究所 プロジェクト研究 研究集会 (I) 防災・避難計画の数理モデルの高度化と社会実装へ向けて 136pages	February 26, 2018
MI Lecture Note Vol.79	神山 直之 畔上 秀幸	平成29年度 AIMaP チュートリアル 最適化理論の基礎と応用 96pages	February 28, 2018
MI Lecture Note Vol.80	Kirill Morozov Hiroaki Anada Yuji Suga	IMI Workshop of the Joint Research Projects Cryptographic Technologies for Securing Network Storage and Their Mathematical Modeling 116pages	March 30, 2018
MI Lecture Note Vol.81	Tsuyoshi Takagi Masato Wakayama Keisuke Tanaka Noboru Kunihiro Kazufumi Kimoto Yasuhiko Ikematsu	IMI Workshop of the Joint Research Projects International Symposium on Mathematics, Quantum Theory, and Cryptography 246pages	September 25, 2019
MI Lecture Note Vol.82	池森 俊文	令和2年度 AIMaP チュートリアル 新型コロナウイルス感染症にかかわる諸問題の数理 145pages	March 22, 2021

Issue	Author / Editor	Title	Published
MI Lecture Note Vol.83	早川健太郎 軸丸 芳揮 横須賀洋平 可香谷 隆 林 和希 堺 雄亮	シェル理論・膜理論への微分幾何学からのアプローチと その建築曲面設計への応用 49pages	July 28, 2021
MI Lecture Note Vol.84	Taketoshi Kawabe Yoshihiro Mizoguchi Junichi Kako Masakazu Mukai Yuji Yasui	SICE-JSAE-AIMaP Tutorial Advanced Automotive Control and Mathematics 110pages	December 27, 2021
MI Lecture Note Vol.85	Hiroaki Anada Yasuhiko Ikematsu Koji Nuida Satsuya Ohata Yuntao Wang	IMI Workshop of the Joint Usage Research Projects Exploring Mathematical and Practical Principles of Secure Computation and Secret Sharing 114pages	February 9, 2022
MI Lecture Note Vol.86	濱田 直 京 中 田 一 東 一 完 裕 一 完 裕 一 完 裕 一 完 裕 本 大 大 大 大 大 大 大 大 大 大 大 大 大	2020年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 進化計算の数理 135pages	February 22, 2022
MI Lecture Note Vol.87	Osamu Saeki, Ho Tu Bao, Shizuo Kaji, Kenji Kajiwara, Nguyen Ha Nam, Ta Hai Tung, Melanie Roberts, Masato Wakayama, Le Minh Ha, Philip Broadbridge	Proceedings of Forum "Math-for-Industry" 2021 -Mathematics for Digital Economy- 122pages	March 28, 2022
MI Lecture Note Vol.88	Daniel PACKWOOD Pierluigi CESANA, Shigenori FUJIKAWA, Yasuhide FUKUMOTO, Petros SOFRONIS, Alex STAYKOV	Perspectives on Artificial Intelligence and Machine Learning in Materials Science, February 4-6, 2022 74pages	November 8, 2022

Issue	Author / Editor	Title	Published
MI Lecture Note Vol.89	松落合土 機位 上	2022年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 材料科学における幾何と代数 III 356pages	December 7, 2022
MI Lecture Note Vol.90	中山 尚子 台川野 勇正 專	2022年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 データ格付けサービス実現のための数理基盤の構築 58pages	December 12, 2022
MI Lecture Note Vol.91	Katsuki Fujisawa Shizuo Kaji Toru Ishihara Masaaki Kondo Yuji Shinano Takuji Tanigawa Naoko Nakayama	IMI Workshop of the Joint Usage Research Projects Construction of Mathematical Basis for Realizing Data Rating Service 610pages	December 27, 2022
MI Lecture Note Vol.92	丹田 聡 三宮 俊 廣島 文生	2022年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 時間・量子測定・準古典近似の理論と実験 〜古典論と量子論の境界〜 150pages	Janualy 6, 2023
MI Lecture Note Vol.93	Philip Broadbridge Luke Bennetts Melanie Roberts Kenji Kajiwara	Proceedings of Forum "Math-for-Industry" 2022 -Mathematics of Public Health and Sustainability- 170pages	June 19, 2023
MI Lecture Note Vol.94	國廣 昇 池好 泰彦 伊牙田 啓見 縫田 光司	2023年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 現代暗号に対する安全性解析・攻撃の数理 260pages	Janualy 11, 2024
MI Lecture Note Vol.96	澤田 茉伊	2023年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 デジタル化時代に求められる斜面防災の思考法 70pages	March 18, 2024

Issue	Author/Editor	Title	Published
MI Lecture Note Vol.97	Shariffah Suhaila Syed Jamaludin Zaiton Mat Isa Nur Arina Bazilah Aziz Taufiq Khairi Ahmad Khairuddin Shaymaa M.H.Darwish Ahmad Razin Zainal Abidin Norhaiza Ahmad Zainal Abdul Aziz Hang See Pheng Mohd Ali Khameini Ahmad	International Project Research-Workshop (I) Proceedings of 4 th Malaysia Mathematics in Industry Study Group (MMISG2023) 172pages	March 28, 2024
MI Lecture Note Vol.98	中澤 嵩	2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共 同利用研究集会 自動車性能の飛躍的向上を目指す Data-Driven 設計 92pages	January 30, 2025
MI Lecture Note Vol.99	Jacques Garrigue	2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共同利用研究集会 コンピュータによる定理証明支援とその応用 308pages	March 17, 2025
MI Lecture Note Vol.100	Yutaka Jitsumatsu Masayoshi Ohashi Akio Hasegawa Katsutoshi Shinohara Shintaro Mori	IMI Workshop of the Joint Usage Research Projects Mathematics for Innovation in Information and Communication Technology 274pages	March 19, 2025

九州大学マス・フォア・インダストリ研究所 九州大学大学院 数理学府