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Preface

The International Workshop on “Evolving Design and Discrete Differential Geometry - Towards Math-
ematics Aided Geometric Design” was convened during March 10–13, 2025, in Fukuoka, Japan, under the
joint support by Institute of Mathematics for Industry (International Project Research: Workshop (I)) and JST
CREST (JPMJCR1911).

Recently, we have been experiencing rapid developments in curved surface design in various fields of design
and engineering including architectural design, industrial design, mechanical design, computer graphics, and
data processing. In other words, we are facing a kind of paradigm shift in the design and manufacturing process;
for example, some of the traditional subtractive manufacturing has been replaced by additive manufacturing.
With the development of design tools, demand for designing complex surfaces has increased. Accordingly,
design methods for manufacturing and constructing complex continuous/discrete surfaces are becoming impor-
tant. In this situation, we have growing demand for coordination among the researchers and practitioners in
artistic design, structural design, industrial design, as well as those in fabrication and construction.

Discrete differential geometry is an important field of mathematics with applications in curved surface de-
sign. The research group of JST CREST with the same title as this workshop has been working on the discrete
forms of variational principle and non-Euclidian geometry, and has proposed various methods of designing
discrete surfaces with properties such as foldable/retractable surfaces, constant mean curvature surfaces, poly-
hedral surfaces by rigid origami, aesthetically pleasing surfaces, etc. In order to provide the results of these
studies in a publicly accessible form, a prototype of a platform has been developed for performing the design,
analysis, and fabrication/construction in an interactive, cyclic, and bi-directional manner on the same surface
model.

This meeting provided a forum to exchange information between researchers and practitioners on the theo-
ries and techniques underlying the development of design platforms that are based on mathematics, information
science, architectural design, and engineering. To enable the design of a structure that has aesthetic value and
ensure its safety, 66 researchers and practitioners including nine invited prominent speakers in the related fields
discussed during a four day period of meeting to identify common issues through the presentations by experts
from all over the world as well as those in the CREST project. The mathematical formulations for new shape
design methods based on discrete differential geometry and the variational principle will open a new direction
for curved surface design. This meeting has provided an important opportunity to reintegrate knowledge on the
geometry of curves and surfaces using mathematics as a hub and sublimate it into a new field of discrete differ-
ential geometry for shape design, and to revive Japanese manufacturing, which produces precise and beautiful
products but suffers from their high costs.

Chief Editor: Makoto Ohsaki (Kyoto University)
April 2025
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Program
March 10th (Mon.), 2025
9:00-9:30	 Opening: Kenji Kajiwara

9:30-10:15	 Keynote 1:Olivier Baverel
Make complex structures affordable
Chair: Kazuki Hayashi

10:45-11:30	 Keynote 2:Robin Oval
An algebra for topology finding of surface patterns for structural design driven by similarity
Chair: Kazuki Hayashi

11:30-12:00	 Kyoto Group 1
Kazuki Hayashi
Deployable auxetic surface structures: From optimized shape to detail design implementation
Chair: Yusuke Sakai

12:00-12:30	 Kyoto Group 2
Kentaro Hayakawa
Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation 
of rigid origami
Chair: Yusuke Sakai

13:45-14:30	 Keynote 3:Bert Jüttler
Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis
Chair: Takashi Maekawa

14:30-15:00	 Kyoto Group 3
Jingyao Zhang
Shape generation of free-form grid shells with polygonal panels
Chair: Kentaro Hayakawa

15:00-15:30	 Kyoto Group 4
Yusuke Sakai
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Tessellation as a design principle for mechanical metamaterial
Chair: Kentaro Hayakawa

16:00-16:30	 Waseda Group 1
Takashi Maekawa and Felix Scholz
All you need is rotation: Construction of developable strips – Part 1 Theory
Chair: Kenjiro T. Miura

16:30-17:00	 Waseda Group 2
Takashi Maekawa and Felix Scholz
All you need is rotation: Construction of developable strips – Part 2 Applications
Chair: Kenjiro T. Miura

17:00-17:30	 Waseda Group 3
Maya Okada, Naoyuki Fujita, Takuya Terahara, Yastoshi Taniguchi, Kenji Takizawa and 
Tayfun E. Tezduyar
Isogeometric Analysis of Membrane and Cable Structures: A Design of Umbrella Zero-Stress 
State
Chair: Kenjiro T. Miura

17:30-18:00	 Waseda Group 4
Takuya Terahara, Kenji Takizawa and Tayfun E. Tezduyar
Continuity and Smoothness in T-Splines Representations of Structures with Different 
Parametric Dimensions
Chair: Kenjiro T. Miura

March 11th (Tue.),2025
9:30-10:00	 Kyushu Group 1
Kenji Kajiwara
Generation of Aesthetic Shapes by Integrable Klein Geometry
Chair: Miyuki Koiso

10:00-10:30	 Kyushu Group 2
Yoshiki Jikumaru
Geometry of Michell-Prager type structures and hanging membranes
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Chair: Miyuki Koiso

10:45-11:30	 Keynote 4: Yuri Suris
Discretization of quadrics and of elliptic coordinates
Chair: Yoshiki Jikumaru

11:30-12:00	 Kyoto Group 5
Yoshihiro Kanno
Surface generation for confidence-based data-driven computing in elasticity with application 
to reliability-based truss topology optimization
Chair: Jingyao Zhang

12:00-12:30	 Kyoto Group 6
Makoto Ohsaki
Optimization methods for continuum and latticed shells consisting of developable parts
Chair: Jingyao Zhang

14:00-14:30	 Kyoto and Kyushu Group
Kentaro Hayakawa
Introduction to the software platform
Chair: Makoto Ohsaki

14:30-15:15	 Keynote 5: Alexander I. Bobenko
Discrete conformality and beyond. Where geometry meets computer graphics and 
mathematical physics (Online)
Chair: Kenji Kajiwara

16:00-16:30	 Tsukuba Group 1
Jun Mitani
Interactive Design and Efficient Simulation of Developable Surfaces with Curved Folds
Chair: Makoto Ohsaki

16:30-17:00	 Tsukuba Group 2
Kosuke Horiuchi and Jun Mitani
Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the 
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Gaussian Sphere
Chair: Makoto Ohsaki

17:00-17:30	 Tsukuba Group 3
Aida Safary and Jun Mitani
Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype 
Architectural Design
Chair: Makoto Ohsaki

17:30-18:00	 Tsukuba Group 4
Higa Miyashiro Pamela, Yiyang Jia and Jun Mitani
Hoberman’s Scissor Mechanism and Digital Fabrication
Chair: Makoto Ohsaki

March 12th (Wed.),2025
9:30-10:15	 Keynote 6 Toby Mitchell
Surface Rationalization and Optimization in Structural Engineering Practice
Chair: Yohei Yokosuka

10:45-11:30	 Keynote 7 Masaaki Miki
Variable Projection (VarPro) Method and Form-finding of Tension-compression Mixed Shells
Chair: Yohei Yokosuka

11:30-11:50	 Kagoshima Group 1
Yohei Yokosuka
Curved Surface Structures with Excellent Mechanical Rationality and Constructability/
Fabricability
Chair: Yoshiki Jikumaru

11:50-12:10	 Kagoshima Group 2
Yohei Yokosuka
Lie Spherical Geometry and Design of Curved Surface Structures
Chair: Yoshiki Jikumaru

12:10-12:30	 Kagoshima Group 3
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Yohei Yokosuka
Form-finding of Composite Tensile Structures by Finite Element Technique based on Nodal 
Coordinate Assumption
Chair: Yoshiki Jikumaru

14:00-14:30	 Kyoto Group 7
Kazuki Hayashi
Piecewise constant mean curvature surfaces
Kentaro Hayakawa
From generation of rigid origami for approximating a curved surface
Chair: Makoto Ohsaki

14:30-15:00	 Kyushu Group 4
Miyuki Koiso
Pillow boxes as developable surfaces with curved foldings
Chair: Makoto Ohsaki

15:00-15:30	 Kagoshima Group 4
Yohei Yokosuka
Temporary structures with curved folding
Chair: Makoto Ohsaki

16:00-16:30	 Poster Short Talks

16:30-18:00 Poster Session
Presenter ♯ 1: Vishesh Bhat (Okinawa Institute of Science and Technology)
Shaping developables – a dual design recipe

Presenter ♯ 2: Kaito Satake (Kanazawa University)
Title: On isothermic coordinate systems for CMC surfaces in the Lorentz-Minkowski 3-space

Presenter ♯ 3: Sanako Suzuki (Mukogawa Women’s University)
Title: Geometric Shape Generation by Singular Generalized Miura-ori with Canonical and 
Non-canonical Arrangements

viii



18:30- Banquet

March 13th (Thurs.),2025
9:30-10:15	 Keynote8 Rudrusamy U. Gobithaasan
Local & global property quantification with persistent homology
Chair: Kenjiro T. Miura

10:45-11:30	 Keynote 9 Md Yushalify Misro
Advancing precision and smoothness of shape preserving with quintic trigonometric Bézier 
curves
Chair: Kenjiro T. Miura

11:30-12:00	 Shizuoka Group 1
Kenjiro T. Miura
Extension of κ-curve
Chair: Takuya Terahara

12:00-12:30	 Kyushu Group 5
Miyuki Koiso
Intrinsic and extrinsic singularities and curvatures of piecewise smooth surfaces
Chair: Shun Kumagai

12:30-13:00	 Kyushu Group 6
Yoshiki Jikumaru
Geometric shape generation for ideal lighting
Chair: Shun Kumagai

13:00- Closing:Makoto Ohsaki
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An algebra for topology finding of surface patterns for
structural design driven by similaritySimilarity-driven topology finding of surface patterns in architecture

Robin Oval
Delft University of Technology, The Netherlands

Abstract

Structural design is a search for the best trade-off between multiple architecture, engineering, and construction
objectives, not only mechanical efficiency or construction rationality. Producing hybrid designs from single-
objective optimal designs to explore multi-objective trade-offs is common in the design of structural forms,
constrained to a single parametric design space. However, producing topological hybrids offers a more complex
challenge, as a combinatorial problem that is not encoded as a finite set of real numbers but as an unbonded
series of grammar rules. This presentation will focus on a strategy for the generation of hybrid designs of quad-
mesh pattern topologies for surface structures. Based on a quad-mesh grammar, an algebra is introduced to
measure the distance between designs, find their similar features, and enumerate designs with different degrees
of topological similarity. To achieve this, the operators of topological distance, intersection and union of quad
meshes will be defined. Structural design applications will be shown to highlight the use of topologically hybrid
designs as a surrogate for obtaining multi-objective trade-offs.
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An algebra for topology finding of 
surface patterns for structural design 
driven by similarity

CREST ED3GE
Hakata, 10/03/2025

Robin Oval
r.oval@tudelft.nl

Oval, Rippmann, Van Mele and Block | Beyond the Dome | Architecture Biennale | Venice, Italy | 2016
2

MOTIVATION | Topology at the service of geometry

3

REFERENCE
343 kg/m2 (100%)

DIAGONALS
464 kg/m2 (135%)

POLES
208 kg/m2 (61%)

POLES AND DIAGONALS
210 kg/m2 (61%)

British Museum | London, UK

MOTIVATION | Topological optimization
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APPROACH | Quad-mesh topology

4[Schiftner and Balzer, 2010]
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GRAMMAR | Quad-mesh strip data structure
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HYPOTHESIS

Designs with similar topologies are likely to have similar performances.

SIMILARITY | Surrogate problem
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The minimum number of rules to convert a mesh into another.

SIMILARITY | Rule-based topological distance
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SIMILARITY | Intersection submesh
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SIMILARITY | Topological trade-off
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Similarity | Gridshell application
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OUTRO | Summary

Algebra

Strip data structure, quad-mesh grammar, rule-based topological distance for (dis)similarity, 

intersection submesh and union supermesh

Application

Hybrid topological designs with variety of multi-objective trade-offs

Performance depends on topology… and its post-processing into a design

References

Oval, R., Rippmann, M., Mesnil, R., Van Mele, T., Baverel, O. and Block, P., 2019. Feature-based topology finding of patterns for shell 

structures. Automation in Construction, 103, pp.185-201.

Oval, R., Mesnil, R., Van Mele, T., Baverel, O. and Block, P., 2024. Similarity-driven topology finding of surface patterns for structural 

design. Computer-Aided Design, 176, p.103751.
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THANK YOU!

Robin Oval | TU Delft | r.oval@tudelft.nl
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https://github.com/BlockResearchGroup/compas_pattern

C O M P A S _ P A T T E R N

OUTRO | Implementation
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Deployable auxetic surface structures: From optimized shape to detail design
implementation

Kazuki Hayashi
Kyoto University

Abstract

This study presents a streamlined design framework for deployable auxetic surface structures, taking advantage
of discrete differential geometry. The process begins by defining basis vectors, informed by a prescribed plan,
support locations, and load conditions, to modify the structural shape via Dirichlet energy minimization. Next, a
gradient-based optimization algorithm explores the optimal shape to minimize the linear strain energy, adjusting
the weights of the basis vectors with gradients that are analytically derived through the chain rule. The final step
aims to materialize the optimized geometry using a double-layer auxetic surface structure incorporating kerf
joints. This approach achieves the flexibility required for deployment while providing the necessary stiffness
for in-service performance.
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Deployable auxetic surface structures: 
From optimized shape to detail design 
implementation
Kazuki Hayashi (Kyoto University, Japan)

Today’s talk

2

(1) Optimized shape

(2-1) Conformally flattened shape (2-2) Equilateral triangle tiles (2-3) Deployed shape

(0) Initial plan

Topic 1/2: Shape sensitivity analysis

• Suppose we have a triangle mesh representing the shell geometry.
How to modify its shape to maximize the structural performance?

Analytically derive shape sensitivity for thin shell structures

3

?

? ?

?
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Chain rule for shape sensitivity analysis

• Chain-ruled computation allows for obtaining the gradient of 
objective function (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥)

5

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

Chain rule for sensitivity analysis

• Chain-ruled computation allows for obtaining the gradient of 
objective function (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥)

   (Example)

   (In our study)  𝜕𝜕𝜕𝜕: strain energy (flexibility indicator to be minimized)
                             𝑥𝑥𝑥𝑥: nodal locations

4

𝜕𝜕𝜕𝜕 𝑧𝑧𝑧𝑧 = 2𝑧𝑧𝑧𝑧

𝑧𝑧𝑧𝑧 𝑦𝑦𝑦𝑦 = 𝑦𝑦𝑦𝑦2
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

=
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧

�
𝜕𝜕𝜕𝜕𝑧𝑧𝑧𝑧
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦

�
𝜕𝜕𝜕𝜕𝑦𝑦𝑦𝑦
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

                   = 2 � 2𝑦𝑦𝑦𝑦 � cos 𝑥𝑥𝑥𝑥
                   = 4 sin 𝑥𝑥𝑥𝑥 cos 𝑥𝑥𝑥𝑥 

chain rule

𝑦𝑦𝑦𝑦 𝑥𝑥𝑥𝑥 = sin 𝑥𝑥𝑥𝑥
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x

y
z X3D

X2D

R

(z = 0)

Gradient of rotated nodal coordinates

9

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

Gradient of rotation matrix

8

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

x

y
z

(x1, y1, z1)

R

(x2, y2, z2)
(x3, y3, z3)

(z = 0)

Gradient of triangle area

7

Face i
𝐴𝐴𝐴𝐴

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

(𝑥𝑥𝑥𝑥1,𝑦𝑦𝑦𝑦1, 𝑧𝑧𝑧𝑧1) (𝑥𝑥𝑥𝑥2,𝑦𝑦𝑦𝑦2, 𝑧𝑧𝑧𝑧2)

(𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3, 𝑧𝑧𝑧𝑧3)
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Gradient of local stiffness matrix

12

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

Gradient of bending B-matrix

11

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

(Geometrical strain-displacement relationship)

Gradient of membrane B-matrix

10

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

(Geometrical strain-displacement relationship)
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Analytically derived! But why are we happy?

• We can compute how to modify mesh geometry to increase its 
stiffness if we have the following information:
(1) mesh  (2) thickness  (3) material (4) support (5) load

15
inverted shape sensitivity
= direction to increase stiffness 

Gradient of strain energy (objective)

14

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)

Displacement caused by load,
obtained from stiffness equation

Gradient of global stiffness matrix

13

∂L1/∂Xi

∂A/∂Xi

∂R/∂Xi ∂X2D/∂Xi

∂T/∂Xi

∂k/∂Xi

∂K/∂Xi ∂F/∂Xi∂Bm/∂Xi

∂Bb/∂Xi

∂km/∂Xi

∂kb/∂Xi

Compute face-wise

Assemble

length

area

rotation
matrix

rotated
coordinates 

B-matrix

transformation matrix
global

stiffness
strain

energy

(in-plane)

(bending)

(in-plane)

(bending)

local stiffness

(combined)
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Shape optimization (without sensitivity analysis)

18

Thickness:
Young’s modulus:
Poisson’s ratio:
Design load:

20 cm
25000 N/mm2

0.15
1 kN downward at each node

Optimize with
SLSQP (281 seconds)

Strain energy = 40.07 [kN･m]
Volume = 28.73 [m3]
Area = 143.63 [m2]

Strain energy = 1.18 [kN･m]
Volume = 34.47 (≅ 1.2 × 28.73) [m3]

Design variable:
Objective:
Volume constraint:

Heights of unsupported nodes 
Minimizing strain energy
< 1.2 × (initial volume)

10 mpin-support

Gradient-based shape optimization

• Many libraries accept sensitivity analysis to speed up optimization 

17https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Run

from scipy.optimize import minimize

def f(x):
  return x*x

def f_g(x):
  return 2*x

x0 = [1.0]
r = minimize(f,x0,jac=f_g)
print(r)

Objective function
𝑓𝑓𝑓𝑓 𝑥𝑥𝑥𝑥 = 𝑥𝑥𝑥𝑥2

Gradient function
⁄𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥 = 2𝑥𝑥𝑥𝑥

Initial x

message: Optimization
           terminated successfully.
 success: True
  status: 0
     fun: 0.0
       x: [ 0.000e+00]
     nit: 2
     jac: [ 0.000e+00]
hess_inv: [[ 5.000e-01]]
    nfev: 3
    njev: 3

Value of 𝑓𝑓𝑓𝑓
Value of x

Iteration
Value of ⁄𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥

Value of ⁄𝜕𝜕𝜕𝜕2𝑓𝑓𝑓𝑓 𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥2
Number of times f(x) was called

Number of times f_g(x) was called

Optimize
Display optimization result

Q. Is our computation fast?

• If using sparse matrix
representation and Just-in-Time
(JIT) compilation,

• Finite difference method: ≈ 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛2)
• Our implementation: ≈ 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)

• A. Yes, at the order of
     approximately 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)

16
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Today’s talk:

21

(1) Optimized shape

(2-1) Conformally flattened shape (2-2) Equilateral triangle tiles (2-3) Deployed shape

(0) Initial plan

Filtered shape optimization (Work in Progress)

20

Optimize with
SLSQP (5 seconds)

Strain energy = 2.90 [kN･m]
Volume = 34.47 (≅ 1.2 × 28.73) [m3]

Thickness:
Young’s modulus:
Poisson’s ratio:
Design load:

20 cm
25000 N/mm2

0.15
1 kN downward at each node

Design variable:
Objective:
Volume constraint:

Weights of smooth deformation modes 
Minimizing strain energy
< 1.2 × (initial volume)

〇 Smooth shape

Strain energy = 40.07 [kN･m]
Volume = 28.73 [m3]
Area = 143.63 [m2]

10 mpin-support

Shape optimization (with sensitivity analysis)

19

Thickness:
Young’s modulus:
Poisson’s ratio:
Design load:

20 cm
25000 N/mm2

0.15
1 kN downward at each node

Optimize with
SLSQP (28 seconds)

Strain energy = 40.07 [kN･m]
Volume = 28.73 [m3]
Area = 143.63 [m2]

Strain energy = 1.28 [kN･m]
Volume = 34.47 (≅ 1.2 × 28.73) [m3]

Design variable:
Objective:
Volume constraint:

Heights of unsupported nodes 
Minimizing strain energy
< 1.2 × (initial volume)

×Rugged shape

10 mpin-support
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Surface construction using an auxetic material

Re
qu

ire
d 

st
re

tc
h

conformal map

design surface deployed structure

flat material with cuts 24

Auxetic surface

• Linkage mechanism produced by cutting a sheet material

• Characterized by negative Poisson’s ratio

23

Topic 2/2: Deployable auxetic surface

22

K = 0
→ Cylinder, Plane

Developable

K > 0
→ Sphere

K < 0
→ Saddle

Non-developable

Gaussian curvature

Easily made by bending a flat sheet Cannot be made by bending a flat sheet

Use auxetic surfaces to create non-developable shapes from a flat state
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Deployment analysis

• Minimize 𝐸𝐸𝐸𝐸 = 𝑤𝑤𝑤𝑤1𝐸𝐸𝐸𝐸design + 𝑤𝑤𝑤𝑤2𝐸𝐸𝐸𝐸rigid +𝑤𝑤𝑤𝑤3𝐸𝐸𝐸𝐸collision [Konaković et al, 2016]

• Solve a linear system of equations using shape projection operators 
[Bouaziz et al, 2012]

27S. Bouaziz et al., “Shape-Up: Shaping discrete geometry with projections," Eurographics Symposium on Geometry Processing 2012, vol. 31, no. 5, pp. 1657-1667, 2012.
M. Konaković et al., "Beyond developable: computational design and fabrication with auxetic materials," ACM TOG, vol. 35, no. 89, pp. 1-11, 2016.

closeness rigidity collision

〇 × ×

𝑤𝑤𝑤𝑤1 = 0.01
𝑤𝑤𝑤𝑤2 = 1.0
𝑤𝑤𝑤𝑤3 = 1.0

𝑤𝑤𝑤𝑤1 = 0.01
𝑤𝑤𝑤𝑤2 = 0.0
𝑤𝑤𝑤𝑤3 = 1.0

𝑤𝑤𝑤𝑤1 = 0.01
𝑤𝑤𝑤𝑤2 = 1.0
𝑤𝑤𝑤𝑤3 = 0.0

2 seconds

(not equilateral) (colliding faces)

Stretch quantification

• Expansion in length can be associated with open angle 𝜃𝜃𝜃𝜃 ∈ 0, ⁄2𝜋𝜋𝜋𝜋 3
• Relate log-conformal factor 𝑢𝑢𝑢𝑢 and open angle 𝜃𝜃𝜃𝜃 as

exp 𝑢𝑢𝑢𝑢 = 2 cos
𝜋𝜋𝜋𝜋
3
−
𝜃𝜃𝜃𝜃
2

∈ 1.0, 2.0

26

1

2

θ = 2π/3

θ

2cos(π/3-θ/2)

𝑢𝑢𝑢𝑢 = 0 𝑢𝑢𝑢𝑢 = log2

Conformal flattening

1: flattened shape preserving angles
2: conformal factors u (required stretch/shrinkage to restore surface)

25

Preserve angles, while distorting lengths

Conformal
flattening

Triangular mesh in 3D space 2D conformal map

Log-conformal
factor

u

"Face Mesh" (https://skfb.ly/6UnJZ) by lama321 is licensed under Creative Commons Attribution.

+

0

−

output
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𝐾𝐾𝐾𝐾rz = 𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼𝑧𝑧𝑧𝑧
2𝑛𝑛𝑛𝑛𝑛𝑛+ 2𝑛𝑛𝑛𝑛−1 𝑏𝑏𝑏𝑏

 (rotational stiffness against deployment)

𝐾𝐾𝐾𝐾rz𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧 = 𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 (bending equilibrium)
𝑍𝑍𝑍𝑍𝑧𝑧𝑧𝑧 = 𝑏𝑏𝑏𝑏2𝑡𝑡𝑡𝑡/6  (section modulus)
⁄𝑀𝑀𝑀𝑀𝑧𝑧𝑧𝑧 𝑍𝑍𝑍𝑍𝑧𝑧𝑧𝑧 = 𝜎𝜎𝜎𝜎rz < 𝜎𝜎𝜎𝜎a  (elastic limit)

𝐸𝐸𝐸𝐸
𝜎𝜎𝜎𝜎a

< 𝐸𝐸𝐸𝐸
𝜎𝜎𝜎𝜎rz

= 4𝑛𝑛𝑛𝑛 𝑛𝑛
𝑏𝑏𝑏𝑏

+ 4𝑛𝑛𝑛𝑛 − 2

Kerf joints enable auxetic behavior

30

Metal material is typically challenging for kerf joint

Wood material can be used if kerf pattern is well-designed

Polymers can easily satisfy flexibility condition

material property kerf pattern

Flexibility augmentation through kerfs

29

before after

longer force path

Elasticity condition of joints is too strict

• ⁄𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑 > ⁄𝜃𝜃𝜃𝜃 2 � ⁄𝐸𝐸𝐸𝐸 �𝜎𝜎𝜎𝜎

• Ex.) Suppose 𝜃𝜃𝜃𝜃 = 𝜋𝜋𝜋𝜋/3.
Glass-Fiber-Reinforced Plastic (GFRP): 𝐸𝐸𝐸𝐸 = 15 [GPa], �𝜎𝜎𝜎𝜎 = 250 [MPa] ⁄𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑 > 31.4
Medium Density Fiberboard (MDF):    𝐸𝐸𝐸𝐸 = 4 [GPa],   �𝜎𝜎𝜎𝜎 = 20 [MPa]    ⁄𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑 > 104.7

28

L

Joint shape Material property

𝜃𝜃𝜃𝜃 : Deployment angle
𝐸𝐸𝐸𝐸 : Young’s modulus
�𝜎𝜎𝜎𝜎 : Elastic limit stress

too strict

d
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𝜆̂𝜆𝜆𝜆1 = 1.00 𝜆̂𝜆𝜆𝜆2 = 1.35 𝜆̂𝜆𝜆𝜆3 = 1.35 𝜆̂𝜆𝜆𝜆4 = 3.05 𝜆̂𝜆𝜆𝜆5 = 6.52

(Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5)

Double-layer unit cell

𝜆̂𝜆𝜆𝜆1 = 1.00 𝜆̂𝜆𝜆𝜆2 = 1.01 𝜆̂𝜆𝜆𝜆3 = 1.03 𝜆̂𝜆𝜆𝜆4 = 2.71 𝜆̂𝜆𝜆𝜆5 = 3.16
Single-layer unit cell

Deformation control by overlaying Desirable mode
Undesirable mode

Eigenvalue

Eigenvalue

Bilayer scheme for surface stiffening

+ Cancel restoring forces each other
+ Recover in-plane rotational stiffness

• Suppose surfaces are attached by 3 bolts
Equivalent 6-dof spring stiffnesses are

32

+ =

= 3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
2𝑡𝑡𝑡𝑡

, 3𝐺𝐺𝐺𝐺𝐸𝐸𝐸𝐸s
2𝑡𝑡𝑡𝑡

, 3𝐺𝐺𝐺𝐺𝐸𝐸𝐸𝐸s
2𝑡𝑡𝑡𝑡

, 𝐺𝐺𝐺𝐺𝐸𝐸𝐸𝐸s𝑙𝑙𝑙𝑙
2

2𝑡𝑡𝑡𝑡
, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙

2

4𝑡𝑡𝑡𝑡
, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙

2

4𝑡𝑡𝑡𝑡

𝐾𝐾𝐾𝐾tx,𝐾𝐾𝐾𝐾ty,𝐾𝐾𝐾𝐾tz,𝐾𝐾𝐾𝐾rx,𝐾𝐾𝐾𝐾ry,𝐾𝐾𝐾𝐾rz

Single-layer auxetic material is unstable

• Kerf joints sacrifice stiffness

31

• Material: MDF
Young’s modulus = 4 [GPa]
Poisson’s ratio = 0.25
density = 700 [kg/m3]

• Kerf parameters
𝑛𝑛𝑛𝑛 = 9

     𝑏𝑏𝑏𝑏 = ⁄0.1 𝑛𝑛𝑛𝑛 [m]
       ℎ = ⁄0.8 𝑛𝑛𝑛𝑛 [m]

• Assume geometric linearity
• Software: Abaqus 2020

11.3 m
1.9 m

pin-support

Deformed shape (× 1/200)

Maximum displacement: 183.6 m 

bh+b b
nb
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Thickness effect on ∆𝜃𝜃𝜃𝜃

36

log-conformal
factor

Thickness t

Single curvature κ

Larger t and κ increasingly affect the correction of 
open angle ∆𝜃𝜃𝜃𝜃 to approximate the target surface

• Area of 𝜖𝜖𝜖𝜖-offset surface [Hoffmann2009]

 Offsetting a surface by 𝜖𝜖𝜖𝜖 increases its 
area by a factor of 1 + 2𝜖𝜖𝜖𝜖𝐻𝐻𝐻𝐻 + 𝜖𝜖𝜖𝜖2𝐾𝐾𝐾𝐾

• Log-conformal factor of 𝜖𝜖𝜖𝜖-offset surface

𝑒𝑒𝑒𝑒2𝑢𝑢𝑢𝑢offset = 1 + 2𝜖𝜖𝜖𝜖𝐻𝐻𝐻𝐻 + 𝜖𝜖𝜖𝜖2𝐾𝐾𝐾𝐾 𝑒𝑒𝑒𝑒2𝑢𝑢𝑢𝑢

Steiner’s formula to modify open angles

35

𝐴𝐴𝐴𝐴offset = 𝐴𝐴𝐴𝐴 + 2𝜖𝜖𝜖𝜖 �𝐻𝐻𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜖𝜖𝜖𝜖2 �𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + ∆𝜃𝜃𝜃𝜃
T. Hoffmann, “Discrete Differential Geometry of Curves and Surfaces”, COE Lecture Note Series Vol.18, Faculty of Mathematics, Kyushu University, 2009. 

Thickness affects open angles

34

t

1/κ

eu

Outer layer requires more extension (+∆𝜃𝜃𝜃𝜃)

Inner layer requires less extension (−∆𝜃𝜃𝜃𝜃)
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Conclusion

• Optimize the shape of shell 
structures using analytically 
derived shape sensitivity

• Leveraged conformal geometry 
to design double-layer 
deployable auxetic structures 
with kerf-bending joints

Contact: (Kazuki Hayashi)
hayashi.kazuki@archi.kyoto-u.ac.jp 39

Prototypes

38
Single-layer Bilayer

MDF (thickness: 3mm)

bolt and hex nut (M1.6)

4.5 cm

Boundaries are fixed by contact
22.6 cm (circular plan of 400 cm2)

Expected shape
obtained by simulation

Shapes match between simulation and prototype

37

Designed for a maximum mid-surface height of 56.2 mm

Actual maximum mid-surface height: 56 mm

MDF (thickness: 3mm)

bolt and hex nut (M1.6)
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Second-order infinitesimal mechanism for bifurcation analysis and folding
path approximation of rigid origami

Kentaro Hayakawa
Nihon University

Abstract

We investigate the kinematic bifurcation of rigid origami and approximate its folding path with polynomi-
als through the second-order infinitesimal mechanism analysis of a truss model, the assemblage of the pin-
connected bars. The motion of the model is constrained by the compatibility condition so that the bar length
does not change. The second-order infinitesimal mechanism is obtained from the series expansion of the com-
patibility condition and its existence condition is the system of homogeneous quadratic equations. The bifur-
cated mechanisms of rigid origami correspond to the different solutions of the existence condition. In addition,
we can use a solution to the existence condition for a polynomial approximation of the folding path of the truss
model.
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Second-order infinitesimal mechanism 
for bifurcation analysis and folding path 
approximation of rigid origami

Kentaro Hayakawa

Kyoto Group,  Nihon University

*Joint work with T. Ohba and M. Ohsaki 
@ Kyoto Univeristy

Evolving Design and Discrete Differential Geometry 
- towards Mathematics Aided Geometric Design

Analysis of Rigid Folding Mechanism

Analytical solution
Singe vertex3)

Periodicity and/or symmetry4)

→ Limited to simple crease patterns

Numerical solution

Mechanism on tangent plane of solution space
= first-order infinitesimal mechanism5) 

→ Insufficient information about kinematic bifurcation6)

→ Many iterations for precise path tracing

2025/3/10 Second-order infinitesimal mechanism of rigid origami 3

3. J. Farnham et al., Proc. R. Soc. A, Vol. 478, paper 20220051, 2022.
4. T. Tachi, in Origami6, pp. 97-108, 2015
5. T. Tachi, in Origami4, pp. 175-187, 2009
6. P. Kumar and S. Pellegrino, Int. J. Solids Struct., Vol. 37 (46), pp. 7003-7027, 2000.

Rigid Origami for Engineering Application

Rigid-folding mechanism
Rigid panels + Rotational hinges

Solar panels on artificial satellite1)

Portable shelter2)

Challenges
Efficient rigid-folding path tracing

Exploration of solution space of multi-
degree-of-freedom mechanism
especially with kinematic bifurcation

2025/3/10 Second-order infinitesimal mechanism of rigid origami 2

(1) (2)

1. S. A. Zirbel et al., J. Mech. Des., Vol. 135 (11), paper 
111005, 2013.

2. K. Ando et al., SN Appl. Sci., Vol. 2 (12), article 1994, 2020
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Compatibility equation for bar i
Constant bar length in folding motion

xj, xk : position vectors of endpoints of bar i

li : Initial length of bar i

Compatibility equation for entire model
← ci = 0 for all bars

Formulation for Truss Model

2025/3/10 Second-order infinitesimal mechanism of rigid origami 5

Rigid bar

Pin

jx

kx

( )2 21 0
2i j k ic l= − − =x x

( ) =C X 0

B

b

1

( ) N

N

c

c

 
 

= ∈ 
 
 

C X  

X

n

1
N

N

 
 

= ∈ 
 
 

x
X

x
 : incompatibility vector : generalized position vector

bar i

Higher-order Infinitesimal Mechanism

1. Kinematic bifurcation7)

Solution space at point of kinematic bifurcation that 
cannot be obtained from first-order mechanism

→ Prediction of possible folding pattern/motion

2. Efficient and high accuracy path tracing8)

Polynomial expression of folding path with respect 
to path parameter

→ Small number of iterations for path tracing

→ Folding motion as continuous smooth function 
in certain range

2025/3/10 Second-order infinitesimal mechanism of rigid origami 4

7. K. Hayakawa, T. Ohba, and M. Ohsaki. Mech. Mach. Theory, 194 (2024), 105572
8. T. Ohba, K. Hayakawa, and M. Ohsaki. in Proc. 8OSME, 2024

Series expansion of compatibility equation w.r.t. path parameter 
When X is a function of the path parameter t (time, arc length etc.)

Infinitesimal Mechanism of Truss Model

2025/3/10 Second-order infinitesimal mechanism of rigid origami 6

2 32 3

2 3
0 0 0

2 2
(0) (1) (0) (2) (1) (1) (0) (3) (1) (2) (2) (1)

d d d( ( )) h.o.t.
2 6d d d

2 h.o.t.
2 6

t t t

t tt t
t t t

t tt

= = =

= + + +

     = + + + + + +     

C C CC X

Γ X Γ X Γ X Γ X Γ X Γ X

X

B X

B B

X

1 1

1

(0)

1 0

N

N N

N N

N t

c c
X X

c c
X X

×

=

 ∂ ∂
 ∂ ∂ 
 = ∈
 
∂ ∂ 
 ∂ ∂ 

Γ



   



( )
X

X
X B X

X B B

X

2 2
1 1

( )
11

( ) ( ) ( )

1( ) 0 2 2

1 0

, 1

s
k N ks N

N N Ns s s
ks

ks t
N N N

k N k t

c c
X X X XX

d X s
dt

X c c
X X X X

×

==

=

 ∂ ∂
 ∂ ∂ ∂ ∂   

   = = ∈ = ∈ ≥   
   ∂ ∂ 

 ∂ ∂ ∂ ∂  

∑XX Γ



     



: compatibility matrix = Jacobian of C(X) w.r.t. X
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2 2
(0) (1) (0) (2) (1) (1) (0) (3) (1) (2) (2) (1)( ( )) 2 h.o.t.

2 6
t tt t      = + + + + + +     C X Γ X Γ X Γ X Γ X Γ X Γ X

Series expansion of compatibility equation w.r.t. path parameter 
When X is a function of the path parameter t (time, arc length etc.)

Infinitesimal Mechanism of Truss Model
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satisfying(1)X (0) (1) =Γ X 0

(0) (1)

(0) (2) (1) (1)

 =


+ =

Γ X 0
Γ X Γ X 0

satisfying( )(1) (2),X X : Second-order infinitesimal
mechanism

: First-order infinitesimal mechanism

2 2
(0) (1) (0) (2) (1) (1) (0) (3) (1) (2) (2) (1)( ( )) 2 h.o.t.

2 6
t tt t      = + + + + + +     C X Γ X Γ X Γ X Γ X Γ X Γ X

Series expansion of compatibility equation w.r.t. path parameter 
When X is a function of the path parameter t (time, arc length etc.)

Infinitesimal Mechanism of Truss Model
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satisfying(1)X (0) (1) =Γ X 0 : First-order infinitesimal mechanism

2 2
(0) (1) (0) (2) (1) (1) (0) (3) (1) (2) (2) (1)( ( )) 2 h.o.t.

2 6
t tt t      = + + + + + +     C X Γ X Γ X Γ X Γ X Γ X Γ X

Series expansion of compatibility equation w.r.t. path parameter 
When X is a function of the path parameter t (time, arc length etc.)

Infinitesimal Mechanism of Truss Model
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satisfying(1)X (0) (1) =Γ X 0

(0) (1)

(0) (2) (1) (1)

1
( ) ( )

0

1n
s n s

s

n
s

−
−

=

 =


+ =

 −  =   
∑

Γ X 0
Γ X Γ X 0

Γ X 0

( )(1) ( ), , nX X satisfying : n-th-order infinitesimal 
mechanism

(0) (1)

(0) (2) (1) (1)

 =


+ =

Γ X 0
Γ X Γ X 0

satisfying( )(1) (2),X X : Second-order infinitesimal
mechanism

: First-order infinitesimal mechanism
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Compatibility equation for second-order infinitesimal mechanism 

Existence condition of second-order infinitesimal mechanism
(             for first-order infinitesimal mechanism       )      ( vector space of             )
⇔                 ( left null space of  )

Dimension of left null space                               :  Number of statical indeterminacy

Bases of left null space                     :  Self-equilibrium force density modes

Second-order Infinitesimal Mechanism

2025/3/10 Second-order infinitesimal mechanism of rigid origami 11

(1) (1)Γ X (1)X
(1) (1) ⊥Γ X (0)Γ

∈ (0) (2)Γ X

(0)
S B rankN N= − Γ

B

S1, , N
N ∈ω ω 

S

S

T (1) (1)
1 T (1) (1) T (1) (1)

1
T (1) (1)

0

0
N

N

 =
  ⇔ = =  
 =

ω Γ X
ω ω Γ X Ω Γ X 0

ω Γ X
 

(0) (1)

(0) (2) (1) (1)

 =


+ =

Γ X 0
Γ X Γ X 0

determined by (1)X

Compatibility equation for first-order infinitesimal mechanism 

Solution space of first-order infinitesimal mechanism
Space of satisfying            ⇔ Null space of 

Dimension of null space                               :  Number of kinematic indeterminacy

Bases of null space                     :  Infinitesimal mechanism modes

First-order Infinitesimal Mechanism
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(0) (1) =Γ X 0

(0)Γ(0) (1) =Γ X 0(1)X

X

F1, , N
N ∈ξ ξ 

(0)
F X rankN N= − Γ

F F F

F

(1)
1

(1) (1) (1) (1)
1 1 1

(1)
N N N

N

a
a a

a

 
  = + + = =  
 
 

X ξ ξ ξ ξ Xa  

Infinitesimal mechanism

Self-equilibrium force density

( )i j k
i

F − =∑ x x 0

Physical Interpretation of Mechanism and Self-equilibrium Modes 

2025/3/10 Second-order infinitesimal mechanism of rigid origami 12

jx

kx
( )i j kF −x x

i

(1)

0t

d
dt =

=
XX

2
(2)

2
0t

d
dt

=

=
XX: velocity, : acceleration

T (0) =F Γ 0 for node j 

axial force
bar length

= force density

F1, , Nξ ξ
(                ) : Nodal velocity modes

without deformation of bars
(0)

i =Γ ξ 0

S1, , Nω ω
(                ) :  Self-equilibrium force density modesT (0)

i =ω Γ 0

: equilibrium 
equation

i
jx

kx

(1) 2 (2)1
2j j jt t+ +x x x (1) 2 (2)1

2k k kt t+ +x x x
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Degree-six Single Vertex

Triangulated regular hexagon

Number of nodes : 7

Number of members : 12

Number of kinematic indeterminacy : 
4
(except for rigid-body motion)

Number of statical indeterminacy : 1

2025/3/10 Second-order infinitesimal mechanism of rigid origami 14

x

y
1

3
3

2 1

Existence of Second-order Infinitesimal Mechanism

Existence condition as a system of homogeneous quadratic equations

Solution of second-order infinitesimal mechanism
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X
B

X X

2 2

, ,2
1 1

T

1 2 2

, , 2
1

j j
i j i j

NN

i
j

j j
i j i j

N N

c c
X X X

c c
X X X

ω ω

ω ω
=

 ∂ ∂
 ∂ ∂ ∂ 
 =
 
 ∂ ∂
 ∂ ∂ ∂  

∑Q X X



  



F F

(1) (1) (1) (1)
1 1 N Na a= + + =X ξ ξ Xa

T (1) (1) =Ω Γ X 0

S

(1)T (1)
1

(1)T (1)

0

0N

 =


⇔ 
 =

a Q a

a Q a


[ ](2) (0) (1) (1) (2)+
= − +X Γ Γ X Xa [ ](0) +

Γ : generalized inverse of (0)Γ

complementary solution

particular solution determined by (1)a

Mechanism and Self-equilibrium Force Modes

Infinitesimal mechanism modes Self-equilibrium force density mode

Rigid-body motions are eliminated.
Nodes move only in the z-direction.
Distance: 1.0

Positive value: tension
Negative value: compression

Axial force of bars
= force density × length
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x
y

z x

y

mode 1 mode 2

mode 3 mode 4
1.0

-1.0 -1.0

-1.0 -1.0

-1.0 -1.0

1.0 1.0

1.0 1.0

1.0
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Compatibility equation for third-order infinitesimal mechanism 

Existence condition of third-order infinitesimal mechanism
Second-order mechanism: 

Third-order mechanism:

Third-order Infinitesimal Mechanism
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(0) (1)

(0) (2) (1) (1)

(0) (3) (1) (2) (2) (1) (0) (3) (1) (2)2 3

 =


+ =
 + + = + =

Γ X 0
Γ X Γ X 0
Γ X Γ X Γ X Γ X Γ X 0 ( )(2) (1) (1) (2)=Γ X Γ X

T (1) (2) =Ω Γ X 0

[ ]T (1) (2) T (1) (0) (1) (1)+
=Ω Γ Xa Ω Γ Γ Γ X

[ ](2) (0) (1) (1) (2)+
= − +X Γ Γ X Xa

T (1) (1) =Ω Γ X 0

unknown determined by the existence 
of second-order mechanism

( )S

(1)T (1) (1)T (1)
1 0N= = =a Q a a Q a

Existence Condition of Second-order Mechanism

Quadratic equation for coefficients of mechanism modes

Kinematic bifurcation
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2(1) (1) (1) (1)
1 2 2 2

2 2 2(1) (1) (1) (1)
1 2 2 2

9 0

1
3

a a a a

a a a a

− + + + =

⇒ = ± + +

(1)
1a

(1)
2a

O bifurcation

(1)
1apositive (1)

1anegative

x
y

z

Compatibility equation for n-th-order infinitesimal mechanism 

Existence condition of n-th-order infinitesimal mechanism
Second-order mechanism:

Third-order mechanism:

n-th-order mechanism:

(0) (1)

(0) (2) (1) (1)

1 1
( ) ( ) (0) ( ) ( ) ( )

0 1

1 1n n
s n s n s n s

s s

n n
s s

− −
− −

= =

 =


+ =

 − −    = + =       
∑ ∑

Γ X 0
Γ X Γ X 0

Γ X Γ X Γ X 0



determined by the existence of (n-1)-th-order mechanism

Higher-order Infinitesimal Mechanism
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T (1) (1)

T (1) (2)

=

=

Ω Γ X 0

Ω Γ X 0

1
T ( ) ( )

1

1n
s n s

s

n
s

−
−

=

− 
= 

 
∑Ω Γ X 0



( )S

(1)T (1) (1)T (1)
1 0N= = =a Q a a Q a

[ ]( )T (1) (2) T (1) (0) (1) (1)+
=Ω Γ Xa Ω Γ Γ Γ X
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Existence of Finite Mechanism

Existence condition of n-th order mechanism 

Sufficient condition for existence of finite mechanism
Finite mechanism       Existence of                    for arbitrary order of n
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( )
S

(1)T (1) (1)T (1)
1

T (1)
S

0

rank
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 = = =⇐ 
=

a Q a a Q a

Ω Γ X



(row full-rank)

⇔

S

(1)T (1) (1)T (1)
1 0N= = =a Q a a Q aSecond-order:

Third-order:

n-th-order:

[ ]

[ ]

T (1) (2) T (1) (0) (1) (1)

2 2
T (1) ( 1) T (1) (0) (1) ( 1) T ( ) ( )

1 2

2 11n n
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s sn
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   
∑ ∑

Ω Γ Xa Ω Γ Γ Γ X

Ω Γ Xa Ω Γ Γ Γ X Ω Γ X



(1) ( 1), , n−a a

Higher-order Infinitesimal Mechanism

Reformulation of existence condition of n-th order mechanism (n≥4) 
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( )

1
T ( ) ( )

1
2

T (1) ( 1) T ( 1) (1) T ( ) ( )

2

1

1
1

n
s n s

s
n

n n s n s

s

n
s

n
n

s

−
−

=

−
− − −

=

− 
= 

 
− 

⇔ − + + = 
 

∑

∑

Ω Γ X 0

Ω Γ X Ω Γ X Ω Γ X 0

[ ]
2 2

T (1) ( 1) T (1) (0) (1) ( 1) T ( ) ( )

1 2

2 11n n
n n s s n s

s s

n n
s sn

− −+− − − −

= =

− −   
⇔ = −   

   
∑ ∑Ω Γ Xa Ω Γ Γ Γ X Ω Γ X
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nn s n s

s

n
s
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=

−   = − +   
∑X Γ Γ X Xa

unknown determined by the existence of (n-1)-th-order mechanism

1. Calculate using manually determined      satisfying

2. Calculate

3. Calculate

4. Initialize k as k ← 3

5. Calculate  

6. Calculate                                     

7. Update k as k ← k + 1 and go to 4 while k ≤ n

8. Calculate

n-th Order Polynomial Approximation of Rigid-Folding Motion
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Infinitesimal Mechanism Modes
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Rigid-body motions are eliminated.
Nodes move only in the z-direction.
Distance: modes 1~4: 1.0,  modes 5~13: 0.5x

y
z

Resch’s Pattern

Part of Resch’s triangular rigid-
foldable tessellation pattern 

Number of nodes : 16

Number of members : 33

Number of kinematic indeterminacy : 
13
(except for rigid-body motion)

Number of statical indeterminacy : 4

2025/3/10 Second-order infinitesimal mechanism of rigid origami 22
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3 33 33
2

3
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Self-equilibrium Force Density Modes

Positive value: tension
Negative value: compression

Axial force of bars
= force density × length

Each Stressed region contains a 
single interior node

2025/3/10 Second-order infinitesimal mechanism of rigid origami 24
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Existence Condition of Second-order Mechanism

Solution to the quadratic equations

s1, s2, s3, s4 : -1 or 1

p2, p3, p4 : non-negative real value                13 variables (= degrees of freedom)

b6, b7, b9, b10, b12, b13 : arbitrary real value
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(1) 2 2 2 (1) (1) (1)
1 1 2 3 4 2 2 2 3 3 3 4 4 4

(1) 2 2 2 2 2 (1) (1)
5 1 2 3 4 2 2 6 7 6 6 2 7 7 2

(1) 2 2 2 2 2 (1) (1)
8 1 2 3 4 3 3 9 10 9 9 3 10 10 3

(1)
11 1

2 , , , ,
3

92 , , ,
2
92 , , ,
2

2

a s p p p a s p a s p a s p

a s p p p s p b b a b p a b p

a s p p p s p b b a b p a b p

a s p

= + + = = =

 = − + + + − − = = 
 
 = − + + + − − = = 
 

= − 2 2 2 2 2 (1) (1)
2 3 4 4 4 12 13 12 12 4 13 13 4

9 , ,
2

p p s p b b a b p a b p + + + − − = = 
 

Existence Condition of Second-order Mechanism

Quadratic equations for coefficients of mechanism modes

2025/3/10 Second-order infinitesimal mechanism of rigid origami 25

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2(1) (1) (1) (1) (1) (1) (1)
1 2 2 2 5 6 7

2 2 2(1) (1) (1) (1) (1) (1) (1)
1 3 3 3 8 9 10

2 2 2(1) (1) (1) (1) (1) (1) (1)
1 4 4 4 11 12 13

2 2 2 2(1) (1) (1) (1)
1 2 3 4
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9 4 4 4 0
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Existence Condition of Second-order Mechanism

Solution to the quadratic equations

s1, s2, s3, s4 : -1 or 1

p2, p3, p4 : non-negative real value

b6, b7, b9, b10, b12, b13 : arbitrary real value
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(1) 2 2 2 (1) (1) (1)
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(1) 2 2 2 2 2 (1) (1)
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= + + = = =

 = − + + + − − = = 
 
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 

= − 2 2 2 2 2 (1) (1)
2 3 4 4 4 12 13 12 12 4 13 13 4
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2

p p s p b b a b p a b p + + + − − = = 
 

bifurcation of mechanism

degrees of freedom after bifurcation
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Polynomial Approximation of Rigid-folding Path

Direction of first-order mechanism at the initial flat state

Folding motion by multiple polynomial approximation

2025/3/10 Second-order infinitesimal mechanism of rigid origami 29

+ rigid-body motion

x
y

z

x
y

z

1E-16
1E-15
1E-14
1E-13
1E-12
1E-11

0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 b
ar

 st
ra

in
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folded state
first-order infinitesimal mechanism

Sufficient Existence Condition of Finite Mechanism 

Sufficient condition for existence of finite mechanism

Example of solution
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(1) (1) (1) (1) (1) (1) (1)
2 1 2 5 2 6 7
(1) (1) (1) (1) (1) (1) (1)

T (2) 3 1 3 8 3 9 10
(1) (1) (1) (1) (1) (1) (1)
4 1 4 11 4 12 13
(1) (1) (1) (1)
1 2 3 4

3 3 9 0 0 2 2 0 0 0 0 0 0
3 0 3 9 0 0 0 0 2 2 0 0 0
3 0 0 3 9 0 0 0 0 0 0 2 2
9 4 4 4 0 0 0 0 0 0 0 0 0

a a a a a a a
a a a a a a a
a a a a a a a
a a a a

 − +
− +

=
− +

− − −

Ω Γ X


 
 
 
 
 

( )T (2)rank 4=Ω Γ X

T

(1) 2 3 5 4 3 5 4 3 5 4 3, 1, 1, 1, , 1, 1, , 1, 1, , 1, 1
3 2 2 2

 + + +
= − − − − 
 

a

Summary

1. Kinematic bifurcation
Existence condition of second-order
infinitesimal mechanism
→ System of quadratic equations for

coefficients of mechanism modes

2. Polynomial approximation of folding path
Sufficient condition for existence of finite mechanism

→ Row full-rankness of matrix consisting of  
mechanism modes, self-equilibrium force modes, 
and Hessian of incompatibility vector

Series expansion of nodal position vector for path 
parameter
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Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis

Bert Jüttler,
Johannes Kepler University

Abstract

Isogeometric Analysis is a computational framework for numerical simulation, which was introduced by
T.J.R. Hughes et al. in 2005 with the aim of bridging the gap between Design and Analysis, by adopting the
prevailing mathematical technology of tensor product splines for discretizing of partial differential equations
(PDEs). This presentation will address two of the many challenges that arise in this context. First, while the
use of spline discretizations clearly offers advantages in terms of the number of degrees of freedom required
compared to classical finite elements, these advantages are then compromised by the higher computational cost
of matrix assembly in isogeometric analysis. We describe our methods for efficient matrix assembly, which
make use of spline projection, pre-computed look-up tables and sum factorization to optimize the computational
performance of the entire process. Second, since the rigid structure of tensor product splines is an obstacle to
the use of adaptive refinement in isogeometric analysis, various generalizations of them have been proposed
in the literature. These include T-splines (introduced by Sederberg et al. in 2003), hierarchical B-splines
(invented by Forsey and Bartels in 1988) and the so-called ”locally refined” splines (Dokken et al. 2013). In
this presentation, we will analyze these approaches and compare them with the truncated variant of hierarchical
B-splines, which reconciles the requirements of isogeometric analysis with those of geometric design.

References

[1] C. Giannelli, B. Jüttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, J. Špeh, “THB-splines: An effective
mathematical technology for adaptive refinement in geometric design and isogeometric analysis”, Comput.
Meth. Appl. Mech. Engrg., vol. 299, pp. 337–365, 2016.

[2] M. Pan, B. Jüttler, A. Giust, “Fast formation of isogeometric Galerkin matrices via integration by interpo-
lation and look-up”, Comput. Meth. Appl. Mech. Engrg. vol. 366 (2020), 113005.
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Efficient Matrix Assembly and Adaptive Refinement
in Isogeometric Analysis

Bert Jüttler

JKU Linz, Austria

joint work with Carlotta Giannelli, Alessandro Giust, David Grossmann, Gabor
Kiss, Angelos Mantzaflaris, Dominik Mokris, Maodong Pan, Bernd Simeon,

Hendrik Speleers, . . .

Motivation: Numerical simulation in practice

Outline

• Isogeometric analysis

• Efficient matrix assembly

• Adaptive spline refinement

− T-splines

− HB-splines

− LR B-splines

• Concluding remarks
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Related experiences

Ship design: Bronsart et al. (2004):

“On average, generating the panel meshes takes up to 30% to 90% of
the total time needed for wave resistance calculations”.

Automotive industry: Farouki (SIAM News 1999) quotes Morgan, who

“presented the following ‘typical’ breakdown of the effort in a realistic
CFD analysis: 1-4 weeks for geometry repair and preparation, 10-20
minutes for surface meshing, 3-4 hours for volume meshing, and about
1 hour for the actual flow analysis.”

Problems

The use of different geometric models causes different problems with data ex-
cahnge.

Isogeometric Analysis (IgA)

... is an approach to bridge the gap between
“Geometry” (CAD)

and
“Analysis” (FEM)

... was established by T.J.R. Hughes et al. 2005

☞ Use the same representation for Design and Analysis! ☞
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IgA for a real-world example

D. Großmann (MTU Aero Engines) et al.,
CAGD 2012:

Comparison of Isogeometric and FEM
simulations of turbine blades subject to
centrifugal forces, pressure, and temper-
ature (linear elasticity with temperature-
dependent material properties)

A NURBS volume

G(r, s, t) =
∑

i∈I

∑

j∈J

∑

k∈K
Rijk(r, s, t)dijk, (r, s, t) ∈ [0,1]3

with

Rijk(r, s, t) =
wijkβi,R(r)βj,S(s)βk,T (t)∑

i′∈I

∑

j′∈J

∑

k′∈K
wi′j′k′βi′,R(r)βj′,S(s)βk′,T (t)

d = (dijk) (de Boor) control points
βi,R(r), βj,S(s), βk,T (t) B-splines
R, S, T knot vectors
I, J , K index sets of the control points
wijk weights

t
54321
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t
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Accuracy: IgA vs. FEM

� same accuracy with ≈ 10% of dofs
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Computation time II: assembling the matrices (Gauss quadrature)

� IGA assembly needs significantly more time than FEM assembly!
(≈ 40 times)

Computation time I: solving the linear system

� IGA needs slightly more time than FEM (increased bandwidth)

Outline

• Isogeometric analysis

• Efficient matrix assembly

• Adaptive spline refinement

− T-splines

− HB-splines

− LR B-splines

• Concluding remarks
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Integration by Spline Projection

Example: Mass matrix

Mij =
∫

[0,1]d
βiβjwdx, w = λ|det ∇̂F |. (1)

Spline projection

w(x) ≈
∑

k∈I
wkβk(x) (2)

transforms elements into

Mij ≈
∫

[0,1]d
βiβj

∑

k∈I
wkβkdx =

∑

k∈I
wk

∫

[0,1]d
βiβjβkdx. (3)

Matrix generation challenge

� Several approaches to address this challenge:

(A) special quadrature rules for splines: Auricchio, Calabro, Hughes, Reali &
Sangalli ’12, Hughes, Reali, Sangalli ’10, Schillinger, Hossain & Hughes ’14, Bar-
ton & Calo ’16, ...

(B) computation re-use (“sum factorization”): Antolin, Buffa, Calabro, Mar-
tinelli & Sangalli ’15 Calabro, Sangalli & Tani ’16

(A+B) weighted quadrature: Calabro, Sangalli & Tani’17, Hiemstra, Sangalli,
Tani, Calabro, Hughes’19 Giannelli, Kanduc, Martinelli, Sangalli, Tani ’22

(C) isogeometric collocation: Schillinger, Evans, Reali, Scott & Hughes ’13, De
Lorenzis, Evans, Hughes & Reali ’14, ...

(D) spline projection: Mantzaflaris & J.’15, Pan, J.& Giust ’20

(E) tensor methods [based on (D)] Mantzaflaris, J., Khoromskij & Langer’17

Sum Factorization

Use look-up tables

Lℓ,iℓjℓkℓ
=

∫ 1

0
βℓ,iℓβℓ,jℓβℓ,kℓdxℓ, (4)

and rewrite mass matrix elements as

Mij ≈
∑

k∈I
wk

d∏

ℓ=1

Lℓ,iℓjℓkℓ
. (5)

Efficient evaluation via “sum factorization” (shown for d = 3):

Mij ≈
∑

k3

L3,i3j3k3

∑

k2

L2,i2j2k2

∑

k1

L1,i1j1k1wk1k2k3

︸ ︷︷ ︸
= A(i1j1)(k2k3)︸ ︷︷ ︸

= B(i1i2)(j1j2)k3︸ ︷︷ ︸
≈ M(i1i2i3)(j1j2j3)

, (6)
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Results: #flops per dof (d = 3):

p = 1 p = 2 p = 3 p = 4 p = 5 asymptotics

GQ 1,672 60,534 794,688 5,890,750 30,326,616 O(p9)
EGS 512 7,047 47,104 209,375 715,392 O(p7)

IL 1,390 27,460 202,642 907,960 3,014,326 O(p6)
GGS 304 2,646 11,904 37,750 96,336 O(p5)
WQ 190 1,014 3,350 8,446 17,934 16p4 +O(p3)
ILS 200 1,202 4,248 11,138 24,248 24p4 +O(p3)

ILS-S 88 336 954 2,206 4,428 3p4 +O(p3)

GQ: Gauss quadrature; EGS: element-wise GQ with SF, GGS: global GQ with
SF, IL: Interpolation and Look-up, WQ: weighted quadrature, ILS: our method,
ILS-S: with use of symmetry

Results: Theory

Symmetry is preserved (unlike weighted quadrature)

Accuracy of overall simulation: is preserved if spline projection uses the same
degree as the discretization

Computational complexity: O(Npd+1) (same as weighted quadrature, less than
any other method)

Results: Speedup (d = 3)

... on a particular geometry. Note that we compare with the highly optimized
G+Smo implementation!

p = 1 p = 2 p = 3 p = 4 p = 5

Predicted speedup 8.36 50.36 187.07 528.89 1250.69

Observed speedup 5.42 6.38 12.4 29.9 66.3
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The need for adaptive generalizations of TP splines

refinement area

Outline

• Isogeometric analysis

• Efficient matrix assembly

• Adaptive spline refinement

− T-splines

− HB-splines

− LR B-splines

• Concluding remarks

The need for adaptive generalizations of TP splines

refinement area
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− LR B-splines

• Concluding remarks

The main competitors

• T-splines (splines with T-joints)

• Hierarchical B-splines

• LR splines (Locally Refined Splines)

T-splines: The most popular approach

History:

• 2003: invented by Sederberg at al. (SIGGRAPH)

• approx. 2003: T-SPLINE INC. established

• T-spline plugin for the RHINO modeling software

• 2010: Use of T-splines in Isogeometric Analysis

• Dec. 2011: AUTODESK acquires T-SPLINE INC.

• 2018: U-splines
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Example: Advection Dominated Advection–Diffusion

Solve κ∆u + a · ∇u = 0 with diffusion coefficient κ = 10−6 and advection
velocity a = (sin θ, cos θ) for θ = 45◦.

grey: estimated position of sharp layers

is solved using SUPG stabilization

T-splines: Definition

Blending functions (linear independence is not guaranteed!) associated with
T-meshes are products of B-splines with local knot vectors

Ni,j(s, t) = Bσ(i)(s)Bτ(j)(t)

Example: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for re-
finement
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Example: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for re-
finement

Example: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for re-
finement

Example: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for re-
finement
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T-splines: Recent Advances

These problems triggered 521 citations and further research:

AST-splines: sub-class of “Analysis Suitable T-splines” (M. Scott et al. 2012),
a.k.a. DCT-Splines: “Dual Compatible T-splines” (Pavia Group)

– are characterized by the fact that knot line extensions do not intersect

– are linearly independent

– have the expected approximation power

– possess a sub-sub-class that admits refinement with linear complexity
(Morgenstern & Peterseim 2015)

– refinement algorithm in 3D?

Example: Advection Dominated Advection–Diffusion

T-mesh Solution patches marked for re-
finement

Refinement of T-splines is not as local as we hoped it to be!

Insertion of a grid point may trigger a chain of additional grid point insertions, in
order to get a refinement of the previous T-spline space.

Especially bad for refinement along diagonals.

Outline

• Isogeometric analysis

• Efficient matrix assembly

• Adaptive spline refinement

− T-splines

− HB-splines

− LR B-splines

• Concluding remarks
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HB-splines: Definition

Hierarchy of nested spline spaces V ℓ, spanned by B-spline bases Bℓ

V ℓ = spanBℓ ⊂ V ℓ+1 = spanBℓ+1

Hierarchy of nested domains Ωℓ ⊂ Rd

Ωℓ ⊇ Ωℓ+1

The Kraft basis is defined by a selection mechanism:

K =
⋃

ℓ

{β ∈ Bℓ : supp0β ⊆ Ωℓ, supp0β ̸⊆ Ωℓ+1}

H(ierarchical) B-splines: The classical approach ...

... with a new twist!

• Forsey & Bartels 1988: HB-spline as sums of B-spline functions

• Kraft 1997: defines a basis and a quasi-interpolant

• Vuong, Giannelli, J., Simeon 2011: Use in IGA, basis for weaker assumptions

• Giannelli, J., Speleers 2012: Truncated HB-splines – a new basis with better
properties

• Giannelli, J., Speleers 2013: strong stability & completeness

• Manni & Speleers 2015: Quasi-interpolant � approximation power

• Buffa, Giannelli, Morgenstern, Peterseim 2016: Complexity of mesh refinement

HB-Splines: 2D example (p = 2)
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HB-Splines: First Use in IGA

.. by A.-V. Vuong et al. 2005 demonstrates the locality of the refinement:

refined grid for the advection-diffusion problem / T-splines

Several papers explore HB splines in IGA: Schillinger et al. 2012, Bornemann &
Cirak 2013, Kuru et al. 2013, . . .

HB-splines: Properties of the Kraft basis

Properties:

Linear independence is implied by local linear independence of B-splines

Weighted partition of unity
∑

β∈K
wββ = 1 wβ > 0

under certain assumptions on the domain hierarchy
� is required for geometric modeling!

HB-Splines: Algebraic Completeness (AC)

Question: Given a hierarchical grid, does span K contain any piecewise polyno-
mial function of degree p and smoothness Cs?

General answer: Only under certain conditions on the “rings” Ω0 \Ωℓ+1!

78



THB-Splines: A novel basis (Giannelli, J., Speleers 2012)

Any function of level ℓ admits a representation of level ℓ+1:

β ∈ Bℓ, β(x) =
∑

γ∈Bℓ+1

cγ(β)γ(x)

“two scale relation”, basis of subdivision surfaces

(very beautiful coefficients for uniform knots!)

We truncate the function by omitting the functions γ which are selected at the
next level:

truncℓ+1(β)(x) =
∑

γ∈Bℓ+1,suppγ ̸⊆Ωℓ+1

cγ(β)γ(x)

Applying this idea recursively defines the T(runcated) HB-spline basis T

HB-Splines: Answers to the AC question

• Answer for d = 2, s = p− 1, p = (p, p) (Giannelli & J. 2013):
Yes if Ω0 \Ωℓ+1 admits offset curves at distance (p− 1)/2:

offset for p = (2,2) bad case for p = (3,3)

• Answer for d = 3, s = p− 1, p = (p, p, p) (Berdinsky & six co-authors 2014):
Yes if Ω0 \Ωℓ+1 admits offset surfaces at distance (p− 1)/2.

• Answer for any d, any s, any p, (Mokriš, J., Giannelli 2014): Yes if the supports
of the basis functions in Bℓ intersected with Ω0 \Ωℓ+1 are all connected.

HB-Splines: 2D example (p = 2)
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THB-Splines: Preservation of Coefficients (PoC)

THEOREM:

Any function in the THB-spline basis T has a unique mother:

β = mother(τ) if τ = trunc(...trunc(β)...)

Consider a function f which has a representation at all levels:

f(x) =
∑

β∈Bℓ

cββ(x) ℓ = 0,1,2, . . .

The representation of f with respect to the THB-spline basis T preserves the
coefficients of the mother functions:

f(x) =
∑

τ∈T
cmother(τ)τ(x)

THB-Splines: 2D example (p = 2)

THB-Splines: PoC implies Partition of Unity

The B-spline basis form a partition of unity

1 =
∑

β∈Bℓ

1 · β(x) ℓ = 0,1,2, . . .

The representation of 1 with respect to the THB-spline basis T preserves the
coefficients of the mother functions:

1 =
∑

τ∈T
1 · τ(x)
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HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.

HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.

HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.
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THB-Splines: PoC implies strong stability

Theorem:

There exists constants C1 and C2 such that

C1max{cτ : τ ∈ T } ≤

∥∥∥∥∥∥
∑

τ∈T
cττ

∥∥∥∥∥∥
∞

≤ C2max{cτ : τ ∈ T }

The constants depend neither on the choice of the subdomains nor on the
number of levels.

C2 = 1

Proof by PoC.

THB-Splines: PoC gives Greville points

Greville points (1D: abscissas) are the coefficients of the coordinate functions.

Used as collocation points in BEM

The Greville points of the B-spline basis are well known:

x =
∑

β∈Bℓ

ξβ · β(x) ℓ = 0,1,2, . . .

The representation of x with respect to the THB-spline basis T preserves the
coefficients of the mother functions:

x =
∑

τ∈T
ξmother(τ) · τ(x)

The Greville point of a THB-spline function is equal to that of its mother!

THB-Splines: Approximation Power

Manni & Speleers 2015:

Using PoC, Quasi-Interpolation operators for THB-splines can be derived from
those of standard B-splines and provide optimal approximation power.
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THB-Splines: Numerical Results (Giannelli et al. 2016)

THB-Splines: Numerical Results (Giannelli et al. 2016)

Approximation of geographic data: 1,3,6 levels + level distribution

THB-Splines: Numerical Results (Giannelli et al. 2016)
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THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-
diffusion on unit

square:

THB-Splines: Numerical Results (Giannelli et al. 2016)

Ad hoc refinement of unit cube

THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-diffusion on unit square:
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THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-diffusion on Indiana:

THB splines are well suited for Geometric Modeling and IGA!

THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

� THB splines improve surface quality
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THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

Two strategies for CAD export

LR-splines: The Newcomer

History:

• around 2010: Locally Refined Splines invented by Dokken et al.

• since 2010: presentations at various conferences and workshops

• around 2010: patented

• 2013: Theoretical paper appears in CAGD
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LR-splines: Properties

LR spline spaces on nested T-meshes are nested.

Linear independence is not guaranteed.

Detecting linear dependencies can be costly.

Current work (PhD thesis of Lisa Groiss, 2023): Mesh refinement for perfect LR
B-splines bases (locally linearly independent, partition of unity)

LR-splines: Definition (Dokken, Lyche and Pettersen 2013)

start with a tensor-product mesh

insert meshline segments

split functions whose support is traversed by meshline segments

The set of LR splines is independent of the order of meshline insertions.

Outline

• Isogeometric analysis

• Efficient matrix assembly

• Adaptive spline refinement

− T-splines

− HB-splines

− LR B-splines

• Concluding remarks
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Concluding Remarks

• ♡ Isogeometric Analysis ♡

• Fast matrix assembly via spline projection and sum factorization

• Three approaches to adaptive spline refinement

• Ongoing work: Refinement ensuring local linear independence
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Shape generation of free-form grid shells with polygonal panels

Jingyao Zhang
Kyoto University

Abstract

This study addresses the shape generation of free-form grid shells with polygonal panels through two distinct
approaches:

(a) For the generation of triangulated meshes with a predefined Gaussian curvature distribution, e.g., Figures
1 and 2, we introduce an efficient two-step method that integrates discrete Ricci flow and optimization
techniques [1, 2]. The first step is to find the feasible edge lengths satisfying the predefined Gaussian
curvature distribution, making use of circular packings. The second step is to embed these edge lengths
into a three-dimensional space, by solving an optimization problem.

(b) For the generation of free-form planar meshes composed of polygonal panels, e.g., the planar quadri-
lateral mesh as shown in Figure , we propose a mechanical approach, modelling the mesh as a planar
tensegrity structure. Self-equilibrated tensegrity units enable planarity of the panels, although this is not
explicitly addressed as an objective in solving the form-finding problem.

Figure 1: Surface with non-uniform Gaussian curvature Figure 2: Globally developable surface

Figure 3: Planar quadrilateral mesh

References

[1] J. Y. Zhang, M. Ohsaki, A design tool for globally developable discrete architectural surfaces using Ricci
flow, Japan Architectural Review, Vol. 6 (1), 312410, 2023. 10.1002/2475-8876.12410

[2] S. Kaji, J. Y. Zhang, Finetuning discrete architectural surfaces by use of circle packing, Journal of Asian
Architecture and Building Engineering, Vol. 23 (1), pp. 188–203, 2024.
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Triangular mesh:
1. Globally developable discrete 

surfaces

Polygonal mesh:
3. Planar polygonal grid shell

2. Discrete surface with specified 
Gaussian curvature
(with Prof. Kaji, Kyusyu Uni.)

quadrilateralhexagonal
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➢ In the smooth case, the Gaussian curvature is determined by the Riemannian metric.
➢ Two Riemannian metrics 𝑔𝑔1, 𝑔𝑔2 on a manifold are conformally equivalent if they are

related by a positive scaling at each point.

➢ For a compact surface with Riemannian metric (𝑋𝑋, 𝑔𝑔𝑖𝑖𝑖𝑖), Hamilton (1988) introduced the
2D Ricci flow

➢ It was further proved that for any closed surface with any initial Riemannian metric, the
solution of the Ricci flow exists for all time (reference?).

➢ After normalizing the solution to have fixed area, the solution converges to a constant
curvature metric conformal to the initial metric as time goes to infinity.

➢ Chow and Luo (2003) presented the analogous flow in the combinatorial setting, and
showed that the discrete Ricci flow has solutions for all time for any initial metric and
converges exponentially fast to the circle packing metric constructed by Thurston.

• Chow, B., & Luo, F. (2003). Combinatorial Ricci flows on surfaces.
Journal of Differential Geometry, 63(1), 97-129.

conformal factor

radius

target curvature
in Euclidean space

➢ Conformality: keep corner angles too rigid!

➢ Preserve intersection angle (edge weight) instead

➢ Circle packing is defined at vertices of mesh

Radius at vertex

Mean radius

Edge weight

Edge length
fixedvariable during 

Ricci flow

6

Final geometry by optimization:

Edge length from Ricci flow

Boundary

Coordinates

SciPy optimizer:
• Trust Region Reflective (trf) algorithm
• Solve a nonlinear least-squares problem 

with bounds 
• Simple but robust
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➢ Metric embedding: trusted-region

➢ Scaling factor for edge length：𝛽𝛽 = 1.6619

Final geometry

➢ Span: 30 m
➢ Height: 20 m

➢ 169 vertices: 42 boundary, 127 interior
➢ 462 edges
➢ 294 faces (triangles)

➢ Coefficients for objective functions:𝑎𝑎1 = 1.0, 𝑎𝑎2 = 0.01
➢ Scaling factor for initial radii：𝛼𝛼 = 1.2624

Initial geometry

Initial Final
Modified CP
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Mountain

Valley

Ricci flow Geometry 
realization

➢ 181 vertices
 145 interior vertices (constrained)
 36 boundary vertices

➢ 504 edges
 464 interior edges (constrained)
 40 other edges

➢ 324 faces (triangles)

➢ alpha =   1.2296 Initial geometry
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Initial Final
Modified CP

➢ Metric embedding: trusted-region

➢ 𝛽𝛽 = 1.5435

Final geometry

Ricci flow Geometry realization
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Current Study:
➢ An efficient tool for designing discrete architectural surfaces, that are globally 

developable and span the prescribed boundary
➢ A simple modified circle packing scheme has better performance in conformality 

than traditional Thurston’s CP

Future Studies:
➢ The final geometry is not close enough to the initial (usually desired) one

-> Divide the surface into several components
➢ Meshes of other shape
➢ Structural performance

Mountain

Valley
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20

➢ Span: 30 m
➢ Height: 10 m

➢ 169 vertices: 42 boundary, 127 interior
➢ 462 edges
➢ 294 faces (triangles)

Initial geometry

19

➢ Metric optimisation: Minimize Ricci energy

Specified Gaussian curvature

➢ Embedding optimisation: Minimize coordinate errors

Specified boundary

21

➢ Discrete Ricci flow (Matlab): 19 sec 
➢ Target Gaussian curvature for interior vertices

 ∑ഥ𝐾𝐾𝑖𝑖 = 1.5
 ഥ𝐾𝐾𝑖𝑖 =

1.5
127 = 0.0118

Final geometry
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23

➢ Span: 30 m
➢ Height: 10 m

➢ 169 vertices: 42 boundary, 127 interior
➢ 462 edges
➢ 294 faces (triangles)

Initial geometry

22

Initial

ത𝐾𝐾𝑖𝑖 =
1.5
127 = 0.0118

Final

Angles

24

➢ Target Gaussian curvature for interior vertices
 ∑ഥ𝐾𝐾𝑖𝑖 = 1.5
 ഥ𝐾𝐾𝑖𝑖 =

1.5
127 = 0.0118

FinalInitial

Gaussian 
curvature
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26

FinalInitial

1.1 times of
Gaussian 
curvature

25

Initial curvature Final curvature
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Tensegrity model

• Blender + Python
• https://github.com/martinsprojects/trussgen

PQ mesh

Continuous 
surface

Target geometry

Discretization

Form-finding &
Geometry correction

Mechanical approach

4 cables：Quad edges
2 struts ：Auxiliary Tensegrity = Tensional + Integrity

(R.B. Fuller, 1975)

Tensegrity unit:

PQ mesh

Continuous 
surface

Target geometry

Discretization

Geometrical approach
• Circular net
• Chebyshev net
• Conjugate direction field
• Optimization
• …

Objective 1: Planar polygonal mesh
Objective 2: Approximate the target geometry

i

z
k

si

sj sk

sj

si
sk

sj,z

sj,xy

xy-plane

 Self-equilibrium
⇒ Co-planar＋Stable

Initial Geometry

Final Geometry

 Minimum strain energy
⇒ Self-equilibrium & Stable

 Small planarity error
⇒ Co-planar
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=Ds f

D:  Equilibrium matrix
s:   Prestress vector
f:   Unbalanced force vector
K:  Stiffness matrix
d:   Nodal coordinates

−Kd = f

・Configuration

−−d = K f

・Prestresses

Sufficiently small
END

Full-rank

Initial

Update
coordinates
prestresses

Final
configuration
prestresses

➢ Introduction to Tensegrity
➢Applications
➢ Stability
➢ Form-finding (or Shape-finding)

◆ Intuition Approaches
◆Analytical Approaches (using symmetry)
◆ Numerical Approaches

• Adaptive Force Density Method
• Dynamic Relaxation Method
• Non-linear Analysis (NLA) Method
• Optimization Method

Side

Top
84 Iterations

Initial
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E: Force density matrix
x,y,z： Nodal coordinates

0EzEyEx ===
Self-equilibrium Equations:

1 2 3 1 2 3

1 4 5 5 4

2 5 6 6

3 4 6  

q q q q q q
q q q q q

q q q q
q q q

+ + − − − 
 + + − − =
 + + −
 + + 

E

Sym.

+ + + = 0

/k k kq f l=Force Density

Objective 1: PQ mesh
Objective 2: Approx. the target geometry

Objective 2

Objective 1

1
2

1
, , =

1

h

i i
i

 
=

 
 + 
  

x y z P

h >= 4 Three-dimensional

0Ex=

E has four 0 eigenvalues

Other eigenvalues are positive Super-stability

Self-equilibrium

Null space

Self-equilibrium
NOT violated!!

➢Self-equilibrium condition

➢Geometry modification
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➢ Planarity error
 Distance to approximated tangent plane

 Sum squared distance

 Planarity error ((average distance)

➢ Geometry error

Target 
geometry

Final 
geometry

NormalCenter

Geometry correction

Target geometry

Least squared solution

New geometry

Architectural surface

Tensegrity model

Form-finding
Find the geometry (& prestress) 
at the state of self-equilibrium

Quad
Edge
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Geometry 
correction

Geometry: 4.44×10−3 m
Planarity error: 5.21×10−6 m

➢ Span: 18.0 x 18.0 (m)
➢ Height: 4.9 (m)
➢ Nodes: 100 , quads: 81
➢ Cable stiffness: 105 N
➢ Strut stiffness: 103 N
➢ Strut prestress: -100N
➢ Computational time： 0.19 sec

Blue: initial geometry
Red: final geometry

Blue: cable in tension
Red: strut in compression

➢ Span: 29.9 x 26.0 (m)
➢ Height: 6.8 (m)
➢ Nodes: 126 , hexagons: 43
➢ Cable stiffness: 105 N
➢ Strut stiffness: 103 N
➢ Strut prestress: -100N
➢ Computational time： 0.42 sec

Blue: initial geometry
Red: final geometry

Blue: cable
Red: strut
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➢ Span: 24.6 x 19.4 (m)
➢ Height: 5.8 (m)
➢ Nodes: 160, 
➢ Octagons: 32, Quads: 31
➢ Cable stiffness: 105 N
➢ Strut stiffness: 103 N
➢ Strut prestress: -100N
➢ Computational time： 1.3 sec

Blue: initial geometry
Red: final geometry

Blue: cable
Red: strut

Geometry 
correction

Geometry: 0.0051 m
Planarity error: 0.0058 m

Geometry 
correction

Geometry: 3.80×10−4 m
Planarity error: 1.02×10−4 m
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Tessellation as a design principle for mechanical metamaterials

Yusuke Sakai
Sony Computer Science Laboratories

Abstract

Tessellation, a geometric pattern filling a plane without any gaps or overlaps, serves as a powerful tool for
designing mechanical metamaterials. Mechanical metamaterials are artificial structures engineered for unique
and tunable mechanical characteristics. In this talk, we introduce how simple polygonal tessellations can de-
fine the internal units of metamaterials, allowing tailorable mechanical responses through geometric design.
By adjusting geometric configurations, we demonstrate intuitive tunability in deformation behaviors, leading
to applications in transformable curved surfaces and tubular structures with unique mechanical behavior. De-
signing tessellation offers a systematic design scheme for adaptive and programmable structures, expanding
possibilities for applications in aesthetic architectural roofs and mechanical devices.
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2

Tessellation

https://www.alhambradegranada.org/ja/info/gale
riadefotosalhambra/azulejosalhambra.asp

Metamorphosis III by M.C. Escher, 1968

Penrose Tiling

Tessellation as a design principle 
for mechanical metamaterials

Yusuke Sakai
Yusuke.C.Sakai@sony.com

Sony Computer Science Laboratories - 
Kyoto

3

Aperiodic ‘hat’ monotile

https://cs.uwaterloo.ca/~csk/hat/

[Smith et al., 2023] [Clarke et al., 2023]

106



From 2D to 3D

5

Parametric Wood: Image 
(wordpress.com)

Quadrilateral Other tessellations

?
“Morphing a thin plate into a programmed 
shape is a challenging problem, as highlighted 
by Gauss…”

[Siéfert et al., Nature Materials, 18:2019.]

Carl Friedrich Gauss
(1777-1855)

4

Mechanical Metamaterials
Negative Poisson’s ratio
[Alderson and Alderson, 2007]

Torsion-compression metamaterial
[Frenzel et al., 2017]

Exotic mechanical properties for enhanced applications

Pentamode metamaterial
[Kadic et al., 2012]

etc…

Energy absorber
[Lee et al., 2019]

Wave guide system
[Bordiga et al., 2024]

Mechanical cloaking
[Zhang et al., 2015]

6

From tessellation to mechanical metamaterials

[Sakai, 2024] [Sakai, 2023]
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Geometrical Representation

Initial flat grid

8

EdgesRotating quadrilateral

Extract Extrude

Thin & high wall 
member

Stiff

Flexible

0 180α≤ < 

Eigenvalue estimates soft and stiff modes
Stiffness matrix:

9

 K Mi i iλ=v v
K

Eigenvalue:  iλ
Mass matrix: M

Eigenvector: iv

Free boundary constraints

Lanczos method,
(Abaqus Ver. 2022)

Rigid body mode 
(zero-energy mode) 0λ 

…

Elastic mode

1st 2nd 3rd

4th 5th 6th 7th 8th
Out-of-plane In-plane

< <

<<
< <

108



11

From tessellation to mechanical metamaterials
Soft mode

Stiff mode

Soft mode

Stiff mode

Soft yet stiff

10

941.49 times stiffer

× 134.58

× 41.871

× 183.61

Larger eigenvalue ratio Better deformability

12

New fidget toy?

“ぷるぷる (Purupuru)” structures
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Diagonals produce positive Gaussian curvature

14

Diagonal lines

Positive Gaussian curvatureNegative Gaussian curvature

Surface Zoo: Large-deformation analysis

13

Ideal deformation mode
(the 7-th mode)

Saddle

Twist

1/8 parts of Schwartz P surface

Saddle

Cone-like
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Experimental validation

16

Initial flat grid

Thermoplastic Polyurethane
(Young’s modulus 35MPa,
Poisson’s ratio 0.4)

18

From tessellation to mechanical metamaterials

[Sakai, 2024] [Sakai, 2023]
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Poisson’s ratio and Gaussian curvature

19

Poisson’s ratio
1

2εν
ε

= −

0ν > 0ν <

( )ini def

ini

L L
Lε −= : Strain

1

2

Discrete Gaussian curvature

21

0>pK 0=pK 0<pK

4

1

4
1 1

1 1

2

    2 cos

p
v

v v

v

v v v

K π φ

π

=

− +

= +

= −

 ⋅
= −   ⋅ 

∑

∑ e e
e e p

1q
2q

3q
4q

On 4-valent verticesAngle defect
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Member profile & discrete Gaussian curvatures

23

3.54,  1.77h bt t= = 2.5,  2.5h bt t= = 5,  1.25h bt t= =

bt

ht

Thin & high wall member  Larger absolute value of discrete Gaussian curvature

Thickness & discrete Gaussian curvature

22

10U Vd d+ =4U Vd d+ =0U Vd d+ =

Larger thickness  Larger absolute value of discrete Gaussian curvature

Convexity & Concavity  Function

24
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25

Convexity & Concavity  Function

27

From tessellation to mechanical metamaterials

[Sakai, 2024] [Sakai, 2023]
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Rhombic sheet

28

RotQuad tessellation
In-plane deformation

Band
Out-of-plane deformation

Mesh generation
[Combine & Clean]  [TriRemesh]

In-plane 
stiffness: Ewt
[EdgeLengths]

30

Simulation setting

Out-of-plane 
stiffness: Ewt3/12

[Hinge]

Kangaroo2
(Dynamic Relaxation)

w

thickness t
Young’s modulus E
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Numerical Simulation Physical Model

31

Comparison
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Gaussian curvature 
> 0

Monster with two arms

35

Surface zoo

Gaussian curvature 
< 0

Surface zoo

34
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CAADRIA2025 in Univ. Tokyo

Display 25-28th, March

118



All you need is rotation: Construction of developable strips – Part 1 Theory

Takashi Maekawa
Waseda University

Felix Scholz
Johannes Kepler University

Abstract

We present a novel method for generating developable strips along a space curve, offering flexible design. Cen-
tral to this approach is the rotation angle, which governs the relationship between the Frenet frame of the input
space curve and the Darboux frame of the curve on the resulting developable strip [1]. By treating this an-
gle as a free design parameter, represented by any differentiable function along the curve, our method enables
the creation of diverse developable geometries. This generalization significantly expands the design space,
allowing for developable strips that share a common directrix curve. The rotation angle can be specified in
various forms, such as constants, linear variations, sinusoidal patterns, or solutions to initial value problems
defined by ordinary differential equations. By introducing this versatile framework, we advance the theoreti-
cal understanding of developable surface design, providing a powerful toolset for exploring and manipulating
developable geometries with exceptional flexibility.

References

[1] T. Maekawa and Felix Scholz, “All you need is rotation: Construction of developable strips”, ACM Trans-
actions on Graphics, vol. 43, no. 6, 2024.
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Motivation 1 

t = 0

We generate  developable strips along a given space curve by designing a suitable 
rotation angle between the Frenet and Darboux frames.

φ(t) = - 0.06 t + 𝜋𝜋6 along a helix

t =  𝜋𝜋2 t = π t = 3𝜋𝜋2 t = 2π

Ease of designing  developable strips

ED3GE 3-10-2025

All you need is rotation: Construction of 
developable strips – Part 1 Theory

Takashi Maekawa Felix Scholz 
Waseda University Johannes Kepler University

ED3GE 3-10-2025

ED3GE 3-10-2025
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Frenet-Serret formula

ሶ𝒄𝒄(t) =Λ(t) c’(s)

t

n

b

c(s)

◼ Motion of the moving Frenet frame c(s) 
Arc-length parametrized curve c(s)    

◼ Arbitrarily parametrized curve c(t)

Parametric speed

Frenet frame

Tangent

Principal normal 

Binormal 

ED3GE 3-10-2025

Motivation 2 

Fabricate by bendingDesign Flatten Cut

Ease of fabrication for various applications

ED3GE 3-10-2025

Motion of Darboux frame 

ሶ𝒄𝒄(t) =Λ(t) c’(s)

t

c(s)

◼ Arc-length parametrized curve c(s)

◼ Arbitrarily parametrized curve c(t)

Parametric speed

Darboux frame

N

B = N ×t

Surface normal 

Tangent

ED3GE 3-10-2025

(1)
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ED3GE 3-10-2025

κn κg τg in terms of φ
◼ Plug  (2) into (1)

◼ Differentiate the second and third equations of  (2) 

◼ By comparing B’ and N’ we get  

Darboux frame 
t-B-N

Rotation angle φ

𝐭𝐭
𝐁𝐁
𝐍𝐍

=
1 0 0
0 cos𝜑𝜑 sin𝜑𝜑
0 − sin𝜑𝜑 cos𝜑𝜑

𝐭𝐭
𝐧𝐧
𝐛𝐛

t

n

b

c(t)

N

B = N ×t

φ

φ

Frenet frame    (2)
t-n-b

Common to both frames

ED3GE 3-10-2025

Key idea 

The Darboux frame generally exists only if there’s a surface 
containing the curve. 

However, in this research, we take a reverse approach. 

We first define the rotation angle φ independently of the surface. 

Then construct the developable surface based on this rotation.

ED3GE 3-10-2025
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B-spline representation 

pi

mi

ci

We fit B-spline curves to 
pi and mi based on the 
parametrization of ci

By linearly interpolating 
these curves, we generate 
B-spline developable strip

Rulings become 
isoparametric lines

ED3GE 3-10-2025

Unit ruling direction vector d

B =   cosφ n + sinφ b

c(t)

N

Bt
d

Do Carmo 76
Developable surface: The 
envelope of the family of 
tangent planes along a curve 
on a surface 

ED3GE 3-10-2025

Flattening of developable strips 

AB, AD, CD 
ξA, ξD are preserved

Split the quad ABCD 
into two triangles ABD 
and ACD

ഥB and തC are transformed to global  
coordinates

ED3GE 3-10-2025
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New rotation angles φ(t) 

◼ φ(t) = q                   (constant)

◼ φ(t) = pt + q (linear function)

◼ φ(t) = psin(ωt) + q  (sinusoidal function )

◼
𝑑𝑑φ(𝑡𝑡)
𝑑𝑑𝑡𝑡 = f(φ)           (solution to an ordinary differential equation)

ED3GE 3-10-2025

Well-known rotation angles

Tangential developable
(along helix)
φ(t) = 0  

Rectifying developable
(along helix)
φ(t) = 𝜋𝜋

2

Envelope of the family of tangent 
planes (along a helical curve on torus)
φ(t) = cos -1(b∙N)

ED3GE 3-10-2025

φ(t) = q (constant)

φ(t) = π
4 along a cubic B ƴezier curve φ(t) = π

6 along a helix

Perspective view Right view Perspective view Front view

ED3GE 3-10-2025
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Edge of regression

top view
helix

φ(t) = pt + q   (linear function)

φ(t) = -0.06t + q  along a helix

𝑞𝑞 = π
4 (45°) 𝑞𝑞 = π

3 (60°)𝑞𝑞 = 10π
36 (50°) 𝑞𝑞 = 11π

36 (55°)

helix

edge of
regression

ED3GE 3-10-2025

φ(t) = psin(ωt) + q  
(sinusoidal function )

Suitable for  closed loop strips

Toroidal blade along an ellipse: φ(t) = 0.8cos(t ) + π
2

ED3GE 3-10-2025
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𝑑𝑑φ(𝑡𝑡)
𝑑𝑑𝑡𝑡 = f(φ) (solution of o.d.e.)

θ = 𝜋𝜋
6 θ = 𝜋𝜋

4 θ = 𝜋𝜋
3

θ = 𝜋𝜋
2 , τ + 𝑑𝑑φ𝑑𝑑𝑑𝑑 = τg =  0  

Rotation minimizing frame

ED3GE 3-10-2025

Ribonization

ED3GE 3-10-2025

Approximate a surface using multiple developable strips (torus 𝜔𝜔=3)
c(𝑡𝑡 ) = ( (𝑅𝑅 + 𝑟𝑟 cos(𝜔𝜔𝑡𝑡 )) cos 𝑡𝑡, (𝑅𝑅 + 𝑟𝑟 cos(𝜔𝜔𝑡𝑡 )) sin 𝑡𝑡, 𝑟𝑟 sin(𝜔𝜔𝑡𝑡 )) 

Conventional method 𝜑𝜑 𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜔𝜔𝑡𝑡 − 𝑞𝑞 𝜑𝜑 𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜔𝜔𝑡𝑡 + 𝑞𝑞𝜑𝜑 𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 𝐛𝐛 ∙ 𝐍𝐍

Rotation minimizing frame (RMF)

θ = 𝜋𝜋
2

= cos 𝜋𝜋
2 = 0

Log-aesthetic curve
φ0 = 0

Log-aesthetic curve 
φ0 = 𝜋𝜋2

ODE reduces to integration problem

ED3GE 3-10-2025

Orthogonal to each other
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Offsets of developable strip

ED3GE 3-10-2025

෡K = K
1+2Hd+Kd2

෡K: Gaussian curvature of offset surface
K: Gaussian curvature of developable strip
H: Mean curvature of developable strip
d: offset distance 

The offset surface of a developable surface is also a developable surface 

Offset

ED3GE 3-10-2025

Differential geometry of developable strips 

K = LN −𝑀𝑀2
EG − F2 = 0 as N = M = 0Gaussian curvature

𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = H + |H|Principal curvatures 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = H - |H|

H > 0 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 2H  𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 0 (ruling)

H = 0 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 0 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 0

H < 0 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 0 (ruling)  𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚 = 2H

Triply Orthogonal Structure (TOR)

RMF along helix
with φ0 = 0

RMF with φ0 =
𝜋𝜋
2

+ square plates
Offsets of  blue strip Offsets of  blue and 

silver strips are added 
Triply orthogonal structure 

ED3GE 3-10-2025
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Summary & Conclusions

◼ This work introduced a method for constructing developable strips along 
space curves by designing the rotation angle φ as a free design parameter. 

The angle φ defines the relationship between the Frenet frame of the input   
curve and the Darboux frame of the curve on the resulting developable strip.

◼ The approach has broad applicability, including in architecture, windmill 
blade design for papercraft models, and triply orthogonal structures, which 
will be discussed in Part 2 of the talk. 

ED3GE 3-10-2025
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All you need is rotation: Construction of developable strips – Part 2
Applications

Takashi Maekawa
Waseda University

Felix Scholz
Johannes Kepler University

Abstract

The versatility of the proposed method is demonstrated through both computational and physical examples,
showcasing its broad range of applications. These include architecture, windmill blade design, curved folding,
triply orthogonal structures, and the creation of surfaces with log-aesthetic curves. Such examples highlight
the method’s potential in fields like architectural design, industrial design, and papercraft modeling, offering a
powerful tool for innovative surface design and fabrication. Specifically, we present:

• Architectural Design: A helical structure spanning the parameter range 0 ≤ t ≤ 2π

• Inverted Catenary Arch: A model composed of two developable surfaces intersecting to form the shape
of an inverted catenary.

• Deltoid Evolute: A construction based on the evolute of a deltoid curve, which intriguingly forms another
deltoid when viewed from above. This is expressed through developable surfaces aligned along the
deltoid.

• Papercraft Windmill Blade: We designed a vertical papercraft model with a developable surface. Unlike
horizontal-axis turbines, vertical-axis turbines are wind-direction insensitive, removing the need for yaw
control.

• Additional examples demonstrating the versatility of the method will be presented during the talk.

References

[1] T. Maekawa and Felix Scholz, “All you need is rotation: Construction of developable strips”, ACM Trans-
actions on Graphics, vol. 43, no. 6, 2024.
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Planar curve (ellipse) 
φ = 𝜋𝜋2 (rectifying developable)

ED3GE 3-10-2025

φ(t) = sin(2t) + 𝜋𝜋2 w/B∙ 𝐝𝐝

w

All you need is rotation: Construction of 
developable strips – Part 2 Application

Takashi Maekawa Felix Scholz 
Waseda University Johannes Kepler University

ED3GE 3-10-2025

Inverted catenary arch
Directrix: Inverted catenary,  c(t) = (t, 0, −a cosh( 𝑡𝑡

𝑎𝑎 ) + a cosh( 𝑙𝑙𝑎𝑎))
a= 4, ℓ= 10 for −ℓ ≤ t ≤ ℓ, w = 1 (half-width of strip) 
φ(t) = cos(π𝑡𝑡

4ℓ) − 3π
2

ED3GE 3-10-2025

2w

2w/B∙ 𝐝𝐝
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3D cubic Bézier curve  as directrix 

φ = 𝜋𝜋2
φ = 𝜋𝜋4

RMF Three developable strips 
sharing the same Bézier
curve 

ED3GE 3-10-2025

ED3GE 3-10-2025

M ሷobius strip 
Directrix: c(𝑡𝑡 ) = (sin(𝑡𝑡 ), (1 − cos(𝑡𝑡 ))3, sin(𝑡𝑡 ) (1 − cos(𝑡𝑡 )) 

φ = 𝜋𝜋2 (rectifying developable)

Helical windmill (3 developable blades) 
Directrix: Helix, c(𝑡𝑡 ) = (𝑎𝑎 cos(𝑡𝑡), 𝑎𝑎 sin(𝑡𝑡), 𝑏𝑏𝑡𝑡 ) with a = 50, b= 35, 0 ≤ 𝑡𝑡 ≤ 2𝜋𝜋3
φ(t) is determined by RMF
φ0 =

𝜋𝜋
2:  blades obtain lift rather than drag from the air

ED3GE 3-10-2025
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Sea shell surface 

r(𝑡𝑡, 𝜃𝜃) = helix(𝑡𝑡 ) + 𝑟𝑟𝑡𝑡 (− cos(𝜃𝜃)n(𝑡𝑡 ) + sin(𝜃𝜃)b(𝑡𝑡 )) 

𝜑𝜑(𝑡𝑡 ) = 0.5sin(𝑡𝑡 ) + π
6 𝜑𝜑(𝑡𝑡 ) = 0.5sin(𝑡𝑡 ) + π

4

https://en.wikipedia.or
g/wiki/Seashell_surfac
e#/media/File:Seashell
_Surface.PNG𝑎𝑎 = 20, 𝑏𝑏 = 30 for the helix

𝑟𝑟 = 15, 𝜃𝜃 = 0, the half-width 𝑤𝑤(t) = 𝑟𝑟𝑟𝑟8

ED3GE 3-10-2025
Difference

Helical windmill 

ED3GE 3-10-2025

Sea shell surface 
𝜃𝜃 = 0, 𝜃𝜃 = π 
𝑤𝑤+(t) = 𝑟𝑟𝑟𝑟8 (1 + 0.2 sin(30𝑡𝑡 )),    𝑤𝑤-(t) = 𝑟𝑟𝑟𝑟8 (1 + 0.2 cos(30𝑡𝑡 ))

ED3GE 3-10-2025
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Deltoid evolute
Directrix: Deltoid, c(𝑡𝑡 ) = (𝑎𝑎(2 cos(𝑡𝑡 ) + cos(2𝑡𝑡 )), 𝑎𝑎(2 sin(𝑡𝑡 ) − sin(2𝑡𝑡 )), 0)
a = 50 (radius of small circle)

https://en.wikipedia.org/wiki/
Deltoid_curve#/media/File:D
eltoid2.gif

Evolute of the deltoid

𝜑𝜑 = 𝜑𝜑del = const

𝜏𝜏𝑔𝑔 = 0, leading to d・ t = 0

d𝑝𝑝𝑟𝑟𝑜𝑜𝑗𝑗 = (d・t)t + (d・n)n = cos(𝜑𝜑𝑑𝑑𝑒𝑒𝑙𝑙 )n

w(t) cos(𝜑𝜑𝑑𝑑𝑒𝑒𝑙𝑙 ) = 1
κ(𝑡𝑡)

ED3GE 3-10-2025

Hemisphere (Reichstag dome) 
Hemisphere: x2 + y2 + z2 = a2

Directrix: c(𝑡𝑡 ) = ( a2 −b2 t2 cos(𝜆𝜆𝑡𝑡), a2 −b2 t2 sin(𝜆𝜆𝑡𝑡), 𝑏𝑏𝑡𝑡),  0 ≤ 𝑡𝑡 ≤ 𝑎𝑎𝑏𝑏 
φ(t) is determined by RMF
𝑎𝑎 = 1, 𝑏𝑏 = 1, and 𝜆𝜆 = 108

 

https://en.wikipedia.org/wiki
/Reichstag_dome

ED3GE 3-10-2025

Deltoid evolute
3D Top view

ED3GE 3-10-2025

Front view Perspective view

Flattened strip
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Loxodrome
Integration constant: c = π4 ,

3π
4 , 5π4 , 7π4

ED3GE 3-10-2025

The maximum and average deviations from the sphere normalized by sphere’s 
diameter are computed to be 0.629% and 0.327%, respectively

Loxodrome
A loxodrome is a curve on a sphere that intersects all meridians at the same angle 𝛼𝛼

𝛼𝛼
𝛼𝛼

𝛼𝛼

THE LOXODROME ON AN ELLIPSOID 
R. E. Deakin, 2010

Sphere: r (𝑢𝑢, 𝑣𝑣) = (𝑟𝑟 sin𝑢𝑢 cos 𝑣𝑣,  𝑟𝑟 sin𝑢𝑢 sin 𝑣𝑣,  𝑟𝑟 cos𝑢𝑢) ,
where 0 ≤ 𝑢𝑢 ≤ 𝜋𝜋 and 0 ≤ 𝑣𝑣 ≤ 2𝜋𝜋

Directrix: Eqn. of loxodrome 𝑣𝑣 = tan 𝛼𝛼 ln tan 𝑢𝑢
2 + 𝑐𝑐

(𝑐𝑐 is the integration constant)

𝑢𝑢 = 2 arctan(𝑒𝑒
𝑣𝑣−𝑐𝑐
𝑎𝑎 ) 

𝑤𝑤(𝑣𝑣) = cos(𝜋𝜋2 − 𝛼𝛼) 𝑟𝑟
2 (𝑢𝑢𝑏𝑏 − 𝑢𝑢𝑎𝑎)

ED3GE 3-10-2025

meridian

u

directrixα

ua

ub

Loxodrome
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Curved folding 
Directrix: Helix, c(𝑡𝑡 ) = (𝑎𝑎 cos(𝑡𝑡), 𝑎𝑎 sin(𝑡𝑡), 𝑏𝑏𝑡𝑡 ) with a = 50, b= 25, 0.6 𝜋𝜋 ≤ 𝑡𝑡 ≤ 2𝜋𝜋
w(t) = 15 (half-width of developable strip), θ = π4

ED3GE 3-10-2025

t’= 𝜅𝜅n using 𝜅𝜅 = 𝜅𝜅𝑔𝑔 and n=(0, 0, 1) × t

w/B∙ 𝐝𝐝

Curved folding 
Directrix: Helix, c(𝑡𝑡 ) = (𝑎𝑎 cos(𝑡𝑡), 𝑎𝑎 sin(𝑡𝑡), 𝑏𝑏𝑡𝑡 ) with a = 50, b= 25, 0.6 𝜋𝜋 ≤ 𝑡𝑡 ≤ 2𝜋𝜋
w(t) = 15 

ED3GE 3-10-2025

d(𝜋𝜋 +𝜑𝜑 )

d(𝜑𝜑 )

d(-𝜑𝜑 )

d(𝜋𝜋 −𝜑𝜑 )

Bottom pair

Solve where θ = π
4

Ribonization of torus by TOR  

Directrix curve
c(t) = ((R + r cos(7t)) cos t,  

(R + r cos(7t)) sin t, 
r sin(7t)) 

w = 0.2 

Directrix curve
c(t) = ((R + r cos(7t)) cos (t + 𝜋𝜋7),  

(R + r cos(7t)) sin (t +  𝜋𝜋7), 
r sin(7t)) 

w = 0.2 
ED3GE 3-10-2025
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Film-based Perovskite photovoltaic module

Todori, K., Miyauchi, H.: Film-based perovskite photovoltaic 
module with light weight and flexibility to accommodate various 
styles of installation.
Toshiba Rev. 76(3), 17–20 (2021)

Transparent PET films 
pasted on a 3Dprinted 
model of the approximated 
complete log-aesthetic 
surface. 

ED3GE 3-10-2025

PVC films of blue 
alternating with 
orange pasted on a 3D 
printed model.

F. Scholz, S. Nishikawa, M. Takezawa, T.  Maekawa, “Approximation of doubly curved 
surfaces by analysis-suitable piecewise surfaces with high Developability”, The Visual 
Computer, 2022.

Flattened strip 

ED3GE 3-10-2025

Walls of Cristo Obrero

https://upload.wikimedia.org/wiki
pedia/commons/1/19/Parroquia_d
el_Cristo_Obrero_-
_panoramio_%285%29.jpg

ED3GE 3-10-2025

r (𝑢𝑢, 𝑣𝑣) = (u, a cos (ω𝑣𝑣) h−v
ℎ ,  h-v) , 0 ≤ u ≤ l, 0 ≤ v ≤ h

When v = const.  the isoparametric curve becomes planar.
Thus, τg = 0, and hence d = - B
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Piecewise developable B-spline strips

Original model

Approximation by
5 piecewise developable
strips per doubly curved 
surfaces using  

ED3GE 3-10-2025

F. Scholz, S. Nishikawa, M. Takezawa, T.  Maekawa, “Approximation of doubly curved surfaces by analysis-
suitable piecewise surfaces with high Developability”, The Visual Computer, 2022.

𝜑𝜑 𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 𝐛𝐛 ∙ 𝐍𝐍

Royan Central Market Hall
Google map: 45° 37' 39.53" N    
1° 1' 52.67" W

Completion: 1956

Material: Reinforced concrete
structure

Royan Central Market Hall B-spline: Consists of 13 doubly curved surfaces
(Courtesy of Prof. Yokosuka)

ED3GE 3-10-2025

Future work 

ED3GE 3-10-2025

◼ Explore more analytical functions and polynomial curves for rotation angles.

◼ Investigate the potential of triply orthogonal structures in framing freeform 
surface architecture.
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Isogeometric Analysis of Membrane and Cable Structures: A Design of
Umbrella Zero-Stress State

Maya Okada / Naoyuki Fujita / Takuya Terahara / Yastoshi Taniguchi / Kenji Takizawa

Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan

Tayfun E. Tezduyar
Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

An umbrella is a common item that requires aesthetically and functionally good design. A wrinkle-free design
is suitable in both directions, and for manufacturing reasons, zero-stress state (ZSS) of each membrane part is
flat. We model an umbrella using T-splines, which we developed in [1], and using geometric knowledge [2]
and steady-state structural mechanics. We use a newly developed Bézier simplex and combined T-splines to
represent the membrane parts (see 1). To design the ZSS, we use the integration-point-based zero-stress state
(IPBZSS) technique [3]. The bone parts are connected with the membrane with the method described in [1],
and we newly developed the torsion representation (see 2 for a test) to stabilize the bone parts of the umbrella.

Figure 1: Simplex geometry with higher-order continuous
and computational result

Figure 2: Isogeometric analysis of cable structure

References

[1] T. Terahara, K. Takizawa, and T.E. Tezduyar, “T-splines computational membrane–cable structural me-
chanics with continuity and smoothness: I. Method and implementation”, Computational Mechanics, 71
(2023) 657–675.

[2] T. Terahara, S. Nishikawa, A. Suzuki, K. Takizawa, and T. Maekawa, “Geometric modeling of umbrella
surfaces”, Computer-Aided Design, 175 (2024) 103750.

[3] T. Sasaki, K. Takizawa, and T. E. Tezduyar, “Aorta zero-stress state modeling with T-spline discretization”,
Computational Mechanics, 63 (2019) 1315–1331.
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Continuity and Smoothness in T-Splines Representations of Structures with
Different Parametric Dimensions

Takuya Terahara / Kenji Takizawa

Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan

Tayfun E. Tezduyar
Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

We present a computational method using T-splines discretization for structural mechanics with different para-
metric dimensions are connected with continuity and smoothness. The Isogeometric analysis (IGA) gives
accuracy to structural mechanics computations [1], and higher-order continuity allows use of the higher-order
differential equations, such as the Kirchhoff–Love shells [2]. In IGA, connecting a 1D structure, such as a cable,
to a 2D structure, such as a shell, is not that straightforward. That is because the control points are not on the
cables or surfaces. The simple approach requires an extra refinement to have C0 continuity functions that rep-
resents the position on the cables or surfaces. We proposed a new discretization method using T-splines [3, 4].
We present computations of test and parachute deformation. The computations demonstrate how the method
works.
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Figure 1: Membran–cable structures with C0 and C1 continuous Figure 2: Parachute
deformation
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T↭AFSM

Overview

1. Simplex

3. Cable on the surface

2. Cable

3. Cables and surface
are connected by !!continuous 

Rib

Membrane

Stretcher

Tube

1

T↭AFSM

Isogeometric Analysis of Membrane and Cable Structures: 
A Design of Umbrella Zero-Stress State

M. Okada, N. Fujita, 
T. Terahara, Y. Taniguchi, K. Takizawa

Waseda University

T.E. Tezduyar
Rice University

Waseda University

T↭AFSM

Smooth Representation for Bézier Simplex Elements

M. Okada, N. Fujita, 
T. Terahara, Y. Taniguchi, K. Takizawa

Waseda University

T.E. Tezduyar
Rice University

Waseda University
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T↭AFSM

Bézier Simplex

Basis function

p=2, npd=2
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p: polynomial order of the basis functions
npd: number of parametric dimensions
sk: kth Barycentric coordinate
mk: degree in kth Barycentric coordinate

4

T↭AFSM

Rectangular and Simplex
Umbrella

Rectangular mesh Simplex mesh
3

T↭AFSM

Bézier Simplex

Bézier extraction

Extraction-operator

s0 s1

s2

x0 x1 x2

x3 x4

x5

CST =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1

2 0 0 0 0
0 0 0 0 1

2 1 0 0 0
0 0 0 0 0 0 1 1 1




CST =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1

3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2

3
2
3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
3 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 2
3

1
3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
3

2
3 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1




s0 s1
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x0 x1 x2 x3

x4 x5 x6

x7 x8

x9

Bs
p,m = CSTNp,n

p=2, npd=2
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Product form Bézier
Bézier simplex
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8 elements, 49 control points

Building Smooth Basis Functions in a Rectangular Octagon Space (p=3, npd=2)

27 smooth basis functions

C1

C2

C3

B1

B2

B3

A1

A2

A3




A3 = xA1 + yA2

B3 = xB1 + yB2

C3 = xC1 + yC2

x = −2 +
√

2
y =
√

2

24 boundary conditions

Constraint expression
for 49 control points

Independent solutions:

A




z0
...

z48



=




0
...
0




A ∈ R24×49, dim (ker A) = 27

dim (ker A) = 27

Partition of unity
Non-negative + Rotational symmetry

7
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x1

x2

x3

p=2, npd=2

p=3, npd=2

A : x0, x1, x2, x3, x5, x6, x7 are on the same plane
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2D MESH

C1 Basis Functions across the 8 Elements

27 smooth basis functions (8 elements)

8 nodes 8 nodes8 nodes

1 node 1 node1 node
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Overview

1. Simplex

3. Cable on the surface

2. Cable

3. Cables and surface
are connected by !!continuous 

Rib

Membrane

Stretcher

Tube

T↭AFSM

M. Okada, N. Fujita, 
T. Terahara, Y. Taniguchi, K. Takizawa

Waseda University

Cable Model

T.E. Tezduyar
Rice University

Waseda University
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∫

St

δx · hdS +

∫

S0

ε0A0δx · (f − a)dS −
∫

S0

E

‖G1‖4
(A0εδε+ Iκδκ)dS = 0

13

Axial Bending

Rotation-Free Cable Model
Principle of Virtual Work

ε =
1

2
(x,ξ1 · x,ξ1 −X,ξ1 ·X,ξ1)

κ = x,ξ1ξ1 · n−X,ξ1ξ1 ·N

Cross-sectional area: A0

Moment of inertia of area: I

Density: ρ0

Young’s modulus: E

Acceleration: a
Force per unit mass: f

Surface force per unit length: h
Tensile strain: ε

Virtual displacement: δx
Change in curvature: κ

Tangent vector of the centerline
in undeformed configuration: G1

Centerline in undeformed configuration: S 0

Centerline in deformed configuration: S t
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)

St

δx · hdS +

)

S0

ε0A0δx · (f − a) dS −
)

S0

�
E

‖A1‖4
(A0εδε +Iκ21δκ21 + Iκ31δκ31) +

GIp

‖A1‖2

�
1

2
κ32δκ32 +

1

2
κ23δκ23

��
dS = 0

aα =
∂x

∂ξα

16

Axial Bending Torsion

Cable Model Considering Rotation
Principle of Virtual Work

Cross-sectional area: A0

Moment of inertia of area: I

Polar moment of inertia of area: Ip

Density: ρ0

Young’s modulus: E

Modulus of transverse elasticity: G

Acceleration: a
Force per unit mass: f

Surface force per unit length: h
Tensile strain: ε

Virtual displacement: δx
Change in curvature: κ21, κ31, κ23, κ32

Tangent vector of the centerline
in undeformed configuration: A1

Centerline in undeformed configuration: S 0

Centerline in deformed configuration: S t

ε =
1

2
(x,ξ1 · x,ξ1 −X,ξ1 ·X,ξ1)

καβ = aβ,1 · aα −Aβ,1 ·Aα

Aα =
∂X

∂ξα

T↭AFSM
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Cable Model Considering Rotation
Geometric Description of Cable

Λ(T0, t) = (T0 · t)I+
1

1 +T0 · t
(T0 × t) (T0 × t) + (T0 × t)× I

R̄t(ψ) = I cos(ψ) + sin(ψ)t× I

aα = R̄t(ψ) ·Λ(T0, t) ·A0
α

x3D(ξ1, ξ2, ξ3) = x(ξ1) + ξ2a2(ξ
1) + ξ3a3(ξ

1)X3D(ξ1, ξ2, ξ3) = X(ξ1) + ξ2A2(ξ
1) + ξ3A3(ξ

1)

・ Two tensors for geometric description 

・ Example of geometric description

Aα = R̄T(Ψ) ·Λ(T0,T) ·A0
α
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)

St

δx · hdS +

)

S0

ε0A0δx · (f − a) dS −
)

S0

�
E

‖A1‖4
(A0εδε +Iκ21δκ21 + Iκ31δκ31) +

GIp

‖A1‖2

�
1

2
κ32δκ32 +

1

2
κ23δκ23

��
dS + δWcontact = 0

19

Augmented Lagrangian method

δWcontact =
∫

(S t)c
(λN + εdN) δdNdS

Yarn Spinning
Method

Principle of virtual work

Axial Bending Torsion
Cross-sectional area: A0

Moment of inertia of area: I

Polar moment of inertia of area: Ip

Density: ρ0

Young’s modulus: E

Modulus of transverse elasticity: G

Acceleration: a
Force per unit mass: f

Surface force per unit length: h
Tensile strain: ε

Virtual displacement: δx
Change in curvature: κ21, κ31, κ23, κ32

Tangent vector of the centerline
in undeformed configuration: A1

Centerline in undeformed configuration: S 0

Centerline in deformed configuration: S t

Work by contact force: Wcontact

Penetrating length: dN

Penalty parameter: ε

Lagrange multiplier: λN

domain where contact force acts
in deformed configuration: (S t)c
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Yarn Spinning
Contact Analysis

T↭AFSM

・ Rotate fiber ends counterclockwise

20

Yarn Spinning
Test Case: Computational Settings

x

z

y z

y

Dimensions and properties (Wool fiber)

EA0 (N) 2.501×102

EI (N ·m2) 3.909×10−6

GIp (N ·m2) 3.909×10−6

ρ0 (kg/m3) 1.316×103

Number of nodes 103
Number of elements 100

Length (m) 0.3
Radius (m) 2.5 ×10−4

T↭AFSM

Result

22

Yarn Spinning
Contact Analysis

Result (without contact analysis)
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Ventricle-Valve-Aorta Flow Analysis with the 
Space–Time IGA and Topology Change

2019
T★AFSM

T↭AFSM

Continuity and Smoothness in T-Splines Representations of Structures with
Different Parametric Dimensions

T. Terahara, K. Takizawa
Waseda University

T.E. Tezduyar
Rice University

Waseda University
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Ventricle-Valve-Aorta Flow Analysis with the 
Space–Time IGA and Topology Change

m/s

*1 F.H. Netter, "Atlas of Human Anatomy", Netter Basic Science, Page 532. 
*2 J.G. Castillo, J. Solis, A.G-Pinto and D.H. Adams, “Surgical echocardiography of the mitral valve”, 

Revista Espanola de Cardiologia, 64, 1169–1181, 2011. 
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Membrane–Cable Structure
Ram-Air Parachute

②

①

①

②

2016 T★AFSM 27

T↭AFSM

Membrane–Cable Structure

Parachute Umbrella*1

*2

*1 https://parade.com/904524/marilynvossavant/why-do-skydivers-use-rectangular-parachutes/
*2 https://www.nasa.gov/mission_pages/mars/images/msl0164-20090422.html

*3https://www.komiyakasa.jp/encyclopedia/history-of-japanese-umbrella-industory/

*3
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Membrane–Cable Structure
Connecting Membrane and Cable
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ficiency but also the continuity. Especially with isogeomet-
ric shells and bending-stabilized cables [79], the continuity
is essential. Here we describe methods to connect a cable to
a membrane at any location along its edge, and we also de-
scribe methods to attain smoothness along the cable and its
parametric-line continuation in the membrane.

2.1 Connecting the cable to the membrane

We assume that the membrane is of rectangular shape. For
illustration purposes, it is made of 2⇥3 quadratic B-spline
elements, and the cable consists of one quadratic B-spline
element. Figure 1 shows the membrane and cable (for more
details on the mesh, see Appendix A.1), and Figure 2 shows
the mesh after connecting them (for more details on the
mesh, see Appendix A.2). We will explain how we obtain
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12 13 14 15
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202122

0 1

2 3

4 5

6

Fig. 1 The membrane and cable elements before connecting them.
The red circles represent the control points. Each area enclosed by
green lines represents an element, and it is labeled with a green
number. The brown line represents a cable element, and it is labeled
with a brown number. In all elements, the local parametric coordinates
are defined from left to right in the first direction and from bottom to
top (for membrane only) in the second direction
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Fig. 2 The membrane and cable elements after connecting them

this mesh.
We represent the local basis functions in the parametric

space −1  ⇠↵  1, where ↵ = 1, . . . , npd, and npd is the

number of parametric dimensions. For a global basis func-
tion index a or b in element e, we denote the local basis
functions as Me

a(⇠1, ⇠2) for the membrane elements and as
Le

b(⇠1) for the cable elements. They are expressed as

Me
a(⇠1, ⇠2) = Ne,1

a1 (⇠1)Ne,2
a2 (⇠2) (1)

and

Le
b(⇠1) = Ne,1

b1 (⇠1), (2)

with the index mapping e, a! (a1(e, a), a2(e, a)) and e, b!
b1(e, b), and we are dropping “(e, a)” and “(e, b)” not to
crowd the notation. Here, Ne,↵

k represent 1D functions iden-
tified by element number e, direction ↵, and local index k.
Although it is not included, the polynomial order is assumed
to be p = pe,↵, and we may omit the superscripts for nota-
tional convenience. The index a↵ denotes the local index in
↵ direction, and there is no unique mapping from a↵ to a. In
fact, quite often, a↵ corresponds to multiple a. The symbols
Me and Le represent, for the membrane and cable, the sets
of functions with nonzero value in element e.

Remark 1 All the T-splines used in this article can be ex-
pressed in this product form. Therefore, Eq. (1) is applica-
ble even after connecting the cable to the membrane. Some
of the notation may not be general enough as in NURBS,
but they should be straightforward. We are giving up some
generality so that we do not further complicate the notation.

Referring to Figure 1, we are connecting the cable end
point with ⇠1 = ⇠B,1

c = −1 in element B = 6 to the membrane
edge point with ⇠1 = ⇠A,1

c = 1 and ⇠2 = ⇠A,2
c in element A =

3. In those membrane and cable elements, the connection
point xc can be represented as
⇣
xh

c

⌘
M
=
X

a2MA

xaMA
a (⇠A,1

c , ⇠
A,2
c ) (3)

and
⇣
xh

c

⌘
L
=
X

b2LB

xbLB
b (⇠B,1

c ). (4)

Remark 2 Depending on the parametrization, i) one of ⇠A,↵
c

is either −1 or 1, and ii) ⇠B,1 is either −1 or 1.

We note that NA,1
a1 (⇠A,1

c ) is either 1 or 0 at the membrane edge.
We define the set of functions with value 1 at the membrane
edge asMA

c =
n
a 2 MA

���NA,1
a1 (⇠A,1

c ) = 1
o
. With that, the con-

nection point as represented by the membrane becomes
⇣
xh

c

⌘
M
=
X

a2MA
c

xaNA,2
a2 (⇠A,2

c ). (5)

Similarly, at the cable end, NB,1
b1 (⇠B,1

c ) is either 1 or 0, and, in
fact, there is only one function that has value 1, and that is

Shape function for membrane

Shape function for line
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ficiency but also the continuity. Especially with isogeomet-
ric shells and bending-stabilized cables [79], the continuity
is essential. Here we describe methods to connect a cable to
a membrane at any location along its edge, and we also de-
scribe methods to attain smoothness along the cable and its
parametric-line continuation in the membrane.

2.1 Connecting the cable to the membrane

We assume that the membrane is of rectangular shape. For
illustration purposes, it is made of 2⇥3 quadratic B-spline
elements, and the cable consists of one quadratic B-spline
element. Figure 1 shows the membrane and cable (for more
details on the mesh, see Appendix A.1), and Figure 2 shows
the mesh after connecting them (for more details on the
mesh, see Appendix A.2). We will explain how we obtain
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this mesh.
We represent the local basis functions in the parametric

space −1  ⇠↵  1, where ↵ = 1, . . . , npd, and npd is the

number of parametric dimensions. For a global basis func-
tion index a or b in element e, we denote the local basis
functions as Me

a(⇠1, ⇠2) for the membrane elements and as
Le

b(⇠1) for the cable elements. They are expressed as
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a(⇠1, ⇠2) = Ne,1

a1 (⇠1)Ne,2
a2 (⇠2) (1)

and
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b(⇠1) = Ne,1

b1 (⇠1), (2)

with the index mapping e, a! (a1(e, a), a2(e, a)) and e, b!
b1(e, b), and we are dropping “(e, a)” and “(e, b)” not to
crowd the notation. Here, Ne,↵

k represent 1D functions iden-
tified by element number e, direction ↵, and local index k.
Although it is not included, the polynomial order is assumed
to be p = pe,↵, and we may omit the superscripts for nota-
tional convenience. The index a↵ denotes the local index in
↵ direction, and there is no unique mapping from a↵ to a. In
fact, quite often, a↵ corresponds to multiple a. The symbols
Me and Le represent, for the membrane and cable, the sets
of functions with nonzero value in element e.

Remark 1 All the T-splines used in this article can be ex-
pressed in this product form. Therefore, Eq. (1) is applica-
ble even after connecting the cable to the membrane. Some
of the notation may not be general enough as in NURBS,
but they should be straightforward. We are giving up some
generality so that we do not further complicate the notation.

Referring to Figure 1, we are connecting the cable end
point with ⇠1 = ⇠B,1

c = −1 in element B = 6 to the membrane
edge point with ⇠1 = ⇠A,1

c = 1 and ⇠2 = ⇠A,2
c in element A =

3. In those membrane and cable elements, the connection
point xc can be represented as
⇣
xh

c

⌘
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A,2
c ) (3)

and
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Remark 2 Depending on the parametrization, i) one of ⇠A,↵
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is either −1 or 1, and ii) ⇠B,1 is either −1 or 1.

We note that NA,1
a1 (⇠A,1

c ) is either 1 or 0 at the membrane edge.
We define the set of functions with value 1 at the membrane
edge asMA

c =
n
a 2 MA
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a1 (⇠A,1

c ) = 1
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. With that, the con-

nection point as represented by the membrane becomes
⇣
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a2MA
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xaNA,2
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Similarly, at the cable end, NB,1
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c ) is either 1 or 0, and, in
fact, there is only one function that has value 1, and that is
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ficiency but also the continuity. Especially with isogeomet-
ric shells and bending-stabilized cables [79], the continuity
is essential. Here we describe methods to connect a cable to
a membrane at any location along its edge, and we also de-
scribe methods to attain smoothness along the cable and its
parametric-line continuation in the membrane.

2.1 Connecting the cable to the membrane

We assume that the membrane is of rectangular shape. For
illustration purposes, it is made of 2⇥3 quadratic B-spline
elements, and the cable consists of one quadratic B-spline
element. Figure 1 shows the membrane and cable (for more
details on the mesh, see Appendix A.1), and Figure 2 shows
the mesh after connecting them (for more details on the
mesh, see Appendix A.2). We will explain how we obtain
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this mesh.
We represent the local basis functions in the parametric

space −1  ⇠↵  1, where ↵ = 1, . . . , npd, and npd is the

number of parametric dimensions. For a global basis func-
tion index a or b in element e, we denote the local basis
functions as Me

a(⇠1, ⇠2) for the membrane elements and as
Le

b(⇠1) for the cable elements. They are expressed as

Me
a(⇠1, ⇠2) = Ne,1

a1 (⇠1)Ne,2
a2 (⇠2) (1)

and

Le
b(⇠1) = Ne,1

b1 (⇠1), (2)

with the index mapping e, a! (a1(e, a), a2(e, a)) and e, b!
b1(e, b), and we are dropping “(e, a)” and “(e, b)” not to
crowd the notation. Here, Ne,↵

k represent 1D functions iden-
tified by element number e, direction ↵, and local index k.
Although it is not included, the polynomial order is assumed
to be p = pe,↵, and we may omit the superscripts for nota-
tional convenience. The index a↵ denotes the local index in
↵ direction, and there is no unique mapping from a↵ to a. In
fact, quite often, a↵ corresponds to multiple a. The symbols
Me and Le represent, for the membrane and cable, the sets
of functions with nonzero value in element e.

Remark 1 All the T-splines used in this article can be ex-
pressed in this product form. Therefore, Eq. (1) is applica-
ble even after connecting the cable to the membrane. Some
of the notation may not be general enough as in NURBS,
but they should be straightforward. We are giving up some
generality so that we do not further complicate the notation.

Referring to Figure 1, we are connecting the cable end
point with ⇠1 = ⇠B,1

c = −1 in element B = 6 to the membrane
edge point with ⇠1 = ⇠A,1

c = 1 and ⇠2 = ⇠A,2
c in element A =

3. In those membrane and cable elements, the connection
point xc can be represented as
⇣
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⌘
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=
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a2MA

xaMA
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c ) (3)

and
⇣
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⌘
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Remark 2 Depending on the parametrization, i) one of ⇠A,↵
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is either −1 or 1, and ii) ⇠B,1 is either −1 or 1.

We note that NA,1
a1 (⇠A,1

c ) is either 1 or 0 at the membrane edge.
We define the set of functions with value 1 at the membrane
edge asMA

c =
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a 2 MA
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c ) = 1
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. With that, the con-

nection point as represented by the membrane becomes
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⌘
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=
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Similarly, at the cable end, NB,1
b1 (⇠B,1

c ) is either 1 or 0, and, in
fact, there is only one function that has value 1, and that is

e: element number
α: direction
k: local index

{0, 0, 0, 1, 2, 3, 3, 3}

{0, 0, 0, 1, 2, 2, 2}

{0, 0, 0, 1, 1, 1}

⌅a,1

⌅a,2

⌅b,1
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!! continuous

Represent the shape function for line 
using the shape functions of membrane

L
B

b (⇠
1) = NA

a2(⇠A,2
c )NB,1

c (⇠1)

=

0

@
pA,2X

l=0

CA,2
a2l B

pA,2

l (⇠A,2
c )

1

A

0

@
pB,1X

k=0

CB,1
ck BpB,1

k (⇠1)

1

A

A: element number of the membrane
B: element number of the cable

Scalar
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Connecting Membrane and Cable

CCCe,↵ = [Ce,↵
lk ] 2 R(pe,↵+1)⇥(pe,↵+1)
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Shape function written by Bezier extraction

Bernstein polynomial
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Example

Bezier extraction operator

Bezier extraction row operators 

CCC6,1
1 =

⇥
0 1 0

⇤
CCC6,1
0 =

⇥
1 0 0

⇤

CCC6,1
2 =

⇥
0 0 1

⇤
29
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Membrane–Cable Structure
Connecting Membrane and Cable
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Membrane–Cable Structure
Computational Settings

!! continuous !# continuous

85.5 mm

171 mm
Move

Models for surface
• Shell
• Membrane

Cable
• With bending stabilized cable
• Without bending stabilized cable
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T↭AFSM

Membrane–Cable Structure
Result: Shell

Cable Bending-stabilized cable

!! continuous !# continuous

Cable Bending-stabilized cable
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T↭AFSM

Membrane–Cable Structure
Results: Membrane

Cable Bending-stabilized cable

!! continuous !# continuous

Cable Bending-stabilized cable
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T↭AFSM

Disk-Gap-Band (DGB) Parachute

Canopy

Suspension lines

Riser

Extension line

Gores

Disk

Gap

Band
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T↭AFSM

DGB Parachute
Mesh (DGB-T1)

Detail
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T↭AFSM

DGB Parachute
Mesh (DGB-N)

Detail
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T↭AFSM

DGB Parachute
Mesh (DGB-T2)

Detail
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T↭AFSM

Umbrella
Geometric Design

P00

P10

P01

P11

Bilinear patch

Canopy
x1

x2

x3

Edge curve

Rib

0.0 0.2 0.4 0.6 0.8 1.0

0.0

→0.1

→0.2

→0.3

→0.4

→0.5

→0.6

ω = 1
6

ω = 2
6

ω = 3
6

ω = 4
6

ω = 5
6

x1/εrib

x
3
/ε

ri
b

Rib Modeling

Canopy Modeling
Manufacturing

Develop

T. Terahara, S. Nishikawa, A. Suzuki, K. Takizawa, and T. Maekawa, “Geometric modeling of umbrella surfaces”,
Computer-Aided Design, 175 (2024) 103750.
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T↭AFSM

DGB Parachute
Results

DGB-N DGB-T1 DGB-T2
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T↭AFSM

Overview

1. Simplex

3. Cable on the surface

2. Cable

3. Cables and surface
are connected by !!continuous 

Rib

Membrane

Stretcher

Tube

46

154
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Modeling

1. Simplex

3. Cable on the surface

2. Cable

3. Cables and surface
are connected by !!continuous 

Rib

Membrane

Stretcher

Tube

T↭AFSM

47

Umbrella

M. Okada, N. Fujita, 
T. Terahara, Y. Taniguchi, K. Takizawa

Waseda University

T.E. Tezduyar
Rice University

Waseda University

T↭AFSM

49

Strong

Goals

[1] https://www.komiyakasa.jp/products/long7010?srsltid=AfmBOopE_i3jw-Axvyn1vg5RhTvS4474bgk5SXT1Eynh9OSvieMGRX91

Ease of opening

Reducing wrinkle

[2] https://www.komiyakasa.jp/encyclopedia/history-of-japanese-umbrella-industory/
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Structural Analysis
Zero-Stress State (ZSS) 1. Rib curve

2. Membrane surface
(Coons patch[1])

3. Flatten membrane

Rib
Stretcher

Tube

Membrane

Rib

[1] https://www.mathcurve.com/surfaces.gb/patchcoons/patchcoons.shtml

T↭AFSM

50

Umbrella

Sewing membrane peices[2]

[1] https://www.komiyakasa.jp/encyclopedia/history-of-japanese-umbrella-industory/

Umbrella[1]

[2] https://www.komiyakasa.jp/about/how-its-made/

Cutting fabric membrane[2]

Wooden pattern for membrane Bones

Fixing bones on the membrane[2]

T↭AFSM
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Structural Analysis
Examples of ZSS and Converged Solutions

0.96-0.96-0.96-0.96 1.00-0.98-0.96-0.931.00-1.02-0.96-0.961.00-1.02-1.00-0.96

4 control variables
to represent the stretch
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Generation of Aesthetic Shapes by Integrable Klein GeometryGeneration of Aesthetic Shapes: Klein Geometry, Integrability and Self-Affinity

Kenji Kajiwara
Institute of Mathematics for Industry, Kyushu University, Japan

Yoshiki Jikumaru
Faculty of Information Networking for Innovation and Design, Toyo University, Japan

Shun Kumagai
Hachinohe Institute of Technology, Japan

Abstract

In this talk, we consider a class of plane curves called the log-aesthetic curves (LAC) and their generalizations
which have been developed in industrial design as the curves obtained by extracting the common properties
among thousands of curves that car designers regard as aesthetic. We consider these curves in the framework
of similarity geometry (Klein geometry associated with CO+(2,R) � SO(2) � R+) and characterize them as
invariant curves under the integrable deformation of plane curves governed by the Burgers equation. We pro-
pose a variational principle for these curves, leading to the stationary Burgers equation as the Euler-Lagrange
equation[1, 3]. We then extend the LAC to space curves by considering the integrable deformation of space
curves under similarity geometry. The deformation is governed by the coupled system of the modified KdV
equation satisfied by the similarity torsion and a linear equation satisfied by the curvature radius. The curves
also allow the deformation governed by the coupled system of the sine-Gordon equation and associated linear
equation. The space curves corresponding to the travelling wave solutions of those equations would give a
generalization of the LAC to space curves. We also consider the surface constructed by the family of curves
obtained by the integrable deformation of such curves. A special class of surfaces corresponding to the constant
similarity torsion yields quadratic surfaces (ellipsoid, one/two-sheeted hyperboloid and paraboloid) and their
deformations, which may be regarded as a generalization of the LAC to surface. We discuss the construction
of such curves and surfaces together with their mathematical properties, including integration scheme of the
frame by symmetries, and present various examples of curves and surfaces.

Finally we discuss the self-affinity of plane curves that has been proposed in the area of industrial design
as a characteristic property of the LAC. After some investigations and extending the definition[3], we propose
a new class of “aesthetic curves” with self-affinity, which includes the logarithmic spiral (special case of the
LAC) and quadratic curves (parabola, hyperbola and ellipse) under the framework of equiaffine geometry (Klein
geometry associated with SL(2,R)). It may be an interesting problem to investigate the similar class of curves
in Möbius geometry.

References

[1] Jun-ichi Inoguchi,Kenji Kajiwara, Kenjiro T.Miura, Masayuki Sato, Wolfgang K.Schief and Yasuhiro
Shimizu, Log-aesthetic curves as similarity geometric analogue of Euler’s elasticae, Comp. Aided Geom.
Design, 61 (2018) 1–5, https://doi.org/10.1016/j.cagd.2018.02.002.

[2] Jun-ichi Inoguchi, Kenji Kajiwara, Kenjiro T. Miura, Yoshiki Jikumaru and Wolfgang K. Schief, Log-
aesthetic curves: similarity geometry, integrable discretization and variational principles, Comput. Aided
Geom. Design 105(2023) 102233, https://doi.org/10.1016/j.cagd.2023.10223.

[3] Shun Kumagai and Kenji Kajiwara, Self-affinities of planar curves: towards unified description of aes-
thetic curves, arXiv:2407.17008v1, https://doi.org/10.48550/arXiv.2407.17008, to appear in Japan J. In-
dust. Appl. Math. (2025).
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IntroducHon	(1)：Log-AestheHc	Curve	(LAC)	

LAC:	Planar	curve	developed	in	industrial	design	-	shape	elements	with	built-in	artisticity

Extraction	of	a	common	property		of	the	curves	which	
car	designers	regard	as	“aesthetic”	→	LAC

(a) Iso-lines and zebra mapping          (b) Rendering                        (c)  Mock-up Architecture	Design

s: arc	length，q(s): curvature	radius,	
	:	“slope”α

q(s) = {(ξs + η)1/α (α ≠ 0)
eξs+η (α = 0)

α = − 1.0
α = − 2.0

α = 0.0

α = 1.0 α = 2.0 α = 4.0

Cornu	spiral Nielsen’s	spiral

logarithmic	spiral circle	involute	curve
α 1/2

α=1/4
α=1/8

α=0

α=-1

α=-2

α -1/8α -1/4
α -1/2

α -1α -2

α -3

Clothoid α=-1 Nielsen’s spiral α=0

Logarithmic spiral α=1 Circle involute α=2

Generation	of	Aesthetic	Shapes	by	Integrable	
Klein	Geometry

CREST-ED3GE	Conference	

March	11,	2025	
Nishijin	Plaza,	Fukuoka,	Japan

Kenji	Kajiwara	
Institute	of	Mathematics	for	Industry	(IMI),	
Kyushu	University,	Japan

Joint	work	with:	
Yoshiki	Jikumaru	(Toyo	University)	
Shun	Kumagai		
(Hachinohe	Institute	of	Technology)	
Wolfgang	Schief	(UNSW)

Consultation	from	a	Practitioner	of	CAD

Extension	of	LAC:	Guiding	principle	&	sound	theoretical	framework	needed!

Variational	Formulation:		
“Fairing	Energy”		
=	(curvature)	2＋(additional	term)	

	Shape	invariant	curve	w.r.t.	integrable	deformation

Log-aesthetic	curve Similarity	
Geometry

Similarity	Geometryγ =

"
aeb✓ cos ✓
aeb✓ sin ✓

#
:	self-similar！Logarithmic	Spiral		

LAC	(α=1)

IntroducHon	(2)	：LAC	and	Similarity	Geometry

Euler’s	elastic	curve Euclidean	Geometry

Variational	Formulation：		

Elastic	Energy	
=		(curvature)2	

	Shape	invariant	curve	w.r.t.	integrable	deformation

Various	Extensions

self-adaptive integrable 
discretization

Space	curves Surfaces Truss structure with 
mechanical optimality & 
integrability & artisticity
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Integrable	Deformation :	deformation	parametert

curve	deformation:		
∂γ
∂t

= f(s, t)TE + g(s, t)NE

compatibility:											
∂
∂t ( ∂ΦE

∂s ) =
∂
∂s ( ∂ΦE

∂t )
∂ΦE

∂t
= ΦE

0 κss + κ3

2

−κss − κ3

2 0
,

f = −
κ2

2
,

g = − κs

∂κ
∂t

+
3
2

κ2 ∂κ
∂s

+
∂3κ
∂s3

= 0 modified	KdV	
equation

travelling	wave	ansatz

X = s − λt

Integrable	Deformation :	deformation	parametert

curve	deformation:			 ∂γ
∂t

= f (θ, t)T + g(θ, t)N

compatibility:						　		 ∂
∂t ( ∂F

∂θ ) =
∂
∂θ ( ∂F

∂t )
∂F
∂t

= F [−uθ + u2 + 1 − bu b
−b −uθ + u2 + 1 − bu]

f = b − u,
g = − 1

∂u
∂t

=
∂
∂θ ( ∂u

∂θ
− u2 + bu) Burgers	

equationtravelling	wave	ansatz

X = θ + bt

u → au
u′ = u2 + c

Shape	Invariant	Curve	w.r.t.	Integrable	DeformaHon

Similarity	Geometry ∥T∥ = q
∂γ
∂θ

= T, N = R( π
2 )T

F = [T, N ],

∂F
∂θ

= F [u −1
1 u ], u = −

qθ

q

u′ = au2 + cLAC

✓

N
T = q

"
cos ✓
sin ✓

#

�

|q|

Euclidean	Geometry

∂γ
∂s

= TE, NE = R( π
2 )TE

ΦE = [TE, NE],

∂ΦE

∂s
= ΦE [0 −κ

κ 0 ], κ =
∂θ
∂s

∥TE∥ = 1

κ′ ′ +
κ3

2
− λκ = c0

Euler’s	
elastic	curve

✓

N

�

1

T =
"

cos ✓
sin ✓

#

s

Euclidean	Geometry

γ(s) = [x(s)
y(s)] ∈ ℝ2 :		arc	lengths

ds = (dx)2 + (dy)2

dΦE

ds
= ΦE [0 −κ

κ 0 ], κ =
dθ
ds

Frenet	formula	 :	curvature

	:	angle	function	=	similarity	arc	lengthθ

dγ
dθ

= T =
1
κ

TE = qTE, N = R( π
2 )T

✓

N

q
T = q

"
cos ✓
sin ✓

#

�

F = [T, N ],
Similarity	Frenet	
frame:

dF
dθ

= F [u −1
1 u ], u =

κs

κ2
= −

qθ

q
Similarity	Frenet	
formula: :	Similarity	curvature

Similarity	Geometry	=	Klein	geometry	w.r.t.	
similarity	transformation	group	(translation	+	
roration	+	scale	transformation)

d
ds

=
dθ
ds

d
dθ

= κ
d

dθ
=

1
q

d
dθ

, :	curvature	radiusq =
1
κ

→ 1 = ( dx
dθ )2 + (dy

ds )2 =
dγ
ds

d
ds

=
1
q

d
dθ

,

d2

ds2
= −

1
q3

dq
dθ

d
dθ

+
1
q2

d2

dθ2

qa = ξθ + η

u = −
λ

aλθ + 1
du
dθ

= au2 + c

Riccati	equation

d2(qa)
dθ2

= 0, a = α − 1

d2(qα)
ds2

= 0

d2κ
ds2

+ (α + 1)
1
κ ( dκ

ds )2 = 0

qα = as + b

LAC

Euclidean	Geometry	vs	Similarity	Geometry

dγ
ds

= TE, NE = R( π
2 )TE, ∥TE∥ = 1Frenet	Frame：	 ΦE = [TE, NE],

✓

�

1

s

T E =

"
cos ✓
sin ✓

#NE

d2u
dθ2

= 2au
du
dθ

du
dθ

= au2 + c

E(γ) =
1
2 ∫

s2

s1

(κ2 + λ) ds κ′ ′ +
κ3

2
− λκ = 0

Euler’s	Elastic	Curves:	Critical	pt.	of	Elastic	Energy

Euler-Lagrange	equation

Variation	of	Curve

Variational	Formulation:	Elastic	Curves	&	LAC

ℱ(γ) =
1
2 ∫

θ2

θ1
(a2u2 +

μ
q2a ) dθ

a
du
dθ

−
μ

q2a
= 0,

u = −
qθ

q

LAC:	Critical	pt.	of	Fairing	Energy

Euler-Lagrange	eq.

Variation	of	
Curve
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Space	Curve	Version	of	LAC

TE =
∂γ
∂s

, NE =
∂2γ
∂s2

∥ ∂2γ
∂s2 ∥

, BE = TE × NE

ΦE = [TE, NE, BE]

∂ΦE

∂s
= ΦE

0 −κE 0
κE 0 −τE

0 τE 0

dθ = κEds :	Similarity	
arc	length

∂
∂s

=
∂θ
∂s

∂
∂θ

=
1
κE

∂
∂θ

= q
∂
∂θ

T̃ =
∂γ
∂θ

= qTE, Ñ = qNE, B̃ = qBE

Φ̃ = [T̃, Ñ , B̃ ]

Φ̃ θ = Φ̃L, L̃ = [
−κ −1 0
1 −κ −τ
0 τ −κ]

N
T

γ(s)

B

 ：Similarity	curvature， 

 : Similarity	torsion

κ = −
qθ

q

τ = τE/κE = qτE

Frenet frame

Similarity Frenet 
frame

Euclidean	Geometry Similarity	Geometry

Similarity↔Euclid	correspondence

Φ̃ = qΦ
curvature	preserving	
deformation	of	constant	
curvature	curveΦt = Φ

0 τ2

2 − b τθ

− τ2

2 + b 0 τθθ + τ3

2 − bτ

−τθ −τθθ − τ3

2 + bτ 0

Deformation	of	Frenet	frame

compatibility
τt + [τ3

2
+ τθθ + (1 − b)τ]θ = 0

Deformation	
of	curve γt = − (qθθ + (3

2
τ2 − b)q) T + qθ N − τq B

qt + [qθθ + (3
2

τ2 + 1 − b)q]θ = 0

mKdV	
equation！

γθ = qT

Φθ = Φ [
0 −1 0
1 0 −τ
0 τ 0 ]

Frenet-Serret Formula
（ curvature= ）1

Φ = [T, N, B], |T | = 1

Extension	to	Space	Curves	and	
Surfaces	by	Similarity	

Geometry

Space	Curve	Version	of	LAC

TE =
∂γ
∂s

, NE =
∂2γ
∂s2

∥ ∂2γ
∂s2 ∥

, BE = TE × NE

ΦE = [TE, NE, BE]

∂ΦE

∂s
= ΦE

0 −κE 0
κE 0 −τE

0 τE 0

dθ = κEds :	Similarity	
arc	length

∂
∂s

=
∂θ
∂s

∂
∂θ

=
1
κE

∂
∂θ

= q
∂
∂θ

T̃ =
∂γ
∂θ

= qTE, Ñ = qNE, B̃ = qBE

Φ̃ = [T̃, Ñ , B̃ ]

Φ̃ θ = Φ̃L, L̃ = [
−κ −1 0
1 −κ −τ
0 τ −κ]

N
T

γ(s)

B

 ：Similarity	curvature， 

 : Similarity	torsion

κ = −
qθ

q

τ = τE/κE = qτE

Frenet frame

Similarity Frenet 
frame

Euclidean	Geometry Similarity	Geometry

Similarity↔Euclid	correspondence

Φ̃ = qΦ
curvature	preserving	
deformation	of	constant	
curvature	curve

Φθ = Φ [
0 −1 0
1 0 −τ
0 τ 0 ]

Frenet-Serret Formula
（ curvature= ）1

Φ = [T, N, B], |T | = 1
compatibility

Deformation	
of	curve

Sine-Gordon	
equation！

γθ = qT

ωθt = sin ω

Mθt = cos ω M, Mθ = q

γt = M( − cos ω N + sin ω B)

Φt = Φ
0 cos ω −sin ω

−cos ω 0 0
sin ω 0 0

Deformation	of	Frenet	frame	τ = ωθ
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	const.τ : [ τ3

2
+ τXX + (1 − b − c)τ]X = 0 ⟶ trivial

Φ(θ, t) = Φ(Z )

Z = θ + (−
τ2

2
+ b)t

Φ =
1
ω

cos ωZ −ω sin ωZ −τ cos ωZ
sin ωZ ω cos ωZ −τ sin ωZ

τ 0 1

ω2 = 1 + τ2

T N B

qXX + σ2q = 0 σ2 =
3
2

τ2 + 1 − b − c

Φθ = Φ [
0 −1 0
1 0 −τ
0 τ 0 ] Φt = Φ

0 τ2

2 − b τθ

− τ2

2 + b 0 τθθ + τ3

2 − bτ

−τθ −τθθ − τ3

2 + bτ 0

[qXX + (3
2

τ2 + 1 − b − c)q]X = 0 [ τ3

2
+ τXX + (1 − b − c)τ]X = 0

Equations	for	
the	frame

Compatibility

	:	ellipsoid	or	one-sheet	hyperboloidσ2 > 0 	:	two-sheed	hyperboloidσ2 < 0

γ =
c1

ω3

cos ωZ + ω(X + 1
λ )sin ωZ

sin ωZ − ω(X + 1
λ )cos ωZ

τω2

2 (X + 1
λ )2

γ3 =
τω3

2c1
(γ2

1 + γ2
2) −

c1τ
2ω3 paraboloid

c1

cos Z + (X + 1
λ )sin Z

sin Z − (X + 1
λ )cos Z

0

{X = θ + (b − 1)t,
Z = θ + bt

τ → 0

ω → 1
circle	involute

Constant	Torsion	Curves	and	Surfaces

σ2 = 0

q = c1(X +
1
λ )

Direct	extension	of	
LAC

Φθ = Φ [
0 −1 0
1 0 −τ
0 τ 0 ]

Φt = Φ( −
τ2

2
+ b)[

0 −1 0
1 0 −τ
0 τ 0 ]

Space	Curve	Version	of		LAC

τt + [τ3

2
+ τθθ + (1 − b)τ]θ = 0

qt + [qθθ + (3
2

τ2 + 1 − b)q]θ = 0

Travelling	wave	solution:

q(θ, t) = q(X), τ(θ, t) = τ(X), X = θ − ct
∂
∂θ

=
d

dX
,

∂
∂t

= − c
d

dX

Elliptic	Function	Solution

τ = 2ξ dn (ξθ + η, k),

1 − b − c = − ξ2(2 − k2)

q = q1 sn (ξθ + η, k) cn (ξθ + η, k),

k2 = 0.2, ξ = 0.01
k2 = 0.2, ξ = 0.2

k2 = 0.2, ξ = 1

		curvature	radius	
	 	similarity	torsion
q :
τ :

γθ = qT,

Shape	invariant	curve	w.r.t.	
integrable	deformation

[qXX + (3
2

τ2 + 1 − b − c)q]X = 0

[ τ3

2
+ τXX + (1 − b − c)τ]X = 0

Lamé	equation

Equation	of	Euler’s	
elastic	curve

Shape	parameter:	Slope	α

γθ = q1/a T

slope α (a = α − 1)
k = 0.1 k = 0.5 k = 0.7

Sphere Ellipsoid	1 Ellipsoid	2

Surfaces	Generated	from	Constant	Torsion	Curves

α = 2

α = 2 α = 2

α = 1.5

α = 1.5

α = 1.5

α = 1.5

τ = 0.3

τ = 0.5

τ = 0.5
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= (ωθT )θ − ωθN = (ωθT )θ + Bθ

γθ = ωθθT = (ωθT )θ − ωθTθ

Similarity	Pseudospherical	Surface

Φθ = Φ [
0 −1 0
1 0 −τ
0 τ 0 ]

Φ = [T, N, B] ∈ SO(3)

Specialization: q = τθ → M = ωθ

= (ωθT + B)θ

Mθt = cos ω M

ωθt = sin ω,

γθ = qT,
Tθ = N,
Nθ = − T + τB,
Bθ = − τN

Mθt = cos ω M ωθθt = (cos ω) ωθ

(ωθt − sin ω)θ
= 0

consistent! γ = ωθT + B
integration!

Integration	of	tangent	vector:

Φt = Φ
0 cos ω −sin ω

−cos ω 0 0
sin ω 0 0 τ = ωθ, q = Mθ

Paraboloid one-sheet	hyperboloid two-sheet	hyperboloid

α = 2

τ = 0.5

α = 4

α = − 1

τ = 0.5

α = 2

α = 1.5

τ = 0.5

α = 2

α = 1.5

Surfaces	Generated	from	Constant	Torsion	Curves

Relation	with	Pseudospherical	Surface

[T, N, B] = [−C, B, A]

Φ = [T, N, B] ∈ SO(3)

[A, B, C]θ = [A, B, C]
0 ωu 0

−ωu 0 −1
0 1 0

, [A, B, C]t = [A, B, C]
0 0 −sin ω
0 0 cos ω

sin ω −cos ω 0

Gauss-Weingarten	equation	for	pseudospherical	surfaces!

:	position	vector	of	the	surface,	
	:	arc	length	along	asymptotic	lines

R = R(θ, t)
θ, t

A = Rθ,

B = − Rθ × N =
Rθ

sin ω
−

Rt

tan ω
C = N

Similarity	Pseudospherical	Surface

γ = Rθ − ωθN

Similarity	Pseudospherical	Surface

Φθ = Φ
0 −1 0
1 0 −ωθ

0 ωθ 0
Φt = Φ

0 cos ω −sin ω
−cos ω 0 0
sin ω 0 0

, γ = ωθT + B
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Self-Affinity	of	Aestheec	Curves

Gallery	:	Similarity	Pseudospherical	Surfaces

Breather	Surface	(1)

Similarity	Breather	
Surface	(1)

Pseudosphere

Similarity	
Pseudosphere

Breather	Surface	(2)

Similarity	Breather	
Surface(2)

Kuen	Surface

Similarity	Kuen	
Surface

“AestheHc	Curves”	and	Self-Affinity	(1)

	Analysis	of	“Aesthetic	Curves”	and	Verbalization	(Harada-Mori-Sugiyama,	1995）

	 	:	planar	curve	with	monotonic	curvature	(s:	arc	length,	 :	total	arc	length)	γ(s) sall

‣ 	Divide	the	values	of	the	curvature	radius	 	into	small	intervals		 		

‣ 	:	length	of	subcurves	with	curvature	radius	in	the	interval	 		

‣ Log-Log	graph	of	the	histogram	of	 		vs	 :				
	“Logarithmic	curvature	distribution”	

Horizonatal	axis:	 ，Vertical	axis：

ρ ρi

si ρi

si /sall ρi /sall

log(ρi /sall) log(si /sall)

	Logarithmic	Curvature	Distribution	(LCD)

“Aesthetic	curves”	have	a	common	property:	
	the	logarithmic	curvature	distribution	becomes	linear	→	“Monotonic	Rhythm	Curves”

Weber-Fechner’s	Law:		(perception)	 	log	(stimulus)∝
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Harada’s	Self-Affinity

‣Harada’s	Self-Affinity	for	monotonic	rhythm	curves	(Harada’s	original	definition)：	

- For	a	given	curve,	cut	it	at	arbitrary	two	points	to	get	a	subcurve	
- Extend	the	subcurve	in	both	horizontal	and	vertical	directions	with	arbitrary	scales	
- The	obtained	curve	coincides	with	the	original	curve	by	applying	affine	transformation

	Self-Affinity	of	“Aesthetic	Curves”	(Harada-Mori-Sugiyama	1995)

‣Harada’s	Self-Affinity	(HSA)	for	monotonic	rhythm	curves：	

- :	planar	curve	
- For	an	arbitrary	subinterval	 	,	there	exist	a	reparametrization	

	and	an	affine	map	 	such	that	

γ(s) : [0,1] → ℂ
[s0, s1] ∈ [0,1]

t(s) : [0,1] → [s0, s1] F ∈ Aff(ℂ) γ(s) = Fγ(t(s))
γ(t) s = s1

s = 0

s = s0 s = 1

t = t(0)
t = t(1)

t = t(0)

t = t(1)γ(s)

∃F : Affine

Harada’s	Claim

‣ Monotonic	rhythm	curves	possess	the	HSA

“AestheHc	Curves”	and	Self-Affinity	(2)

monotonic	rhythm	curves complex	rhythm	curves

divergent	type	
negative	“slope”

constant	speed	type	
zero	“slope”

convergent	type	
positive	“slope”

hill	type	
positive	&	negative	slope

valley	type	
negative	&	positive	slope

・sharp	

・energetic

・stable 
・static

・curve with pause 

・centripetal

divergent curve 
changing into 
convergent  at some 
point

convergent curve 
changing into 
divergent  at some 
point

	Verbalization	(Harada-Mori-Sugiyama,	1995）

		Logarithmic	Curvature	Graph	and	LAC	（Nakano	et	al	2003，Miura	2005）

Continuum	Limit	of	LCD:	Logarithmic	curvature	graph: (X, Y ) = (log ρ, log
ds

d log ρ )
	Logarithmic	curvature	graph	is	a	line	with	slope	 		→	 	:	LACα ρα = c0s + c1

‣ Miura’s	Self-affinity	for	LAC	(Miura’s	original	definition)：	

- For	a	given	curve,	cut	it	at	arbitrary	two	points	to	get	a	subcurve	
- Extend	the	subcurve	in	both	tangential	and	normal	directions	with	arbitrary	scales	
- With	a	suitable	reparametrization,	the	obtained	curve	coincides	with	the	original	
curve	with	a	suitable	parameter	shift.

Miura’s	Self-Affinity

‣Miura’s	Self-Affinity	for	LAC：	

- :	planar	curve,		 	curvature	radius,	 	arc	length	
- There	exist	a	reparametrization	 	and		 	such	that	
for	any	 ,		 	

γ(s) : [0,1] → ℂ ρ(s) : s :
t(s) : [0,1] → [0,1] μ(ϵ), ν(ϵ) > 0

ϵ > 0 ρ(t + ϵ) = μ(ϵ)ρ(t), ds(t + ϵ) = ν(ϵ) ds(t)

t = 0

t = T
ρ

ds

μ(ϵ)ρ

t = Tρ
ds t = T + ϵt = ϵ

ν(ϵ)ds
shift∀

t = 0

Theorem	(Miura	2006,	Kumagai	-	K	2024)

‣ A	planar	curve	possesses	Miura’s	self-affinity	
	↔	The	curve	is	a	circle,	a	line	or	a	LAC
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t2 = ((s1 − s0)s + s0)2 = (s1 − s0)2s2 + 2s0(s1 − s0)s + s2
0

Harada’s	Self-Affinity	(2)

	Parabola	has	the	HSA

	γ(s) = [ s
s2], s ∈ [0,1]

			0 ≤ ∀s0 < ∀s1 ≤ 1, t(s) = (s1 − s0)s + s0, s ∈ [0,1]

t ∈ [s0, s1], s0 = t(0), s1 = t(1)

γ(t) s = s1

s = 0

s = s0 s = 1

t = t(0)
t = t(1)

t = t(0)

t = t(1)γ(s)

∃F : Affine

[ t
t2] = [

s1 − s0 0
2s0(s1 − s0) (s1 − s0)2] [ s

s2] + [
s0

s2
0]

Trivial	identity:

	has	the	HSA!γ(s)

[ s
s2] =

− 1
s1 − s0

0

−
2s0

(s1 − s0)2 1 [ t − s0

t2 − s2
0]

or:

Harada’s	Self-Affinity

‣Harada’s	Self-Affinity	for	monotonic	rhythm	curves	(Harada’s	original	definition)：	

- For	a	given	curve,	cut	it	at	arbitrary	two	points	to	get	a	subcurve	
- Extend	the	subcurve	in	both	horizontal	and	vertical	directions	with	arbitrary	scales	
- The	obtained	curve	coincides	with	the	original	curve	by	applying	affine	transformation

	Self-Affinity	of	“Aesthetic	Curves”	(Harada-Mori-Sugiyama	1995)

‣Harada’s	Self-Affinity	(HSA)	for	monotonic	rhythm	curves：	

- :	planar	curve	
- For	an	arbitrary	subinterval	 	,	there	exist	a	reparametrization	

	and	an	affine	map	 	such	that	

γ(s) : [0,1] → ℂ
[s0, s1] ∈ [0,1]

t(s) : [0,1] → [s0, s1] F ∈ Aff(ℂ) γ(s) = Fγ(t(s))
γ(t) s = s1

s = 0

s = s0 s = 1

t = t(0)
t = t(1)

t = t(0)

t = t(1)γ(s)

∃F : Affine

Theorem	(Kumagai	-	K,	2024)

‣ A	planar	curve	possesses	the	HSA	
↔	The	curve	is	a	line,	or	a	parabola

Harada’s	Claim

‣ Monotonic	rhythm	curves	possess	the	HSA

Equiaffine	Geometry

Theorem	(Miura	2006,	Kumagai	-	K	2024)

‣ A	planar	curve	possesses	Miura’s	self-affinity	
	↔	The	curve	is	a	circle,	a	line	or	a	LAC

Theorem	(Kumagai	-	K,	2024)

‣ A	planar	curve	possesses	Harada’s	self-affinity	
↔	The	curve	is	a	line,	or	a	parabola

t:	arbitrary	parameter	s.t.	 |γt × γtt | ≠ 0

u = ∫ |γt × γtt |
1
3 dt "equiaffine	arc	length”

κSA =
γuuu

γuu
= κ

4
3 +

1
3

κ− 5
3 κss −

5
9

κ− 8
3 κ2

s

ΦSA(u) = [γu, γuu] equiaffine	Frenet	frame

Φ′ (u) = Φ(u)[0 −κSA

1 0 ] equiaffine	Frenet	formula

	equiaffine	curvatureκSA :

Similarity	geometry:
κSim = −

qθ

q
p ↦ rAp + b, r ∈ ℝ, A ∈ SO(2), b ∈ ℝ2

Equiaffine	geometry:	
p ↦ Ap + b, A ∈ SL(2,ℝ), b ∈ ℝ2

circle:	κSim = 0

line:			κSim = ∞
logarithmic	spiral:			κSim = const .

parabola:			κSA = 0
line:			κSA = ∞

ellipse:			 >0κSA = const .

hyperbola:			κSA = const . < 0

γ(u)

γ′ (u)

γ′ ′ (u)

|γ′ (u) × γ′ ′ (u) | = 1
Equiaffine	
geometry:	
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logarithmic	
spiral

exponential	
function

	x log x

log

power	
function

New	Class	of	Curves	with	ESA	in	Equiaffine	Geometry

Euclidean	geometry

similarity	geometry

equiaffine	geometry

Möbius	geometry

Geometry	of	“Aesthetic	Shape”?

PGL(2,ℂ)

SL(2,ℝ)

CO+(2)

SO(2)

‣ Extendable	Self-affinity	(rough	outline)：	

- For	a	given	curve,	cut	it	at	arbitrary	two	points	to	get	a	subcurve	
- Apply	a	suitable	reparametrization,	and	then		arbitrary	parameter	shift	by	 	
- Then	the	obtained	curve	coincides	with	a	certain	affine	map	of	the	original	subcurve.

ϵ > 0

Extendable	Self-Affinity

γ(t + ϵ)

‣Extendable	Self-affinity：	

- :	planar	curve	(in	equiaffine	geometry:		 		=	equiaffine	arc	length)	

- There	exist	a	reparametrization	 	and	an	affine	map		 	such	that	
for	any	 ,		 	

γ(u) : [0,1] → ℂ u
t(u) : [0,1] → [0,1] Fϵ ∈ Aff(ℂ)

ϵ > 0 γ(t + ϵ) = Fϵ γ(t)

t = T

t = 0

t = T

t = 0

t = ϵ t = T + ϵ

∃Fϵ : Affine
shift∀

γ(t)
γ(u)

Theorem	(Kumagai	-	K,	2024)

‣ Choosing	 ,	then	a	planar	curve	posesses	ESA	
↔	The	curve	is	a	parabola,	or	an	ellipse	or	a	hyperbola	

‣ For	general	 ,		a	planar	curve	possesses	ESA	
	↔	 	
	↔	the	curve	is	either	of	the	following	:	
(i)	 ,	 		
(ii)	 		
(iii)	logarithmic	spiral

t = u

t
κSA = (ξu + η)−2, ξ, η ∈ ℝ

y = xα ex

y = x log x
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Geometry of Michell-Prager structures and hanging membranes
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Abstract

In this talk, we introduce some geometric objects motivated by the structures in architectural design. In the first
part, we focus on so-called Michell-Prager-type structures. This is joint work with Yohei Yokosuka, Kazuki
Hayashi, Kentaro Hayakawa, and Kenji Kajiwara [1]. Considering a quadrilateral mesh with such a structure
on its diagonals, we can obtain the privileged discrete isothermic surfaces introduced by Bobenko and Pinkall.
Their mechanical properties can be derived from the result by Schief. We also introduce the relation with
the discrete log-aesthetic curves proposed in [3]. In the second part, we introduce the geometry of hanging
membranes. This is joint work with Yohei Yokosuka [2]. We formulate the hanging membranes according to
the classical shell membrane theory. Remarkably, the in-plane equilibrium condition can be characterized by
the existence of a Combescure transformation of the membrane.

References

[1] K. Hayashi, Y. Jikumaru, Y. Yokosuka, K. Hayakawa and K, Kajiwara, Parametric generation of optimal
structures through discrete exponential functions: unveiling connections between structural optimality and
discrete isothermicity. Struct. Multidisc. Optim. 67 41 (2024). https://doi.org/10.1007/s00158-024-03767-
1.

[2] Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: shell membrane
theory and variational principle, Int. J. Math. Ind. 14 (2022), https://doi.org/10.1142/S2661335222500046.

[3] J. Inoguchi, K. Kajiwara, K. T. Miura, Y. Jikumaru and W. K. Schief, Log-aesthetic curves: similarity
geometry, integrable discretization and variational principles, Comput. Aided Geom. Design 105(2023)
102233, https://doi.org/10.1016/j.cagd.2023.10223.
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Purpose of this talk
In this talk, we introduce (mini) examples of

Mathematics Motivated by Architectural Design.

They consist of the following contents:

Figure: Michell-Prager type structures
and discrete isothermic surfaces

Figure: Formulation of Hanging membranes

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 2/29

Geometry of Michell-Prager type structures and
Hanging membranes
CREST ED3GE International Conference

Yoshiki Jikumaru (Toyo University)

Collaborators: Kazuki Hayashi (Kyoto University), Yohei Yokosuka (Kagoshima University),

Kentaro Hayakawa (Nihon University), Kenji Kajiwara (Kyushu University)

INIAD, Toyo University March 11th, 2025

Part1: Michell-Prager type structure
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Michell-Prager structures

Michell structures
The “optimal” structure when B is fixed and the load F acts on point A.

(a) Michell structure (1904)
(b) Acting Compression, Tension

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 4/29
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A characteristic property of the structure

A “well-known” property

There exists a constant C0, for every bar member e, we have

(Axial force acting on e)× (Length of e) = C0.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 5/29
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Variational principle

We introduce the signature for each member:

q(e) =

{
+1 e is a horizontal edge,
−1 e is a vertical edge.

Figure: Definition of the signature q

In discrete differential geometry, q is called P-labelling.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 7/29

A characteristic property of the structure

We will consider a class of truss structures that have this property in general:

(Axial force acting on e)× (Length of e) = C0.

We call such a structure as Michell-Prager type structure.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 6/29

Variational principle
Proposition

Let us consider the following objective functional:

E = C0

∑
e

q(e) log |e|.

Then, in the equilibrium structure, the axial forces satisfying the following relation
can be introduced:

(Axial force acting on e)× (Length of e) = C0.

• How to find the functional: the “prestressed cable-net structures”.
• An example of discrete holomorphic quadratic differential? (Kenyon-Lam, 2019)
• Q. Relation with discrete harmonic functions?

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 8/29
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A relation with discrete differential geometry
Moreover, we introduce the following labelling:

Figure: form diagram Figure: force diagram

Then, the defining equation for Michell-Prager type structures becomes:

‖r(12) − r‖ · ‖r∗(2) − r∗(1)‖ = C0. (1)
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 10/29

A relation with discrete differential geometry

It is convenient to consider an “imaginary (dotted) mesh” like the following:

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 9/29

A relation with discrete isothermic net

Michell-Prager condition:

‖r(12) − r‖ · ‖r∗(2) − r∗(1)‖ = C0. (2)

Theorem (Bobenko-Suris, 2009)

If the quad mesh r constitute discrete isothermic net (constant cross ratio),
then there exists a constant C0 such that

‖r(12) − r‖ · ‖r∗(2) − r∗(1)‖ = C0. (3)

Remark: The constant C0 is determined from the cross-ratio condition.
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 11/29
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Examples of the structure

Figure: A structure from discrete exponential function.

A trivial but “Interesting” Property

The discrete curves are discrete log-aesthetic curves (dLAC of slope 1, log-spiral).

Q. dLACs (governed by Riccati type eqn) are consistent with cross-ratio equation???
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 13/29

“Pure shear” stress distribution

Theorem (Schief, 2014)

Assume purely tangential forces acting on each edge of the circular net r.
Then the quad mesh r is in equilibrium ⇐⇒ r constitutes a discrete isothermic net.
Moreover, the Christoffel dual r∗ corresponds to the “force diagram”.

Figure: form diagram Figure: force diagram

Therefore, we can generate structures from discrete isothermic nets!
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 12/29

Non-trivial example: discrete power functions
A discrete analogue of the function z2/3:

Figure: Force diagram Figure: Form diagram Figure: Form diagram

• In the Christoffel dual z4/3, take a closed curve.
• Red vectors are loading or boundary reaction forces acting on blue structure.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 14/29
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Part 2: Hanging membranes

General problem (open)

In summary, we can propose a mathematical problem for shape generation:

General problem (open)

1. Find a suitable “boundary”, consistent with the cross-ratio equation,

which corresponds to the external force and the boundary reaction force.

2. Find the “internal mesh” for a given boundary, and take the Christoffel dual.

By taking the diagonals of the dual, we have the Michell-Prager type structure.

3. From the variational point of view, for a given boundary, find the mesh that gives
the critical point of the functional

∑
e q(e) log |e|.

(Interestingly, a similar problem is discussed in Kenyon-Lam (2019).)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 15/29

In this part...

We introduce:

• A shell membrane theoretic formulation of hanging membranes.
• Our formulation is based on the assumption “stress lines = curvature lines”.
• In-plane equilibrium ⇐⇒ existence of another surface (Combescure

transform), which is similar to the theory of membrane O surfaces.
• Variational principles.

Reference:

Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: Shell membrane

theory and variational principle, Int. J. Math. Ind. 14(01) 2250004 (2022).

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 16/29
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Background 1 (Hooke’s observation)

The solution of the anagram (Richard Waller, 1705)

Ut pendet continuum flexile, sic stabit contiguum rigidum inversum.
(As hangs the flexible line, so but inverted will stand the rigid arch.)

(a) A sketch by Giovanni Poleni (1748) (b) Gateway arch (Missouri, St. Louis)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 18/29

Background 1 (Hooke’s observation)
A model of hanging chain by Robert Hooke (1635–1703):

“Theorem”（Robert Hooke, 1676)

An ideal compression-only geometry for a rigid arch can be obtained by:

abcccddeeeeefggiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux.

Note: The anagram in No. 3

ceiiinosssttuu

is called Hooke’s law:

ut tensio, sic vis
(as the extension, so the force). Figure: Hooke’s article in 1676.
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Background 2 (Gaudi and Isler’s hanging model)
Hanging models by Antoni Gaudi (1852-1926):

(a) Antoni Gaudi (1878) (b) Sagrada Familia (c) The model by Gaudi (Gaudi Museum)

Hanging models by Heinz Isler (1926-2009):

(a) A model by Heinz Isler (b) Gas station in Deitingen (Switzerland)
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Notations from classical surface theory

Let r = r(x, y) be a surface (patch) in R3.

r = r(x, y): the model of the middle surface of a shell membrane.

Assume that the coordinates (x, y) are the curvature line coordinates.

In this case, the 1st and 2nd fundamental forms are given by

I = A2
1 dx

2 +A2
2 dy

2, II = κ1A
2
1 dx

2 + κ2A
2
2 dy

2. (4)

Denote

rx = A1e1, ry = A2e2, N = e1 × e2, (5)

that is, e1 and e2 are the unit tangent vectors
and N is the unit normal on the surface.
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Background 3 (Previous researches)

Previous researches

1. Hanging membranes (with special symmetry):
Novozhilov (1964), Brew-Lewis (2007).

2. Thrust Network Analysis: Block-Ochsendorf (2007).
→ Graphic statics (horizontal, J. C. Maxwell (1867)),
+ Force density method (vertical, H.-J. Schek (1974)).

3. Relation with isotropic geometry:
Vouga-Höbinger-Wallner-Pottmann (2012).

4. Singular minimal surfaces:
Böhme-Hildebrandt-Tausch (1980), U. Dierkes (2003), R. Lopéz (2018).
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Combescure transformation

Definition (Combescure, 1867)

If the functions A1 andA2 satisfy the relations

(A1)y
A2

=
(A1)y

A2

,
(A2)x
A1

=
(A2)x

A1

, (6)

then there exists a surface r given by the relations

rx = A1e1, ry = Ae2. (7)

In particular, rx ‖ rx and ry ‖ ry at corresponding points.
The surface r is called the Combescure transformation of r.
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Existence of the Combescure transformation
The equilibrium condition for a membrane with “stress line = curvature line”:

(A2T1)x − (A2)xT2 + 〈q, e1〉A1A2= 0,

(A1T2)y − (A1)yT1 + 〈q, e2〉A1A2= 0,

κ1T1 + κ2T2 + 〈q,N〉= 0.

(9)

In this case, we denote

A1 = A1(T2 + 〈q, r〉), A2 = A2(T1 + 〈q, r〉). (10)

Then, if we assume q is constant vector (e.g., self-weight), we can verify

(A1)y

A2

=
(A1)y
A2

,
(A2)x

A1

=
(A2)x
A1

, (11)

that is, in-plane equilibrium condition ⇐⇒ ∃ Combescure transformation r!
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The equilibrium equation

The equilibrium condition for a membrane with “stress line = curvature line”:

(A2T1)x − (A2)xT2 + 〈q, e1〉A1A2= 0,

(A1T2)y − (A1)yT1 + 〈q, e2〉A1A2= 0,

κ1T1 + κ2T2 + 〈q,N〉= 0,

(8)

where
• 〈·, ·〉: the standard inner product in R3.
• T1, T2: normal stress (resultants) along x- and y-coordinate lines, respectively.
• q: the load (vector) acting on the unit area of the membrane.

In this talk, you can assume the vertical load (self-weight).
• We call in-plane equilibrium and out-of-plane equilibrium conditions, resp.
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A similarity with membrane O surfaces
If 〈q, r〉 ≈ 0, that is, for a “shallow shell”, we have

A1 = A1T2, A2 = A2T1, (12)

and the out-of-plane equilibrium condition becomes the “bilinear form”:

(
H◦ A1 A1

)


0 0 1
0 qn 0
1 0 0






K◦
A2

A2


 = 0, (13)

where qn = 〈q,N〉 is the normal loading.

Theorem (Rogers-Schief, 2003)

If qn is constant, the surfaces r, r, N constitute “membrane O surfaces”.

Remark: the assumption “shallow” is not necessary in Rogers-Schief theory.
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Variational principle

Theorem
Define the functional E as follows (λ, b: constants):

E(r) =

∫

Σ
(−2λH+ 〈q, r〉+ b) dA. (16)

Then, the first variation of E (for boundary-fixed variations) is given by:

δE =

∫

Σ

(2λK − 2H(〈q, r〉+ b) + 〈q,N〉)〈δr,N〉 dA. (17)

The Euler-Lagrange equation gives the out-of-plane equation.

Note: if λ = 0, then E becomes the gravity under the area constraint condition
(discussed in Koiso-Palmer (2005)).
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Hanging membranes of “symmetric” case

Theorem
For constants λ, b, we assume the relations

T1 + 〈q, r〉 = λκ2 − b, T2 + 〈q, r〉 = λκ1 − b. (14)

Then the in-plane equilibrium equation becomes “trivial (Mainardi-Codazzi eqn)”.
Moreover, the out-of-plane equilibrium equation gives the constraint

2λK − 2H(〈q, r〉+ b) + 〈q,N〉 = 0, (15)

where we put K = κ1κ2 (Gaussian curvature) and H = (κ1 + κ2)/2 (mean curvature).

If λ = 0, we have T1 = T2 = −(〈q, r〉+ b) (known as “singular minimal” surfaces).
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Problems for shape generation

Problems

• Can we generate various shapes using the “form diagram r”

and “force diagram r (Combescure transform)” as Airy stress functions???
• Can we construct the variational principle in a general case?
• Can we discretize these formulations with “interesting” mathematics?

Figure: Examples of “discrete hanging membranes” by circular net.
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A summary of this talk
In this talk, we introduced (mini) examples of

Mathematics Motivated by Architectural Design.

They consisted of the following contents:

Figure: Michell-Prager type structures
and discrete isothermic surfaces

Figure: Formulation of Hanging membranes
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Discretization of quadrics and of elliptic coordinates

Yuri B. Suris
Institut für Mathematik, Technische Universität Berlin, Germany

Abstract

In this talk, I will review a recently found discretization of classical elliptic coordinate systems. These systems
became prominent after Jacobi used them for integrating several famous problems of classical mechanics,
including the two centers problem and the geodesics on an ellipsoid. A structure preserving discretization of
these coordinate systems remained open for a long time and was finally tackled in Refs. [1, 2]. I will closely
follow the history of this discovery. On the first step [1], a construction based on an integrable discretization of
the Euler-Poisson-Darbox equation was used. The coordinate functions of the resulting discrete nets are given
in terms of gamma functions. These nets enjoy separability property, their two-dimensional subnets being
Koenigs nets with an additional novel discrete analog of the orthogonality property (thus, discrete isothermic,
in a sense). On the second step [2], the novel orthogonality concept was put at the very basis of a more general
construction. The latter is geometric, via polarity with respect to a sequence of classical confocal quadrics. The
coordinate functions of discrete confocal quadrics were computed explicitly. This opens the possibility to close
the cycle of historic development by applying discrete elliptic coordinate systems to discretize corresponding
problems in classical mechanics in the structure preserving fashion.

References

[1] A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. I. An integrable
systems approach. J. Integrable Systems, 2016, 1, No. 1, xyw005, 34 pp.

[2] A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric
approach to general parametrizations. Internat. Math. Research Notices, 2020, 2020, No. 24, 10180-10230.

179



Plan

Part 1: Discretizing equations. Based on:

A.I. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a
discretization of confocal quadrics. I. An integrable systems
approach. J. Integrable Systems, 2016, 1, No. 1, xyw005, 34
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Part 2: Discretizing geometry. Based on:
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2020, No. 24, 10180-10230.
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Part 1: Discretizing equations
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Confocal coordinates

For a given point x ∈ RN with x1x2 . . . xN �= 0, equation∑N
k=1 x2

k /(ak + λ) = 1 for λ has N real roots u1, . . . ,uN in

U = {u ∈ RN : −a1 < u1 < −a2 < u2 < . . . < −aN < uN}.

They correspond to the N confocal quadrics that intersect at x :

N∑
k=1

x2
k

ak + ui
= 1, i = 1, . . . ,N ⇔ x ∈

N⋂
i=1

Qui .

The coordinates (u1, . . . ,uN) are called confocal coordinates
(or elliptic coordinates, following Jacobi (1826)).
Expression of x2

k through u1, . . . ,uN :

x2
k =

∏N
i=1(ui + ak )∏
i �=k (ak − ai)

, k = 1, . . . ,N

(defines xk up to sign).
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Confocal quadrics

One-parameter family of quadrics: for given a1 > · · · > aN > 0,

Qλ =

{
x = (x1, . . . , xN) ∈ RN :

N∑
k=1

x2
k

ak + λ
= 1

}
, λ ∈ R.
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Example: N = 2

x1 =

√
a1 + u1

√
a1 + u2√

a1 − a2
, x2 =

√
−(a2 + u1)

√
a2 + u2√

a1 − a2
.
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Characterization

Theorem. Confocal coordinates x : U → RN
+ are characterized

by the following properties:
� All xk : U → R+ (k = 1, . . . ,N) are separable solutions of

(EPDγ) with γ = 1
2 satisfying boundary conditions

lim
uk↘ (−ak )

xk (u1, . . . ,uN) = 0 for k = 1, . . . ,N,

lim
uk−1↗ (−ak )

xk (u1, . . . ,uN) = 0 for k = 2, . . . ,N.

� The net x : U → RN
+ is orthogonal:

〈
∂x
∂ui

,
∂x
∂uj

〉
= 0.
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General properties

� The net x : U → RN
+ satisfies the Euler-Poisson-Darboux

system

∂2x
∂ui∂uj

=
γ

ui − uj

(
∂x
∂uj

− ∂x
∂ui

)
(EPDγ)

with γ = 1
2 . All two-dimensional coordinate surfaces of x

are Koenigs nets.
� The net x : U → RN

+ is orthogonal:
〈
∂x
∂ui

,
∂x
∂uj

〉
= 0.

All two-dimensional coordinate surfaces of x are curvature
line parametrized.

All two-dimensional coordinate surfaces of x are isothermic.
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Discrete Euler-Poisson-Darboux equation

An integrable discretization of (EPDγ):

∆i∆jx =
γ

ni + εi − nj − εj
(∆jx −∆ix). (dEPDγ)

Introduced by Konopelchenko-Schief (2014).

Integrable in the sense of multidimensional consistency.

All two-dimensional subnets are Koenigs.
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Discrete confocal coordinates

and
� the net x is orthogonal in the sense that each edge of

x(U∗) is orthogonal to the dual facet of x(U) (and vice
versa).

x(n + ek )

x(n − 1
2ei − 1

2ej +
1
2ek ) x(n + 1

2ei − 1
2ej +

1
2ek )

x(n + 1
2ei +

1
2ej +

1
2ek )x(n − 1

2ei +
1
2ej +

1
2ek )

x(n)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete confocal coordinates

Definition. For α1, . . . , αN ∈ Z with α1 > α2 > · · · > αN > 0,
set

U = ZN ∩ U, U∗ = (Z∗)N ∩ U,

where Z∗ = Z+ 1
2 and

U = {u ∈ RN : −α1 ≤ u1 ≤ −α2 ≤ u2 ≤ · · · ≤ −αN ≤ uN},

Discrete confocal coordinate system is a net x : U ∪ U∗ → RN
+

such that
� all xk : U → R+ (k = 1, . . . ,N) are separable solutions

of (dEPDγ) with γ = 1
2 , satisfying boundary conditions

xk |nk=−αk = 0 for k = 1, . . . ,N,

xk |nk−1=−αk = 0 for k = 2, . . . ,N;

� all xk : U∗ → R+ (k = 1, . . . ,N) are separable solutions
of (dEPDγ) with γ = 1

2 given by the same formulas as
xk : U → R+, extended to U∗;
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Explicit formulas

Discrete confocal coordinate systems are given by

xk (n1, . . . ,nN) = Dk
∏
i<k

(
−ni−αk− k−i

2 +1
2

)
1/2

∏
i≥k

(
ni+αk+

k−i
2

)
1/2 ,

where the discrete square root function is defined by

(u)1/2 =
Γ(u + 1

2)

Γ(u)
,

and

D−1
k =

∏
i<k

√
αi − αk + i−k

2 ·
∏
i>k

√
αk − αi +

k−i
2 .
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Example: N = 2 (α1 = 5, α2 = 1)

x :
(1

2Z
)2 ∩ U → R2

+
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Example: N = 2

Discrete elliptic coordinates in the plane:

x1(n) =

(
n1 + α1

)
1/2

(
n2 + α2 − 1

2

)
1/2√

α1 − α2 − 1
2

,

x2(n) =

(
− n1 − α2

)
1/2

(
n2 + α2

)
1/2√

α1 − α2 − 1
2

,

where
n1, n2 ∈ 1

2Z.
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Example: N = 2 (α1 = 5, α2 = 1)

On two dual sublattices: x :
(
Z2 ∪ (Z∗)2) ∩ U → R2

+

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N = 3 (α1 = 20, α2 = 10, α3 = 0)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N = 3 (α1 = 4, α2 = 2, α3 = 0)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Part 2: Discretizing geometry
in arbitrary parametrization

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example. N = 2

Classical elliptic coordinate system in the plane in terms of
trigonometric/hyperbolic functions with a1 = 2, a2 = 1:

y

x
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Re-parametrizations

Useful to achieve single-valuedness and periodicity of the
functions involved.

Example N = 2: in

x1 =

√
a1 + u1

√
a1 + u2√

a1 − a2
, x2 =

√
−(a2 + u1)

√
a2 + u2√

a1 − a2

set

u1 = −a1 sin2 s1 − a2 cos2 s1, u2 = a1 sinh2 s2 − a2 cosh2 s2,

then

x1 =
√

a1 − a2 cos s1 cosh s2, x2 =
√

a1 − a2 sin s1 sinh s2.
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Fundamental restriction of DDG

For functions of a discrete variable, there is no natural notion of
re-parametrization!

To find natural discrete analogs of confocal coordinates in
arbitrary parametrization, need new ideas.

The main idea: a novel characterization of confocal
coordinates, not based on (EPDγ) in a special parametrization.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Discrete confocal coordinates

As often in DDG, we turn a smooth theorem into a discrete
definition.
Definition. A discrete coordinate system x :

(1
2Z

)N ⊃ U → RN

is called a discrete confocal coordinate system if it satisfies two
conditions:

i) x(n) factorizes, in the sense that for any n ∈ U



x1(n) = f 1
1 (n1)f 1

2 (n2) · · · f 1
N(nN),

x2(n) = f 2
1 (n1)f 2

2 (n2) · · · f 2
N(nN),

. . .

xN(n) = f N
1 (n1)f N

2 (n2) · · · f N
N (nN),

with all f k
i (ni) �= 0 and ∆̄f k

i (ni) = f k
i (ni)− f k

i (ni − 1) �= 0;
ii) x is discrete orthogonal in the above sense.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Novel characterization of confocal coordinates

Theorem. If a coordinate system x : RN ⊃ U → RN satisfies
two conditions:

i) x(s) factorizes, in the sense that



x1(s) = f 1
1 (s1)f 1

2 (s2) · · · f 1
N(sN),

x2(s) = f 2
1 (s1)f 2

2 (s2) · · · f 2
N(sN),

. . .

xN(s) = f N
1 (s1)f N

2 (s2) · · · f N
N (sN),

with all f k
i (si) �= 0 and

(
f k
i
)′
(si) �= 0;

ii) x is orthogonal, that is,

〈∂ix , ∂jx〉 = 0 for i �= j ,

then all coordinate hypersurfaces are confocal quadrics.
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Reminder: discrete orthogonality

Recall that we call a net x is orthogonal if, for each edge
[n,n + ek ], all 2N−1 vertices of the dual facet,

x(n + 1
2σ) for all σ = (σ1, . . . , σN) ∈ {±1}N with σk = 1,

lie in a hyperplane orthogonal to the line (x(n), x(n + ek )):

x(n + ek )

x(n − 1
2ei − 1

2ej +
1
2ek ) x(n + 1

2ei − 1
2ej +

1
2ek )

x(n + 1
2ei +

1
2ej +

1
2ek )x(n − 1

2ei +
1
2ej +

1
2ek )

x(n)
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Converse statement

Theorem. For given sequences ui :
1
2Z+ 1

4 → R, 1 ≤ i ≤ N,
consider functions f k

i (ni) as solutions of the respective
difference equations

f k
i (ni)f k

i (ni +
1
2) =




ui(ni +
1
4) + ak , k ≤ i ,

−
(
ui(ni +

1
4) + ak

)
, k > i .

The functions f k
i , k = 1, . . . ,N are defined uniquely by

prescribing their values at one point. Then, x defined by

xk (n) =

∏N
j=1 f k

j (nj)∏k−1
i=1

√
ai − ak

∏N
i=k+1

√
ak − ai

, k = 1, . . . ,N

constitutes a discrete confocal coordinate system.
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Discretization of confocal quadrics equation

Theorem. For a discrete confocal coordinate system, there
exist N real numbers ak , 1 ≤ k ≤ N, and N sequences
ui :

1
2Z+ 1

4 → R such that the following equations are satisfied
for any n ∈ U and for any σ ∈ {±1}N :

N∑
k=1

xk (n)xk (n + 1
2σ)

ak + ui
= 1, ui = ui(ni +

1
4σi), i = 1, . . . ,N.

Equivalently,

xk (n)xk (n+1
2σ) =

∏N
j=1(uj + ak )∏
j �=k (ak − aj)

, uj = uj(nj+
1
4σj), k = 1, . . . ,N.
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Geometric interpretation

The main formula

N∑
k=1

xk (n)xk (n + 1
2σ)

ak + ui
= 1, ui = ui(ni +

1
4σi), i = 1, . . . ,N,

admits a remarkable geometric interpretation:
the point x(n + 1

2σ) lies in the intersection of the polar
hyperplanes of x(n) with respect to the (smooth) confocal
quadrics Q(ui), i = 1, . . . ,N:

x(n + 1
2σ) =

N⋂
i=1

PolQ(ui )(x(n)), ui = ui(ni +
1
4σi).

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Recurrent construction

Suppose that x(n) = x is already known. Then for any
neighboring vertex of the dual sublattice,

n∗ = n + 1
2σ, σ = (σ1, . . . , σN), σi = ±1,

the point x(n∗) = x∗ is constructed as the intersection of N
polar hyperplanes

x∗ :=
N⋂

i=1

PolQ(ui )(x), ui = ui(ni +
1
4σi).
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Geometric construction

Input data.
� N sequences of quadrics of the confocal family is chosen,

with the parameters

ui :
(1

2Z+ 1
4

)
∩ Ii → R,

indexed by ni +
1
4 ∈ Ii , where ni ∈ 1

2Z. Let V, V∗ be the
parts of the respective lattices ZN , (Z+ 1

2)
N lying in the

region
∏N

i=1 Ii .
� An arbitrary point x(n0) for n0 ∈ V ∪ V∗.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Origin of discrete orthogonality

Lemma. Let Π be a hyperplane. Then the poles of Π with
respect to all quadrics of the confocal family lie on a line �. This
line � is orthogonal to Π.

Example N = 2: if P2 is related to P1 via polarity in two
confocal conics, that is, Π = PolQ1(P1) and P2 = PolQ2(Π), then
the line through P1 and P2 is orthogonal to Π.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N = 2 (a1 = 2, a2 = 1, δ1 = δ2 = 2π
m , m = 8)

x :
(1

2Z
)2 → R2

y

x
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Example: N = 2

Discrete elliptic coordinates in the plane, in terms of
triginometric/hyperbolic functions:

x1(n) =

√
a1 − a2

cos( δ1
2 ) cosh( δ2

2 )
cos(δ1n1) cosh(δ2n2),

x2(n) =

√
a1 − a2

cos( δ1
2 ) cosh( δ2

2 )
sin(δ1n1) sinh(δ2n2).
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Example: N = 2 (a1 = 2, a2 = 1, δ1 = δ2 = 2π
m , m = 8)

Two pairs of dual orthogonal sublattices:
y

x

y

x

Left: Sublattice on Z2 in blue and on
(
Z+ 1

2

)2
in red.

Right: Sublattice on Z× (Z+ 1
2) in blue and on (Z+ 1

2)× Z in
pink.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N = 3, a1 = 8, a2 = 4, a3 = 0

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N = 3, smooth confocal coordinates

Elliptic coordinates in the 3D space, in terms of elliptic
functions:




x1
x2
x3


 =

√
a1 − a3




sn(s1, k1) dn(s2, k2) ns(s3, k3)
cn(s1, k1) cn(s2, k2) ds(s3, k3)
dn(s1, k1) sn(s2, k2) cs(s3, k3)


 ,

where

k2
1 = k2

3 =
a1 − a2

a1 − a3
, k2

2 =
a2 − a3

a1 − a3
= 1 − k2

1 .

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N = 3, discrete confocal coordinates

Discrete elliptic coordinates x :
(1

2Z
)3 → R3 in terms of elliptic

functions:

x1(n) = α1α2α3 sn(δ1n1, k1) dn(δ2n2, k2) ns(δ3n3, k3),

x2(n) = β1β2β3 cn(δ1n1, k1) cn(δ2n2, k2) ds(δ3n3, k3),

x3(n) = γ1γ2γ3 dn(δ1n1, k1) sn(δ2n2, k2) cs(δ3n3, k3),

where the moduli k1, k2, k3 are defined as solutions of the
following transcendental equations:

k2
1 =

a1 − a2

a1 − a3
·

dn2( δ1
2 , k1)

cn2( δ1
2 , k1)

, k2
2 =

a2 − a3

a1 − a3
·

dn2( δ2
2 , k2)

cn2( δ2
2 , k2)

.

k2
3 =

a1 − a2

a1 − a3
·

dn2( δ3
2 , k3)

cn2( δ3
2 , k3)

.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N = 3 (a1 = 8, a2 = 4, a3 = 0, δi = K(ki)/4)

Discrete quadrics from the pair of dual orthogonal sublattices
Z3 and

(
Z+ 1

2

)3
are shown in blue and red respectively:

� two two-sheeted hyperboloids for n1 = 1, 2 (n2, n3 ∈ Z),
� two one-sheeted hyperboloids for n2 = 1, 2 (n1, n3 ∈ Z),
� one ellipsoid for n3 = 3/2 (n1, n2 ∈ Z+ 1

2).

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Surface generation for confidence-based data-driven computing in elasticity
with application to reliability-based truss topology optimization

Yoshihiro Kanno
The University of Tokyo, Japan

Abstract

Data-driven computational elasticity is an emerging field of computational mechanics. This study presents
a method predicting a bound for structural response, where the material responses are supposed to possess
uncertainty. The uncertainty set is constructed by generating piecewise affine surfaces from a data set of material
responses. We show that the problems for finding upper and lower bounds for the structural response can be
recast as a mixed-integer linear programming problem, which can be solved globally with a branch-and-cut
method. Then a fundamental property of the order statistics guarantees the confidence level for the probability
that the obtained bound includes the structural response is no smaller than the target reliability. Furthermore,
we discuss application to the reliability-based design optimization of truss structures.
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outline

Y. Kanno (Evolving Design and Discrete Differential Geometry) 2

• data-
✿✿✿✿✿✿✿✿✿✿

driven
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

method for computational elasticity

• uncertainty in material behavior

• a data set of stress–strain observations

• no
✿✿✿✿✿✿

modeling
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

of probability distribution

• to find lower & upper bounds for QoI,

• segmented
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

least
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

squares
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

for nonlinear material behaviour

• mixed-
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

integer
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

programming
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

for guarantee of tightness of the bound
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material data set
structure
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1

bound for QoI

Surface Generation for Confidence-based

Data-driven Computing in Elasticity

with Application to Reliability-based

Truss Topology Optimization

Yoshihiro Kanno

(The University of Tokyo)

March 10–13, 2025

(Evolving Design and Discrete Differential Geometry:

towards Mathematics Aided Geometric Design)

data-driven equilibrium analysis in elasticity

Y. Kanno (Evolving Design and Discrete Differential Geometry) 3

• T. Kirchdoerfer, M. Ortiz: Data-driven computational mechanics.

Comp. Meth. Appl. Mech. Engrg., 304, pp. 81–101 (2016).

• use data
✿✿✿✿✿✿✿✿✿✿

of
✿✿✿✿✿✿

material
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

directly

• instead of constitutive
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

law
♣ ♣ ♣ ♣ ♣ ♣

(i.e.,
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣

stress–
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

strain
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

relation)
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

St
re
ss

Strain

Lo
ad
 fa
ct
or
 (k
N)

Displacement (m)
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

× 10
-3

0

2

4

6

8

10

• subsequent related studies (a lot): [Kirchdoerfer & Ortiz ’17],

[Ibañez et al. ’17], [Wang & Sun ’18], [Nguyen & Keip ’18],

[Ayensa-Jiménez, Doweidar, Sanz-Herrera & Doblaré ’18]

• tries to find “the closest point” in a data set

• combinatorial property from optim. view → difficult to solve
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a remedy [K. ’21a, ’21b]

Y. Kanno (Evolving Design and Discrete Differential Geometry) 5

• detecting a
✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿✿✿✿

manifold)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

on which data points (approx.) lie

• 2-dim. manifold in R3

0
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40

0

60

-20-10-20 01020

→ 0

20
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40

0

60

-20-10-20 01020

• 1-dim. manifold in R3 (as the intersection of two curved surfaces)

-10
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→
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0

30
0

20100-10-20-30
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[Kirchdoerfer & Ortiz ’16]: influence of outliers

Y. Kanno (Evolving Design and Discrete Differential Geometry) 4

• iterative method

• for one-bar example,

• find stress satisfying equilibrium

with external force: 𝜎 ← 𝑝/𝑎 .

• move to the closest data point

from current (𝜀, 𝜎) .

pa

Strain

St
re
ss

data set w/ an outlier [K. ’19]

• initial point: origin

• � : obtained by [KO ’16]

→ affected by the outlier

• △ : globally min. distance soln.

(also, convincing soln.)

ex.) material data set

Y. Kanno (Evolving Design and Discrete Differential Geometry) 6

0 0.5 1 1.5 2

10
-3

0

0.5

1

1.5

2

• nonlinear isotropic

• 𝐸 = 2
(3

2
−

1

1 + exp(−103𝜀eq)

)

,

𝜈 = 0.3, w/ some noise

• 200 data points

-5

0

5
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-4

5
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-4 50

10
-40

-5
-5

strain

-1

0

1

1

1
0

0
-1

-1

stress
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ex.) stress–strain pairs at numerical integration points

Y. Kanno (Evolving Design and Discrete Differential Geometry) 8
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[Kirchdoerfer & Ortiz ’16]
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kNN linear regression

ex.) load–displacement relation

Y. Kanno (Evolving Design and Discrete Differential Geometry) 7

• —– � proposed (surface generation) · · · · · ◦ reference solution

• – – –⋄ [Kirchdoerfer & Ortiz ’16] – – –⋄ local linear regression
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ex.) robustness against data set

Y. Kanno (Evolving Design and Discrete Differential Geometry) 9

• for 50 data sets, plot angle between principal axes of stress and strain

0 0.1 0.2 0.25

0

0.5

1

1.5

2
10

4

proposed (surface generation)

• isotropy ⇔ angle = 0
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[Kirchdoerfer & Ortiz ’16]
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material data and uncertainty set

Y. Kanno (Evolving Design and Discrete Differential Geometry) 11

• [Guo et al. ’21]: a set including all (= 𝑟) data points

• [K. ’23]: a set 𝐶 including 𝑝 points among 𝑟 data points

• 𝑝 := minimum natural number s. t.

𝑟∑

𝑘= 𝑝̃

𝑟C𝑘 (1 − 𝜖)𝑘𝜖𝑟−𝑘 ≤ 𝛿

• 𝑠 := max{QoI | (𝜀, 𝜎) ∈ 𝐶 ∩ 𝑀} ,

𝑠 := min{QoI | (𝜀, 𝜎) ∈ 𝐶 ∩ 𝑀} . ← bounds

• 𝑀 : compatibility & force-balance

Strain

St
re
ss

uncertainty set 𝐶
• Fundamentals of order

✿✿✿✿✿✿✿✿✿✿✿✿

statistics
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

yield

P𝐹

{
reliability under 𝐹

︷��������������������������������︸︸��������������������������������︷

P(𝜀,𝜎)∼𝐹 {𝑠 ∈ [𝑠, 𝑠]} ≥ 1 − 𝜖

}

︸����������������������������������������︷︷����������������������������������������︸

𝐹 is unknown (uncertain)

≥ 1 − 𝛿 .

• 1 − 𝜖 : target
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

reliability
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

1 − 𝛿 : confidence
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

level
♣ ♣ ♣ ♣ ♣ ♣ ♣

• RBDO w/ uncertain distrib. [Moon et al. ’17, ’18], [Ito, Kim, & Kogiso ’18]

[Guo, Du, Liu & Tang ’21]: another remedy using uncertainty
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

analysis
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Y. Kanno (Evolving Design and Discrete Differential Geometry) 10

• “A new uncertainty analysis-based framework for data-driven computational

mechanics.” J. Appl. Mech., 88, 111003 (2021).

• construct an ellipsoid (an uncertainty set) including data points, and

• find upper & lower bounds for structural response.

• avoid influence of outliers.

material data and uncertainty set

Y. Kanno (Evolving Design and Discrete Differential Geometry) 12

• [Guo et al. ’21]: a set including all (= 𝑟) data points

• [K. ’23]: a set 𝐶 including 𝑝 points among 𝑟 data points

• 𝑝 := minimum natural number s. t.

�∑

�= �̃

�C� (1 − 𝜖)�𝜖�−� ≤ 𝛿

• 𝑠 := max{QoI | (𝜀, 𝜎) ∈ 𝐶 ∩ 𝑀} , (♣)

𝑠 := min{QoI | (𝜀, 𝜎) ∈ 𝐶 ∩ 𝑀} . (♠)

• 𝑀 : compatibility & force-balance
uncertainty set 𝐶

• on local
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

vs. global
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

optimality

• “local opt. of (♣)” : underestimate of “max. value of QoI”

• ↑ non-conservative bound �

• global optimality

• this talk: use mixed-
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

integer
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

programming
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

for guarantee

• w/ segmented
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

least
✿✿✿✿✿✿✿✿✿✿✿✿

squares
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(𝐶 defined by piecewise-linear ineq.)

197



finding bound for structural response 𝑠(�,�)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 14

• upper bound: (lower bound: found by minimization)

Max. 𝑠(�,�)

s. t. � = 𝐵� , (compatibility)

𝐵� = � , (force-balance)

(𝜀� , 𝜎�) ∈ 𝐶 . (inclusion in uncertainty set)

• can be reduced to MIP (mixed-integer programming) → global optim.!
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segmented least squares

(piecewise regression)

→
-6 -4 -2 0 2 4 6

-6

-4

-2

0
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4

6

uncertainty set 𝐶

(including 𝑝 data points)

fiding a piecewise
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

affine
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

fitting given data points

Y. Kanno (Evolving Design and Discrete Differential Geometry) 13

• unknown:

• partition of the points

• coefficients of each affine function

• minimizing “(sum of squared errors) + 𝛾(#affine functions)”

𝛾 > 0 : penalty parameter

• → MIQP (mixed-integer quadratic programming) → global optim.
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6

material data set

(stress–strain pairs)

→
-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

segmented least squares

(piecewise regression)

uncertainty set 𝐶 w/ piecewise linear boundary

Y. Kanno (Evolving Design and Discrete Differential Geometry) 15

𝜀

𝜎

ℓ+
1

ℓ1

ℓ−
1

ℓbd
ℓ+
2 ℓ2

ℓ−
2

(𝑢−, 𝑣−)

(𝑢0, 𝑣0)

(𝑢+, 𝑣+)

𝜏

𝜏

• single breakpoint case (for simplicity)

• boundary of 𝐶 consists of

• ℓ+
1
, ℓ+

2
: 𝛼�𝜀 + 𝛽�𝜎 = 𝛾� − 𝜏

• ℓ−
1

, ℓ−
2

: 𝛼�𝜀 + 𝛽�𝜎 = 𝛾� + 𝜏

• (𝛼�, 𝛽�, 𝛾� : have been obtained by

segmented least sq.)

• ℓbd : 𝑝𝜀 + 𝑞𝜎 = 𝑟

• (𝑝, 𝑞, 𝑟 : can be found by elementary

calculation)

• (𝜀, 𝜎) ∈ 𝐶 iff

(𝜀, 𝜎) ∈

{

btwn. ℓ+1 & ℓ−1 if 𝑝𝜀 + 𝑞𝜎 ≤ 𝑟 ,

btwn. ℓ+2 & ℓ−2 if 𝑝𝜀 + 𝑞𝜎 ≥ 𝑟 .
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ex.) truss (1/3)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 17

• 29-bar truss
-6 -4 -2 0 2 4 6

-4

-2

0

2

4

material data (200 data points)

• problem setting: target reliability 1 − 𝜖 = 0.9, confidence level 1 − 𝛿 = 0.9
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segmented least squares
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uncertainty set (including 186 pts.)

idea for MIP (= mixed-integer prog.) reduction

Y. Kanno (Evolving Design and Discrete Differential Geometry) 16

This set can be represented by

0-
✿✿✿✿

1
✿✿✿✿

variables
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

& linear
✿✿✿✿✿✿✿✿✿✿✿✿

inequalities
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

!

𝑓 (�) ≤ 0

𝑓 (�) ≥ 0𝑔1(�) ≤ 0

𝑥1

𝑥2

𝑔 2
(�
)
≤

0

• 𝑓 (�) ≤ 0 ⇒ 𝑔1(�) ≤ 0

𝑓 (�) ≥ 0 ⇒ 𝑔2(�) ≤ 0

• w/ variable 𝑠 ∈ {0, 1} & sufficiently large constant 𝑀, we have

𝑓 (�) ≤ 𝑀𝑠 , 𝑔1(�) ≤ 𝑀𝑠 ,

𝑓 (�) ≥ 𝑀 (𝑠 − 1) , 𝑔2(�) ≤ 𝑀 (1 − 𝑠) .

𝑓 , 𝑔1, 𝑔2 : expressed by some linear inequalities (prev. slide)

ex.) truss (2/3)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 18
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ex.) cable–strut structure (1/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 20

• cable

• thin member,

• can sustain only tensile force.

• strut

• sustains compressive & tensile force.
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data set for cables
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data set for struts

ex.) truss (3/3)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 19

• stress analysis
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ex.) cable–strut structure (2/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 21
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0.6

0.8

1

obtained bounds for nodal displacement

w.r.t. variation in load factor �

-5 0 5

-2

0

2

4

6

8

10

stress–strain of each cable

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

stress–strain of each strut
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reduction of compliance constraint

Y. Kanno (Evolving Design and Discrete Differential Geometry) 23

P��

{

P�{𝜋(�) ≤ 𝜋̄} ≥ 1 − 𝜖
}

≥ 1 − 𝛿 .

• sufficient condition (w/ uncertainty set 𝐶):

𝜋̄ ≥ max �⊤� (worst-case external work)

s. t. � = 𝐵� , (compatibility)

𝐻 (�)� = � , (force-balance)

(𝜀� , 𝜎�) ∈ 𝐶 . (inclusion in uncertainty set)

• var.: member strains �, member stresses �, nodal displacements �

• difficulty: constraint
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣♣ ♣ ♣

on
♣ ♣ ♣ ♣ ♣ ♣ ♣

optimal
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

value
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

(of linear programming)

• strong
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

duality
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

of
✿✿✿✿✿✿

LP
✿✿✿✿✿✿

yields equivalent cstr.:

∃“Lagrange multiplier” , (dual objective value) ≤ 𝜋̄ .

• ↑ can be treated with conventional nonlinear programming!

towords truss
✿✿✿✿✿✿✿✿✿✿✿✿

design
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

optimization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Y. Kanno (Evolving Design and Discrete Differential Geometry) 22

• constraint under uncertainty

• uncertainty: material behavior (w/ unknown
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

prob.
✿✿✿✿✿✿✿✿✿✿✿✿

distr.
✿✿✿✿✿✿✿✿✿✿

)

• � : design var. (member cross-section areas)

• 𝜋(�) : compliance (a measure of structural flexibility)

→ random var.

P𝐹

{
reliability w/ fixed distribution

︷�����������������������������︸︸�����������������������������︷

P(𝜀,𝜎) {𝜋(�) ≤ 𝜋̄} ≥ 1 − 𝜖

}

︸������������������������������������︷︷������������������������������������︸

treating uncertainty in distribution

≥ 1 − 𝛿 .

• 1 − 𝜖 : target
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

reliability
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

1 − 𝛿 : confidence
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

level
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

of
♣ ♣ ♣ ♣

reliability
♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

• reliability-based design optim. w/ uncertain input distribution

[Moon et al. ’17, ’18], [Ito, Kim, & Kogiso ’18]

[Jung, Cho, & Lee ’19], [Jung, Cho, Duan, & Lee, 20]

[Wang, Hao, Yang, Wang, & Gao ’20], [Hao et al. ’22]

ex.) w/ continuous design variables (1/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 24

-6 -4 -2 0 2 4 6

-4

-2

0

2

4

6

300 data points

ground structure

(188 members)

• w/ interior-point method

(nonlinear programming)

• 1 − 𝜖 = 0.95 reliability

• 1 − 𝛿 = 0.95 confidence level

• 𝑝 = 292 points are included

in the uncertainty set.
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ex.) w/ continuous design variables (2/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 25

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

300 data points & uncertainty set

-2 -1 0 1 2

-1.5

-1

-0.5

0

0.5

1

1.5

close up

• × : nominal optimal solution

• all existing members have common absolute value of stresses

(well-known fact for volume min. under compliance cstr.)

• + : proposed method

• all existing members have

common worst-case absolute value of stresses (not proved yet)

ex.) w/ continuous design variables (1/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 24

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

300 data points & uncertainty set

nominal optimal solution

(w/ linear regression result)

• w/ interior-point method

(nonlinear programming)

• 1 − 𝜖 = 0.95 reliability

• 1 − 𝛿 = 0.95 confidence level

• 𝑝 = 292 points are included

in the uncertainty set. proposed method

ex.) w/ discrete design variables (1/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 26

• discrete member cross-section areas

• selected from predetermined values

• reduced to MIP (mixed-integer linear programming)

• idea: similar to conventional truss optim.

• global opt. by MIP solver (branch-and-cut)

problem setting
nominal proposed

202



conclusion

Y. Kanno (Evolving Design and Discrete Differential Geometry) 28

• data-driven computational mechanics [Kirchdoerfer & Ortiz ’16]

• introduction of uncertainty analysis [Guo, Du, Liu & Tang ’21]

• upper & lower bounds for structural response

• use of order statistics

• confidence for reliability that the structural response belongs to the

obtained bound

• segmented regression for nonlinear
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

material data

• mixed-integer programming

• can find a bound w/ global
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

optimality
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

�

• ↔ local opt. sol.: underestimate� of the structural response

• application to truss design optimization

• reduction to nonlinear
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

programming
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

via duality of linear programming

ex.) w/ discrete design variables (2/2)

Y. Kanno (Evolving Design and Discrete Differential Geometry) 27

• discrete member cross-section areas

• selected from predetermined values

• reduced to MIP (mixed-integer linear programming)

• idea: similar to conventional truss optim.

• global opt. by MIP solver (branch-and-cut)

problem setting
nominal proposed
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Optimization methods for continuum and latticed shells consisting of
developable parts

Makoto Ohsaki
Kyoto University, Japan

Abstract

To reduce the cost and time for construction of continuum shells and latticed shells for covering large archi-
tectural space, it is important to design the structures as an assembly of developable parts. For this purpose,
this presentation summarizes the following three optimization methods developed as part of the JST CREST
ED3GE project:

1. A meshless and non-parametric two-level optimization approach is proposed for design of shell surfaces
consisting of approximately developable patches. Developability is measured by the area of local Gauss
map at the grid points. In the lower-level problem, the developability conditions are relaxed at some grid
points to generate internal boundaries between approximately developable surface patches. In the upper-
level problem, stiffness under the specified vertical loads is maximized. The design variables are the
heights of the selected grid points, where developability conditions of some grid points are automatically
relaxed. This way, a new class of structural shape optimization problem of shell surfaces consisting of
piecewise developable surfaces is proposed to design shells with desirable geometrical characteristics in
view of fabrication and construction.

2. In the design of latticed shell consisting of straight beams, it is important to have planarity of beam plates
and surface panels while avoiding kinks at the joints. For this purpose, a hexagonal mesh consisting
of straight beams connected at joints without torsion or kink is generated from Koebe mesh on a unit
sphere obtained by spherical inversion in Möbius geometry. The parameters for Möbius transformation
are optimized to obtain the latticed shell close to the target surface.

3. The cost and time for construction of gridshells consisting of quadrilateral meshes can be reduced by
designing the shell as an assembly of planar beams. A gridshell with a planar quadrilateral mesh and
planar curves is generated by discretizing an L-isothermic surface, where the directions of principal
stresses coincide with the directions of principal curvatures under the uniform pressure load. The cross-
sectional areas of gridshells are optimized to have the desired distribution of axial forces.

References

[1] K. Hayakawa, M. Ohsaki and J. Y. Zhang, Meshless non-parametric shape design of piecewise approxi-
mately developable surfaces using discretized local Gauss map, J. Int. Assoc. Shell Spatial. Struct., Vol. 64,
No. 1, pp. 5-14, 2024.

[2] K. Kabaki, K. Hayakawa, M. Ohsaki, Y. Jikumaru and Y. Yokosuka, Design of gridshells consisting of
planar curves using Laguerre geometry, Proc. IASS Symposium 2024, Zurich, Switzerland, Int. Assoc.
Shell and Spatial Struct., Paper No. 340, 2024.

[3] R. Watada and M. Ohsaki, Sequential generation method for hexagonal lattice shells with edge offset mesh,
Proc. IASS Symposium 2024, Zürich, Int. Assoc. Shell and Spatial Struct., Paper No. 365, 2024.

[4] M. Ohsaki, K. Hayakawa and J. Y. Zhang, Non-parametric structural shape optimization of piecewise
developable surfaces using discrete differential geometry, Proc. Asian Congress of Structural and Multidis-
ciplinary Optimization (ACSMO 2024), Zhengzhou, China, Paper B40314, 2024.
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Outline of presentation
• Three topics from Kyoto Group of Crest project

Related to “Optimization of shells consisting of 
developable parts”

1. Design of gridshells using Laguerre geometry
2. Design of latticed shells with hexagonal mesh using Möbius

geometry 
3. Structural optimization of shells consisting of piecewise 

developable parts

2

Optimization methods for continuum 
and latticed shells consisting of 

developable parts

Makoto Ohsaki (Kyoto University)
Jingyao Zhang (Kyoto University)

Ryo Watada (Osaka Sangyo University)
Kentaro Hayakawa (Nihon University)

Kohei Kabaki (Kyoto University)

Design of gridshells using 

Laguerre geometry

3
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Purpose
‧ Design a grid shell with preferred axial force distribution
⇒ Assign target force distribution and solve 

optimization problem
⇒ Difficult to assign feasible distribution

of axial forces at equilibrium for specified loads

‧ Design the shape based on Laguerre geometry

‧ In most of mathematical approaches, deformation against loads 
(material property) is not considered.
⇒ Investigate effect of deformation by structural analysis

5

Lie sphere geometry
• Union of Möbius geometry and Laguerre geometry

• Directed sphere and plate in 5 or 6-dimensional vector

• Laguerre transformation:
Expressed by 5×5 matrix satisfying 
condition in bilinear form

Condition for transformation Sphere Plate

Center

Signed 
radius

Normal
vector

Expression by 5-dimensional  vector

411 parameters in t and A

L-minimal generalized Dupin cyclide

• Envelop of sphere of variable radius
translated along Cycloid
(one parameter family of sphere)

• One of the curvature lines 
is a circle

• Both of the curvature lines
are planar

u、αは曲率線パラメータ 6Parameter (u, α) along curvature lines

Constant α

Constant u

0

0
0 0

2 2
0 0

cos
cos 1sin 2

2( cos cos ) 4
cos sin 0

      ( 1)

a
a

a c u
u

a c

α
α α α
α

α

−   
   = +   −    
   

− =

r

W K Schief, A Szereszewski and C Rogers (2009)
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Assignment of parameter

• Assign 𝐼𝐼𝐼𝐼0 to have specific force distribution.
• Example: Force in one direction can vanish 

at a specific point

8

𝑇𝑇𝑇𝑇1 = 0 ⇔ 𝐼𝐼𝐼𝐼0 = −
1
2
𝐴𝐴𝐴𝐴22𝑍𝑍𝑍𝑍

𝑇𝑇𝑇𝑇2 = 0 ⇔ 𝐼𝐼𝐼𝐼0 =
1
2

(2𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2 − 𝐴𝐴𝐴𝐴22)𝑍𝑍𝑍𝑍

Normal load
Curvature line 1 Curvature line 2

Tension 𝑇𝑇𝑇𝑇1Tension 𝑇𝑇𝑇𝑇2

𝑇𝑇𝑇𝑇1 = −
𝑍𝑍𝑍𝑍

2𝜅𝜅𝜅𝜅2
−

𝐼𝐼𝐼𝐼0
𝜅𝜅𝜅𝜅2𝐴𝐴𝐴𝐴22

𝑇𝑇𝑇𝑇2 = −
𝑍𝑍𝑍𝑍

2𝜅𝜅𝜅𝜅1
1 −

𝐴𝐴𝐴𝐴2 − 𝐴𝐴𝐴𝐴1 2

𝐴𝐴𝐴𝐴1
+

𝐼𝐼𝐼𝐼0
𝜅𝜅𝜅𝜅1𝐴𝐴𝐴𝐴12

Membrane forces against uniform normal loads
• Equilibrium to uniform normal load 𝑍𝑍𝑍𝑍 with membrane forces
• Principal stresses 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2 in the directions of principal curvature 

lines
• 3rd fundamental form is ithothermic w.r.t. curvature lines

⇒ L-isothermic surface
⇒ 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2 are obtained explicitly from local surface shape

and has one arbitrary parameter

𝐴𝐴𝐴𝐴1 , 𝐴𝐴𝐴𝐴2 : Norm of tangent vector（Parametric speed）
𝜅𝜅𝜅𝜅1, 𝜅𝜅𝜅𝜅2:  Principal curvatures

Arbitrary 
parameter

Normal load
Curvature line 1 Curvature line 2

Tension 𝑇𝑇𝑇𝑇1Tension 𝑇𝑇𝑇𝑇2

7

W K Schief, A Szereszewski
and C Rogers (2009)

Target membrane force (continuum shell)
• Force in one direction vanishes at the center of upper boundary edge

𝑇𝑇𝑇𝑇2 = 0

𝑇𝑇𝑇𝑇2

𝑇𝑇𝑇𝑇1

𝑇𝑇𝑇𝑇2

𝑇𝑇𝑇𝑇1

𝑇𝑇𝑇𝑇1 = 0Case 1 Case 2

9

𝑇𝑇𝑇𝑇1: 𝛼𝛼𝛼𝛼 direction
𝑇𝑇𝑇𝑇2: 𝑢𝑢𝑢𝑢 direction
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Structural optimization

• Objective function: Mean squared error of axial force

• Design variable: Radius of circular pipe of beam

(thickness = constant)

𝐝𝐝𝐝𝐝: Vector of beam radius
𝐍𝐍𝐍𝐍 : Axial force vector
𝐍𝐍𝐍𝐍0 : Vector of target axial force

Find 𝐝𝐝𝐝𝐝
Minimize 𝐍𝐍𝐍𝐍 − 𝐍𝐍𝐍𝐍0 2

subject to  20 ≤ 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 150
11

Material property ⇒ Compatibility of deformation
⇒ Bending moment and out-of-plane shear force
⇒ No axial force exactly same as target value

Continuous beams
have same section

Covering areaTarget axial force (gridshell)
・Convert target membrane stress to target axial force
・Zero membrane force ⇒ Zero axial force

(N)
Axial force

張力０

(N/mm)

𝑇𝑇𝑇𝑇1

Axial force

(N)

張力０

(N/mm)

𝑇𝑇𝑇𝑇2

Case 1 Case 2

10

𝑇𝑇𝑇𝑇1 = 0 𝑇𝑇𝑇𝑇2 = 0

𝑁𝑁𝑁𝑁1 ≅ 0 𝑁𝑁𝑁𝑁2 ≅ 0

Beam Node

𝑇𝑇𝑇𝑇1: 𝛼𝛼𝛼𝛼 direction
𝑇𝑇𝑇𝑇2: 𝑢𝑢𝑢𝑢 direction

Optimization results (Case 2)
Uniform section Optimal solution

Error from
target
axial force

12

張力０𝑁𝑁𝑁𝑁2 = 0
Cross-section 
radius

Small error in
interior region
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Laguerre transformation of surface
• Cannot transform point to point
• Define point on the surface as contact point between 

directed sphere and plate
• Apply Laguerre transformation on sphere and plane
• Find contact point between transformed 

sphere and plane

Transformation

14

Contact sphere

Contact plane

Surface before
transformation

Sphere after
transformation

Plane after
transformation

Surface after
transformation

Point

Point

Release support along upper boundary (Case 2）

Mean axal force 
error (N)

Mean ratio of shear 
force to load

Initial（Pin） 2948 4.11%
（Free） 463 24.6%

Optimal（Pin） 218 2.94%
（Free） 394 18.9%

Displacement of initial uniiform solution

Pin

13

Upper boundary

Displacement of optimal solution

PinFree Free

Zero axial force at upper boundary ⇒ Release support at upper boundary

Laguerre transformation of surface
• Preserve invariants of Laguerre geometry
⇒ Favorable properties of surface are preserved
⇒ Curvature lines are transformed to curvature lines
⇒ Constructability is maintained

Condition of transformation

15

Sphere Plate

Center

Signed 
radius

Normal
vector

Expression by 5-dimensional  vector
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Examples of Laguerre transformation
Black: before transformation
Red: after transformation

Rotation Scaling
Rotation w.r.t. hyperbolic function
in projective space

17

Conversion by Laguerre transformation

・Inner product:  𝐱𝐱𝐱𝐱, 𝐲𝐲𝐲𝐲 pe = 𝐴𝐴𝐴𝐴𝐱𝐱𝐱𝐱,𝐴𝐴𝐴𝐴𝐲𝐲𝐲𝐲 pe

・Directed sphere contacting the surface at 𝐩𝐩𝐩𝐩: 
𝐩𝐩𝐩𝐩
0 + 𝑎𝑎𝑎𝑎 𝐧𝐧𝐧𝐧

−1
・Laguerre transformation of directed sphere:

𝐴𝐴𝐴𝐴 𝐩𝐩𝐩𝐩
0 + 𝑎𝑎𝑎𝑎 𝐧𝐧𝐧𝐧

−1 = 𝐴𝐴𝐴𝐴 𝐩𝐩𝐩𝐩
0 + 𝑎𝑎𝑎𝑎 �𝐧𝐧𝐧𝐧

− �𝐧𝐧𝐧𝐧
・L-isothermic surface: 𝐧𝐧𝐧𝐧𝑥𝑥𝑥𝑥 ,𝐧𝐧𝐧𝐧𝑥𝑥𝑥𝑥 = 𝐧𝐧𝐧𝐧𝑦𝑦𝑦𝑦 ,𝐧𝐧𝐧𝐧𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒2𝜃𝜃𝜃𝜃, 𝐧𝐧𝐧𝐧𝑥𝑥𝑥𝑥 ,𝐧𝐧𝐧𝐧𝑦𝑦𝑦𝑦 = 0
・ Laguerre transformation of 3rd fundamental form (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦: parameters) :

III = 𝑑𝑑𝑑𝑑𝐧𝐧𝐧𝐧,𝑑𝑑𝑑𝑑𝐧𝐧𝐧𝐧 = 𝑒𝑒𝑒𝑒2𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2 + 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦2

�III = 𝑑𝑑𝑑𝑑�𝐧𝐧𝐧𝐧,𝑑𝑑𝑑𝑑�𝐧𝐧𝐧𝐧 = 𝑒𝑒𝑒𝑒2�𝜃𝜃𝜃𝜃 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2 + 𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦2 ,  𝜃̂𝜃𝜃𝜃 = 𝜃𝜃𝜃𝜃 − log �𝐧𝐧𝐧𝐧

16

Stress distribution after transformation (Case 1)
Equilibrium 𝜅𝜅𝜅𝜅1𝑇𝑇𝑇𝑇1 + 𝜅𝜅𝜅𝜅2𝑇𝑇𝑇𝑇2 + 𝑍𝑍𝑍𝑍𝑇𝑇𝑇𝑇1 𝑇𝑇𝑇𝑇2

18
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Edge-offset (EO) mesh

・Edge offset mesh:
Planar beam with same height
Planar face

Beam ・Vertex axis = Axis of cone
・Edge on cone

EO mesh

Mesh with the same edge offset value 

20

Cone

Offset edge

Beam
Edge

Axis

Design of latticed shells with hexagonal 

mesh using Möbius transformation

19

Generating EO mesh

Koebe mesh K

Corresponding 
edges are all 

parallel

Koebe mesh K Mesh 𝑀𝑀𝑀𝑀

Unit sphere
Mesh parallelity

Cone

Node 
axis 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖

Mesh M

Offset 
mesh M’

Node 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖

Koebe mesh
• All edges contact to a unit sphere
• Generated from circle packing on the sphere
• EO mesh is parallel to Koebe mesh
• All edges contact the cone at vertex
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𝑃𝑃𝑃𝑃0

𝑄𝑄𝑄𝑄0

Möbius transformation 

(𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽 ∈ ℂ,𝜌𝜌𝜌𝜌 > 0,−𝜋𝜋𝜋𝜋 ≤ 𝜃𝜃𝜃𝜃 < 𝜋𝜋𝜋𝜋)𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧 = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃
1

𝑧𝑧𝑧𝑧 + 𝛼𝛼𝛼𝛼
+ 𝛽𝛽𝛽𝛽 ,

𝑧𝑧𝑧𝑧 → 𝑧𝑧𝑧𝑧 + 𝛼𝛼𝛼𝛼

𝑧𝑧𝑧𝑧 → 1/𝑧𝑧𝑧𝑧 𝑧𝑧𝑧𝑧 → 𝑧𝑧𝑧𝑧 + 𝛽𝛽𝛽𝛽

𝑧𝑧𝑧𝑧 → 𝜌𝜌𝜌𝜌𝑧𝑧𝑧𝑧 𝑧𝑧𝑧𝑧 → 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃𝑧𝑧𝑧𝑧

Koebe Mesh K and its offset mesh

translation

translation

rotation

inversion

dilation

This is omitted as this only 
causes rigid body rotation

Generating Koebe mesh

Möbius transformation:
X

Y

𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧 =
𝑎𝑎𝑎𝑎𝑧𝑧𝑧𝑧 + 𝑏𝑏𝑏𝑏
𝑐𝑐𝑐𝑐𝑧𝑧𝑧𝑧 + 𝑑𝑑𝑑𝑑

,

(𝛼𝛼𝛼𝛼,𝛽𝛽𝛽𝛽 ∈ ℂ,𝜌𝜌𝜌𝜌 > 0,−𝜋𝜋𝜋𝜋 ≤ 𝜃𝜃𝜃𝜃 < 𝜋𝜋𝜋𝜋)

(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐,𝑑𝑑𝑑𝑑 ∈ ℂ,𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 − 𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 ≠ 0)

𝑓𝑓𝑓𝑓 𝑧𝑧𝑧𝑧 = 𝜌𝜌𝜌𝜌𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃
1

𝑧𝑧𝑧𝑧 + 𝛼𝛼𝛼𝛼
+ 𝛽𝛽𝛽𝛽 ,

or

・𝛼𝛼𝛼𝛼 = 𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅 + 𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼 ,𝛽𝛽𝛽𝛽 = 𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅 + 𝑖𝑖𝑖𝑖𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼,
⇒ Mobius transformation can be determined 

by six real parameters  𝛼𝛼𝛼𝛼𝑅𝑅𝑅𝑅,𝛼𝛼𝛼𝛼𝐼𝐼𝐼𝐼 ,𝛽𝛽𝛽𝛽𝑅𝑅𝑅𝑅 ,𝛽𝛽𝛽𝛽𝐼𝐼𝐼𝐼 ,𝜌𝜌𝜌𝜌,𝜃𝜃𝜃𝜃 ∈ ℝ

𝑃𝑃𝑃𝑃0

𝑃𝑃𝑃𝑃0
𝑄𝑄𝑄𝑄0

Mobius transformation

inverse 
stereographic 
projection

Projection of circle packing on a plane to unit sphere
⇒ Modify circle packing ⇒ Modify Koebe mesh 

Sequential generation of EO mesh

𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓1

𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓2

𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿

𝐿𝐿𝐿𝐿
new face

𝑓𝑓𝑓𝑓

neighbor

The number of neighboring faces: 1
→ variables : 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓1, 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓2, 𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓

Pre-fixed Koebe mesh K Generated EO mesh M

Mesh M
parallel to K
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Numerical example

𝜋𝜋𝜋𝜋/3
0,0,1.6

5,0,0

p, q: Parameter 
for surface 
shape

Target surface shape

26p

q

Target surface 

new

𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖′

new face

𝑓𝑓𝑓𝑓

Surface approximation

𝒏𝒏𝒏𝒏𝑖𝑖𝑖𝑖 : Unit Vertex axis vector at vertex 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖
�𝒏𝒏𝒏𝒏𝑖𝑖𝑖𝑖 : Unit normal vector at �𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 on surface

• Sequential optimization: 
Minimization of mean squared error of normal vector

• Variables: : 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓1, 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓2, 𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓 (𝑓𝑓𝑓𝑓 ∈ 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔)
(𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔: surfaces considering symmetry)

minimize 𝛷𝛷𝛷𝛷𝑔𝑔𝑔𝑔 = ∑𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓∈𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔 𝒏𝒏𝒏𝒏𝑖𝑖𝑖𝑖 − �𝒏𝒏𝒏𝒏𝑖𝑖𝑖𝑖 2

subject to 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 − �𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 − 𝐷𝐷𝐷𝐷𝑈𝑈𝑈𝑈 ≤ 0 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓 , 𝑓𝑓𝑓𝑓 ∈ 𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔

0
1

2

6 7

8

18 19 37
61

90
60

36
62

38
20

…

…

…

…

…

…

…

…

…

…

Bounds for 𝜂𝜂𝜂𝜂𝑓𝑓𝑓𝑓 , 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓1, 𝜉𝜉𝜉𝜉𝑓𝑓𝑓𝑓2

Koebe mesh K
Number of variables:  𝐹𝐹𝐹𝐹𝑔𝑔𝑔𝑔 × 3 at maximum (about 15)

�𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖 : Point on surface nearest to 𝒙𝒙𝒙𝒙𝑖𝑖𝑖𝑖

q

0.80

0.60

0.40

0.40 0.60 0.80 p

q
0.80

0.60

0.40

0.40 0.60 0.80 p

Effect of shape parameters 𝐷𝐷𝐷𝐷U = 0.10
Beam height : 0.30

Edge lengths
Faces
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Vertical displacement, δ (m)

Load-Displacement

Non-EO EO

1

76.9

1

46.2

Effect of beam torsion 
(small deformation)

Maximum deviation 𝑒𝑒𝑒𝑒thick in 
the thickness direction [m]

Average of 𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 [kN ⋅ m/m]

● EO lattice
● non-EO lattice

|𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥|

Load-disp. relation

Bending momentTorsional deformation

29

Structural performance 

EO mesh model Non-EO mesh model

Concentrated load : 
1.0 [kN]

φ=0.030 [m], t= 0.005 [m]
𝐸𝐸𝐸𝐸 and 𝐺𝐺𝐺𝐺 multiplied by 100

simply 
supported

Lattice beam
Face reinforcement elements

Rigid

Regular hexagons filled 
in a circle on the plane

Vertical 
projection 
onto Π

Non-EO 
lattice beam

Common 
target 
surface Π

28

Local deformation

EO lattice (Min. strain energy)
(𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞) = (0.50, 0.70) 
𝐸𝐸𝐸𝐸 = 0.004239

Non-EO lattice
(𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞) = (0.50, 0.70) 
𝐸𝐸𝐸𝐸 = 0.004368

Elastic energy [kN ⋅ m]

● EO lattice
● non-EO lattice

9.23

7.55

5.87

4.20

2.52

8.39

6.71

5.03

3.36

1.68

0.84

0.00

displacement 
(×10-5[m])

9.63

7.88

6.13

4.38

2.63

8.75

7.00

5.25

3.50

1.75

0.88

0.00

displacement 
(×10-5[m])

Deformation (factor: 2000) Deformation (factor: 2000)

(𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞) = (0.5,0.7)
EO: 0.004239 ←Minimum
Non-EO: 0.004368

Elastic energy [kN ⋅ m]

30

EO mesh reduces local 
deformation
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Structural optimization of shells 

consisting of piecewise developable 

surface

32

31

Fabrication

Mortise & 
Tenon

We only 
need

Background
Many methods for designing free-form shells for
architectural roof and façade

Large construction cost:
- cost for formwork for reinforced concrete (RC) shell

Developable surface for cost reduction:
- generated by bending plate

Use same mesh for design, analysis and 
optimization:
- dependency of solutions on triangular mesh 
discretization

Assemblage of developable Bézier surface [1]

Discrete developable surfaces [2]

[1] J. Cui and M. Ohsaki, J. Int. Assoc. Shell. Spatial Struct., Vol. 59 (3), pp. 199-214, 2018.
[2] M. Ohsaki and K. Hayakawa, J. Int. Assoc. Shell. Spatial Struct., Vol. 62 (2), pp. 93-101, 2021. 33
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Gauss map and developable surface

Gauss map:
- mapping from point on the surface to 
a point on the unit sphere of unit 
normal vector

Vanishing area of Gauss map
→ developable surface:
- plane:     point
- cylinder: arc
- cone:     arc

Gauss map of non-developable surface

Gauss map of developable surface

unit normal 
vector

unit sphere

arc on
unit sphere

35

Purpose

Two-level shape optimization method of curved surfaces:
limited class of surface:

piecewise developable surfaces
Developability of the polyhedral surface:
- vanishing area of discretized local Gauss map at each vertex

Optimize locations of selected points on the surface:
- minimize compliance (maximize stiffness)

34

Meshless approach
Surface represented by grid points
- Mesh structure (global connectivity of edges): not specified.
- Auxiliary edges: tentatively arranged to construct a locally triangulated surface.
- Gauss map: defined locally at each interior grid point.

surface with grid points
grid points A, B, C and auxiliary 
edges connecting to their 
neighborhood points

Local gauss map

36
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Lower-level optimization problem:
Generate piecewise developable surface

Minimization of the sum of area of local Gauss map
- prevention of divergence of gradients of at
by minimizing the sum of           (developability error)

- exclusion of developability error at some selected points to
generate interior boundaries between patches

⇒ Piecewise developable surface

Minimize  ( )

subject to   
i

i I
F A

χ
∈

=

∈

∑x

x

ija

Design surface

Local gauss map

ija
2( )ija

0ija 

x :vector of variables (selected coordinates of grid points)
I : set of indices of selected grid points
χ :feasible region (upper and lower bounds) of x

2

1
( ) 0

 depelopability condition

im

i ij
j

A a
=

= =

⇒

∑
Lower level problem

38

Discrete (polyhedral) Gauss map

Unit normal vector of triangular 
region between edges j and j+1

Unit normal vector at point i

Area of local Gauss map

f
f

f

ˆ
ˆ

j
j

j

=
n

n
n

f
1ˆ ( ) ( )j j i j i+= − × −n q p q p

ˆ
ˆ

i
i

i

=
nn
n

f

1

1ˆ
im

i j
jim =

= ∑n n

in

Design surface Local gauss map

ip
jq

1j+q

f
1j+n

ija

f
1j i+ −n n

f
j i−n n

f
jn

f f
1

1 ( ) ( )
2ij j i j ia += − × −n n n n

37

Two-level shape optimization of 
surface with limited class

Stiffness maximization of the piecewise developable surface
- Upper problem: Minimization of compliance against static loads

FE-model:  grid points  ⇒ quadrilateral mesh
- Lower problem: Generate piecewise developable surface

updated in shape 
optimization
(fixed in surface
generation) 

updated in surface 
generation 

structural 
analysis

quadrilateral 
shell element

nodal load

pin-support

39
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Result of structural optimization

Initial surface for structural optimization: eight almost planar patches.
Optimal surface: 

smooth cylindrical patch around center; and two ridges near boundary.

Initial surface for upper-level problem 
(solution of lower problem)

Optimal surface
(solution of upper problem)

41

Example 1:
Lower Problem: Generation of piecewise
developable surface
bounds for z-coordinates

Structural analysis 
Young’s modulus, Poisson’s ratio: 200 GPa, 0.2
load (self-weight): 1.0×102 kN/m2, Shell thickness: 0.1 m

Upper Problem: Shape optimization 
by simulated annealing
max. number of steps: 200
neighborhood search: 

10 times at each temperature
bounds for z-coordinates

: fixed in lower-level problem
: Ignored developability condition
: updated in upper-level problem
: pin-supported

Initial shape

40

Properties of optimal solution

Displacement in z-direction

Minimum bending stress

Initial Optimal

Initial Optimal

Reduced magnitude 
of displacement in the 
optimal shape

Smoother distribution 
in the optimal shape

Large negative 
bending stress in the 
flat region in the initial 
shape

Reduced and 
smoother moment 
distribution in the 
optimal shape

42
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Example 2-1 (Shape generation: lower problem)

c = 100
Two internal boundaries
Center: cylinder
Side: plane
Ai< 10−6: developable

> 10−4: non-developable
(int. boundary)

Ai = 2.2×10−14

Ai = 4.9×10−2

0

100

200

300

No
. g

rid
 p

oi
nt

s

range of Ai

初期形状
最適化後

137
187

19 16

126
76

299

4

88
50

0
56

00

Int. bound

Initial
Optimal

44

Error concentration using tanh function

Parameter

( )
in

nM )tm aini ize ( ) h (i
i I

F c A ε
∈

= +∑x x

Difficulty in previous method:
specify points for ignoring developability 
⇒ specify approximate locations of internal boundary
⇒ Method without prior assignment of internal boundary 
automatic concentration of developability error  

Underestimate large developability error
→ concentrate nondevelopable points

Lower problem

43

Minimize  ( ) i
i I

F A
∈

=∑x

0

100

200

300

No
. o

f g
rid

 p
oi

nt
s

range of Ai

初期形状
最適化後

284

112

0 16

126
104

299

24

88

4 0 100

Example 2-2 (Shape generation: lower problem)

c = 50
Center: non-developable
Interior: 4 planes
Ai：less than 10−6

(developable)
except center

Ai = 2.8×10−11

Ai = 2.3×10−2

Initial
Optimal

45
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Example 3 (Struct. optimization: upper problem) 

Optimal c = 100

Optimal c = 10 Optimal c = 200

Contour:
max. bending moment ( )

in

( ) tanh ( )i
i I

F Ac ε
∈

= +∑x x

c = 10:   Ambiguous internal boundary
c = 100, 200: Corrugated shape near

variable points
47

Example 3 (Struct. optimization: upper problem) 
Initial of initial (W = 4.998 kNm)

Optimal of initial (W = 5.555 kNm)

Optimal of optimal (3.386 kNm)
Size on plane: 10 x 10 m
Range of x: initial ±8 m
Range of Z: initial ±1 m
Randomize grid points: regular ±0.015 m
Young’s modulus: 200 GPa
Poisson’s ratio: 0.3

Contour:
max. bending moment Randomize grid points to 

have internal boundary in 
arbitrary directions

46

Varied in
upper problem

Fixed in
lower problem

Example 4

Optimal c = 10 (W = 0.06668 kNm)

Optimal c = 100

Initial c = 10 (W = 0.4338 kNm)

Size on plane: 10 x 10 m
Range of x: initial ±8 m
Range of Z: initial ±1 m
Randomize grid points: regular ±0.01 m
Young’s modulus: 200 GPa
Poisson’s ratio: 0.3

Contour:
max. bending moment

( )
in

( ) tanh ( )i i
i I

F w Ac ε
∈

= +∑x x

c = 10:   Ambiguous internal boundary
c = 100: Clear internal boundary; 

non-smooth shape near variable points

48

Varied in
upper problem

Fixed in
lower 
problem
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Summary
• Lie spherical geometry can be used to design lattice shells that has high 

constructability.

• Mathematical formulation does not incorporate the effect of deformation 
related to  material properties that should be considered even for small 
deformation.

• Laguerre transformation preserves the preferable mechanical properties of 
L-isothemic surfaces.

• Edge-offset surfaces allow the design of lattice shells with excellent 
constructability and mechanical properties.

• Piecewise developable surface can be a new class of shell surfaces ensuring 
efficient structural performance and constructability.

49
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Concept of Bidirectional Circulative Design Platform

Bidirectional
Realize both

1. regular objective type
(= conventional design)

2. reverse objective type
(= optimization, inverse design)

design scheme

Circulative
Realize fast, efficient, and seamless 
rotation of above bidirectional design 
scheme

2025/3/14 3

Concept of Bidirectional Circulative Design Platform

2025/3/14 2

Development of 
Bidirectional Circulative 
Design Platform

Presenter: Kentaro Hayakawa,  Nihon Univ.

Evolving Design and Discrete Differential Geometry 
- towards Mathematics Aided Geometric Design
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Features of Proposed Design Platform

Easy generation of specific surface classes
Geometry of discrete surfaces

Developable surface, minimal surface, origami surface, etc.

Enhance reverse objective type design scheme for high efficiency, low cost, 
beauty, security, and safety of structure

Versatility through combination of multiple components 
inside/outside of platform
Geometry design + physics simulation

Geometry design + structural analysis + optimization

2025/3/14 6

How to Use? What Can We Do?

2025/3/14 5

Select and place 
components

Rational geometric design tools including interactive
• analysis (curvature etc.)
• form generation (CGC, CMC surface etc.)
• optimization

Connect to other 
components

Framework

Software
Rhinoceros : widely used modelling and CAD software

Grasshopper : visual programming plugin of Rhinoceros

Python / C# : available in grasshopper

Geometric design tool as a set of components

2025/3/14 4
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Demonstrations

Origami surface approximation

Generation of piecewise developable surface and structural optimization

Surface generation from stress distribution

2025/3/14 8

Approximate input surface by rigid 
origami surface developable to plane

Find positions of grid points to form
a surface consisting of developable 
patches

Generate a surface equilibrated with 
gravity with a specified horizontal 
stress distribution

Example of Components

Utility

Constant Curvature Surface

Optimization

Origami

Shell and Membrane Structure

2025/3/14 7

More components will be added.

225



226



227





Objective: pillow box of maximal volume
A pillow box is a closed, box-shaped surface formed by creasing a 
double rectangular sheet rigidly along given curves. 

3

Theorem (Koiso). For any 𝑎𝑎 𝑏𝑏 , there exists a unique pillow box with maximal volume 
that is isometric to the rectangle with width 2𝑎𝑎 and height 2𝑏𝑏. t is represented by a 
developable surface that includes the ``main curve” described on the next slide. 

2𝑎𝑎

2𝑏𝑏 
main curve

Context of this presentation
• This talk presents a case example of implementation and actual 

use of components in the bidirectional circulative design platform. 
• The components are designed to handle ``pillow box”.
• For theoretical discussions and applications in architecture, please 

refer to tomorrow’s talks by Prof. Koiso and Prof. Yokosuka.

2

Development of bidirectional circulative 
design platform – case example (pillow box) 

Shun Kumagai
(Hachinohe Institute of Technology, Kajiwara group)

International Conference "Evolving Design and Discrete Differential Geometry
- towards Mathematics Aided Geometric Design"

2025/3/11

1
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Tool1: regular objective type

6

Parameters of the solver 
and the output process

Maximal depth z1 ~0.053757z0

2
2

2
2

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 𝑧𝑧 ∶= ±𝐼𝐼𝜇𝜇,𝑡𝑡 𝑧𝑧 ∓ 𝐼𝐼𝜇𝜇 𝑧𝑧0,𝑡𝑡 , 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧0,𝑡𝑡, 0 ≤ 𝑥𝑥 ≤ 𝐼𝐼𝜇𝜇 𝑧𝑧0,𝑡𝑡

𝐼𝐼𝜇𝜇,𝑡𝑡 𝑧𝑧 ≔ න
0

𝑧𝑧 −𝜇𝜇𝜇𝜇 1 − 𝜁𝜁
𝑏𝑏 + 𝑡𝑡

1 − 𝜇𝜇𝜇𝜇 1 − 𝜁𝜁
𝑏𝑏 − 𝑡𝑡

2 𝑑𝑑𝜁𝜁, 𝑧𝑧0,𝑡𝑡 = 𝑧𝑧0,𝑡𝑡 𝜇𝜇 ≔ 𝑏𝑏
2 1 − 1 − 4(1 − 𝑡𝑡)

𝑏𝑏 𝜇𝜇 ,

 where 𝜇𝜇 < 0 is a solution of the equation 𝑎𝑎 = න
0

𝑧𝑧0,𝑡𝑡(𝜇𝜇) 𝑑𝑑𝜁𝜁

1 − 𝜇𝜇𝜁𝜁 1 − 𝜁𝜁
𝑏𝑏 − 𝑡𝑡

2 .

The following description of the main curve represents one possible 
isometric transformation process (𝑡𝑡 = 0 : rectangle, 𝑡𝑡 = 1 : pillowbox) :

Formula for maximum-volume pillow box

5

Pillow box components include an interactive solver for these 
equations, which corresponds to the given input.  (built-in python script)

4

𝑥𝑥 = 𝑥𝑥 𝑧𝑧 ∶= ±𝐼𝐼𝜇𝜇 𝑧𝑧 ∓ 𝐼𝐼𝜇𝜇 𝑧𝑧0 , 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧0, 0 ≤ 𝑥𝑥 ≤ 𝐼𝐼𝜇𝜇 𝑧𝑧0

𝐼𝐼𝜇𝜇 𝑧𝑧 ≔ න
0

𝑧𝑧 −𝜇𝜇𝜇𝜇 1 − 𝜁𝜁
𝑏𝑏

1 − 𝜇𝜇𝜇𝜇 1 − 𝜁𝜁
𝑏𝑏

2
𝑑𝑑𝜁𝜁, 𝑧𝑧0 = 𝑧𝑧0 𝜇𝜇 ≔ 𝑏𝑏

2 1 − 1 − 4
𝑏𝑏 𝜇𝜇 ,

 where 𝜇𝜇 < 0 is a solution of the equation 𝑎𝑎 = න
0

𝑧𝑧0(𝜇𝜇) 𝑑𝑑𝜁𝜁

1 − 𝜇𝜇𝜁𝜁 1 − 𝜁𝜁
𝑏𝑏

2
.

The main curve of the pillow box of input 𝑎𝑎 𝑏𝑏  is described by :

Formula for maximum-volume pillow box

The configuration can be determined by any 
of the input pairs (𝑎𝑎, 𝑏𝑏), (𝑏𝑏, z0), or (𝑏𝑏,𝑐𝑐:=𝑥𝑥(0)). 
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Tool2: reverse objective type (height)

9
Height (and maximal depth) controlled

Input: ratio of (𝑏𝑏, z0)

Tool1: regular objective type

8

Surface area normalized

Input: ratio of (𝑎𝑎, 𝑏𝑏)

Tool1: regular objective type

7
Maximal depth in deformation process

Input: ratio of (𝑎𝑎, 𝑏𝑏)
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Example of tool use: printing a pillow box

12

Extrude surface to solid (thick sheet)

Mesh output from pillow box (t=0, flat)

Separate mesh into 3 pieces

Thickness

Print

Export to .stl

Notch

Contents of pillow box tools

11

Input

Output

Preprocess

Solver

Postprocess

Building 3D objects

Modified to implement tools of reverse objective type

Built-in Python script

Tool3: reverse objective type (box width)

10

Width of the pillow box controlled

Input: (𝑏𝑏, 𝑐𝑐)
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Contents of pillow box tools

14

Input

Output

Preprocess

Solver

Postprocess

Building 3D objects

Arrange to fit the objective -> reverse objective type design

Built-in Python script

Example of tool use: discretization and optimizing ratio

13

Discretization and 
calculation of internal 
elastic energy 
(by Prof. Yokosuka)

ratio

Optimizer : energy -> ratio

Pillow box

**This is a prototype of collaboration of components 
in Grasshopper.  Further progress and application 
will be presented in Prof. Yokosuka’s talk. 
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Discrete conformality and beyond.
Where geometry meets computer graphics and mathematical physics

Alexander I. Bobenko
Institute of Mathematics, Technische Universität Berlin, Germany

Abstract

Structure-preserving discretization in the field of geometry is the paradigm of discrete differential geometry. In
some aspects, the discrete theory turns out to be even richer than its smooth counterpart. It focuses on develop-
ing constructive methods. The well-established theory of discrete conformal maps and circle patterns is related
to discrete integrable models of mathematical physics and has found applications in geometry processing. We
present their generalizations beyond the conformal limit: decorated discrete conformal maps [1, 2] and ring pat-
terns [3, 4], which share the corresponding existence and uniqueness statements. The theory and construction
methods are based on convex variational principles related to hyperbolic geometry. We define discrete constant
mean curvature (cmc) surfaces (soap bubble surfaces) [5] in terms of sphere packings with orthogonally inter-
secting circles. These discrete cmc surfaces can be constructed from orthogonal ring patterns. The data used
for the construction is purely combinatorial - the combinatorics of the curvature line pattern. Numerous virtual
and printed models as well as animation movies will be demonstrated.

Figure 1: Left: Conformally parametrized tea pot costructed using discrete conformal mappings.
Right: A discrete cmc surface constructed using orthogonal ring patterns [5].

References

[1] A.I. Bobenko, C.O. Lutz, Decorated discrete conformal maps and convex polyhedral cusps, Intern. Math.
Research Notices 2024:12 (2024), 9505-0534, doi.org/10.1093/imrn/rnae016

[2] A.I. Bobenko, C. Lutz, Decorated discrete conformal equivalence in non-Euclidean geometries (2023)
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[3] A.I. Bobenko, T. Hoffmann, T. Rörig, Orthogonal ring patterns in the plane, Geometria Dedicata (2023),
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[4] A.I. Bobenko, Spherical and hyperbolic orthogonal ring patterns: integrability and variational principles
(2024) arXiv:2409.06573 [math.MG] [math.GT]

[5] A.I. Bobenko, T. Hoffmann, N. Smeenk, Constant mean curvature surfaces from ring patterns: Geometry
from combinatorics (2024) arXiv:2410.08915 [math.DG]
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Conformal maps

▶ conformal means angle
preserving

▶ infinitesimal lengths scaled by
conformal factor

|df | = eu |dx |

independent of direction

▶ in the small like similarity
transformations

▶ Problem:
surface in space

conformally−−−−−−−→ plane

Alexander Bobenko Discrete conformality and beyond

Discrete conformality and beyond.
Where geometry meets computer graphics

and mathematical physics

Alexander Bobenko

Technische Universität Berlin

Evolving Design and Discrete Differential Geometry -
towards Mathematics Aided Geometric Design,

Fukuoka, March 2025

Alexander Bobenko Discrete conformality and beyond

Discrete Differential Geometry.

Development of discrete equivalents of notions and methods of
differential geometry.
▶ Structure preserving discretizations.
▶ Classical theory as a limit of refinements of the

discretization.
▶ Constructive. Computational
▶ Applications: computer graphics
▶ Discrete (integrable) models in physics

Alexander Bobenko Discrete conformality and beyond
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I. Decorated discrete conformal mappings

Joint with Carl Lutz

Alexander Bobenko Discrete conformality and beyond

Generalizations?

Conformal mappings very rigid:

▶ Computer Graphics: large
variations of conformal factor,
optimization of conformality and
isometry, discretizations of
quasi-conformal

▶ Physics: conformal models →
massive models.

▶ Differential geometry: minimal
surfaces → cmc surfaces

Discrete models with a mathematical theory?

Alexander Bobenko Discrete conformality and beyond

Discrete conformal maps

(Orthogonal) circle patterns
▶ angle properties
▶ convergence to conformal

maps
▶ maps in the plane

[Thurston, Stephenson, Schramm, He,
AB, Springborn ... 1980’-]

Discrete conformal
equivalence
▶ metric properties
▶ ℓ̃ij = e(ui+uj )/2 ℓij

▶ works for surfaces

[Luo, Springborn, Pinkall, Schröder,
AB, Gu, Sun, Wu ... 2004-]

Alexander Bobenko Discrete conformality and beyond
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Mapping problem

▶ angles sum around vertex i

Θi =
∑
ijk∋i

αi
jk

▶ Given mesh M, metric ℓij = e
1
2λij ,

and desired angle sums Θ̂i

Find conformally equivalent
metric ℓ̃ij with

Θ̃i = Θ̂i

ji
αi

jk

k

ℓij

ℓki
ℓjk

Alexander Bobenko Discrete conformality and beyond

Discrete conformal equivalence

Definition [Luo ’04]

Two discrete metrics ℓ, ℓ̃ on M are
(discretely) conformally equivalent if

ℓ̃ij = e
1
2 (ui+uj )ℓij

for some function u : V → R

▶ use λij = 2 log ℓij

λ̃ij = λij + ui + uj

Alexander Bobenko Discrete conformality and beyond

Discrete conformal equivalence

▶ abstract surface triangulation
M = (V ,E ,T )

A discrete metric on M is a function

ℓ : E → R>0, ij → ℓij

satifying all triangle inequalities:

∀ ijk ∈ T : ℓij < ℓjk + ℓki

ℓjk < ℓki + ℓij

ℓki < ℓij + ℓjk

Alexander Bobenko Discrete conformality and beyond
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How it works: Riemann mapping theorem

[AB-Pinkall-Springborn ’15]

Alexander Bobenko Discrete conformality and beyond

Ronkin function. Convexity

▶ S(u) =
∑
ijk∈T

(
2f ( λ̃ij

2 ,
λ̃jk
2 , λ̃ki

2 )−π/2(λ̃ij + λ̃jk + λ̃ki)
)
+
∑
i∈V

Θ̂i ui

▶ f (x1, x2, x3) = α1 x1 + α2 x3 + α3 x3
+L(α1) +L(α2) +L(α3)

▶ Ronkin function;
free energy of the
thermodynamic limit of a dimer
model on hexagonal grid
[Kenyon-Okounkov-Sheffield ’06]

▶ convex

1

3

2

α3

α1 α2

a2 = ex2

a3 = ex3

a1 = ex1

Alexander Bobenko Discrete conformality and beyond

Variational principle

▶ S(u) def
=

∑
ijk∈T

(
α̃k

ij λ̃ij + α̃i
jk λ̃jk + α̃j

ki λ̃ki −
π

2
(λ̃ij + λ̃jk + λ̃ki)

+2L(α̃k
ij ) + 2L(α̃i

jk ) + 2L(α̃j
ki)

)
+
∑
i∈V

Θ̂i ui

▶ Milnor’s Lobachevsky function

L(α) = −
∫ α

0
log |2 sin t | dt

ℓ̃ij = e
1
2 (λij+ui+uj ) solves mapping problem

⇕
u = (u1, . . . ,un) is critical point of S(u)

[Springborn-Pinkall-Schröder ’08]

Alexander Bobenko Discrete conformality and beyond
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How it works: Conformal parametrization of surfaces

Alexander Bobenko Discrete conformality and beyond

How it works: Riemann mapping theorem

[AB-Pinkall-Springborn ’15]

Alexander Bobenko Discrete conformality and beyond

How it works: Riemann mapping theorem

[AB-Pinkall-Springborn ’15]

Alexander Bobenko Discrete conformality and beyond
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Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond
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Discrete Uniformization

Theorem. (Gu-Luo-Sun-Wu 2018)
For any piecewise euclidean metric on a surface of genus g with
n marked points and for any Θi satisfying the Gauss-Bonnet con-
dition

1
2π

∑
Θi = 2g − 2 + n

there exists a discretely conformally equivalent metric with the
cone angles Θi . It is uniquely determined up to scale.

▶ DG [Gu-Luo-Sun-Wu ’18] sequence of Delaunay
triangulations.

▶ CG [Gillespie-Springborn-Crane ’21] effective numerical
realization.

Alexander Bobenko Discrete conformality and beyond

Induced hyperbolic metric

Origin: Hyperbolic geometry interpretation
[AB, Pinkall, Springborn ’15]

▶ circumcircle induces hyperbolic metric
(Klein model)

▶ euclidean triangle → ideal hyperbolic
triangle

▶ vertices at infinity (cusps)
▶ conformally equivalent discrete metrics

⇔ same hyperbolic metric (with cusps)
▶ Definition of conformally equivalent

metrics with different triangulations
⇔ same hyperbolic metric

Alexander Bobenko Discrete conformality and beyond

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond
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Decorated Discrete Conformal (DCE)

Mijk : z → αz+β
γz+δ

i j

k

i

j

k

ℓij ℓ̃ij

ri
r̃i

▶ Möbius equivalent decorated triangles

▶ Inversive distance invariant Iik =
ℓ2

ik−r2
i −r2

k
2ri rk

▶ two decorated triangles are Möbius equivalent iff the
inversive distances of their sides coincide

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)

Mijk : z → αz+β
γz+δ

i j

k

i

j

k

ℓij ℓ̃ij

ri
r̃i

▶ Möbius equivalent decorated triangles

▶ Inversive distance invariant Iik =
ℓ2

ik−r2
i −r2

k
2ri rk

▶ two decorated triangles are Möbius equivalent iff the
inversive distances of their sides coincide

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)

Mijk : z → αz+β
γz+δ

i j

k

i

j

k

ℓij ℓ̃ij

ri
r̃i

▶ Möbius equivalent decorated triangles

Alexander Bobenko Discrete conformality and beyond
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Decorated Discrete Conformal Maps

▶ Discrete conformal maps of inversive distance circle
patterns [Bowers-Stephenson ’04]. Existence and uniqueness?

▶ Numerical computations [Bowers-Hurdal ’03]

▶ Unified discrete Ricci flow [Zhang et al. ’14]

▶ Discrete conformal structures via duality structures
[Glickenstein ’11]

▶ Decorated discrete conformal maps [AB-Lutz ’23]. Variable
combinatorics. Existence and uniqueness theorems

Alexander Bobenko Discrete conformality and beyond

Discrete Conformal as Special Case

Mijk : z → αz+β
γz+δ

i j

k

i

j

k

ℓij ℓ̃ij

ri
r̃i

▶ any two triangles are Möbius equivalent, no inversive
distance for r = 0

▶ infinitesimal circles ri → 0
▶ ℓ̃ij = e(ui+uj )/2 ℓij

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)

Mijk : z → αz+β
γz+δ

i j

k

i

j

k

ℓij ℓ̃ij

ri
r̃i

▶ Möbius equivalent decorated triangles
▶ r̃i = eui ri

ℓ̃2
ij = (e2ui − e(ui+uj ))r2

i + e(ui+uj ) ℓ2
ij + (e2uj − e(ui+uj ))r2

j
▶ discretely conformally equivalent triangulated decorated

PE-surfaces (same combinatorics)

Alexander Bobenko Discrete conformality and beyond
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Uniformization theorem (AB, Lutz 2023)

Theorem
Given a hyperideally decorated PE-metric (distSg , r) on the
closed marked genus g surface (Sg ,V ). Then

• (existence) a decorated PE-metric DCE to (distSg , r)
realizing Θ ∈ RV

>0 exists iff Θ satisfies the Gauß–Bonnet
condition

1
2π

∑
Θi = 2g − 2 + |V |.

• (uniqueness) there exists at most one decorated PE-metric
DCE to (distSg , r) realizing Θ ∈ RV

>0, up to scale.

• (variational principle) u ∈ RV giving the change of metric
minimizes the discrete convex Hilbert–Einstein functional
(volume of a hyperideal hyperbolic tetrahedron).

The uniformization theorem by [Gu-Luo-Sun-Wu ’18] is r = 0.

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal Mapping Problem

i

Varying Combinatorics
• Consider PE-metrics (T , ℓ) ↔ distSg

• if circles non-intersecting, there exist weighted Delaunay
triangulations (wDt), empty disc property

• sequences of wDts
• non-decorated [Gu-Luo-Sun-Wu ’18, Springborn ’19]

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal Mapping Problem

i

▶ Given:
• a triangulation T of the surface Sg ,
• a decorated PE-metric (ℓ, r),
• and a desired angel sums Θi .

▶ Find : ui such that the DCE-changed metric w.r.t. ui has
angle sums Θi .

Alexander Bobenko Discrete conformality and beyond
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Orthogonal circle patterns

▶ Orthogonal circle patterns
as discrete complex
analysis
[Schramm ’97]

▶ Convergence to conformal
maps

▶ Integrable equations

|fx | = |fy |, fx ⊥ fy .

Alexander Bobenko Discrete conformality and beyond

Orthogonal circle patterns

▶ Orthogonal circle patterns
as discrete complex
analysis
[Schramm ’97]

▶ Convergence to conformal
maps

▶ Integrable equations

|fx | = |fy |, fx ⊥ fy .

Alexander Bobenko Discrete conformality and beyond

II. Orthogonal ring patterns

Joint with Tim Hoffmann, Nina Smeenk

Alexander Bobenko Discrete conformality and beyond
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Q4 integrable equation

sn 1
2(ρ+ ρ1 + iK ′)

sn 1
2(ρ− ρ1 + iK ′)

sn 1
2(ρ+ ρ2 + iK ′)

sn 1
2(ρ− ρ2 + iK ′)

×

sn 1
2(ρ+ ρ3 + iK ′)

sn 1
2(ρ− ρ3 + iK ′)

sn 1
2(ρ+ ρ4 + iK ′)

sn 1
2(ρ− ρ4 + iK ′)

= 1.

▶ Radii of spherical (hyperbolic) orthogonal ring patterns
▶ Master integrable equation in the ABS-classification [’09]
▶ ∆u ± sinhu = 0 in the smooth limit
▶ Variational principle [AB ’24]. Elliptic generalization of

dilogarithms, hyperbolic volumes?

Alexander Bobenko Discrete conformality and beyond

Orthogonal ring patterns in a sphere [AB ’24]

▶ q = cosR
cos r is global invariant

▶ circle pattern limit q → 1
▶ parametrization in elliptic functions of modulus q ≤ 1,

sin r = cn(ρ, q), sinR = dn(ρ, q)

Alexander Bobenko Discrete conformality and beyond

Orthogonally intersecting rings

▶ A ring is a pair of concentric circles Ci , ci of radii: ri and Ri

▶ The outer circle Ci intersects the inner circle cj
orthogonally

▶ Orthogonal rings have the same area

Alexander Bobenko Discrete conformality and beyond
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Koebe polyhedra and minimal surfaces

▶ Koebe polyhedron as Gauss map of minimal surface
[AB-Hoffmann-Springborn, Annals ’06]

▶ Animation film [AB-Newjoto-Techter ’18]

Alexander Bobenko Discrete conformality and beyond

Koebe polyhedra and minimal surfaces

▶ Koebe polyhedron as Gauss map of minimal surface
[AB-Hoffmann-Springborn, Annals ’06]

▶ Animation film [AB-Newjoto-Techter ’18]

Alexander Bobenko Discrete conformality and beyond

Koebe polyhedra and orthogonal circle patterns

▶ Orthogonal circle pattern↔ Koebe polyheder
▶ Circumscribed polyhedron with touching edges

[Koebe, Andreev, Thurston,...]

Alexander Bobenko Discrete conformality and beyond
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C∞-convergence?

smooth cmc discrete cmc
[AB-Heller-Schmitt ’21] [AB-Hoffmann-Smeenk ’24]

Alexander Bobenko Discrete conformality and beyond

Discrete cmc surfaces

cmc minimal cmc
▶ circle patterns ⇒ minimal surfaces
▶ ring patterns ⇒ cmc surfaces

Alexander Bobenko Discrete conformality and beyond

Gauss maps. Orthogonal ring (circle) patterns

minimal cmc

Alexander Bobenko Discrete conformality and beyond
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C∞-convergence?

smooth cmc discrete cmc

[AB-Heller-Schmitt ’21] [AB-Hoffmann-Smeenk ’24]

Alexander Bobenko Discrete conformality and beyond

C∞-convergence?

Alexander Bobenko Discrete conformality and beyond

C∞-convergence?

smooth cmc discrete cmc
[AB-Heller-Schmitt ’21] [AB-Hoffmann-Smeenk ’24]

Alexander Bobenko Discrete conformality and beyond
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Papers

▶ AB, Lutz, Decorated discrete conformal maps and convex
polyhedral cusps, IMRN 2024:12 (2024)

▶ AB, Lutz, Decorated discrete conformal equivalence in
non-Euclidean geometries, DCG (2025)

▶ AB, Hoffmann, Rörig, Orthogonal ring patterns in the
plane, Geom. Dedicata (2023)

▶ AB, Spherical and hyperbolic orthogonal ring patterns:
Integrability and variational principles (2024)
arXiv:2409.06573

▶ AB, Hoffmann, Smeenk, Constant mean curvature
surfaces from ring patterns: Geometry from combinatorics
(2024) arXiv:2410.08915

▶ AB, Heller, Schmitt, Constant mean curvature surfaces
based on fundamental quadrilaterals, MPAG (2021)

Alexander Bobenko Discrete conformality and beyond
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Interactive Design and Efficient Simulation of Developable Surfaces with
Curved Folds

Jun Mitani
University of Tsukuba, Japan

Abstract

Developable surfaces with curved folds are widely used in engineering, architecture, digital fabrication, and
computational design. However, their strict geometric constraints make both modeling and simulation non-
trivial tasks. This talk introduces two complementary research approaches that address these challenges by
focusing on interactive 3D modeling and efficient crease pattern-based simulation.

The first approach, proposed by Mitani and Ohashi [1], presents an interactive 3D modeling framework that
enables users to directly manipulate curved fold structures in three-dimensional space. This method introduces
a novel user interface based on a handle curve, which serves as an auxiliary control element for shaping the de-
velopable surface. By specifying both a crease curve (the curved fold) and a handle curve, users can intuitively
deform the surface while ensuring developability and avoiding ruling collisions. This technique provides direct
control over the 3D shape, making it particularly useful for interactive design applications in CAD modeling
and digital fabrication.

In contrast, the second approach, developed by Sasaki and Mitani [2], focuses on efficiently generating
3D folded structures from 2D crease patterns. Instead of direct 3D manipulation, this method takes a given
crease pattern, approximates curved folds using polylines, and applies a ruling-aware triangulation to construct
a 3D model that accurately simulates the folded state. Implemented in a web-based Origami Simulator [3],
this approach enables fast and computationally efficient simulation, making it ideal for applications where the
input is a crease pattern rather than a predefined 3D model. The method allows for quick evaluation of different
folding scenarios and helps designers explore complex curved fold structures without manual 3D adjustments.

By integrating these two methods—interactive modeling and efficient simulation—we provide a powerful
framework for designing and analyzing developable surfaces with curved folds. This talk will discuss the
theoretical foundations, algorithmic implementations, and potential applications of these techniques in digital
fabrication, CAD modeling, and origami design.

References

[1] Jun Mitani, Kaoru Ohashi, “Interactive Curved Fold Modeling using a Handle Curve”, Computer-Aided
Design and Applications, 20(2) (2022) 275–289, https://doi: 10.14733/cadaps.2023.275-289.

[2] Kosuke Sasaki, Jun Mitani, “Simple implementation and low computational cost simulation of
curved folds based on ruling-aware triangulation”, Computers & Graphics, 102 (2021) 213–219,
https://doi:10.1016/j.cag.2021.09.012.

[3] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, “Fast interactive origami simulation using gpu
computation”, Origami 7 (2018) 1151–66.
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6

Interactive Design and 
Efficient Simulation of Developable Surfaces 

with Curved Folds

Jun Mitani
University of Tsukuba, JAPAN

1

5

Today's talk

• Provide topics related to shape modeling 
of origami.

• The main focus is on introducing several 
origami design applications that we have 
developed so far.

• There will be no novel points in view of 
mathematics (sorry), but focusing on 
interactive design approach for origami 
shapes.
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Developable surface

geodesic on a surface direction of rulings

p'': principal normal direction 

Another expression
τ: torsion, κ: curvature, T: unit tangent vector, B: unit binormal vector

𝐗𝐗 s, t � 𝒑𝒑 𝑠𝑠 � � ·
𝒑𝒑�� 𝑠𝑠 � 𝒑𝒑��� 𝑠𝑠

𝒑𝒑���𝑠𝑠� �

𝒑𝒑 s

Geometry of ruled surfaces
The trajectory traced by the continuous movement 
of a straight element (ruling).

p(s) and q(s) are two skew lines.

Ex: Hyperbolic Paraboloid

𝑿𝑿 s, t � 𝒑𝒑 s � � · 𝒆𝒆�s�

𝒑𝒑 s : A curve that represents the movement of a straight line.
𝒆𝒆 s : A unit vector representing the direction of a straight line.

𝑋𝑋 s, t � � s � ����s� � �����

s: arc length

𝒑𝒑 s

𝒆𝒆�s�
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Following Topics

1. Three design tools we developed before
2. Curved folds on Origami Simulator
3. Design interface for a space curved fold

Even though the mathematics of curve fold 
geometry is revealed, we still do not know how 
to design attractive curved origami.

Geometry of Curved Folds

15

(1)

(2)

(3)

𝜅𝜅����� � 𝜅𝜅��� cos����

cot 𝛽𝛽���� �
����� � ����
𝜅𝜅��� sin����

cot 𝛽𝛽���� �
������ � ����
𝜅𝜅��� sin����

(a) 3D crease curve (defined by 𝜅𝜅��� and ���� )
(b) 2D crease curve (defined by 𝜅𝜅����� )
(c) Fold angle (����)

Two of above parameters (a),(b),and(c) define the other one.

[Tachi 2011]
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19

18

A square sheet wraps around the sphere. 
The presence of fine wrinkles allows the paper to deform flexibly.

17

How can we make a sphere with a single sheet of paper?
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ORI-REVO

https://mitani.cs.tsukuba.ac.jp/ja/software/orirevo/

Unfold of a sphere

21

surface
gap

Basic idea

20

unfold fill the gaps

adding flaps adding protrusions
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Interactive Design of Planar Curved Folding by Reflection

Demo

261



36

A set of mirror operations 

32

A fold can be added to a developable surface by reflecting a 
part of the surface by an intersecting plane.

Mirror operation adds a planer curve fold.

262



The perpendicular bisector of the line segment connecting the initial 
coordinates of the vertex and the coordinates after moving is taken as the 
mirror plane.

37

DEMO

Design tool for curved folds based on reflection 

Demo
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Making a cylindrical surface by a sweep operation
• Elements deciding the shape

• Profile polyline: lying on a vertical plane
• Trajectory path: perpendicular to the vertical plane

Trajectory path 

Profile polyline

Column-shaped Origami Design Based on Mirror 
Reflections

Demo
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The profile polyline and the trajectory path 
defines the shape

＋

Profile polyline Trajectory path

＝

The Trajectory path represents the final shape as seen from above

Reflection planes are placed according to the Trajectory path

• A reflection plane is positioned so that each corner of the polyline lies 
on it. 

• Then the reflection plane is orientated so that its normal vector 
coincides with the bisector of the corner angle.

Trajectory path 

Trajectory path looks like a bounce trajectory of light rays by reflection planes.

Add a fold by a reflection

Top view
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Implemented system

Reconstruction of known patterns : Yoshimura 
Pattern 
• Degenerated line elements exist.

Profile polyline

Trajectory

＝+

Reconstruction of known patterns : Miura pattern

+

Profile polyline

Trajectory path

＝
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Curved folds on Origami Simulator

61

Kosuke Sasaki, and Jun Mitani. Simple 
implementation and low computational cost 
simulation of curved folds based on ruling-aware 
triangulation. Computers & Graphics, 2021.
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Simulation on the current Origami Simulator

Ruling-aware triangulation

Crease pattern

Triangular mesh

Simulation on the past Origami Simulator

63

Crease pattern

Triangular mesh

Ear clipping algorithm

62developed by Amanda Ghassaei

Origami Simulator used to support only straight folds

https://origamisimulator.org/
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Edge swap operation

72

1. Find edges that meet:

①Neither crease line nor borderline

②No more than three edges share the vertex 𝑉𝑉� and 𝑉𝑉�.
③The value of E becomes smaller by the edge-swap operation.

E is the value by which to evaluate the orthogonality 
between rulings and creases on the planar state.
Smaller E values indicate more orthogonality. 
� � 𝜃𝜃� � 𝜃𝜃� � � 𝜃𝜃� � 𝜃𝜃� �

2. The edge-swap operation is applied to the edge that has 
the smallest value of E after the edge-swap operation.

Crease pattern
Initial mesh

Constrained
Delaunay

triangulationDiscretization

Edge swap
operation

Final mesh

Outline of the proposed method

69

1) Rulings on a smooth developable surface tend not to align conically.
2) Rulings and the curved creases tend to align orthogonally 

on the unfolded pattern.

Better triangular mesh for curved folds

65

Developable surface
and its rulings

Folded paper Without rulings With rulings
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Results of triangulation

73

Crease pattern Initial mesh Final mesh

271



Interactive Curved Fold Modeling using a Handle Curve

79

Jun Mitani and Kaoru Ohashi, Interactive Curved Fold Modeling 
using a Handle Curve,  CAD Conference 2022, July 11-13, Beijing

76
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Proposed method

Input : (1)  Crease curve
(2)  Handle curve ← a copy of the crease curve

Edit: Handle curve
Output: Curved surface such that the handle curve 
almost rides on it with the specified crease curve.

84

Q: How can we create this 3D model 
on a CAD/CG software?

This shape is also made with a single crease curve

80

Target shape

Developable surfaces with a single curved fold
(not limited a planer curved fold but a space 
curved fold is allowed)
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Shape and orientation of the handle curve

87

congruent
→ cylindrical surface

similar
→ conical surface

C C  
11

86

crease curve + handle curve
↓
pseudo-rulings 
↓
fold angle
↓
rulings

fold angle α

projection
𝛼𝛼� � arccos

𝒏𝒏𝒊𝒊 · 𝒗𝒗�𝒊𝒊
𝒏𝒏𝒊𝒊 𝒗𝒗�𝒊𝒊

identical when the crease curve and the 
handle curve are similar

pseudo-ruling

Lines connect the points on the crease curve and the handle curve.

85

crease curve

handle curve

pseudo-ruling

274



Similar handle curve

93

←It is impossible to
specify this function
manually𝛼𝛼

𝑠𝑠

91

𝛼𝛼

𝑠𝑠

Congruent handle curve

User Interface

90
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Future Work

• Many artworks are made by the 
minute expansion and contraction 
at the folds to achieve expressive 
shapes

• A shape modeling tool that allows 
for minute distortion in folds is 
desirable

• Research and development using 
heat-deforming materials that 
take into account manufacturing 
processes such as self-folding is 
desirable

97

Summery

• The geometry of curve folding 
has become quite clear in 
mathematics.
• A user interface is crucial for 

designing artistic shapes.
• We developed several design 

tools for curved folds, and 
created various shapes.

96

Examples

94
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Jun MITANI 
University of Tsukuba, JAPAN

http://mitani.cs.tsukuba.ac.jp/
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Modeling of Discrete Developable Surfaces with a Break
Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi
University of Tsukuba, Japan

Jun Mitani
University of Tsukuba, Japan

Abstract

In recent years, industries such as manufacturing and architecture have increasingly adopted CAD software
for shape modeling and product design. This shift minimizes the cost and effort associated with physical
prototyping. Despite advancements, designing developable surfaces while maintaining intuitive and precise
interfaces remains a challenge. Developable surfaces, characterized by zero Gaussian curvature, are created
by twisting or bending unstretchable sheet materials. They are represented through a trajectory of straight
line elements called rulings. One remarkable technique is “Non-Crease”, which generates complex curvature
without traditional folds by creating indentations called breaks, which are degenerated creases with zero length.
By enabling the computational design of Non-Crease surfaces, it is expected to facilitate the digital archiving,
analysis, and creation of art pieces.

This research aims to support the design of developable surfaces with a break by proposing an interface that
integrates Gauss sphere-based trace diagrams[1]. These diagrams map the behavior of surface normal vectors
onto the Gauss sphere, aiding in the visualization of curvature distribution around vertices. A key property of
trace diagrams on the Gauss sphere for developable surfaces is that the areas enclosed by the traces sum to zero.
By editing these diagrams, users can intuitively create and modify developable surfaces with breaks.

The methodology involves starting with a predefined template for developable surfaces with a break. The
trace diagram corresponding to this template is visualized and editable. Users adjust trace lengths and angles
to create their desired shapes, with the system performing optimizations to ensure the areas enclosed by traces
on the Gauss sphere sum to zero, a key constraint of developable surfaces. Trace intersections and the enclosed
areas are calculated in real-time to guide this process. Post-editing, the interface generates a crease pattern.
Finaly, crease pattern is validated 3D shape and physical realization, supported by Origami Simulator[2].

Results show that this interface enables effective control over the ruling angles and the creation of vari-
ous developable surface shapes. Optimizations minimize area discrepancies in trace diagrams, enhancing the
accuracy of the resultant designs.

Future work will address extending the system to handle shapes with multiple convex and concave regions,
improving usability, and reducing optimization errors. This study highlights the potential of trace diagram-
based modeling as a powerful tool for designing intricate and mathematically accurate developable surfaces.

References

[1] David Huffman, “Curvature and Creases: A Primer on Paper”, IEEE Trans. on Computer, Vol. C-25, No.
10, pp. 1010–1019, 1976.

[2] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, “Fast, Interactive Origami Simulation using GPU
computation”, Origami, Vol. 7, pp. 1151–1166, 2018.
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Background

3

• Non-Crease: A technique that enables the complex curvature of paper by 
creating indentations called "breaks“, which are degenerated creases with zero 
length instead of folds.

• Expected applications in archiving artworks and design production.

Rulings radiate from the 
center of the break.

Discrete representation using 
triangles with rulings as edges, 
then unfolded.

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Background
• Shape modeling products such as CAD have become widespread.
• This research proposes an interface to support the design of developable surface 

modeling.
• A developable surface is a type of curved surface created by twisting and bending 

a single, inextensible sheet of material.
• It is represented by the trajectory of straight-line elements called "rulings."

2025/3/11 2University of Tsukuba  Kosuke Horiuchi

Modeling of Discrete Developable Surfaces with a Break
Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi Jun Mitani
University of Tsukuba, JAPAN
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𝜋𝜋/2

𝜋𝜋/2

• A mapping of how surface normal vectors change in space, projected onto a unit-
radius Gaussian sphere.

Trace Diagram at a Vertex of a Polyhedron (Cube)

＋：Convex
− ：Concave
𝐴𝐴, 𝐵𝐵, 𝐶𝐶：Sector Angles

Trace Diagram on the Gaussian Sphere

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram on the Gaussian Sphere
• A mapping of how surface normal vectors change in space, projected onto a unit-

radius Gaussian sphere.

5

Trace Diagram at a Vertex of a Polyhedron (Cube)

＋：Convex
− ：Concave
𝐴𝐴, 𝐵𝐵, 𝐶𝐶：Sector Angles

𝜋𝜋/2

𝜋𝜋/2

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Background

4

• However, existing CAD software makes it difficult to intuitively design surfaces while 
maintaining developable surface constraints.

• "Non-Crease" shapes are created using trace diagrams on the Gaussian sphere [1].
• These diagrams help understand the curvature distribution and shape around a 

single vertex.
• The method is well-suited for "Non-Crease" design, where surfaces curve around a 

break.

[1] David. Huffman, ``Curvature 
and Creases: A Primer on Paper‘’, 
IEEE Trans. on Computer, Vol. C-25, 
No. 10, pp. 1010-1019, 1976.2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Trace Diagram Rendering
• Prepare the template trace diagram.
• The developable surface used has one convex and one concave part.
• Crease pattern consists of 12 rulings.
• Sector angles (angles between rulings) are all 360/12 = 30°.

9

Template Shape and Its crease pattern

Convex

Concave

30°

Convex

Concave

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Other shapes will be considered at the end.

Template Renders trace 
diagram

Edit trace diagram Output

Overview of the Interface and Modeling Process
1. The user selects a base shape template.
2. The system renders the trace diagram.
3. The user edits the trace diagram.
4. The system optimizes the trace diagram.
5. The final shape is output as a crease pattern.

82025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram on the Gaussian Sphere
• The area enclosed by a trace represents Gaussian curvature, clockwise is positive, 

counterclockwise : negative
• At any point on a developable surface, Gaussian curvature is 0, and the sum of sector 

angles is 2π.

7

Trace Diagrams at a Vertex of a Polyhedron (Cube) and a Developable Surface Vertex

𝜋𝜋/2

𝜋𝜋/2

＋：Convex − ：Concave 𝐴𝐴, 𝐵𝐵, 𝐶𝐶：Sector Angles

2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Intersection Determination Procedure

Input: List of vertex coordinates plotting traces in connection order.
1. Check for intersections between all trace pairs.
2. After finding an intersection, determine whether the point belongs to both 

traces.

12

交点

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram Region Segmentation
• The trace diagram forms a figure-eight shape.
• Two regions exist, and their areas indicate curvature.
• To compute the area of each region, segmentation is performed.
• Each region is divided by intersection points of traces.

11

Region 1

Region 2

intersection

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram Rendering
1. Compute the normal vectors of each developable surface face.

𝒏𝒏𝒊𝒊 = 𝒑𝒑𝒊𝒊 × 𝒑𝒑𝒊𝒊+𝟏𝟏
2. Connect vertices corresponding to normal vectors in order.

10

𝒑𝒑𝒊𝒊

𝑝𝑝𝑖𝑖−1

𝒑𝒑𝒊𝒊+𝟏𝟏

𝑜𝑜
𝒏𝒏𝒊𝒊

Vertices Constituting the Developable Surface
Trace Diagram of the Template shape

2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Region Segmentation

After computing intersection points, traces are divided into positive 
and negative regions.
Insert intersection coordinates into the vertex list.
Split the coordinate list into sections based on the intersection points.

[𝑝𝑝1, 𝑝𝑝2, 𝑞𝑞1, 𝑞𝑞2]

[𝑝𝑝1, 𝐼𝐼, 𝑝𝑝2, 𝑞𝑞1, 𝐼𝐼, 𝑞𝑞2]

[𝑝𝑝1, 𝐼𝐼, 𝑝𝑝2, 𝑞𝑞1, 𝐼𝐼, 𝑞𝑞2]

[𝐼𝐼, 𝑝𝑝2, 𝑞𝑞1] [𝐼𝐼, 𝑞𝑞2, 𝑝𝑝1] 15

𝑝𝑝1

𝑝𝑝2

𝐼𝐼

𝑞𝑞1

𝑞𝑞2

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Intersection Determination Procedure

2. After finding an intersection, determine whether the point belongs to both traces.
𝜃𝜃arc − 𝜃𝜃1 + 𝜃𝜃2 < 𝜖𝜖

𝜃𝜃𝑎𝑎𝑎𝑎𝑎𝑎 = cos−1( 𝒑𝒑𝟏𝟏∙𝒑𝒑𝟐𝟐
𝑝𝑝𝑝 𝒑𝒑𝟐𝟐

)

𝜃𝜃1 = cos−1( 𝒑𝒑𝟏𝟏∙𝑰𝑰𝟏𝟏
𝒑𝒑𝟏𝟏 𝑰𝑰𝟏𝟏

)

𝜃𝜃2 = cos−1( 𝒑𝒑𝟐𝟐∙𝑰𝑰𝟏𝟏
𝒑𝒑𝟐𝟐 𝑰𝑰𝟏𝟏

)

𝑝𝑝1

𝑝𝑝2

𝑞𝑞1

𝑞𝑞2

𝑜𝑜 𝒏𝒏𝟐𝟐

𝒏𝒏𝟏𝟏

𝑰𝑰𝟏𝟏

𝑰𝑰𝟐𝟐

𝜃𝜃1

𝜃𝜃2𝜃𝜃arc

142025/3/11 University of Tsukuba  Kosuke Horiuchi

2025/3/11 University of Tsukuba  Kosuke Horiuchi

𝑝𝑝1

𝑝𝑝2

𝑞𝑞1

𝑞𝑞2

𝑜𝑜 𝒏𝒏𝟐𝟐

𝒏𝒏𝟏𝟏
𝑳𝑳

13

Intersection Determination Procedure

Input: List of vertex coordinates plotting traces in connection order.
1. Check for intersections between all trace pairs.

• Let the endpoints of two traces be 𝑝𝑝1,𝑝𝑝2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞1, 𝑞𝑞2, 
respectively.

• If the two traces intersect, the intersection line of their planes 
passes through the center of the sphere.

• The direction vector L of this intersection line is given by the 
cross product of the normal vectors of the two planes.

𝑳𝑳 = 𝒏𝒏𝟏𝟏 × 𝒏𝒏𝟐𝟐 𝒏𝒏𝟏𝟏 = 𝒑𝒑𝟏𝟏 × 𝒑𝒑𝟐𝟐, 𝒏𝒏𝟐𝟐= 𝒒𝒒𝟏𝟏 × 𝒒𝒒𝟐𝟐
• The intersection line L has two intersection points 𝑰𝑰𝟏𝟏 and 𝑰𝑰𝟐𝟐.

𝑰𝑰𝟏𝟏 =
𝑳𝑳
𝑳𝑳 , 𝑰𝑰𝟐𝟐 = −𝑰𝑰𝟏𝟏
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Result of Trace Diagram Area Calculation
• The areas of the two enclosed regions in a trace diagram should be equal, but 

discrepancies arise.
• These differences are likely due to surface shape errors and rounding errors in 

computation.
• Sector angles result in multiples of 30°.

18

Region 1 : 0.5592
Region 2 : 0.5953

Area difference : 0.0061

30°

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram Area Calculation
• The enclosed region in a trace diagram forms a spherical polygon, 

and its area is computed using spherical excess.
• The interior angle 𝑎𝑎𝑖𝑖 of a spherical polygon is obtained from the dot product of 

adjacent normal vectors 𝒏𝒏𝒊𝒊−𝟏𝟏 𝑎𝑎𝑎𝑎𝑎𝑎 𝒏𝒏𝒊𝒊.
• The area 𝐴𝐴 of a spherical polygon is calculated as:

𝐴𝐴 =෍
𝑖𝑖=1

𝑛𝑛

𝑎𝑎𝑖𝑖 − (𝑛𝑛 − 2)𝜋𝜋

（𝑛𝑛：number of vertices in the spherical polygon）

17

𝑎𝑎𝑖𝑖

2025/3/11 University of Tsukuba  Kosuke Horiuchi

𝒑𝒑𝒊𝒊

𝒑𝒑𝒊𝒊+𝟏𝟏

𝑜𝑜
𝒏𝒏𝒊𝒊

𝒏𝒏𝒊𝒊−𝟏𝟏

Result of Region Segmentation

162025/3/11 University of Tsukuba  Kosuke Horiuchi
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Before Editing

After Editing & Optimization

Trace Diagram Optimization

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram Optimization
• Distance constraint penalty: 

To minimize displacement from initial vertex positions, a penalty function is used.

• Vertex positions are updated using gradient descent.

20

𝑚𝑚 : Number of Vertices of the Spherical Polygon

Vertex Coordinate at 
Step 𝑘𝑘 for the 𝑖𝑖-th Vertex

Learning Rate Gradient of the Objective Function

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Trace Diagram Optimization
• Objective Function

• Angle constraint penalty: 
Enforce angle constraints so that adjacent trace angles belong to                                          
𝑇𝑇 = 30, 150, 210, 330°

19

Areas of the two regions Penalty for violating angle 
constraints

Penalty for vertex movement 
distance

trace vertices

𝑚𝑚 : Number of Vertices of the Spherical Polygon
𝜙𝜙𝑖𝑖 : Magnitude of the Interior Angles of the Spherical Polygon

2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Before Editing After Editing & 
Optimization

24

Comparison of Surface Before and After Editing

• The development diagram is observed using Origami Simulator.

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Controlling Rulings and Development Diagram Output
• Origami Simulator is used to specify fold angles along rulings.
• Mountain folds are red, and valley folds are blue.
• Fold angle magnitude is represented by transparency.

23

Correspondence Between Ruling 
Fold Angle and Color Output crease pattern

2025/3/11 University of Tsukuba  Kosuke Horiuchi

Convex

Concave

Fold Angle of the ruling

Color of ruling

22

Before Editing After Optimization

Trace Diagram Optimization

After Editing
Before Editing After Editing After Optimization

Region 1 [rad] 0.5592 0.7111 0.8172
Region 2 [rad] 0.5953 0.6144 0.8236

Difference [rad] 0.0061 0.0967 0.0064
2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Other shapes – 3 convex and 3 concave 

2. 3 convex and 3 concave

272025/3/11 University of Tsukuba  Kosuke Horiuchi

Other shapes – 2 convex and 2 concave 

Render trace diagrams for various shapes and consider optimization 
methods
1. 2 convex and 2 concave

Region 1
0.3484

Region  3
0.3480

Region 2
0.6979 

Region 1 + Region 3 - Region 2 = -0.0015  

262025/3/11 University of Tsukuba  Kosuke Horiuchi

convex

concave

convex

concave

trace diagram 

25

Shapes Created with the Proposed Interface

• Example with 36 rulings.

2025/3/11 University of Tsukuba  Kosuke Horiuchi
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Summary

• This research proposed a shape modeling method for developable 
surfaces using trace diagrams.

• Implemented functionalities for rendering, editing, and optimizing 
trace diagrams.

• Confirmed that ruling control and developable surface creation are 
possible through trace diagram editing.

302025/3/11 University of Tsukuba  Kosuke Horiuchi

Other shapes – 3 convex and 3 concave 

To region segmentation,

292025/3/11 University of Tsukuba  Kosuke Horiuchi

𝑝𝑝1

𝑝𝑝2

𝑜𝑜

Other shapes – 3 convex and 3 concave 

282025/3/11 University of Tsukuba  Kosuke Horiuchi

convex

concave

convex

concave

convex

concave

convex

concave

convex

concave

convex
concave

2. 3 convex and 3 concave
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Future Work

• Further minimize the area difference between trace regions.
• Support for various shapes (currently limited to one convex and one 

concave part).
• Implement partial shape modification.
• Evaluate and improve usability.

312025/3/11 University of Tsukuba  Kosuke Horiuchi
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Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and
Prototype Architectural Design

Aida Safary
University of Tsukuba, Japan

Jun Mitani
University of Tsukuba, Japan

Abstract

In this research, we produce digital parametric tools of 3D origami-based architectural elements, enabling
the users to modify and manipulate basic geometrical features of these tools to explore and create extended
geometric variability options of the mentioned structures. In our first project, we designed a module for the
One-Fold project by Patkau architects with specific options for changing the shape parameters to give users
the ability to generate various structures of architectural shelters of the same 3D shape. The One-Fold project
consists of a rectangular or square plane with a single fold as of its diagonal line, which creates conic curve
borders when folded [1]. As our second research project, we developed a digital system for the parametric
design of David Huffman’s design with ellipses of two-degree two-vertices. In this design tool, we apply
parameters for changing the fold angle, the size of the structure, and the rotation of curved lines inside our 3D
shape. In this design tool, we applied an approach similar to the additive algorithm method for generating our
shape step by step as a quad mesh structure [2, 3]. In our future research project, we intend to compare our
digital tools with physical prototypes using 3D scanners, evaluate the Elastica curves of both models and use
the RMSE method for surface error analysis.

References

[1] Aida Safary, Hamid Shafieasl, and Jun Mitani, “Geometric design tool for One-Fold, a curved origami with
a single fold”, J. Geom. Graph., 28 (2024) 89–101.

[2] Erik D. Demaine, Martin L. Demaine, and Duks Koschitz, “Reconstructing David Huffman’s legacy in
curved-crease folding”, Origami 5 (2011) 39–52.

[3] Levi H. Dudte, Gary P. T. Choi, and L. Mahadevan, “An additive algorithm for origami design”, Proc. Natl.
Acad. Sci., 118 (2021) e2019241118.
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Table of Contents- Research Projects

1- Geometric Design Tool for One-Fold, a Curved Origami with 
a Single Fold.

2-Parametrized Folded State shape Modeling of David 
Huffman’s Ellipse. 

3- Comparison and Calculation of Error Value Between Digital 
models and Physical Prototypes of Digital Systems. 

3

Research Background and Objective:

● The primary aim of this research is to develop digital parametric tools for 3D origami-inspired 
architectural components, allowing users to adjust and customize fundamental geometric 
characteristics of these tools to investigate and generate a broader range of geometric variations 
for the structures described.
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https://www.patkau.ca/projects/one-fold
Demaine, Erik D., Martin L. Demaine, and Duks 
Koschitz. "Reconstructing David Huffman’s legacy in 
curved-crease folding." Origami 5 (2011): 39-52.

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and 
Prototype Architectural Design 

University of Tsukuba
2025.03.11

Aida SAFARY-Mitani Lab
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Steps of Methodology

1. Creation of Direction-Curve.

2. The apex would be the vertex of a cone.

3. Creation of Direction Surface.

4. Creation of Direction Vectors.

5. Creation of Final Surface. 

6

Main Idea-Objective 

To replicate the original pavilion model called one-fold, inspired by Paul Jackson’s 
“One-Crease” artwork, By Patkau Architects, as A digital model. 

5Original Prototype Our Digital System Render

Research Title:

Geometric Design Tool for One-Fold, a Curved Origami with a Single Fold.

4
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Diagram of Process-Direction Surface vs Direction Vectors

9

The steps of emerging Direction-Surface can be seen from left to right . The right 
surface appears upon when the apex is found and the Direction-Vectors are the 
vectors that overlaps on the indicated line on it.

Finding the apex

●  

8Finding the apex point. 

Direction Sectors(Curves)

●  

7
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Direction-Surface

Reflexing the surface on the other side of the z-axis to create the overall completed 
Direction-Surface.  

12

Conic Structures

Applying first developability condition. 

11

Direction vectors-Direction Vector Unitization

Direction-Vectors = connecting the apex point 
with vertices of the Direction-Curve. 

Direction-Vectors give direction to the final 
surface's ruling lines.

10
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Geometric Features

●  

15

Direction-Surface vs Final Surface

Final surfaces are according to the orientation of Direction-Vectors. Upper surfaces indicate the 
Direction-Surface and the lower surfaces are final surfaces.

14

Any Possible Quadrilaterals

●  

13
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One-Fold System

18

Only quadrilaterals?

●  

17

Process Renders

16
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Research Title: 

Parameterized Folded State Shape Modeling of David Huffman’s Ellipse. 

21

Construction of Physical Model

Final Level

20

Construction of Physical Model

19

Base part Side part Front Part
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What is the idea of additive algorithm? What are the Steps?
●  

 

24

We decided to take a different approach.

A new approach called the Additive 
algorithm method.

Related paper: 

Dudte, Levi H., Gary PT Choi, and L. Mahadevan. "An additive 
algorithm for origami design." Proceedings of the National 

Academy of Sciences 118.21 (2021): e2019241118. 

23

Huffman design using ellipses with 2 
degree-2 vertices.

Demaine, Erik D., Martin L. Demaine, and Duks 
Koschitz. "Reconstructing David Huffman's legacy in 
curved-crease folding." Origami 5 (2011): 39-52.

22
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Step 3:

●  

27

Step 2:

We select one of the following pieces:

 

26

Step 1: Dividing the crease pattern.

Dividing crease pattern 

25
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We follow the same process until the end until we get the desired shape. 

30

We use the three points shown in the left figure and find the fourth point shown in 
the right figures according to the corresponding lengths of unfolded surface.

29

●  

28

Additive Method
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    Repeating the process until the end.

 

33

●  

32

For the outer side of the ellipse.

●  

 

31
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Research Title:

Comparison and Calculation of Error Value Between Digital Models and Physical 
Prototypes of Our Designed Digital Systems . 

36

Huffman’s Ellipse System:

35

Final renders

The angle condition on each vertice is preserved. 

34
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From concept  and sketches to prototyping:

Concepts, 
Initial 

sketches.

Information, 
goals, 

requirements, 
restrictions

Final plans , 
renders, 

digital model 
designs

Prototyping

39

Prototype that we intended to create.

One-Fold: The original 
project is made of metal 
sheets but we deal with fabric 
in our own prototype. 

Patkau.ca

38

Types of Prototypes 

Different techniques: 

1-Traditional Physical Models. 

 2-Modern Digital Models (CAD models). 

3-3D printing. 

Archdaily.com 37
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Cloud-compare Evaluation

1-Loading the models, selecting the models, 
aligning models.

2- Model alignment. 

One model should be used as a reference, 
one model should be an aligned target. 

42

3D printing and Error Evaluation

●  

41

Digital Model Scanned Model of 
Physical Prototype

Our example:

Fabric Structure, 

Joint finishing master slim cables. 

White sheet roll fabric. 

40
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We developed a Related Grasshopper Algorithm

●  

45

We developed a Related Grasshopper Algorithm

 

44

Energy Minimization & Bending energy
Smoothing energy = minimization.  

Minimize energy = minimize area. 

The goal is to minimize the energy of a membrane, which corresponds to minimizing its 
surface area. This is mathematically expressed through the integrals shown in the image.

Elastica curves describe the equilibrium shape of thin, 
flexible rods or plates under bending.
The energy associated with these curves is bending 
energy, given by:

43
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Conclusion and Future Work

1-Our project illustrated the efficiency of combining digital and physical prototyping in 
architectural design.

2-Challenges included considering the accuracy of construction or the complexity of the 
surfaces.

3-In the future, certain refinements will be undertaken in our methods and materials to 
continue the advancement of design and construction..

46
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Hoberman’s Scissor Mechanism and Digital fabrication

Higa Miyashiro Pamela
University of Tsukuba, Japan

Yiyang Jia
Japan Women’s University, Japan

Mitani Jun
University of Tsukuba, Japan

Abstract

The Hoberman mechanism, developed by Chuck Hoberman, is renowned for its applications in toys and ar-
chitecture. The Hoberman Sphere, a collapsible toy, exemplifies the mechanism’s versatility through its use
of circular elements with scissor-like linkages to expand and contract. These linkages are fundamental to
the mechanism’s deployment, which is also evident in architectural applications, most notably in the Hober-
man Arch, showcased at the 2002 Winter Olympics. This structure, composed of segmented arcs arranged in
multiple layers, highlights the scalability and adaptability of the mechanism. Our research on the Hoberman
mechanism spans geometric principles, movement profiles, and deployment constraints [1, 2, 3]. In this study,
we combine theoretical research, digital modeling, and physical prototyping. Using tools such as Rhinoceros
and Grasshopper, we facilitated digital simulations of scissor mechanisms. Additionally, we employed digital
fabrication techniques to create physical prototypes. We tested three configurations: an irregular polyline, a
regular dodecagon, and a circumscribed irregular dodecagon. These models allowed us to explore how geom-
etry impacts movement and to address the challenges posed by irregular configurations. We focused specifi-
cally on the irregular dodecagon model, as its closed and irregular geometry highlights the constraints of the
method. By maintaining proportional link lengths and angular relationships, we ensured proper deployment of
the mechanism. A physical prototype of the irregular dodecagon was fabricated, and its movement matched
the predictions from the simulations. Inspired by the Hoberman Arch, which incorporates multiple layers of
Hoberman mechanisms into a discretized semicircle, we added additional layers to the irregular dodecagon
model. However, the multi-layered design exhibited resistance and deformation during movement, suggesting
the presence of over-constraints in the model. To further investigate, we simulated the movement of the double-
layered irregular dodecagon. The simulation, combined with an in-depth geometric analysis, revealed that
multi-layered designs using irregular polygons inherently lead to over-constraints. Overall, our study demon-
strates the Hoberman mechanism’s adaptability in toys, architecture, and deployable structures. However, we
also identified limitations in the shapes that can successfully support multi-layered Hoberman mechanisms,
particularly in irregular configurations.

References

[1] Gomez, Alfonso, “Deployable Domes Based on Angulated Scissors: A Method of Design Based on Geo-
metrical Construction”, The International Journal of Designed Objects, 9 (2015) 1.

[2] Asefi, Maziar, Ebadia, Atefeh, and Ghasemib, Azam, “Geometry feasibility of angulated scissor-like ele-
ments in a constant perimeter”, (2019).

[3] Sun, Xuemin, Yao, Yan-An, and Li, Ruiming, “Novel method of constructing generalized Hoberman sphere
mechanisms based on deployment axes”, Frontiers of Mechanical Engineering, 15 (2020) 89–99.
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Origami and Scissor Mechanism

3
Image from Vlachaki et al., 2021 (Hybrid Deployable Structures)

● Origami and 
scissor mechanism 
have similar 
movement 
behavior.

● Long term goal is 
to develop a 
system for hybrid 
structure:
Scissor mechanism 
and origami

Scissor Mechanism

2

Scissor mechanism unit
● Forms an X shape
● Pair of interconnected rigid 

links. 
● Links joined by a pivot point

Pivot point

Multiple connected units
● Deployable structures
● Controlled transformation 
● One degree of freedom

Higa Pamela
CGG Mitani Group

2025/03

Hoberman’s Scissor mechanism and its 
fabrication.
CREST ED3GE meeting 2025

1

筑波大学
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6

Large-Scale Deployable Structures

Hoberman Arch - Olympic Medals Plaza in Salt Lake City (2002). Image source: https://www.hoberman.com/

5Video from Teoh et al., 2018 (Rotary-Actuated Folding Polyhedrons)

Scissor mechanism in Micro robotics

Hybrid Deployable Structures 

4
Image from Vlachaki & Liapi, 2024 (Hybrid Origami-Linkage Structures)
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Hoberman’s Scissor Mechanism and the  Hoberman Sphere

Contracted circleExpanded circle

Spherical icosidodecahedron Hoberman Sphere

• Single degree of 
freedom

9

Scissor Mechanism movements profiles

8
● Linear movement ● Polar movement ● Radial (Hoberman 

Scissor mechanism)

7

Research Goals

• Study and understand Scissor mechanism, 
specifically Hoberman's scissor mechanism for close 
polygons and close polyhedral with radial movement. 

• Simulate movement trajectories and analyze 
constraints.

• Fabricate physical models to compare with simulation

312



Two angulated elements

Two angulated elements for a Radial 
Movement

Radial movement
BC/AC = EC/DC=m
∠ACD = ∠BCE = π - ∠BOD.

Constraints 

12

Generalized Angulated Elements

Generalized angulated element. (GAE)

Lineal movement
∠BCE = ∠ACD = π
BC = AC
DC= EC

∠ACD ∠BCE Polar movement
∠BCE = ∠ACD = π
BC = DC 
AC = EC
BC≠ AC

Radial movement (Hoberman’s 
Scissor mechanism)
BC/AC = EC/DC=m
∠ACD = ∠BCE = π - ∠BOD.

11

Hoberman’s Arch 

Hoberman’s arch Scissor 
mechanism, one layer

Hoberman’s arch Scissor 
mechanism, multilayered

10
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Two layered Irregular dodecagon

Hoberman’s Scissor mechanism

Hoberman’s arch Physical model
-Presented resistance to movement.

Simulation
- Gaps between rings 

during movement 15

Construction irregular dodecagon

Movement simulation with 
trajectory path. 

Geometry construction Physical model

14

Pantographic Grasshopper script

13

To study the movement of Hoberman Mechanism, we used a modified version of 
Pantographic script for Rhinoceros- Grasshopper.

Input: polyline

The script takes the points of the polyline and places them as pivot points, and the 
midpoints of each polyline segment as the connections between units.
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Radial movement

Circumscribed Polygon with 
Random Tangent Points

Polygon with all but one 
vertex on a circle.

• Any pivot point that lies on 
the circle will move 
towards the center of the 
circumcircle

18

Physical model

• Gap at the pivot point provides 
enough flexibility to accommodate 
the over-constraint.

17

Physical model Vs Mathematical Model

Irregular Polygon Over-Constraint

θ’=θ’’

Only regular polygons 
can be multilayered.

Multilayered Scissor 
mechanism.

(Hoberman’s arch)

Angled elements 
Lateral pair

Angled elements
Axial pair

16
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Irregular sphere – Joints constraints 

21

Joints between units

Angulated scissor 
element

Pivot point
Pivot point and joints between 
units trajectory simulations. 

Irregular sphere – Joints constraints 

20

Pivot point and joints between 
units trajectory simulations. 

Central joints
between units

Pivot points

Irregular sphere

19

• Exploring Irregularity: 
• Applied irregular polygon concepts to 

create a polyhedral structure with radial 
movement toward the circumscribed 
sphere's center.

• Construction Process: Arranged circles of 
equal radius around a common 
circumcenter.

• Circumscribed irregular polygons around 
these circles to form the structure.
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Irregular sphere – Joints constraints 

Example of non-equidistant 
pivot points from the central 
joint

Irregular sphere – Joints constraints 

23

To prevent the joint from 
being over constrained, these 
four pivot points must be 
equidistant from the central 
joint

r
Pivot points

Irregular sphere – Joints constraints 

22

The central joints connects 
four units.
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Sphere Fabrication – Joint Desing

27

• The joint adds degrees of freedom to the 
movement when the joint is considered 
independently. 

• But when the whole system is 
assembled, the system has 1 degree of 
freedom.

Sphere Fabrication – Joint Desing

26

Central join between 
4 units

Sphere from 
irregular polygons 
for fabrication

25

• A sphere was designed to 
show irregularity limits in a 
Hoberman mechanism.

• The sphere is made of 
three irregular polygons.

• Two polygons lie on planes 
that are not perpendicular 
to each other.

• One polygon has a 
concave corner. 
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Future work

• Study the movement and trajectory path of scissor mechanism that 

includes lineal, polar and radial movement. 

• Apply the method on to wide variety of irregular shapes.

• Wider the possibilities for origami + Scissor mechanism hybrid 

structures. 

30

Summary

This work is in an early stage of development. This section of the research 

aimed to understand the degree of irregularity achievable with shapes 

constructed with Hoberman mechanism.

• Found limitations for the multilayer mechanism.

• Study the joints constraints for a polyhedral

• Fabricated irregular polyhedral. 

29

Physical 
model of 
regular 
sphere

28
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Surface Rationalization and Optimization in Structural Engineering Practice

Toby Mitchell
Thornton Tomasetti, Chicago, United States

Abstract

In this talk, we examine the nuances and challenges of deploying the techniques of architectural geometry
and discrete differential geometry in commercial structural engineering practice. By contrast to the academic
context, structural design of surface structures in building practice involves multiple overlapping optimization
objectives, many of which are not easily quantifiable, and many of which are not fully clear at the outset of
the design process. Instead, the particular mathematical techniques appropriate for a given design problem
must be uncovered by engineers working together with architects and other specialists in an iterative design
process that integrates structural and construction performance goals with other technical objectives as well
as subjective design intent. The author will examine approaches that have proven successful in his work on
practical engineering projects, such as

1. The use of graphic statics in the design of the flat-paneled negatively-curved grid shell of the Hangzhou
Greenland Center (which recently won the CTBUH’s Best Tall Building award in the Asian region [1]).

2. The use of the Airy stress function in structural design of the flat-paneled quad-dominant grid shell of
the Columbus, Ohio John Glenn airport renovation, and the utility of self-Airy shells in incorporating
multiple panelization objectives while retaining structural performance [2].

3. The use of the static-kinematic duality in the design of rigidly-foldable structural origami such as SOM’s
MAK pavilion, and in the design of doubly-curved flat-paneled cable nets [3]

In addition to discussing the specific mathematical techniques used in these projects, the author will focus on
the practical aspects of deploying architectural geometry and structural form-finding in design practice, such as
the need to educate engineers on specialized techniques that are not typically part of their education, the need
to solicit buy-in and facilitate authorship of architectural designers, the phasing of project development that
necessitates the use of ”lightweight” mathematical methods that do not rely on extensive information that will
not be available in the early phases of design development, and the need to respond to input from contractors
which often comes at the very end of a design process and may necessitate substantial design revisions.

References

[1] ”SOM Wins Seven Awards of Excellence from the Council on Tall Buildings and Urban Habitat”,
https://www.som.com/news/ctbuh-awards-24/.

[2] Cameron Millar, Toby Mitchell, Arek Mazurek, Ashpica Chhabra, Alessandro Beghini, Jeanne N. Clel-
land, Allan McRobie, and William F. Baker, On designing plane-faced funicular gridshells, Int. J. Space
Structures, vol. 38, issue 1 (2022), https://doi.org/10.1177/09560599221126656.

[3] Toby Mitchell, Arek Mazurek, Christian Hartz, Masaaki Miki, and William F. Baker, Structural Applica-
tions of the Graphics Statics and Static-Kinematic Dualities: Rigid Origami, Self-Centering Cable Nets,
and Linkage Meshes, Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Graphic
statics, pp. 1-8(8)
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Variable Projection (VarPro) Method and Form-finding of
Tension-compression Mixed Shells

Masaaki Miki
The University of Tokyo, Japan

Abstract

This presentation reviews recent advances in the form-finding of tension-compression mixed shells. Although
purely compressive stress states are traditionally considered ideal for shell structures, we propose that allowing
a mix of tension and compression can expand the range of feasible shell geometries. The key challenge lies
in the fact that the equilibrium problem becomes a hyperbolic boundary value problem, which is notoriously
difficult to solve. We point out that the introduction of the Airy’s stress function reveals that the equilibrium
equation is a bilinear partial differential equation (PDE). We then indicate that this PDE can be solved using the
Variable Projection (VarPro) method—developed specifically for bilinear problems. We also demonstrate that
the alignment of stress and curvature directions is governed by a bilinear PDE, which can be solved concurrently
with the equilibrium equation using the VarPro method.
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SIGGRAPH 2015 

Form-finding of pure-compression shells using Airy 
stress function and NURBS

[Miki et al., 2015] Parametric self-supporting surfaces via direct computation of Airy stress 
functions, Transactions on Graphics, 2015

THREE SIGGRAPH PAPERS (2015, 2022 SA, 2024)

© MASAAKI MIKI, ALL RIGHTS RESERVED.

MASAAKI MIKI, ASSISTANT PROFESSOR, THE UNIVERSITY OF TOKYO

**THESE WORKS ARE IN CLOSE COLLABORATION WITH TOBY MITCHELL

VARIABLE PROJECTION METHOD AND 
FORM-FINDING OF T/C MIXED SHELLS
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BACKGROUND

SIGGRAPH 2024

Alignment of conjugate stress and curvature nets in a 
NURBS-based T/C mixed shell form-finding

Reported that the alignment condition can be solved 
using VarPro as well.

[Miki et al., 2024] Alignment conditions for NURBS-based design of mixed 
tension−compression grid shells, Transactions on Graphics, 2024

SIGGRAPH ASIA 2022

Form-finding of T/C mixed shells using Airy stress 
function and NURBS

• Reported that the problem can be solved using the 
Variable Projection (VarPro) method, a Least-
squares and Gauss-Newton based method 
specifically designed to solve a system of bilinear 
equations.

[Miki and Mitchell, 2022] Interactive exploration of tension−compression mixed shells, 
Transactions on Graphics, 2022

325



I THINK THIS IS BEAUTIFUL. IT FOLLOWS THE PRINCIPLES OF 
MECHANICS, RIGHT?. CAN WE DO THIS? – NO. –

WHAT DO WE SEE VALUE IN

A good system allows us to build arbitrary shapes 
effectively. If the statue of Liberty is possible, the 
Stanford Bunny at an architectural scale should also 
be possible.

However, this is not what “we” do, because “we” 
don’t see any value in it.

Generated by DALL-E Buildepedia

“Zaha Hadid’s Heydar Aliyev Cultural 
Centre: Turning a Vision into Reality”

SYSTEM

A system is a structure based on a simple and stable 
geometry, assembled with repeating and easily 
manufactured components and standardized detailing; it 
allows to create a variety of shapes.

Left: a skeleton inside the Statue of Liberty, engineered 
by Gustave Eiffel.

How was Gustave Eiffel Involved in the Statue of Liberty?
https://www.thecollector.com/how-gustave-eiffel-involved-in-
statue-of-liberty/
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WHAT IS A GOOD DESIGN IN ARCHITECTURE?

Shanghai International F1 Circuit (Taiyo Kogyo)

https://www.taiyokogyo.co.jp/en/works/50495/

Good architecture should involve both

1. a structurally efficient shape, and

2. a good system that is easy to construct

For example,

Minimal surface = a structurally efficient shape

Partitioning with geodesic lines = a good system that 
is easy to construct

STRUCTURALLY EFFICIENT SHAPES

“We” see value in shapes that follow the principles of 
mechanics.

There are a few existing precedents whose 
geometry follows the principles of mechanics. 
However, they are extremely rare because their 
construction is too expensive. They cost too much 
because they lack systems easy to construct.

Munich Olympic Stadium (Frie Otto)

Jefferson National Expansion Memorial (Eero Saarinen)

Olympiastadion (Munich) (2024, June 3). From Wikipedia 
https://en.wikipedia.org/wiki/Olympiastadion_(Munich)

Gateway Arch National Park (2024, May 21). From Wikipedia 
https://en.wikipedia.org/wiki/Gateway_Arch_National_Park

TENSION-COMPRESSION-BENDING

https://www.youtube.com/watch?v=4Am6myjNpEw

We don’t want bending
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PHYSICAL MODEL MAKING

COMPUTATION FORM-FINDING OF TENSION STRUCTURES

FORM-FINDING USING SOAP FILM (TENSION)

Frie Otto film, Youtube https://www.archdaily.com/610531/frei-otto-and-the-
importance-of-experimentation-in-architecture
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FORM-FINDING BY INVERTED HANGING 
EXPERIMENTS (COMPRESSION)

KK Clark, https://adventures-of-kk.blogspot.com/2012/05/day-8-
bike-tour-gaudi.html

Sagrada Familia, Bernard Gagnon, 2009, Licensed under CC 
BY-SA 3.0 via Wikimedia Commons 

FORM-FINDING BY INVERTED HANGING 
EXPERIMENTS (COMPRESSION)

Heinz Isler
Highway service area, Solothurn, Switzerland

© Chriusha (Хрюша) / CC-BY-SA-3.0H. Isler, Typologie und Technik der modernen Schalen, 1983

CATENARY ARCH (COMPRESSION)

The Gateway Arch, Earo Saarinen, St. Louis
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SHELL-LIKE STRUCTURES BY ARCHITECTS

TWA Flight Center at JFK Airport (Eero Saarinen) Sydney Opera House (Jørn Utzon)

TWA Flight Center (2024, May 17). From Wikipedia 
https://en.wikipedia.org/wiki/TWA_Flight_Center

Sydney Opera House (2024, June 20). From Wikipedia. 
https://en.wikipedia.org/wiki/Sydney_Opera_House

Perhaps they are not pure shells, but they are beautiful.

PURE-COMPRESSION DOMES

Eduardo Torroja Pier Luigi Nervi

Eduardo Torroja (2024, March 4). From Wikipedia 
https://en.wikipedia.org/wiki/Eduardo_Torroja

Pier Luigi Nervi (2024, June 29). From Wikipedia 
https://en.wikipedia.org/wiki/Pier_Luigi_Nervi

Masterpieces by engineers

COMPUTATIONAL FORM-FINDING  OF PURE-
COMPRESSION SHELLS
A simulation of the inverted hanging 
experiments.

© Designboom, MARC FORNES/THEVERYMANY 
fabricates vaulted willow pavilion in edmonton
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ISN’T IT BENDING? – NO –

This is T/C 
mixed

This is bending

T/C MIXED SHELLS = UNEXPLORED FRONTIER

Already explored

T/C

Pure-compression

The complete set of special class of 
surfaces that can withstand gravity 
with no-bending

WHAT IF A MIX OF TENSION AND 
COMPRESSION IS ALLOWED?

Felix Candela Amancio Williams

* Courtesy of Amancio Williams funds, 
Canadian Centre for Architecture, Gift of 
the children of Amancio Williams

©Felipe Gabaldón, CC BY 2.0.

Notoriously 
difficult to 
solve!
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FORM-FINDING USING AIRY STRESS FUNCTION

Positive Gaussian 
curvature

Negative Gaussian 
curvature

Pure compression 
shell

Mixed tension-
compression shell 

The old books say it is 
notoriously difficult to solve.

Easy to solve.

AiryAiry

Shell Shell

AIRY STRESS FUNCTION

Positive Gaussian 
curvature

Negative Gaussian 
curvature

Pure compression Tension-compression 
mixed 

Airy Airy

CORE CONCEPTS IN SHELL 
FORM-FINDING 
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TYPES OF 2ND-ORDER PDES

Pure compression: elliptical

T/C mixed: hyperbolic
Notoriously difficult to solve.

Easy to solve.

Airy

Airy

(VERTICAL) EQUILIBRIUM EQUATION OF A SHELL

𝜕𝜕2 ത𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 − 2 𝜕𝜕2 ത𝜙𝜙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2 ത𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = − ҧ𝜌𝜌

ത𝜙𝜙(𝑥𝑥, 𝑦𝑦), Airy stress function      (given)

ҧ𝜌𝜌(𝑥𝑥, 𝑦𝑦), vertical load                  (given)

𝑧𝑧(𝑥𝑥, 𝑦𝑦), shell                              (unknown to be identified)

BOUNDARY CONDITION – FREE EDGE –

Airy Shell
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WAVE EQUATION

• Typically solved as an initial value problem.
• A solution is a wave propagation over time.
• In the time-space domain, the waves run along 

characteristic lines (diagonal lines in the left 
figure)

• Normally solved by incrementing the state of 
the wave step by step by incrementing the 
time with a small time step.

• Normally, it is not a good idea to solve it as a 
boundary value problem because you cannot 
prescribe the past and future at the same time.

• Unfortunately, a T/C mixed form-finding is a 
hyperbolic boundary value problem

Characteristics

Initial wave

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 −

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = 1

LAPLACE EQUATION

• Typically solved as a boundary value 
problem.

• A solution is a smooth averaging between 
the boundary values in general. 

• Easy to solve.

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = 1

TYPES OF 2ND-ORDER PDES

Elliptic problem

Hyperbolic problem

e.g., 𝜕𝜕
2𝑧𝑧

𝜕𝜕𝑥𝑥2 +
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = 1

e.g., 𝜕𝜕
2𝑧𝑧

𝜕𝜕𝑥𝑥2 −
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 = 1

Laplace’s equation

Wave equation

The nature of those 
two types of PDEs are 
surprisingly different
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WHEN THE PROBLEM DOES NOT HAVE SOLUTIONS

Shell Shell Shell

COMPATIBLE BOUNDARY CONDITIONS

3
5

Compatible
(a solution exists)

Compatible
(a solution exists)

Incompatible
(solutions do not exist)

Characteristics
( = Asymptotics)

CHARACTERISTIC LINES = ASYMPTOTIC LINES OF 
AIRY STRESS FUNCTION

Gaussian curvature = 
positive

Gaussian curvature = 
negative

Airy
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RECIPROCAL STRUCTURE

𝜕𝜕2 ത𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 − 2 𝜕𝜕2 ത𝜙𝜙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2 ത𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 = 𝜌𝜌Pin ത𝜙𝜙, find 𝑧𝑧

ത𝜙𝜙: Airy stress function, 𝑧𝑧: shell

Pin ҧ𝑧𝑧, find 𝜙𝜙 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2 ҧ𝑧𝑧
𝜕𝜕𝑦𝑦2 − 2 𝜕𝜕2𝜙𝜙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2 ҧ𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2 ҧ𝑧𝑧
𝜕𝜕𝑥𝑥2 = 𝜌𝜌

Linear

Linear

FORM-FINDING
(OUR APROACH)

WHEN THE PROBLEM DOES HAVE A SOLUTION

Stress function 𝜙𝜙 Shell 𝑧𝑧 (numerical solution) Shell 𝑧𝑧 (Analytical solution)

0.58

1.0

Coincide!

When solution exists, it is easy to solve numerically.

**This study was supervised by Chris J. K. Williams

Airy Shell
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BILINEAR LEAST SQAURES PROBLEM

Full Problem (Bilinear)

Find {𝜙𝜙, 𝑧𝑧} such that ׬ 1
𝑔𝑔 ∇11𝜙𝜙∇22𝑧𝑧 − ∇12𝜙𝜙∇12𝑧𝑧 + ∇22𝜙𝜙∇11𝑧𝑧 + 𝜌𝜌

det 𝑔𝑔𝑖𝑖𝑖𝑖

det ത𝑔𝑔𝑖𝑖𝑖𝑖

2

da → min

Primal Subproblem (Linear)

Given ത𝜙𝜙, find 𝑧𝑧 such that ׬ 1
𝑔𝑔 ∇11 ത𝜙𝜙∇22𝑧𝑧 − ∇12 ത𝜙𝜙∇12𝑧𝑧 + ∇22 ത𝜙𝜙∇11𝑧𝑧 + 𝜌𝜌

det 𝑔𝑔𝑖𝑖𝑖𝑖

det ത𝑔𝑔𝑖𝑖𝑖𝑖

2

da → min

Dual Subproblem (Linear)

Given ҧ𝑧𝑧, find 𝜙𝜙 such that ׬ 1
𝑔𝑔 ∇11𝜙𝜙∇22 ҧ𝑧𝑧 − ∇12𝜙𝜙∇12 ҧ𝑧𝑧 + ∇22𝜙𝜙∇11 ҧ𝑧𝑧 + 𝜌𝜌

det 𝑔𝑔𝑖𝑖𝑖𝑖

det ത𝑔𝑔𝑖𝑖𝑖𝑖

2

da → min

CONCLUSION: IT IS A BILINEAR PDE

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 − 2 𝜕𝜕2𝜙𝜙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 = 𝜌𝜌

with one condition for two unknown functions.

IDEA: UNPIN STRESS FUNCTION

𝜙𝜙: stress function (unknown function to be identified)
𝑧𝑧: shell                    (unknown function to be identified)

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦2 − 2 𝜕𝜕2𝜙𝜙

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑥𝑥2 = 𝜌𝜌 Don’t know 

both

We now have two unknown functions against 
one condition. This means there are many 
solutions.

Found!
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T/C MIXED SHELL FORM-FINDING USING VARPRO

Airy stress function: 𝜙𝜙𝑧𝑧: shell

VARIABLE PROJECTION (VARPRO)

• Solution exists, 
and it is a solution.

Constrained Optimization

Given a shell, find a stress function

[L. Elden, 2019] Solving Bilinear…
Solution space of the 
primal problem

Solution space of the 
dual problem

ALTERNATING APPROACH (ALT)

Solution exists, and it is a solution.

Given a stress function, find a shell

Given a shell, find a stress function

Solution space of the 
primal problem

Does not converge

Solution space of the 
dual problem

[Y.C Chiang, A. Borgart, 2021] 

A form-finding method for 
membrane shells… 
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ALIGNMNET CONDITION
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ALIGNING TWO SYMMETRIC MATRICES

𝐴𝐴: 2x2 real symmetric matrix

𝐵𝐵: 2x2 real symmetric matrix

𝐴𝐴 + 𝐵𝐵 is symmetric

𝐴𝐴 − 𝐵𝐵 is symmetric

𝐴𝐴𝐴𝐴 is not symmetric 𝐴𝐴𝐴𝐴 = symm
⇔ When AB is symmetric, it represents a special state in which 
eigenvectors of two matrices point to the same directions.

1 0
0 3

2 0
0 1 = 2 0

0 3 (symm)

1 2
2 1

−2 3
3 −2 = 4 −1

−1 4 (symm)

× =

× =

Airy’s stress function’s 
curvature net

Shell’s stress net

= bending-free grid shell

CONJUGATE STRESS NET
• Tracings of local frames on a surface that give no shear stress Can be used for the basis geometry of a bending-free grid shell.
• Principal stress trajectories are a special case of conjugate stress net in which two directions intersect orthogonally.

• It is a conjugate curvature net of an Airy stress function.

CONJUGATE CURVATURE NET

Planar quadrilateral 
glass panel

• Tracings of local frames on a surface that gives no local warping Can be used for planar quadrilateral panelization.
• Lines of curvature are special conjugate curvature nets in which two directions intersect orthogonally.
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• Both conditions are bilinear PDEs.

• Can be solved using VarPro.

BILINEAR PDES

Equilibrium equation:

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦𝜕𝜕𝑦𝑦 − 2 𝜕𝜕2𝑧𝑧

𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝑦𝑦𝜕𝜕𝑦𝑦

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝑥𝑥 = 𝜌𝜌

Alignment condition:

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑥𝑥𝑥𝑥
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕+ 𝜕𝜕

2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑥𝑥𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦

ത𝐸𝐸𝑦𝑦𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑦𝑦𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦𝜕𝜕𝜕𝜕 =

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑥𝑥𝑥𝑥
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕+

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑥𝑥𝑥𝑥
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑦𝑦𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕2𝑧𝑧
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

ത𝐸𝐸𝑦𝑦𝑦𝑦
𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

CONTROLLING THE ALIGNMENT THROUGH ഥ𝑬𝑬

1 0
0 0

1 0
0 1

1 0
0 0.6

(b) Aligns conjugate 
directions (roughly aligned 
with both the guide vectors)

(c) Fully conjugate with 𝒗𝒗
 (aligned with 𝒗𝒗, ignores 𝒔𝒔)

(a) Aligns principal directions 
(orthogonal, ignores guide 
vectors)

Eigenvectors
(Guide vectors)

Doubly 
conjugate 
directions

Eigenvalues

Matrix 𝐸𝐸

Matrices 𝐴𝐴 
and 𝐵𝐵

𝒗𝒗 𝒔𝒔

𝒗𝒗

ALIGNMENT BETWEEN THREE MATRICES

𝐴𝐴: 2x2 real symmetric matrix

𝐵𝐵: 2x2 real symmetric matrix

𝐸𝐸: 2x2 real symmetric positive (semi) definite matrix

𝑒𝑒: 𝑅𝑅90𝐸𝐸𝑅𝑅90𝑇𝑇

𝐴𝐴𝐴𝐴𝐴𝐴 = symm
⇔ When 𝐸𝐸 is positive (semi)definite, a conjugate pair that 
is simultaneously conjugate with 𝐴𝐴,𝐵𝐵 and 𝑒𝑒 exists.
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FABRICATION
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BUILDING A FORMWORK

TESTING MATERIAL SAMPLES

STARFISH_B
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INGREDIENTS

Cement Steel fibers 
(Staples)

Tough binder

(Nylon fibers)

FORMWORK ASSEMBLY IS READY

ASSEMBLING DEVELOPABLE STRIPS

344



24HRS

CONCRETE PLACEMENT

CONCRETE PLACEMENT
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CLEANING

FORMWORK REMOVAL

48HRS
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CONTACT: MASAAKI.MIKI@MMIKI.JP

THANK YOU!

A MINIATURE T/C MIXED CONCRETE SHELL

A MINIATURE T/C MIXED CONCRETE SHELL
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Curved Surface Structures with Excellent Mechanical Rationality and
Constructability/Fabricability

Yohei Yokosuka
Kagoshima University, Japan

Abstract

There are geometrically defined classes of surfaces and curves suitable for each surface shape, such as mem-
brane structures that resist tensile stress and shell structures that resist compressive stress. These surface and
curve classes are categorized as mechanically motivated and those motivated by constructability and mem-
ber fabrication. From a mechanical point of view, F. Otto uses an extremely minimal curved surface for the
membrane structure and H. Isler applied a suspended curved surface for the shell structure, designing a curved
surface structure that is mechanically rational. F. Candela uses HP curved surfaces in curved structures, de-
signing curved structures that are superior from constructability. In recent years, there has been progress in
research on the design of curved surface structures that rediscover the properties of both the mechanical and
constructional perspectives from geometry by means of discrete differential geometry. This presentation will
introduce a class of surfaces and curves that can be applied to curved structures in architecture.
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1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                              (Static Mechanics・ Constructability/Fabricability )

Minimal surface ⇔ Suspension Membrane Structure: Pure tension
Geodesic line ⇔ Membrane cutting line and cable placement: Shear free
CMC surface ⇔ Pneumatic membrane structures: Pure tension
Catenary curve ⇔ Reversed Hanging curve/membrane: Pure compression

Hyperbolic paraboloid surface ⇔ Shell structures: Doubly ruled surface
Rotational hyperboloid ⇔ Cooling tower, Tower: Doubly ruled surface
Ruled surface ⇔ Beam structures: Ruled surface
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Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

■ Overview

1. Close relationship between shell and spatial structures and geometry

2. Research Case Studies

2.1 Discrete isothermic minimal surfaces
2.2 Discrete membrane O surface
2.3 Willmores surface and Möbius transformation
2.4 Airy stress function and Laguerre geometry

3. Conclusion

Curved Surface Structures with Excellent Mechanical Rationality and
Constructability/Fabricability

Yohei YOKOSUKA1), Yoshiki JIKUMARU2), Kazuki HAYASHI3), 
Kentaro HAYAKAWA4), Yusuke SAKAI5)

1) Graduate School of Science and Engineering, Kagoshima University
2) Information Networking for Innovation And Design, Toyo University

3) Graduate School of Engineering, Kyoto University
4) College of Industrial Technology Department of Conceptual Design, Nihon University

5) Sony Computer Science Laboratories, Inc

International Conference "Evolving Design and Discrete Differential Geometry - towards 
Mathematics Aided Geometric Design"
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1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                              (Static Mechanics)

Minimal surface ⇔ Minimization of curved surface area
Geodesic line ⇔ Minimization of curve length on a surface
CMC surface ⇔ Minimize curved surface area by specifying inner volume
Catenary curve ⇔ Minimization of gravitational potential  

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
⇒ Critical points for variational problems
⇒At arbitrary boundary conditions, a certain functional is defined and the solution 
that minimizes the functional is obtained.

1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                              (Static Mechanics)

Minimal surface ⇔ Suspension Membrane Structure: Pure tension
Geodesic line ⇔ Membrane cutting line and cable placement: Shear free
CMC surface ⇔ Pneumatic membrane structures: Pure tension
Catenary curve ⇔ Reversed Hanging curve/membrane: Pure compression

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
⇒ Critical points for variational problems
⇒At arbitrary boundary conditions, a certain functional is defined and the solution 
that minimizes the functional is obtained.

1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                              (Static Mechanics・ Constructability/Fabricability )

Minimal surface ⇔ Suspension Membrane Structure: Pure tension
Geodesic line ⇔ Membrane cutting line and cable placement: Shear free
CMC surface ⇔ Pneumatic membrane structures: Pure tension
Catenary curve ⇔ Reversed Hanging curve/membrane: Pure compression

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
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1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                                 (Constructability/Fabricability )

Hyperbolic paraboloid surface ⇔ Shell structures: Doubly ruled surface
Rotational hyperboloid ⇔ Cooling tower, Tower: Doubly ruled surface
Ruled surface ⇔ Beam structures: Ruled surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
⇒ Focusing on the direction of coordinate lines are taken, coordinate lines with zero 
normal curvature are chosen.
⇒Asymptotic direction, which is limited to the case when Gaussian curvature is 
negative.

We would like to sample a finite number of points for practical use.
⇒ Inherently, a discrete surface that is not smooth is not 
differentiable at a point
⇒ Discrete Differential Geometry

★ Context of Variations and Coordinates

・Study of variational problems with triangular polyhedral 
meshes by introducing the concept of curvature consistent 
between continuous and discrete surfaces
・A comprehensive treatment of a class of surfaces with flat 
quadrilaterals as shape elements and good properties (Integrable 
geometry)

1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                                 (Constructability/Fabricability )

Hyperbolic paraboloid surface ⇔ Shell structures: Doubly ruled surface
Rotational hyperboloid ⇔ Cooling tower, Tower: Doubly ruled surface
Ruled surface ⇔ Beam structures: Ruled surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
⇒ Focusing on the direction of coordinate lines are taken, coordinate lines with zero 
normal curvature are chosen.
⇒Asymptotic direction, which is limited to the case when Gaussian curvature is 
negative.

1. Close relationship between shell and spatial structures and geometry

〇 Geometry 〇 Shell and Spatial Structures 
                                                                 (Constructability/Fabricability )

Hyperbolic paraboloid surface ⇔ Shell structures: Doubly ruled surface
Rotational hyperboloid ⇔ Cooling tower, Tower: Doubly ruled surface
Ruled surface ⇔ Beam structures: Ruled surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

How can these surfaces be characterized?
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2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

Minimal surface  ⇔ Minimization of curved surface area
 ⇔ Dirichlet energy minimization and isothermic
 ⇔ Mean curvature is 0 and isothermic

 ,u v u vf f f f⊥ =

,u vf f : Tangent vector of         coordinates on the surface ,u v

(1)

・ Isothermic properties of continuous curved surfaces

★ Coordinates issue

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

 ( )2 21
2 u vE f f dudv

Ω
= +∫∫

Functional (Dirichlet energy)

(1)

,u vf f : Tangent vector of         coordinates on the surface 

2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

■ Architecture： Form-finding of membrane structure
Otto, F. (1973) : Application to tension structures
Schek, H.J (1974) : Force density method
Barnes, M.R (1977) : Dynamic relaxation

■ Mathematics
Courant, R(1950) : Problem to minimize Dirichlet integration (Dirichlet energy)
Hinata, M., Shimasaki, M., and Kiyono, T(1974) :Discretization by finite element method 
Tsuchiya, T(1992) :Discretization of Dirichlet energy by finite element method
Pinkall, U., Polthier, K.(1993) : Dirichlet energy discretization (cotan formula)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability
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2. Research Case Studies
2.1 Discrete isothermal minimal surfaces
・ Bobenko et al. constructed a Koebe polyhedron with a three-dimensional sphere  
from known minimal surfaces, and showed that it is possible to construct different 
discrete isothermic minimal surfaces by giving their Christoffel duals (transformations).
⇒ Christoffel's theorem that a surface constructed from a Gauss map of minimal 
surfaces by a transformation preserving isothermality is a minimal surface.

 2

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of 
Mathematics, 164, pp.231–264, 2006

Koebe polyhedron Discrete isothermal minimal surfaces

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Note

Circle Pattern:
Corresponds to discretization of curvature line coordinates 
(discrete curvature line network)

Isothermic curvature line coordinates:
Corresponds to the condition that cross-ratio is equal to -1

2. Research Case Studies
2.1 Discrete isothermal minimal surfaces
・ Bobenko et al. constructed a Koebe polyhedron with a three-dimensional sphere  
from known minimal surfaces, and showed that it is possible to construct different 
discrete isothermic minimal surfaces by giving their Christoffel duals (transformations).
⇒ Christoffel's theorem that a surface constructed from a Gauss map of minimal 
surfaces by a transformation preserving isothermality is a minimal surface.

 2

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of 
Mathematics, 164, pp.231–264, 2006

Koebe polyhedron Discrete isothermal minimal surfaces

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Note:

・This method showed that different minimal surfaces can be 
obtained by applying a coordinate-preserving transformation.

⇒ Transformation itself is essential.

2. Research Case Studies
2.1 Discrete isothermic minimal surfaces
・ Bobenko et al. constructed a Koebe polyhedron with a three-dimensional sphere  
from known minimal surfaces, and showed that it is possible to construct different 
discrete isothermic minimal surfaces by giving their Christoffel duals (transformations).
⇒ Christoffel's theorem that a surface constructed from a Gauss map of minimal 
surfaces by a transformation preserving isothermality is a minimal surface.

 2

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of 
Mathematics, 164, pp.231–264, 2006

Koebe polyhedron Discrete isothermal minimal surfaces

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Christoffel 
transformation
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2. Research Case Studies
2.2 Membrane O surfaces

・ Membrane O surfaces ⇒ A class 
of curved surfaces that are equilibrium 
by in-plane membrane stress without 
bending moment and in-plane shear 
when a constant load is applied in the 
normal direction.
・Equilibrium equation of in-plane
⇒ Dual surface exists in the 

Combescure transformation
⇒ Corresponds to the force 

diagram and form diagram of
Graphic statics

 1r

 2r

 3r
 4r

 1r

 2r

 3r

 4r

Combescure transformation (Parallel translation of edges)

surface
⇔ Form diagram

r
surface
⇔ Force diagram

r

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Assembled beam with discrete curvature 
line network and normal

2. Research Case Studies
2.2 Membrane O surfaces

・Discrete curvature line network ⇒ A curved surface covered by quadrilaterals to 
which a circle is circumscribed. The quadrilateral connecting the intersections is flat.
・Vertex Offset ⇒ In a discrete curvature line network, the normals defined by the points 
are mirrored in the plane orthogonal to the edge, and the sides spanned by the normals
are flat without torsion.

Assembled beam with discrete curvature 
line network and normal

・Curved surface structures consisting 
of flat quadrilaterals have excellent 
properties in the view of 
Constructability/Fabricability.

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Schief, W. K.: Integrable structure in discrete shell membrane theory, Proc. R. Soc. A (2014) 470: 20130757, 2014

2. Research Case Studies
2.2 Membrane O surfaces

・The canopy of Tokyo Midtown is composed of 
multi-layered curved surfaces and vertical members 
connecting between the curved surfaces. The 
orientation of the curved surface members adopts 
the principal direction, and in one compartment, four 
sides are flat surfaces.

The canopy of Tokyo Midtown

Principal direction - curvature line coordinates in the 
direction that follows the principal curvature

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability
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2. Research Case Studies
2.3 Willmore surface and Möbius 
transformation
・Inversion ⇒  Typical operations with 

Möbius tranformation

Mesnil, R., Douthe, C., Baverel, O., Leger, B.: Generalised Cyclidic Nets for Shape Modelling in Architecture, International 
Journal of Architectural Computing, Volume 15, Issue 2, pp.1-22, 2017

Inversion

 , , '
'

C M M aligned
CM CM k


 =

 C  M

 k

 'M
 C
 M

 k

'M

：Center of a circle
： Points before 

transformation
：Points after 

transformation
： Radius of circle

(2)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.3 Willmore surface and Möbius transformation

・Klein geometry
⇒A geometry characterized by transformations and invariants

in those transformations.
Möbius geometry is a type of Klein geometry.

・Möbius transformation
⇒ A transformation that maps a circle to a circle, and 

cross-ratio is invariant under the Möbius transformation.
⇒ A discrete curvature line network can be mapped to a discrete 

curvature line network. 
Felix C. Klein

(1849-1925)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.2 Membrane O surfaces

・ Membrane O surfaces ⇒ A class 
of curved surfaces that are equilibrium 
by in-plane membrane stress without 
bending moment and in-plane shear 
when a constant load is applied in the 
normal direction.
・Equilibrium equation of in-plane
⇒ Dual surface exists in the 

Combescure transformation
⇒ Corresponds to the force 

diagram and form diagram of
Graphic statics

 1r

 2r

 3r
 4r

 1r

 2r

 3r

 4r

Combescure transformation (Parallel translation of edges)

surface
⇔ Form diagram

r
surface
⇔ Force diagram

r

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Assembled beam with discrete curvature 
line network and normal

Discrete Membrane O surfaces

・A discrete curvature line network always has a 
surface   .

・The out-of-plane equilibrium equation is expressed 
by the orthogonal conditionals for surfaces     and     .

 r

 r
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2. Research Case Studies
2.3 Willmore surface and Möbius 
・Willmore Energy
⇒ Invariant functional with Möbius 

transformation

・Willmore surface
⇒ Critical point of Willmore energy
⇒ Möbius transformation allows

Willmore surfaces to be mapped to   
Willmore surfaces.

 2

S
H K dAΩ = −∫ (3)

：Mean Curvature ：Gaussian Curvature H  K

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

Möbius transformation

Arknova (Arata Isozaki, Anish Kapoor)

Note:

・It is not guaranteed that the Willmore surfaces are theoretically 
equilibrium by the membrane stresses. It is necessary to consider 
the connection between the membrane O surface and the Willmore 
surface.

2. Research Case Studies
2.3 Willmore surface and Möbius 
・Willmore Energy
⇒ Invariant functional with Möbius 

transformation

・Willmore surface
⇒ Critical point of Willmore energy
⇒ Möbius transformation allows

Willmore surfaces to be mapped to   
Willmore surfaces.

 2

S
H K dAΩ = −∫ (3)

：Mean Curvature ：Gaussian Curvature H  K

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

Möbius transformation

ARK NOVA (Arata Isozaki, Anish Kapoor)

2. Research Case Studies
2.3 Willmore surface and Möbius 
・Willmore Energy
⇒ Invariant functional with Möbius 

transformation

・Willmore surface
⇒ Critical point of Willmore energy
⇒ Möbius transformation allows

Willmore surfaces to be mapped to   
Willmore surfaces.

 2

S
H K dAΩ = −∫ (3)

：Mean Curvature ：Gaussian Curvature H  K

tσmax (N/mm2)
Principal stress

tσmin (N/mm2)
Principal stress

max 1.4643 0.4123

min 0.5832 0.2668

・pressure load: 100 N/m2 

・membrane thickness: 1.0 mm
・elastic modulus : 100 N/mm2 

・shear elastic modulus: 60 N/mm2

・ratio of poisson : 0.3

Willmore energy
minimization

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

Bobenko, A.I., Schröder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

357



2. Research Case Studies
2.4 Airy stress function and Laguerre geometry 

・Pottmann et al. showed the relationship between L-minimal surfaces and Airy 
stress functions minimizing the Laguerre functional.

・Isotropic geometry
⇒ Geometry of a surface represented as a function graph of
⇒ No distance metering in height direction

[42] Pottmann, H., Grohs, P., Mitra, N., J. : Laguerre minimal surfaces, isotropic geometry and linear elasticity, Advances in 
Computational Mathematics volume 31, Article number: 391, pp.391-419, 2009

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

⇔ L-minimal surface expressed by isotropic 
model is biharmonic function

Airy stress function is 
biharmonic function

 

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry 

・Laguerre geometry
⇒ The object of Laguerre geometry is a plane.
⇒ The normal is defined and the plane is the set of points that have the same perpendicular 

distance from the origin. 
⇒ Laguerre transform acts on a plane

・Laguerre functional
⇒ invariant functional of Laguerre

transformation
 2

S

H K dA
K
−

Ω = ∫ (4)

・Airy stress function
⇒ Stress function equilibrium by in-plane

membrane stress when a constant vertical 
load is applied to a curved surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

：Mean Curvature ：Gaussian Curvature H  K

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry 

・Hanging membrane
■ Architecture
Ramm, E., Bletzinger, K.-U., Reitinger, R.(1993) : Minimization of Shell structures
Block, P. and Ochsendorf, J.(2007) :Thrust Network Analysis
Miki, M., Igarashi, Block, P. (2015) : Airy stress function in parametric surface

■ Mathematics
Vouga, E. Höbinger, M. Wallner, J. Pottmann, H.(2012) :Isotropic geometry
Koiso, M., Palmer, B.(2005) :Smooth hanging curve and Euler-Lagrange equation
Jikumaru, Y., Yokosuka, Y.(2022):Hanging membrane of isotropic stress

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability
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Conclusion

Temporary Structures with Curved Folding

・This presentation introduces four topics: discrete isothermal minimal surfaces, 
discrete membrane O surfaces, Willmore surfaces and Möbius transforms, Airy 
stress functions and Laguerre geometry.

・The viewpoints and representations of surfaces in non-Euclidean geometry are 
important not only in conventional Euclidean geometry, but also in non-Euclidean 
geometry, showing that invariant quantities and properties in transformations, 
and the “transformations” themselves that preserve these properties, are of great 
importance.

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry 

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

・Möbius transformation allows 
circles to be mapped to circles.

・Lines of connecting the center 
of circles become force diagram.

Equilibrium in plane can be obtained 
parametrically by Möbius transformation.

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry 

2 2

2

det( )

2 trace( )
i xx yy xy

i xx yy

K f f f f

H f f f

= ∇ = + −

= ∇ = +

 div( ) , div 0M s F M∇ = =
 ( )2adjM φ= ∇

(9)
(10)

Fraternali, et al

・Equilibrium equations and compatibility
conditionals introducing Airy stress   
functions

⇔  2 relK H Fφ =(11)
(12)

・ Equilibrium equations
in isotropic geometry

(13)

Vouga, et al
s：height
M：stress tensor

φ：Airy stress function
F：vertical load

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

・Mean curvature and Gaussian 
curvature in isotropic geometry
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Lie Spherical Geometry and Design of Curved Surface Structures

Yohei Yokosuka
Kagoshima University, Japan

Abstract

The purpose of this study is to employ discrete surfaces as shape elements and to construct a design method for
curved surface structures by parametric deformation using Lie spherical transformations. NURBS surfaces and
Bézier surfaces are useful parametric surface generation methods as surface design tools. However, the proper-
ties of the cross ratio and the developability of the surfaces covered by the coordinate lines are not preserved.
Lie spherical geometry can perform Lie spherical transformation, which maps curvature line coordinates to
curvature line coordinates. Curvature line coordinates can be represented by discrete surfaces filled with cir-
cles on the surface; the Möbius transform, one of the Lie spherical transforms, allows transformations that
preserve the cross ratio, and isothermal coordinates can be mapped to isothermal coordinates. This presenta-
tion will describe the method of generating 3-D and 2-D surfaces and the mechanical properties of isothermal
coordinates.
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Lie Sphere Geometry and Design of Curved Surface Structures

・Recent studies on discrete surfaces
・ It is possible to generate discrete curved surfaces with extremely good properties by 
Möbius geometry and Laguerre geometry. 
・ These curved surface with excellent fabricability and constructability can be 
constructed.

・ In this presentation, we introduce the formulation of Lie sphere geometry and the 
method of modelling for gridshell structures. 
・ we demonstrate the structural analysis of curved surface found by Lie sphere 
geometry whether the curved surface has the similar mechanical performance.

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006

・Recent studies on discrete surfaces
・ It is possible to generate discrete curved surfaces with extremely good properties by 
Möbius geometry and Laguerre geometry. 
・ These curved surface with excellent fabricability and constructability can be 
constructed.

Lie Sphere Geometry and Design of Curved Surface Structures

Yohei YOKOSUKA1), Junichi INOGUCHI2), Makoto OHSAKI3), Toshio HONMA1)

Yoshiki JIKUMARU5)

1) Graduate School of Science and Engineering, Kagoshima University
2) Department of Mathematics, Hokkaido University

3) Graduate School of Engineering, Kyoto University
4) Information Networking for Innovation And Design, Toyo University

International Conference "Evolving Design and Discrete Differential Geometry - towards 
Mathematics Aided Geometric Design"
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Lie Sphere Geometry and Design of Curved Surface Structures

 ( ) ( ) ( )
( ) ( ) ( )

1 2 3

4 5 6

1,0,0,0,0,0 , 0,1,0,0,0,0 , 0,0,1,0,0,0 ,

0,0,0,1,0,0 , 0,0,0,0,1,0 , 0,0,0,0,0,1

e e e

e e e

= = =

= = =

2 22 2
1 2 3

1 1ˆ ( , , , (1 ), (1 ), )
2 2

s c c c c r c r r= − + − −

・Natural basis: 

・Vector: 

(4)

(5)

ŝ

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006
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3( , ) { ; }S c r x x c r= ∈ − =
23 2( , ) { ; }S c r x x c r= ∈ − =

3( , ) { ; }P d x x dν ν= ∈ ⋅ = ( , )S c r

( , )P dν

c

ν

r

O

d

x

・Oriented sphere: ( , )S c r

・Oriented plane: ( , )P dν

cx r: point : center point : signed radius

d : signed heightν : unit normal (inward)

(1)

(2)

(3)

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

・Klein geometry
Klein geometry classifies geometry by the operation of transformations on a set.

・Lie sphere geometry
Lie sphere geometry has a large group in Klein geometry.
Lie sphere geometry  considers points and planes as part of spheres.
The curvature line coordinates are conserved by the Lie sphere transformation.
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Lie Sphere Geometry and Design of Curved Surface Structures

・Two oriented spheres     and     are in oriented contact if and only if 1S 2S

 1 2ˆ ˆ, 0.s s =

Figure1: One unit Figure2: Möbius and Laguerre geometry
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2 2

s c c c c r c r r= − + − −

・Natural basis: 

・Vector: 

(4)

(5)

ŝ an oriented sphere

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006
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・Natural Basis: 

 ( ) ( ) ( )
( ) ( ) ( )

1 2 3

4 5 6

1,0,0,0,0,0 , 0,1,0,0,0,0 , 0,0,1,0,0,0 ,
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e e e

e e e

= = =

= = =

2 22 2
1 2 3

1 1ˆ ( , , , (1 ), (1 ), )
2 2

s c c c c r c r r= − + − −

・Vector: 

(4)

(5)

ŝ

2 22 2 2 2 2 2 2 2
1 2 3

1 1{ (1 )} { (1 )} 0
2 2

c c c c r c r r+ + + − + − − − − =

1 1 2 2 3 3 4 4 5 5 6 6,x y x y x y x y x y x y x y= + + + − −

introduce an scalar product

 ˆ ˆ, 0s s =

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681–689, 2006

364



Great circle of spheres tangent to a point

Lie Sphere Geometry and Design of Curved Surface Structures

・The curvature line coordinates and curvature-line net are  
conserved by the Lie sphere transformation, 
it is expected to be useful for generating the curvature-line net.

Great circle of spheres tangent to a point

Lie Sphere Geometry and Design of Curved Surface Structures

Lie Sphere Geometry and Design of Curved Surface Structures

Figure1: One unit Figure2: Möbius and Laguerre geometry
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 ˆ ˆ, 0i js s =
 ˆ ˆ, 0j ks s =  ˆ ˆ, 0k ls s =  ˆ ˆ, 0l is s =

・Equations generating Circular nets 

(6)
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Lie Sphere Geometry and Design of Curved Surface Structures

・How to configure Circular net
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lc Figure 3: center points and 
orthonomal basis vector

 1, 1m n= =  1, 2m n N= = 

 2 , 1m M n= =  2 , 2m M n N= = 

Figure 4: grid number and symmetry condition

1. The set of four center points 
constitute minimum unit.
2. The network of center 
points are expanded to two 
directions of X,Y.
3. When the network expand, 
the plane including the center 
point is rotated. To solve the 
equation, find a new center 
point. 
4. If all center points are found, 
all radius can be found also. 
the constituent nodes of the 
circular nets can be found. 
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・How to configure Circular net
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・How to configure Circular net
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Lie Sphere Geometry and Design of Curved Surface Structures

・How to configure Circular net
Table1: Symbols

:Nonlinear equation contact to
oriented sphere

: Projective model of oriented sphere

: Center point of oriented sphere : Signed radius of the oriented sphere

: Reference radius : Grid number in X,Y direction

: Number of grids in X,Y direction : Orthonormal basis vector

: Unkwon parameter in 2D plane : Specified angle

: Rodrigues’s rotation matrix : Specified parameter

: Unkwon parameter in 1D line : Constituent nodes of circular nets

 1 2 3 4, , ,f f f f ∈

 3, , ,i j k lc c c c ∈

 r ∈

 4,2ˆ ˆ ˆ ˆ, , ,i j k ls s s s ∈

 , , ,i j k lr r r r ∈

 ,m n

 ,M N  3,x y ∈e e 

 ,x y∈  θ ∈

 ( ),x θR e  , ,α β γ ∈

 ξ ∈  3, , ,ij il kj klx x x x ∈
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・How to configure Circular net
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Figure 4: grid number and symmetry condition

1. The set of four center points 
constitute minimum unit.
2. The network of center 
points are expanded to two 
directions of X,Y.
3. When the network expand, 
the plane including the center 
point is rotated. To solve the 
equation, find a new center 
point. 
4. If all center points are found, 
all radius can be found also. 
The constituent nodes of the 
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・How to configure Circular net
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lc Figure 3: center points and 
orthonomal basis vector

 1, 1m n= =  1, 2m n N= = 
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Find ck
( ), , , ,,m n m n m n m n

y x yθ=e R e e

 ( ),x θR e : Rodrigues’s rotation
matrix

Rotation of a plane

For example:

m = 2~M, n = 1

 m

n
X

Y
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Lie Sphere Geometry and Design of Curved Surface Structures

・How to configure Circular net

1, 2m n N= = 

1, 2 ~m n N= =

Specified values: 

(13)

Unkown value: ,x y (14)

1, 1, 1, 1,, , ,n n n n
jrθ α β

Equations(Nonlinear equations): 

{ }2 21, 1, 1, 1, 1, 1, 1, 2 1, 2 1, 1,
1

1ˆ ˆ, , ( ) ( ) 0
2

n n n n n n n n n n
i j i j i j i j i jf s s c c c c r r r r= = − + − − − =

{ }2 21, 1, 1, 1, 1, 1, 1, 2 1, 2 1, 1,
3

1ˆ ˆ, , ( ) ( ) 0
2

n n n n n n n n n n
k j k j k j k j k jf s s c c c c r r r r= = − + − − − =

1, 1, 1, 1,n n n n
j i x yc c x y= + +e e

Define next initial value: 1, 1 1, 1 1, 1 1, 1 1, 1 1, 1, , , , ,n n n n n n
i k l i k lc c c r r r+ + + + + +

1, 1, 1, 1,
1, 1 1, 1, 1, 1 1, 1, 1, 1 1,

1, 1, 1, 1,
, ,

n n n n
i j k jn n n n n n n n

i i k k l jn n n n
i j k j

c c c c
c c c c c c

c c c c
α β+ + +− −

= + = + =
− −

1, 1 1, 1, 1 1, 1 1, 1 1, 1, 1 1, 1 1, 1 1,, ,n n n n n n n n n n
i j l i k j k l l jr r c c r r c c r r+ + + + + + += − − = − − =

(15)

Lie Sphere Geometry and Design of Curved Surface Structures

・How to configure Circular net

2 , 1m M n= =

2 ~ , 1m M n= =

Specified values: 

(10)

Unkown value: ,x y (11)
 ,1 ,1 ,1 ,1, , ,m m m m

krθ α β

Equations(Nonlinear equations): 
 { }2 2,1 ,1 ,1 ,1 ,1 ,1 ,1 2 ,1 2 ,1 ,1

3
1ˆ ˆ, , ( ) ( ) 0
2

m m m m m m m m m m
k j k j k j k j k jf s s c c c c r r r r= = − + − − − =

 { }2 2,1 ,1 ,1 ,1 ,1 ,1 ,1 2 ,1 2 ,1 ,1
4

1ˆ ˆ, , ( ) ( ) 0
2

m m m m m m m m m m
k l k l k l k l k lf s s c c c c r r r r= = − + − − − =

 ,1 ,1 ,1 ,1m m m m
k j x yc c x y= + +e e

Define next initial value: 1,1 1,1 1,1 1,1 1,1 1,1, , , , ,m m m m m m
i j l i j lc c c r r r+ + + + + +

 ,1 ,1 ,1 ,1
1,1 ,1 1,1 ,1 ,1 1,1 ,1 ,1

,1 ,1 ,1 ,1
, ,

m m m m
j km m m m m m m m l k

i k j j l lm m m m
j k l k

c c c cc c c c c c
c c c c

α β+ + +− −
= = + = +

− −

 1,1 ,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1, ,m m m m m m m m m m
i k j i i j l i i lr r r r c c r r c c+ + + + + + + + += = + − = + −

(12)
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・How to configure Circular net

 1, 1m n= =

 1, 1m n= =

 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1, , , , , , , ,i j k l i j i j k l i lr c c c c r r r r c c r r r r c c= = + − = = + −

Initial values (radius and center point):
(7)

 1,1 1,1 1,1 1,1
2,1 1,1 2,1 1,1 1,1 2,1 1,1 1,1

1,1 1,1 1,1 1,1
, ,j k l k

i k j j l l
j k l k

c c c cc c c c c c
c c c c

α β
− −

= = + = +
− −

Specified values: 1,1 1,1,α β

(8)

Define next initial value: 2,1 2,1 2,1 2,1 2,1 2,1, , , , ,i j l i j lc c c r r r

 2,1 1,1 2,1 2,1 2,1 2,1 2,1 2,1 2,1 2,1, ,i k j i i j l i i lr r r r c c r r c c= = + − = + − (9)
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・Numerical result of circular nets

a. Model-1 b. Model-2

 ,1 0.15mθ =  ,1 0mα =  1, 0.15nθ = −  1, 0nα =
 ,1 0mβ =  ,1 10m

kr =  1, 0nβ =  0γ =
 ,1 0.15mθ =  ,1 0mα =  1, 0.30nθ = −  1, 0nα =
 ,1 0mβ =  ,1 10m

kr =  1, 0nβ =  0γ =
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・How to configure Circular net

(18)

The constituent nodes of the circular net                        :  , , ,ij il kj klx x x x

 , , , ,
, , , , , ,

, , , ,
,

m n m n m n m n
i jm n m n m n m n m n m n i l

ij i i il i im n m n m n m n
i j i l

c c c cx c r x c r
c c c c

− −
= + = +

− −

 , , , ,
, , , , , ,

, , , ,
,

m n m n m n m n
k jm n m n m n m n m n m n k l

kj k k kl k km n m n m n m n
k j k l

c c c cx c r x c r
c c c c

− −
= + = +

− −

 ic

jc kc
lc

 
ijx

 
ilx

 
kjx

 
klx
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,m n
ic

1,m n
jc −

, 1m n
kc −

,m n
lc

,m n
jc

,m n
kc

,m n
ξe

,m n
ηe

・How to configure Circular net

2 , 2m M n N= = 

2 ~ , 2 ~m M n N= =

Specified values: 

(16)

Unkown value: , ,j kr rξ

(17)

γ

Equations(Nonlinear equations): 

1, ,
, , , ,

1, ,
,

m n m n
j im n m n m n m n

j i m n m n
j i

c c
c c

c cξ ξξ
−

−

−
= + =

−
e e

( )
, 1 ,

, , , ,
, 1 ,

,
m n m n

m n m n m n m n k l
k l m n m n

k l

c cc c
c cη ηξ γ

−

−

−
= + + =

−
e e

, , , , , ,
1 3 4ˆ ˆ ˆ ˆ ˆ ˆ, 0, , 0, , 0m n m n m n m n m n m n

i j k j k lf s s f s s f s s= = = = = =
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Result of 3 times subdivisionSubdivision

・Subdivision
1. Create circles with half the diameter at the same position.
2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
4. Repeat step1-3 to generate a gridshell structure.

 A  D

 B  C
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Result of 3 times subdivisionSubdivision

・Subdivision
1. Create circles with half the diameter at the same position.
2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
4. Repeat step1-3 to generate a gridshell structure.

 A  D

 B  C

Lie Sphere Geometry and Design of Curved Surface Structures

・Numerical result of circular nets

c. Model-3 d. Model-4

e. Model-5 f. Model-6

370



Lie Sphere Geometry and Design of Curved Surface Structures

Result of 3 times subdivisionSubdivision

・Subdivision
1. Create circles with half the diameter at the same position.
2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
4. Repeat step1-3 to generate a gridshell structure.

 A  D

 B  C
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Result of 3 times subdivisionSubdivision

・Subdivision
1. Create circles with half the diameter at the same position.
2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
4. Repeat step1-3 to generate a gridshell structure.

 A  D

 B  C
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Result of 3 times subdivisionSubdivision

・Subdivision
1. Create circles with half the diameter at the same position.
2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.
4. Repeat step1-3 to generate a gridshell structure.

 A  D

 B  C
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・Conical net

 ,

,

ij i ij j jk j jk k
ij jk

ij i ij j jk j jk k

kl k kl l li l li i
kl li

kl k kl l li l li i

x c x c x c x c
x c x c x c x c

x c x c x c x c
x c x c x c x c

ν ν

ν ν

− − − −
= − = − = − = −

− − − −

− − − −
= − = − = − = −

− − − −

Lie Sphere geometry includes Möbius and Laguerre geometry, with Möbius geometry 
constituting Circular nets and Laguerre geometry Conical nets.
The definition of a conical net is four planes having one shared point and tangent to 
a cone.
Once the circular net is constructed, the normals are obtained by the 
following equation.

 , , ,ij jk kl liν ν ν ν

(19)

Lie Sphere Geometry and Design of Curved Surface Structures

・ Lie Sphere Transformation

Lie Sphere Geometry and Design of Curved Surface Structures

・Lie Sphere Transformation

Circular net (red line and black line)
Line connecting a point and the center point 
of the sphere (blue line)

Lie Sphere Geometry and Design of Curved Surface Structures

・Subdivision Gaussian curvature distribution (almost zero) 

This result is considered as a discrete curvature line in which the discrete curved surface is subdivided along
the curvature line. Therefore, it is possible to construct a curved member by bending only one axis.
This gridshell structure has a property of excellent fabricability of members.
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The Lie Sphere transformation is used for the coefficient matrix of the 
quadratic form of the projective space.
As                     , consider a linear transformation
that satisfies the following inner product

 4,2,x y∈  x Ax

 , ,Ax Ay x y=

 4,2 4,2
TA E A E=

However, limited to

 

4,2

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E

 
 
 
 

=  
 
 −
 

− In this case      is the Lie Sphere transformation.A

(22)

(23)

T. E. Cecil, Lie Sphere Geometry with Applications to Submanifolds second edition, Springer New York, 2008.
G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in Classical Geometries : A Treatment by Moving Frames, Springer, 2016.
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・ Lie Sphere Transformation

Circles of circular nets 
and conical net points 
form a cone.

・Conical net

Lie Sphere Geometry and Design of Curved Surface Structures

・ Lie Sphere Transformation

・Conical net

The height                        are obtained by the following equation , , ,ij jk kl lid d d d

 , , , , , , ,ij ij ij jk jk jk kl kl kl li li lid x d x d x d xν ν ν ν= = = =

Conical nets are obtained by solving the following simultaneous equations for each circle 
in the circular nets

 ij
T

ij jk kl jk

kl

x d
y d
z d

ν ν ν
   
     =    
   
   

Note that any three of the four planes are chosen, but any of the equations may be chosen.

(20)

(21)
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・ Lie Sphere Transformation
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is pulled back to         by the following transformation. 3 4y∈

 2

2 ( )y s y s
y s
ρ

+ −
−



 (0,0,0,1), 2s ρ= = Alternatively, you can use (0,0,0, 1)s = −

Note that Inversion maps a point on the sphere of Lie Sphere geometry to a point on the 
sphere, but the center point of the sphere does not map to the center point of the 
sphere.

Lie Sphere Geometry and Design of Curved Surface Structures

・ Lie Sphere Transformation
Inversion

(25)

 2

42 2

12( )
1 1

I

xxA x e
x x

 −
 = +
 + + 

The inversion of the Lie Sphere transformation acts on the point . The mapping from       
   to       is obtained by

 3

 1 3 3:I IA f T f−
+ +=    

  3

 2
0 6

2 2

4 5 6

( ) 1 0

1 1
0

2 2

f x x e x e e

x x
x e e e

+ ∞= + ⋅ + + ⋅

− +
= + + + ⋅

 1
4 5 4

1( ) ( )f x ue ve x ue
v

−
+ + + = + (24)

Inversion
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・ Lie Sphere Transformation

This mapping can be regarded as 
a Möbius transformation that 
maps point            onto       (the 
unit sphere) on using a sphere 
of radius         and center (0,0,0,1)

 3x∈
 4

 3

 2

The inversion of the Lie Sphere transformation acts on the point . The mapping from       
   to       is obtained by

 3

 1 3 3:I IA f T f−
+ +=    

  3

3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

I

I

T

 
 
 =
 −
 
 

 2
0 6

2 2

4 5 6

( ) 1 0

1 1
0

2 2

f x x e x e e

x x
x e e e

+ ∞= + ⋅ + + ⋅

− +
= + + + ⋅

 1
4 5 4

1( ) ( )f x ue ve x ue
v

−
+ + + = + (24)

Inversion
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・ Lie Sphere Transformation
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The Offset of the Lie Sphere transformation acts on the oriented plane, which is a pair 
of normals and points.
The following map is acted on using the natural basis of the 6-dimensional space       .  p̂  6

 3
2 2

2 2

0 0 0

0 1
2 2

0 1
2 2

0 1

O

I
t t t

T
t t t

t t

 
 
 +
 =  
 − − −
 
  

0 6 4 5 6ˆ 0 2 1 2 2 1p v e de e v de de e∞= + ⋅ + + ⋅ = − + + ⋅
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・ Lie Sphere Transformation
Offset

Before transformation After transformation

・Rotated by 
・There are three parameters.

 

Cross-ratios are preserved.

Lie Sphere Geometry and Design of Curved Surface Structures

・ Lie Sphere Transformation
Inversion
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Constant face offset
Face Offset Mesh

It is possible to obtain a 
surface with the sign of the 
Gauss curvature reversed.

Lie Sphere Geometry and Design of Curved Surface Structures

・ Lie Sphere Transformation
Offset

Note:

・It was shown that various shapes can be obtained by 
manipulating Inversion and Offset.

・The number of parameters is only four: Inversion-3 and 
Offset-1.The Lie Sphere transformation can also be used as a 
parametric surface with fabricability properties.

Constant face offset
Face Offset Mesh

It is possible to obtain a 
surface with the sign of the 
Gauss curvature reversed.
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・ Lie Sphere Transformation
Offset

The Offset of the Lie Sphere transformation acts on the oriented plane, which is a pair 
of normals and points.
The following map is acted on using the natural basis of the 6-dimensional space       .  p̂  6

 3
2 2

2 2

0 0 0

0 1
2 2

0 1
2 2

0 1

O

I
t t t

T
t t t

t t

 
 
 +
 =  
 − − −
 
  

0 6 4 5 6ˆ 0 2 1 2 2 1p v e de e v de de e∞= + ⋅ + + ⋅ = − + + ⋅
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・ Lie Sphere Transformation
Offset

The height     obtained in             is 
used to obtain the coordinate values 
directly in the equation that forms the 
conical net.
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Christoffel Transformation

・Transformation that hold when the cross-
ratio is -1
・Lines of the same color parallel to each other
・Gaussian curvature from positive to negative

Christoffel transformation

Koebe 
Polyhedron
Quadrilateral 
sides touching a 
Sphere surface.

Discrete Minimal 
Surface
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Conclusion

・We introduced Lie sphere geometry, and indicated importance of Lie quadric to 
generate discrete curvature line. Next, we present the modeling technique of circular nets 
based on Lie sphere geometry. 

・ The following items regarding Lie sphere geometry were explained.
How to construct a surface by Lie Sphere geometry.
How to construct a conical net.
The inversion and offset transformations of the Lie Sphere transformation are 
shown. 

・We confirmed that various surfaces with discrete curvature line coordinates can be 
constructed by using only four parameters, three for inversion and one for offset.

Lie Sphere Geometry and Design of Curved Surface Structures

Lie Sphere Geometry and Design of Curved Surface Structures

Numerical results

Case1: t1 = 0.50, t2 = 0.00, t3 = 0.00

Case2: t1 = 0.50, t2 = − 0.25, t3 = 0.10
a. Koebe Polyhedron b. Discrete minimal surface

Case3: t1 = 0.50, t2 = 0.25, t3 = − 0.40

Case4: t1 = 0.25, t2 = − 0.25, t3 = 0.10
a. Koebe Polyhedron b. Discrete minimal surface
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Form-finding of Composite Tensile Structures by Finite Element Technique
based on Nodal Coordinate Assumption

Yohei Yokosuka
Kagoshima University, Japan

Abstract

In general, the finite element method used in structural analysis uses a finite element method assumed displace-
ment in which the displacement of a node is formulated as an unknown function. On the other hand, the finite
element technique based on nodal coordinate assumption can formulate the coordinates of nodes themselves
as unknown functions and perform stress-deformation analysis and form-finding analyses. In this presentation,
I derive a virtual work equation using embedded coordinates and explain the differences in strain and stress
derived from the equilibrium equation after deformation. In the equilibrium equation, the displacement as-
sumption corresponds to the first Piola-Kirchhoff stress tensor and the coordinate assumption corresponds to
the Cauchy stress tensor. Therefore, when the before deformed configuration is used as the reference config-
uration, proposed method presents a natural formulation and is suitable for nonlinear analysis using the total
Lagrange method. In addition, the form-finding analysis of composite tensile structures with beam, truss, and
membrane elements using the nodal coordinate assumption based on finite element technique will be explained.
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1. Overview

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of
Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

・Bending-active structures1-2)

・Two types of numerical analysis are required: 
1. Form-finding to obtain a self-equilibrium shape 
2. Stress displacement analysis to verify the structural performance when an 
external force is applied

2

1. Overview

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of
Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

・Bending-active structures1-2)

・ It is possible to realize a lightweight structure with a self-equilibrium shape due to 
the tension of the membrane and cable and the temporary external force during 
construction. 

1

Form-finding of Hybrid Tensile Structures with Active Bending 
Using Finite Element Technique Assuming Nodal Coordinates

International Conference "Evolving Design and Discrete Differential Geometry - towards 
Mathematics Aided Geometric Design"

Yohei YOKOSUKA1)

Sakura TORIGOE2)

Toshio HONMA1)

1) Graduate School of Science and Engineering, Kagoshima university
2) Shimizu Corporation
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・position coordinate vector

2. Formulation of beam elements

 ( ) ( ) [ ], , , , T
X Y Zx y z x y z r r r= =r S X
r

・shape function S
 3 24×

 
 =
 
  

S 0 0
S 0 S 0

0 0 S

 [ ]1 2 3 4 5 6 7 8S S S S S S S S=S

 3 2
1 2 3 1S ξ ξ= − +  ( )3 2

2 2S L ξ ξ ξ= − +

 ( )3 1S L ξ η= −  ( )4 1S L ξ ζ= −

 3 2
5 2 3S ξ ξ= − +  ( )3 2

6S L ξ ξ= −

 7S Lξη=  8S Lξζ=

 24 1
X X X X X X

i j
i i j ji j

Y Y Y Y Y Y
i j

i i j ji j

T

Z Z Z Z Z Z
i j

i i j ji j

r r r r r rX X
x y z x y z

r r r r r rY Y
x y z x y z

r r r r r rZ Z
x y z x y z

×  ∂ ∂ ∂ ∂ ∂ ∂
= 

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ 

X

・generalized nodal coordinate vector X

3 dimensional beam element

：global coordinates,

 , ,x L y L z Lξ η ζ= = = ：normalized coordinatesL：initial length,

, ,x y z： local coordinates, , ,X Y Z

(1)

(3a-i)

(4)

(2)

5

1. Overview

3) Honma, T., Ataka, N., Geometorically Nonlinear Structural Analysis by FEM Using the Coordinate Value on a Deformed Body, INFORMATION, 7(5), pp.569-583, 2004.
4) Honma, T., Gouda, Y., Ataka, N, A Method of Tension Structure Analysis by Finite Element Technique Using the Coordinate Value on a Deformed Body, Journal of Structural and
Construction Engineering (Transactions of AIJ), Vol.71, No.602, pp.161-169, 2006 (in Japanese)
5) Torigoe, S., Yokosuka, Y. and Honma, T.: From-finding and Formula-tions of Finite Element Technique Assuming Nodal Coordinates,15th Colloquium Analysis and Generation of Structural Shapes and
Systems, pp.47-52, 2020 (in Japanese)

・Finite Element Technique Assuming Nodal Coordinates3-4)

・ Finite Element Technique Assuming Nodal Coordinates is a technique for form-
finding of tension structures, and is a finite element technique in which coordinate 
values are directly unknown.

・In this presentation, we introduce the discretization formulation of beam elements5), 
and apply it to the form-finding problem of the composite tension structure by beam, 
membrane, and cable elements. 

4

1. Overview

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of
Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

・Bending-active structures1-2)

・Two types of numerical analysis are required: 
1. Form-finding to obtain a self- equilibrium shape 
2. Stress displacement analysis to verify the structural performance when an 
external force is applied・ Inheritance of residual stress of beam elements by active 

bending is important in stress displacement analysis to verify 
structural performance.

3
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・virtual work equation

 ( ) ( ) ( ) ( )

( ) ( )

, , , ,

, ,

x y yV L

T
z zL

dV m dx

m dx

δγ ξ τ ξ δκ ξ ξ

δκ ξ ξ δ λ

+

+ =

∫ ∫
∫

X X X X

X X X f

・constitutive equation

xEτ γ=  y y ym EI κ=

z z zm EI κ=

・discretized equilibrium equation

 1 1* *

0 0
1 *

0

T T
x y y y

T
z z z

EAL d EI L d

EI L d

γ κ

κ

γ ξ κ ξ

κ ξ λ

+

+ − =

∫ ∫
∫

B B

B f 0

三次元梁要素

τ：axial stress
,y zm m ：bending moment

(8)

(9)

(10a-c)

7

2. Formulation of beam elements

Notes on numerical calculation
・Gauss's three-point integration is adopted
・Reference arrangement by this formulation follows the solution by the total 
Lagrange method.
・Degree of freedom is reduced the reduction operation of 

Characteristics
・Strain and curvature cannot be separated into linear and nonlinear terms.
・No coordinate transformation required.

 / ,y∂ ∂r  / z∂ ∂r

・virtual work equation

 ( ) ( ) ( ) ( )

( ) ( )

, , , ,

, ,

x y yV L

T
z zL

dV m dx

m dx

δγ ξ τ ξ δκ ξ ξ

δκ ξ ξ δ λ

+

+ =

∫ ∫
∫

X X X X

X X X f

・constitutive equation

xEτ γ=  y y ym EI κ=

z z zm EI κ=

・discretized equilibrium equation

 1 1* *

0 0
1 *

0

T T
x y y y

T
z z z

EAL d EI L d

EI L d

γ κ

κ

γ ξ κ ξ

κ ξ λ

+

+ − =

∫ ∫
∫

B B

B f 0 τ：axial stress
,y zm m ：bending moment

(8)

(9)

(10a-c)

7

2. Formulation of beam elements

3 dimensional beam element

・ Green-Lagrange strain

・curvature

 xγ

2

1 1 11
2 22

T
T

x x x L
γ

 ∂ ∂
= − = −  ∂ ∂ 

r r X GX

 ,y zκ κ
2

2 3

1
2

T
T

y yz x L
κ ∂ ∂

= − = −
∂ ∂
r r X H X

2

2 3

1
2

T
T

z zy x L
κ ∂ ∂

= =
∂ ∂
r r X H X

, ,y zG H H ：constant matrix

・strain-nodal coordinate relation, strain increment-
nodal coordinate increment relation

 x Cγγ = −B X  x γ
δγ δ∗= B X

 y yκκ = B X  y yκδκ δ∗= B X

 z zκκ = B X  z zκδκ δ∗= B X

(5)

(6a,b)

(7a-f)

6

2. Formulation of beam elements

3 dimensional beam element
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( ){ }
( )

2 2

3/22

/

1 /

d v dxEI P v
dv dx

δ= −
+
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: X, Y-free boundary, Z-fixed boundary

4. Form-finding of Hybrid Tensile Structures with Active Bending

20
m

beam

cable

membrane

case1 case2 case3
Cross‐sectional 

shape 40mm×400mm - 3 layers 40mm×400mm - 4 layers 32mm×400mm - 5 layers
Form-finding Structural analysis Form-finding Structural analysis Form-finding Structural analysis

Moment of inertia 
(m4) 6.40e-6 5.76e-5 8.53e-6 1.37e-4 5.46e-6 1.37e-4 

Section modulus 
(m3) 3.20e-4 9.60e-4 4.27e-4 1.71e-3 3.41e-4 1.71e-3 

Allowable 
bending (kNm) 69.3 208.0 92.4 370.0 74.0 370.0 

Analysis cases (sectional property of beam elements) 

Initial form

Membrane element
Elastic modulus Shear modulus Thickness Poisson ratio

1.0e+5 kN/m2 6.0e+4 kN/m2 1.0e-3 m 0.3

Cable element

Elastic modulus Sectional area

2.05e+8 kN/m2 3.95e-5 m2

Material property of membrane, cable element

1. Form-finding analysis: geometrically non-
linear analysis by arc-length method

Modify boundary/load condition, beam section

Update membrane element area and cable length

End of iteration

END

YES

NO

2. Structural analysis: geometrically non-

linear analysis by Newton Raphson method

Analysis flow

Structural analysis
(composite beams with bolt joint that does 

not allow shear slip)

Form-finding analysis
(laminated beams with flat bars that allows 

shear slip )
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: X, Y-free boundary, Z-fixed boundary
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解析ケース(梁要素の断面積) : SN490 

初期形状

Membrane element
Elastic modulus Shear modulus Thickness Poisson ratio

1.0e+5 kN/m2 6.0e+4 kN/m2 1.0e-3 m 0.3

Cable element

Elastic modulus Sectional area
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膜, ケーブル要素の材料定数

1. Form-finding analysis: geometrically non-
linear analysis by arc-length method

Modify boundary/load condition, beam section

Update membrane element area and cable length

End of iteration

END

YES

NO

2. Structural analysis: geometrically non-

linear analysis by Newton Raphson method

解析フロー
応力変形解析時

(合成梁-せん断すべり許容しない)

形状解析時
(重ね梁-せん断すべり許容する)

Form-finding analysis
・Concentrated force which induces buckling acts and the equilibrium path is traced 
by the arc-length method.
・Cables and membranes are not considered elastic stiffness. Cable tension and 
membrane tension are constant at 10 kN and 1 kN/m, respectively.

Structural analysis 
・Release the concentrated force and change the roller support to a pin support.
・Change the section property from a laminated beam to a composite beam.
・Inherit the bending / axial stress at the time of structural analysis.
・Apply self weight (snow load + dead load) and solve by Newton-Raphson method.
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・Numerical results
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・We show the formulation of the beam element of the finite element technique 
assuming nodal coordinates, and show the validity of this method by comparing the 
analytical solution of the buckling form of the beam in the two-dimensional plane and 
the result of numerical analysis. 

・We showed that allowable solutions for each analysis can be obtained by 
performing form-finding and stress displacement analysis of the hybrid tensile 
structure, and proposed a bending-active structure by using this method. 

・ It is possible to inherit the axial stress and bending stress by active bending even if 
the cross-sectional shape changes in each analysis by dividing it into two stages.

5. Conclusion

14

・Numerical results
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・Global coordinate system 
1 2 3, ,X X X  (4) 

・Orthonormal basis in global 

1 2 3, ,e e e  (5) 
・Embedded coordinates 

1 2 3, ,ξ ξ ξ  (6) 
・Position vectors before deformation 

i
iX=R e  (7) 

・Position vectors after deformation 

( )1 2 3, ,i
ix X X X=r e  (8) 

・Displacement vectors 

= −u r R  (9) 
・Representation of Embedded coordinates 

( )1 2 3, ,i iX X ξ ξ ξ=  
(10) ( )1 2 3, ,i ix x ξ ξ ξ=  

 

 

1.1 Coordinate systems and position vectors 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 Coordinate systems and position vectors 

The interior region of an object is regarded 
as a manifold M . 
An embedded coordinate system Q is given 
as local coordinates that describe arbitrary 
positions and physical quantities inside an 
object. 
The global (Cartesian) coordinate system
R is given as the coordinates in which the 
object is placed. 
・Deformation :  

( )x f X=  (1) 
・Embedded coordinates of points ,X x  are 
equal :  

( ) ( )( )Q QX f XϕΦ =  (2) 
・Mapping from embedded coordinates to 
global coordinates before/after deformation: 

1 1
R Q R Q, ψ ϕ ϕ− −Ψ = Φ Φ =   (3) 
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1.2 Strain 

・Green-Lagrange strain2 (displacement type) 
Deformation gradient tensor Z : 

i
i jj

u
X
∂

≡ ⊗ ⊗
∂

Z u e e∇ =  (16) 

jjX
∂

≡
∂

e∇  (17) 
Whereas, 

( )d d d d

d d d

k k ki i i
i j k i j k jk ij j j

j ji
ij j

u u uX X X
X X X
u X X
X X

δ
∂ ∂ ∂ ⋅ = ⊗ ⋅ = ⊗ ⋅ = ⋅ ∂ ∂ ∂ 
∂ ∂

= ⋅ = ⋅ =
∂ ∂

Z R e e e e e e e

ue u  
(18) 

Therefore, 
( ) ( )d d d d d+ ⋅ = + = + =I Z R R u R u r , ( )+ =I Z F  (19) 
 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Strain 

・Green-Lagrange strain1 (coordinate type) 
Strain is defined as the difference in the inner product of an infinitesimal vector before and after 
deformation. 

( ) ( )
( )
( )

d d d d d d d d

d d d d

d d

T T T

T T

⋅ − ⋅ = ⋅ ⋅ ⋅ − ⋅

= −

= −

r r R R F R F R R R

R F F R R R

R F F I R
 

(14) 

Green-Lagrange strain E : 

( )1
2

T≡ −E F F I  (15) 
Green-Lagrange strain can be expressed in coordinates only, but the linear and nonlinear parts 
cannot be separated; when Green-Lagrange strain is employed, it becomes a nonlinear finite 
element method. 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 Strain 

・Transformation of continuum 
Let the material point R  and its neighborhood d+R R  
be a point. 
Infinitesimal vector dR : 

, d i i
i ii i dX dX

X X
∂ ∂

= = =
∂ ∂

R Re R e  (11) 
The infinitesimal vector after deformation is represented 
as a linear mapping of the infinitesimal vector before 
deformation as follows 
Infinitesimal vector dr : 
d d= ⋅r F R  (12) 

F ：Deformation gradient tensor 
Deformation gradient tensor F ： 

i

i jj

x
X
∂

= ⊗
∂

F e e  (131) 
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Covariant and Contravariant 
basis vectors 

 

 

 

 

 

1.3 Embedded coordinates and covariant and contravariant bases 

・Covariant and Contravariant basis vectors 

( ) ( ) ( ) ( ) ( )
1 2 3

, , , 1,2,3 , 2,3,1 , 3,1,2j ki i j k
×

= =
× ⋅

g g
g

g g g  (23) 

 

v  
1

1v g  

1
1v g  

2
2v g  2

2v g  

1g  

2g  

1g  

2g  

                                                                              

 

 

 

 

 

 

 

 

 

Covariant and Contravariant 
basis vectors 

 

 

 

 

 

1.3 Embedded coordinates and covariant and contravariant bases 

・Covariant and Contravariant basis vectors 
Let the material point R  and its neighborhood d+R R  
be a point. 
Covariant basis vectors ig , 
Contravariant basis vectors 

ig : 

1,
,

0,

i
ji i

j j i
j

i j
i j

δ
δ

δ
 = =⋅ =  = ≠

g g  
(21) 

,i j ij
i j ijg g⋅ = ⋅ =g g g g  

,j i ij
i ij jg g= =g g g g  

The other basis vector is determined by determining ig  
or ig  from the geometric relationship. The vector v  
in the figure can be expressed in two ways. 

i i
i iv v= =v g g  

(22) 
,j i ij

i ij jv g v v g v= =  
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1.2 Strain 

・Green-Lagrange strain2 (displacement type) 
Green-Lagrange strain E : 

( ) ( ) ( ){ }1
2
1
2

T T

ji k k
i jj i i j

uu u u
X X X X

= ⊗ + ⊗ + ⊗ ⋅ ⊗

∂ ∂ ∂ ∂
= + + ⊗ ∂ ∂ ∂ ∂ 

E u u u u

e e

∇ ∇ ∇ ∇

 
(20) 
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Parallel Hexahedron equilibrium 
 

 

2.1 Equilibrium of force 

The equilibrium of force after deformation acting on a 
parallel hexahedron with a width of d iξ in the direction 
from point ( )1 2 3

0 0 0, ,ξ ξ ξ  to iξ  in the object is 

d d d d
i

i i i
i ii s s vξ ρ

ξ
 ∂

+ − + = ∂ 

tt t f 0  (32) 

where it  : Cauchy stress vector, f  : force in unit 
volume, ρ : density. 
・Cauchy stress tensor T  

( ) ,ij i i
i jT ⊗ ≡ =g g T Tn t  (33) 

・Equilibrium equation 

d d di i
ii s vξ ρ

ξ
∂

+ =
∂

T n f 0  (34) 

 

1
1dξg  

2
2dξg  

3
3dξg  

1ξ  

3ξ  

2ξ  

2−t  

2−n  

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Embedded coordinates and covariant and contravariant bases 

Product of covariant basis vectors before and after transformation 
,i j ij i j ijG g⋅ = ⋅ =G G g g  (29) 

Green-Lagrange strain E : 

( ) ( )( )1 1,
2 2

i j
ij ij ij ij ijE g G g G= − = − ⊗E G G  (30) 

This can be considered as follows. 

( )
( )

d , d

d d

i i
i i

i
i i i

i i i
i i i

d d

d d

ξ ξ

ξ ξ

= =

= ⊗ ⋅

= = ⊗ ⋅ =

R G r g

g g G G

r g g G G F R
 

( )( ) ( ) ( )
( )( ) ( ) ( )

,i T i j i j i j
i i j i j ij

i j i j i j
i j i j ij

g

G

= ⊗ = ⊗ ⊗ = ⋅ ⊗ = ⊗

= ⊗ ⊗ = ⋅ ⊗ = ⊗

F g G F F G g g G g g G G G G

I G G G G G G G G G G  

(31) 

 
 
 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Embedded coordinates and covariant and contravariant bases 

The components of the infinitesimal vector idξ , idX , idx have the following relationship 

,
i i

i j i j
j j

Xd dX dX d
X
ξξ ξ

ξ
∂ ∂

= =
∂ ∂ , ,

i i
i j i j

j j

xdx d d dx
x
ξξ ξ

ξ
∂ ∂

= =
∂ ∂  (24) 

Covariant and contravariant basis vectors before transformation , i
iG G : 

,
j i

i j ij
i j ji i j

X G
X
ξ

ξ ξ
∂ ∂ ∂

= = = =
∂ ∂ ∂

RG e G e G  (25) 

Infinitesimal vector with embedded coordinates before deformation dR : 
d i i

i id dξ ξ= =R G G  (26) 
Covariant and contravariant basis vectors after transformation , i

ig g : 

,
j i

i j ij
i j ji i j

x g
x
ξ

ξ ξ
∂ ∂ ∂

= = = =
∂ ∂ ∂

rg e g e g  (27) 
Infinitesimal vector with embedded coordinates after deformation dr : 
d i i

i id dξ ξ= =r g g  (28) 
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2.2 Second Piola-Kirchhoff Stress 

S  is the second Piola-Kirchhoff stress. If the component ijS  of S , we obtain the following 
equation.  

( )ij
i jS= ⊗S G G  (43) 

The basis of the second Piola-Kirchhoff stress tensor shows a correspondence with the Green-
Lagrange strain. 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Second Piola-Kirchhoff Stress 

The Cauchy stress tensor represents stress in a equilibrium state after deformation. 
The second Piola-Kirchhoff stress is used to express stresses with respect to the shape before 
deformation. Consider pulling the Cauchy stress tensor back to its before deformation state. 

The pullback of ndst  multiplied by the Cauchy stress vector multiplied by a infinitesimal area 
is 

1 d ds S− =F Tn SN  (39) 
The following Nanson formula is used here. 

( ) Td det ds S−=n F F N  (40) 
From equations (39) and (40), the following equation can be derived 

( )1 Tdet d dS S− − =F T F F N SN  (41) 
The stress tensor S becomes 

( )1 Tdet− −=S F T F F  

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )
det det

det

ij i j ij i j
i i j j i j i j

ij
i j

T T

T

= ⊗ ⊗ ⊗ = ⋅ ⋅ ⊗

= ⊗

F G g g g g G F g g g g G G

F G G  
(42) 

 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

Parallel Hexahedron equilibrium 
 

 

2.1 Equilibrium of force 

・Equilibrium equation 
From the relation of the following equation 

d d di i i
is vξ =n g  (35) 

The equilibrium equation becomes 

d di
i v vρ

ξ
∂

+ =
∂

T g f 0  (36) 

Furthermore, from the following formula defining nabla, 

j
jξ

∂
∇ ≡

∂
g  (37) 

The equilibrium equation becomes 
( )dvρ∇ ⋅ + =T f 0  (38) 

 

1
1dξg  

2
2dξg  

3
3dξg  

1ξ  

3ξ  

2ξ  

2−t  

2−n  
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4.1 principle of virtual work 

・Principle of virtual work 
( ) d 0vρ δ

Ω
∇ ⋅ + ⋅ =∫ T f r  (51) 

where δr : virtual displacement, Ω : area of the object. 
The following relationship exists. 

( ) ( ) ( ):δ δ δ∇ ⋅ = ∇⊗ + ∇ ⋅ ⋅T r T r T r  (52) 
Using the above equation and Gauss' divergence theorem, the internal force work of the virtual 
work becomes 

( ) ( ) ( )d : d dv v vδ δ δ
Ω Ω Ω
∇ ⋅ ⋅ = − ∇⊗ + ∇ ⋅∫ ∫ ∫T r T r T r  (53) 

The principle of virtual work is as follows. 

( ) ( )

( ) ( )

( ) ( )

: d d d 0

: d d d

: d d d

v v v

v v v

v s v

δ δ ρ δ

δ δ ρ δ

δ δ ρ δ

Ω Ω Ω

Ω Ω Ω

Ω Γ Ω

− ∇⊗ + ∇ ⋅ + ⋅ =

⇔ ∇⊗ = ∇ ⋅ + ⋅

⇔ ∇⊗ = ⋅ + ⋅

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫

T r T r f r

T r T r f r

T r n T r f r
 

(54) 

 
 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Constitutive equation of linear elastic body 

・Generalized Hooke's law 
( )ijkl

ij kl ij kl ik jlC λδ δ µ δ δ δ δ= + +  (49) 
where λ , µ are Lame constants, can be expressed using the elastic modulus E  and Poisson's 
ratio ν  as follows. 

( )( )

( )

1 1 2

2 1

E

E

νλ
ν ν

µ
ν

 = + −

 =
 +

 
(50) 

 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Constitutive equation of linear elastic body 

From the relationship between the second Piola-Kirchhoff stress and Green-Lagrange strain 
components, the constitutive equation can be expressed as follows. 

ij ijkl
klS C E=  (44) 

where the second Piola-Kirchhoff stress tensor S  and Green-Lagrange E  strain are expressed 
as 

( ) ( ),ij i j
i j ijS E= ⊗ = ⊗S G G E G G  (45) 

The elasticity tensor is expressed as 
( )ijkl

i j k lC= ⊗ ⊗ ⊗C G G G G  (46) 
The constitutive equation can be expressed as follows 

:=S C E  (47) 

( ) ( )
( ) ( )
( )( )( )

( ) ( )

: :

:

ijkl m n
i j k l mn

ijkl m n
mn i j k l

ijkl m n
mn i j k l

ijkl m n ijkl
mn k l i j kl i j

C E

C E

C E

C E C Eδ δ

= ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗

= ⊗ ⋅ ⋅

= ⊗ = ⊗

C E G G G G G G

G G G G G G

G G G G G G

G G G G
 

(48) 
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4.2 Pulling back the principle of virtual work 

Based on the above, the principle of virtual work becomes. 

( ) ( )
0 0

0
1: d d d
2 t

T v S Vδ δ δ ρ δ
Ω Γ Ω

  ∇⊗ + ∇⊗ = ⋅ + ⋅   ∫ ∫ ∫T r r t r f r

 (62) 

The internal force work on the left side can be expressed as 

( ) ( )

( )

( )

( )

1: d
2

1 1: det d
det 2

1 1: det d
det 2

1 1:
det 2

T

T i i
i i

T i i
i i

T i
i i

v

V

V

δ δ

δ δ
ξ ξ

δ δ
ξ ξ

δ δ

  ∇⊗ + ∇⊗   
     ∂ ∂  = ⊗ + ⊗       ∂ ∂        
     ∂ ∂  = ⊗ + ⊗       ∂ ∂        

 = ⊗ + ⊗ 
 

T r r

FSF g r r g F
F

r rFSF g g F
F

FSF g g g
F ( ) ( )

( ) ( ) ( )

det d

1: d
2

i

T i i
i i

V

Vδ δ

     
  = ⊗ + ⊗   

g F

FSF g g g g

 

(63) 

 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Pulling back the principle of virtual work 

Next, we derive the principle of virtual work in a microvolume before deformation. 
The surface force vector dst  in a infinitesimal can be expressed as 

( ) ( )1d d det d det d d
det

T T Ts s S S S− −= = = =t Tn T F F N FSF F F N FSN
F  (59) 

From the law of conservation of mass before and after deformation, density ρ  satisfies the 

following relation with density 0ρ before deformation.  

0d dv Vρ ρ=  (60) 
As the interior region 0Ω  and boundary region 0 0,t xΓ Γ  before deformation, the mechanical 
and geometric boundary conditions can be expressed as follows 

( )
( )

0

0

on

on
t

x

= Γ

= Γ

FSN t

r r



 (61) 

 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 principle of virtual work 

From the symmetry of T , we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }

1 1: : :
2 2

1 1 1: : :
2 2 2

TT

T T

δ δ δ

δ δ δ δ

∇⊗ = ∇⊗ + ∇⊗

 = ∇⊗ + ∇⊗ = ∇⊗ + ∇⊗ 

T r T r T r

T r T r T r r  
(55) 

The mechanical and geometric boundary conditions are given as follows 
( ) ( )on , ont x= Γ = ΓTn t r r  (56) 

From the geometric boundary conditions, the following relationship holds 
( )on xδ = Γr 0  (57) 

Based on the above, the principle of virtual work becomes 

( ) ( )1: d d d
2 t

T v s vδ δ δ ρ δ
Ω Γ Ω

  ∇⊗ + ∇⊗ = ⋅ + ⋅   ∫ ∫ ∫T r r t r f r  (58) 
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Here, from the definition of Green-Lagrange strain, the internal force work can be expressed as 
follows 

( ) ( )

( )( )

( )

1 1 (constant) ,
2 2

1: d
2

: d : d

ij i j i j i j

i j
i j

i j
ij

E

V

E V V

δ

δ δ

= ⋅ − ⋅ = ⋅ −

 ⋅ ⊗  
 = ⊗ = 

g g G G g g

S g g G G

S G G S E
 

(69) 

From the above, the principle of virtual work in a small volume before deformation becomes 

0 0 0
0: d d d

t

V S Vδ δ ρ δ
Ω Γ Ω

= ⋅ + ⋅∫ ∫ ∫S E t r f r  (70) 
where a: virtual strain tensor. From the above equation deformation, we obtain from the balancing 
equation expressed in terms of the Cauchy stress tensor referring to after deformation, the second 
Piola-Kirchhoff stress tensor referring to before deformation, and the virtual work principle 
expressed in terms of Green-Lagrange strain. 

4.2 Pulling back the principle of virtual work 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Pulling back the principle of virtual work 

It can be expressed as a deformation gradient tensor ,T i i
i i= ⊗ = ⊗F G g F g G , and the internal 

force work can be expressed as 

( ) ( )

( ) ( )( )

( )( )

( )( )( )( )

( )( )

( )( )

1: d
2

1: d
2

1: d
2

1: d
2
1: d
2
1: d
2

T

T i j
i j i j

T i j
i j i j

i i j j
i j i j i j

i j
i j i j

i j
i j

v

V

V

V

V

V

δ δ

δ δ

δ δ

δ δ

δ δ

δ

  ∇⊗ + ∇⊗   
 = ⋅ + ⋅ ⊗  

 = ⋅ + ⋅ ⊗  
 = ⋅ + ⋅ ⊗ ⊗ ⊗  
 = ⋅ + ⋅ ⊗  
 = ⋅ ⊗  

T r r

FSF g g g g g g

S F g g g g g g F

S g g g g G g g g g G

S g g g g G G

S g g G G

 

(68) 

 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Pulling back the principle of virtual work 

Transform the term ( ) ( )i i
i iδ δ ⊗ + ⊗ g g g g . 

( ) ( )

( )( )( ) ( )( )( )

( )( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1
2

1
2
1
2
1
2
1
2
1 1
2 2

i i
i i

k i l l i k
k i l l i k

i k l i l k
k i l l i k

i l l i
i l l i

i j j i
i j j i

i j i j
i j i j i j i

δ δ

δ δ

δ δ δ δ

δ δ

δ δ

δ δ δ δ

 ⊗ + ⊗ 

 = ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ 

 = ⋅ ⊗ + ⋅ ⊗ 

 = ⋅ ⊗ + ⋅ ⊗ 

 = ⋅ ⊗ + ⋅ ⊗ 

 = ⋅ ⊗ + ⋅ ⊗ = ⋅ + ⋅ 

g g g g

g g g g g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g g g g g( )( )i j
j ⊗g g

 

(64) 

Here, the following relationship is used 
( )( ) ( )i j i j

i j i j⊗ ⊗ = ⋅ ⊗ =g g g g g g g g I  (65) 
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4.2 Pulling back the principle of virtual work 

Following the strict formulation, δr obtain the clearer result. 
The total Lagrange method with the reference configuration as the initial configuration is suitable 
for caseδr , and the updated Lagrange method with the reference configuration as the current 
configuration is suitable for case δu . 
 
 
 
 
 
 
 

                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Pulling back the principle of virtual work 

Next, consider pulling back the equilibrium equation to the before deformation state using the 
virtual displacementδu . However, instead of the Cauchy stress, the first Piola-Kirchhoff stress 
tensor is given byΠ .Π is the stress tensor, which represents the force acting on the face element 
after deformation as a stress vector translated before deformation and not including rotation. 

1det( ) T−= =Π F F T SF  (71) 
 

Π is not a symmetric tensor. Therefore, from Eq. (55), 

( )

( ) ( ) ( )

1 : d
det

: d : d : d

1: d : d : d
2

: d

T

T TT T T

T T T T

v

V V V

V V V

V

δ

δ δ δ

δ δ δ

δ

  ∇⊗ 
 

= ∇⊗ = =

 = = =  
 

=

Π u
F

Π u SF Z SF F

S F F S F F S F F

S E

 

(72) 
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Can we benefit from constant mean curvatures?

4

• Bezier, NURBs, T-spline etc. (params.: control net)
We can create almost any surface (≠ feasible as structural design)

• Mean curvature flow (params.: target mean curvatures)
→ satisfy equilibrium condition for pressure load

Hayashi et al. “Mean curvature flow for generating discrete surfaces with piecewise constant mean curvatures”, Computer Aided Geometric Design, 2023.

Mean curvature flow

2

• Move vertex positions using mean curvature and normal vector

• The stationary point of mean curvature flow has a constant mean 
curvature (CMC)       at each vertex

( )i i iH H∇ = − −p n i

i

i

H
H

∇p

n

: Change in the location of node i

: Mean curvature at node i

: Target mean curvature

: Unit normal vector at node i

ipi∇p

Node i

H

Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating 
discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169.

Piecewise constant mean 
curvature surfaces
Kazuki Hayashi (Kyoto University)
Yoshiki Jikumaru (Toyo University)
Makoto Ohsaki (Kyoto University)
Takashi Kagaya (Muroran Institute of Technology)
Yohei Yokosuka (Kagoshima University)
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Stationary condition

7

Π

1M 2M

3M( )
3

1 2
1

( , , )i i
i

E A M V M Mα
=

= − Π∑
volumearea

arbitrary value

( )

( )
3

2

1

3 3 3

1 2

2
i

i i i
i M

M

E H dA

H dA

δ α

α

=

= ⋅ +

− ⋅

∑ ∫

∫

v ν

v ν 3 30 onH M=
3

1 2 3
1

0 oni i
i

M M Mα
=

= ∂ ∩∂ ∩∂∑ n

3 3onP M P⊥ ∂ ∩t

( )

( )
1 2 3

3

3

1

3 3

i i
iM M M

M P

ds

ds

α

α

=∂ ∩∂ ∩∂

∂ ∩

+ ⋅

+ ⋅

∑∫

∫

v n

v n

1 1
1

1 on
2

H M
α
−

= 2 2
2

1 on
2

H M
α
−

=，stationary
condition

( )0Eδ =

velocity vector outer pointing unit normal vector

co-normal vector on the intersection

Obtained variation of E and its stationary point

Variational problem (continuous case)

6

• Define a plane     and two patches       and       
• Define another plane        bounded by      and patch intersection
• Determine surface transformation from the variation of energy 

functional

1M 2MP
P3M

P

1M 2M

3M

E

( )

1 2
3

1

( , , )

i i
i

E V M M P

A Mα
=

=

+∑
Area

Arbitrary value

Volume of enclosed domain
(positive in concave direction)

• The resulting surfaces are too simple when mean curvature flow is 
applied to a single closed surface

• By allowing G0 continuous internal boundaries, various shapes can be 
generated

⇒Derive curvature flow to obtain piecewise CMC (p-CMC) surfaces 
based on the variational principle

CMC with internal boundary

5

Internal boundary

Shintoyosu Brillia Running Stadium, JapanDouble bubble
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Discretization of energy variation

10

P

1M
2M

3M

( ) ( )
1 2

3

d
( , , ) 1 ( , , )

1 1,
6 2

i

i
T M M i T M

E α
∈ ∪ = ∈

= − × + − × −∑ ∑ ∑
p q r p q r

p q r q p r p

( )d , p
p

E E pδ = ∇∑ n

( )dE p−∇

Node p
( ) ( ) ( )

( ) ( ) ( )11
d 1 1

1 1

1
6 2

pn
j j

j j j j
j j j

E p α +
+ +

= +

 − × −
 ∇ = − × + × −
 − × − 

∑
q p q p

q q q q
q p q p

Denoted as JIf node p is inside mesh 𝑀𝑀𝑀𝑀1

Discretization of energy

9

Π

1M 2M

3M( )
3

1 2
1

( , , ) i i
i

E V M M A Mα
=

= Π +∑
volume area

( ) ( )
1 2

3

d
( , , ) 1 ( , , )

1 1,
6 2

i

i
T M M i T M

E α
∈ ∪ = ∈

= × + − × −∑ ∑ ∑
p q r p q r

p q r q p r p

discretize

p

q

r
p

q

r

( ) ( )1 1 ,
2 3
⋅ − × −p q p r p

cone volume

o原点

The norm of the outer product
of two vectors = 2×(area)

Discrete version of mean curvature flow can be obtained

Stationary condition

8

Π

1M 2M

3M( )
3

1 2
1

( , , ) i i
i

E V M M A Mα
=

= Π +∑
volume areaarbitrary value

Shape at the stationary point is
・ has a constant MC
・ has a constant MC 
・ has zero MC
・

・ is orthogonal

1M 11 (2 )α−
2M 21 (2 )α−
3M

1 2 3

1 2 3

sin sin sinθ θ θ
α α α

= =

3M Π
1θ2θ

3θ

The solution that satisfies the above uniquely exists
= Mean curvature flow is stable

3 30 onH M=
3

1 2 3
1

0 oni i
i

M M Mα
=

= ∂ ∩∂ ∩∂∑ n

3 3onP M P⊥ ∂ ∩t

1 1
1

1 on
2

H M
α
−

= 2 2
2

1 on
2

H M
α
−

=，

stationary condition

( )0Eδ =
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Example

13

Error to the target mean curvatureFinal geometry Energy functional history

Piecewise smooth Precisely approximate the target shape Good convergence

Example

12

Fixed to move

Structurally preferable shapes can be obtained 
through pure mathematic techniques

How to move the nodes?

11

( )E p−∇

Node p

( ) ( )1
1 1

1

1
6 2

pn

j j j j
j

E p α
+ +

=

 ∇ = − × + × − 
 

∑ q q J q q

If node p is inside mesh 𝑀𝑀𝑀𝑀1:

If node p is inside mesh 𝑀𝑀𝑀𝑀2:

( ) ( )2
1 1

1

1
6 2

pn

j j j j
j

E p α
+ +

=

 ∇ = − × + × − 
 

∑ q q J q q

( ) ( )3
1

1 2

pn

j j
j

E p α
+

=

 ∇ = × − 
 

∑ J q q

If node p is inside mesh 𝑀𝑀𝑀𝑀3:

If node p is on 𝑀𝑀𝑀𝑀1 ∩𝑀𝑀𝑀𝑀2 ∩𝑀𝑀𝑀𝑀3:

∇𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝 = �
𝑖𝑖𝑖𝑖=1

2

�
𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

−
1
6
𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗 × 𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗+1 +

𝛼𝛼𝛼𝛼1
2
𝐉𝐉𝐉𝐉 × 𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗+1 − 𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗 + �

𝑗𝑗𝑗𝑗=1

𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀3 𝛼𝛼𝛼𝛼3
2
𝐉𝐉𝐉𝐉 × 𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗+1 − 𝐪𝐪𝐪𝐪𝑗𝑗𝑗𝑗

jq

1jq + 1M

2M

3M

P

1M
2M

3M
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Conclusion

15

• Formulated mean curvature flow for meshes with internal boundaries
• Parametrically generated various piecewise CMC discrete surfaces
• Convergence property depends on the boundary condition
• Transformation behavior depends on hyperparameters

Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating 
discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169.

Example

14

• Convergence depends on the shape controlling parameters α

Larger external patch

Smaller
external patch

Auxiliary patch

×Large error

◎ Small error
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Purpose

Surface approximation by developable rigid origami with small DOF

Approximation error function reflecting appearance of origami surface

Use of an arbitrary initial crease pattern (not depend on typical crease patterns)

Small degrees of freedom of mechanism for controllability of folding motion 
obtained by sequentially removing (fixing) crease lines

Selection criterion of fixed crease lines reflecting shape and folding mechanism to 
avoid undesirable locking phenomenon

2025/3/13 3

Form Generation of Rigid Origami
for Approximating a Curved Surface

Kentaro Hayakawa

Kyoto Group,  Nihon University

*Joint work with M. Ohsaki
@ Kyoto Univeristy

Evolving Design and Discrete Differential Geometry 
- towards Mathematics Aided Geometric Design

Previous Studies

Generalization of typical crease patterns
Dudte et al. 2016, Tachi 2013, Zhao et al. 2018

Large DOFs of mechanism in many examples

Low approximation accuracy in sparse crease
patterns

⇒ Design flexibility: High,   Constructability: Low 

Rigid foldable quadrilateral mesh
Tachi 2010, He and Guest 2020

Rigid foldability for general quad mesh（Tachi 2009）
Single DOF mechanism

⇒ Design flexibility: Low,   Constructability: High

2025/3/13 2

Dudte et al. 2016 Zhao et al. 2018 

He and Guest. 2020 
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Developability Conditions

Gaussian curvature at a vertex not 
on a cutting lines

κv: Gaussian curvature at vertex v
θi,v: angle between adjacent edges
nv

edge: number of edges around vertex v

Normal vectors of a pair of faces 
adjacent to a dividing edge 

: unit normal vectors of faces f1 and f2

2025/3/13 6

crease 
line

dividing 
edge

edge

,
1

2 0
vn

v i v
i

κ π θ
=

= − =∑

1 2
0f f× =ν ν

vertex v
,i vθ

1,i vθ +

face f1

face f2

1f
ν

2f
ν

1 2
,f fν ν

Triangulation of the target surface
+ Assignment of cuts

Generation of a developable 
origami surface by minimizing 

approximation error

Evaluation of 
infinitesimal 
mechanism

Locked 
crease line

Confirmation of 
rigid foldability

Reselect fixed crease line
to avoid locked mechanism

Not exist

Overview of Form Generation Procedure

2025/3/13 5

Exist

Termination 
condition

Satisfied
Add fixed crease line to 

reduce DOF of mechanism

Not 
satisfied

Loop of form generation by 
sequentially reducing number 
of crease lines

Origami Surface as a Triangular Mesh

2025/3/13 4

Face
Crease line
(Mountain fold)

Dividing edge

Inner cut
(Set of cut lines)

Crease line
(Valley fold)

Inner 
vertex

Inner cut 
line

Perimeter cut
(Set of cut lines)

Perimeter cut line

Perimeter 
vertex

Perimeter 
edge

Development 
to a plane

Development 
diagram

Folded shape
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Target surface: Bézier surface.

Parameters representing the position of vertex v :
Bézier parameters ξv , ψv that define a point on the surface
Offset distance ζv in the direction normal to the Bézier surface.

: position vector of vertex v
: position vector of the point
on the target surface 

: unit normal vector at point 

Definition of Design Variables 

2025/3/13 9

( , , ) ( , ) ( , )v v v v v v v vξ ψ ζ ξ ψ ζ ξ ψ= +r r ν

( , )v vξ ψr

( , )v vξ ψν ( , )v vξ ψr

( , , )v v vξ ψ ζr

vertex v point on
Bézier surface

offset ( , , )v v vξ ψ ζr

( , )v vξ ψr

( , )v v vζ ξ ψν

vertex v

Developability Conditions

Closed loop of cutting lines on the 
development diagram

2025/3/13 8

lc,i: length of edge i

cut2

, ,
1

cn

c i c i
i

l
=

=∑ u 0

cut

cut

2 1

,1 , 1
1 1

2 1

, 1
1 1

,

,

( 1) cos 0

( 1) sin 0

c

c

n i
i

c c i
i j

n i
i

c i
i j

c j

c j

l l

l

ϕ

ϕ

−

+
= =

−

+
= =

  
+ − =  

  


  − = 
 

∑ ∑

∑ ∑

Developability Conditions

Direction vector of the edge going round 
a cutting line

2025/3/13 7

, 1 , ,( )c i c i c iϕ π+ = −u R u

cut ,1,2 1c
cc n +

=u u

( )
cut

2 1
c

v
v V

kκ π
∈

= −∑

uc,i: direction vector of edge i
ϕc,i: rotation angle between edge i and i+1
R(θ ): rotation matrix about angle θ
nc

cut: number of edges of cutting line c
Vc

cut: set of vertices on cutting line c
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Triangulation of the target surface
+ Assignment of cuts

Generation of a developable 
origami surface by minimizing 

approximation error

Evaluation of 
infinitesimal 
mechanism

Locked 
crease line

Confirmation of 
rigid foldability

Reselect fixed crease line
to avoid locked mechanism

Not exist

Overview of Form Generation Procedure

2025/3/13 12

Exist

Termination 
condition

Satisfied
Add fixed crease line to 

reduce DOF of mechanism

Not 
satisfied

Frame model
(or other models)

D A A N N

min

min , max

ref

min. ( ) ( ) ( ) ( )

s.t.

( )

( )

( ) ( ) 0

e

v i

f f

G G w G w G

l l

θ θ θ

χ

= + +

≥

≤ ≤

⋅ ≥

∈

X
X X X X

X

X

ν X ν X

X

Developability conditions

Optimization Problem for Form Generation

2025/3/13 11

：lower bounds of edge length

1 2

cut

cut

cut

,

2 1

,1 , 1
1 1

2 1

1
,, 1

1

0

0

0

( 1) cos 0

( 1) sin 0

c

c

c

v

f f

v
v V

n i
i

c c i
i j

n i
i

c i
i j

c j

c j

l l

l

κ

ϕ

κ

ϕ

∈

−

+
= =

−

+
= =

=

× =

=

 
+ − = 

 
 

− = 
 

∑

∑ ∑

∑ ∑

ν ν

：bounds of inner angles

：avoidance of face flipping

：bounds of design variables

X: parameters for determining the positions of the vertices of the rigid origami 

Definition of Approximation Error Function

Distance between
vertices and target surface

Surface area

Unit normal vectors of
faces and target surface  

2025/3/13 10

2
D

1
2 v

v V
G ζ

∈

= ∑

AG A A= −

2ref
N f f

f F
G

∈

= −∑ ν ν

( , )v vξ ψν

v
vζ

vertices in Vf
triface f

fν

tri

tri

ref

( )

( )

f

f

v v
v V

f

v v
v V

ξ ψ

ξ ψ

∈

∈

,

=
,

∑

∑

ν
ν

ν

A
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Examples of HP Surface

Design variables are selected so that the symmetry 
of the surface is preserved.

Optimization parameters are set as:
wA = 0.2, wN = 1.0
lmin = 1.0,  θmin = π/6,  θmax = 5π/6,  −5 ≤ ζv ≤ 5

2025/3/13 15

Pattern X Pattern E Pattern H
Planes of 
symmetry

Cutting 
line

Cutting 
line

Cutting 
line

Selection Criterion of Fixed Crease lines

Mixed Criterion
Fix one or several crease lines with smallest scores

Small shape difference

Small possibility of locking phenomenon

⇒ High possibility of successful termination in the succeeding 
optimization step without locked crease lines

⇒ Reduction in the number of times to solve optimization problems

2025/3/13 14

( )
( )

S

F
h

h
h

σσ
σ

= =
Shape criterion

Mechanism criterion

Folding angle criterion
Fix a crease line with small folding angle
⇒ Small shape difference

Infinitesimal mechanism criterion
Fix a crease line with a large rotation in the infinitesimal mechanism
⇒ Small possibility of locking phenomenon

Selection Criterion of Fixed Crease lines

2025/3/13 13

H

S

1

h
h N

j
j

ρσ
ρ

=

=

∑

hρ

← The smaller the better
Crease line h

( )
( )

H

2

F

2

1

max

max

ihi
h N

ijij

φ
σ

φ
=

=

∑
← The larger the better

ihφ

Crease line h
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Examples of HP Surface

2025/3/13 18

Fixed crease lines: 18,  DOF: 11,  G(X) = 23.6

Fixed crease lines: 18,  DOF: 12,  G(X) = 28.2

Examples of HP Surface

2025/3/13 17

Fixed crease lines: 16,  DOF: 5,  G(X) = 24.0

Fixed crease lines: 18,  DOF: 8,  G(X) = 20.3

Examples of HP Surface

2025/3/13 16

Without cut Pattern E

Pattern X Pattern H

0

10

20

30

40

50

0 5 10 15 20 25 30

G
(X

)

Number of fixed crease lines
without X E H

0

10

20

30

40

0 5 10 15 20 25 30

D
O

F

Number of fixed crease lines
without X E H
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Examples of Dome Surface

2025/3/13 21

Fixed crease lines: 20,  DOF: 1,  G(X) = 47.5

Fixed crease lines: 20,  DOF: 6,  G(X) = 43.5

Examples of Dome Surface

2025/3/13 20

Without cut Pattern E

Pattern X Pattern EE

0
10
20
30
40
50
60

0 5 10 15 20 25 30 35

G
(X

)

Number of fixed crease lines
without X E EE

0

10

20

30

40

0 5 10 15 20 25 30 35

D
O

F

Number of fixed crease lines
without X E EE

Examples of Dome Surface

Design variables are selected so that the symmetry 
of the surface is preserved.

Optimization parameters are set as: 
wA = 0.2, wN = 1.0
lmin = 1.0,  θmin = π/6,  θmax = 5π/6,  −7.5 ≤ ζv ≤ 7.5

2025/3/13 19

Pattern X Pattern E Pattern EE
Planes of 
symmetry

Cutting 
line

Cutting 
line

Cutting 
line
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Conclusions

Optimization approach for surface approximation by rigid origami 

Developability conditions for an origami surface

Approximation error function reflecting the appearance of the surface

Selection criterion of the crease lines to be fixed for high possibility of 
successful termination in the succeeding optimization step without 
locked crease lines

Cut lines may improve the approximation accuracy but increase the 
degrees of freedom of mechanism

2025/3/13 23

Examples of Dome Surface

2025/3/13 22

Fixed crease lines: 20,  DOF: 9,  G(X) = 15.4

Fixed crease lines: 20,  DOF: 17,  G(X) = 7.07
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Pillow boxes as developable surfaces with curved foldings

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

Pillow boxes are surfaces created by folding a double rectangle. They are often used for gift boxes and packag-
ing, and have architectural applications. In this talk, first we give the existence, uniqueness, and representation
formula of the pillow box which encloses the largest volume among pillow boxes made out of a double rectan-
gle with an arbitrary fixed size. The second topic is relating to a rigidity problem that is whether a piecewise
smooth closed surface can be isometrically-deformed changing the enclosed volume. By definition, a pillow
box is isometric to a double rectangle. We can construct a continuous isometric deformation of a half of any
pillow box into a (single) rectangle which fixes the “crease pattern”. However, we prove under a certain natural
symmetry assumption that there is no global isometric deformation of the whole pillow box into the double
rectangle which fixes the “crease pattern”. This talk consists of a recent joint research with Hiroyuki Kitahata
(Chiba U.), and another joint research with Atsufumi Honda (Yokohama National U.).
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Plan of the talk

3

1. Introduction

2. A variational problem for developable surfaces
“Find the optimal pillow box ! ”

3. Continuous isometric (i.e. not expanding,not
contracting) deformation from a planar double 
rectangle to a pillow box

4. Future works

5. Summary

International Conference "Evolving Design and Discrete Differential 
Geometry - towards Mathematics Aided Geometric Design"

March 12, 2025, Nishijin Plaza, Kyushu University

Miyuki Koiso 
（Kyushu University, Japan）

Pillow boxes as developable surfaces 
with curved folds *

1

*This work is supported by JST CREST Grant Number JPMJCR1911 
and JSPS KAKENHI Grant Number JP20H01801.

⚫ I learned a lot on pillow boxes from Prof. Jun Mitani (U. of 
Tsukuba).  

⚫ Components of the bidirectional circulative design platform on 
the optimal pillow boxes were introduced and explained by Prof. 
Shun Kumagai yesterday.

⚫ In the next talk, Prof. Yohei Yokosuka will explain discretization of 
pillow boxes and an application of them to temporary housing. 

2

Collaborators and papers

This talk includes some results from the following two papers.
[1] A. Honda and M. Koiso, Isometric deformations of pillow 
boxes, preprint.
[2] H. Kitahata and M. Koiso, Optimal pillow boxes (tentative title), 
in preparation.
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2. A variational problem for developable surfaces
“Find the optimal pillow box ! ”

6

A double flat rectangle 
(topologically,  2-spere 𝑆𝑆2) 
made of paper

Fold 
along curves

Q: For a given double rectangle, find the pillow box with the 
maximal volume. A: We will give a (rigorous) answer.

Pillow box

What is a pillow box?

Def. 2 (Pillow box)．A pillow box is a compact PW-smooth surface 
without boundary with genus 0 that consists of four parts of 
cylinders whose generators are parallel to either the 𝑦𝑦-axis or the 
𝑧𝑧-axis and that is isometric to a double rectangle. 

isometric

Pillow boxA double rectangle

𝑅𝑅

𝑀𝑀3

𝑀𝑀1

𝑀𝑀2

𝑃𝑃4

𝑃𝑃1
𝑃𝑃2

𝑄𝑄4

𝑄𝑄2

𝑄𝑄1𝑎𝑎
𝑎𝑎

𝑃𝑃3 𝑀𝑀4𝑄𝑄3

Real analytic developable surfaces
（𝐶𝐶𝜔𝜔 surfaces with 0-Gaussian curvature）

5

Fact 1. Real analytic developable surfaces in 𝔼𝔼3 are the following:
(1) cylinders, (2) cones, (3) tangent developable surfaces.

Since developable surfaces can be constructed by bending a 
flat sheet, they are important in manufacturing objects from 
sheet metal, cardboard, and plywood. Developable surfaces 
with curved folds (Ex. Pillow boxes) are also important!

cylinder cone tangent developable surface
𝛤𝛤0 𝛤𝛤0

𝛤𝛤0

𝑃𝑃

1. Introduction: Developable surfaces

4

Def. 1. A piecewise (PW)-smooth surface 𝑀𝑀 is said to be 
developable if it is isometric to a planar region 𝑅𝑅 (that is, 
there exists a Lipschitz continuous bijective mapping 𝐹𝐹
from 𝑀𝑀 onto 𝑅𝑅 that preserves the length of each curve).

Remark 1. It is well-known that a smooth surface 𝑀𝑀 is 
developable if and only if the Gaussian curvature 
𝐾𝐾 𝑝𝑝 of 𝑀𝑀 vanishes at any point 𝑝𝑝 ∈ 𝑀𝑀. 

F 𝑅𝑅𝑀𝑀𝐶𝐶
𝐹𝐹(𝐶𝐶)
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Representation of the optimal pillow box (I) --- base curves---

The base curve Γ0:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 of the optimal pillow box is represented as follows. 

ቐ
𝑥𝑥 = −𝐼𝐼𝜇𝜇 𝑧𝑧 + 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧0, 0 ≤ 𝑥𝑥 ≤ 𝑐𝑐
𝑥𝑥 = 𝐼𝐼𝜇𝜇 𝑧𝑧 − 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑧𝑧0, −𝑐𝑐 ≤ 𝑥𝑥 ≤ 0

⋯ 2

where，𝐼𝐼𝜇𝜇 𝑧𝑧 ≔ 0׬
𝑧𝑧 −𝜇𝜇𝜇𝜇 1−𝜁𝜁

𝑏𝑏

1− 𝜇𝜇𝜇𝜇 1−𝜁𝜁
𝑏𝑏

2
𝑑𝑑𝜁𝜁 > 0, (0 < 𝑧𝑧 < 𝑏𝑏), 𝑧𝑧0 ≔

𝑏𝑏
2 1 − 1 − 4

𝑏𝑏 𝜇𝜇 , 

𝑐𝑐:= 𝐼𝐼𝜇𝜇 𝑧𝑧0 ．𝜇𝜇 (< 0) is the curvature of 𝛤𝛤0 at the end points that is determined by 
the following.

1/4 of the optimal 
pillow box．

bend Φ2:fold

along Γ1
𝑧𝑧0

𝑆𝑆
𝑆𝑆2

𝑆𝑆1

A rectangle
(𝛾𝛾1 is called the crease pattern.)

The crease Γ1 is 𝑥𝑥, 𝑓𝑓 𝑥𝑥 , 𝑓𝑓 𝑥𝑥 ,
(−𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐).

𝑎𝑎 = 0׬
𝑧𝑧0 𝑑𝑑𝜁𝜁

1− 𝜇𝜇𝜇𝜇 1−𝜁𝜁
𝑏𝑏

2
 ⋯ 3

𝛾𝛾1 Γ1
Γ1

(Γ1 is called the crease.)

Remark (Kitahata-K.)：By numerical computation, we observe that, 
if 𝑎𝑎 > 𝑏𝑏, then the volume of 𝑀𝑀 2𝑎𝑎, 2𝑏𝑏 is bigger than the volume 
of 𝑀𝑀 2𝑏𝑏, 2𝑎𝑎 .

8

Remark on the optimal pillow box

Pillow box
A double 
rectangle

Γ0
𝑀𝑀(2𝑎𝑎, 2𝑏𝑏)

isometric
𝑎𝑎

−𝑎𝑎

2𝑏𝑏𝑅𝑅(2𝑎𝑎, 2𝑏𝑏)

Theorem 1 (K)：For any given double rectangle 𝑅𝑅(2𝑎𝑎, 2𝑏𝑏) with 
width 2𝑎𝑎 and height 2𝑏𝑏 (see the picture below) there exists a 
unique pillow box 𝑀𝑀(2𝑎𝑎, 2𝑏𝑏) (which we call the optimal pillow box)
that encloses the largest volume. It has an explicit representation 
using elliptic integrals. It consists of four (generalized) cylinders (of 
𝐶𝐶∞class) of which the base curves (the top and the bottom half of 
Γ0 and two blue curves in the picture below right) are congruent 
and they are elastic curves.  

7

Existence and uniqueness of the optimal pillow box

Pillow box
A double 
rectangle

Γ0
𝑀𝑀(2𝑎𝑎, 2𝑏𝑏)

Remark 2.
(1) lim

𝑏𝑏→∞
𝑀𝑀 2𝑎𝑎, 2𝑏𝑏 = a right 

circular cylinder with radius 
2𝑎𝑎/𝜋𝜋.
(2) lim

𝑎𝑎→∞
𝑀𝑀 2𝑎𝑎, 2𝑏𝑏 = two 

parallel rectangles with 
width 2𝑏𝑏 and infinite length.

isometric
𝑎𝑎

−𝑎𝑎

2𝑏𝑏𝑅𝑅(2𝑎𝑎, 2𝑏𝑏)
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Theorem 2 (Honda-K.). There exists no continuous isometric 
deformation from a double rectangle to any pillow box without 
changing crease pattern.

A continuous isometric deformation from a double rectangle to a 
pillow box without changing the crease pattern. However, at each 
stage, the upper half and the lower half are separated and they 
intersect each other except the beginning and the end.

3.Continuous isometric (i.e. not expanding,not contracting) 
deformation from a planar double rectangle to a pillow box

𝑅𝑅

𝑀𝑀

An isometric deformation from 𝑅𝑅 to 𝑀𝑀. Here the crease 
pattern is changed, which is not good for application!

11

Theorem 2 (K). We can deform the initial double rectangle 𝑅𝑅 to any 
given pillow box 𝑀𝑀 that is isometric to 𝑅𝑅 continuously and 
isometrically if the crease pattern is permitted to be changed. 

10

Representation of the optimal pillow box (II) 
--- surface and volume ---

The parts 𝑆𝑆1, 𝑆𝑆2 of the ¼ of the optimal pillow box are represented as 

൝
𝑆𝑆1 = { 𝑥𝑥, 𝑓𝑓 𝑥𝑥 , 𝑧𝑧 ; −𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐, 0 ≤ 𝑧𝑧 ≤ 𝑓𝑓 𝑥𝑥 }
𝑆𝑆2 = { 𝑥𝑥, 𝑦𝑦, 𝑓𝑓 𝑥𝑥 ;−𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑐𝑐, 𝑓𝑓(𝑥𝑥) ≤ 𝑦𝑦 ≤ 𝑏𝑏} ⋯ 4

1/4 of a pillow box．

bend
Φ2:fold

along Γ1𝑧𝑧0

𝑆𝑆 𝑆𝑆2
𝑆𝑆1

Let Γ0:𝑧𝑧 = 𝑓𝑓 𝑥𝑥 be the base curve of the optimal pillow box given 
in the previous slide.  

A rectangle
(𝛾𝛾1 is called the crease pattern.)

Hence, the volume 𝑉𝑉(𝑓𝑓) of the optimal pillow box is

𝑉𝑉 𝑓𝑓 = 4න
−𝑐𝑐

𝑐𝑐
𝑓𝑓 𝑥𝑥 𝑏𝑏 − 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑑𝑑 ⋯ 5

𝛾𝛾1

(Γ1 is called the crease.)

Γ1
Γ1

415



14

⚫ We gave the definition of developable surfaces and pillow boxes.
⚫ We gave the existence, uniqueness, and representation formula 

of the optimal pillow box. 
⚫ We gave a continuous isometric deformation from a planar 

region to a pillow box with changing the crease pattern.
⚫ We explained the non-existence of  continuous isometric 

deformation from a planar region to any pillow box without 
changing the crease pattern.

⚫ We mentioned a generalization of the Bellows Conjecture as a 
future work. 

Summary

Future work

13

Contrib. Algebra Geom.

Prove the following conjecture:
Conjecture (a generalization of Bellows Conjecture). 

𝑀𝑀

𝑀𝑀

Remark. Pillow boxes are good examples for the above 
conjecture.
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Temporary structures with curved folding

Yohei Yokosuka
Kagoshima University, Japan

Abstract

Temporary housing needs to provide a large number of houses quickly after a disaster, so it is useful to have
temporary structures using curved folds that are superior in space-saving stocking, portability, and quick con-
struction, and can immediately expand flat plates into a three-dimensional structure. Koiso et al. derive an
explicit expression for the maximum volume solution of the pillow box and show that the bottom curve of the
pillow box is an elastic curve. In this presentation, a scaled experimental model of a temporary structure with
curve folding is fabricated to show that curve folding is possible with rigid body deformation. Furthermore, an
example of numerical analysis is shown where the generation of a curved surface shape that is the solution to the
maximum volume of a pillow box is linked to structural analysis and applied to a multi-objective optimization
problem where the volume evaluated as architectural planning performance and the maximum displacement
evaluated as structural performance are used as indices.
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Outline of Temporary Structures (Emergency Temporary Housing)

1995  Great Hanshin earthquake 

Construction period－32.43 days (Average)
Number of houses built－ 245.9 houses/day
Worker－ 7.4 persons/house
Total number of construction－ 48,300 houses

2011  Tōhoku earthquake

Total number of construction－ 52,513 houses
(Rental type emergency housing 67,877 houses)

Temporary Structures with Curved Folding

Temporary Structures with Curved Folding

Propose temporary structures with excellent portability and stiffness using the curve 
folding in origami engineering.
In times of disaster, temporary tents and housing with safety need to be provided 
quickly and in large quantities. 
This presentation shows a form-finding and potential applications for structures suitable 
for temporary housing by utilizing stiffness due to curved surfaces formed by curve 
folding.

Portable state Unfolding state Completed state

Unfold Lift up

Temporary Structures with Curved Folding

Yohei YOKOSUKA1), Miyuki KOISO2), Kento OKUDA3), Shun KUMAGAI4), 
Toshio HONMA1), Jun MITANI5) ), Yudai HIYOSHI1)

1) Graduate School of Science and Engineering, Kagoshima University
2) Institute of Mathematics for Industry, Kyushu University

3) National Institute of Technology, Sasebo College
4) Hachinohe Institute of Technology

5) Information and Systems, University of Tsukuba

International Conference "Evolving Design and Discrete Differential Geometry - towards 
Mathematics Aided Geometric Design"
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奥田 健斗, 小磯 深幸,ピロー型ボックスの体積最大解の存在と一意性, 異分野・異業種研究交流会2022
https://www.isc.meiji.ac.jp/~mathcareer2022/posterfiles/ps13.pdf

Ω

Temporary Structures with Curved Folding

Pillow box shape to maximize internal volume
Jun MITANI, Miyuki KOISO, Kento OKUDA, 

Temporary Structures of Curved Folding 

・Space-saving stock in portable condition   ・Rapid construction of roof structures

Portable state Unfolding state Completed state

Unfold Lift up

Temporary Structures with Curved Folding

Types of Emergency Temporary Housings

・Construction Type Emergency Housing
⇒ This type is possible to supply housing with excellent living performance.

Difficult to provide it quickly.

・Rental Type Emergency Housing
⇒ Local governments lease private housing. 

Difficult to secure numbers.

・Others（Container House, Trailer house）
⇒ Need to secure a place to stock.

Temporary Structures with Curved Folding
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Temporary Structures with Curved Folding

Plane diagram

：Crease 
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8
π

1ΓUnfolding 

Temporary Structures with Curved Folding

Integral           is elliptic integral,  
is characterized by an elasticity curve

Let     satisfy the following equation 

Maximum solution for internal volume of pillow box
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Temporary Structures with Curved Folding
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1. Possibility of Rigid folding (Continuous isometric deformation)
If the cross-sectional curve of the surface is Crease, the folded shape can be generated 
by mirror-reversing the surface on one side. However, it is generally unknown that it is 
capable of continuous rigid folding.

・Continuous surface
Koiso and Okuda parameterized continuously isometric deformable surfaces with 
boundary conditions only if they are cylindrical surface (ruling is parallel).

・Discrete surface
Numerically rigid folding is possible.

Rigid folding simulation with generalized inverse matrix can realize 
continuous isometric deformation.

Temporary Structures with Curved Folding

Problems of temporary structures with curved folding

1. Possibility of Rigid folding (Continuous isometric deformation)

2. Mechanism of Curved folding

3. Curved folding with thick surfaces

4. Structural stiffness

Temporary Structures with Curved Folding

Kosuke Sasaki, Jun Mitani, Simple implementation and low computational cost simulation of curved folds based on ruling-aware triangulation, 
Computers & Graphics, Volume 102, February 2022, Pages 213-219

Simulation of Plane diagram including curved folding (Jun MITANI)

Temporary Structures with Curved Folding
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2. Mechanism of 
Curved folding

・Figure represents 
1/4 region

・The pink line is the 
original curve.

・The rotation axes 
of the red lines are all 
parallel.
→ Possible if the 
curved surface is a 
cylindrical surface

c. front view d. right view

a. perspective view b. top view

1. Possibility of Rigid folding (Continuous isometric deformation)

Convergence History

Po
te

nt
ia

l e
ne

rg
y

Iteration number

Numerical results

Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

－Fixed in Z direction

－Fixed in Y direction

－Fixed in X direction

Number of nodes：19
Number of elements：50
Number of boundary conditions：6
Degree of freedom：51

51−50 = 1

Model with one rigid body 
displacement mode

・半谷裕彦, 川口健一, 形態解析  一般逆行列とその応用, 培風館, 1991

Temporary Structures with Curved Folding
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4. Structural stiffness

Member :
・Beam and Column
2-38×184 mm (Wood: SPF)

・Brace
12×100 mm (Wood: plywood)

Blue points: Reinforcement by columns

Total weight 1328 kgf Total weight 1360 kgf

Total weight 1267 kgf Total weight 1395 kgf

3. Curved folding with thick surfaces

Scaled model

Temporary Structures with Curved Folding

3. Curved folding with thick surfaces

・Members that become columns and 
beams are displaced without tilting.

・The neutral plane of the blue line is 
rigid and displaced. 

・The cross-sectional shape of the box 
composed of braces allows for shear 
deformation. These boxes are connected 
to the columns and beams by hinges.

Temporary Structures with Curved Folding
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Temporary Structures with Curved Folding

X方向断面図

X

Y

ZY

Z

・Actual model ・ Experimental model (1:3 scale)

5.
0

304.0

12.0

60
.0340.0340.0

1024

18
4

1024

910
3812

post and beam member：2×8
brace：plywood (12mm)

column post and beam member： plywood (12mm)
brace ：plywood (5mm)

Temporary Structures with Curved Folding

plan view
・Experimental model (1:3 scale) 588.0
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X

Y Z

Max displacement 
Max bend. Moment 
Max comp. force
Max tension force

bend. stress
comp. stress
tens. stress

Displacement and axial force Bending moment

These results show that allowable solutions of structural stiffness are obtained.
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Temporary Structures with Curved Folding

Assembling the unit 
・ belt hinge
Two belts support both sides of the brace

Temporary Structures with Curved Folding

Cutting of parts and materials

Fabrication of the foundation

Processing of post and beam 
member

Cutting of brace member

Assembling the unit

Connecting units

Temporary Structures with Curved Folding

brace

Post and beam member

Cross-sectional view in X direction
(Blue line: neutral plane, red line: axis of rotation)
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Temporary Structures with Curved Folding

Connecting units

Connect at the position of the spacer
Rotation axis through steel pipe

Connecting units Installation of rotary shaftAdjustment of rotary shaft

Temporary Structures with Curved Folding

Fabrication of the foundation

Foundation for beam material Foundation for post materialInstallation image

Temporary Structures with Curved Folding

Temporarily fixed with a tacker Wood, glue, and bolts to fix 
the main structure

One unit

Assembling the unit 
・ Fixing belt hinges
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Temporary Structures with Curved Folding

ユニット設置

土台とモデルの間にコロを挟む

コロ(台車)を介して設置 立ち上げ後断面立ち上げ前断面

Temporary Structures with Curved Folding

Connecting units

Parallel installation on the foundation and unit connection

Connection between units Installation of the whole areaInstallation on the foundation

Temporary Structures with Curved Folding

Connecting units

Connecting units Installation of rotary shaftPre-drilled spacers
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Temporary Structures with Curved Folding

Effective height
川口衞, 空気膜構造におけるしわなし最偏平回転曲面, 日本建築学会学術講演会梗概集, pp.1053-1054, 1978 

Multi-objective optimization 
Building planning performance
・Space Utilization Efficiency
The most flattened surface of the pneumatic membrane structure with the condition 
that the rise at the boundary is vertical so that no dead space is created near the 
boundary.
・Main level living
In general, living area levels are recommended based
on the number of household members. 
⇒ Maximum solution for inner volume with constant 
surface area
⇒ There is a maximum solution for the inner volume
that varies with               .: /r a b=

Mamoru KAWAGUCHI, Wrinkle-free most flattened rotational surface in pneumatic membrane structure, 1978  

Temporary Structures with Curved Folding

Front view Side view

Experimental result:

・Thick models can be folded rigidly.
・push-up by a small number of people

Shape after bending
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Temporary Structures with Curved Folding

Implementation of multi-objective optimization (Rhinoceros + Kramba3D + Wallacei)

bidirectional circulative design platform（Planning + Structure + Construction）

Form-finding of Surface

Structural Analysis Multi-objective optimization

Temporary Structures with Curved Folding

Multi-objective optimization formulation

Find (1)

Minimize (2)

Subject to (3.a,b)

(3.c-f)
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However, μ is the curvature of the 
endpoints of Γ0determined from equation 
(4).

Temporary Structures with Curved Folding

Multi-objective optimization
Structural performance

・Maximum Deflection
The structural form adopted is a beam structures in the depth (b) direction.
The larger the span (b) of the frame, the greater the deformation and deflection due 
to its self-weight, and thus the lower the structural performance.

⇒ The maximum solution for the inner volume tends to increase in volume as b
increases.
⇒ There is a trade-off between structural performance and building planning 
performance, and a Pareto solution must be obtained through multi-objective 
optimization.

maxw
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Conclusion

・The possibility concerning the application of temporary buildings by means of 
curve folding is presented.

・Rigid foldable curved surfaces and thickness should be considered.

・A model with simplified joints was proposed.

・We presented an example of multi-objective optimization of a temporary structure 
with a pillow box curve folding geometry by using bidirectional circulative design 
platform.

Temporary Structures with Curved Folding

Temporary Structures with Curved Folding

Pareto solution

0.08
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0.1

0.11

0.12

0.13

0.192 0.194 0.196 0.198 0.2 0.202 0.204 0.206 0.208 0.21 0.212 0.214

f 1

f2

r.1 r.2 r.3 r.1 r.2 r.3
Plan view Elevation view

Multi-objective optimization (Wallacei)

r.1

r.2

r.3

430



Local & Global Property Quantification With Persistent Homology

R. U. Gobithaasan
School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Kenjiro T. Miura
Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan.

Abstract

Topological Data Analysis (TDA) is a powerful algebraic topology framework that aims to understand the
shape and structure of complex datasets, particularly those with high dimensionality point cloud data X ∈ Rd

[1]. It has been successfully used for various types of Machine Learning tasks [2, 3]. Persistent Homology
(PH), the main methodology in TDA, quantifies the shape and structure of complex datasets by representing
the topological dan geometrical information of data in the form of Persistence Diagram denoted as Dk(X). A
Dk(X) consisting of a set of 2-tuple (bi, di) ∈ R2, corresponds to a pairing between the births of kth homology
class at bi and its death at di along the filtration of X. Dk(X) can be converted in the form of vector spaces
that can be directly used as features for machine learning (ML) pipelines. It is known that topological features
manifest as long-lived birth-death pairs in the Dk(X), indicating their presence across multiple spatial scales.
Recently it was found that (bi, di) close to diagonal encodes the geometrical feature of X [4, 5]. The first part
of this talks delves the law of composition [6] which makes an art beautiful and its relation to the types of
shape analysis tools developed; hence leading to the development of Persistent Homology. We will then review
the variety of framework for capturing geometrical and topological features across different spatial scales for
understanding the underlying structure and relationships within the data. Overall, this talk provides insight into
the implementation of PH framework not just as ML tasks, but also for the development of visually pleasing
products.
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Moving Forward: Simplified Life cycle of Aesthetic Design

Ideal Setup for Aesthetic Design (AD):

Solving the Puzzle: Putting Them Together

This talk covers on

1 Part I: Fr Designer’s Perspective to Mathematical defs.

▶ Visually Pleasing Shapes at various resolution.

▶ Shape Descriptors.

2 Part II : Intro to Topological Data Analysis:

▶ One-Parameter

▶ Multi-Parameter PH.

3 Part III: WIP

▶ Framework for Aesthetic Design.

Local & Global Property Quantification

With Persistent Homology
from Shape Quantification to Product Design

Miura Group

School of Mathematical Sciences, Universiti Sains Malaysia, Malaysia.
Graduate School of Science and Technology, Shizuoka University, Japan.

10th March.− 13thMarch 2025
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Shape Analysis: Local to Global Descriptors

◦ Shape analysis focuses on quantifying the properties of shapes to analyze,
compare, and classify shapes. Three types of shape descriptors:

1 Geometrical Descriptors: Local descriptors that are invariant under rigid

motions: geometric properties of a shape: area, perimeter and curvature

2 Neighborhood Descriptors : based on geodesic distance on the manifold

around a point, e.g. density function

3 Topological Descriptors: analyze shapes based on their connected

components and holes: Morphological Analysis, and Persistent Homology .

frametitle Local Vs. Global Characteristics

◦ Local Characteristics: Geometry = Fine Details
◦ Global Characteristics: Topology =Global Properties

Figure: Great Wave off Kanagawa (Hokusai)

John Ruskin: philosopher, art historian and art critic

Laws of composition
◦ Global characteristics
◦ Local characteristics
◦ Loc. + Glo. characteristics

Principality: dominant element
Repetition: recurring shapes/colours or
forms
Continuity: natural visual flow
Curvature: curved lines adds grace rather
than rigid straight lines
Radiation: emanate outward from a central
point.
Contrast: use of opposing elements.
Interchange: elements are arranged to
support one another.
Consistency: in style and visual treatment.
Harmony: shapes, lines, colors, light/
shadow—work together to create a pleasing
visual.
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Topological Descriptors: Connectivity & nthD holes
Topological Data Analysis (TDA)

◦ TDA’s theme: Data has shape, shapes has meaning .

Neighbourhood Descriptors: Density Function
◦ Gaussian kernel density estimate
(KDE)1

aSciPy: gaussian kde

◦ Distance-To-Measure (DTM) employs
KDTRee Nearest Neighbor’s Algo 2

bGUDHI’s DTM: m −→ 1 ≈ 1
KDE

Geometrical Descriptors: Curvature

◦ Ruskin’s proposal: beautiful curves [3]

◦ Farin’s idea on fair curves: few
monotonic curvature segments.

◦ Logarithmic Curvature Graph (LCG):

◦ Fundamental Equation of LAC:
log(ρ ds

dρ
) = α log(ρ) + C
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Handcrafted Persistence Signatures (Vectors) for ML
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Persistence Image

Persistence Landscape: Peter Bubenik (Uni. Florida).

Persistence Image: Hendry Adams et. al (Colorado State Uni.)

Persistent Homology: One-Parameter Persistence

Input: (X, δX):

1. Geometric
Realization
construct an increasing
family (Xt) of simplicial
complex with single scale
parameter t ≥ 0.

2.Algebraic
Topology
Compute the d-th
homology vector spaces
{Hd(Xt)|t ≥ 0}.

3.Representation
Theory
Output: produce a
barcode or Persistence
diagram DD

output: DD = {[b1, d1), . . . , [bk, dk)}, where bi & di are birth and death of features,
respectively.
◦ Lifespan = di − bi.

Topological Descriptors: Euler Characteristics
Definition (Euler Characteristics)

Let K be a a simplical complex with β0, β1, β2, . . . as Betti numbers denoting kth

dimensional holes. Then we define the Euler characteristic to be the alternating
sum : χ(K) =

∑n
0 (−1)nβn.

χ(K) = 5− 3 + 0 = 2

◦ Alternatively, we can directly
compute χ(K) =

∑n
0 (−1)n|Kn|,

where |Kn| denotes the carnality
of set of n-simplices.
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Example: Classification Point Cloud

Why One-parameter PH is effective?

1 PH detects topological information:

▶ connected components & kth dimensional holes.

▶ Long lifespan detects topological information

2 Also detects geometric information:

▶ curvature: (Bubenik et. al (2019) and Turkes et.al (2022))

▶ (many) short lifespan detects geometrical information.

▶ Accuracy: Outperformed PointNet & NN Deep.

3 Highly tunable one-parameter PH for ML: {Signal (L+G), one-filtration
(Types of Simplicial Complex), Signature( Types of Persistence Vectors)}

Topological Machine Learning (TML)

(Many success stories) of TML in various field of study.
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Persistent Homology: Multi-parameter Persistence
Input: (X, δtX):

1. Geometric Realization
construct a family F = (Ft)t∈Rm

of subcomplexes Ft ⊆ K that is
increasing with respect to
inclusions, i.e., such that Ft ⊆ Ft′

for any t, t′ ∈ Rm with t ≤ t′.

2.Alg. Topology & Repr. Theory

The Euler Characteristic Transform (ECT) ;
also known as EC Profile of an m-parameter
filtration F is the map:

ECT χF : t ∈ Rm → χ(Ft)

variations of output χF include:
◦ Euler characteristic curve (ECC) of F when m = 1,
◦ Euler characteristic surface (ECS) of F when m = 2.
◦ Smooth ECP (SECT) [Munch et. al., Mic. St. Uni, USA]& Differentiable ECT
(DECT) [Reick, et. al., TUM, Germany].

Example: Classification Results

Feature SVM RFC L. Reg k-NN PointNet PH
Geo 80.00 66.67 53.54 47.71 85.93 95.00
Topo 61.04 47.5 32.29 30.00 68.73 98.75

1 Can we push further?

▶ {Signal, one-filtration Multi-filtration, Signature}

Example: Classification Framework

Standard:

Persistent Homology:
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Moving Forward: PH for Pleasing Visuals/Products

Scalable Curvature Estimate Beyond: X ∈ R3

Idea: Principal Component Analysis (PCA)

1 Define a local neighborhood Np for each point p (e.g., k-NN or fixed
radius).

2 Calculate the covariance matrix Cp for points in Np and compute its
eigenvalues λ1 ≤ λ2 ≤ λ3 and eigenvectors v1, v2, v3.

3 Estimate Curvature type I: κI = λ1

4 Estimate Curvature type II: κII =
λ1

λ1+λ2+λ3
(Normalized)

5 Radius of curvature, 2D:(ρi =
1
κi
), and 3D: (ρi =

1√
κi
) where i = I or II.

PH for Geometric Modelling 10th March. − 13thMarch 2025 21 / 34

Multi-parameter Persistence Homology

m = 2: Euler Characteristic Surface

PH for Geometric Modelling 10th March. − 13thMarch 2025 20 / 34

Bi-filtration: Alpha Complex (radius) Vs. Density
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Moving Forward: PH for Pleasing Visuals/Products

PH for Geometric Modelling 10th March. − 13thMarch 2025 24 / 34

Moving Forward: PH for Pleasing Visuals/Products

Two-Circle: Est. Curvature Type II with its Histogram

PH for Geometric Modelling 10th March. − 13thMarch 2025 23 / 34

Moving Forward: PH for Pleasing Visuals/Products

Wavy Surface: Est. Curvature Vs Gaussian/Mean Curvature

PH for Geometric Modelling 10th March. − 13thMarch 2025 22 / 34
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Moving Forward: PH for Pleasing Visuals/Products

Framework: Predicting Curvature with : Multi-Parameter PH

PH for Geometric Modelling 10th March. − 13thMarch 2025 27 / 34

Result: Predicting Curvature with One-Parameter PH
Turkes et.al(2022): SVR and its Mean Squared Error (MSE)

ML: Predicting Curvature with One-Parameter PH
Bubenik et.al(2019), Turkes et.al(2022)
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Towards Aesthetic Generative Design (AGD) Framework

1 Computational Building Block of GAN = Generator + Discriminator

Figure: https://developers.google.com/machine-learning/gan/gan_structure

Moving Forward: Aesthetic Generative Design (AGD)

Towards for Aesthetic Design (AD):

LCG︷ ︸︸ ︷
Shape Descriptor︸ ︷︷ ︸
Persistent Homology

→
Local Characteristics︷ ︸︸ ︷

Signal︸ ︷︷ ︸
Local + Neigh.+ Global

→ Aesthetic Design

Towards Aesthetic Generative Model

1 ANN as a Computational Building Block

▶ Generative Adversarial Network (GAN).

2 ANN as a Universal Function Approximator (UFA): |f(x)− f̂(x)| < ϵ

▶ Topological & Geometrical Loss.

Moving Forward: PH for Pleasing Visuals/Products

PH for Geometric Modelling 10th March. − 13thMarch 2025 28 / 34
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Thank You
For your attention.

Prof. Kenjiro Miura: for having me in the team

CREST Team: Grant Number JPMJCR1911, Japan Science and Technology
(JST) Agency.

Ideal Aesthetic Generative Design (AGD) Framework
LCG︷ ︸︸ ︷

Shape Design︸ ︷︷ ︸
Multi-Param PH

↔
Local Char.︷ ︸︸ ︷
Signal︸ ︷︷ ︸

Local + Neigh.+ Global

↔
Strength︷ ︸︸ ︷

Structure Analysis︸ ︷︷ ︸
Local + Neigh.+ Global

Solving the Puzzle: Seamless + Scalable

Towards Aesthetic Generative Design (AGD) Framework

1 GAN’s Function Approximator: Topological & Geometrical Loss.

Figure: Waibel et al., 2022, Capturing Shape Information with Multi-Scale Topological
Loss Terms for 3D Reconstruction

442



References
Main References

Peter Bubenik, Michael Hull, Dhruv Patel, and Benjamin Whittle. Persistent homology detects
curvature. Inverse Problems, 36(2):025008, (2020).
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Advancing Precision and Smoothness of Shape Preserving with Quintic
Trigonometric Bézier Curve

Md Yushalify Misro
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.

Abstract

This study integrates an optimization technique into positivity- and monotonicity-preserving interpolation
methods to enhance curve smoothness by refining free shape parameters. These parameters play a pivotal
role in defining curve geometry, granting users the flexibility to fine-tune the final shape. However, selecting
them arbitrarily can compromise both aesthetics and accuracy, leading to undesired results. To address this
challenge, an optimization-driven approach is introduced to systematically determine the optimal shape param-
eters. Within this framework, three smoothness metrics —arc length minimization, strain energy minimization,
and curvature variation energy minimization— are employed. The resulting curves are analyzed and compared
to assess their ability to preserve data while maintaining smoothness. The findings affirm that this method not
only optimizes free shape parameters effectively but also surpasses conventional techniques in computational
efficiency.
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Shape Preserving Types

Positivity-preserving 
interpolation

Monotonicity-preserving 
interpolation

Convexity-preserving 
interpolation

Range-restricted
interpolation

3

Shape Preserving Interpolation

Image interpolation
Retain original edges, textures

and overall structure.

Data visualization
Avoid undesired oscillations

Misinterpretation 
of data
Unrealistic results

CAGD
Generate smooth curves and 

surfaces while maintaining 
nature of data

Mimic smooth 
transition of most 
physical phenomena
More stable for 
numerical computation

2

Shape-preserving interpolation 
used to maintain certain 
geometric properties of 

the original data

Ensures the interpolated 
function for positive data

remains positive

Advancing Precision and Smoothness 
of Shape Preserving Interpolation

with Quintic Trigonometric Bézier Curves

Associate Professor Dr. Md  Yushalify Misro
School of Mathematical Sciences, 
Universit i Sains Malaysia

CREST SIMPOSIUM, Fukuoka | 10 – 13 March 2025
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Karim (2016), 
Tahat et al. (2016)

• Developed monotonicity-preserving interpolation schemes using
rational cubic Ball function with three and four shape parameters.

• One shape parameter was constrained for shape preservation.
• 𝐶𝐶 continuity

Ahmad and Misro (2022) • Integrated a rational cubic Ball curve.
• Examined the curvature profile to test the smoothness of their 

interpolations.

Ahmad et al. (2017) • Used multiquadric quasi-interpolation.
• Multiquadric quasi-interpolation was inappropriate for interpolating 

the dataset and did not generate a smooth curve.

Vijay and Chand (2023) • Proposed novel method based on rational quadratic trigonometric 
fractal interpolation function constructed through iterated function 
system.

• Developed interpolant is 𝐶𝐶 continuous and offers no free parameter.

6

Sarfraz et al. (2015) • Preserved the shape of range-restricted data using quadratic 
trigonometric spline with three parameters.

• Derived shape preserving constraints on two parameters
Karim et al. (2019) • Rational cubic spline function (cubic/quadratic).

• Consists of three shape parameters with two free parameters to 
allow flexibility for curve enhancement.

Zakaria et al. (2016) • Rational cubic Ball functions in the form of (cubic/quadratic).
• Used the arithmetic mean approach to estimate the derivative 

values in this study.
• The generated interpolation are 𝑪𝑪𝟏𝟏 continuous.

Tyada et al. (2021) • 𝐶𝐶 rational cubic over cubic trigonometric fractal interpolation 
functions with 4 shape parameters.

• Data dependent constraints for shape preservation were derived on 
the scaling factors and shape parameters.

5

Dougherty et al. (1989) • Used cubic and quintic Hermite interpolations.
• To guarantee positivity, modifications on the derivative values

in the curve segments that are negative are required.
Butt and Brodlie (1993) • Used piecewise cubic Hermite interpolation.

• Insertion extra intermediate knots for curve segments that are
not positive is necessary.

Harim et al. (2020), 
Zhu (2018)

• Rational quartic interpolation spline with shape parameters
• Positivity preserving condition was derived on one shape 

parameter.
• The developed interpolant are 𝐶𝐶 and 𝐶𝐶 continuous,

respectively.
Hussain et al. (2018) • Rational quintic function with 3 shape parameter to achieve

𝐶𝐶 continuity.
• Has 2 free parameters.

4
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Problem Statement
Hussain et al. (2018) 
developed a shape- 

preserving scheme using a 
rational quintic function.
However, the scheme is

complex due to the rational
form, which can make it 

more challenging to 
implement and compute

0201
Previous studies on shape- 

preserving interpolation, such as 
Karim (2016) and Tahat et al. 

(2016), assessed the smoothness 
of their interpolation curves 
through visual comparison.

However, this method is
inadequate because visual 

assessments can be subjective 
and do not provide the precise 
metrics needed for a thorough 
analysis of the smoothness of 

the curves

9

Hu et al. (2023) 
Zheng et al. (2022)

• Optimize the shapes of rational quartic interpolation splines and quintic 
generalized Hermite interpolation curves

• Enhanced Tunicate Swarm Algorithm and Improved Grey Wolf Algorithm
were implemented

Li and Li (2020) • Solved the nonlinear curve fitting problem by incorporating the Particle 
Swarm Optimization

• Optimization was used to find the optimal number of hidden knots with is the 
key factor to achieve a good generalization.

Hu et al. (2021) • Optimized the shape of shape-adjustable generalized cubic developable Ball 
surfaces by using an Improved Marine Predators Algorithm

As of now, there is still lack of studies on the implementation of optimization in shape
preserving interpolation.

8

Hussain et al. (2016) • Used cubic polynomial interpolation with two shape parameters in 
Ball form.

• Convexity preserving constraints were developed on both
parameters.

Han (2015) • Developed 𝐶𝐶 interpolant using rational quartic spline with one 
shape parameter.

Han (2018) • Presented a united form of the classical Hermite interpolation with 
up to 𝑪𝑪𝟑𝟑 order continuity.

• Convexity is preserved by setting the parameter on each subinterval
with the given values.

Jena (2021) • Developed nonlinear Hermite interpolatory subdivision scheme 
based on quadratic rational Bernstein Bezier curves for curve 
interpolation.

• Conditions were developed for the limit curve to preserve convexity
of data.

• The limit curve is 𝑪𝑪𝟏𝟏 continuous.
7
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To assess the smoothness of 
interpolation by analyzing three 
different smoothness metrics

Objectives

To develop shape preserving 
algorithms on quintic 
trigonometric Bézier curves to 
preserve data shape

02

To compare the efficiency of 
optimization algorithm in preserving 
data shape by implementing different 
optimization methods

04
To apply optimization methods 
in finding the optimal free shape 
parameter values03

01

12

Optimized Shape Preserving 
Interpolation

Optimization
method

Shape-preserving
interpolation

Optimal curves in terms of smoothness
Implementation of optimization method in finding the optimal free shape parameter
values

Procedure to find the best possible solution to a given problem with minimal 
effort.

Optimization algorithms have been applied across various fields.

11

Problem Statement
There is lack of research on 

the use of optimization 
techniques in shape- 

preserving interpolation, 
thus efficiency of this 

implementation is 
unexplored and required 

further study.

The technique for selecting 
free shape parameters in 
previous studies relied on 

visual comparison. This 
technique is prone to bias 

and may result in non- 
smooth interpolation 

curves.

0403

10
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Research Methodology
Arithmetic Mean Method (AMM)

• The first-order and second-order derivatives formula are obtained from Hussain
et al. (2018).

First-order derivatives Second-order derivatives

15

Research Methodology
To ensure continuity (up to 𝐶𝐶 continuous), the following interpolating conditions will be applied to 
find the unknown control

It is straightforward to establish that

where .

(2)

.

Arithmetic Mean
Method (AMM)

14

Research Methodology
This study will implement the quintic trigonometric Bézier curve with two shape parameters
introduced by Misro et al. (2017) given by:

(1)

Satisfy all the geometric properties 
of Bezier Curves:

1. Non-negativity
2. Symmetry
3. Partition of unity

where with .

The shape parameters 𝛼𝛼𝑖𝑖 𝛽𝛽𝑖𝑖 ∈ (−4,1] are responsible in controlling each end of the curve.

13
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Positivity Preserving Interpolation
Theorem 1

18

Proof: Mahzir, S. S., & Misro, M. Y. (2023). Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves. Alexandria Engineering 
Journal, 80, 122-133.

Shape Preserving Constraints

•

17

The interpolant in Eq (3) does not guarantee to preserve the shape of data.

• This section derive data dependent constraints on the shape parameter 𝛼𝛼𝑖𝑖 for 
the four shape preservation.

• Four theorems for shape preservation are provided.

Methodology
The 𝐶𝐶 quintic trigonometric Bézier curve with two shape parameters in Eq (1) 
defined over each subinterval 𝐼𝐼𝑖𝑖 can be written as:

16

(3)

𝑖𝑖
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Range-restricted Interpolation
Remark 2

21

Range-restricted Interpolation
Theorem 2

20
Proof: Mahzir, S. S., & Misro, M. Y. (2023). Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves. Alexandria 
Engineering Journal, 80, 122-133.

Positivity Preserving Interpolation
Remark

19
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Flowchart

Define the interpolating function and
continuity conditions

Obtain the unknown control points 
equations

Develop shape preserving conditions 
on 𝛼𝛼𝑖𝑖

Choose the appropriate 𝛽𝛽𝑖𝑖 values

Curve is smooth
and preserve shape of data?

Yes
Analyze and compare the resulting 

curves

No

Demonstrate the shape preserving
interpolation method

24

Theorem 4

23
Proof: Mahzir, S. S., Misro, M. Y., & Miura, K. T. (2024). Preserving monotone or convex data using quintic trigonometric Bézier curves. AIMS 
Mathematics, 9(3), 5971-5994.

Convexity-Preserving Interpolation

Monotonicity Preserving Interpolation
Theorem 3

22Proof: Mahzir, S. S., Misro, M. Y., & Miura, K. T. (2024). Preserving monotone or convex data using quintic trigonometric Bézier curves. AIMS 
Mathematics, 9(3), 5971-5994.
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Example 2 – Range-restricted Interpolation

𝒊𝒊 1 2 3 4 5
𝒙𝒙𝒊𝒊 0 4 21 30 32

𝒚𝒚𝒊𝒊 22.8 8 33.9 38.9 43.6

Table 3: Data lying above  𝑦𝑦 𝑥𝑥 from Hussain et al. (2018)

27

R
es

ul
ts

Fig 4a: 𝐶𝐶 quintic trigonometric Bézier curve interpolation

Fig 4c: Positivity-preserving interpolation

Fig 4b: Positivity-preserving interpolation for several 𝛽𝛽values

Fig 4d: Comparison with existing scheme

Example 1 – Positivity-preserving Interpolation

𝒊𝒊 1 2 3 4 5 6
𝒙𝒙𝒊𝒊 (years) 20 30 32 35 37 39

𝒚𝒚𝒊𝒊 𝑚𝑚𝑔𝑔 𝑑𝑑𝑙𝑙 1.51 0.18 1.06 0.6 0.51 47

Table 1: Amount of creatinine in the blood of six individuals from Hussain et al. (2018)

25

The normal creatinine level for an adult 
should be between 0.50 − 1.10 mg/dL.
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Fig 8a: 𝐶𝐶 quintic trigonometric Bézier curve interpolation

30

Fig 8c: Monotonicity-preserving interpolation

Fig 8b: Monotonicity-preserving interpolation for several 𝛽𝛽
values

Fig 8d: Comparison with existing scheme

Example 3: Monotonicity-preserving Interpolation

𝒊𝒊 1 2 3 4 5
𝒙𝒙𝒊𝒊 0 6 10 29.5 30

𝒚𝒚𝒊𝒊 0 15 15 25 30

Table 5: Monotone data set taken from Karim and Kong (2012).

29
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es

ul
ts

Fig 6a: 𝐶𝐶 quintic trigonometric Bézier curve interpolation

28

Fig 6c: Range-restricted interpolation

Fig 6b: Range-restricted interpolation for several 𝛽𝛽
values

Fig 6d: Comparison with existing scheme
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Conclusion Future Works

3

55

Optimization method ensure optimal 𝛽𝛽𝑖𝑖
values and helps in reducing time

This study developed shape preserving 
conditions on the quintic trigonometric 
Bezier curves

1

This method reduced the complexity of 
previous study

2

To apply optimization methods for 𝛼𝛼𝑖𝑖
parameter and compare their
effectiveness

1

Can be extended to shape preservation of 
surfaces

2

R
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ts

Fig 10a: 𝐶𝐶 quintic trigonometric Bézier curve interpolation

Fig 10c: Convexity-preserving interpolation

Fig 10b: Convexity-preserving interpolation for several 𝛽𝛽
values

Fig 10d: Comparison with existing scheme

Convex curve can be 
verified by connecting 
any two points on the 
curve. If none of the 
lines lie below the 

curve, then it is convex.

32

Example 4: Convexity-preserving Interpolation

𝒊𝒊 1 2 3 4
𝒙𝒙𝒊𝒊 3 4 5 7

𝒚𝒚𝒊𝒊 7 0.4 0.4 2.5

Table 7: Convex data set taken from Hussain et al. (2014)

31
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Extension of κ-curve

Kenjiro T. Miura
Graduate School of Science and Technology, Shizuoka University, Japan

Abstract

The κ-curve[1, 2] is a recently published interpolating spline which consists of quadratic Bézier segments
passing through input points at the loci of local curvature extrema. We extend this representation to control the
magnitudes of local maximum curvature in a new scheme called extended- or ϵκ-curves.
κ-curves have been implemented as the curvature tool in Adobe Illustrator® and Photoshop®, and are

highly valued by professional designers. However, because of the limited degrees of freedom of quadratic
Bézier curves, it provides no control over the curvature distribution.

We propose new methods that enable the modification of local curvature at the interpolation points by
degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By
using ϵκ-curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our
examples.

References

[1] Yan, Z., Schiller, S., Wilensky, G., Carr, N., Schaefer, “κ-curves: Interpolation at local maximum curva-
ture”, ACM Transactions on Graphics 36(4), Article 129 (2017).

[2] Yan, Z., Schiller, S., Schaefer, S., “Circle reproduction with interpolatory curves at local maximal curvature
points”. Computer Aided Geometric Design 72(6), 98–110 (2019).
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Examples of aesthetic surfaces : Sculpture

David statue Basara statue（伐折羅 ）

3

Kenjiro T. Miura
Shizuoka University, Japan

Log-aesthetic Curve and Similarity Geometry
+ κ-Curve

Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," 
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

1

Today’s talk
Two topics

a. Log-aesthetic curve + Similarity geometry:

Standard curve for aesthetic design

b. κ-curve

1. Aesthetic curve

2. Cute curve

2
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＜Different impressions＞

David (left) and Basara (right)

Celica (top) and F355(bottom)

Depend on designers’ Kansei

So far mathematical approaches 
has been avoided.

・David and F355

・Basara and Celica

Divergent curve

Convergent curve

Impressions of curve and surface

6

Examples of aesthetic curve : Wings of butterfly
ミカドアゲハ ヒメギフチョウ

オオムラサキ キチョウ

5

Examples of aesthetic curve : Japanese sord
種別 太刀， 国 備前，時代 平安時代後期～鎌倉時代初期，法量 二尺四寸五分，銘文 正恒

種別脇差，国 山城 ，時代江戸時代初期[安土桃山時代] ，法量 一尺三寸，銘文 平安城藤原弘幸

種別 刀， 国 肥後国， 時代 江戸時代後期，法量 二尺三寸一分 銘文 肥後同田貫小山延寿太郎藤原宗廣 文久三年十月日

4
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GCS

The curvature profile is given by

where κ：curvature，s : arc length, S:total length，p, q, r : cnst > 1

The domain of the curve 0 ≦ s ≦ S.

The sign of the curvature derivative is always positive or negative, so 

the curvature is monotonically increasing/ decreasing.

9

• Clothoid curve

• GCS (generalized Cornu spiral)

8

Aesthetic curves

D. S. Meek and D. J. Walton, The use of Cornu spirals in drawing planar 
curves of controlled curvature, Journal of Computational and Applied 
Mathematics 25(1989), 69-78. 

A. Jamaludin et al., The generalised Cornu spiral and its application to 
span generation, Journal of Computational and Applied Mathematics
Vol.102, No.1, P-37-47, 1999.

Researches on aesthetic curves and surfaces

Fairness metrics

using 
Bézier
B-spline
NURBS

 etc.

Aesthetic curves

Logarithmic spiral
Clothoid curve
Quaternion IC
GCS

  Log-aesthetic curve 
GLAC

Construction
Evolute
Typical curve
Class A Bézier

7
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Example of aesthetic curves

Typical example of aesthetic curves
logarithmic (equiangular) spiral

Nautilus Logarithmic spiral
Counterexample：
Archimedean spiral

θarr += 0
12

GLAC

Radius of curvature-shifted GLAC

Curvature-shifted GLAC

Difference

Directional angle of ROC-shifted GLAC ： hypergeometric function

Directional angle of curvature-shifted GLAC : integrable

Gobithaasan, R.U. (2010). The Development of Planar Curves with High Aesthetic Value 
(Doctoral dissertation, Universiti Sains Malaysia,  Jan. 2010).

11

Unit Quaternion Integral Curve
K.T. Miura, Unit Quaternion Integral Curve: a new type of fair free-form curves,
CAGD, 17(2000) 39-58.

where q is a unit quaternion.

𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡 = 𝑃𝑃𝑃𝑃0 + �
0

𝑡𝑡𝑡𝑡
𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡)𝑣𝑣𝑣𝑣𝑞𝑞𝑞𝑞(𝑡𝑡𝑡𝑡)−1𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

Miura, K.T., "Unit Quaternion Integral Curve: A New Type of Fair Free-Form Curves," Computer Aided Geometric Design, 
vol.17, no.1, pp.39-58, 2000

10
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Clothoid curve
General expression

Clothoid curve

length arc:,roc:
10

1
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Reasons to be aesthetic

Self-similarity
Golden ratio

Golden spiral

「Golden section connects art and mathematics」

Golden spiral： a kind of logarithmic spirals

About the fixed point（intersection of red lines)
rotate by 90 degrees clockwise and scale by

...618033989.1
2

15
=

+
=φ

φ/1

14

Logarithmic spiral

General expression

Logarithmic spiral

length arc:
,curvatureofradius:

10

s

csc
ρ
ρ +=

Main property

)0(,)( )( ≥= + tetC tiba

Self-similarity

)(
)1()('
tCee

tCtC
iba=

+=
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Self-affinity

Extension #2 Self-affinity

[Ref：Mathematics of shape，Ryuji Takagi]

18

Involute gear

17

Circle involute curve

Circle involute curve

length arc:,roc:
10

2

s
csc

ρ
ρ +=

Main property

)cossin,sin(cos)( trtttttC −+=

Self-affinity

)()1()1()('
)()1()('

/)1( as izeReparametr
2/

01

tseststs
tett

cect t

β

β

β

ρρρ

=−+=

=+=

−=

General expression

16
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A general equation of aesthetic curves

Logarithmic spiral α=1

Clothoid curve α= -1

Circle involute  α= 2

Nielsen’s spiral  α= 0

sceccscC
d
ds

1
010 ,,log)log( =+=+= ρρρα

ρ
ρ α

The fundamental equation of aesthetic curves

21

Logarithmic Curvature Histogram #2

20

Logarithmic Curvature Histogram #1

Logarithmic curvature histogram

Horizontal axis：log of radius of curvature
Vertical axis：log of small change of arc length with respect to small 

change of log of radius of curvature

)
)(log

log(
ρd

ds

19
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Butterfly’s wings

24

Self-affinity

length arc:,curvature of radius:
10

s
csc

ρ
ρα +=
Main property

Self-affinity

01 /)1(where
)()1()1()('

)1()('

cecs(t)
tseststs

tet

t −=

=−+=

+=

β

β

α
β

ρρ

23

Parametric expression

dseePsC
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Extended clothoid curve
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Compound-Rhythm LAC

27
Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," 
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

INTERACTIVE DESIGN USING LAC

26

25
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Design examples

30

LAC as plugin for Rhino 3D

29

Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," 
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

G2 C-Shape & S-Shape with 
LAC triplets

28
Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity," 
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.
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Similarity Geometry of the Plane Curve #1 

Since we know that the arc length s may vary, thus the representation of plane 

curves is parameterized by direction angle θ which is invariant by scaling.

We assume the curve is not a straight line. Let a plane curve be given as a 

function of its direction angle by 𝑪𝑪𝑪𝑪(𝜃𝜃𝜃𝜃) and let a unit tangent vector 𝑻𝑻𝑻𝑻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and a 

unit normal vector 𝑵𝑵𝑵𝑵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Then 

𝑻𝑻𝑻𝑻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 =
𝑑𝑑𝑑𝑑𝑪𝑪𝑪𝑪
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 =

1
𝜅𝜅𝜅𝜅 𝑑𝑑𝑑𝑑 𝑻𝑻𝑻𝑻(𝑑𝑑𝑑𝑑)

𝑵𝑵𝑵𝑵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 =
1

𝜅𝜅𝜅𝜅 𝑑𝑑𝑑𝑑
𝑵𝑵𝑵𝑵(𝑑𝑑𝑑𝑑)

SIMILARITY GEOMETRY

32

Applications for Archtecture

31
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Similarity Radius of Curvature

where V(θ)=1/S(θ): Similarity ROC of LAC

General solution of V(θ): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃𝜃𝜃)
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

= 𝑇𝑇𝑇𝑇 𝜃𝜃𝜃𝜃 + 𝜋𝜋𝜋𝜋
2
𝑉𝑉𝑉𝑉 𝜃𝜃𝜃𝜃 − 1

𝑉𝑉𝑉𝑉(𝜃𝜃𝜃𝜃) = 1+𝐶𝐶𝐶𝐶( 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1)
1

1−𝛼𝛼𝛼𝛼

𝐿𝐿𝐿𝐿(𝛼𝛼𝛼𝛼,𝜆𝜆𝜆𝜆;𝜃𝜃𝜃𝜃)

𝑉𝑉𝑉𝑉𝜅𝜅𝜅𝜅−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝜃𝜃𝜃𝜃 = − 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1
𝛼𝛼𝛼𝛼

𝛼𝛼𝛼𝛼−1(𝑣𝑣𝑣𝑣+( 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1)
1

1−𝛼𝛼𝛼𝛼)
𝜆𝜆𝜆𝜆

Similarity ROC of Curvature-shift GLAC:

𝑉𝑉𝑉𝑉 −𝜃𝜃𝜃𝜃 = − 𝛽𝛽𝛽𝛽−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1
𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽−1 𝐶𝐶𝐶𝐶+ 𝛽𝛽𝛽𝛽−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1
1

1−𝛽𝛽𝛽𝛽

𝜆𝜆𝜆𝜆
= 𝑀𝑀𝑀𝑀(𝛽𝛽𝛽𝛽, 𝜆𝜆𝜆𝜆;−𝜃𝜃𝜃𝜃)(1 + 𝜈𝜈𝜈𝜈( 1 − 𝛽𝛽𝛽𝛽 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃 + 1)

1
𝛽𝛽𝛽𝛽−1)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

= 1 − 𝛼𝛼𝛼𝛼

LAC: general solution 𝑉𝑉𝑉𝑉 𝜃𝜃𝜃𝜃 = 𝑀𝑀𝑀𝑀(𝛼𝛼𝛼𝛼, 𝜆𝜆𝜆𝜆; 𝜃𝜃𝜃𝜃) = − 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1
𝜆𝜆𝜆𝜆

where β=2-α
36

Kenjiro T. Miura, R.U. Gobithaasan, Sho Suzuki, Shin Usuki, Reformulation of Generalized Log-aesthetic Curves with Bernoulli Equations, 
Computer-Aided Design and Applications , Volume 13, Issue 2, pages 265-269, 2016. DOI:10.1080/16864360.2015.1084200.

Similarity Curvature of LAC and its evolute

where S(θ): similarity curvature of LAC，T(θ+π/2):that of its evolute

Assume that T(θ+π/2)=(2-α)L(α，λ，θ)=L(1/(2-α), (2-α）λ，θ)．
ROC-shift GLAC: general solution 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃𝜃𝜃)
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

= 𝑆𝑆𝑆𝑆(𝜃𝜃𝜃𝜃)2−𝑇𝑇𝑇𝑇 𝜃𝜃𝜃𝜃 + 𝜋𝜋𝜋𝜋
2
𝑆𝑆𝑆𝑆(𝜃𝜃𝜃𝜃)

𝑆𝑆𝑆𝑆(𝜃𝜃𝜃𝜃) = 𝐿𝐿𝐿𝐿(𝛼𝛼𝛼𝛼,𝜆𝜆𝜆𝜆;𝜃𝜃𝜃𝜃)

1+𝐶𝐶𝐶𝐶( 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1)
1

1−𝛼𝛼𝛼𝛼
=

𝐿𝐿𝐿𝐿(𝛼𝛼𝛼𝛼,𝜆𝜆𝜆𝜆;𝜃𝜃𝜃𝜃)

1+𝜈𝜈𝜈𝜈( 𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1)
1

1−𝛼𝛼𝛼𝛼

𝑆𝑆𝑆𝑆 𝜃𝜃𝜃𝜃 = 𝐿𝐿𝐿𝐿 𝛼𝛼𝛼𝛼, 𝜆𝜆𝜆𝜆; 𝜃𝜃𝜃𝜃 = − 𝜆𝜆𝜆𝜆
𝛼𝛼𝛼𝛼−1 𝜆𝜆𝜆𝜆𝜃𝜃𝜃𝜃+1

LAC: general solution

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

= (𝛼𝛼𝛼𝛼 − 1)𝑆𝑆𝑆𝑆2

35
Sato, M.; Shimizu, Y.: The log-aesthetic curve and Riccati equations from the viewpoint of similarity geometry, Proc. JSIAM2014, 2014. 

34

Similarity Geometry of the Plane Curve #2 

Similarity Frenet frame 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 = (𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 ,𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 )

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 = 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 −𝜅𝜅𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝜃𝜃) −1
1 −𝜅𝜅𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝜃𝜃)

where

Similarity curvature 𝑆𝑆𝑆𝑆 𝜃𝜃𝜃𝜃 = 𝜅𝜅𝜅𝜅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝜃𝜃 = 1
𝜅𝜅𝜅𝜅2

𝑑𝑑𝑑𝑑𝜅𝜅𝜅𝜅
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠

= −𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠

=

− 1
𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

Similarity curvature is a similarity geometry invariant!
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𝜎𝜎𝜎𝜎-Curve 

We define 𝜎𝜎𝜎𝜎 curve by its Cesàro equation as follows:

𝜎𝜎𝜎𝜎 = 𝜌𝜌𝜌𝜌𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛−1𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑎𝑎1𝑑𝑑𝑑𝑑 + 𝑎𝑎𝑎𝑎0 (5.13)

In the above equation, 𝜎𝜎𝜎𝜎 = 𝜌𝜌𝜌𝜌𝛼𝛼𝛼𝛼 is given by a polynomial 

function of arc length s. 
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𝜎𝜎𝜎𝜎-Curve and τ-Curve 

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, τ-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 
2020, 7(2), 155-164.

Kenjiro T. Miura, Sho Suzuki, R.U. Gobithaasan, Shin Usuki, Jun-ichi Inoguchi, Masayuki Sato, Kenji Kajiwara, Yasuhiro Shimizu, "Fairness 
metric of plane curves defined with similarity geometry invariants," Computer-Aided Design and Applications, DOI:10.1080/16864360.2017.1375677, 2017.

Similarity Curvature of Typical Curve

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃

= − −1
𝑛𝑛𝑛𝑛+1

𝑆𝑆𝑆𝑆2 − 𝑛𝑛𝑛𝑛+1
(𝑛𝑛𝑛𝑛−1)2

where 𝑛𝑛𝑛𝑛 is degree of the curve.

37
Sato, M., & Shimizu, Y. (2016). Generalization of log-aesthetic curves by Hamiltonian formalism. JSIAM Letters, 8, 49-52.
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τ-Curve

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, τ-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 
2020, 7(2), 155-164.

41

τ-Curve

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, τ-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering, 
2020, 7(2), 155-164.

40

𝜎𝜎𝜎𝜎-Curve 
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Kawaii Engineering

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, “κ-Curves: 
Interpolation at Local Maximum Curvature,” TOG, 36(4), 129, 2017.

Kawaii Engineering, editor: Michiko Ohkura, Springer 2019.

Japanese word: “かわいい”   
English word: cute, lovable, charming, (cool)

For 2D and 3D objects, kawaii preference for curved shape is in common. 

Κ-CURVE

43

τ-Curve
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κ-curves examples

48

κ-curves

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, “κ-Curves: 
Interpolation at Local Maximum Curvature,” TOG, 36(4), 129, 2017.

The κ-curve is a recently published interpolating spline which consists of 
quadratic Bézier segments passing through input points at the loci of local 
curvature extrema. [Yan2017]. It has the following properties:

1. It passes through all input point.
2. All the curvature extremum points are input points.
3. Curvature continuity (G2 continuity) is guaranteed except for inflection points.

47

εκ-Curves: 
Controlled Local Curvature Extrema

Kenjiro T. Miura1

R.U. Gobithaasan2

Péter Salvi3

Dan Wang1

Tadashi Sekine1

Shin Usuki1

Jun-ichi Inoguchi4

Kenji Kajiwara5

1Shizuoka University
2University Malaysia Terengganu
3Budapest U. of T. and E.
4University of Tsukuba
5Kyushu University

K.T. Miura et al. εκ-Curves: Controlled Local Curvature Extrema, The Visual Computer, 2021. 

46
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εκ-curves: Local modifications

a=0.85 a=0.85 a=0.85

All a=0.85

51

εκ-curves: extended κ-curves

Constrained cubic curve

𝑑𝑑𝑑𝑑𝜅𝜅𝜅𝜅
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 0: polynomial of degree 9 in terms of parameter t

For one curve segment

１．Proof of at most one curvature extremum[1]

２．Uniqueness of the solution passing the input point[2]

[1] K. T. Miura, “One peak,” November 2020. [Online].
Available: https://mc2-lab.com/KTMiuraOnePeak.pdf

[2]K. T. Miura , “Unique solution,” November 2020. 
[Online]. Available: https://mc2-
lab.com/KTMiuraUniqueSolution.pdf

50

Disadvantages of κ-curves and its improvement

The values of curvature extrema can’t be controlled！

[Yan2019]
Increase DOF by using rational quadratic Bézier curve.

Proposed method
Increase DOF by elevating degree from quadratic to cubic.

Advantage
Not only rational quadratic Bézier, but also other various 
type of curves

Z. Yan, S. Schiller, and S. Schaefer, “Circle reproduction with interpolatory curves at local 
maximal curvature points,” Computer Aided Geometric Design, vol. 72,
no. 6, pp. 98–110, 2019.

49
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Contributions

１．Inherent nice properties of κ-curve 

２．Applicable for various curves(polynomial, rational，trigonometric, etc.)

３．Not necessary to increase # of input points to control curvature extrema

４．Global and local control of curvature extrema

５．As fast as κ-curves

Prototype in Julia
P. Salvi, (2020, November) ϵκ-curves. [Online] Available:
https://github.com/salvipeter/ekcurves/tree/master

Movie file
[Online] Available: https://mc2-lab.com/ek-curves.mp4

εκ-curves: Sample code in Julia and Movie file

54

εκ-curves: Comparison with Log-Aesthetic Curves

Log-aesthetic curves

εκ-curves

CAD’24, Eger, Hungary                      Kenjiro T. Miura 53

εκ-curves: Global modifications

52
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Future works

Surface
1. Log-aesthetic surface?
2. Not K-surface, but κ-surface?

K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema (2023)
Tobias Djuren, Maximilian Kohlbrenner, Marc Alexa
ACM Transactions on Graphics (Proc. of Siggraph Asia)

56

εκ-curves: Movie file

55
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Intrinsic and extrinsic singularities and curvatures of piecewise smooth
surfaces

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

We study piecewise-smooth (PS in short) surfaces which are two-dimensional topological manifolds made by
connecting finitely many smooth surfaces. We discuss intrinsic and extrinsic singular points of such surfaces
and give new definitions which represent curvature and sharpness at each point in the ‘edges’ and at each ‘ver-
tex’ of such a surface. Especially, the intrinsic singularities are defined intrinsically by using a generalization
of the classical Bertrand-Puiseux Theorem, which gives a power series expansion of the length of the geodesic
circle with respect to the radius. Then, as an application of the new concepts mentioned above, we represent the
well-known Gauss-Bonnet Theorem that gives a relationship between curvatures and topology for surfaces in a
simple form. We discuss also the definition and characterization of PS developable surfaces which are locally
isometric to planar domains. Our definitions of intrinsic curvatures can estimate how far a PW-smooth surface
is from being developable.
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1.Motivation

3

Definition（Piecewise smooth surface）．
Let 𝑀𝑀 = 𝑖𝑖=1ڂ

𝑘𝑘 𝑀𝑀𝑖𝑖 be a 2-dim. connected 
oriented 𝐶𝐶∞- manifold included in ℝ3. If 𝑀𝑀
satisfies the following conditions (i) - (iii), we 
call 𝑀𝑀 a piecewise smooth (PW-smooth in
short) surface in ℝ3.

 (i) Each 𝑀𝑀𝑖𝑖 is an oriented connected smooth submanifold
with piecewise smooth boundary 𝜕𝜕 𝑀𝑀𝑖𝑖 and unit normal 
vector field 𝜈𝜈𝑖𝑖 in ℝ3. 
(ii) If 𝑖𝑖 ≠ 𝑗𝑗, then 𝑀𝑀𝑖𝑖∩ 𝑀𝑀𝑗𝑗 = 𝜕𝜕 𝑀𝑀𝑖𝑖 ∩ 𝜕𝜕 𝑀𝑀𝑗𝑗 holds.
(iii) For each 𝑖𝑖, the unit normal 𝜈𝜈𝑖𝑖 satisfies the following 
condition: For any local coordinates (𝑢𝑢1, 𝑢𝑢2), 

𝜕𝜕
𝜕𝜕𝑢𝑢1

, 𝜕𝜕
𝜕𝜕𝑢𝑢2

, 𝜈𝜈𝑖𝑖 gives the canonical orientation of ℝ3.

𝜈𝜈5𝜈𝜈1

International Conference "Evolving Design and Discrete Differential 
Geometry - towards Mathematics Aided Geometric Design"

March 13, 2025, Nishijin Plaza, Kyushu University

Miyuki Koiso 
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Intrinsic and extrinsic singularities and 
curvatures of piecewise smooth surfaces*

1
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Plan of talk

1. Motivation

2. Bertrand-Puiseux Theorem and its generalization
3. Definitions of intrinsic singular points and 

curvatures
4. Gauss-Bonnet Theorem.
5. Idea of the proof of the generalized Bertrand-

Puiseux Theorem
6. Summary
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2. Bertrand-Puiseux Theorem and its generalization

Let 𝑀𝑀 be a PW-smooth surface. For 𝑝𝑝, 𝑞𝑞 ∈ 𝑀𝑀,
dist 𝑝𝑝, 𝑞𝑞 ≔ the smallest length of PW 𝐶𝐶∞curves
connecting 𝑝𝑝 and 𝑞𝑞 in 𝑀𝑀.

6
Cylinder and geodesics

helix

Cylinder covered with a disc and 
its non-smooth shortest path 
connecting 𝑝𝑝, 𝑞𝑞.

Remark. A shortest path is not necessarily smooth!

𝑝𝑝𝑝𝑝 is a straight 
line segment. 

𝐴𝐴𝐴𝐴 is a part of 
a helix.

1.Motivation (continuation)

5

Def. 1. A piecewise (PW)-smooth surface 𝑀𝑀 is said to be 
developable if it is isometric to a planar region 𝑅𝑅 (that is, 
there exists a Lipschitz continuous bijective mapping 𝐹𝐹
from 𝑀𝑀 onto 𝑅𝑅 that preserves the length of each curve).

Remark 1. It is well-known that a smooth surface 𝑀𝑀 is 
developable if and only if the Gaussian curvature 
𝐾𝐾 𝑝𝑝 of 𝑀𝑀 vanishes at any point 𝑝𝑝 ∈ 𝑀𝑀. 

F 𝑅𝑅𝑀𝑀𝐶𝐶
𝐹𝐹(𝐶𝐶)

Question. Estimate how far a PW-smooth surface is 
from being developable. 

1.Motivation (continuation)

4

Definition（Extrinsic singular points）．
Let 𝑀𝑀 = 𝑖𝑖=1ڂ

𝑘𝑘 𝑀𝑀𝑖𝑖 be a PW-smooth surface.
 (i) If 𝑀𝑀𝑖𝑖 ∩ 𝑀𝑀𝑗𝑗 ≠ 𝜙𝜙 and 𝑖𝑖 ≠ 𝑗𝑗, then 𝑀𝑀𝑖𝑖 ∩ 𝑀𝑀𝑗𝑗 is called 
an extrinsic edge (or simply, edge) of 𝑀𝑀.
(ii) If 𝑝𝑝 = 𝑀𝑀1 ∩∙∙∙∩ 𝑀𝑀𝑁𝑁 ∈ 𝑀𝑀𝑜𝑜 (𝑀𝑀1, …, 𝑀𝑀𝑁𝑁 are all 
different, and 𝑁𝑁 ≥ 3) is called an extrinsic vertex (or 
simply, vertex) of 𝑀𝑀.

𝜈𝜈5𝜈𝜈1
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Let 𝑀𝑀 = 𝑗𝑗𝑀𝑀𝑗𝑗ڂ be a PW smooth surface. And let 𝑝𝑝 ∈ 𝑀𝑀𝑜𝑜 . 

9

Theorem 1 (Koiso) (1) Let 𝑝𝑝 = 𝑀𝑀1 ∩⋯∩𝑀𝑀𝑁𝑁 be a 

vertex of 𝑀𝑀. then 𝐿𝐿 𝑝𝑝; 𝑟𝑟 = σ𝑖𝑖=1
𝑁𝑁 𝜎𝜎𝑖𝑖 𝑟𝑟 −

1
2σ𝑖𝑖=1

𝑁𝑁 𝑘𝑘𝑔𝑔𝑔𝑖𝑖 0 + 𝑘𝑘𝑔𝑔2𝑖𝑖 (0) 𝑟𝑟2 −
1
6σ𝑖𝑖=1

𝑁𝑁 𝐾𝐾𝑖𝑖 𝑝𝑝 𝜎𝜎𝑖𝑖 + (𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′ 0 + (𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′(0) 𝑟𝑟3 + 𝑜𝑜 𝑟𝑟3 . 

(2) Let 𝑝𝑝 be an interior point of an edge 𝐸𝐸= 𝑀𝑀1 ∩
𝑀𝑀2. Denote by 𝑘𝑘𝑗𝑗(𝑝𝑝) the geodesic curvature of 𝐸𝐸 ⊂
𝑀𝑀𝑗𝑗at 𝑝𝑝 w.r.t. the inner normal. Then, 𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 2𝜋𝜋𝜋𝜋 −
𝑘𝑘1 𝑝𝑝 + 𝑘𝑘2 𝑝𝑝 𝑟𝑟2 − 𝜋𝜋

6 (𝐾𝐾1 𝑝𝑝 +𝐾𝐾2(𝑝𝑝))𝑟𝑟3 + 𝑜𝑜 𝑟𝑟3 . 

2. B-P Theorem and its generalization (continuation)

𝐿𝐿 𝑝𝑝; 𝑟𝑟 𝑟𝑟.

𝜎𝜎5
𝜎𝜎1

Next, let 𝑀𝑀 = 𝑗𝑗𝑀𝑀𝑗𝑗ڂ be a PW-smooth surface. 

And let 𝑝𝑝 = 𝑀𝑀1 ∩∙∙∙∩ 𝑀𝑀𝑁𝑁 .

8

2. B-P Theorem and its generalization (continuation)

In a neighborhood 𝑈𝑈𝑖𝑖 of a point 
𝑝𝑝 ∈ 𝑀𝑀𝑖𝑖, we use  the geodesic polar 
coordinate (𝑟𝑟, 𝜃𝜃) to represent any 
point as 𝑞𝑞𝑖𝑖 = 𝑞𝑞(𝑟𝑟, 𝜃𝜃) ∈ 𝑀𝑀𝑖𝑖 ∩ 𝑈𝑈𝑖𝑖, 
(𝜗𝜗1𝑖𝑖 𝑟𝑟 ≤ 𝜃𝜃 ≤ 𝜗𝜗2𝑖𝑖 (𝑟𝑟)).

𝜎𝜎𝑖𝑖 is the inner angle of 𝑀𝑀𝑖𝑖 at 𝑝𝑝, 𝐾𝐾𝑖𝑖(𝑝𝑝) is the Gaussian 
curvature of 𝑀𝑀𝑖𝑖 at 𝑝𝑝, 𝑘𝑘𝑔𝑔𝑔𝑖𝑖 (r) is the signed geodesic curvature 
of the edge 𝑀𝑀𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖−1 and 𝑘𝑘𝑔𝑔2𝑖𝑖 (r)  is that of 𝑀𝑀𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖+1.

𝑁𝑁 = 5

𝑞𝑞𝑖𝑖

2. B-P Theorem and its generalization (continuation)

Let 𝑀𝑀 be a PW-smooth surface. The Gaussian 
curvature of 𝑀𝑀 at a regular point  𝑝𝑝 ∈ 𝑀𝑀 is 
denoted by 𝐾𝐾 𝑝𝑝 . The geodesic circle in 𝑀𝑀
with center at 𝑝𝑝 and radius 𝑟𝑟 is defined as 
𝐶𝐶 𝑝𝑝; 𝑟𝑟 = 𝑞𝑞 ∈ 𝑀𝑀|dist 𝑞𝑞, 𝑝𝑝 = 𝑟𝑟 , and the 
length of 𝐶𝐶 𝑝𝑝; 𝑟𝑟 is denoted by 𝐿𝐿 𝑝𝑝; 𝑟𝑟 .

Bertrand (1848. For general R-mfd, Gray1974). If 
𝑝𝑝 ∈ 𝑀𝑀 is a regular point, then for small 𝑟𝑟 > 0,
𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 2𝜋𝜋𝜋𝜋 − 𝜋𝜋

3 𝐾𝐾 𝑝𝑝 𝑟𝑟3 + 𝑜𝑜 𝑟𝑟3 .

𝑀𝑀
𝑝𝑝 𝑟𝑟

𝐶𝐶 𝑝𝑝; 𝑟𝑟

Rem. If 𝑀𝑀 is a plane, 𝐶𝐶 𝑝𝑝; 𝑟𝑟 is a round 
circle with radius 𝑟𝑟 and 𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 2𝜋𝜋𝜋𝜋.

𝑝𝑝

𝑝𝑝

𝑟𝑟

𝑟𝑟

𝐶𝐶 𝑝𝑝; 𝑟𝑟

saddle 7

𝐾𝐾 𝑝𝑝 > 0

𝐾𝐾 𝑝𝑝 < 0
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3. Definition of intrinsic singular points and curvatures (cont.)

12

Let 𝑀𝑀 = 𝑗𝑗𝑀𝑀𝑗𝑗ڂ be a PW-smooth surface. Let 𝑝𝑝 ∈
𝑀𝑀𝑜𝑜. Represent the length 𝐿𝐿 𝑝𝑝; 𝑟𝑟 of the  geodesic 

circle 𝐶𝐶 𝑝𝑝; 𝑟𝑟 in 𝑀𝑀 with center at 𝑝𝑝 and radius 𝑟𝑟 as 

𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 𝑎𝑎1(𝑝𝑝)𝑟𝑟 + 𝑎𝑎2(𝑝𝑝)𝑟𝑟2+𝑎𝑎3(𝑝𝑝)𝑟𝑟3+ 𝑜𝑜 𝑟𝑟3 .  

𝑀𝑀3

𝑀𝑀4
𝑀𝑀1

𝑀𝑀2

𝑃𝑃4
𝑃𝑃3

𝑃𝑃1

Def. 1(K). (i) If 𝑎𝑎1(𝑝𝑝) ≠ 2𝜋𝜋,
we call 𝑝𝑝 an intrinsic vertex of 𝑀𝑀. 
(ii) We call the set of points that 
satisfy both  𝑎𝑎1(𝑝𝑝) = 2𝜋𝜋 and 𝑎𝑎2(𝑝𝑝) ≠ 0
intrinsic edges of 𝑀𝑀.

𝐸𝐸2

𝐸𝐸1

(𝐸𝐸1, 𝐸𝐸2 : edges of 𝑀𝑀)
Cylinder 𝑀𝑀 = σ𝑗𝑗=1

3 𝑀𝑀𝑗𝑗

𝑀𝑀

(𝑃𝑃𝑖𝑖: vertices)

Def. 2 (K). (i) We call  𝑆𝑆 𝑝𝑝 ≔ 2𝜋𝜋 − 𝑎𝑎1(𝑝𝑝) the sharpness of 𝑀𝑀 at 𝑝𝑝. 
(ii) We call 𝑘𝑘𝑒𝑒 𝑝𝑝 ≔ −𝑎𝑎2(𝑝𝑝) the edge curvature of 𝑀𝑀 at 𝑝𝑝. 
(iii) We call 𝐾𝐾 𝑝𝑝 ≔ − Τ3 𝜋𝜋 𝑎𝑎3(𝑝𝑝) the Gaussian curvature of 𝑀𝑀 at 𝑝𝑝. 

𝑃𝑃2 Pillow box

Theorem 2 (K). A PW-smooth surface is locally 
developable. ⟺ 𝑆𝑆 𝑝𝑝 = 𝑘𝑘𝑒𝑒 𝑝𝑝 = 𝐾𝐾 𝑝𝑝 = 0, ∀𝑝𝑝𝑝𝑝𝑝𝑝.

11

Example 3. 𝑀𝑀 = 𝑀𝑀1 ∪ 𝑀𝑀2, 𝑝𝑝 ∈ 𝐸𝐸=𝑀𝑀1 ∩ 𝑀𝑀2,

𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 2𝜋𝜋𝜋𝜋 − 2 cot 𝜃𝜃
𝑅𝑅 𝑟𝑟2 − π

3𝑅𝑅2 𝑟𝑟3+ 𝑜𝑜 𝑟𝑟3

𝜃𝜃𝑀𝑀1

𝑀𝑀2

2. B-P Theorem and its generalization (continuation)

Example 2. Let 𝑀𝑀 be a cube. Then, for 
each vertex 𝑝𝑝, 𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 3

2 𝜋𝜋𝜋𝜋.

10

Example 1. 𝑀𝑀 = 𝑀𝑀1 ∪ 𝑀𝑀2 ∪ 𝑀𝑀3, 𝑝𝑝 ∈
𝐸𝐸 = 𝑀𝑀1 ∩ 𝑀𝑀2, where 𝑀𝑀1 is a part of a 
cylinder with radius 𝑅𝑅, 𝑀𝑀2 and 𝑀𝑀3 are 
flat disks with radius 𝑅𝑅. Then, 

𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 2𝜋𝜋𝜋𝜋 − 1
𝑅𝑅 𝑟𝑟

2+ 𝑜𝑜 𝑟𝑟4 .

2. B-P Theorem and its generalization (continuation)

For a regular arc 𝛾𝛾 ⊂ 𝑀𝑀, the signed geodesic curvature

𝑘𝑘𝑔𝑔 is expressed as 𝑘𝑘𝑔𝑔 =
det( ሶ𝛾𝛾 ሷ𝛾𝛾 𝜈𝜈)

ሶ𝛾𝛾 3 .
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5. Idea of the proof of the generalized 
Bertrand-Puiseux Theorem (continuation)

Recall the length of the geodesic circle 𝐶𝐶 𝑝𝑝; 𝑟𝑟
𝐿𝐿 𝑟𝑟 ≔ 𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 𝑎𝑎1(𝑝𝑝)𝑟𝑟 + 𝑎𝑎2(𝑝𝑝)𝑟𝑟2+𝑎𝑎3(𝑝𝑝)𝑟𝑟3+ 𝑜𝑜 𝑟𝑟3

≈ σ𝑖𝑖=1
𝑁𝑁 𝜗𝜗1𝑖𝑖׬ (𝑟𝑟)

𝜗𝜗2𝑖𝑖 (𝑟𝑟) ℎ 𝑟𝑟, 𝜃𝜃 𝑑𝑑𝑑𝑑. Then, using L’Hopital’s rule again, 

𝑎𝑎2 = lim
𝑟𝑟→+0

𝐿𝐿 𝑟𝑟 −𝑎𝑎1𝑟𝑟
𝑟𝑟2 = lim

𝑟𝑟→+0
𝐿𝐿′′ 𝑟𝑟
2 = −1

2 σ𝑖𝑖=1
𝑁𝑁 𝑘𝑘𝑔𝑔 2

𝑖𝑖 + 𝑘𝑘𝑔𝑔 1
𝑖𝑖 .

𝑎𝑎3 = lim
𝑟𝑟→+0

𝐿𝐿 𝑟𝑟 − 𝑎𝑎1𝑟𝑟 − 𝑎𝑎2𝑟𝑟2
𝑟𝑟3 = lim

𝑟𝑟→+0
𝐿𝐿′′ 𝑟𝑟 − 2𝑎𝑎2

6𝑟𝑟
= −1

6σ𝑖𝑖=1
𝑁𝑁 𝜎𝜎𝑖𝑖𝐾𝐾𝑖𝑖 𝑝𝑝 + lim

𝑟𝑟→0
(𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′(𝑟𝑟) + (𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′(𝑟𝑟) ,

where 𝜎𝜎𝑖𝑖 is the inner angle of 𝑀𝑀𝑖𝑖 at 𝑝𝑝. Moreover we estimate the error 
term. From these we obtain the result. 

15

𝑀𝑀

5. Idea of the proof of the generalized 
Bertrand-Puiseux Theorem 

14

Let 𝑀𝑀 be a PW-smooth surface. And let 𝑝𝑝 = 𝑀𝑀1 ∩⋯∩
𝑀𝑀𝑁𝑁 ∈ 𝑀𝑀𝑜𝑜. Near the point 𝑝𝑝 ∈ 𝑀𝑀𝑖𝑖, we use  the geodesic polar 
coordinate (𝑟𝑟, 𝜃𝜃) to represent any point as 𝑞𝑞𝑖𝑖 = 𝑞𝑞(𝑟𝑟, 𝜃𝜃), (𝜗𝜗1𝑖𝑖
𝑟𝑟 ≤ 𝜃𝜃 ≤ 𝜗𝜗2𝑖𝑖 (𝑟𝑟)), and metric 𝑑𝑑𝑠𝑠2 = 𝑑𝑑𝑟𝑟2 + ℎ2𝑑𝑑𝜃𝜃2, where 

ℎ = (𝑞𝑞𝜃𝜃 ∙ 𝑞𝑞𝜃𝜃)
1
2. Then, 𝐿𝐿 𝑝𝑝; 𝑟𝑟 ≈ σ𝑖𝑖=1

𝑁𝑁 𝜗𝜗1𝑖𝑖׬ (𝑟𝑟)
𝜗𝜗2𝑖𝑖 (𝑟𝑟) ℎ 𝑟𝑟, 𝜃𝜃 𝑑𝑑𝑑𝑑 .

Let 
𝐿𝐿 𝑝𝑝; 𝑟𝑟 = 𝑎𝑎1(𝑝𝑝)𝑟𝑟 + 𝑎𝑎2(𝑝𝑝)𝑟𝑟2+𝑎𝑎3(𝑝𝑝)𝑟𝑟3+ 𝑜𝑜 𝑟𝑟3 .
Then, using L’Hopital’s rule, we obtain

𝑎𝑎1 = lim
𝑟𝑟→0

1
𝑟𝑟 σ𝑖𝑖=1

𝑁𝑁 𝜗𝜗1𝑖𝑖׬ (𝑟𝑟)
𝜗𝜗2𝑖𝑖 (𝑟𝑟) ℎ 𝑟𝑟, 𝜃𝜃 𝑑𝑑𝑑𝑑 =

lim
𝑟𝑟→0

σ𝑖𝑖=1
𝑁𝑁 𝜗𝜗1𝑖𝑖׬ (𝑟𝑟)

𝜗𝜗2𝑖𝑖 (𝑟𝑟) ℎ𝑟𝑟𝑑𝑑𝜃𝜃 = σ𝑖𝑖=1
𝑁𝑁 𝜗𝜗2𝑖𝑖 − 𝜗𝜗1𝑖𝑖 =the sum of the 

inner angles around 𝑝𝑝, here we used lim
𝑟𝑟→+0

ℎ𝑟𝑟 = 1.

4. Gauss-Bonnet Theorem

Proposition 1 (K). Let 𝑀𝑀 be a closed PW-smooth 
surface with Euler characteristic 𝜒𝜒. And let ෨𝐸𝐸 be the 
union of all intrinsic edges of 𝑀𝑀. Then, it holds that

𝑀𝑀׬ 𝐾𝐾 𝑑𝑑𝑑𝑑 + ෨𝐸𝐸׬ 𝑘𝑘𝑒𝑒 𝑑𝑑𝑑𝑑 + σ𝑝𝑝𝜖𝜖𝜖𝜖 𝑆𝑆(𝑝𝑝)=2𝜋𝜋𝜋𝜋,
where 𝑑𝑑𝑑𝑑 is the area element of 𝑀𝑀 and 𝑑𝑑𝑑𝑑 is the line 
element at regular points of ෩𝐸𝐸.

13

The classical Gauss-Bonnet Theorem can be 
represented as follows.
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⚫ We generalized the classical Bertrand-Puiseux Theorem to PW-
smooth surfaces (say 𝑀𝑀). For example, 

let 𝑝𝑝 = 𝑀𝑀1 ∩⋯∩𝑀𝑀𝑁𝑁 be a vertex of 𝑀𝑀. Then the length of the 
geodesic circle 𝐶𝐶 𝑝𝑝; 𝑟𝑟 in 𝑀𝑀 with center at 𝑝𝑝 and radius 𝑟𝑟 is 

𝐿𝐿 𝑝𝑝; 𝑟𝑟 = σ𝑖𝑖=1
𝑁𝑁 𝜎𝜎𝑖𝑖 𝑟𝑟 −

1
2σ𝑖𝑖=1

𝑁𝑁 𝑘𝑘𝑔𝑔𝑔𝑖𝑖 0 + 𝑘𝑘𝑔𝑔𝑔𝑖𝑖 (0) 𝑟𝑟2 −
1
6σ𝑖𝑖=1

𝑁𝑁 𝐾𝐾𝑖𝑖 𝑝𝑝 𝜎𝜎𝑖𝑖 + (𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′ 0 + (𝑘𝑘𝑔𝑔𝑔𝑖𝑖 )′(0) 𝑟𝑟3 + 𝑜𝑜 𝑟𝑟3 ,
where 𝐾𝐾𝑖𝑖 is the Gauss. curvature, and 𝑘𝑘𝑔𝑔𝑗𝑗𝑖𝑖 is the geodesic curvature.
⚫We defined intrinsic singular points (edges and vertices) and 

curvatures of PW-smooth surfaces. 
⚫We gave a simple representation of the Gauss-Bonnet Theorem 

using the intrinsic singular points at curvatures there.
⚫ We explained ideas of the proof of the main result.

6. Summary
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Abstract

In this talk, we propose a geometric shape generation of roof design for ideal lighting. The idea is based on
the variational problem for anisotropic energy, originally proposed as a mathematical model for crystal growth.
In our implementation, users can intuitively specify the direction in which they want to improve lighting.
Moreover, our approach allows us to generate shapes with natural “internal boundary”. While the main idea
will be introduced in the smooth setting, we also propose a discretization for triangulated surfaces and shape
generations.

Let S2 be the unit sphere in the 3-dimensional Euclidean space R3 and γ : S2 → R be a positive-valued
smooth function. For a smooth surface M in R3, we define the anisotropic energy Fγ(M) as follows:

Fγ(M) =
∫

M
γ(N) dA,

where N denotes the unit normal vector field along M and dA denotes the area element. The minimizer of the
anisotropic energy among all closed “surfaces” enclosing the same volume is called the Wulff shape. Moreover,
a critical point of the anisotropic energy under volume-preserving variations can be characterized as a “constant
anisotropic curvature” condition. If γ ≡ 1, the functional gives the area, and therefore, this situation can be
regarded as a generalization of constant mean curvature (CMC) surfaces, which gives a mathematical model
of soap bubbles. The above model of “generalization of soap bubbles” is useful for shape generation in the
following two ways:

• While soap bubbles are “homogeneous”, Wulff shapes, in general, “change the size of the faces according
to the direction of the normal vector”, which can be used to specify the “direction of lighting”.

• While soap bubbles have “no edges”, Wulff shapes generally have “edges”, and natural “internal bound-
aries” can be generated without connecting several surface pieces.

References

[1] Miyuki Koiso and Bennett Palmer, Geometry and stability of surfaces with constant anisotropic mean
curvature, Indiana University Mathematics Journal 54 (2005), 1817–1852.
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A “summary” of this talk

A “summary” of this talk

• Shape generation with “corners” without connecting surface patches.
• The user specifies the direction in which they want to create more faces by

changing the parameters (“ideal lighting”).
• The idea came from the geometry of anisotropic energy, which originates the

crystal growth model.

JSIAM Letters Vol. 14 (2022) pp.57–60 Yoshiki Jikumaru

Fig. 4. Discrete anisotropic minimal surfaces (numerically), left:

a = b = 1, middle: a = 2, b = 1, right: a = 1, b = 2.

Fig. 5. Anisotropic energy descent, right: the Wulff shape.

(ν81 +ν82 +ν83)
1/8. We used JavaView version 5.01 for the

implementation [6].

7. Second variation and stability

In the following, we assume the energy density γ is
of class C2. A variation is called admissible if the varia-
tion is volume-preserving and fixes the boundary. Then a
discrete CAMC surface Mh is said to be stable if the sec-
ond variation of the anisotropic energy is non-negative
for any admissible variation. The following lemma can
be proved similarly to [1, Lemma 5.1].

Lemma 12. For a discrete CAMC-Λ surface Mh, we
have

δ2Fγ :=
d2

dt2 |t=0
Fγ =

∑
p

⟨vp, δ(∇pFγ + 2Λ∇p Vol)⟩ ,

for any admissible variation.

We now decompose δ2Fγ into the sum of two terms

tv⃗Qγ v⃗ :=
∑
p

⟨vp, δ(∇pFγ)⟩,

tv⃗QV v⃗ :=
∑
p

⟨vp, δ(∇p Vol)⟩,

where tv⃗ = (tv1, . . . ,
tvn) ∈ R3n and n is the number of

interior vertices. Then Qγ and QV are 3n× 3n-matrices
and we have

δ2Fγ =
d2

dt2 |t=0
Fγ = tv⃗(Qγ + 2ΛQV )v⃗.

A direct calculation shows the following statement.

Proposition 13. If we consider the matrix Qγ as an
n×n grid with a 3×3 entry Qγ

p,q for each pair of interior
vertices p, q of Mh, then

(1) Qγ
p,q = 0 when the vertices p and q are not adjacent.

(2) For the diagonal entries Qγ
p,p we have

tvpQ
γ
p,pvp =

∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩,

(26)
where

P r,q
T vp := (I − νT · tνT )((r − q)× vp), (27)

and the summation is taken over all triangles T =
(p, q, r) in star (p).

(3) For adjacent vertices p and q we have

tvpQ
γ
p,qvq =

1

2

∑
T

1

2Area(T )
⟨dξγ(P r,q

T vp), P
p,r
T vq⟩

+ ⟨ξγ(νT ), vp × vq⟩, (28)

where the summation is taken over two triangles in
star (pq)

Remark 14. If we take γ ≡ 1, then the above results
reduce to the area functional case in [1, Proposition 5.1],
since a direct calculation shows the following relations:

⟨P r,q
T vp, P

r,q
T vp⟩ = tvp(|r − q|2νT · tνT )vp, (29)

⟨P r,q
T vp, P

p,r
T vq⟩ = tvp(−⟨p− r, q − r⟩νT · tνT )vq, (30)

⟨νT , vp × vq⟩ = tvp(e · t(Je)− Je · te)vq, (31)

where e = (p− q)/|p− q| and Je = νT × e.

Corollary 15. Let γ : S2 → R>0 be of class C2 and
convex, i.e., the differential dξγ is positive semi-definite.
If a discrete CAMC surface Mh has only one interior
vertex, then it is stable.

This result generalizes the stability result for discrete
CMC surfaces in [1, Corollary 5.1].

Proof The single interior vertex is denoted by p, and
star (p) = Mh. Then for any vector vp ∈ R3 we have

δ2Fγ =
∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩, (32)

and the convexity of γ proves the statement.
(QED)
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The “target” objects

Figure: London City Hall Figure: Entrance of Metro Bilbao

https://hash-casa.com/2021/09/08/londoncityhall/
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Isoperimetric problem (2D,等周問題)
The following problems are equivalent and called the isoperimetric problem:

Isoperimetric problem (Queen Dido’s problem)

• Among all “closed curves” in the plane of fixed perimeter,
which curve maximizes the area of its enclosed region?

• Among all “closed curves” in the plane enclosing a fixed area,
which curve minimizes the perimeter?

The answer is the circle.
(the “most symmetric” shape)

Mathematically, we must clarify the class of “curves”.
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Introduction: Isoperimetric problem
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“Anisotropic” isoperimetric problem

Anisotropic isoperimetric problem (“Mathematical crystals”)

Among all “closed surfaces” enclosing a fixed volume,
which surface minimizes the “anisotropic” energy?

→ the answer is called the Wulff shape (“anisotropic sphere”).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 7/26

“Anisotropic” isoperimetric problem
Can we consider the following types of “anisotropic” objects (e.g., crystals)?

Figure: A salt crystal Figure: An alum crystal

https://mmlnp.exblog.jp/28347204/, https://kyokoippoppo.hatenablog.com/entry/2021/04/18/083916

They have some “preferred” directions (faces) → “anisotropic” energy
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 6/26

Isoperimetric problem (3D)

Isoperimetric problem (“Mathematical soap bubbles”)

Among all “closed surfaces” enclosing a fixed volume, which surface minimizes the
area?

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 5/26
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A brief review of the area functional

Theorems

• For a small perturbation (variation) rε = r + εV +O(ε2), we have

d

dε

∣∣∣∣
ε=0

A(rε) = lim
ε→0

A(rε)−A(r)

ε
= −2

∫

M
H〈V ,N〉 dA, (3)

for boundary-fixed variations. HereH: mean curvature, N : unit normal.
• A stationary point of the area for volume-preserving variations must be CMC.
• If a closed CMC surface r is “stable (2nd var. ≥ 0)”, then r must be the sphere.

J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature. Math Z. 185,

339–353 (1984).
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A brief review of the area functional
Let M be a 2-dimensional manifold and r : M → R3 be an immersion.

For the (local) coordinates (x, y), define the area element dA as follows:

dA = ‖rx × ry‖ dxdy. (1)

The area A and (algebraic) volume V enclosed by the surface are defined as follows:

A =

∫

M
dA, V =

1

3

∫

M
〈r,N〉 dA, (2)

where N denotes the unit normal.

“Solution” of the isoperimetric problem

Among all “closed surfaces” enclosing a fixed volume, the sphere minimizes the area.

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 8/26

A mathematical formulation
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Cahn-Hoffman map
The Cahn-Hoffman map gives a “parametrization” of the Wulff shape.

Definition (Cahn-Hoffman, 1972)

For a function γ : S2 → R>0, define the Cahn-Hoffman map ξγ as follows:

ξγ(N) = Dγ + γ(N)N , N ∈ S2, (6)

whereDγ denotes the gradient on S2 atN .

Trivial example: if γ = 1, then ξγ(N) = N .

Lp-norm example: if γ(N1, N2, N3) = (Np
1 +Np

2 +Np
3 )

1/p, then

ξγ(N) = ξγ(N1, N2, N3) = (Np
1 +Np

2 +Np
3 )

(1−p)/p(Np−1
1 , Np−1

2 , Np−1
3 ). (7)

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 12/26

Examples

A trivial choice: γ = 1. Then Fγ = A, and Wγ becomes the sphere.

γ = |N1|+ |N2|+ |N3|:

Figure: Wulff shape

γ = 1:

Figure: Wulff shape

γ = (N8
1 +N8

2 +N8
3 )

1/8:

Figure: Wulff shape

→ The anisotropy naturally generates the “corners” (without connecting patches).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 11/26

Anisotropic energy

Definition (anisotropic energy)

For a function γ : S2 → R>0, the anisotropic energy Fγ for a surface r is defined by

Fγ(r) =

∫

M
γ(N) dA. (4)

Theorem (J. E. Taylor, 1978)

Among all “closed surfaces” enclosing a fixed volume, the minimizer of Fγ is given by
the Wulff shape:

Wγ = ∂
⋂

N∈S2

{x ∈ R3 | 〈x,N〉 ≤ γ(N)}. (5)

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 10/26
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Discrete anisotropic energy
For a triangular mesh M in R3, the anisotropic energy Fγ is given by

Fγ =
∑
T

γ(NT )A(T ), (9)

where A(T ) is the area of the triangle T .

Figure: A triangular mesh and the unit normal NT on a triangle T .

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 14/26

A discretization

CAMC condition

Proposition and Definition

The first variation of the anisotropic energy (fixed boundary):

d

dε

∣∣∣∣
ε=0

Fγ = −2

∫

M
Λ〈V ,N〉 dA. (8)

Here, Λ is called anisotropic mean curvature.
As in the “soap bubble” case, a stationary point of Fγ under volume-preserving
variations must have constant anisotropic mean curvature (CAMC).

M. Koiso and B. Palmer. Geometry and stability of surfaces with constant anisotropic mean curvature.

Indiana Univ. Math. J. 54 (2005), 1817–1852

→ a story analogous to CMC surfaces!

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 13/26
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Discrete CAMC surface

Definition
For a given constant Λ0, a triangular mesh is called CAMC-Λ0 if

∇pFγ + 2Λ0∇pV = 0, (11)

holds away from the boundary.

The CAMC-Λ0 condition is defined without defining the discrete anisotropic mean
curvature. The idea originates discrete CMC surfaces by Polthier-Rossman.

K. Polthier and W. Rossman, Discrete constant mean curvature surfaces and their index J. reine und

angew. Math. 549(549):47-77 (2002).
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First variation

Theorem
Then, the first variation formula can be written as follows:

d

dε

∣∣∣∣
ε=0

Fγ =
∑
p

〈∇pFγ , vp〉,

∇pFγ =
1

2

∑
T=(p,qj ,qj+1)∈star (p)

ξγ(N j)× (qj+1 − qj).

Note: if γ = 1, the privileged cotangent formula is retrieved.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57–60.

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Exper. Math. 2(1): 15–36 (1993).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 16/26

First variation
Let us consider a variation of vertices (vp: “variation vector”):

p(ε) = p+ εvp +O(ε2). (10)

Figure: A variation of vertices

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 15/26
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Technical part for shape generation

Example of shape generation: γ = (N 8
1 +N 8

2 +N 8
3 )

1/8

For each triangle, we can compute the Cahn-Hoffman map:

ξγ(N) = ξγ(N1, N2, N3) = (N8
1 +N8

2 +N8
3 )

−7/8(N7
1 , N

7
2 , N

7
3 ). (13)

The energy gradient:

∇pFγ =
1

2

∑
T=(p,qj ,qj+1)

ξγ(N j)× (qj+1 − qj). (14)

JSIAM Letters Vol. 14 (2022) pp.57–60 Yoshiki Jikumaru

Fig. 4. Discrete anisotropic minimal surfaces (numerically), left:
a = b = 1, middle: a = 2, b = 1, right: a = 1, b = 2.

Fig. 5. Anisotropic energy descent, right: the Wulff shape.

(ν81 +ν82 +ν83)
1/8. We used JavaView version 5.01 for the

implementation [6].

7. Second variation and stability

In the following, we assume the energy density γ is
of class C2. A variation is called admissible if the varia-
tion is volume-preserving and fixes the boundary. Then a
discrete CAMC surface Mh is said to be stable if the sec-
ond variation of the anisotropic energy is non-negative
for any admissible variation. The following lemma can
be proved similarly to [1, Lemma 5.1].

Lemma 12. For a discrete CAMC-Λ surface Mh, we
have

δ2Fγ :=
d2

dt2 |t=0
Fγ =

∑
p

⟨vp, δ(∇pFγ + 2Λ∇p Vol)⟩ ,

for any admissible variation.

We now decompose δ2Fγ into the sum of two terms

tv⃗Qγ v⃗ :=
∑
p

⟨vp, δ(∇pFγ)⟩,

tv⃗QV v⃗ :=
∑
p

⟨vp, δ(∇p Vol)⟩,

where tv⃗ = (tv1, . . . ,
tvn) ∈ R3n and n is the number of

interior vertices. Then Qγ and QV are 3n× 3n-matrices
and we have

δ2Fγ =
d2

dt2 |t=0
Fγ = tv⃗(Qγ + 2ΛQV )v⃗.

A direct calculation shows the following statement.

Proposition 13. If we consider the matrix Qγ as an
n×n grid with a 3×3 entry Qγ

p,q for each pair of interior
vertices p, q of Mh, then

(1) Qγ
p,q = 0 when the vertices p and q are not adjacent.

(2) For the diagonal entries Qγ
p,p we have

tvpQ
γ
p,pvp =

∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩,

(26)
where

P r,q
T vp := (I − νT · tνT )((r − q)× vp), (27)

and the summation is taken over all triangles T =
(p, q, r) in star (p).

(3) For adjacent vertices p and q we have

tvpQ
γ
p,qvq =

1

2

∑
T

1

2Area(T )
⟨dξγ(P r,q

T vp), P
p,r
T vq⟩

+ ⟨ξγ(νT ), vp × vq⟩, (28)

where the summation is taken over two triangles in
star (pq)

Remark 14. If we take γ ≡ 1, then the above results
reduce to the area functional case in [1, Proposition 5.1],
since a direct calculation shows the following relations:

⟨P r,q
T vp, P

r,q
T vp⟩ = tvp(|r − q|2νT · tνT )vp, (29)

⟨P r,q
T vp, P

p,r
T vq⟩ = tvp(−⟨p− r, q − r⟩νT · tνT )vq, (30)

⟨νT , vp × vq⟩ = tvp(e · t(Je)− Je · te)vq, (31)

where e = (p− q)/|p− q| and Je = νT × e.

Corollary 15. Let γ : S2 → R>0 be of class C2 and
convex, i.e., the differential dξγ is positive semi-definite.
If a discrete CAMC surface Mh has only one interior
vertex, then it is stable.

This result generalizes the stability result for discrete
CMC surfaces in [1, Corollary 5.1].

Proof The single interior vertex is denoted by p, and
star (p) = Mh. Then for any vector vp ∈ R3 we have

δ2Fγ =
∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩, (32)

and the convexity of γ proves the statement.
(QED)
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Basic properties

Theorem
For a closed CAMC-Λ0 surface, the Minkowski-type formula holds:

∑
T

(γ(NT ) + Λ0〈p,NT 〉)A(T ) = 0 ⇐⇒ Fγ + 3Λ0V = 0. (12)

Theorem
Let γ : S2 → R>0 be of class C2 and “convex”. If a discrete CAMC surface has only
one interior vertex, then the second variation is non-negative.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57–60.
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Energy density determined by the Gielis formula

For example, define r1 and r2 as follows:

r1 = ((N2
1 +N2

2 )
k1 +N2k1

3 )1/(2l1), r2 =

(
N2k2

1 +N2k2
2

(N2
1 +N2

2 )
k2

)1/(2l2)

. (18)

In this case, the user can specify 4 parameters.

Then for the energy density γ = r1r2, we have

ξ = Ar2X +
r1B√

N2
1 +N2

2

Y + r1r2N . (19)

Here, A andB are given on the next page:
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Energy density determined by the Gielis formula
We use the so-called Gielis’ (super)formula to generate various shapes in a
parameter-controllable setting.

March 2003] 335GIELIS—A GENERIC GEOMETRIC TRANSFORMATION

TABLE 1. Examples of various abstract shapes. Modification of parameters of Eq. 2 for positive integer rotational symmetries m from 0 to 8 for
R 5 1.

Corners can be sharpened or flattened and the sides can be
straight or bent (convex or concave) as shown in Table 1.
Subpolygons are inscribed in the circle (Table 1, columns 2

and 4) and rotated by p/m relative to superpolygons, circum-
scribing the circle (Table 1, columns 3 and 5). Interestingly,
when subpolygons transform into superpolygons (and vice
versa), corners transform into sides, and sides into corners,
because of the fixed points on the unit circle. Equal shapes are
generated that close after one rotation (0 2 2p) by selecting
zero or a positive integer for m. Exactly the same shape is
generated for every subsequent rotation by 2p.
This changes when further changes of Eq. 2 are applied,

such as when the ratio n2/n3 varies (Table 1, column 6) or when
the values of a and b differ (Table 1, column 7). Also, when
m is positive but not an integer, the shape generated does not
close after one rotation. If m is a rational number, the shape
will close after a number of rotations equal to the denominator
of m. The numerator of m determines the number of angles
e.g., for m 5 5/2 the shape will close with five angles after
only two rotations and will then have 5/2 or 2,5 angles in one
rotation (Fig. 2). This shape will then be repeated every 4p.
There will be no repeating pattern using irrational numbers.

The notion of dihedral symmetry as defined for regular poly-
gons (Weyl, 1952; denoted by Dn and defined for an integer
in Eqs. 2 and 3) can thus be extended to include cyclic Cn and

dihedral Dn symmetries for any real number in the plane with
m rational or irrational.
Because all these shapes are described by the same equation,

numerical calculations such as area and polar moment of in-
ertia Ip for this large class of forms can be done by integration
of one single equation. This permits calculations for optimi-
zation of area or moment of inertia. For example, when a circle
develops into a supercircle a moderate increase of area rapidly
leads to a large increase of Ip.
A very important consequence is that the area is constant

for a given shape, defined by the exponents n, irrespective of
the value of m. The areas of shapes shown in Table 1, columns
2, 4, and 5, e.g., are constant for m . 0. Because a symmetry
is generally defined in geometry as a transformation that
leaves a certain quantity (here, area) invariant, the symmetry
here is the value of m (for m . 0).

Examples of natural shapes—A wide range and remark-
able variety of forms throughout the different kingdoms can
be modeled with the Superformula (Gielis, 1999, 2001). In
Fig. 1, examples are shown of natural supershapes or super-
polygons, such as triangular shapes in the petiole of Nuphar
luteum and in marine diatoms like Pseudotriceratium, Sheshu-
kovia, Triceratium, and Trigonium (Fig. 1a). Other diatoms
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Figure: Various shapes generated by the formula, motivated by botany.

J. Gielis, A generic geometric transformation that unifies a large range of natural and abstract shapes, Amer. J.

Botany, 90(3), 333–338 (2003).
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General setting
In general, if the unit normal N is parametrized by

N = (N1, N2, N3) = (cosx cos y, cosx sin y, sinx), (15)

then the Cahn-Hoffman map for γ = γ(x, y) is given by

ξγ = γxX +
γy√

N2
1 +N2

2

Y + γN , (16)

where the unit tangent vectors X , Y are given

X =

(
− N1N3√

N2
1 +N2

2

,− N2N3√
N2

1 +N2
2

,
√

N2
1 +N2

2

)
, Y =

(
− N2√

N2
1 +N2

2

,
N1√

N2
1 +N2

2

, 0

)
.

(17)
→ if γ = γ(x, y) is given, we can compute ξγ .
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Demonstration video

Let’s take a look at a demonstration (link).
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Which direction do you want to create larger faces?

The direction in which the user wants to create more surfaces becomes “bigger”:

The surface is called the Frank shape.
• Convex direction: large faces (“preferable” directions).
• Concave direction: small faces (“unpreferable” directions).
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Energy density determined by the Gielis formula

Although the expressions are complicated, all quantities can be computed explicitly.

A =
k1
l1
((N2

1 +N2
2 )

k1 +N2k1
3 )1/(2l1)−1

(
N2k1−1

3

√
N2

1 +N2
2 −N3(N

2
1 +N2

2 )
k1− 1

2

)
,

B =
k2
l2

(
N2k2

1 +N2k2
2

(N2
1 +N2

2 )
k2

)1/(2l2)−1(
N1N

2k2−1
2 −N2k2−1

1 N2

(N2
1 +N2

2 )
k2

)
,

r1 = ((N2
1 +N2

2 )
k1 +N2k1

3 )1/(2l1), r2 =

(
N2k2

1 +N2k2
2

(N2
1 +N2

2 )
k2

)1/(2l2)

.

X =

(
− N1N3√

N2
1 +N2

2

,− N2N3√
N2

1 +N2
2

,
√

N2
1 +N2

2

)
, Y =

(
− N2√

N2
1 +N2

2

,
N1√

N2
1 +N2

2

, 0

)
.
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Summary

Summary

• Shape generation with “corners” without connecting surface patches.
• The user specifies the direction in which they want to create more faces by

changing the parameters (“ideal lighting”).
• The idea came from the geometry of anisotropic energy, which originates the

crystal growth model.

JSIAM Letters Vol. 14 (2022) pp.57–60 Yoshiki Jikumaru

Fig. 4. Discrete anisotropic minimal surfaces (numerically), left:

a = b = 1, middle: a = 2, b = 1, right: a = 1, b = 2.

Fig. 5. Anisotropic energy descent, right: the Wulff shape.

(ν81 +ν82 +ν83)
1/8. We used JavaView version 5.01 for the

implementation [6].

7. Second variation and stability

In the following, we assume the energy density γ is
of class C2. A variation is called admissible if the varia-
tion is volume-preserving and fixes the boundary. Then a
discrete CAMC surface Mh is said to be stable if the sec-
ond variation of the anisotropic energy is non-negative
for any admissible variation. The following lemma can
be proved similarly to [1, Lemma 5.1].

Lemma 12. For a discrete CAMC-Λ surface Mh, we
have

δ2Fγ :=
d2

dt2 |t=0
Fγ =

∑
p

⟨vp, δ(∇pFγ + 2Λ∇p Vol)⟩ ,

for any admissible variation.

We now decompose δ2Fγ into the sum of two terms

tv⃗Qγ v⃗ :=
∑
p

⟨vp, δ(∇pFγ)⟩,

tv⃗QV v⃗ :=
∑
p

⟨vp, δ(∇p Vol)⟩,

where tv⃗ = (tv1, . . . ,
tvn) ∈ R3n and n is the number of

interior vertices. Then Qγ and QV are 3n× 3n-matrices
and we have

δ2Fγ =
d2

dt2 |t=0
Fγ = tv⃗(Qγ + 2ΛQV )v⃗.

A direct calculation shows the following statement.

Proposition 13. If we consider the matrix Qγ as an
n×n grid with a 3×3 entry Qγ

p,q for each pair of interior
vertices p, q of Mh, then

(1) Qγ
p,q = 0 when the vertices p and q are not adjacent.

(2) For the diagonal entries Qγ
p,p we have

tvpQ
γ
p,pvp =

∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩,

(26)
where

P r,q
T vp := (I − νT · tνT )((r − q)× vp), (27)

and the summation is taken over all triangles T =
(p, q, r) in star (p).

(3) For adjacent vertices p and q we have

tvpQ
γ
p,qvq =

1

2

∑
T

1

2Area(T )
⟨dξγ(P r,q

T vp), P
p,r
T vq⟩

+ ⟨ξγ(νT ), vp × vq⟩, (28)

where the summation is taken over two triangles in
star (pq)

Remark 14. If we take γ ≡ 1, then the above results
reduce to the area functional case in [1, Proposition 5.1],
since a direct calculation shows the following relations:

⟨P r,q
T vp, P

r,q
T vp⟩ = tvp(|r − q|2νT · tνT )vp, (29)

⟨P r,q
T vp, P

p,r
T vq⟩ = tvp(−⟨p− r, q − r⟩νT · tνT )vq, (30)

⟨νT , vp × vq⟩ = tvp(e · t(Je)− Je · te)vq, (31)

where e = (p− q)/|p− q| and Je = νT × e.

Corollary 15. Let γ : S2 → R>0 be of class C2 and
convex, i.e., the differential dξγ is positive semi-definite.
If a discrete CAMC surface Mh has only one interior
vertex, then it is stable.

This result generalizes the stability result for discrete
CMC surfaces in [1, Corollary 5.1].

Proof The single interior vertex is denoted by p, and
star (p) = Mh. Then for any vector vp ∈ R3 we have

δ2Fγ =
∑
T

1

4Area(T )
⟨dξγ(P r,q

T vp), P
r,q
T vp⟩, (32)

and the convexity of γ proves the statement.
(QED)
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Geometric Shape Generation by Singular Generalized Miura-ori with
Canonical and Non-canonical Arrangements

Hiroyuki Tagawa
Department of Architecture, Mukogawa Women’s University, Japan

Abstract

Generalized Miura-ori with the canonical arrangement, including well-known Miura-ori as well as proposed
arc- and spiral-shaped Miura-ori [1], can be folded flat without causing self-intersections. A total of 26 patterns
of singular generalized Miura-ori, which is defined as the generalized Miura-ori that has symmetry and regu-
larity in included angles to enable rigid flat-foldability with linked one degree-of-freedom motion, is counted
for the canonical arrangement as follows: 11 patterns for K1 = K4, K2 = K3, 11 patterns for K1 = K2, K3 = K4,
and 4 patterns for K1 = K2 = K3 = K4 [2]. Among 26 patterns, the arc- and spiral-shaped Miura-ori, which are
classified as K1 = K2, K3 = K4, are the only patterns in which all the fold lines are not parallel to each other.
Non-canonical arrangement is obtained by exchanging the included angles at the diagonal positions of the Units
2 and 3 in the canonical arrangement and accordingly changing the mountain and valley folding directions as
shown in Fig. 1. These exhibit 3D cylindrical or vault shape while satisfying the linked folding conditions.
A total of 17 patterns of singular generalized Miura-ori is counted for the above non-canonical arrangement
as follows: 11 patterns for K1 = K4, K′2 = K′3, 2 patterns for K1 = K′2, K′3 = K4, and 4 patterns for K1 =

K′2 = K′3 = K4. Huffman tessellation and the dual of Miura-ori (Hourglass mode) are classified as K1 = K′2 =
K′3 = K4. Cylindrical closed shape is obtained by the optimization on included angles of the quadrilaterals and
deployment angle as shown in Fig. 2.

Figure 3: *
Fig. 1 Dual conversions Fig. 2 Cylindrical closed shape obtained by optimization
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COE Lecture Note Vol.45 金山　　寛 Joint Research Workshop of Institute of Mathematics for Industry 
(IMI), Kyushu University 
“Propagation of Ultra-large-scale Computation by the Domain-
decomposition-method for Industrial Problems (PUCDIP 2012)”　
121pages

February 19, 2013

COE Lecture Note Vol.46 西井　龍映
栄　伸一郎
岡田　勘三
落合　啓之
小磯　深幸
斎藤　新悟
白井　朋之

科学・技術の研究課題への数学アプローチ
―数学モデリングの基礎と展開―　325pages

February 28, 2013

COE Lecture Note Vol.47 SOO TECK LEE BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE 
COMPLEX CLASSICAL GROUPS　40pages

March 8, 2013

COE Lecture Note Vol.48 溝口　佳寛
脇　　隼人
平坂　　貢
谷口　哲至
島袋　　修

博多ワークショップ「組み合わせとその応用」　124pages March 28, 2013



シリーズ既刊

Issue Author／Editor Title Published

COE Lecture Note Vol.49 照井　　章
小原　功任
濱田　龍義
横山　俊一
穴井　宏和
横田　博史

マス・フォア・インダストリ研究所　共同利用研究集会 II
数式処理研究と産学連携の新たな発展　137pages

August 9, 2013

MI Lecture Note Vol.50 Ken Anjyo
Hiroyuki Ochiai
Yoshinori Dobashi
Yoshihiro Mizoguchi
Shizuo Kaji

Symposium MEIS2013:
Mathematical Progress in Expressive Image Synthesis　154pages

October 21, 2013

MI Lecture Note Vol.51 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2013
“The Impact of Applications on Mathematics”　97pages

October 30, 2013

MI Lecture Note Vol.52 佐伯　　修
岡田　勘三
髙木　　剛
若山　正人
山本　昌宏

Study  Group  Workshop  2013 Abstract,  Lecture  &  Report　142pages November 15, 2013

MI Lecture Note Vol.53 四方　義啓
櫻井　幸一
安田　貴徳
Xavier Dahan

平成25年度　九州大学マス・フォア・インダストリ研究所　
共同利用研究集会　安全・安心社会基盤構築のための代数構造
～サイバー社会の信頼性確保のための数理学～　158pages

December 26, 2013

MI Lecture Note Vol.54 Takashi Takiguchi
Hiroshi Fujiwara

Inverse problems for practice, the present and the future　93pages January 30, 2014 

MI Lecture Note Vol.55 栄　伸一郎
溝口　佳寛
脇　　隼人
渋田　敬史

Study Group Workshop 2013 数学協働プログラム Lecture & Report
98pages

February 10, 2014

MI Lecture Note Vol.56 Yoshihiro Mizoguchi
Hayato Waki
Takafumi Shibuta
Tetsuji Taniguchi
Osamu Shimabukuro
Makoto Tagami
Hirotake Kurihara
Shuya Chiba

Hakata Workshop 2014
~ Discrete Mathematics and its Applications ~　141pages

March 28, 2014

MI Lecture Note Vol.57 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2014:
“Applications + Practical Conceptualization + Mathematics = fruitful 
Innovation”　93pages

October 23, 2014

MI Lecture Note Vol.58 安生健一
落合啓之

Symposium MEIS2014:
Mathematical Progress in Expressive Image Synthesis　135pages

November 12, 2014
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MI Lecture Note Vol.59 西井　龍映
岡田　勘三
梶原　健司
髙木　　剛
若山　正人
脇　　隼人
山本　昌宏

Study  Group  Workshop  2014  数学協働プログラム 
Abstract, Lecture  &  Report　196pages

November 14, 2014

MI Lecture Note Vol.60 西浦　　博 平成26年度九州大学 IMI共同利用研究・研究集会（I）
感染症数理モデルの実用化と産業及び政策での活用のための新
たな展開　120pages

November 28, 2014

MI Lecture Note Vol.61 溝口　佳寛
Jacques Garrigue
萩原　　学
Reynald Affeldt

研究集会　
高信頼な理論と実装のための定理証明および定理証明器
Theorem proving and provers for reliable theory and implementations 
(TPP2014)　138pages

February 26, 2015

MI Lecture Note Vol.62 白井　朋之 Workshop on “β-transformation and related topics”　59pages March 10, 2015

MI Lecture Note Vol.63 白井　朋之 Workshop on “Probabilistic models with determinantal structure”　
107pages

August 20, 2015

MI Lecture Note Vol.64 落合　啓之
土橋　宜典

Symposium MEIS2015:
Mathematical Progress in Expressive Image Synthesis　124pages

September 18, 2015

MI Lecture Note Vol.65 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2015
“The Role and Importance of Mathematics in Innovation”　74pages

October 23, 2015

MI Lecture Note Vol.66 岡田　勘三
藤澤　克己
白井　朋之
若山　正人
脇　　隼人
Philip Broadbridge
山本　昌宏

Study  Group  Workshop  2015 Abstract, Lecture  &  Report　
156pages November 5, 2015

MI Lecture Note Vol.67 Institute of Mathematics 
for Industry, Kyushu 
University

IMI-La Trobe Joint Conference
“Mathematics for Materials Science and Processing”
66pages

February 5, 2016

MI Lecture Note Vol.68 古庄　英和
小谷　久寿
新甫　洋史

結び目と Grothendieck-Teichmüller群
116pages

February 22, 2016

MI Lecture Note Vol.69 土橋　宜典
鍛治　静雄

Symposium MEIS2016:
Mathematical Progress in Expressive Image Synthesis　82pages

October 24, 2016

MI Lecture Note Vol.70 Institute of Mathematics 
for Industry,  
Kyushu University

Forum “Math-for-Industry” 2016
“Agriculture as a metaphor for creativity in all human endeavors”　
98pages

November 2, 2016

MI Lecture Note Vol.71 小磯　深幸
二宮　嘉行
山本　昌宏

Study Group Workshop 2016 Abstract, Lecture & Report　143pages November 21, 2016
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MI Lecture Note Vol.72 新井　朝雄
小嶋　　泉
廣島　文生

Mathematical quantum field theory and related topics　133pages January 27, 2017

MI Lecture Note Vol.73 穴田　啓晃
Kirill Morozov
須賀　祐治
奥村　伸也
櫻井　幸一

Secret Sharing for Dependability, Usability and Security of Network 
Storage and Its Mathematical Modeling　211pages

March 15, 2017

MI Lecture Note Vol.74 QUISPEL, G. Reinout W.
BADER, Philipp
MCLAREN, David I.
TAGAMI, Daisuke

IMI-La Trobe Joint Conference 
Geometric Numerical Integration and its Applications　71pages

March 31, 2017

MI Lecture Note Vol.75 手塚　　集
田上　大助
山本　昌宏

Study Group Workshop 2017 Abstract, Lecture & Report　118pages October 20, 2017

MI Lecture Note Vol.76 宇田川誠一 Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論
―Tzitzéica方程式の楕円関数解を出発点として―　68pages

August 4, 2017

MI Lecture Note Vol.77 松谷　茂樹
佐伯　　修
中川　淳一
田上　大助
上坂　正晃
Pierluigi Cesana
濵田　裕康

平成29年度　九州大学マス・フォア・インダストリ研究所
共同利用研究集会（I）　
結晶の界面，転位，構造の数理　148pages

December 20, 2017

MI Lecture Note Vol.78 瀧澤　重志
小林　和博
佐藤憲一郎
斎藤　　努
清水　正明
間瀬　正啓
藤澤　克樹
神山　直之

平成29年度　九州大学マス・フォア・インダストリ研究所
プロジェクト研究　研究集会（I）
防災・避難計画の数理モデルの高度化と社会実装へ向けて　
136pages

February 26, 2018

MI Lecture Note Vol.79 神山　直之
畔上　秀幸

平成29年度　AIMaPチュートリアル
最適化理論の基礎と応用　96pages

February 28, 2018

MI Lecture Note Vol.80 Kirill Morozov
Hiroaki Anada
Yuji Suga

IMI Workshop of the Joint Research Projects 
Cryptographic Technologies for Securing Network Storage
and Their Mathematical Modeling　116pages

March 30, 2018

MI Lecture Note Vol.81 Tsuyoshi Takagi
Masato Wakayama
Keisuke Tanaka
Noboru Kunihiro
Kazufumi Kimoto
Yasuhiko Ikematsu

IMI Workshop of the Joint Research Projects
International Symposium on Mathematics, Quantum Theory, 
and Cryptography　246pages

September 25, 2019

MI Lecture Note Vol.82 池森　俊文 令和2年度　AIMaPチュートリアル
新型コロナウイルス感染症にかかわる諸問題の数理　
145pages

March 22, 2021
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MI Lecture Note Vol.83 早川健太郎
軸丸　芳揮
横須賀洋平
可香谷　隆
林　　和希
堺　　雄亮

シェル理論・膜理論への微分幾何学からのアプローチと 
その建築曲面設計への応用　49pages

July 28, 2021

MI Lecture Note Vol.84 Taketoshi Kawabe
Yoshihiro Mizoguchi
Junichi Kako
Masakazu Mukai
Yuji Yasui

SICE-JSAE-AIMaP Tutorial
Advanced Automotive Control and Mathematics　110pages

December 27, 2021

MI Lecture Note Vol.85 Hiroaki Anada
Yasuhiko Ikematsu
Koji Nuida
Satsuya Ohata
Yuntao Wang

IMI Workshop of the Joint Usage Research Projects
Exploring Mathematical and Practical Principles of Secure Computation 
and Secret Sharing　114pages

February 9, 2022

MI Lecture Note Vol.86 濱田　直希
穴井　宏和
梅田　裕平
千葉　一永
佐藤　寛之
能島　裕介
加葉田雄太朗
一木　俊助
早野　健太
佐伯　　修

2020年度採択分　九州大学マス・フォア・インダストリ研究所
共同利用研究集会
進化計算の数理　135pages

February 22, 2022

MI Lecture Note Vol.87 Osamu Saeki, 
Ho Tu Bao, 
Shizuo Kaji, 
Kenji Kajiwara, 
Nguyen Ha Nam, 
Ta Hai Tung,
Melanie Roberts, 
Masato Wakayama, 
Le Minh Ha, 
Philip Broadbridge

Proceedings of Forum “Math-for-Industry” 2021
-Mathematics for Digital Economy-　122pages

March 28, 2022

MI Lecture Note Vol.88 Daniel PACKWOOD
Pierluigi CESANA, 
Shigenori FUJIKAWA, 
Yasuhide FUKUMOTO,
Petros SOFRONIS, 
Alex STAYKOV

Perspectives on Artificial Intelligence and Machine Learning in 
Materials Science, February 4-6, 2022　74pages

November 8, 2022
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MI Lecture Note Vol.89 松谷　茂樹
落合　啓之
井上　和俊
小磯　深幸
佐伯　　修
白井　朋之
垂水　竜一
内藤　久資
中川　淳一
濵田　裕康
松江　　要
加葉田雄太朗

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
材料科学における幾何と代数 III 　356pages

December 7, 2022

MI Lecture Note Vol.90 中山　尚子
谷川　拓司
品野　勇治
近藤　正章
石原　　亨
鍛冶　静雄
藤澤　克樹

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
データ格付けサービス実現のための数理基盤の構築　58pages

December 12, 2022

MI Lecture Note Vol.91 Katsuki Fujisawa
Shizuo Kaji
Toru Ishihara
Masaaki Kondo
Yuji Shinano
Takuji Tanigawa
Naoko Nakayama

IMI Workshop of the Joint Usage Research Projects
Construction of Mathematical Basis for Realizing Data Rating Service
610pages

December 27, 2022

MI Lecture Note Vol.92 丹田　　聡
三宮　　俊
廣島　文生

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
時間・量子測定・準古典近似の理論と実験
〜古典論と量子論の境界〜　150pages

Janualy 6, 2023

MI Lecture Note Vol.93 Philip Broadbridge
Luke Bennetts
Melanie Roberts
Kenji Kajiwara

Proceedings of Forum “Math-for-Industry” 2022
-Mathematics of Public Health and Sustainability-　170pages

June 19, 2023

MI Lecture Note Vol.94 國廣　　昇
池松　泰彦
伊豆　哲也
穴田　啓晃
縫田　光司

2023年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
現代暗号に対する安全性解析・攻撃の数理　260pages

Janualy 11, 2024

MI Lecture Note Vol.96 澤田　茉伊 2023年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
デジタル化時代に求められる斜面防災の思考法　70pages

March 18, 2024
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MI Lecture Note Vol.97 Shariffah Suhaila Syed Jamaludin
Zaiton Mat Isa
Nur Arina Bazilah Aziz 
Taufiq Khairi Ahmad Khairuddin
Shaymaa M.H.Darwish 
Ahmad Razin Zainal Abidin 
Norhaiza Ahmad 
Zainal Abdul Aziz
Hang See Pheng
Mohd Ali Khameini Ahmad

International Project Research-Workshop (I)
Proceedings of 4th Malaysia Mathematics in Industry Study Group 
(MMISG2023)　172pages

March 28, 2024

MI Lecture Note Vol.98 中澤　　嵩 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共
同利用研究集会
自動車性能の飛躍的向上を目指す Data-Driven 設計　92pages

January 30, 2025

MI Lecture Note Vol.99 Jacques Garrigue 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共
同利用研究集会
コンピュータによる定理証明支援とその応用　308pages

March 17, 2025

MI Lecture Note Vol.100 Yutaka Jitsumatsu
Masayoshi Ohashi
Akio Hasegawa
Katsutoshi Shinohara
Shintaro Mori

IMI Workshop of the Joint Usage Research Projects
Mathematics for Innovation in Information and Communication 
Technology
274pages

March 19, 2025
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