w Math-for-industry
IMI Workshop of the Joint Usage Research Projects

Evolving Design and Discrete Differential Geometry:
towards Mathematics Aided Geometric Design

Editors: Makoto Ohsaki and Yoshiki Jikumaru

NNKFERYR-TA7 - A V5 ANUHRFFR

a
@

|

MI Lecture Note Vol.101 : Kyushu University



IMI Workshop of the Joint Usage Research Projects

Evolving Design and Discrete Differential Geometry:
towards Mathematics Aided Geometric Design

Editors Makoto Ohsaki and Yoshiki Jikumaru



About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture
Notes, which were published for the 21st COE Program “Development of Dynamic
Mathematics with High Functionality,” sponsored by Japan’s Ministry of Education,
Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lec-
ture Note Series has published the notes of lectures organized under the following two
programs: “Training Program for Ph.D. and New Master’s Degree in Mathematics as
Required by Industry,” adopted as a Support Program for Improving Graduate School
Education by MEXT from 2007 to 2009; and “Education-and-Research Hub for
Mathematics-for-Industry,” adopted as a Global COE Program by MEXT from 2008 to
2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI)
in April 2011 and the authorization of IMI’s Joint Research Center for Advanced and
Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in
April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and pro-
ceedings by worldwide researchers of MI to contribute to the development of MI.

October 2022
Kenji Kajiwara
Director, Institute of Mathematics for Industry

Evolving Design and Discrete Differential Geometry :
towards Mathematics Aided Geometric Design

MI Lecture Note Vol.101, Institute of Mathematics for Industry, Kyushu University
ISSN 2188-1200

Date of issue: October 1st, 2025

Editors: Makoto Ohsaki and Yoshiki Jikumaru

Publisher:

Institute of Mathematics for Industry, Kyushu University

Graduate School of Mathematics, Kyushu University

Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN

Tel +81-(0)92-802-4402, Fax +81-(0)92-802-4405

URL https://www.imi.kyushu-u.ac.jp/



Preface

The International Workshop on “Evolving Design and Discrete Differential Geometry - Towards Math-
ematics Aided Geometric Design” was convened during March 10-13, 2025, in Fukuoka, Japan, under the
joint support by Institute of Mathematics for Industry (International Project Research: Workshop (I)) and JST
CREST (JPMJCR1911).

Recently, we have been experiencing rapid developments in curved surface design in various fields of design
and engineering including architectural design, industrial design, mechanical design, computer graphics, and
data processing. In other words, we are facing a kind of paradigm shift in the design and manufacturing process;
for example, some of the traditional subtractive manufacturing has been replaced by additive manufacturing.
With the development of design tools, demand for designing complex surfaces has increased. Accordingly,
design methods for manufacturing and constructing complex continuous/discrete surfaces are becoming impor-
tant. In this situation, we have growing demand for coordination among the researchers and practitioners in
artistic design, structural design, industrial design, as well as those in fabrication and construction.

Discrete differential geometry is an important field of mathematics with applications in curved surface de-
sign. The research group of JST CREST with the same title as this workshop has been working on the discrete
forms of variational principle and non-Euclidian geometry, and has proposed various methods of designing
discrete surfaces with properties such as foldable/retractable surfaces, constant mean curvature surfaces, poly-
hedral surfaces by rigid origami, aesthetically pleasing surfaces, etc. In order to provide the results of these
studies in a publicly accessible form, a prototype of a platform has been developed for performing the design,
analysis, and fabrication/construction in an interactive, cyclic, and bi-directional manner on the same surface
model.

This meeting provided a forum to exchange information between researchers and practitioners on the theo-
ries and techniques underlying the development of design platforms that are based on mathematics, information
science, architectural design, and engineering. To enable the design of a structure that has aesthetic value and
ensure its safety, 66 researchers and practitioners including nine invited prominent speakers in the related fields
discussed during a four day period of meeting to identify common issues through the presentations by experts
from all over the world as well as those in the CREST project. The mathematical formulations for new shape
design methods based on discrete differential geometry and the variational principle will open a new direction
for curved surface design. This meeting has provided an important opportunity to reintegrate knowledge on the
geometry of curves and surfaces using mathematics as a hub and sublimate it into a new field of discrete differ-
ential geometry for shape design, and to revive Japanese manufacturing, which produces precise and beautiful
products but suffers from their high costs.

Chief Editor: Makoto Ohsaki (Kyoto University)
April 2025
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Program

March 10th (Mon.), 2025
9:00-9:30 Opening: Kenji Kajiwara

9:30-10:15 Keynote 1:Olivier Baverel
Make complex structures affordable
Chair: Kazuki Hayashi

10:45-11:30 Keynote 2:Robin Oval
An algebra for topology finding of surface patterns for structural design driven by similarity
Chair: Kazuki Hayashi

11:30-12:00 Kyoto Group 1

Kazuki Hayashi

Deployable auxetic surface structures: From optimized shape to detail design implementation
Chair: Yusuke Sakai

12:00-12:30 Kyoto Group 2

Kentaro Hayakawa

Second-order infinitesimal mechanism for bifurcation analysis and folding path approximation
of rigid origami

Chair: Yusuke Sakai

13:45-14:30 Keynote 3:Bert Jiittler
Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis
Chair: Takashi Maekawa

14:30-15:00 Kyoto Group 3
Jingyao Zhang
Shape generation of free-form grid shells with polygonal panels

Chair: Kentaro Hayakawa

15:00-15:30 Kyoto Group 4
Yusuke Sakai
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Tessellation as a design principle for mechanical metamaterial
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Takashi Maekawa and Felix Scholz
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Takashi Maekawa and Felix Scholz
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Isogeometric Analysis of Membrane and Cable Structures: A Design of Umbrella Zero-Stress
State

Chair: Kenjiro T. Miura
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Takuya Terahara, Kenji Takizawa and Tayfun E. Tezduyar

Continuity and Smoothness in T-Splines Representations of Structures with Different
Parametric Dimensions

Chair: Kenjiro T. Miura

March 11th (Tue.),2025

9:30-10:00  Kyushu Group 1

Kenji Kajiwara

Generation of Aesthetic Shapes by Integrable Klein Geometry
Chair: Miyuki Koiso

10:00-10:30 Kyushu Group 2
Yoshiki Jikumaru

Geometry of Michell-Prager type structures and hanging membranes



Chair: Miyuki Koiso

10:45-11:30 Keynote 4: Yuri Suris
Discretization of quadrics and of elliptic coordinates
Chair: Yoshiki Jikumaru

11:30-12:00 Kyoto Group 5

Yoshihiro Kanno

Surface generation for confidence-based data-driven computing in elasticity with application
to reliability-based truss topology optimization

Chair: Jingyao Zhang

12:00-12:30 Kyoto Group 6
Makoto Ohsaki
Optimization methods for continuum and latticed shells consisting of developable parts

Chair: Jingyao Zhang

14:00-14:30 Kyoto and Kyushu Group
Kentaro Hayakawa

Introduction to the software platform
Chair: Makoto Ohsaki

14:30-15:15 Keynote 5: Alexander I. Bobenko
Discrete conformality and beyond. Where geometry meets computer graphics and
mathematical physics (Online)

Chair: Kenji Kajiwara

16:00-16:30 Tsukuba Group 1

Jun Mitani

Interactive Design and Efficient Simulation of Developable Surfaces with Curved Folds
Chair: Makoto Ohsaki

16:30-17:00 Tsukuba Group 2
Kosuke Horiuchi and Jun Mitani

Modeling of Discrete Developable Surfaces with a Break Using Trace Diagrams on the
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Gaussian Sphere
Chair: Makoto Ohsaki

17:00-17:30 Tsukuba Group 3

Aida Safary and Jun Mitani

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and Prototype
Architectural Design

Chair: Makoto Ohsaki

17:30-18:00 Tsukuba Group 4

Higa Miyashiro Pamela, Yiyang Jia and Jun Mitani
Hoberman’s Scissor Mechanism and Digital Fabrication
Chair: Makoto Ohsaki

March 12th (Wed.),2025

9:30-10:15 Keynote 6 Toby Mitchell

Surface Rationalization and Optimization in Structural Engineering Practice
Chair: Yohei Yokosuka

10:45-11:30 Keynote 7 Masaaki Miki
Variable Projection (VarPro) Method and Form-finding of Tension-compression Mixed Shells
Chair: Yohei Yokosuka

11:30-11:50 Kagoshima Group 1

Yohei Yokosuka

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/
Fabricability

Chair: Yoshiki Jikumaru

11:50-12:10 Kagoshima Group 2
Yohei Yokosuka
Lie Spherical Geometry and Design of Curved Surface Structures

Chair: Yoshiki Jikumaru

12:10-12:30 Kagoshima Group 3
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Yohei Yokosuka

Form-finding of Composite Tensile Structures by Finite Element Technique based on Nodal
Coordinate Assumption

Chair: Yoshiki Jikumaru

14:00-14:30 Kyoto Group 7

Kazuki Hayashi

Piecewise constant mean curvature surfaces

Kentaro Hayakawa

From generation of rigid origami for approximating a curved surface
Chair: Makoto Ohsaki

14:30-15:00 Kyushu Group 4

Miyuki Koiso

Pillow boxes as developable surfaces with curved foldings
Chair: Makoto Ohsaki

15:00-15:30 Kagoshima Group 4

Yohei Yokosuka

Temporary structures with curved folding
Chair: Makoto Ohsaki

16:00-16:30 Poster Short Talks
16:30-18:00 Poster Session
Presenter # 1: Vishesh Bhat (Okinawa Institute of Science and Technology)

Shaping developables — a dual design recipe

Presenter # 2: Kaito Satake (Kanazawa University)

Title: On isothermic coordinate systems for CMC surfaces in the Lorentz-Minkowski 3-space
Presenter # 3: Sanako Suzuki (Mukogawa Women’s University)

Title: Geometric Shape Generation by Singular Generalized Miura-ori with Canonical and

Non-canonical Arrangements
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18:30- Banquet

March 13th (Thurs.),2025

9:30-10:15 Keynote8 Rudrusamy U. Gobithaasan

Local & global property quantification with persistent homology
Chair: Kenjiro T. Miura

10:45-11:30 Keynote 9 Md Yushalify Misro

Advancing precision and smoothness of shape preserving with quintic trigonometric Bézier
curves

Chair: Kenjiro T. Miura

11:30-12:00 Shizuoka Group 1
Kenjiro T. Miura
Extension of k-curve

Chair: Takuya Terahara
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Chair: Shun Kumagai
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Make complex structures affordable

Olivier Baverel
Ecole Nationale des Ponts et Chaussées / ENSAG

Abstract

The presentation focuses on research proposals that make complex structures more affordable constructions. By
reinforcing the links between mechanics of materials, structural engineering, applied mathematics and life cycle
analysis, new paths may be explored and building innovations proposed. First a focus is made on the life cycle
analysis showing that CO2 is not the only parameter to tackle environmental problems. Secondly proposals
based on a rigorous mathematical management of shapes and geometry to rationalize complex situations in a
fully integrative way, including cladding and connections will be explained. These knowledges may help to
find ways to reuse manufactured goods to limit the environmental impact of construction, many case studied
will be shown. Finally, new digital and technological tools such as robot or 3D printing allow to revisit ancient
techniques and to generate innovative solutions.




Make complex structures affordable

Prof. Olivier BAVEREL
FIStructE
Prof. Ecole Nationale des Ponts et Chaussées
Prof. ENS Architecture Grenoble
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20 YEARS OF RESEARCH ON ELASTIC GRIDSHELLS

2016 Hybrid Structural Skin 2021




Construction with straight laths

Geodesic gridshells

C. Haskell,

Geodesic gridshells

Voss Surfaces

N Montagne , PhD Thesis SXL LAB EPFL/ NAVIER ENPC
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Mathematically Computationally

A Voss surface is a surface on which | A discrete Voss surface in the family
there exists two families of geodesic | of quadrilateral meshes is formed by
curves forming a conjugate network. discrete geodesics and planar facets.

N Montagne , PhD Thesis SXL LAB EPFL/ NAVIER ENPC

Voss Surface Gauss Map
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On a Cheybysev net the integral of
curvature cannot exceed Pi

N Montagne , PhD Thesis SXL LAB EPFL/ NAVIER ENPC

Generation of Voss surface

A
‘\\‘“‘
gy
: ‘./L.v. .
Ly
Ierstrve conserpction
‘ Progeciom of nade mwmah x fram eege drectiont
on el sphare
.’ —
. =
/A <
\
3 =
Generstion of
Comperarion of primmal ot

N Montagne , PhD Thesis SXL LAB EPFL/ NAVIER ENPC

Generation of Voss surface

Pgure 11 Vo pets croaind frove twe dowedary cotven. Lefl: Condesin gradihell papived by the gridiiell of Dovnland
Rght Comdewy gradibel camogry which cav be repeeted in bet® et

N Montagne , PhD Thesis SXL LAB EPFL/ NAVIER ENPC




Isometric Transformation of Voss surface
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Geometry of a Pavillion

Ytz 4
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Tchebidesic Pavillion

C. Haskell

Need for a structural innovation

Asymptotic gridshells
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Asymptotic gridshells

.

* Laths laid along asymptotic
curves

* Zero normal curvature

* Laths laid ‘perpendicular’
to the surface

Asymptotic network on a minimal surface— Arch. Eike SCHLING

Can we get the best
from both worlds?

Comparison of morphological approaches

ny. 050" n §- g O45°
» ~—
Geodesic gridshell Asymptotic gridshell Pseudo-geodesic gridshell
(ours)
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Comparison of morphological approaches

Geodesic gridshell f

Pseudo-geodesic gridshell
(ours)

Asymptotic gridshell

R Mesnil,

Congruent Connector Design

* Axis of connector aligned with 4 -
surface normal s v

* Constant angle triangular plates \f
~

* Free degree of freedom in
rotation L N

* Patent pending (Mesnil& Baverel 2021)

R Mesnil, O. Baverel

Implementation

Mesnil, Romain; Muto, Takara; Walia; Krittika; Douthe, Cyril; Baverel, Olivier. « Design and construction
of a pseudo-geodesic gridshell." Advances in Architectural Geometry 2023.
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Grid and shape generation

Parametric shape model (with NURBS) Shooting method from a guide curve (blue). For
simplicity, all pseudo-geodesic are shot with the same

angley

Fabrication
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Maxwell’s theorem and the Airy stress function

Maxwell’s theorem : A planar mesh has a self-stress state if and only if it is the projection of a plane faced
polyhedron.

Graph of Airy
stress function

Face slopes
Form Duality Force
diagram diagram
R. BOUTILLIER - Load-finding: another look at Maxwell’s

theorem and gridshell form-finding integrating construction 41
C aints

Starting from a plane faced polyhedron:
Marionette method

— g
P
(E A
-
oiXs )]
r.p)* -
.
(3. ¥1)
Planar face computation with the Height propagation principle to obtain the elevation of every
Marionette method [1] node and a three dimensional mesh with planar faces

[1] R. Mesnil et al. “Marionette Meshes: Modelling free form architecture with planar facets”. In: \ntematlona\ Journal of Space Structures 32.3 (2017)
BOUTILLIER - Load-finding: another look at Maxwe
rhrnr m and gridshell form-finding integrating construction 42

constraints

A planar panelled shape and its associated
funicular loading

R. BOUTILLIER - Load-finding: another look at Maxw eorem and gridshell form-finding integrating 43
construction constraint:

15




Equilibrium of a node and propagation

- - - - -
.
. . . . e
-
i \ . . - . -
5
-
. + - - &
Equilibrium of forces in a Closure of force polygon in Force propagation principle to obtain the forces in all the bars, and
vertically loaded node space and in projection therefore the dual diagram.

Load Finding

Optimisation

Variation of forces only

16




Optimisation

Variation of forces and heights

R. BOUTILLIER - Load-finding: another look at Maxwell’s
theorem and gridshell form-finding integrating construction 47
constraints

Funicular deviation as a structural design tool
/\/5%\3&

Three-dimensional mesh and the associated vertical
loading obtained using the method
R. BOUTILLIER - Load-finding: another look at Maxwell’s

theorem and gridshell form-finding integrating construction a8
constraints

Structural innovation

MECHANICS

GEOMETRY TECHNOLOGY
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Building with planar curvature lines

Orthogonal cirches on the unit sphere

X Tellier, PhD Thesis

2 Cwrve moemuls s ¥ Commtrmten of orthgons| & Nl e trven
posts of the wodt sphure cncien Brough potan N poees

Higees 117 - Ohvuwriew of e propurd sl Canis map showw sn fhe 1ighs

X Tellier, PhD Thesis

X Tellier, PhD Thesis
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CMC Surfaces

X Tellier, PhD Thesis

linear Weingarten surfaces

X Tellier, PhD Thesis

Structural innovation

GEOMETRY

MECHANICS

TECHNOLOGY
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Common space structure

Systém MERO

o 7 Vil NV, AV R A
s, A VIR WA AN )

»

Efficient mechanical behavior
Technologically complex

T/E/S5/S
Space truss VIRY

A

B ohe ey Pt

20




Structural innovation
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TOWARDS TOPOLOGICAL DESIGN
D g

UN INOENELR D INTREPRSE

TOPOLOGICAL DESIGN

PhD of Robin Oval, in collaboration with the Block Research Group (ETH Zirich)
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fopology generation of ardutectural meshes adapted to

the support conditions

Toamne Bout il * Cvril Doutle®, Lot Humswieth®, Olivier

1avvred

<

PhD of Romane Boutillier

R Boutillier, PhD Thesis
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An algebra for topology finding of surface patterns for
structural design driven by similarity

Robin Oval
Delft University of Technology, The Netherlands

Abstract

Structural design is a search for the best trade-off between multiple architecture, engineering, and construction
objectives, not only mechanical efficiency or construction rationality. Producing hybrid designs from single-
objective optimal designs to explore multi-objective trade-offs is common in the design of structural forms,
constrained to a single parametric design space. However, producing topological hybrids offers a more complex
challenge, as a combinatorial problem that is not encoded as a finite set of real numbers but as an unbonded
series of grammar rules. This presentation will focus on a strategy for the generation of hybrid designs of quad-
mesh pattern topologies for surface structures. Based on a quad-mesh grammar, an algebra is introduced to
measure the distance between designs, find their similar features, and enumerate designs with different degrees
of topological similarity. To achieve this, the operators of topological distance, intersection and union of quad
meshes will be defined. Structural design applications will be shown to highlight the use of topologically hybrid
designs as a surrogate for obtaining multi-objective trade-offs.
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An algebra for topology finding of
surface patterns for structural design
driven by similarity

CREST ED3GE

Hakata, 10/03/2025

Robin Oval
r.oval@tudelft.nl

'?U Delft

MOTIVATION | Topology at the service of geometry

Oval, Rippmann, Van Mele and Block | Beyond the Dome | Architecture Biennale | Venice, Italy | 2016

MOTIVATION | Topological optimization

REFERENCE
343 kg/m? (100%)

DIAGONALS
464 kg/m? (135%)

POLES POLES AND DIAGONALS
208 kg/m? (61%) 210 kg/m? (61%)

British Museum | London, UK
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MOTIVATION | The challenge of multi-objective search

1

STATICS  FABRICATION

QUAD MESHES = QUADRILATERAL FACES ONLY
SINGULARITIES
VALENCY # 4 OR 3, OFF OR ON BOUNDARY

APPROACH | Pole singularities

QUAD PSEUDO-QUAD
TRIANGLE GEOMETRY
QUAD TOPOLOGY
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APPROACH | Decoupling design spaces

GEOMETRY DENSITY SINGULARITY
QUAD MESH QUAD MESH COARSE QUAD MESH

GRAMMAR | Quad-mesh strip data structure

FUNDAMENTAL STRUCTURE OF STRIPS
CONNECTING TOPOLOGICALLY OPPOSITE PAIRS OF EDGE

GRAMMAR | Quad-mesh strip data structure
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GRAMMAR | Two-rule strip grammar

ADD STRIP

DELETE STRIP

LOW-LEVEL | RECIPROCAL | COMPREHENSIVE

GRAMMAR | Rule-based exploration

etc.
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SIMILARITY | Performance-based clusters

.
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SIMILARITY | Performance trade-off

o 1 m

STATICS  FABRICATION STATICS  FABRICATION STATICS  FABRICATION

Finding the topological design that provides the performance trade-off

SIMILARITY | Surrogate problem

HYPOTHESIS
Designs with similar topologies are likely to have similar performances.
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SIMILARITY | Topological trade-off

= : ]

STATICS  FABRICATION STATICS  FABRICATION STATICS  FABRICATION

Finding a topological trade-off that may provide a performance trade-off

SIMILARITY | Intersection submesh

TOPOLOGICAL SIMILARITY

The largest strip structure in common.

INPUT MESH INTERSECTION SUBMESH INPUT MESH

SIMILARITY | Rule-based topological distance

TOPOLOGICAL DISSIMILARITY OR DISTANCE

The minimum number of rules to convert a mesh into another.

 — B —  —
— — —
+
INPUT MESH INPUT MESH
DISTANCE =3
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SIMILARITY | Union supermesh

INPUT MESH INPUT MESH

UNION SUPERMESH
SIMILAR AND DISSIMILAR STRIPS

SIMILARITY | Intermediary meshes

\T_ 2 STRIPS
A
— =

o
q SUBMESH
]

INTERMEDIARY MESHES

5 STRIPS

SUPERMESH

Similarity | Gridshell application
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Similarity | Gridshell application

E

p

PARETO FRONT

Similarity | Gridshell application

M,
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Similarity | Dome applicatio

7 STRIPS

3 STRIPS

| Floor application

SYMMETRIC LOADING ASYMMETRIC LOADING
STRESS ISOLINES

STRESS ISOLINES

M et
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TRO | Summary

Algebra

Strip data structure, quad-mesh grammar, rule-based topological distance for (dis)similarity,
intersection submesh and union supermesh

Application
Hybrid topological designs with variety of multi-objective trade-offs

Performance depends on topology... and its post-processing into a design

References

Oval, R, Rippmann, M., Mesnil, R., Van Mele, T., Baverel, 0. and Block, P., 2019. Feature-based topology finding of patterns for shell
structures. Automation in Construction, 103, pp.185-201.

Oval, R, Mesnil, R., Van Mele, T., Baverel, 0. and Block, P., 2024. Similarity-driven topology finding of surface patterns for structural
design. Computer-Aided Design, 176, p.103751.
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OUTRO | Implementation

COMPAS_PATTERN

https://github.com/BlockResearchGroup/compas_pattern

THANK YOU!

Robin Oval | TU Delft | r.oval@tudelft.nl
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Deployable auxetic surface structures: From optimized shape to detail design
implementation

Kazuki Hayashi
Kyoto University

Abstract

This study presents a streamlined design framework for deployable auxetic surface structures, taking advantage
of discrete differential geometry. The process begins by defining basis vectors, informed by a prescribed plan,
support locations, and load conditions, to modify the structural shape via Dirichlet energy minimization. Next, a
gradient-based optimization algorithm explores the optimal shape to minimize the linear strain energy, adjusting
the weights of the basis vectors with gradients that are analytically derived through the chain rule. The final step
aims to materialize the optimized geometry using a double-layer auxetic surface structure incorporating kerf
joints. This approach achieves the flexibility required for deployment while providing the necessary stiffness
for in-service performance.
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Deployable auxetic surface structures:
From optimized shape to detail design
implementation

Kazuki Hayashi (Kyoto University, Japan)

Today’s talk

(2-1) Conformally flattened shape (2-2) Equilateral triangle tiles (2-3) Deployed shape
2

Topic 1/2: Shape sensitivity analysis

* Suppose we have a triangle mesh representing the shell geometry.
How to modify its shape to maximize the structural performance?

=+ Analytically derive shape sensitivity for thin shell structures

&

s ﬁ- / k \ g .-_,.-'_-'i, it

?

e

? I
w 4
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Chain rule for sensitivity analysis

* Chain-ruled computation allows for obtaining the gradient of
objective function (0F /0x)

chain rule
(Example) F(z) =2z 6_F oF . a_z _ a_y
_— " %37 97 ax
2() =y — S
=2-2y-cosx
y(x) = sinx = 4sinx cosx

(In our study) F: strain energy (flexibility indicator to be minimized)

x: nodal locations

Chain rule for shape sensitivity analysis

* Chain-ruled computation allows for obtaining the gradient of
objective function (0F /0x)

[ Compute face-wise ]

transformation matrix

>0T/0X. global strain

length i et  Bematrix ] Igc_ql__sjuffness ! stiffness energy
oL /aX\ matrix coordinates aB /aX 6k /aX aK/&X:» aF/aX:
area 6R/6X—> OXZD/6X+ (in- plane) —> (in- plane ->6k/6X \
04/0x 2 OB, /oX | 10k, /OX | (combined

(bendmgi © A*-{bending)-

Gradient of edge length

{ Compute face-wise }

transformation matrix

>oT/0X global strain

length el fotated  ,.oomatrix | I_o_c_ql__s:uffness ! stiffness energy
oL /aX\ matrix coordinates aB /aX ak /aX aK/aX:—» aF/@)(I
area aR/aX—> OXZD/OX—> (in- plane) —> (in- plane) —>6k/6X \
A/0X 2 »i0B, /0X | 10k, /OX | (combined

(bendmg*) ‘ X*-{bending)-*

ey

e i

(1, ¥1,21) Ly (X2, Y2, 23)
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Gradient of triangle area

{ Compute face-wise ]

length rotation

oL /aX) matrix

transformation matrix

B-matrix

‘0B /6X 6k /6X

rotated
coordinates

local stlffness

global strain
stiffness energy
L OK/OX~>OF/oX,

6R/6X—>6X2D/8X—> (in-| plane) —> (in-| plane) —>ak/aX

()

area
aA/aX > 6B /aX 6kb/aX (combined)
! - (bending).: - (bending}-:
(¥5,Y5,2) iy :"_: Npesr = ity
g & oA - "
b e e e’ T * £ Ty — S Pl m
O] P O, i 5 ¥
3 O k. LN L
(x1,¥1,21) (x2,¥2,22) ng L Pl il

Grad

ient of rotation matrix

length

area

oL /aX\ matrix

f Compute face-wise - ’
L transformation matrix|

:aT/aX global strain
IO — - B-matrix | Ip_c_ql_gglffness g stiffness energy
OK/aX > OF/oX

coordinates aB /aX ak /aX
6R/8X—>6X2D/6X—> (in- p]ane) —> (in- plane) —>6k/6

o4/ox 2

> aB /aX 6kb/aX (combmed)

(bendmg)  X*-tbending)-*

24 (393,23
|

T, (22,2,22) [TE .

" ()

Gradient of rotated nodal coordinates

{ Compute face-wise ]

transformation matrix|

oL /6X>. matrix coordinates aB /aX 6k /aX

6R/6X—>8X2D/6X—> (in- plane) —> (in- pIane) —>6k/6X

" et

aA/a)g > aB /6X 6kb/5X (combined)
(bendmg) ‘ X*-{bending)-*

il T ‘._ii-_‘l'i;}'q-' I\,’_!;;.;..kl'! = pre. HR

A h' a X, ax; Rk X,

>0T/0X. global strain
length atian rotated .- B-matrix | Igga_[§§|ffness ! stiffness energy
L OK/0X~>0F/aX
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(Geometrical strain-displacement relationship)
Gradient of membrane B-matrix

( Compute face-wise | - -
L J transformation matrix|
>oT/0X global strain
length v e Bmatrlx __________ I_o_ggl_gglffness U stiffness energy
OK/OX > 0F/oX

oL /aXX matrix coordinates aB /aX ak /aX

aR/aX_’ aXzD/@X_’ n ane _> n ane, _’ ak/aX
oA 2 e s ()
! - {bending)-: 7' -bending}-:

(Geometrical strain-displacement relationship)
Gradient of bending B-matrix

{ Compute face-wise ] - -
transformation matrix
>0T/0X global strain
length e el '__Fé_']]%EI’_lz( __________ Ip_c_ql_gglffness ! stiffness energy
OK/0X> OF /X

oL /aX\ matrix coordinates AR /aX ak /aX

o aR/aX_baXzD/@X_’ (in Iane) I (in- Iane) —>6k/6X
aA/a‘th > aBp/aX 6k:/aX (COmblned) \

(bendlng) * X*-tbending)-*

P

Gradient of local stiffness matrix

[ Compute face-wise } . -
transformation matrix
>0T/0X. global strain
length el et '__E§_r_rl§t_(lz< _________ local stn‘fness ! N stiffness energy
OK/OX > OF/oX

oL /6X\ matrix coordinates aB /aX 6k /aX

EIE) 6R/6X—>8X2D/8X_> (in-| Iane) o (in- Iane) —>6k/6X
A/0X 2 +i0B./0X | 0K /OX, | (combined \

(bendmg) * X*-(bending)-*

1 |
v [ . .
o N b CEA i o iy,
¥ [ J e = | BCnBh = A + AR Cu |

iy P "i.l B CaBuy o A g Cullyy 4 AR 0y,
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Gradient of global stiffness matrix

{ Compute face-wise ]

transformation matrix

>0T/0X global strain

length v e :_E_r_']?_lt_l'jz( __________ I_qc_ql__spffness U stiffness energy
OL /0Xx aln%}( am%j/.gtes 0B _/0X| ok /OX; AOK/OX>OF/0X,
area 50X X-* (in- plane) —> (in- pIane) —>ak/aX
o4/0X 2 ~i0B /OX | 0k, /OX | (combined \
(bendtng*) © A*-{bending)-*
k- I k,T
ik vl Mk T
T, T T T R
) Y ) N i ; i

Gradient of strain energy (objective)

{ Compute face-wise }

transformation matrix
>0T/0X global strain
length el fotated  ,.Bmatrix | Ip_c_ql_;glffness ., stiffness energy
oL /aX\ matrix coordinates aB /aX ak /60X 6K/8Xl—> 6F/8Xl
area 6R/8X—> GXZD/OX—> (in- plane) —> (in- plane) —>6k/6X
o4/0X Z »i0B /0X | 10k, /OX | (combined \
i - {bending)-: 7' -(bending}-:
A L
o I ) [ ¢
ol ] i 1 ki ] —11
dj,‘ g M * Y . ALY
%—'i Displacement caused by load,
obtained from stiffness equation
14
Analytically derived! But why are we happy?
* We can compute how to modify mesh geometry to increase its
stiffness if we have the following information:
(1) mesh (2) thickness (3) material (4) support (5) load
r".-. '7 _i'.. I'"i-'&..__ — . -',:L
e L o a
inverted shape sensitivity B
15

= direction to increase stiffness
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Q. Is our computation fast?

* If using sparse matrix
representation and Just-in-Time
(JIT) compilation,

{° Our implementation: = 0(n)

+ N
* A. Yes, at the order of \\ .
approximately O (n)

Gradient-based shape optimization

* Many libraries accept sensitivity analysis to speed up optimization

from scipy.optimize import minimize message: Optimization

terminated successfully.
success: True
status: ©

def f_g(x): Gradient function 0.0 Value of f

def f(x): Objective function
return x*x fx) =x?

return 2*x af /ox = 2x x: [ ©.000e+00] Value of x
nit: 2 Iteration

[1.0] Initial x jac: [ 0.000e+00] Value of af /dx

r = minimize(f,x@;jac=f_g) Optimize hess_inv: [[ 5.000e-01]] Value of 9?f/dx?
print(r) Display optimization result nfev: 3 Number of times f(x) was called
njev: 3 Number of times f_g(x) was called

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Shape optimization ( )
Thickness: 20 cm Design variable: Heights of unsupported nodes
Young’s modulus: 25000 N/mm? Objective: Minimizing strain energy
Poisson’s ratio:  0.15 Volume constraint: < 1.2 X (initial volume)
Design load: 1 kN downward at each node

y . Optimize with L

; ° 1|{ SLSQP (281 seconds) - °

e pin-support 10 m

Strain energy = 40.07 [kN*m] i =1.18 [KN-
Volume = 28.73 [m’] Strf e 4 (= 1[2 ;g 73) [m?
Area = 143.63 [m?] Yolume = 3847 (= 1228739 [m)
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Shape optimization (with sensitivity analysis)

Thickness: 20 cm Design variable: Heights of unsupported nodes
Young’s modulus: 25000 N/mm? Objective: Minimizing strain energy
Poisson’s ratio:  0.15 Volume constraint: < 1.2 X (initial volume)
Design load: 1 kN downward at each node
j{ : T Optimize with e
° | SLSQP (28 seconds) __..-'L*

e pin-support 10m

Strain energy = 40.07 [kN - m]
Volume =28.73 [m?]
Area = 143.63 [m?]

Strain energy = 1.28 [kN-m]
Volume =34.47 (= 1.2 x 28.73) [m?] 19

Filtered shape optimization (work in Progress)

Thickness: 20 cm Design variable: Weights of smooth deformation modes
Young’s modulus: 25000 N/mm? Objective: Minimizing strain energy

Poisson’s ratio:  0.15 Volume constraint: < 1.2 X (initial volume)

Design load: 1 kN downward at each node

5 . e, Optimize with
° ) SLSQP (5 seconds) ook

e pin-support 10 m

Strain energy = 40.07 [kN *m]
Volume =28.73 [m?]
Area = 143.63 [m?]

Strain energy = 2.90 [kN*m]
Volume =34.47 (= 1.2 x 28.73) [m*] -

Today’s talk:

(0) Initial plan

(2-1) Conformally flattened shape (2-2) Equilateral triangle tiles (2-3) Deployed shape
21
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Topic 2/2: Deployable auxetic surface

Gaussian curvature

K=0 K>0 K<0
- Cylinder, Plane - Sphere - Saddle

Developable Non-developable

Easily made by bending a flat sheet Cannot be made by bending a flat sheet

Use auxetic surfaces to create non-developable shapes from a flat state

22

Auxetic surface

* Linkage mechanism produced by cutting a sheet material

® LI X mas

* Characterized by negative Poisson’s ratio

GEmrme—
—— — —

cTo e e —

/ A\
e »
/ A\
( > —_—> < > | |
N ’ N / | |
« Y
\ /
¢ J

l

,,,,,

b

Surface construction using an auxetic material

design surface deployed structure -

Required stretch

conformal map flat material with cuts 24
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CO nfo rm a I ﬂ atte n | N g Preserve angles, while distorting lengths

output

1: flattened shape preserving angles
2: conformal factors u (required stretch/shrinkage to restore surface)

-t

Conformal
flattening

VVAVAVATLY,
TRRORRE) \ +

A\
A\
50

4%
g
3
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N
0
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Log-conformal
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!
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Triangular mesh in 3D space 2D conformal map

"Face Mesh" (https://skfb.ly/6UnJZ) by lama321 is licensed under Creative Commons Attribution. ) 5

Stretch quantification
2cos(n/3-6/2) 6=2xn/3

1
. | |
u=0 u = log2

* Expansion in length can be associated with open angle 8 € [0, 2 /3]

* Relate log-conformal factor © and open angle 6 as

T 60
exp(u) = 2 cos 3”3 € [1.0,2.0]

26

. 2 seconds
Deployment analysis ‘ B *

closeness rigidity collision
* Minimize E = WlEdesign + WZErigid +W3Ecollision [Konakovi¢ et al, 2016]

* Solve a linear system of equations using shape projection operators

[Bouaziz et al, 2012]

X (not equilateral) X (colliding faces)

w; = 0.01 w; = 0.01

wy; = 0.01
w, = 1.0 w, = 0.0 w, = 1.0
wsz = 1.0 wz = 1.0 wsz = 0.0

S. Bouazizet al, “Shape-Up: Shaping disctete geomery withprojetions,” Eurographics Symposiun on Geomety Processing 2012,vo. 31, mo. 5, pp. 1657-1667, 2012. -
M. Konakovié et al., "Beyond developable: computational design and fabrication with auxetic materials." ACM TOG, vol. 35, no. 89, pp. 1-11,2016.
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Elasticity condition of joints is too strict

“lL/d> (6/2) AT

Joint shape Material property @ : Elastic limit stress

* Ex.) Suppose 8 = 1 /3. too strict

Glass-Fiber-Reinforced Plastic (GFRP): E = 15 [GPa)], & = 250 [MPa] =#L/d > 31.4
Medium Density Fiberboard (MDF): E = 4 [GPa], & = 20 [MPa] =*L/d > 104.7

y d
o]
g G et

before after

Kerf joints enable auxetic behavior

K, = m (rotational stiffness against deployment)
K.,0, = M, (bending equilibrium)

Zz — bzt/6 (section modulus) Metal material is typically challenging for kerf joint |

M,/Z, = 0., < 0, (elastic limit)

| B

Wood material can be used if kerf pattern is well-designed

E E h
et —lanlian-2 —
Oa| Orz b [ ‘\ ‘
'
material property kerf pattern [ ]

Polymers can easily satisfy flexibility condition
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Single-layer auxetic material is unstable

* Kerf joints sacrifice stiffness * Material: MDF
Young’s modulus = 4 [GPa]
iy S Poisson’s ratio = 0.25
B "‘r' Lo ) density = 700 [kg/m?]
iy 1 g
‘I’;T‘_‘;}f:{;‘l"{,‘ﬂ  Kerf parameters
Ly " Sy n=9
T f"f;"l"i‘l"';r.r‘r’..r T b =0.1/n [m]
Syl oy Loy oy h=0.8/n [m] [EE2
Ti‘r;‘f;‘f‘}:ﬂf * Assume geometric linearity
pin-support FT‘T:_TTT T

ﬁ Software: Abaqus 2020

= - : , s
9] _ oG R R ot

113m Deformed shape (x 1/200) 31

Bilayer scheme for surface stiffening

+ Cancel restoring forces each other
+ Recover in-plane rotational stiffness

* Suppose surfaces are attached by 3 bolts

=+ Equivalent 6-dof spring stiffnesses are 4
{Ktx' Kty' Ktz' Ker Kry' rz} ,
A
o

_{3EA 3GAs 3GAs GAgl? EAI? EALZ}

[ Desirable mode

Deformation control by overlaying = oomse mode
(Mode 1) (Mode 2) (Mode 3) (Mode 4) (Mode 5)

Eigenvalue 1, = 1.00 1, =101 13 =1.03 l,=271 s =316
Single-layer unit cell

Eigenvalue 1; = 1.00 1, =135 13 =135 1, =3.05 1s = 6.52
Double-layer unit cell
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Thickness affects open angles

Quter layer requires more extension (+A8)

Inner layer requires less extension (—A8)

17X middle

inner  plane
~" mid-plane oufer
mid-plane

Steiner’s formula to modify open angles

cenirosd

* Area of e-offset surface frofimann2009]
Aotfset = A + ZefHdA +¢e? f KdA

= Offsetting a surface by € increases its
area by a factor of 1 + 2eH + €%K

* Log-conformal factor of e-offset surface
ez'T = (1+ 2eH + eZK)eZT

0 + A6 0

T. Hoffmann, “Discrete Differential Geometry of Curves and Surfaces”, COE Lecture Note Series Vol.18, Faculty of Mathematics, Kyushu University, 2009. 35

. Larger ¢ and k increasingly affect the correction of
Th I1C k ness effe ct on Ag/ open angle Ad to approximate the target surface

111
log-conformal
factor Ad
it
" [
T Y T T T T -
|« n
7 ¥ Thickness ¢
,/l Single curvature k 36
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Shapes match between simulation and prototype

MDF (thickness: 3mm)

a "

I L L

e | S
]

r 1

Designed for a maximum mid-surface height of 56.2 mm

Actual maximum mid-surface height: 56 mm ‘

Prototypes 2

-$"‘-..,“_ -’:'_'__.r"# : ’ i
MDF (thickness: 3mm) e L
-\-\“"-\.._.r'_-

bolt and hex nut (M1.6)

//’ -
*4.5 el >

. ) -
» - Boundaries are fixed by contact

22.6 cm (circular plan of 400 cm?)
Single-layer Bilayer

Conclusion

* Optimize the shape of shell
structures using analytically
derived shape sensitivity

* Leveraged conformal geometry

to design double-layer
deployable auxetic structures

with kerf-bending joints

Contact: (Kazuki Hayashi)
hayashi.kazuki@archi.kyoto-u.ac.jp
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Second-order infinitesimal mechanism for bifurcation analysis and folding
path approximation of rigid origami

Kentaro Hayakawa
Nihon University

Abstract

We investigate the kinematic bifurcation of rigid origami and approximate its folding path with polynomi-
als through the second-order infinitesimal mechanism analysis of a truss model, the assemblage of the pin-
connected bars. The motion of the model is constrained by the compatibility condition so that the bar length
does not change. The second-order infinitesimal mechanism is obtained from the series expansion of the com-
patibility condition and its existence condition is the system of homogeneous quadratic equations. The bifur-
cated mechanisms of rigid origami correspond to the different solutions of the existence condition. In addition,
we can use a solution to the existence condition for a polynomial approximation of the folding path of the truss
model.
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Evolving Design and Discrete Differential Geometry m

- towards Mathematics Aided Geometric Design ——rr—

Second-order infinitesimal mechanism
for bifurcation analysis and folding path
approximation of rigid origami

Kentaro Hayakawa [ —
Kyoto Group, Nihon University N I T rrlerler

*Joint work with T. Ohba and M. Ohsaki
@ Kyoto Univeristy

nife L

ETUIEF ARV 1Y

2025/3/10 Second-order infinitesimal mechanism of rigid origami

Rigid Origami for Engineering Application

Rigid-folding mechanism
Rigid panels + Rotational hinges
Solar panels on artificial satellite”

Portable shelter?

Challenges

Efficient rigid-folding path tracing
Exploration of solution space of multi-
degree-of-freedom mechanism
especially with kinematic bifurcation

1. S.A. Zirbel et al, J. Mech. Des., Vol. 135 (11), paper
111005, 2013.

2. K Ando et al,, SN Appl. Sci,, Vol. 2 (12), article 1994, 2020

2025/3/10 Second-order infinitesimal mechanism of rigid origami

Analysis of Rigid Folding Mechanism

Analytical solution
Singe vertex®

Periodicity and/or symmetry®

— Limited to simple crease patterns

Numerical solution L]

Mechanism on tangent plane of solution space
= first-order infinitesimal mechanism>

- Insufficient information about kinematic bifurcation® ,,"".
— Many iterations for precise path tracing |

3. J.Farnham et al,, Proc. R. Soc. A, Vol. 478, paper 20220051, 2022.

4. T.Tachi, in Origamis, pp. 97-108, 2015

5. T.Tachi, in Origami4, pp. 175-187, 2009

6. P.Kumar and S. Pellegrino, Int. J. Solids Struct., Vol. 37 (46), pp. 7003-7027, 2000.
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2025/3/10 Second-order infinitesimal mechanism of rigid origami

Higher-order Infinitesimal Mechanism

1. Kinematic bifurcation”

Solution space at point of kinematic bifurcation that

cannot be obtained from first-order mechanism P "
— Prediction of possible folding pattern/motion j-f': —c

I .

2. Efficient and high accuracy path tracing®
Polynomial expression of folding path with respect 4 +
to path parameter
— Small number of iterations for path tracing -
— Folding motion as continuous smooth function g
in certain range
1 -

7. K. Hayakawa, T. Ohba, and M. Ohsaki. Mech. Mach. Theory, 194 (2024), 105572
8. T.Ohba, K. Hayakawa, and M. Ohsaki. in Proc. 80SME, 2024
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Formulation for Truss Model

Compatibility equation for bar i

Constant bar length in folding motion
1 B 5
@, =5("x] —xA" ={f )=0

X,

;. X, position vectors of endpoints of bar i

I Initial length of bar i
Xy
Compatibility equation for entire model
C(X)=0 « ¢;=0forall bars
[ X
C(X)=| : |eR"™ :incompatibility vector X=| i |[eR™ :generalized position vector
C‘» x"'u
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Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter 7 (time, arc length etc.)
2 2 3 3
JLdc  rdc

dc
CX(0) =1 — — —
o 2 df

dr

+h.o.t.

o 6 dr

=0

= t[r‘°>x“‘]+ﬁ[rm’x‘“ + r“‘x"’]+ﬁ[r*"’x‘” +20OX? +TX" |+ ho.t.
2 6

S %
ox, ox,,
o= : eR"™* : compatibility matrix = Jacobian of C(X) w.rt. X
Oy, . ey,
ax, Xy, -
doc, ¢
© aX,0X, ox, ox,
D_ax] X o ;
XW=| i 7] eR™,  TV=x" i : eRWM (s21)
t =
xw -0 =l 82‘,‘““ ey,
XX, ax, ox,
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Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter ¢ (time, arc length etc.)

2 2
— (0)y (1) L (0)y(2) (D3 (1) L (0)y(3) ()y(2) (2)y (1)
CX(e) =1 TOX ]+2[r X® 4+ rOX ]+6[r X® +2rOX® +TX |+ hot.

X" satisfying r”X® =0 : First-order infinitesimal mechanism
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Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter ¢ (time, arc length etc.)

IS IS )
CX(1)=t| TOX" |+ = TOX? + TOXY |+ —| TOX® 4 2r"X® + T®XY |+ ho.t.
X =] | ]+31 ]+l ]

|

X satisfying T"X®" =0 : First-order infinitesimal mechanism
roxo» o . s
(X“’ X‘“) satisfvin : Second-order infinitesimal
’ ying roOx® 4+ roxm =g mechanism
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Infinitesimal Mechanism of Truss Model

Series expansion of compatibility equation w.r.t. path parameter

When X is a function of the path parameter 7 (time, arc length etc.)

tZ tZ
CX(@®)=t| TVX? [+ [ TOX® + VX" |+ —| TVXP +2r"X® + T®X? |+ h.o.t.
Xey=1 | I3t Jegl ]

l

X" satisfying r”X® =0 : First-order infinitesimal mechanism
roxo —o s d-order infinitesimal

(x<”,x‘“) satisfying - Second-order infinitesima
rox® . roxm_o mechanism

roxo» =g
rox® . roxo =g

$(n-l G
s=o\ S

: n-th-order infinitesimal

L (X",...,X") satisfying mechanism
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First-order Infinitesimal Mechanism

Compatibility equation for first-order infinitesimal mechanism

rox» —o

Solution space of first-order infinitesimal mechanism

Space of X®satisfying I'”X®" =0 < Null space of I'”
Dimension of null space N, = N, —rank '’ : Number of kinematic indeterminacy

Bases of null space §,,...,§, €R™ : Infinitesimal mechanism modes
M
4

m _ ), (1), — D= Xa®
X =a E‘u*"'Jra.w, Nr_[él é,’\'F] ¢ |=Xa

1)

ay)
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Second-order Infinitesimal Mechanism

Compatibility equation for second-order infinitesimal mechanism
{F(O’X“’ =0

TOX® L 7OXD — 0

determined by X"

Existence condition of second-order infinitesimal mechanism

( TX® for first-order infinitesimal mechanism X) € (vector space of I'”X?)
© X 1 (left null space of I'”)

Dimension of left null space Ny = N, —rankT'” : Number of statical indeterminacy
Bases of left null space @,,...,0, eR™: Self-equilibrium force density modes
o TYXY =0

: PN [‘”1 . ]T roOxX® — 'ITOX® = o
m’TVS rox®—o
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Physical Interpretation of Mechanism and Self-equilibrium Modes

Infinitesimal mechanism X +1x0 4 Lo o lae
’ o2 XX +51'x[
dX ,_ d’X mTT—
XV === :velocity, X%==3 :acceleration ! k&
dt |, dr |, i '
&prensly, (T,=0): Nodal velocity modes q__.--"'T"-.rX‘
without deformation of bars X

Self-equilibrium force density

Fro g fornode > F(x,-x,)=0 :equilibrium
i equation

axial force

bar length = force density

o,,...,0, (0/T” =0): Self-equilibrium force density modes
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Existence of Second-order Infinitesimal Mechanism

Existence condition as a system of homogeneous quadratic equations

X0 =qVg, *"'*“‘J:‘in, —Xa®"

TROXD
QX" =0 o, Fe
o, i
a®"Qa® =0 v, o axX X
i Q-3x| fk
A B o o'c
Jj - i
OTQ a® = Yiax ox, T ax:
a QNSa =0 0X y, 0X, Ny

Solution of second-order infinitesimal mechanism

X® = _[1"'0)]+ rox® 4+ Xa® [r®] : generalized inverse of T*’

L complementary solution

———————— particular solution determined by a"’
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Degree-six Single Vertex

Triangulated regular hexagon
Number of nodes : 7

Number of members : 12

Number of kinematic indeterminacy :
4
(except for rigid-body motion)

‘ Number of statical indeterminacy : 1
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Mechanism and Self-equilibrium Force Modes

Infinitesimal mechanism modes Self-equilibrium force density mode
i ; r 1.0
| ¥
e Vs N N
) . 10 -10 -10 10
i 4 . ,
mode 1 mode 2 -1.0 -1.0
p . . M
" ¥ 3 10 -10 -10 1.0
A i ' ¥ LY,
I~ = AR
) z  mode 3 mode 4 x
\I___. x Positive value: tension
Rigid-body motions are eliminated. Negative value: compression
Nodes move only in the z-direction. Axial force of bars
Distance: 1.0 = force density X length
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Existence Condition of Second-order Mechanism

Quadratic equation for coefficients of mechanism modes

—9(a:”)z +(a'2")z +(a§”)2 -#(a;”)2 =0

= a? =3 (a) #(a) ()

Kinematic bifurcation

oy 1) . 1
positive a; negative a;"’ a

== NI

I - T_ i e
H } - ~ 1 -_\_\_-‘ ifurcation
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Third-order Infinitesimal Mechanism

Compatibility equation for third-order infinitesimal mechanism

roxo =g
roOx® L poxo =g
rOX® 1 orOX® 4 p@OXO = pOX® 430X = ¢ (r‘”x"’ :r‘”x”')

Existence condition of third-order infinitesimal mechanism

Second-order mechanism: Q'T"X" =0 (a"'Qa"=--=a""Q,a" =0)

Third-order mechanism:  Q'T®X® =0

l‘i X =—[r©] pOXO 4 Xa®
QTOXa® = T®[r®] rox®

unknown [ determined by the existence

of second-order mechanism
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Higher-order Infinitesimal Mechanism

Compatibility equation for n-th-order infinitesimal mechanism

roxm g
rox® +rox® —g

E[” - ljr(x)x(n—s) —TOX™ 4 i(” - IJF(S)X"H) -0
s s

5=0 s=1

determined by the existence of (n-1)-th-order mechanism

Existence condition of n-th-order infinitesimal mechanism

Second-order mechanism: Q'TOX" =0  (a""Qa" =

—a1Q, " -0)
N’
Third-order mechanism:  Q'TVX? =0 (nTr“‘)’(a*“:gTr‘”[r‘“)]‘r“'x”')

R
n-th-order mechanism: Q'Z(n ]I‘“’X(”’” =0
=
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Higher-order Infinitesimal Mechanism

Reformulation of existence condition of n-th order mechanism (n>4)

S[” - lngrmx(H) -0
s

=1

< (n-1)QTX"Y + QT X" + i[" - lnger("ﬂ =0

= N
s=2
l‘f rOXe = pehx®

& nQTOX" + zz[” - IJQTI“’"X"”" -0
s

s=2

l.f X0 = 7"2’2:[” ‘2][1««»»]* XD 4 Kalr)
s

=1

n-2

- Q'TOXa"D = Z[" - 2]9Tl—~(l) [r©] poxe-s 71"272*‘(” - IJQTF("')X("”")
s

nis\ s

s=1

unknown determined by the existence of (n-1)-th-order mechanism
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Existence of Finite Mechanism

Existence condition of n-th order mechanism

Second-order: a""'Qa"” =---=a""Q, 2" =0
Third-order: Q'T"Xa® :QTF“)[FWT rox®
n=2

n-th-order: @ TXa" = 5[ "~ |rro [ro] poxes L5 grro e
N s

n=

s=1

Sufficient condition for existence of finite mechanism

Finite mechanism < Existence of a,...,a"™" for arbitrary order of n
DT a0 ... a®OTQ " —
a’Qa’=--=a"Qua"=0

= _
rank(ﬂTF‘”X) =N, (row full-rank)
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n-th Order Polynomial Approximation of Rigid-Folding Motion

a17Qa" =0 (i=1,...,N;)

1. Calculate X using manually determined a® satisfying _
rank(ﬂTF“’X) =N

2. Calculate a® :[QTF“)XT Q'r® [F(O)T roxe® (existence condition of X)
3. Caleulate X =-[T®] TOX® + Xa®
4. Initialize k as k < 3
5. Calculate
a® =[QTVX] {i(k 71]97r<” [ro] rox®s —Li[k]nTr‘“x“**”}
perd G k+15\ s

- (existence condition of X**")

k-1 + —
6. Calculate X*© =7z[ ][rm)] roOX* 1 Xa®
K

s=1

7. Update kas k — k+ 1 and go to 4 while k<n

8. Calculate X(r) = X"t +%X(Z)t2 P +ilx‘”’t”
n:
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Resch’s Pattern

Part of Resch’s triangular rigid-
Y PN foldable tessellation pattern

3/2

Number of nodes : 16

Number of members : 33

172

Number of kinematic indeterminacy :
13
(except for rigid-body motion)

3/4

3/4

Number of statical indeterminacy : 4
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Infinitesimal Mechanism Modes

o x F 1 . - =
o -. ] L i ra - o,
rode 1 mode 2 made 1 e
‘ 1] - 1 - L a -
s § e b [ e 8
) ¥ - -
T “ i @ T, 7 - .
£ J -- - : 4 .- y - r '| 1 il o
recsks 9 mode D il 11 et 12
- J ; Rigid-body motions are eliminated.
- I-.l y - i Nodes move only in the z-direction.
T l]l x Distance: modes 1~4: 1.0, modes 5~13: 0.5
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Self-equilibrium Force Density Modes

Positive value: tension
Negative value: compression

- .»‘l Axial force of bars
=1 B .
= force density X length

e Each Stressed region contains a

single interior node
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Existence Condition of Second-order Mechanism

Quadratic equations for coefficients of mechanism modes

2 2

2
éal‘"a;”—Q(aé”) +2a§”a;”+2(a(‘,17) +2(a;17) =0
2
6aa” ~9(a") +2aa +2(al’ ) +2(al) =0

() (
6a’al” ~9(a")’ +2a"a? +2(a
(") (

9(a;”)2 —4(d
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Existence Condition of Second-order Mechanism

Solution to the quadratic equations

2 >, 2. 2
2 ) _ M _ m _
| *5“‘1 Pyt pytpg, a, =5P) 4 =83D55 Ay =S84Ps

a§”=—2s,vpzz+p3z+p§+sz[%pz—b§—b72} aé“=bs P> a§])=b7 P>

e AT

9
al(i):—ZSszzwLp}Zwij+s4[5p47b1227b]€], ag):bu\jpw al(;):bIJ\IPA

a,

2 2 M _ () _
ps—bs _bm)’ ay’ =by\[ps, @y =byy/ps,

Sy, 85, 83, 84 -1or1
D2 Py P4 - NON-Negative real value 13 variables (= degrees of freedom)

b by, by, by, byy, by @ arbitrary real value
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Existence Condition of Second-order Mechanism

Solution to the quadratic equations

2
a _ 2 2 2 ) _ @ _ M _
a4 75‘5‘1 Pyt py Dy, @ =8P 4 =85D55 Ay =584P4>

:

7 9
a =25 p22 +ps +P§ +5, [Epz 7b62 7b72j’ aé‘) =bPrs & =bpy,

H

9
azil) =-25P; +P32 +p; +55 [5173 -b] _bwzn): aé” =by/ ;. al((ll) =by/Ps>

B 9
al(i) =-25 pzz +P32 +pts, [51’4 7b122 7b123Ja al‘é) =byPss a:;) =byp,

Sy, 8y 83, 841 -1or 1 ———————— bifurcation of mechanism

P Py P4 - NON-negative real value ) )
. degrees of freedom after bifurcation
b, by by, by, byy, by - arbitrary real value
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Sufficient Existence Condition of Finite Mechanism

Sufficient condition for existence of finite mechanism

rank(QTI“Z'X) =4

3a 3a® —9a% +a 0 0 a 2" 2" 0 0 0 0 0 0
o |3 0 3a -9 +a" 0 0 0 0 a 24" 2y 0 0 0
3! 0 0 3" 9" +a) 0 0 0 0 0 0 a 24 2
94" —4a —4a —4a" 0 0 0 0 0 0 0 0 0

Example of solution
.
a“){i% . | 5+443 _ 5+443 - 54443 . 71J

B > Lo =L ) ) PR

s 5
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Polynomial Approximation of Rigid-folding Path

Direction of first-order mechanism at the initial flat state

+ rigid-body motion ~ wp ‘

i

folded state

first-order infinitesimal mechanism

Folding motion by multiple polynomial approximation

CTET

. P S1E-12
; ]

¥. ; F1E-13

= £1E-14
5

z . EtE-15

¥ I * j 3
X n - §1E-16

"

reparametrize

0 02 04 06 08 1
Path parameter
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Summary
1. Kinematic bifurcation P } [
i | =
Existence condition of second-order f | l
infinitesimal mechanism - : L —r-'._
- System of quadratic equations for I
coefficients of mechanism modes *

2. Polynomial approximation of folding path

Sufficient condition for existence of finite mechanism
— Row full-rankness of matrix consisting of g e Y
mechanism modes, self-equilibrium force modes, ¥ x
and Hessian of incompatibility vector
Series expansion of nodal position vector for path yL
X
parameter
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Efficient Matrix Assembly and Adaptive Refinement in Isogeometric Analysis

Bert Jiittler,
Johannes Kepler University

Abstract

Isogeometric Analysis is a computational framework for numerical simulation, which was introduced by
T.J.R. Hughes et al. in 2005 with the aim of bridging the gap between Design and Analysis, by adopting the
prevailing mathematical technology of tensor product splines for discretizing of partial differential equations
(PDEs). This presentation will address two of the many challenges that arise in this context. First, while the
use of spline discretizations clearly offers advantages in terms of the number of degrees of freedom required
compared to classical finite elements, these advantages are then compromised by the higher computational cost
of matrix assembly in isogeometric analysis. We describe our methods for efficient matrix assembly, which
make use of spline projection, pre-computed look-up tables and sum factorization to optimize the computational
performance of the entire process. Second, since the rigid structure of tensor product splines is an obstacle to
the use of adaptive refinement in isogeometric analysis, various generalizations of them have been proposed
in the literature. These include T-splines (introduced by Sederberg et al. in 2003), hierarchical B-splines
(invented by Forsey and Bartels in 1988) and the so-called locally refined” splines (Dokken et al. 2013). In
this presentation, we will analyze these approaches and compare them with the truncated variant of hierarchical
B-splines, which reconciles the requirements of isogeometric analysis with those of geometric design.

References

[1] C. Giannelli, B. Jiittler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, J. §peh, “THB-splines: An effective
mathematical technology for adaptive refinement in geometric design and isogeometric analysis”, Comput.
Meth. Appl. Mech. Engrg., vol. 299, pp. 337-365, 2016.

[2] M. Pan, B. Jiittler, A. Giust, “Fast formation of isogeometric Galerkin matrices via integration by interpo-
lation and look-up”, Comput. Meth. Appl. Mech. Engrg. vol. 366 (2020), 113005.
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Efficient Matrix Assembly and Adaptive Refinement
in Isogeometric Analysis

Bert Juttler
JKU Linz, Austria

joint work with Carlotta Giannelli, Alessandro Giust, David Grossmann, Gabor
Kiss, Angelos Mantzaflaris, Dominik Mokris, Maodong Pan, Bernd Simeon,
Hendrik Speleers, ...

Outline

e |sogeometric analysis
o Efficient matrix assembly
o Adaptive spline refinement
— T-splines
— HB-splines
— LR B-splines

e Concluding remarks

Motivation: Numerical simulation in practice
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Problems

The use of different geometric models causes different problems with data ex-
cahnge.

Related experiences

Ship design: Bronsart et al. (2004):

“On average, generating the panel meshes takes up to 30% to 90% of
the total time needed for wave resistance calculations”.

Automotive industry: Farouki (SIAM News 1999) quotes Morgan, who

“presented the following ‘typical’ breakdown of the effort in a realistic
CFD analysis: 1-4 weeks for geometry repair and preparation, 10-20
minutes for surface meshing, 3-4 hours for volume meshing, and about
1 hour for the actual flow analysis.”

Isogeometric Analysis (IgA)

... is an approach to bridge the gap between
“Geometry” (CAD)
and
“Analysis” (FEM)
... was established by T.J.R. Hughes et al. 2005

1= Use the same representation for Design and Analysis! &1
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A NURBS volume

Grs,t) =Y 3 3 Ryj(ros, )y, (r,s,t) €[0,1]3

i€Z jeJ kek
with
3. (s ¢
Rijp(r,s,t) = wijkliR(r)Fj.5 () B, 7 (1)

>0 2 > wiwBy r(1)Bjr s () B (1)

i'eTj'€T KEK
d = (djjx) (de Boor) control points
Bi,r(r), Bjs(s), Be7(t) B-splines
R,S, T knot vectors
I,J,.K index sets of the control points
Wyjk weights

IgA for a real-world example

D. GroBmann (MTU Aero Engines) et al.,
CAGD 2012:

Comparison of Isogeometric and FEM
simulations of turbine blades subject to
centrifugal forces, pressure, and temper-
ature (linear elasticity with temperature-
dependent material properties)

Accuracy: IgA vs. FEM

~» same accuracy with ~ 10% of dofs
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Computation time I: solving the linear system

~» IGA needs slightly more time than FEM (increased bandwidth)

Computation time Il: assembling the matrices (Gauss quadrature)

~» IGA assembly needs significantly more time than FEM assembly!
(=~ 40 times)

Outline

o Efficient matrix assembly
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Matrix generation challenge

~» Several approaches to address this challenge:

(A) special quadrature rules for splines: Auricchio, Calabro, Hughes, Reali &
Sangalli '12, Hughes, Reali, Sangalli ‘10, Schillinger, Hossain & Hughes '14, Bar-
ton & Calo ’16, ...

(B) computation re-use (“sum factorization”): Antolin, Buffa, Calabro, Mar-
tinelli & Sangalli '15 Calabro, Sangalli & Tani '16

(A+B) weighted quadrature: Calabro, Sangalli & Tani’17, Hiemstra, Sangalli,
Tani, Calabro, Hughes’19 Giannelli, Kanduc, Martinelli, Sangalli, Tani ‘22

(C) isogeometric collocation: Schillinger, Evans, Reali, Scott & Hughes '13, De
Lorenzis, Evans, Hughes & Reali '14, ...

(D) spline projection: Mantzaflaris & J.15, Pan, J.& Giust 20

(E) tensor methods [based on (D)] Mantzaflaris, J., Khoromskij & Langer'17

Integration by Spline Projection

Example: Mass matrix

M;; = /[0,1]‘1 BiBjwdz, w =X detVF|. (1
Spline projection
w(z) ~ Y wiB(w) )
keT

transforms elements into

My~ [ BB S whde = w [ BiBipde. (@)
Jlo.1] keT kel (0.1]
Sum Factorization
Use look-up tables
1
Lt = [, BeagBeslBondoe @
and rewrite mass matrix elements as
d
Mg~ 3wy TT Leigok, )
ke (=1
Efficient evaluation via “sum factorization” (shown for d = 3):
Mi; ~ > L3,izj3ks > L2izjoks > L1 iy jr by Wheykokss 6)
k3 ko k1
= Ai1j1) (koks)

= B(i1i) (j1i2)ks

~ M(i1i5i3) (j14i3)
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Results: Theory

Symmetry is preserved (unlike weighted quadrature)

Accuracy of overall simulation: is preserved if spline projection uses the same
degree as the discretization

Computational complexity: O(Np?t1) (same as weighted quadrature, less than
any other method)

Results: #flops per dof (d = 3):

p=1 p=2 p=3 p=4 p=5 asymptotics
GQ | 1,672 60,534 794,688 5,890,750 30,326,616 o)
EGS | 512 7,047 47,104 209,375 715,392 o)

IL 1,390 27,460 202,642 907,960 3,014,326 Op®)
GGS | 304 2646 11,904 37,750 96,336 O(p®)
wQ 190 1,014 3,350 8,446 17,934 16p* + O(p3)
ILS 200 1,202 4,248 11,138 24,248 24p* + O(p3)
ILS-S | 88 336 954 2,206 4,428 3p* + 0(p3)

GQ: Gauss quadrature; EGS: element-wise GQ with SF, GGS: global GQ with
SF, IL: Interpolation and Look-up, WQ: weighted quadrature, ILS: our method,
ILS-S: with use of symmetry

Results: Speedup (d = 3)

. on a particular geometry. Note that we compare with the highly optimized
G+Smo implementation!
‘p:l p=2 p=3 p=4 p=5
Predicted speedup | 8.36 50.36 187.07 528.89 1250.69
Observed speedup | 5.42  6.38 12.4 29.9 66.3
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Outline

e Adaptive spline refinement

The need for adaptive generalizations of TP splines

refinement area

7=

N\

@

The need for adaptive generalizations of TP splines

refinement area

-

©
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The main competitors

e T-splines (splines with T-joints)

e Hierarchical B-splines

e LR splines (Locally Refined Splines)

Outline

— T-splines

T-splines: The most popular approach

History:

e 2003: invented by Sederberg at al. (SIGGRAPH)

e approx. 2003: T-SPLINE INC. established

o T-spline plugin for the RHINO modeling software

e 2010: Use of T-splines in Isogeometric Analysis

e Dec. 2011: AUTODESK acquires T-SPLINE INC.

e 2018: U-splines
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T-splines: Definition

Blending functions (linear independence is not guaranteed!) associated with
T-meshes are products of B-splines with local knot vectors

Nij(s,8) = By(3y(s) B(5)(t)

o 5 0 B SO T O

=]

Example: Advection Dominated Advection—Diffusion

Solve kAu 4+ a - Vu = 0 with diffusion coefficient x = 10~° and advection
velocity a = (sin 6, cos @) for 0 = 45°.

grey: estimated position of sharp layers

is solved using SUPG stabilization

Example: Advection Dominated Advection-Diffusion

T-mesh Solution patches marked for re-
finement
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Example: Advection Dominated Advection-Diffusion

T-mesh Solution patches marked for re-
finement

ke

Example: Advection Dominated Advection—Diffusion

T-mesh Solution patches marked for re-
finement
=-n
2
Example: Advection Dominated Advection-Diffusion
T-mesh Solution patches marked for re-
finement
]

> a

v
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Example: Advection Dominated Advection-Diffusion

T-mesh Solution patches marked for re-
finement
o
e
#

=

Refinement of T-splines is not as local as we hoped it to be!

Insertion of a grid point may trigger a chain of additional grid point insertions, in
order to get a refinement of the previous T-spline space.

Especially bad for refinement along diagonals.

T-splines: Recent Advances

These problems triggered 521 citations and further research:

AST-splines: sub-class of “Analysis Suitable T-splines” (M. Scott et al. 2012),
a.k.a. DCT-Splines: “Dual Compatible T-splines” (Pavia Group)

— are characterized by the fact that knot line extensions do not intersect
— are linearly independent
— have the expected approximation power

— possess a sub-sub-class that admits refinement with linear complexity
(Morgenstern & Peterseim 2015)

— refinement algorithm in 3D?

Outline

— HB-splines
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H(ierarchical) B-splines: The classical approach ...

... with a new twist!

e Forsey & Bartels 1988: HB-spline as sums of B-spline functions

o Kraft 1997: defines a basis and a quasi-interpolant

e Vuong, Giannelli, J., Simeon 2011: Use in IGA, basis for weaker assumptions

e Giannelli, J., Speleers 2012: Truncated HB-splines — a new basis with better
properties

e Giannelli, J., Speleers 2013: strong stability & completeness
e Manni & Speleers 2015: Quasi-interpolant ~» approximation power

o Buffa, Giannelli, Morgenstern, Peterseim 2016: Complexity of mesh refinement

HB-splines: Definition

Hierarchy of nested spline spaces V¢, spanned by B-spline bases B¢
vt =spanB’ c V*! = spanB‘*!
Hierarchy of nested domains Q¢ c R?
of o ottt
The Kraft basis is defined by a selection mechanism:

K=J{8€ B :supp0s C QF, supp0s g Q*}
¢

HB-Splines: 2D example (p = 2)

B e i ek B o i
- -
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HB-splines: Properties of the Kraft basis

Properties:
Linear independence is implied by local linear independence of B-splines

Weighted partition of unity
Z wgB=1 wg>0
Bek
under certain assumptions on the domain hierarchy
~ is required for geometric modeling!

HB-Splines: First Use in IGA

.. by A.-V. Vuong et al. 2005 demonstrates the locality of the refinement:

i
L B S 8

EmatTEEERREET
LS 1o SRl Rl 2s 2t
b s e S S e s S

refined grid for the advection-diffusion problem / T-splines

Several papers explore HB splines in IGA: Schillinger et al. 2012, Bornemann &
Cirak 2013, Kuru et al. 2013, ...

HB-Splines: Algebraic Completeness (AC)

Question: Given a hierarchical grid, does span /C contain any piecewise polyno-
mial function of degree p and smoothness CS?

e o, (v % T, o

General answer: Only under certain conditions on the “rings” 0\ Q¢+11
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HB-Splines: Answers to the AC question

e Answer ford =2, s = p — 1, p = (p,p) (Giannelli & J. 2013):
Yes if 0\ ¢+ admits offset curves at distance (p — 1)/2:

offset for p = (2,2) bad case for p = (3,3)
e Answer ford = 3, s = p— 1, p = (p, p, p) (Berdinsky & six co-authors 2014):
Yes if 0\ Qft1 admits offset surfaces at distance (p — 1)/2.

e Answer for any d, any s, any p, (Mokris, J., Giannelli 2014): Yes if the supports
of the basis functions in B intersected with €20\ ¢+1 are all connected.

THB-Splines: A novel basis (Giannelli, J., Speleers 2012)

Any function of level £ admits a representation of level £ + 1:
BeB, B = Y (B)(x)
~eBH+1
“two scale relation”, basis of subdivision surfaces

(very beautiful coefficients for uniform knots!)

We truncate the function by omitting the functions ~ which are selected at the
next level:

trunct1(8)(2) = > oy (B)v(2)
yeBHHL suppyzQitl
Applying this idea recursively defines the T(runcated) HB-spline basis 7

HB-Splines: 2D example (p = 2)

B e i ek i —
i oy S Era——
P T i
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THB-Splines: 2D example (p = 2)

THB-Splines: Preservation of Coefficients (PoC)

THEOREM:

Any function in the THB-spline basis 7 has a unique mother:

B = mother(r) if 7 = trunc(...trunc(3)...)

Consider a function f which has a representation at all levels:
f@y= > cgf(z) €=0,1,2,...
BeBt
The representation of f with respect to the THB-spline basis 7 preserves the

coefficients of the mother functions:

fz) = Z Cmother(r)"(z)
TeT

THB-Splines: PoC implies Partition of Unity

The B-spline basis form a partition of unity
1= )Y 1:-8() ¢=0,1,2,...
peBt

The representation of 1 with respect to the THB-spline basis 7 preserves the
coefficients of the mother functions:

1= Z 1-7(x)

TET
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HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.

[ ]

AP R O O 6.,

L 11D
-
'\'.I-'\-_\_\-\I\I~
— -
- i -"? N ‘-,l'
¥ o
B .

HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.

HB-Splines vs. THB splines:

HB splines violate THB splines possess
the convex hull property.

N, Ty | I e !
he e, e e )
[T a——— LI SR

S

e 3 )
i -l - .-J"
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THB-Splines: PoC gives Greville points

Greville points (1D: abscissas) are the coefficients of the coordinate functions.
Used as collocation points in BEM

The Greville points of the B-spline basis are well known:

x= Y €& B(x) £=0,1,2,...
peBt

The representation of x with respect to the THB-spline basis 7 preserves the
coefficients of the mother functions:

= Z Emother(r) * ()
T€T

The Greville point of a THB-spline function is equal to that of its mother!

THB-Splines: PoC implies strong stability

Theorem:
There exists constants C; and C5 such that

Cimax{cr:TeT}< Z crT
T€T oo
The constants depend neither on the choice of the subdomains nor on the

number of levels.

<Comax{er 7T}

Cr=1

Proof by PoC.

THB-Splines: Approximation Power

Manni & Speleers 2015:

Using PoC, Quasi-Interpolation operators for THB-splines can be derived from
those of standard B-splines and provide optimal approximation power.
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THB-Splines: Numerical Results (Giannelli et al. 2016)

Approximation of geographic data: 1,3,6 levels + level distribution

THB-Splines: Numerical Results (Giannelli et al. 2016)
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THB-Splines: Numerical Results (Giannelli et al. 2016)
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THB-Splines: Numerical Results (Giannelli et al. 2016)

Ad hoc refinement of unit cube

THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-
diffusion on unit
square:

/|
cu
L4 1

THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-diffusion on unit square:

afl L agdise b THTL apiiea
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THB-Splines: Numerical Results (Giannelli et al. 2016)

Advection-diffusion on Indiana:

o} juaidsiterd v i) by ad hasriain (R e R ]

THB splines are well suited for Geometric Modeling and IGA!

THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

Aded A

Adod AL

~» THB splines improve surface quality
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THB-Splines: Numerical Results (Kiss et al. 2014)

Turbine blades - cooperation with MTU Aero Engines:

Two strategies for CAD export

Outline

— LR B-splines

LR-splines: The Newcomer

History:

e around 2010: Locally Refined Splines invented by Dokken et al.
e since 2010: presentations at various conferences and workshops
e around 2010: patented

e 2013: Theoretical paper appears in CAGD
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LR-splines: Definition (Dokken, Lyche and Pettersen 2013)

start with a tensor-product mesh
insert meshline segments

split functions whose support is traversed by meshline segments

The set of LR splines is independent of the order of meshline insertions.

LR-splines: Properties

LR spline spaces on nested T-meshes are nested.
Linear independence is not guaranteed.
Detecting linear dependencies can be costly.

Current work (PhD thesis of Lisa Groiss, 2023): Mesh refinement for perfect LR
B-splines bases (locally linearly independent, partition of unity)

Outline

e Concluding remarks
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Concluding Remarks

Fast matrix assembly via spline projection and sum factorization
Three approaches to adaptive spline refinement

Ongoing work: Refinement ensuring local linear independence
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Shape generation of free-form grid shells with polygonal panels

Jingyao Zhang
Kyoto University

Abstract

This study addresses the shape generation of free-form grid shells with polygonal panels through two distinct
approaches:

(a) For the generation of triangulated meshes with a predefined Gaussian curvature distribution, e.g., Figures
1 and 2, we introduce an efficient two-step method that integrates discrete Ricci flow and optimization
techniques [1, 2]. The first step is to find the feasible edge lengths satisfying the predefined Gaussian
curvature distribution, making use of circular packings. The second step is to embed these edge lengths
into a three-dimensional space, by solving an optimization problem.

(b) For the generation of free-form planar meshes composed of polygonal panels, e.g., the planar quadri-
lateral mesh as shown in Figure , we propose a mechanical approach, modelling the mesh as a planar
tensegrity structure. Self-equilibrated tensegrity units enable planarity of the panels, although this is not
explicitly addressed as an objective in solving the form-finding problem.

Figure 1: Surface with non-uniform Gaussian curvature Figure 2: Globally developable surface

Figure 3: Planar quadrilateral mesh

References

[1] J. Y. Zhang, M. Ohsaki, A design tool for globally developable discrete architectural surfaces using Ricci
flow, Japan Architectural Review, Vol. 6 (1), 312410, 2023. 10.1002/2475-8876.12410

[2] S. Kaji, J. Y. Zhang, Finetuning discrete architectural surfaces by use of circle packing, Journal of Asian
Architecture and Building Engineering, Vol. 23 (1), pp. 188-203, 2024.
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Shape generation of free-form grid shells

with polygonal panels

Jingyao ZHANG
Ohsaki Group

Kyoto University

2025/3/10

Grid shells (polygonal panels)

Triangular mesh:
1. Globally developable discrete
surfaces

2. Discrete surface with specified
Gaussian curvature
(with Prof. Kaji, Kyusyu Uni.)

Polygonal mesh:
3. Planar polygonal grid shell

hexagonal

Topic 1:

Globally developable discrete surface
using Ricci flow

1Y. Zhang, M. Ohsaki,
A design tool for globally developable discrete architectural surfaces using Ricci flow,
Japan Architectural Review, Vol. 6 (1), 312410, 2023.
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CP for Discrete Surface

>

»

»

Conformality: keep corner angles = too rigid!

Preserve intersection angle (edge weight) instead

Circle packing is defined at vertices of mesh

Radius at vertex ot m e g = 1)

Mean radius e
. L}
Edge1 weight )
Edge length 0 =l bl + Bur oy
variable during fixed

Ricci flow

+ Chow, B., & Luo, F. (2003). Combinatorial Ricci flows on surfaces.
D iscrete RI cci ﬂ ow Journal of Differential Geometry, 63(1), 97-129.

» In the smooth case, the Gaussian curvature is determined by the Riemannian metric.

» Two Riemannian metrics g,,g, on a manifold are conformally equivalent if they are
related by a positive scaling at each point.

=y, MR

> For a compact surface with Riemannian metric (X, g;;), Hamilton (1988) introduced the
2D Ricci flow

» It was further proved that for any closed surface with any initial Riemannian metric, the
solution of the Ricci flow exists for all time (reference?).

» After normalizing the solution to have fixed area, the solution converges to a constant
curvature metric conformal to the initial metric as time goes to infinity.

» Chow and Luo (2003) presented the analogous flow in the combinatorial setting, and

showed that the discrete Ricci flow has solutions for all time for any initial metric and
converges exponentially fast to the circle packing metric constructed by Thurston.

dly radius .
Il - - K a1, = I 7, in Euclidean space E" =0
! rtarget curvature __conformal factor aal

Procedure 2: Geome

Final geometry by optimization: « Solve a nonlinear least-squares problem
with bounds
e | * Simple but robust
L] ! % m . Coordinates =€ ¥}
T e e T BT
i — Boundary
L T [T v ol I, & F
i L

SciPy optimizer:
¢ Trust Region Reflective (trf) algorithm

Edge length from Ricci flow
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iEEEEEHiEHEEEEEE;‘

» Span: 30 m
» Height: 20 m

> 169 vertices: 42 boundary, 127 interior
> 462 edges
»> 294 faces (triangles)

> Coefficients for objective functions:a; = 1.0,a, = 0.01
» Scaling factor for initial radii: @ = 1.2624

Initial geometry

Example 1: Modified

» Metric embedding: trusted-region

» Scaling factor for edge length: 8 = 1.6619

Final geometry

Example 1 ature
RXXITIYE
RXIXEERRY N
EXITEE Y YN
R A R B S e e = 2 2
AR ERTA AR
L R s el s S
L L B e 2 L e 5
R I TR e X
B R S N I
R I E R RS R X
e Y .
EIXEIETETE

Initial
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Example 1: Efficiency

i 'a {
b b
B a5 ’ !

HHH'\. 'lll‘l |
"'\.Hx II' |
g | NPT |

Faay iy

Ricci flow Geometry

realization

Example 1: Developed

Mountain

Valley

Example 2: Initial geometry

» 181 vertices
O 145 interior vertices (constrained)
O 36 boundary vertices

»> 504 edges
O 464 interior edges (constrained)
O 40 other edges

» 324 faces (triangles)

» alpha= 12296

Initial geometry
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» Metric embedding: trusted-region

> B =1.5435

Final geometry

Example 2: Curvature
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Example 2: Efficiency

Geometry realization

Ricci flow
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Example 2: Developed

Mountain ; il

Valley

Current Study:

» An efficient tool for designing discrete architectural surfaces, that are globally
developable and span the prescribed boundary

» A simple modified circle packing scheme has better performance in conformality
than traditional Thurston’s CP

Future Studies:

» The final geometry is not close enough to the initial (usually desired) one
-> Divide the surface into several components

» Meshes of other shape

» Structural performance

Topic 2:

Discrete surface with user-defined
Gaussian curvature using Ricci energy

Joint work with Prof. Kaji, Kyusyu Uni.

S. Kaji, J.Y. Zhang,

Finetuning discrete architectural surfaces by use of circle packing,
Journal of Asian Architecture and Building Engineering,

Vol. 23 (1), pp. 188-203, 2024.
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Ricci En ergy Specified Gaussian curvature

. .. . . Specified boundary
» Metric optimisation: Minimize Ricci energy

Tiery (K() — K + 4, Eeijee i il iu® = 0

» Embedding optimisation: Minimize coordinate errors
Beyee (2 —wl — AR + 4y iy, 19 — &F

et mcmimimemomimim o

» Span: 30 m
» Height: 10 m

» 169 vertices: 42 boundary, 127 interior
»> 462 edges
» 294 faces (triangles)

n Initial geometry
Example 2a: Final Geometry
» Discrete Ricci flow (Matlab): 19 sec ;
» Target Gaussian curvature for interior vertices
Oyk =15 i
= 15 _ Y
Ok = ;= 00118

Final geometry
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Example 2a: Gaussian Curvature

e
-b-l--hq-l-i-!-, A
R T |
B y
S i
[
.
.
o

" Initial

0.015

0.01

Gaussian curvature

0.005
0

20 40 60 80 100 120 140

Example 2b: Irregular triangle

» Span: 30 m
» Height: 10 m

» 169 vertices: 42 boundary, 127 interior
»> 462 edges
» 294 faces (triangles)

Q o

Ex2b: regular shape

» Target Gaussian curvature for interior vertices

O ¥K; —15
ok ———00118

F L]

Gaussian
curvature

Initial
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Example 3: Various curvature

Ll
Ham YR LL] it
frEEsmane

T T Ln

Final curvature

Ex4: amplifying curvature

1.1 times of

Gaussian

curvature
Initial

Planar polygonal grid shell
using tensegrity theory

JY. Zhang, M. Ohsaki,
A mechanical approach to generation of planar polygonal mesh for grid shells,
under review
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Existing studies
Discretization m
P iaa e
> _. -
v .

Continuous Target geometry
surface

/ﬂ\<:j

Geometrical approach
PQ mesh + Circular net
* Chebyshev net
* Conjugate direction field
* Optimization

Objective 1: Planar polygonal mesh
Objective 2: Approximate the target geometry n

+ Blender + Python
Curr ent stu dy + hups:/github.com/martinsprojects/trussgen
Discretization m
. - \’c—‘\‘._ o
) .t 3
v ~

Continuous Target geometry

surface ﬂ
AMechanical approach
. ‘ Form-finding &

PQ mesh Geometry correction

Tensegrity unit:
4 cables: Quad edges

2 struts : Auxiliary

1
1
i
Tensegrity = Tensional + Integrity |
(R.B. Fuller, 1975) i

1

1

Self-equilibrium

Why tensegrity? (Example 1) o Co-planar- Stable

Small planarity error %"
= Co-planar

: l ] Initial Geometry
§ train energy ] g
- & Stable ™

) I :..n.-\“... 3 ) Final Geometry
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Form—finding Methods

» Introduction to Tensegrity
» Applications
> Stability
» Form-finding (or Shape-finding)
@ Intuition Approaches
@ Analytical Approaches (using symmetry)
@ Numerical Approaches
* Adaptive Force Density Method
* Dynamic Relaxation Method
* Non-linear Analysis (NLA) Method
* Optimization Method

NLA for Unstable Structures

: Equilibrium matrix

: Prestress vector
Unbalanced force vector|

: Stiffness matrix

d: Nodal coordinates

"0 o

Initial )
- 'Suﬁ"biently small Final

*Configuration [Enp |configuration
“ ‘ END
Prestresses DS -prestresses
Update ' ‘ Kd = —f
I

coordinates
prestre$ses

d=-Kf /=

___________

Struts 100 =il
Cables 10 1

84 lterations

Initial
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Objective 1: PQ mesh
ProPosed Method Objective 2: Approx. the target geometry
Jeamewy [t
! |

Objective 1 sy 1
gl

i
Objective 2

balamm Fmree

amrmarey
CREECTHER

Self-equilibrium Equations:

Ex=Ey=Ez=0

E: Force density matrix
x,y,z: Nodal coordinates

i (Force Density g, =/, //;)

@tete + 4 + ¢ + —G=

E= Gitq,tgs s =4
¢ +qs+qs s
Sym. G+q,t g,

Self-equilibrium Condition
» Self-equilibrium condition 1
*Ex=0 = x,y,z=¢ |’ +iaiPl.

e h>=4  mmp Three-dimensional

[*E has four 0 eigenvalues Self-equilibrium }

7“.{ Other eigenvalues are positive Super-stability

» Geometry modification =
Ex. =0 X:=x+y_ A%i=x+Bg,
i

_ Null space

L] nt-
E(x + Z %) =Ex+ E [1.Ex, i: | Self-equilibrium

{ : NOT violated!!
1= =
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Geometry Correction

X+ B_ﬂ - _E_I.J i Target geometry

X=X+ A% = x;‘ﬁﬂ,

New geometry ]
Geometry correction
Ilh ﬂﬂ
E-.:.—L 1% = Ex+ L.i.E:r.. =1
=5 o |

Errors

» Planarity error
O Distance to approximated tangent plane

|Ii::||||||'|'|1.'.__,:| = [wi; —m)-my
Center Normal
O Sum squared distance

- T wd - o7 T
o = wngiog n) 4y v (em v
i
0O Planarity error ((average distance)

1
- ||.|".I%'"

» Geometry error

||:-

5III—I-|II +|¥ — ¥l * + || — &l [*
Final Target
geometry geometry

Tensegrity Model

Architectural surfacef

Form-finding
Find the geometry (& prestress)
at the state of self-equilibrium

. St .
>4 Y Y. P p'.
/A"Y";A; ‘1;\
Y(JAY SAY~
LINLZ
V

Tensegrity model
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Example 2: Quad panels

» Span: 18.0 x 18.0 (m)
» Height: 4.9 (m)

» Nodes: 100, quads: 81
» Cable stiffness: 10°N
» Strut stiffness: 103 N
» Strut prestress: -100N
» Computational time: 0.19 sec

. Yon e e B R y

“ AT Nt .
o WY TR S Aoy L5 2 g
. e Y R e S oy
L 7 AN 2 gy AT Sl (oS
a" [ Blue: cable in tension
Red: strut in compression

Blue: initial geometry
Red: final geometry

\
\
Geometry 4
correction '\
)

ey Eni
b
Manariny B

Geometry: 4.44 X 10-3 m e
Planarity error: 5.21 X 10-6 m

Example 3: Hexagonal panels

» Span: 29.9 x 26.0 (m)

» Height: 6.8 (m)

» Nodes: 126, hexagons: 43

» Cable stiffness: 10° N

» Strut stiffness: 103 N

» Strut prestress: -100N

» Computational time: 0.42 sec

.'n.- L

Blue: cable
Red: strut

l.'l...i'.i

Blue: initial geometry

Red: final geometry
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£ s
wnne -/J,_r"— Geometry
'-E'- Iln' \‘ correction | g s
=X (] K
' i :
L= |I LI ]

I | ek

it i i " !

0 4 i 1% Ea 4

Geometry: 0.0051 m
Planarity error: 0.0058 m

Fanarity Ermos

Example 4: Hybrid panels

Span: 24.6 x 19.4 (m) Blue: cable
Height: 5.8 (m) Red: strut
Nodes: 160,

Octagons: 32, Quads: 31
Cable stiffness: 10° N

Strut stiffness: 10> N

Strut prestress: -100N
Computational time: 1.3 sec

VVVVYVVYYY

Blue: initial geometry
Red: final geometry

= - -
q-._.tl;. .|:' '

L

-4 —
= 'I (1 o3
| 1\ Geometry =
£ ] ; E
E |l correction b i E
- i SRR G L G R L b

- - - - [

i T 1 W &b

liEmioas

Geometry: 3.80 X 10-4 m
Planarity error: 1.02 X 10—4 m
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Tessellation as a design principle for mechanical metamaterials

Yusuke Sakai
Sony Computer Science Laboratories

Abstract

Tessellation, a geometric pattern filling a plane without any gaps or overlaps, serves as a powerful tool for
designing mechanical metamaterials. Mechanical metamaterials are artificial structures engineered for unique
and tunable mechanical characteristics. In this talk, we introduce how simple polygonal tessellations can de-
fine the internal units of metamaterials, allowing tailorable mechanical responses through geometric design.
By adjusting geometric configurations, we demonstrate intuitive tunability in deformation behaviors, leading
to applications in transformable curved surfaces and tubular structures with unique mechanical behavior. De-
signing tessellation offers a systematic design scheme for adaptive and programmable structures, expanding
possibilities for applications in aesthetic architectural roofs and mechanical devices.
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Tessellation as a design principle
for mechanical metamaterials

Yusuke Sakai

Yusuke.C.Sakai@sony.com
Sony Computer Science Laboratories -
Kyoto

& SonyCSL

Tessellation

https://www.alhambradegranada.org/ja/info/gale
riadefotosalhambra/azulejosalhambra.asp

/ \
zero Polsson's ratio metansaterial l

https://cs.uwaterloo.ca/~csk/hat/

[Smith et al, 2023] [Clarke et al, 2023]
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Mechanical Metamaterials

Negative Poisson’s ratio Torsion-compression metamaterial Pentamode metamaterial
[Alderson and Alderson, 2007] [Frenzel et al, 2017] [Kadic et al, 2012]
C. . i b1 i 5
il . - B . ‘ ,\h‘* .f \f -
:@ e el ; . =1 P
. 7 ol i | , .{ F
i | 1 r hi-‘
amd el e v = "‘
— etc--
Energy absorber Wave guide system Mechanical cloaking
[Lee et al, 2019] i [Bordiga et al., 2024] [Zhang et al., 2015]
sl L
i .
- — EX 3%

Exotic mechanical properties for enhanced applications

From 2D to 3D

Carl Friedrich Gauss

(1777-1855) Parametric Wood: Image
(wordpress.com!

“Morphing a thin plate into a programmed
shape is a challenging problem, as highlighted

by Gauss-+" » ?
[Siéfert et al, Nature Materials, 18:2019.] *
Quadrilateral Other tessellations

From tessellation to mechanical metamaterials

S e s |

e
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Extract ENEEE Extrude

Rotating quadrilateral Edges Initial flat grid
P Flexible
o
Sy Stiff
: y B 0 <La<180° ) )
= - Thin & high wall
member

Eigenvalue estimates soft and stiff modes

Stiffness matrix: K

Kv :@M v Mass matrix: M Free boundary constraints
i i ) )
Eigenvalue: /11' Lanczos method,
Eigenvector: v, (Abaqus Ver. 2022)
a4y -y - 4y
1st 2n 3r
J < . <
& < Q < dip ‘
4th 5t 6th 7th 8th
Out-of-plane In-plane
Rigid body mode 1=0 _
(zero-energy mode) Elastic mode
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Soft yet stiff

f '-E-l I 941.49 times stiffer x 41.871
=1 ll-ll._ __‘nll ' '
f —Ii- .I. - i 3
! | @ |
ey r_!__m_u L ‘% :é'r-ﬂ'f'-’a. @ : &

e i
<|—4-1f|k|n

""""""" -6 5250
=tk e

Larger eigenvalue ratio

ip-2445 8

ﬁ-“?&

a-fn AW 5L
-"-!.H.lf..e‘l

~RTE.13 A=, 5622

=l h ]

x 134.58

Better deformability

i

0T N
-

x 183.61

10

From tessellation to mechanical metamaterials

Soft mode

Stiff mode

Soft mode

Stiff mode

New fidget toy?

“ o

SR

%.5%% (Purupuru)” structures

12
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Surface Zoo: Large-deformation analysis

- <
@ BT, § =

Saddle

Cone-like

|deal deformation mode
(the 7-th mode)

o i
ot ;

1/8 parts of Schwartz P surface

13

Diagonals produce positive Gaussian curvature

T ~ e
. , ey

b AL ;

Il‘- —-I'.-- "-:. il '—-Iq { i .

d il _:'l:;_ | - "

e 4

e :.7': Diagonal lines

Negative Gaussian curvature Positive Gaussian curvature

14

Surface Zoo: Hybrid grid pattern

b 2
Pasitive and nagative Cambination of saddle and
Gaussian curvalures twisted shape
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Experimental validation

Initial flat grid

Thermoplastic Polyurethane
(Young’s modulus 35MPa,
Poisson’s ratio 0.4)

Rotating quadrilateral
BEEANREASTTUTFIL

Rotaterng quadntateral Ecicpis Imitial Thag gnd

HL
xRN TCREL LR ERT LA
WinPsorg desaiting Lo adding Mermge-joints. Suf tanget Cuived sunisies can b obitared urder
ApEiGDreate Tord e 1 ibuirg
B LES i rHRGT-RETEROWEL &M R
A bist buig Bhal oormbanes Baidness snd Latineds wheCh Can sk B dophid 0O vl atsan conbigl

From tessellation to mechanical metamaterials
-

s e s e T2

[Sakai, 2023]

18
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Poisson’s ratio and Gaussian curvature

Poisson’s ratio v = & &= (Liﬂi _Ldef) : Strain
gl Lini

v<0
1111

Discrete Gaussian curvature

1% i dl s

Angle defect On 4-valent vertices
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Thickness & discrete Gaussian curvature

Larger thickness = Larger absolute value of discrete Gaussian curvature
22

Member profile & discrete Gaussian curvatures

t,=3.54,1,=177 t,=251,=25 t, =5 1,=125

Thin & high wall member = Larger absolute value of discrete Gaussian curvature
23

Convexity & Concavity = Function

N (TS

ST

L =i P E. '-'I}LF':'__? B! _.%
LHTH [Ecali

iy v h% l"',|:|-=- = | _'_"

: H GRnzaEiE i

24
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Convexity & Concavity = Function

27

3
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Rhombic sheet

Fia. vr

¥ | 3
=FE» 4"_/"5
RotQuad tessellation . ; Band
In-plane deformation Out-of-plane deformation

28

Simulation setting
thickness ¢
Young’s modulus E

In-plane Out-of-plane
Mesh generation stiffness: Ewt stiffness: Ew?/12
[Combine & Clean] = [TriRemesh] [EdgeLengths] [Hinge]

J*;?’ ] Kangaroo?
i E # l (Dynamic Relaxation)

30
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Comparison

Numerical Simulation Physical Model

31

Wiultistability

WELEA --> BEHIED

FN s o e v e T % -~ & a1 % P
Lonnection F;.jr'l:l:.;fll

-
e
e

30 Printable withaut
any suppoft parts

Attach & Detach
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Surface zoo

34

Surface zoo

Gaussian curvature

Gaussian curvature

<0

>0

Monster with two arms

35

Multi-stable Rhombic ﬂlu:ki!atﬂi!#tﬂl..t iHELJ:ﬁ
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CAADRIA2025 in Univ. Tokyo
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All you need is rotation: Construction of developable strips — Part 1 Theory

Takashi Maekawa
Waseda University

Felix Scholz
Johannes Kepler University

Abstract

We present a novel method for generating developable strips along a space curve, offering flexible design. Cen-
tral to this approach is the rotation angle, which governs the relationship between the Frenet frame of the input
space curve and the Darboux frame of the curve on the resulting developable strip [1]. By treating this an-
gle as a free design parameter, represented by any differentiable function along the curve, our method enables
the creation of diverse developable geometries. This generalization significantly expands the design space,
allowing for developable strips that share a common directrix curve. The rotation angle can be specified in
various forms, such as constants, linear variations, sinusoidal patterns, or solutions to initial value problems
defined by ordinary differential equations. By introducing this versatile framework, we advance the theoreti-
cal understanding of developable surface design, providing a powerful toolset for exploring and manipulating
developable geometries with exceptional flexibility.

References

[1] T. Maekawa and Felix Scholz, “All you need is rotation: Construction of developable strips”, ACM Trans-
actions on Graphics, vol. 43, no. 6, 2024.
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developable strips — Part 1 Theory

Takashi Maekawa Felix Scholz
Waseda University Johannes Kepler University

All you need is rotation: Construction of

rotation angle between the Frenet and Darboux frames.
o(t)=-0.06t+ % along a helix

r

Motivation 1
Ease of designing developable strips

We generate developable strips along a given space curve by designing a suitable

t=2n
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Motivation 2

Ease of fabrication for various applications

Design Flatten Cut Fabricate by bending

Frenet-Serret formula

B Motion of the moving Frenet frame c(s) Frenet frame
Arc-length parametrized curve ¢(s)

b

Binormal

t' 0 ki) 0 1
n | = |=iklz) ] righ] [m
b’ f =r{s) 0 |[b e(s) n

Principal normal

B Arbitrarily parametrized curve c(t)

t i Kl o &(t) =A(D) c'(s)
nj = At} [=x(r) 0 Tl t
b Ll =ri) L1 Parametric speed

N4 Surface normal

Motion of Darboux frame

B Arc-length parametrized curve ¢(s) Darboux frame
i il kg3l mals)| |1 .

B =|-xis) 0 risf[B] @ e

N' —knls) —rgls) i M c(s)

B Arbitrarily parametrized curve c(t)

i i kalt)  katf)] [t e(t) =A(t) ¢’ (s)
B| = Afr) [=xglr) H rglt) | | B
M ~kplt)  —=rglt} i} M Parametric speed
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Rotation angle @
N

Common to both frames

B=N Xt
c(t)
t 1 0 0
Darboux frame gl — 10 cosg sing Fre?et lt)“rame )
t-B-N N 0 —sing cose|lb o
K, Ky T, 10 terms of ¢
m Plug (2) into (1)
B = -—mgt—rgsmgn+myeosyh
N = =iyl - PR 1= Fyaing b
m Differentiate the second and third equations of (2)
F _f,‘_. 1 Jdg
L] -I.Lil'h-_?l—'illnl'l."i‘ :Illl-tu:'- ;-i.‘ +,,‘—-\.}l‘
dg dg
,i\" = i'-i|'||_'|—.'|!1.llll—+lf—~r|1—~!!|.,“:+I|h
m By comparing B’ and N’ we get
Ky = —K &N Ky = K COE(Q Ta =T+ E

Key idea

The Darboux frame generally exists only if there’s a surface
containing the curve.

However, in this research, we take a reverse approach.

We first define the rotation angle @ independently of the surface.

Then construct the developable surface based on this rotation.
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Unit ruling direction vector d N
Do Carmo 76
Developable surface: The
envelope of the family of | Lk
tangent planes along a curve = ??i_h' FLEE
IN| 'q'ITE + Kz
t
e(t)
- d
i . .
Tg=T+ - Ky = —E SN B= cospn+sing b
5

57 ]
ir+ fll-r ksimip) cosiglm + xsin®[gkb

| dg . » -
y [T+ ;EI' + &% gintig)

Pi

B-spline representation

We fit B-spline curves to
p; and m; based on the
parametrization of ¢;

By linearly interpolating
these curves, we generate
B-spline developable strip

Rulings become
isoparametric lines

Flattening of developable strips

Split the quad ABCD
into two triangles ABD
and ACD

AB, AD, CD
&, Epare preserved

B and C are transformed to global
coordinates
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Well-known rotation angles

L]
Tangential developable ~ Rectifying developable  Envelope of the family of tangent
(along helix) (along helix) planes (along a helical curve on torus)

o) =0 o) = 7 ¢(t) = cos “(bN)

New rotation angles ¢(t)

B o(t)=q (constant)
B o(t)y=ptt+q (linear function)

B (t) = psin(ot) + q (sinusoidal function )

. —d(zit) = f(p) (solution to an ordinary differential equation)

o(t) = g (constant)

T .
oty = % along a cubic Bézier curve o(t) = 5 along a helix
r P \)\/
P el LB
= (-‘4,? ’ e
o 43
7 i <
Perspective view Right view Perspective view Front view
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o(t) =pt + g _(linear function)

¢o(t) =-0.06t + q along a helix

\-
- »
.~ edgeof (
regression ‘__.-"i fi
e
helix
11 o
g=T05) =500 ) g=5r ) g=3(60" )
.
Edge of regression
A4/ " —
',,‘\ /“ ®| - — ik
| i -
™ | S —
N 727 1Y 3 S
ARLL N e
helix i i 3 |1 i i i
top view Fuad vt w1

@(t) = psin(wt) + g
(sinusoidal function )
Suitable for closed loop strips

Toroidal blade along an ellipse: ~ @(t) = 0.8cos(t ) +g
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Ribonization
Approximate a surface using multiple developable strips (torus w=3)
c(t)=((R+rcos(wt))cost,(R+rcos(wt))sint, rsin(wt ))
— -1 .
géfl)ve_niioosnal(ll;letggd @(1) = psin(wt) —q @(t) = psin(wt) +q
: |'Fi', ;. "1! I_.-‘\-.I
A AT WANWANE
[ I . |1 I VI L f
(! . ! F A

iy [
¢l [
1
[

L |
=0
i

doe(t .
% = f(¢) (solution of 0.d.e.)
T+ rj—f b
i-d= |’ - = s 0 = constani
yirs ";FE]I + k2 sint(g)
dp PTG
ds T nldy
e R .',v‘
RN
{ (7’ Y/
O ;"-:{'
6 4 Rotation minimizing frame
Rotation minimizing frame (RMF)

I
9—2

iy n
Tg =T+ — =cos;=0
(5]

Lo

s
¢
ODE reduces to integration problem lrp == f Ac(Hdt + g
AT}
=y )

g-aesthetic curve (r
n L 'Y
_— \

\

®o=3

Log-aesthetic curve

=0
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Differential geometry of developable strips

Gaussian curvature K= 2N=M2 =0 asN=M =0

EG - F2
Principal curvatures  i,q, = H+ |H] Kmin = H - [H]|
H>0 Kpax=2H Kmin = 0 (ruling)
H=0 Kmay=0 Komin = 0
H<0  Kmgx =0 (ruling) Kmin = 2H

Offsets of developable strip

K: Gaussian curvature of offset surface

K: Gaussian curvature of developable strip
H: Mean curvature of developable strip

d: offset distance

K

K= 1+2Hd+Kd?2

The offset surface of a developable surface is also a developable surface

RMF along helix RMF with ¢, =
with gy = 0 + square plate

us
2 Offsets of blue strip  Offsets of blue and
S silver strips are added

Triply orthogonal structure
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Summary & Conclusions

B This work introduced a method for constructing developable strips along
space curves by designing the rotation angle ¢ as a free design parameter.

The angle ¢ defines the relationship between the Frenet frame of the input
curve and the Darboux frame of the curve on the resulting developable strip.

B The approach has broad applicability, including in architecture, windmill
blade design for papercraft models, and triply orthogonal structures, which
will be discussed in Part 2 of the talk.
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All you need is rotation: Construction of developable strips — Part 2
Applications

Takashi Maekawa
Waseda University

Felix Scholz
Johannes Kepler University

Abstract

The versatility of the proposed method is demonstrated through both computational and physical examples,
showcasing its broad range of applications. These include architecture, windmill blade design, curved folding,
triply orthogonal structures, and the creation of surfaces with log-aesthetic curves. Such examples highlight
the method’s potential in fields like architectural design, industrial design, and papercraft modeling, offering a
powerful tool for innovative surface design and fabrication. Specifically, we present:

e Architectural Design: A helical structure spanning the parameter range 0 < ¢ < 27

o Inverted Catenary Arch: A model composed of two developable surfaces intersecting to form the shape
of an inverted catenary.

e Deltoid Evolute: A construction based on the evolute of a deltoid curve, which intriguingly forms another
deltoid when viewed from above. This is expressed through developable surfaces aligned along the
deltoid.

e Papercraft Windmill Blade: We designed a vertical papercraft model with a developable surface. Unlike
horizontal-axis turbines, vertical-axis turbines are wind-direction insensitive, removing the need for yaw
control.

o Additional examples demonstrating the versatility of the method will be presented during the talk.

References

[1] T. Maekawa and Felix Scholz, “All you need is rotation: Construction of developable strips”, ACM Trans-
actions on Graphics, vol. 43, no. 6, 2024.
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All you need is rotation: Construction of
developable strips — Part 2 Application

Felix Scholz
Johannes Kepler University

Takashi Maekawa
Waseda University

Planar curve (ellipse)

0= g (rectifying developable)
T+ i‘f W w sing gl cost gl i o+ & i | i

A
wir+ s el ain’ip)

@(t) = sin(2t) + g

Inverted catenary arch

a=4, (=10 for —£ < ¢ < ¢, w =1 (half-width of strip)

9(1) = cos(zp) — 5

Directrix: Inverted catenary, ¢(¢) = (¢, 0, —a cosh( 2 )ta cosh(é))
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Mobius strip

Directrix: ¢(t ) = (sin(t ), (1 — cos(t ))3, sin(t ) (1 — cos(t ))
i o LT
A Al el F
._ﬁ | f ” |'|{
1 et ! V|

ORI
B

9= g (rectifying developable) |-

Three developable strips
sharing the same Bézier
curve

RMF

Helical windmill (3 developable blades)

Directrix: Helix, ¢(t ) = (a cos(t), a sin(t), bt ) witha =50,b=35,0<t < 2?7r
¢(t) is determined by RMF
Qo= g: blades obtain lift rather than drag from the air
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Helical windmill

Sea shell surface .

i

https://en.wikipedia.or
N . W= g/wiki/Seashell_surfac
r(t, ) = helix(t ) + rt (— cos(8)n(t ) + sin(6)b(t )) : c#/media/File:Seashell
a =20, b =30 for the helix Surface PNG
=15, 6 = 0, the half-width w(t) = %t o

LTy

e

J
@(t)=0.5sin(t) + < @(t)=0.5sin(t) + 5 Difference

Sea shell surface

6=0, 8=nx
wi(t) =2 (1+0.2sin(30¢)), wi(t)="2(1+0.2 cos(30t)
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Hemisphere (Reichstag dome)

Hemisphere: x? + y? + z2 = a?

Directrix: ¢(t ) = (Va?>—b?t?cos(At), Va> —b> t*sin(At), bt), 0 <t §%
¢(t) is determined by RMF

a=1,b=1,and A =108

T

https://en.wikipedia.org/wiki
/Reichstag_dome

Deltoid evolute

Directrix: Deltoid, ¢(t ) = (a(2 cos(t ) + cos(2t )), a(2 sin(t ) — sin(2t )), 0)
a =50 (radius of small circle)

¢ = P4y = const

| ) \\ T,=0,leadingtod - t=0
.‘ YRR -~
e // -& roj = (d * )t +(d * m)n = cos(@ e )0
l// -
# v/
»~
l w(t) cos(@ge ) = K(t)

https://en.wikipedia.org/wiki/ Evolute of the deltoid
Deltoid_curve#/media/File:D
eltoid2.gif

Deltoid evolute

3D Top view Front view Perspective view

Flattened strip
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Loxodrome

A loxodrome is a curve on a sphere that intersects all meridians at the same angle a

Sphere: r (u, v) = (r sinu cos v, r sinu sin v, r cosu),
where0<u<mand 0<v<2m

Directrix: Eqn. of loxodrome v = tan « In tan % +c
(c is the integration constant)

v=c
u =2 arctan(e a

directrix
—— w(v) =cos(§—a) %(ub— Ua)

THE LOXODROME ON AN ELLIPSOID
R. E. Deakin, 2010

meridian

Loxodrome
3n sm
4’ 4’

=

—_——

Integration constant: ¢ = g,

@

The maximum and average deviations from the sphere normalized by sphere’s
diameter are computed to be 0.629% and 0.327%, respectively

»|3

Loxodrome

VN )
- 9
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Curved folding

Directrix: Helix, ¢(t ) = (a cos(t), a sin(t), bt ) with a=50,b=25,0.6 T <t <2m
w(t)=15

iy wainipl
Solve & = "ol

o
—r whereG:Z .

Curved folding

Directrix: Helix, ¢(t ) = (a cos(t), a sin(t), bt ) with a =50,b=25,0.6 1 <t <2m
w(t) = 15 (half-width of developable strip), 6 =E

/ w/B-d

t'=kn using k =k, and n=(0, 0, 1) X t

Ribonization of torus by TOR

Directrix curve Directrix curve
¢(t) = (R +r cos(7t)) cos t, ¢(t) = (R +r cos(7t)) cos (t + g),
(R +r1cos(7t)) sin t, 4 g T
T sin(70) (R ' r cos(7t)) sin (t 7),
w=02 1 sin(7t))
w=0.2
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Flattened strip

ED3GE 3-10-2025

Film-based Perovskite photovoltaic module

Transparent PET films
pasted on a 3Dprinted
model of the approximated
complete log-aesthetic
surface.

PVC films of blue
alternating with
orange pasted on a 3D
printed model.

Todori, K., Miyauchi, H.: Film-based perovskite photovoltaic
module with light weight and flexibility to accommodate various
styles of installation.

Toshiba Rev. 76(3), 17-20 (2021)

F. Scholz, S. Nishikawa, M. Takezawa, T. Mackawa, “Approximation of doubly curved
surfaces by analysis-suitable piecewise surfaces with high Developability”, The Visual
Computer, 2022.

ED3GE 3-10-2025

Walls of Cristo Obrero

r(u, v)=(u,acos(oov)¥, h-v),0<u<l,0<v<h
When v = const. the isoparametric curve becomes planar.
Thus, T, = 0, and henced=-B

https://upload.wikimedia.org/wiki
pedia/commons/1/19/Parroquia_d
el_Cristo_Obrero_-
_panoramio_%285%29.jpg
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Rovan Central Market Hall

Google map: 45° 37'39.53"N
1° 1'52.67"W

Completion: 1956

Material: Reinforced concrete
structure

Royan Central Market Hall B-spline: Consists of 13 doubly curved surfaces
(Courtesy of Prof. Yokosuka)

Piecewise developable B-spline strips

Original model

Approximation by
5 piecewise developable
strips per doubly curved

surfaces using /
() = cos™1(b -N)
F. Scholz, S. Nishikawa, M. Takezawa, T. Mackawa, “Approximation of doubly curved surfaces by analysis-
suitable piecewise surfaces with high Developability”, The Visual Computer, 2022.

Future work

m Explore more analytical functions and polynomial curves for rotation angles.

m Investigate the potential of triply orthogonal structures in framing freeform
surface architecture.
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Isogeometric Analysis of Membrane and Cable Structures: A Design of
Umbrella Zero-Stress State

Maya Okada / Naoyuki Fujita / Takuya Terahara / Yastoshi Taniguchi / Kenji Takizawa

Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan

Tayfun E. Tezduyar
Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

An umbrella is a common item that requires aesthetically and functionally good design. A wrinkle-free design
is suitable in both directions, and for manufacturing reasons, zero-stress state (ZSS) of each membrane part is
flat. We model an umbrella using T-splines, which we developed in [1], and using geometric knowledge [2]
and steady-state structural mechanics. We use a newly developed Bézier simplex and combined T-splines to
represent the membrane parts (see 1). To design the ZSS, we use the integration-point-based zero-stress state
(IPBZSS) technique [3]. The bone parts are connected with the membrane with the method described in [1],
and we newly developed the torsion representation (see 2 for a test) to stabilize the bone parts of the umbrella.

° °
°
° °
°
° °
°
° ° °
°
° °
°
° °

Figure 2: Isogeometric analysis of cable structure
Figure 1: Simplex geometry with higher-order continuous & g e Het

and computational result

References

[1] T. Terahara, K. Takizawa, and T.E. Tezduyar, “T-splines computational membrane—cable structural me-
chanics with continuity and smoothness: I. Method and implementation”, Computational Mechanics, 71
(2023) 657-675.

[2] T. Terahara, S. Nishikawa, A. Suzuki, K. Takizawa, and T. Maekawa, “Geometric modeling of umbrella
surfaces”, Computer-Aided Design, 175 (2024) 103750.

[3] T. Sasaki, K. Takizawa, and T. E. Tezduyar, “Aorta zero-stress state modeling with T-spline discretization”,
Computational Mechanics, 63 (2019) 1315-1331.
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Continuity and Smoothness in T-Splines Representations of Structures with
Different Parametric Dimensions

Takuya Terahara / Kenji Takizawa
Waseda University, 1-6-1 Nishi-Waseda, Shinjuku-ku, Tokyo, Japan

Tayfun E. Tezduyar
Rice University, MS 321, 6100 Main Street, Houston, TX 77005, USA

Abstract

We present a computational method using T-splines discretization for structural mechanics with different para-
metric dimensions are connected with continuity and smoothness. The Isogeometric analysis (IGA) gives
accuracy to structural mechanics computations [1], and higher-order continuity allows use of the higher-order
differential equations, such as the Kirchhoff-Love shells [2]. In IGA, connecting a 1D structure, such as a cable,
to a 2D structure, such as a shell, is not that straightforward. That is because the control points are not on the
cables or surfaces. The simple approach requires an extra refinement to have C° continuity functions that rep-
resents the position on the cables or surfaces. We proposed a new discretization method using T-splines [3, 4].
We present computations of test and parachute deformation. The computations demonstrate how the method

works.
16 17 18 19 16 17 18 19 m
12 %3 5o 15 12 %3 50 °15
s 2% EAST CET - F s 2° EASTURN A TN
21 20 20 "
0o 1e 0o 1e °
1 5 6 7 1 5 7
0 1 2 3 0 1 2 3
. . . Figure 2: Parachute
Figure 1: Membran—cable structures with C° and C' continuous & .
deformation
References

[1] K. Takizawa, T. E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computa-
tions with the space—time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191-200.

[2] Y. Taniguchi, K. Takizawa, Y. Otoguro, and T.E. Tezduyar, “A hyperelastic extended Kirchhoff-Love shell
model with out-of-plane normal stress: 1. Out-of-plane deformation”, Computational Mechanics, 70 (2022)
247-280.

[3] T. Terahara, T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Computational flow analysis with boundary
layer and contact representation: II. Heart valve flow with leaflet contact”, Journal of Mechanics, 38 (2022)
185-194.

[4] T. Terahara, K. Takizawa, and T.E. Tezduyar, “T-splines computational membrane—cable structural me-
chanics with continuity and smoothness: I. Method and implementation”, Computational Mechanics, 71
(2023) 657-675.
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T*AFSM 0 @

Isogeometric Analysis of Membrane and Cable Structures:
A Design of Umbrella Zero-Stress State

M. Okada, N. Fuijita, T.E. Tezduyar
T. Terahara, Y. Taniguchi, K. Takizawa Rice University
Waseda University Waseda University
TxAFSM Q @
Overview

Rib

3. Cable on the surface

=

Membrane

< Tube Iy RERARRIANY)

R
) ¢ LR

/ are connected by C°continuous
2. Cable L J

T*AFSM Q @

Smooth Representation for Bézier Simplex Elements

M. Okada, N. Fujita, T.E. Tezduyar
T. Terahara, Y. Taniguchi, K. Takizawa Rice University
Waseda University Waseda University
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T*AFSM

Rectangular mesh

Rectangular and Simplex

Umbrella

Simplex mesh

%

T*AFSM

Basis function

s __r
B, n(8) =

pd

Mpd

[ Tsem
1—[ g+
k=0

Bézier Simplex

p: polynomial order of the basis functions
nyq: NUMber of parametric dimensions

sy ky, Barycentric coordinate

my: degree in ky, Barycentric coordinate

P=2, ny=2 \

B;,O = soz B;_l = 25051 ,
B, = 512 B3 = 25082
B;A = 2S1S2 B;,S = 322

| a— |

0 025 05 075 1.0

So=1=(s1+s7)
4
T*AFSM

Bézier extraction
B;,m =CstNpn

Bézier simplex B

Bézier Simplex

s
pm

Product form Bézier Ny, ,

Extraction-operator

P=2, npe=2 100 0 00
010000

G o]0 0 10 00
ST=100 001 4 0
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p3mg=2 [L 00000
010000
001000
000100
00001 4
CST*000002
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T*AFSM 0 @
Constraint of Control Points for a Smoothing Surface

[ |
05062 075 0875 L0

- = X6
P=2, npa=2 : Constraint
X5 Az =[xgA| +[dA2
h B; =B +[

boundary (s, = 0)

X7

Constraint
Az =[XJA| +[dA2
B; =B +[5B2
C, +pdC2

T*AFSM Q @
Building Smooth Basis Functions in a Rectangular Octagon Space (p=3, n,4=2)

8 elements, 49 control points 27 smooth basis functions

Partition of unity

24 boundary conditions Non-negative

+ Rotational symmetry

Az = xA; +yA, .
B; = xB; +yB,
C; = xC; +yC,
x=-2+12
y=1V2
Constraint expression
for 49 control points R
20 0 B .
Al = .

248 0 \
Independent solutions: dim (ker A) = 27 wv

T*AFSM
C' Basis Functions across the 8 Elements
2D MESH 27 smooth basis functions (8 elements)
] o g
° ° / * ‘ ‘ 5 /
4
o ]
) o
o ) ] )
® 1node ® 1 node ® 1node
o
] ] ° [ o )
{
] ) \
] o
] ]
9 °
® 8 nodes @ 8 nodes @ 8 nodes
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Cable Model

M. Okada, N. Fuijita, T.E. Tezduyar
T. Terahara, Y. Taniguchi, K. Takizawa Rice University
Waseda University Waseda University
TxAFSM Q @
Overview

Rib

=

Membrane

<«—— Tube b p ettt LY
¥
< ,'u,'.ol-l--<.'_.',
Sl bt l | LN
1 si | .‘i.,_*vv-.-"—rvw-__g. . 711 | | | ¥
- olmplex ~Je S MM ST . { At bated 1A VAV )
PleX Nt s Y e i ++* 3. Ccables and surface
< < .
/ are connected by C°continuous
2. Cable v
VIS PITRANN a
11
T*AFSM Q @
Rotation-Free Cable Model
Principle of Virtual Work
E
5x-hdS+ [ podedx - (F—a)dS — [ ———(Agede + Ir6r)dS = 0
s 5o S0 |Gl
Axial Bending
Cross-sectional area:  Ag
Moment of inertia of area: [
€= é(x{. X — X - Xer) Density:  po
Young’s modulus:  E
Acceleration: 2
r=Xgg -n—Xag N Cce,emm" #
A Force per unit mass: ~ f
Surface force per unit length:  h
Tensile strain: &
Virtual displacement: ~ 6x
Change in curvature:
Tangent vector of the centerline
in undeformed configuration: G,
Centerline in undeformed configuration: ~ Sg
Centerline in deformed configuration: S,
13
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T*AFSM
Cable Model Considering Rotation

Geometric Description of Cable

X (€ €2.6%) = X(¢1) + EAa(€h) + E°Aq(E") XD (E€7,6%) = x(€) + Cas(€) + Cay(€h)

+ Two tensors for geometric description
1
ANTLY T VO [ rgog Te s M e T T.-Tisd A(To,t):(TU-t)Ier

Rl o« lomi®) s i@ ol Re(¢) = Teos(yh) +sin(¥)t x T

- Example of geometric description

A, =Rer(¥) - A(To, T) - A ao = Re(¥) - A(To,t) - A

(To x t) (To x t) 4 (T x t) x I

%

T*AFSM
Cable Model Considering Rotation

Principle of Virtual Work

Change in curvature:
Tangent vector of the centerline
in undeformed configuration:

Centerline in undeformed configuration:

Centerline in deformed configuration:

6x - hdS +/ pododx - (f—a)dsS —/ <L4 (Aoede +Ik210ko1 + IK310K31) + i‘} (;H;;zéxggz + ;nz;;éxg;{)) dS =0
s 50 so \ Al Ax]* \2 2
. ; , f ; )
Axial Bending Torsion

a, = ofx Cross-sectional area: ~ Ag

o Moment of inertia of arca: 1

A, =X Polar moment of inertia of area: 1,

o Density:  py

= é(x e oxa —Xa-Xea) Young’s modulus:  E

Modulus of transverse elasticity: G

Kap =ag1 s — Ag1-Ag Acceleration:  a

Force per unit mass: £

Surface force per unit length:  h

Tensile strain: &
Virtual displacement: ~ 6x

%

K21 K31, K23, K32

Ay
So
S,

T*AFSM
Yarn Spinning

Method
Principle of virtual work

Axial Bending Torsion

Cross-sectional area:
Moment of inertia of area:

Penalty parameter: €
Lagrange multiplier: Ay
domain where contact force acts
in deformed configuration: ().

Tangent vector of the centerline

/ 6x - hdS +/ poAodx - (f—a)dS —/ L; (Aoede +1k210k21 + Ir310K31) + Gilpz (1&326}&32 + lK;gJKzg) dS + 0Weontact =0
B o so \ 1Al A" \2 2

Polar moment of inertia of area:

Density:

Augmented Lagrangian method Young's modulus:
Modulus of transverse elasticity:

Work by contact force:  Weoniac Acceleration:

SWeomace = [, (A + ed) ScdydS Penctting engi: Fore per unt mass

Surface force per unit length:
Tensile strain:

Virtual displacement:
Change in curvature:

in undeformed configuration:
Centerline in undeformed configuration:
Centerline in deformed configuration:

%

K215 K31 K23, K32

Ay
So
S

145



TxAFSM 0 @
Yarn Spinning

Dimensions and properties (Wool fiber)

Length (m) 0.3
Radius (m) 25 x107*

Test Case: Computational Settings

* Rotate fiber ends counterclockwise EAy (N) 2501x102

EI(N-m?) 3.909x1076
GI,(N-m?) | 3.909x10°°
po (kg/m?) 1.316x10°

N Number of nodes 103
Number of elements | 100

20

T*AFSM Q @
Yarn Spinning

Contact Analysis

\‘

Result

QU
7%

21

TxAFSM 0 %
Yarn Spinning

Contact Analysis

\‘

Result

Result (without contact analysis)

Q| |_
o |¥%°

22
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TxAFSM

Continuity and Smoothness in T-Splines Representations of Structures with
Different Parametric Dimensions
T. Terahara, K. Takizawa T.E. Tezduyar

Waseda University Rice University
Waseda University

T*AFSM ’ @

Ventricle-Valve-Aorta Flow Analysis with the
Space—-Time IGA and Topology Change

2019
ThAFSM

T*AFSM Q @

Ventricle-Valve-Aorta Flow Analysis with the
Space—-Time IGA and Topology Change
Mitral Valve

2024 THAFSM

1.0 m/s

0.5 /

‘4

“1F M. Netter, "Atlas of Human Anatomy”, Netter Basic Science, Page 532.
*216. Castillo, . Sl dams,

25

Revista Espanola de Cardiologio, 64, 1169-1181, 2011
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Membrane—Cable Structure

Parachute o Umbrella

26

< O

T*AFSM Q @
Membrane—Cable Structure
Ram-Air Parachute
‘ | .
\ )

@

2016 THAFSM

T*AFSM Q @

Membrane—Cable Structure

Connecting Membrane and Cable

=1 1{0,0,0,1,2,2,2}
e: element number

—a,2 4 o
=%2{0,0,0,1,2,3,3, 3} N;™ q direction
k: local index
16 17 18 19
40 50 Shape function for membrane
12 13 14 15

MiE, &) = NG € NTE)

al

=0140,0,0,1,1, 1}

20 30 6
8 9 0 Jun S, 0 4 ) )
99 21 20 Shape function for line
Ly = N
1
. %% ° 7
0 1 2 3
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Membrane—Cable Structure
Connecting Membrane and Cable
Bernstein polynomial
16 17 18 19 e (D)oo R bk
Bl =(1)2ra+9ta-9
40 50
12 13 14 15 » B
(k) THp R
S 20 30 0 6 Bezier extraction operator
L2y o e a e a
29 21 20 Coo = [Cle];a} e RPTIHDx (™ +1)
oe 1e Shape function written by Bezier extraction
4 7 pha
Nf©) =D CtBET ()
0 1 2 k=0
Example ol [1 0 0 Bezier extraction row operators
0o = e,a
100 6.1 Co ¢ RIX(PV+1)
ciolo 1 o Ci'=[0 1 0] k
00 1 =100 0 1 N
T*AFSM Q @
Membrane—Cable Structure
Connecting Membrane and Cable
16 17 18 19
12 40“ 5“14 15 Represent the shape function for line
’ using the shape functions of membrane
—B
Ly (€)= NAEM)ND Y (ED
8 20 30]0 _I_I_Gok_o‘ pA2 I ij » Bl . pBJ :
21 20 = anz’z By (£5°) chk’ By (&)
1=0 k=0
0o 10 _ -
4 > 6 7 Scalar
0 1 2 3
A: element number of the membrane
C° continuous B: element number of the cable
30
T*AFSM 0 %
Membrane—Cable Structure
Connecting Membrane and Cable
16 17 18 19
3 _
1 %5 5o, . N2 (&) = [0.245 0.710 0.045}
—B
Ly (€') = NA(ES)NP (€D
s *10 'u—6°‘—°‘ = A2 pph? L A2 =~ B,1ppPt o1
2 20 = anfl By (&) chk’ By (&)
1=0 k=0
n 00) 10 7
—6,1
1 T C, =0245[1 0 0]

C° continuous

31
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Membrane—Cable Structure
Connecting Membrane and Cable
16 17 18 19
3
o 2% 5o, 5 (&) = [0.245 0.710 0.045}
Iy (€') = NAEMNE (€Y
8 20 3910 6 pB-l
—]J—O—O B,1
220 (ZC“B" :"2)> (ZCC'?]B’,; (51))
k=0
Oe 10
4 ] 7
—6,1
5 T 5 ; C, =0710[1 0 0
C° continuous
32
T*AFSM Q@
Membrane—Cable Structure
Connecting Membrane and Cable
16 17 18 19
3
1 %% 5o, 5 Ny (&) = [0.245 0.710 0.045}
7 (€") = NAEANE1(EY
3 20 3n10 6
‘ 20 (Z cazpr™” ) (Z cBpr™ (e )
s %% tog 7
—=6,1
5 T 3 3 C, =0045[1 0 0
C° continuous
33
TxAFSM 0%
6.1 Membrane—Cable Structure
Co = [1 0 0} ) €° continuous
o1 Connecting Membrane and Cable
=100 1 0]
cl=1[0 o0 1]
16 17 18 19 16 17 18 19 16 17 18 19
12 % 5 15 2 %13 2 T 12 %3 2y I
s 2% °0 fuos, s 2% P fuos, s 2% o fuos,
21 20 21 20 21 20
s %% g 7 1 %% 1o 7 1 %% 1o 7
0 1 2 3 0 1 2 3 0 1 2 3
—6,1 —6,1 —6,1
C, =0245[1 0 0] C; =0.710[1 0 0 C, =0.045[1 0 0]
—=6,1 —6,1
C =010 C =[0 o0 1]

34

150



T*AFSM Q @
Membrane—Cable Structure
Connecting Membrane and Cable
16 17 18 19
40 50 °
12 13 14 15
s 2% SASTR N AT R
20
Oe 10 °
4 5 6 7
0 1 2 3
C* continuous
35
T*AFSM o1 _ Lo o 0@
o — 2
C?,l _ [% 1 0} Membrane—Cable Structure 1 continuous
ngl _ [0 0 1} Connecting Membrane and Cable
16 7 18 19 6 17 1 19 16 17 18 19
b Yo 50, o , 40 5o ° n ©n 50, °
s 2% 3%y ﬁ_‘,,( s 2% 3 #ﬁ"_‘,” s 2% 3% #ﬁ“_‘,”
1 Oﬁ‘ 1°ﬁ 'T " 0e laﬁ QT " Oo‘ 1°(i o
R > T, T s CE Ca
Tl =0245[L 0 0] 07102 0 0] T =0045[L 0 0]
1€ 7 18 19 16 17 18 19 6 1 18 19
12 % 5% 15 1 %% Rt °15 2“1 5o °15
2 30 g0 2 B g 2 30 g
9 10 g_l_ol(\ 8 9 10 ;;a)u 8 ) 10 %JH
0o, 1o . o o . o I o
0 1 3 0 1 2 3 0 1 2
Tyl =o0245[L 1 0] Ty =om0[ 1 0 T =0045[L 1 0]
—6,1
C = [0 0 1} 36
T*AFSM 0 %
Membrane—Cable Structure
Computational Settings
Models for surface

v
171 mm

C° continuous

+ Shell
* Membrane

Cable
»  With bendi
»  Without be

C? continuous

ng stabilized cable
nding stabilized cable

37
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Membrane—Cable Structure

Results: Membrane

Cable Bending-stabilized cable Cable Bending-stabilized cable

€° continuous C? continuous
38

TxAFSM Q @

Membrane—Cable Structure

Result: Shell
Cable Bending-stabilized cable Cable Bending-stabilized cable
€° continuous C? continuous

39

T*AFSM 0 %

Disk-Gap-Band (DGB) Parachute

Canopy

ol "7 o

Extension line —>

40
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TxAFSM

%

DGB Parachute
Mesh (DGB-N)

°
Detail ° b

Nom g

41

TxAFSM

%

DGB Parachute
Mesh (DGB-T1)

. ° )
Detail % o

i

T*AFSM

%

DGB Parachute
Mesh (DGB-T2)

)
Detail ° °

omi iy g
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DGB Parachute

Results

44
T*AFSM ‘ @
Umbrella
Geometric Design
ol [ [ [ [ [ [ Py Bilinear patch Edge curve
—oa} /
2 *“-?’ Develop
= 0.3}
T oal
sl
—0.6
P
@1 /briny
’ . 2 Py Canopy R
Rib Modeling N -
Canopy Modeling
Manufacturing
T. Terahara, S. Nishikawa, A. Suzuki, K. Takizawa, and T. Maekawa, “Geometric modeling of umbrella surfaces”,
Computer-Aided Design, 175 (2024) 103750.
45
T*AFSM Q @

Overview

Rib

3. Cable on the surface

=

Membrane

<«<—— Tube

LY
* 3. Cables and surface

/ are connected by C°continuous
2. Cable 1

46
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Umbrella
M. Okada, N. Fuijita, T.E. Tezduyar
T. Terahara, Y. Taniguchi, K. Takizawa Rice University
Waseda University Waseda University i
TxAFSM ’ @
Modeling

Rib

=

Membrane

are connected by C°continuous

48

T*AFSM Q @

Goals

Ease of opening

Reducing wrinkle

m i T
@ 49
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T*AFSM
Umbrella

Umbrellal’l

Sewing membrane peices!d

Cutting fabric membranel?

m
2] https:/iwww komiyakasa jp/aboutihowits-made/

Fixing bones on the membranel?!

Bones

50

T*AFSM
Structural Analysis
Zero-Stress State (ZSS)

: R

Stretcher
Rib 7.8

Rib

Membrane

-<—— Tube

m

%

1. Rib curve

2. Membrane surface
(Coons patchl)

3. Flatten membrane

51

T*AFSM
Structural Analysis
Examples of ZSS and Converged Solutions
- \
- '

1.00-1.02-0.96-0.96

- 0.96-0.96-0.96-0.96 1.00-1.02-1.00-0.96

-
4 control variables
to represent the stretch

%

1.00-0.98-0.96-0.93

52
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Generation of Aesthetic Shapes by Integrable Klein Geometry

Kenji Kajiwara
Institute of Mathematics for Industry, Kyushu University, Japan

Yoshiki Jikumaru
Faculty of Information Networking for Innovation and Design, Toyo University, Japan

Shun Kumagai
Hachinohe Institute of Technology, Japan

Abstract

In this talk, we consider a class of plane curves called the log-aesthetic curves (LAC) and their generalizations
which have been developed in industrial design as the curves obtained by extracting the common properties
among thousands of curves that car designers regard as aesthetic. We consider these curves in the framework
of similarity geometry (Klein geometry associated with CO*(2,R) =~ SO(2) =< R*) and characterize them as
invariant curves under the integrable deformation of plane curves governed by the Burgers equation. We pro-
pose a variational principle for these curves, leading to the stationary Burgers equation as the Euler-Lagrange
equation[ 1, 3]. We then extend the LAC to space curves by considering the integrable deformation of space
curves under similarity geometry. The deformation is governed by the coupled system of the modified KdV
equation satisfied by the similarity torsion and a linear equation satisfied by the curvature radius. The curves
also allow the deformation governed by the coupled system of the sine-Gordon equation and associated linear
equation. The space curves corresponding to the travelling wave solutions of those equations would give a
generalization of the LAC to space curves. We also consider the surface constructed by the family of curves
obtained by the integrable deformation of such curves. A special class of surfaces corresponding to the constant
similarity torsion yields quadratic surfaces (ellipsoid, one/two-sheeted hyperboloid and paraboloid) and their
deformations, which may be regarded as a generalization of the LAC to surface. We discuss the construction
of such curves and surfaces together with their mathematical properties, including integration scheme of the
frame by symmetries, and present various examples of curves and surfaces.

Finally we discuss the self-affinity of plane curves that has been proposed in the area of industrial design
as a characteristic property of the LAC. After some investigations and extending the definition[3], we propose
a new class of “aesthetic curves” with self-affinity, which includes the logarithmic spiral (special case of the
LAC) and quadratic curves (parabola, hyperbola and ellipse) under the framework of equiaffine geometry (Klein
geometry associated with SL(2, R)). It may be an interesting problem to investigate the similar class of curves
in Mobius geometry.

References

[1] Jun-ichi Inoguchi,Kenji Kajiwara, Kenjiro T.Miura, Masayuki Sato, Wolfgang K.Schief and Yasuhiro
Shimizu, Log-aesthetic curves as similarity geometric analogue of Euler’s elasticae, Comp. Aided Geom.
Design, 61 (2018) 1-5, https://doi.org/10.1016/j.cagd.2018.02.002.

[2] Jun-ichi Inoguchi, Kenji Kajiwara, Kenjiro T. Miura, Yoshiki Jikumaru and Wolfgang K. Schief, Log-
aesthetic curves: similarity geometry, integrable discretization and variational principles, Comput. Aided
Geom. Design 105(2023) 102233, https://doi.org/10.1016/j.cagd.2023.10223.

[3] Shun Kumagai and Kenji Kajiwara, Self-affinities of planar curves: towards unified description of aes-
thetic curves, arXiv:2407.17008v1, https://doi.org/10.48550/arXiv.2407.17008, to appear in Japan J. In-
dust. Appl. Math. (2025).
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Generation of Aesthetic Shapes by Integrable
Klein Geometry

Joint work with:
Kenji Kajiwara Yoshiki Jikumaru (Toyo University)
: : Shun Kumagai
Institute of Mathematics for Industry (IMl), (Ebitohe indilite of Technslogy)
Kyushu University, Japan Wolfgang Schief (UNSW)

CREST-ED3GE Conference o
r
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Nishijin Plaza, Fukuoka, Japan
EYUSHU UNIVERSITY

Introd

¥ LAC: Planar curve developed in industrial design - shape elements with built-in artisticity

AR B S S o

e G <D

A S e ﬁ

@ tsotinesand zebramapping 5 Redering © Mockup Architecture Design

Extraction of a common property of the curves which
car designers regard as “aesthetic” - LAC

(
@/ @_/ o 0)
s: arc length, g(s): curvature radius,

a=-10 @=00 u, ”
Cornu spiral a=-20 Nielsen's spiral a: “slope
a=10 =20
° a=40
logarithmic spiral circle involute curve

Introduction (2) C and Similarity Geometry

@ Consultation from a Practitioner of CAD
Extension of LAC: Guiding principle & sound theoretical framework needed!

b0
o : : P ae” cos 0 -
¥ Logarithmic Spiral y= [ sself-similar | ——  ISIEGART T A

LAC (a=1) ae sin

Log-aesthetic curve Similarity
Geometry

Euler’s elastic curve Euclidean Geometry

* Variational Formulation:
“Fairing Energy”
= (curvature) 2+ (additional term)

* Variational Formulation :

Elastic Energy
= (curvature)?

' Shape invariant curve w.r:. integrable deformation *  Shape invariant curve w.rt. integrable deformation

vl : : Truss structure with
¥ Various Extensions Space curves _‘5‘”“55 mechanical optimality &

v A integrability & artisticity
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& Euclidean Geometry @ LAC
x(s) 2,
(s) = €R? s arclength — 4 1dxy _
14 ¥(s) gt dsl+("+l)x<ds) 0
- 2 )2 = 2 2 i 2 — a
ds =[x + dy) - 1= (do) +(d:) = g =as+b
: : @)
Frenet Frame ©  @F = [TE NE], ﬂ —TE NE=R(ETE T =1 =
21, ST T e
Ao - do
Frenet formula — =0F 0 —«x , K =— :curvature d 1d
ds x 0 ds it
s qdo
l d _dod _d _1d _1 ) & ldgd 1 d
o ds dH_KdH = 70 q= K.curvature radius e :7EEE+EWP

& Similarity Geometry = Klein geometry w.rt. d*(q%)
similarity transformation group (translation + 20 =0, a=a-1
roration + scale transformation)
a _
q‘=8&0+n
0 : angle function = similarity arc length pl
—_— y=——"_
Similarity Frenet dy 1 & E aif+1
frame: F=IT,N], —=T=—T"=¢qT", N=R(%)T d
X 4 Zte
— =au
Similarity Frenet ~ dF u -1 Ky 9o ) do
formula: —=F , U=—=——:Similarity curvature e
: do 1 u K q Riccati equation

. Integrable Deformation

&' Euclidean Geometry N [ coso
9 R P fl5.07% + g(s, ON®
_7 _E E _ p(ay7E curve deformation: — = f(s,)T" + g(s, )N"
=T NP=RGTE N o )
Y d [ 0D* 0 [ 0D"
Ej — ibility: Z = Z2(=
@F = [TF,NF), S wrE= compattiny: S(T5) = ()
§ 2
oE a0 do" 0wty f=-Tn
—=®E[O _K] K=— el : 2
ds k 0f s or k=5 0 g=—K
Euler’s ” +K_3 e X=s—ar ok 3,0 Ok modified KdV
elastic curve 2 =60 —— E EK g F = equation

travelling wave ansatz

&' Integrable Deformation t: deformation parameter

u— au

& Similarity Geometry _____ 17Tl = q W Integrable Deformation t: deformation parameter
0]
a_:} =T, N= R(%)T," N casd curve deformation: % =f0.0T +g0.0N
| \ =4 sing
. d (oF 9 (OF
F=[T,N], R L —(=)==(=—
[ ] compatibility: ax( r%}) M( P )
0_F=F[u _1] u=_ﬂ 01:_1: —ug+u+1—bu b f=b-u,
a0 1 u q o -b —up+ut+1-bu| g=-1
X=0+bt
IAC wW=aul+c —— W=t’+¢ —0n % — i(d_u — Pt bu) Burgers
travelling wave ansatz ~ dt 90 \ 90 equation

& Euler’s Elastic Curves: Critical pt. of Elastic Energy

1% K3
E(7)=—I (k% + A ds —_— K'+——-Jk=0
2 K
1
&' LAC: Critical pt. of Fairing Energy
du _p _ du _ 22
1% u do g > do? dé
— 2,2, 7
9(7)—2L (au +q2“)d9 —_— @ -« t
' q du 2
— =au“+c
do
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Extension to Space Curves and
Surfaces by Similarity
Geometry

Space Curve Version of LAC

@ Euclidean Geometry & Similarity Geometry
Lid 5_Or E N E 7 E|
E_O NE_ 0% pE_qEy \E T=—=qT", N=¢qgN°, B=gB
IR %
FE] ~ ~ =~ 5 Similarity Frenet
® =[T,N, B]
s frame
®F = [T, NE, BE]  Frenet frame 7(s) —x -1 0
o Dy=®L L=|1 -k -z
E 0 —xfF 0 46 = kEds : Similarity 0 7 —«x
o0d = @F | E E arc length a
s - 0 -z -_— k = —— ! Similarity curvature,
£ 0 0 _wo 10 9 q
o o500 kol oo 7=15/kF = q‘rE : Similarity torsion
' Deformation of Frenet frame
0 2_y curvature preserving Similarity¢>Euclid correspondence
B K4 deformation of constant —~
O=0 |- +b 0 w+5 —be curvature curve O =qgd
< —
—1, - +br 0
° 0 -1 0
i = —
r,+[r7+r,,,,+l']—blr],,:0 mKdV Q=@ |1 0 -7
compatibility o equation ! 0 7z 0

S
q+ [q,,ﬁ+ (:r+ 1 —Iw)qJH: 0

®=[T,N,Bl, |T|=1

Deformation "%~ ut Frenet-Serret Formula
(curvature= 1)

3 :
of curve 7, =— g0+ l: = biq) T+qgyN—19B

Space Curve Version of LA

¥ Euclidean Geometry B W Similarity Geometry
7y N =_0r E N E 7 El
B0 NE_ 0% pE_ ey \E T|T=—=qT", N=gN° B =4B
> 6'9
a? = _ 7% 75y Similarity Frenet
@ =[T.N.B] frame Y
®F = [T, NE,B¥]  Frenet frame 7(s) -k =1 0
o Oy=PL, L=|1 -k -1
prsa 0 —xE 0 460 = kEds : Similarity 0 T =k
— q)E E 0 E arc length 9
Os K -7 -_— k = —— ! Similarity curvature,
0 & 0 o _%Wo _190_ 0 a
a o500 ko0 oo 7 = 78/kE = g7% : similarity torsion

' Deformation of Frenet frame 7 = w,

curvature preserving Similarity¢>Euclid correspondence
0 Ccos@ —smaw deformation of constant [o~d
O, = [—cosw 0 0 curvature curve o = q(l)
sin @ 0 0 e
0 -1 0
Wy = Sinw sine-Gordon [ KA P
compatibility equation ! 0 7z 0
My, =cosoM, My=gq ®=[T,N,B], |T|=1
Deformation 167 4. Frenet-Serret Formula
of curve v, =M(—coswN +sinwB) (curvature=1)
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Space Curve Version of LAC

@ Travelling wave solution:
— T g : curvature radius
To= 4% 7 : similarity torsion 90,0 =qX), wO,n=7X), X=0-ct
o9 _d o __ Ei Shape invariant curve w.r.t.
0  dx o dx integrable deformation

Equation of Euler’s

23
o+ [7+ng+(l —b)r]g=o
3
[—+TXX+(1—b—L‘)T]X=0 t
2 elastic curve

=0

q,+ [qee"‘ (%TZ"‘ - h)‘l]a

3
[qXX + (512 +1-b- c)q]x =0 Lamé equation

¥ Elliptic Function Solution

7=2&dn (0 + 1, k),
4= qsn(£0+ .k cn (0 +n.k), -

l—b—c=-£Q2-k? =02, £ =001

&' Shape parameter: Slope

7o=q"T 7

slopea (a=a-1)
k=0.1

0 -1 0
Equations for Py=® (1 0 -7 @=®|-Z4p 0 o+ —be
the frame 0 z 0 o o
3 2
Compatibility [qxx+ (E"z+ 1 _b_C)‘I]x=0 [7+Txx+(l —b—c)r]x=0

3
[’7 ot (l—b— c)f]x =0 — trivial
T N B
[cos wZ —wsinwZ —rcost:|

T : const.

0 -1 0
DQy=@|1 0 -7

D0, 1) = D(Z)

0 7z 0 B A
sinwZ wcoswZ —tsinwZ

,[2
Z=0+(—?+b)t

2 0 -1 0
d):d)(—?+b)1 0 -

:
0 7z 0
Q@ 2 Ry
d52=0 ) cost+w(X+A)sma)Z ez (X+%)sinZ
ol
qg=c (X+ —) — 7= u_:; 5‘“"’2‘"’("(*%)“05’”2 LO, i lgnz— (X+i)cosZ circle involute
z W (x4 1) w1 B
T( *7) 0
Direct extension of
A 3 X=0+@®- 1y
T ot . s
= 2—61(7.2 +7) - 5.7  Paraboloid {z —0+be

2>0: ellipsoid or one-sheet hyperboloid 62 < 0: two-sheed hyperboloid

Constant Torsion Curves

Ellipsoid 2
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Surfaces Generated from Constant Torsion Curves

Paraboloid one-sheet hyperboloid two-sheet hyperboloid
g =05 =05 =05
a=2 o
a=4 ¢
a=-1
a=15 a=15

Similarity Pseudospherical Surface

& =[T,N,B] € SO3 _
(1. Bl € 506 vo=dT,
0 -1 0 To=N, .
Q=@ (1 0 —7|— Ny=—-T+1B, Wy, = SIN W,
0O = O By=—1N
M, =cosoM
0 cosw —sinw ot
D, =P |—cosw 0 0 _ _
sinw 00 T=wp q=M

@ Specialization: ¢ = Ty = M= (7 @ Integration of tangent vector:

My =cosoM — wyy = (COsSw) w, Yo = @goT = (@yT)y — wyTy

= (@g)g— N = (@gT)y + By

— (0 —sinw), =0 -~
= (woT + B)y
consistent! - Y= T+B
integration! 8

Similarity Pseudospherical Surface

@ Relation with Pseudospherical Surface & = [T, N, B] € SO(3)

0 -1 0 0 cosw —sinw
Oy=0 |1 0 -y Q=P [-cosw 0 0 , y=wgl'+B

0 wy O sinw 0 0

[T,N,B] = [-C, B, A]
Gauss-Weingarten equation for pseudospherical surfaces!
_ _ 0 o, 0 o R 0 —sinw
[A,B.C],=[A.B.Cl|-w, O -1|, [AB.Cl,=[ABCI| 0 0 cos ®
sinw —cos® 0

0o 1 0

R = R(0, 1): position vector of the surface,

0,1 : arc length along asymptotic lines
Similarity Pseudospherical Surface

A= 0 — —

_ —  _ R R, = =7

B=-RyxN=—0--—_ ¥ =Ry— wpN
smw tanw
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Gallery : Similarity Pseudospherical Surfaces

Breather Surface (1) Breather Surface (2)

Kuen Surface Pseudosphere

Similarity Breather Similarity Breather Similarity Kuen Similarity
Pseudosphere

Surface (1) Surface(2) Surface

Self-Affinity of Aesthetic Curves

“Aesthetic Curves” and Self-Affinity (1)

@ Analysis of “Aesthetic Curves” and Verbalization (Harada-Mori-Sugiyama, 1995)
7(s) : planar curve with monotonic curvature (s: arc length, s,;: total arc length)

& Logarithmic Curvature Distribution (LCD)

“Aesthetic curves” have a common property:

the logarithmic curvature distribution becomes linear - “Monotonic Rhythm Curves”

> Divide the values of the curvature radius p into small intervals p;

> §; : length of subcurves with curvature radius in the interval p;

» i 2 =
> Log-Log graph of the histogram of 5;/s,; vs p;/5,;: d
ol JE
“Logarithmic curvature distribution” 3 193
- |

Horizonatal axis: log a)» Vertical axis : log(5,/s, "

Weber-Fechner’s Law: (perception)  log (stimulus)
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“Aesthetic Curves” and Self-Affinity (2)

@ Verbalization (Harada-Mori-Sugiyama, 1995)

monotonic rhythm curves complex rhythm curves

||

divergent type  constant speed type convergent type hill type valley type
negative “slope” zero “slope” positive “slope” positive & negative slope negative & positive slope

- sharp - stable curve with pause dlvergent curve convergent curve
changing into changing into

- energetic - static * centripetal convergent at some divergent at some
point point

@ Logarithmic Curvature Graph and LAC (Nakano et al 2003, Miura 2005)

Continuum Limit of LCD: Logarithmic curvature graph: (X,Y) = (10g/;, log|

Ll

Logarithmic curvature graph is a line with slope @ = p% = ¢ys + ¢, : LAC

Harada’s Self-Affinity

@ Self-Affinity of “Aesthetic Curves” (Harada-Mori-Sugiyama 1995)

> Harada’s Self-Affinity for monotonic rhythm curves (Harada’s original definition) :

- For a given curve, cut it at arbitrary two points to get a subcurve
- Extend the subcurve in both and directions with arbitrary scales

- The obtained curve coincides with the original curve by applying affine transformation

> Harada’s Self-Affinity (HSA) for monotonic rhythm curves :
- 7(s) : [0,1] > C: planar curve
- For an arbitrary subinterval [s,, s;] € [0,1], there exist a reparametrization
1(s) : [0,1] — [sg, 5;] and an affine map F € Aff(C) such that y(s) = Fy(t(s))
_ 1
=0

5=

* Harada'’s Claim

> Monotonic rhythm curves possess the HSA

Miura’s Self-Affinity

> Miura’s Self-affinity for LAC (Miura’s original definition) :
- For a given curve, cut it at arbitrary two points to get a subcurve
- Extend the subcurve in both and directions with arbitrary scales

- With a suitable reparametrization, the obtained curve coincides with the original
curve with a suitable parameter shift.

> Miura’s Self-Affinity for LAC :

- 7(s) : [0,1] = C: planar curve, p(s) : curvature radius, s : arc length

- There exist a reparametrization #(s) : [0,1] — [0,1] and p(e), v(e) > 0 such that
forany e > 0, p(t + €) = u(e)p(t), ds(t + €) = v(e) ds(t)

* Theorem (Miura 2006, Kumagai - K 2024)

> A planar curve possesses Miura’s self-affinity
<> The curve is a circle, a line or a LAC
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Harada’s Self-Affinity

J Self-Affinity of “Aesthetic Curves” (Harada-Mori-Sugiyama 1995)

> Harada’s Self-Affinity for monotonic rhythm curves (Harada’s original definition) :

- For a given curve, cut it at arbitrary two points to get a subcurve

- Extend the subcurve in both and directions with arbitrary scales

- The obtained curve coincides with the original curve by applying affine transformation

> Harada’s Self-Affinity (HSA) for monotonic rhythm curves :
- 7(s) : [0,1] = C: planar curve

- For an arbitrary subinterval [s,, s;] € [0,1], there exist a reparametrization
1(s) : [0,1]1 = [sg, 5;] and an affine map F' € Aff(C) such that y(s) = Fy(t(s))

r@ S=%

s=35

IQossess the HSA

* Theorem (Kumagai - K, 2024)

> A planar curve possesses the HSA
<> The curve is a line, or a parabola

@ Parabola has the HSA

o =[5 sewon

7(9) f =1
t=1(0)

0<%y < s <1, #(s) = (s; —sp)s +55. s €[0,1]

——— t€lpsl 5=00), s =11)

Trivial identity: = ((sl —sp)s + 50)2 = (5 — 50)%5% + 250(s; — 5p)s + ¢

0

t] | si—% [s]+ So
2l 7 | 2ssy = s0) (s — s | L2 [sd
or: ———— ¥(s) has the HSA!
1
s1_ | T O s
1S T
(51 = 50)?

Equiaffine Geometry

* Theorem (Miura 2006, Kumagai - K 2024)

» A planar curve possesses Miura’s self-affinity
<> The curve is a circle, a line or a LAC

* Theorem (Kumagai - K, 2024)

> A planar curve possesses Harada’s self-affinity
&> The curve is a line, or a parabola

Similarity geometry:

Equiaffine geometry:

pr rAp+b, r€R,A€S0Q2),beR? xSim = _ %o p~Ap+b, AESL2R), beR’
circle: x51M = ( q parabola: k54 =0
; line: k54 = o0
line: k5™ = oo
Si ellipse: xSA = const. >0
logarithmic spiral: «>'™ = const.
hyperbola: x5* = const. < 0
Equiaffine 7@ SA .
geometry: L7/ % i) | = 1 D> (u) = [yu, yuu] equiaffine Frenet frame
i 7 u
rw D'(u) = D(u) [0 —KSA equiaffine Frenet formula
1 0

()

1 arbitrary parameter s.t. |y, X y,| # 0

1
— u= JU’, X 1,17 dt “equiaffine arc length”

KSA equiaffine curvature
v, a1 s S s
A = fa a3 Ky — —K :;(:2
T 3 9
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Extendable Self-Affinity

> Extendable Self-affinity (rough outline) :
- For a given curve, cut it at arbitrary two points to get a subcurve

- Apply a suitable reparametrization, and then arbitrary parameter shift by € > 0
- Then the obtained curve coincides with a certain affine map of the original subcurve.

> Extendable Self-affinity :
- y(u) : [0,1] - C: planar curve (in equiaffine geometry: u = equiaffine arc length)
- There exist a reparametrization #(u) : [0,1] — [0,1] and an affine map F, € Aff(C) such that
foranye >0, y(t+¢€)=F, y(1)

* Theorem (Kumagai - K, 2024)

t=7 yQu » Choosing t = u, then a planar curve posesses ESA
7@ g <> The curve is a parabola, or an ellipse or a hyperbola
=0
¢ ; i > For general f, a planar curve possesses ESA
\1‘( : Affine i+ KA =(Eu+n)? EneR
" Vshift &> the curve is either of the following :
. 1=T 1=T+e (i) y % e
(i) y = xlog x
(=0 =

(iii) logarithmic spiral

New Class of Curves with ESA in Equiaffine Geometry

exponential
function

logarithmic

spiral xlog x

log
power
function
CO*(2)
imilarit t
o)~ — FEL0O)
»
Euclidean geometry SL(2,R)
\ equiaffine geometry /Geometry of “Aesthetic Shape”?
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Geometry of Michell-Prager structures and hanging membranes

Yoshiki Jikumaru
Faculty of Information Networking for Innovation And Design, Toyo University, Japan

Kentaro Hayakawa
Department of Conceptual Design, College of Industrial Technology, Nihon University, Japan

Kazuki Hayashi
Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto
University, Japan
Kenji Kajiwara
Institute of Mathematics for Industry, Kyushu University, Japan
Yohei Yokosuka
Department of Architecture and Architectural Engineering, Kagoshima University, Japan

Abstract

In this talk, we introduce some geometric objects motivated by the structures in architectural design. In the first
part, we focus on so-called Michell-Prager-type structures. This is joint work with Yohei Yokosuka, Kazuki
Hayashi, Kentaro Hayakawa, and Kenji Kajiwara [1]. Considering a quadrilateral mesh with such a structure
on its diagonals, we can obtain the privileged discrete isothermic surfaces introduced by Bobenko and Pinkall.
Their mechanical properties can be derived from the result by Schief. We also introduce the relation with
the discrete log-aesthetic curves proposed in [3]. In the second part, we introduce the geometry of hanging
membranes. This is joint work with Yohei Yokosuka [2]. We formulate the hanging membranes according to
the classical shell membrane theory. Remarkably, the in-plane equilibrium condition can be characterized by
the existence of a Combescure transformation of the membrane.

References

[1] K. Hayashi, Y. Jikumaru, Y. Yokosuka, K. Hayakawa and K, Kajiwara, Parametric generation of optimal
structures through discrete exponential functions: unveiling connections between structural optimality and
discrete isothermicity. Struct. Multidisc. Optim. 67 41 (2024). https://doi.org/10.1007/s00158-024-03767-
1.

[2] Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: shell membrane
theory and variational principle, Int. J. Math. Ind. 14 (2022), https://doi.org/10.1142/S2661335222500046.

[3] J. Inoguchi, K. Kajiwara, K. T. Miura, Y. Jikumaru and W. K. Schief, Log-aesthetic curves: similarity
geometry, integrable discretization and variational principles, Comput. Aided Geom. Design 105(2023)
102233, https://doi.org/10.1016/j.cagd.2023.10223.
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Geometry of Michell-Prager type structures and
Hanging membranes
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Yoshiki Jikumaru (Toyo University)

Collaborators: Kazuki Hayashi (Kyoto University), Yohei Yokosuka (Kagoshima University),
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Purpose of this talk

In this talk, we introduce (mini) examples of
Mathematics Motivated by Architectural Design.

They consist of the following contents:

£ Ak 1
A o  ~omcs
N s =

Figure: Formulation of Hanging membranes
Figure: Michell-Prager type structures

and discrete isothermic surfaces

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University

N

-

2/29

Part1: Michell-Prager type structure

N
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Michell-Prager structures l\N

Michell structures

The “optimal” structure when B is fixed and the load F' acts on point A.

(b) Acting Compression, Tension
(a) Michell structure (1904)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 4/29

A characteristic property of the structure l\N

A “well-known” property

There exists a constant Cy, for every bar member e, we have

(Axial force acting on e) x (Length of e) = C.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 5/29
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A characteristic property of the structure

IN

We will consider a class of truss structures that have this property in general:

(Axial force acting on e) x (Length of €) = Cy

We call such a structure as Michell-Prager type structure.

Michell structures and hanging membranes

Yoshiki JIKUMARU

INIAD, Toyo University 6/29

Variational principle

We introduce the signature for each member:

= 3 )
@ @ | @
() +1 e is a horizontal edge, 3
e
1 —1 e is a vertical edge. (=) @ {=

Figure: Definition of the signature ¢
In discrete differential geometry, ¢ is called P-labelling.

Michell structures and hanging membranes

Yoshiki JIKUMARU INIAD, Toyo University

7/29

Variational principle

Let us consider the following objective functional:
E=0Cy Z q(e)log le].
€

Then, in the equilibrium structure, the axial forces satisfying the following relation
can be introduced:

(Axial force acting on e) x (Length of e) = Cp

® How to find the functional: the “prestressed cable-net structures”.

e An example of discrete holomorphic quadratic differential? (Kenyon-Lam, 2019)
® Q. Relation with discrete harmonic functions?

Michell structures and hanging membranes

Yoshiki JIKUMARU INIAD, Toyo University 8/29
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A relation with discrete differential geometry l\N

It is convenient to consider an “imaginary (dotted) mesh” like the following:

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 9/29

A relation with discrete differential geometry l\N

Moreover, we introduce the following labelling:

Figure: form diagram Figure: force diagram

Then, the defining equation for Michell-Prager type structures becomes:

Iraz) —rll-lIrfy) — ripll = Co. m
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 10/29
A relation with discrete isothermic net l\N

Michell-Prager condition:

Pz =7l lIri) — vyl =Co- (2)

Theorem (Bobenko-Suris, 2009)

If the quad mesh r constitute discrete isothermic net (constant cross ratio),
then there exists a constant Cj such that

Iraz) =l HT&) - Tfl)H = Co. (3)

Remark: The constant Cj is determined from the cross-ratio condition.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 11/29
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“Pure shear” stress distribution l\N

Theorem (Schief, 2014)

Assume purely tangential forces acting on each edge of the circular net r.
Then the quad mesh r is in equilibrium <= r constitutes a discrete isothermic net.
Moreover, the Christoffel dual * corresponds to the “force diagram”.

a0 A,
Rz I il B

Y A
Fial r oy (38

Figure: form diagram Figure: force diagram

Therefore, we can generate structures from discrete isothermic nets!

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 12/29
Examples of the structure I\N
2

Figure: A structure from discrete exponential function.

A trivial but “Interesting” Property

The discrete curves are discrete log-aesthetic curves (dLAC of slope 1, log-spiral).

Q. dLACs (governed by Riccati type eqn) are consistent with cross-ratio equation???
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 13/29

Non-trivial example: discrete power functions I\N

A discrete analogue of the function 22

Figure: Force diagram Figure: Form diagram Figure: Form diagram

* In the Christoffel dual z4/3, take a closed curve.
® Red vectors are loading or boundary reaction forces acting on blue structure.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 14/29
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General problem (open) l\N

In summary, we can propose a mathematical problem for shape generation:
General problem (open)

1. Find a suitable “boundary”, consistent with the cross-ratio equation,
which corresponds to the external force and the boundary reaction force.
2. Find the “internal mesh” for a given boundary, and take the Christoffel dual.
By taking the diagonals of the dual, we have the Michell-Prager type structure.

3. From the variational point of view, for a given boundary, find the mesh that gives
the critical point of the functional }__ g(e) log|e|.
(Interestingly, a similar problem is discussed in Kenyon-Lam (2019).)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 15/29

Part 2: Hanging membranes

In this part... l\N

® A shell membrane theoretic formulation of hanging membranes.
® Qur formulation is based on the assumption “stress lines = curvature lines”.

® In-plane equilibrium <= existence of another surface (Combescure
transform), which is similar to the theory of membrane O surfaces.

® Variational principles.

Reference:
Y. Jikumaru and Y. Yokosuka, Differential geometric formulation of hanging membranes: Shell membrane
theory and variational principle, Int. J. Math. Ind. 14(01) 2250004 (2022).

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 16/29
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Background 1 (Hooke’s observation) l\N
A model of hanging chain by Robert Hooke (1635-1703):

“Theorem™ (Robert Hooke, 1676)

An ideal compression-only geometry for a rigid arch can be obtained by:

abcccddeeeeefggiiiiiiiillmmmmnnnnnooprrsssttttttuuuuuuuux.
Note: The anagram in No. 3 - Thr fowr Mathrmaricl andl Afadluniche’ all
g —:-nr kﬁ-{.lﬂq.ﬂl*nl“f:giq
n-r-l-{nlm-. Problem which o drokats @i d ')-
ceiiinosssttuu wer btk ever wed inompend | wach kel porforeed,  sbee:
ddera g | 1 10 TR i O s B,

is called Hooke's law: 3. e ira of Elafliciry o anda
IS calle OOKe s law hrmf e fﬂ . e HI"'.:_
ut tensio, sic vis -rrvlhlllr-n. -:-:T:ui ln-?mll:‘n e

(as the extension, so the force). Figure: Hooke’s article in 1676.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 17/29

Background 1 (Hooke’s observation) l\N

The solution of the anagram (Richard Waller, 1705)

Ut pendet continuum flexile, sic stabit contiguum rigidum inversum.
(As hangs the flexible line, so but inverted will stand the rigid arch.)

i f
3 £
py

(a) A sketch by Giovanni Poleni (1748) (b) Gateway arch (Missouri, St. Louis)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 18/29

Background 2 (Gaudi and Isler’s hanging model) l\N

Hanging models by Antoni Gaudi (1852-1926):

Lot A

e

(a) Antoni Gaudi (1878)  (b) Sagrada Familia (c) The model by Gaudi (Gaudi Museum)

Hanging models by Heinz Isler (1926-2009):

(a) A model by Heinz Isler (b) Gas station in Deitingen (Switzerland)

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 19/29
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Background 3 (Previous researches) I\N

Previous researches

1. Hanging membranes (with special symmetry):
Novozhilov (1964), Brew-Lewis (2007).

2. Thrust Network Analysis: Block-Ochsendorf (2007).
— Graphic statics (horizontal, J. C. Maxwell (1867)),
+ Force density method (vertical, H.-J. Schek (1974)).

3. Relation with isotropic geometry:
Vouga-Hbébinger-Wallner-Pottmann (2012).

4. Singular minimal surfaces:
Bohme-Hildebrandt-Tausch (1980), U. Dierkes (2003), R. Lopéz (2018).
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Notations from classical surface theory I\N

Let r = r(z,y) be a surface (patch) in R3.

r = r(z,y): the model of the middle surface of a shell membrane.
Assume that the coordinates (z, y) are the curvature line coordinates.
In this case, the 1st and 2nd fundamental forms are given by

I=A%da® + Addy?, II =k A2 da? 4 kA3 dy?. (4)
Denote
P
Ty = Alel, Ty = Ases, N =eq X e, (5) / - 3 5 .\-ﬂh"-\.
i - Yy
that is, e; and e, are the unit tangent vectors xF ro= A '.I.. " 5

and NN is the unit normal on the surface.

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 21/29

Combescure transformation I\N

Definition (Combescure, 1867)

If the functions A; and A, satisfy the relations

(A)y _ A1)y (A2)e _ (M)

=25 ; (6)
A2 A2 Al A1
then there exists a surface T given by the relations o -
. _ 5 i r Ly r -
7, = Ajeq, Ty = Aes. (1)
In particular, r;, || ¥, and r, || 7, at corresponding points. .
The surface 7 is called the Combescure transformation of r. = i
25w A -

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 22/29
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The equilibrium equation I\N
The equilibrium condition for a membrane with “stress line = curvature line”:

(AoT1)e — (A2)2T2 + (g, e1) A1 A= 0,
(A1T2)y — (A1)yT1 + (q,e2) A1 A2= 0, (8)
k111 + k2To + (g, N)= 0,
where
e (.,-): the standard inner product in R3.

e T3, Ty: normal stress (resultants) along z- and y-coordinate lines, respectively.

e g: the load (vector) acting on the unit area of the membrane.
In this talk, you can assume the vertical load (self-weight).

e We call in-plane equilibrium and out-of-plane equilibrium conditions, resp.
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Existence of the Combescure transformation I\N

The equilibrium condition for a membrane with “stress line = curvature line”:

(AoT1)e — (A2)2To + (g, e1) A1 A= 0,
(A1T2)y - (Al)yTl + <qa 62>A1A2: 07 (9)
k111 + KkoTs + <q7 N>: 0.
In this case, we denote
A = A(Ta+(q,7), Az =AyTi+(gq,T)). (10)

Then, if we assume q is constant vector (e.g., self-weight), we can verify

(A)y _ (A1)y  (Ao)e _ (A2)o

L A A A ik
that is, in-plane equilibrium condition <= 3 Combescure transformation 7!
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A similarity with membrane O surfaces I\N
If (g,r) = 0, that is, for a “shallow shell”, we have
Ay = ATy, Ay = ATy, (12)

and the out-of-plane equilibrium condition becomes the “bilinear form™:

0 0 1 K,
(Ho Ay A1) [0 gu Of [A2] =0, (13)
1 0 0 Ay

where ¢, = (g, N) is the normal loading.

Theorem (Rogers-Schief, 2003)

If ¢,, is constant, the surfaces r, 7, N constitute “membrane O surfaces”.

Remark: the assumption “shallow” is not necessary in Rogers-Schief theory.
Michell structures and hanging membranes Yoshiki JIKUMARU

INIAD, Toyo University 25/29
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Hanging membranes of “symmetric” case I\N

For constants )\, b, we assume the relations
Ty +(q,7) = Ak — b, To+(q,r) = As1 —D. (14)

Then the in-plane equilibrium equation becomes “trivial (Mainardi-Codazzi eqn)”.
Moreover, the out-of-plane equilibrium equation gives the constraint

where we put K = k1k2 (Gaussian curvature) and H = (k1 + k2)/2 (mean curvature).

If A =0, we have T1 = T» = —((g,r) + b) (known as “singular minimal” surfaces).
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Variational principle I\N

Define the functional E as follows (), b: constants):
E(r) = /E(—QXH + (q,7) +b) dA. (16)
Then, the first variation of E (for boundary-fixed variations) is given by:
0B = /E (MK — 2H({g,7) +b) + (@, N)){6r, N) dA. an

The Euler-Lagrange equation gives the out-of-plane equation.

Note: if A = 0, then E becomes the gravity under the area constraint condition
(discussed in Koiso-Palmer (2005)).

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 27/29

Problems for shape generation I\N

® Can we generate various shapes using the “form diagram »”

and “force diagram 7 (Combescure transform)” as Airy stress functions???
® Can we construct the variational principle in a general case?
® Can we discretize these formulations with “interesting” mathematics?

- R~

Figure: Examples of “discrete hanging membranes” by circular net.
Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 28/29
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A summary of this talk I\N

In this talk, we introduced (mini) examples of
Mathematics Motivated by Architectural Design.

They consisted of the following contents:

Figure: Formulation of Hanging membranes

Figure: Michell-Prager type structures
and discrete isothermic surfaces

Michell structures and hanging membranes Yoshiki JIKUMARU INIAD, Toyo University 29/29
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Discretization of quadrics and of elliptic coordinates

Yuri B. Suris
Institut fiir Mathematik, Technische Universitéit Berlin, Germany

Abstract

In this talk, I will review a recently found discretization of classical elliptic coordinate systems. These systems
became prominent after Jacobi used them for integrating several famous problems of classical mechanics,
including the two centers problem and the geodesics on an ellipsoid. A structure preserving discretization of
these coordinate systems remained open for a long time and was finally tackled in Refs. [1, 2]. I will closely
follow the history of this discovery. On the first step [ 1], a construction based on an integrable discretization of
the Euler-Poisson-Darbox equation was used. The coordinate functions of the resulting discrete nets are given
in terms of gamma functions. These nets enjoy separability property, their two-dimensional subnets being
Koenigs nets with an additional novel discrete analog of the orthogonality property (thus, discrete isothermic,
in a sense). On the second step [2], the novel orthogonality concept was put at the very basis of a more general
construction. The latter is geometric, via polarity with respect to a sequence of classical confocal quadrics. The
coordinate functions of discrete confocal quadrics were computed explicitly. This opens the possibility to close
the cycle of historic development by applying discrete elliptic coordinate systems to discretize corresponding
problems in classical mechanics in the structure preserving fashion.

References

[1] A.L Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. I. An integrable
systems approach. J. Integrable Systems, 2016, 1, No. 1, xyw005, 34 pp.

[2] A.L Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a discretization of confocal quadrics. II. A geometric
approach to general parametrizations. Internat. Math. Research Notices, 2020, 2020, No. 24, 10180-10230.
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Part 1: Discretizing equations. Based on:

A.l. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a
discretization of confocal quadrics. I. An integrable systems
approach. J. Integrable Systems, 2016, 1, No. 1, xyw005, 34
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Part 2: Discretizing geometry. Based on:

A.l. Bobenko, W. Schief, Yu.B. Suris, J. Techter. On a
discretization of confocal quadrics. Il. A geometric approach to
general parametrizations. Internat. Math. Research Notices,
2020, No. 24, 10180-10230.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Part 1: Discretizing equations

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Confocal quadrics

One-parameter family of quadrics: for given a; > --- > ay > 0,

N 2
Q)\—{X—(X1,...,XN)ERN:Z Xk _1}, AeR.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Confocal coordinates

For a given point x € RN with x1x5 ... xy # 0, equation
Zfﬂ x2/(ax + X\) = 1for A has N real roots uy, ..., Uy in

Z/{:{ue]RN:fen<u1<fa2<u2<..‘<faN<uN}.

They correspond to the N confocal quadrics that intersect at x:

N N

2

X .
) k=1, i=1,... N & xe[)Qu
P i=1

The coordinates (uy, ..., uy) are called confocal coordinates
(or elliptic coordinates, following Jacobi (1826)).
Expression of xf through uy, ..., un:

N
s = Hmltitad) oy
[izk(ax — ai)

(defines xx up to sign).

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N =2
X = vai +uay + uo o — V(a2 + u)vaz + u
var —az ’ var —a

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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General properties

» The net x : U — RY satisfies the Euler-Poisson-Darboux
system

' 7y ox  ox
Bu,-auj B uj — U/' (37111 B TM) (EPD’Y)

with v = 1. All two-dimensional coordinate surfaces of x
are Koenigs nets.

» The net x : & — RY is orthogonal:

ox ox\
3U,'7 8Uj n
All two-dimensional coordinate surfaces of x are curvature

line parametrized.

All two-dimensional coordinate surfaces of x are isothermic.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Characterization

Theorem. Confocal coordinates x : &/ — RY are characterized
by the following properties:
» All X, : U — R4 (k=1,...,N) are separable solutions of
(EPD,) with v = % satisfying boundary conditions

lim  xc(ug,...,uy)=0 for k=1,... )N,
sl g el W

lim Xk(Uq,...,uy)=0 for k=2,... N.
k-1, (—a)

» Thenetx: U — ]Rﬂ is orthogonal:

(32
OU,"(’)U/' n

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete Euler-Poisson-Darboux equation

An integrable discretization of (EPD,):

Ay — 2l YA
DAX ﬂ,'+6,'ff7j75j(A/x Aix). (dEPD,)

Introduced by Konopelchenko-Schief (2014).
Integrable in the sense of multidimensional consistency.

All two-dimensional subnets are Koenigs.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Discrete confocal coordinates

Definition. For aq,...,ay € Zwithay > as > -+ > ay > 0,
set
U=z"nuU, u=zNnu,
where Z* = Z + } and
U={ueRV: —a;<uy<—ap<tp <--- < —ay < up},
Discrete confocal coordinate systemis a net x : Y UU* — RY
such that
» all xx: U - Ry (k=1,...,N) are separable solutions
of (dEPD,,) with v = % satisfying boundary conditions
Xk|pe=—ay =0 for k=1,...,N,
Xklng 1=—ay =0 for k=2....N,

» all x, : U* — Ry (k=1,...,N) are separable solutions
of (dEPD,) with v = % given by the same formulas as
Xk : U — Ry, extended to U*;

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete confocal coordinates

and

» the net x is orthogonal in the sense that each edge of
x(U*) is orthogonal to the dual facet of x(i/) (and vice

versa).
x(n+ ex)
x(n—jei+ze+he) A X(n+ Jei+ bej+ jex)
u
1a. 1a. 1 1a. 1a. 1
x(n—ze;— 36+ 7€) x(n+ ze— 36+ 7€)
x(n)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Explicit formulas

Discrete confocal coordinate systems are given by

Xe(m,....nn) = D [ | (—ni—a—"5143) 12 11 (nitaxt+551) 5+
i<k >k

where the discrete square root function is defined by

1
(U)1)2 = %7

and

D =TT o — o+ - T /o — i + 552

i<k i>k

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N =2

Discrete elliptic coordinates in the plane:

(ny +0‘1)1/2(”2+0‘27 %)1/2

xi(n) = -
[e%] —0(2—2
(= —az),(n+a2),,
xo(n) = E_ 5%,
ag—ap— 5
where
Ny, € 2.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N =2

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N =2 (ay =5, ap = 1)

On two dual sublattices: x : (Z2 U (Z*)?) N U — R2

Yuri B. Suris

Discretization of quadrics and of elliptic coordinates
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Example: N =3 (a1 =4, a2 = 2, a3z = 0)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N =3 (a1 =20, azx = 10, az = 0)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Part 2: Discretizing geometry
in arbitrary parametrization

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Re-parametrizations

Useful to achieve single-valuedness and periodicity of the
functions involved.

Example N = 2:in
_ Vvai +Uuiy/ar + U X \/—(32+U1)\/32+U2

X1 2 =
Vvas — as ’ Vvai — as
set
_ ‘2 2 _ ) 2
Uy = —a1 8in“ 8y — a8 C0s“ Sy, Uo = a; Sinh“ o — a» cosh” sy,
then

Xy =+/ay — a C0sS;coshsy, Xo=+/a; — as sins;sinh s,.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example. N =2

Classical elliptic coordinate system in the plane in terms of
trigonometric/hyperbolic functions with a; = 2, a, = 1:

y

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Fundamental restriction of DDG

For functions of a discrete variable, there is no natural notion of
re-parametrization!

To find natural discrete analogs of confocal coordinates in
arbitrary parametrization, need new ideas.

The main idea: a novel characterization of confocal
coordinates, not based on (EPD,) in a special parametrization.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Novel characterization of confocal coordinates

Theorem. If a coordinate system x : RV > U — RN satisfies
two conditions:

i) X(s) factorizes, in the sense that

x1(8) = f(s1)f3 (s2) - - Fy(sw),

xo(8) = f2(s1)13(s2) - - Fi(sw),

xn(8) = V(s (s2) - - N/ (sw),

with all f(s;) # 0 and (f¥)'(s) # 0;
ii) X is orthogonal, that is,

(0ix,0ix) =0 for i# ],

then all coordinate hypersurfaces are confocal quadrics.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Discrete confocal coordinates

As often in DDG, we turn a smooth theorem into a discrete
definition. N
Definition. A discrete coordinate system x : (32)" > U — RN

is called a discrete confocal coordinate system if it satisfies two
conditions:

i) x(n) factorizes, in the sense that for any n € U

xi(n) = £ (n)i3 (n2) - (nw),

xo(m) = fE(m)E(n2) - (),

xn(n) = V()8 (n2) - - {{ (w),

with all £5(n;) # 0 and Afk(n;) = f5(n;) — f5(n; — 1) # 0;
ii) X is discrete orthogonal in the above sense.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Reminder: discrete orthogonality

Recall that we call a net x is orthogonal if, for each edge
[n, n+ e], all 2V~ vertices of the dual facet,

x(n+Yo) for all o= (o1,...,0n) € {£1IN with o =1,

lie in a hyperplane orthogonal to the line (x(n), x(n+ ex)):

x(n+ ex)
x(n—lei+1ej+3e) A x(n+ e+ ey + Lex)
M
1 1 1 1a. 1a. 1
x(n— e — €+ 7€) x(n+ e — € + 5€)
x(n)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

187



Discretization of confocal quadrics equation

Theorem. For a discrete confocal coordinate system, there
exist N real numbers ax, 1 < k < N, and N sequences

Ui : 3Z + T — R such that the following equations are satisfied
for any n € U and for any o € {+1}V:

N 1
Xk ()X (N + 5 .
ZM:L U,':U,'(n,'—l—%(T,'), i=1,...,N.
k=1 8k + Ui
Equivalently,
N
i—1(Uj + ak
Xk(n)Xk(rH-%O') = M up = u,-(n,--&-}a,-), k=1,...,N.

(e — &)’

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Converse statement

Theorem. For given sequences u; : %Z + % —R,1<i<N,
consider functions fX(n;) as solutions of the respective
difference equations

ui(ni + ) + ax, k<i
i+ 3 = |
—(ui(mi+ 1)+ ak), k>i.

The functions ¥, k = 1,..., N are defined uniquely by
prescribing their values at one point. Then, x defined by

N
_ 11 ’;‘k(”j)
- k—1 N ’
ict Vai— ak [ lizk1 Vak — aj

constitutes a discrete confocal coordinate system.

xk(n)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Geometric interpretation

The main formula

=1, U,'ZU,'(I‘I,'#’%D‘,’)7 i=1,...,N,

z”: X(M)x(n + o)
et ax + Uj
admits a remarkable geometric interpretation:
the point x(n + Yo) lies in the intersection of the polar
hyperplanes of x(n) with respect to the (smooth) confocal
quadrics Q(u;), i=1,...,N:

N
x(n + %O’) = ﬂ PO/Q(ui)(X(n))v uj = u,-(n,- + %0’,‘).
i=1

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Geometric construction

Input data.

» N sequences of quadrics of the confocal family is chosen,
with the parameters

uj: (%Z‘F%)QI,'*)R,

indexed by n; + § € Z;, where n; € 1Z. Let V, V* be the
parts of the respective lattices ZV, (Z + 1)V lying in the
region [TV, Z.

» An arbitrary point x(ng) for ng € VU V*.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Recurrent construction

Suppose that x(n) = x is already known. Then for any
neighboring vertex of the dual sublattice,

n*:n+%a7 o= (01,...,0n), o0j==£1,

the point x(n*) = x* is constructed as the intersection of N
polar hyperplanes

N
X = ﬂ Polo(ui)(x), ui = u,-(n,- + 1ZO’,’).

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Origin of discrete orthogonality

Lemma. Let 1 be a hyperplane. Then the poles of 1 with
respect to all quadrics of the confocal family lie on a line ¢. This
line ¢ is orthogonal to .

Example N = 2: if P, is related to Py via polarity in two
confocal conics, that is, M = Polg, (P1) and P> = Polg,(M), then
the line through P; and P; is orthogonal to I.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N =2

Discrete elliptic coordinates in the plane, in terms of
triginometric/hyperbolic functions:

a| — as
cos(%‘)cosh(%)

as — as . .
Xo(N) = , | ———————=——sin(d1ny) sinh(d2n).
() ”cos(%‘)cosh(%) (61m1) sinh(d2n2)

x1(n) = cos(d1ny) cosh(dany),

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N=2 (a1 =2, a8 = 1,01 = 62 = 2, m = 8)

Yuri B. Suris Discretization of quadrics and of elliptic coordinates

Example: N=2 (a1 =2,a =1, = o

Two pairs of dual orthogonal sublattices:
y y

Left: Sublattice on Z2 in blue and on (Z + 1) in red.
Right: Sublattice on Z x (Z + 1) in blue and on (Z + 1) x Z in
pink.

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Example: N = 3, smooth confocal coordinates

Elliptic coordinates in the 3D space, in terms of elliptic
functions:

X1 sn(s1,k1)dn(sg7k2) ns(337k3)
Xo | =+v/a1 —as | cn(sq, ki) cen(sz, ko) ds(ss, k3) | ,

X3 dn(s1, k1) sn(sz, ko) cs(S3, k3)
where
K2 = k2 = ;aZ k2:u:1,k12.
a — 33 a —as

Yuri B. Suris

Discretization of quadrics and of elliptic coordinates

Example: N=3,a1=8,a=4,a3;=0

|
===27 #

g/ fim \
D

Yuri B. Suris

Discretization of quadrics and of elliptic coordinates

Example: N = 3, discrete confocal coordinates

Discrete elliptic coordinates x : (%Z)3 — R3 in terms of elliptic

functions:
Xq (n) = 103 Sn((51 Ny, Ky ) dl'1((52l727 kg) ns(63n3, kg)
Xxo(n) = [1P2P83¢n(61m, ki) en(dznz, ko) ds(dzns, K3)
x3(n) =

17273 An(d1m, ki) sn(d2nz, ke) €8(0a 13, ks)

where the moduli ky, ko, k3 are defined as solutions of the
following transcendental equations:

2o - dn?(% ki)
2 _ .

ey @
a—a cn?(%, k)

a—a; dn’(%. k)
ar—as cn2(%. k)

2o - d”2(62,k3)
°ai—as cn?(%ks)

Yuri B. Suris
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Example: N =3 (a1 =8, ax = 4, a3 = 0, §; = K(k;) /4)

Discrete quadrics from the pair of dual orthogonal sublattices
73 and (Z + %)3 are shown in blue and red respectively:
» two two-sheeted hyperboloids for ny = 1,2 (no, n3 € Z),
» two one-sheeted hyperboloids for n, = 1,2 (ny, n3 € Z),
» one ellipsoid for ny = 3/2 (ny,n> € Z + }).

Yuri B. Suris Discretization of quadrics and of elliptic coordinates
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Surface generation for confidence-based data-driven computing in elasticity
with application to reliability-based truss topology optimization

Yoshihiro Kanno
The University of Tokyo, Japan

Abstract

Data-driven computational elasticity is an emerging field of computational mechanics. This study presents
a method predicting a bound for structural response, where the material responses are supposed to possess
uncertainty. The uncertainty set is constructed by generating piecewise affine surfaces from a data set of material
responses. We show that the problems for finding upper and lower bounds for the structural response can be
recast as a mixed-integer linear programming problem, which can be solved globally with a branch-and-cut
method. Then a fundamental property of the order statistics guarantees the confidence level for the probability
that the obtained bound includes the structural response is no smaller than the target reliability. Furthermore,
we discuss application to the reliability-based design optimization of truss structures.
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Surface Generation for Confidence-based
Data-driven Computing in Elasticity
with Application to Reliability-based

Truss Topology Optimization

Yoshihiro Kanno
(The University of Tokyo)

March 10-13, 2025
(Evolving Design and Discrete Differential Geometry:

towards Mathematics Aided Geometric Design)

e data-driven method for computational elasticity

e uncertainty in material behavior
» a data set of stress—strain observations

* no modeling of probability distribution

e to find lower & upper bounds for Qol,

10 - —— ;*;" .
_ 8 e 3
g i
£ ’ g 1
P Y
[ AR 0 i
£
s S o 3 s 2 10 -8 -6 -4 -2 0
Strain (107 m/m) S'[ruCtuI’e Displacement (mm)
v eomi2tENI2] data set bound for Qol 2

data-driven equilibrium analysis in elasticity

o T. Kirchdoerfer, M. Ortiz: Data-driven computational mechanics.
Comp. Meth. Appl. Mech. Engrg., 304, pp. 81-101 (2016).

* use data of material experiments directly

]

Stress

<z

Strain

T Oiocmentml
» subsequent related studies (a lot): [Kirchdoerfer & Ortiz '17],

[Ibafiez et al. *17], [Wang & Sun "18], [Nguyen & Keip '18],
[Ayensa-Jiménez, Doweidar, Sanz-Herrera & Doblaré '18]

o tries to find “the closest point” in a data set

e combinatorial property from optim. view — difficult to solve

Y. Kanno (Evolving Design and Discrete Difierential Goometry)
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[Kirchdoerfer & Ortiz *16]: influence of outliers

o jterative method
o for one-bar example,

« find stress satisfying equilibrium
with external force: o « p/a.

« move to the closest data point
from current (g,0) .

Strain

e initial point: origin
e O : obtained by [KO '16]
— affected by the outlier

e A : globally min. distance soln.
(also, convincing soln.)

Y. Kanno (Evolving Design and Discrete Differential Geometry)

data set w/ an outlier [K. '19]

e detecting a surface (i.e., manifold) on which data points (approx.) lie
o 2-dim. manifold in R3

Y. Kanno (Evolving Design and Discrete Difirential Geometry)

a remedy [K. '21a, 21b]

ex.) material data set

e e nonlinear isotropic
L5 3
P SPYE R
! o 2 1+exp(—103&°9)
s v = 0.3, w/ some noise

nt stress (MPa)

p e 200 data points
”0 0.5 1 1.5
equivalent strain (m/m)

x107

12 (MPa)

2 (m/m)

e (m/m)

strain

stress

Y. Kanno (Evolving Design and Discrete Difierential Goometry)
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ex.) load—displacement relation

e — 0 proposed (surface generation) .- O reference solution

e — —— < [Kirchdoerfer & Ortiz '16] ———9<local linear regression

10 5
Displacement (mm)

14
o 1
12t e
e, ~ 08
e, g
© @ 206
AN &
© E
o, % 04
- S

-15 -10 -5 0 -10 -5 0
Displacement (mm) Displacement (mm)

. Kanno (Evoling Design and Discrele Difeentil Geometry) 7

) '_‘.-mfﬁ f_,@v
CHRT TR R ST s 2
equivalent strain (m/m) 107 equivalent strain (m/m) g7
proposed (surface generation) reference solution
7 0
15 0%
o
|
s
0
o o ER R
equivalent strain (m/m) . jo? equivalent strain (m/m) g7
[Kirchdoerfer & Ortiz '16] kNN linear regression
[ S ——— 8

ex.) robustness against data set

o for 50 data sets, plot angle between principal axes of stress and strain

e isotropy < angle=0

el T >

[Kirchdoerfer & Ortiz *16] kNN linear regression

Y.Kanno (Evoiing Design and Discret Diferential Geometry) 9
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[Guo, Du, Liu & Tang °21]: another remedy using

e “A new uncertainty analysis-based framework for data-driven computational
mechanics.” J. Appl. Mech., 88, 111003 (2021).

» construct an ellipsoid (an uncertainty set) including data points, and
« find upper & lower bounds for structural response.

« avoid influence of outliers.

10

Y. Kanno (Evolving Design and Discrete Diferential Geometry)

material data and uncertainty set

e [Guo et al. '21]: a set including all (= ) data points
e [K.’23]: aset C including j points among r data points

.
e 5 = minimum natural number s. t. Z Cr(1—e)Fe k<5
A

Stress *

k=p

5 :=max{Qol | (¢,0) e CN M},
s :=min{Qol | (¢,0) e CNM}. « bounds

e M : compatibility & force-balance
« Fundamentals of order statistics yield

reliability under F

PF{P(EEG.)NF{s €ls,s]}=21- e; >1-6.

,,,,,,, A

Strain

“

uncertainty set C

F is unknown (uncertain)

e 1 - € :target reliability 1 - ¢ : confidence level

e RBDO w/ uncertain distrib.  [Moon et al. 17, 18], [Ito, Kim, & Kogiso '18] i

Y. Kanno (Evolving Design and Discrete Difirential Geometry)

material data and uncertainty set

e [Guo et al. '21]: aset including all (= r) data points
o [K.'23]: aset C including p points among r data points

,

e j := minimum natural number s. t. Z Cr(1-efe*<s
4 A
k=p !

5:=max{Qol | (s,0) e CNM}, (»)
s:=min{Qol | (¢,0) eCNM}. (&)

e M : compatibility & force-balance

uncertainty set C

 “local opt. of (#)” : underestimate of “max. value of Qol”

¢ 7 non-conservative bound ®

« global optimality
« this talk: use mixed-integer programming for guarantee
» w/ segmented least squares (C defined by piecewise-linear ineq.)

ometry)

12

Y. Kanno (Evolving Design ar
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fitting given data points

e unknown:
« partition of the points
« coefficients of each affine function
e minimizing  “(sum of squared errors) + y(#affine functions)”
vy > 0 : penalty parameter
« — MIQP (mixed-integer quadratic programming) — global optim.

(10° Pa)
T

Stress (10° Pa)

Strai
segmented least squares
(stress—strain pairs) (piecewise regression)

Y. Kanno (Evoling Design and Discrete Diferential Geometry) 13

finding bound for structural response s(u, o)

e upper bound: (lower bound: found by minimization)

Max. s(u,o)

s. t. &=Bu, (compatibility)
Bo=f, (force-balance)
(&i,01) € C. (inclusion in uncertainty set)

e can be reduced to MIP (mixed-integer programming) — global optim.!

.
. .
22 2
i i
4 — .
P s
PRI FRENCREIEE
Strain (10* m/m) Strain (10~* m/m)
segmented least squares uncertainty set C
(piecewise regression) (including p data points)

. Kanno (Eviing Design and iscree DifreialGeomery) 14

uncertainty set C w/ piecewise linear boundary

e single breakpoint case (for simplicity)

pe Gy - boundary of C consists of
o U, G e+ Pio=yi—T

o U0, 0w+ fioc =yitT

o (@i, Bi, vi : have been obtained by
segmented least sq.)

b . -t’bd:ps+qo—:r
o b . e (p, g, r : can be found by elementary
A e calculation)

e
o (g,0) € Ciff

btwn. £ & ¢; if pe+qo <r,
(e,0) € o e
btwn. 7 & ¢; if pe+qo >r.
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idea for MIP (= mixed-integer prog.) reduction

This set can be represented by
0-1 variables & linear inequalities!

e f(x)<0 = gx) <0
>

f(x)20 = g(x)<0
e w/ variable s € {0, 1} & sufficiently large constant M, we have
f(x) < Ms, gi1(x) < Ms,

fx)y>=M(s-1), X)) <M1 -3).
f, &1, g2 : expressed by some linear inequalities (prev. slide)

. Kanno (Evoling Design and Discrete Diferentil Geometry) 16

ex.) truss (1/3)

(10° Pa)

Stress

e 29-bar truss Y S0t wi
material data (200 data points)

e problem setting: target reliability 1 — € = 0.9, confidence level 1 — 6 = 0.9

! . ‘ -
E 0% m/m) ¢ ’ e sn'y ( m/m) ! ¢
segmented least squares uncertainty set (including 186 pts.)

Y. Kanno (Evalving Design and Discrete Diferetial Geometry) 17

ex.) truss (2/3)

Stress (10° Pa)

-20 -15 -10 -5 0 5
Displacement (mm)

obtained bounds for nodal Tt hmetme
displacement w.r.t. variation in stress—strain of each member
load factor 1 ati=1
(o : reference solution)
P — — 18
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ex.) truss (3/3)

o stress analysis

2 5 30
Member index

obtained bounds (m : reference sol.)

variations in the bound w.r.t. variations in the bound w.r.t.
confidence 1 —§ (1 — e is fixed)

reliability 1 — e (1 -6 is fixed)
Y.Kanno (Eoig Desin and DisreeDieranl Geomety)

ex.) cable—strut structure (1/2)

e cable
« thin member,

« can sustain only tensile force.

e strut

» sustains compressive & tensile force.

Ry
P

5 0 5
Strain (107 m/m)

%

-4 2 02 4 6
Strain (10~ m/m)
data set for cables data set for struts

Y. Kanno (Evolving Design and Discrete Difirential Geometry)

20

ex.) cable-strut structure (2/2)

/
7
/

o raaaat

5
5
5
]
5
2 0 2

8 6 4 0
Displacement (mm)

obtained bounds for nodal displacement
w.r.t. variation in load factor A

.

o s NN
Strain (10~ m/m) Strain (10~ m/m)

stress—strain of each cable stress—strain of each strut

21
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towords truss design optimization

e constraint under uncertainty
* uncertainty: material behavior (w/ unknown prob. distr.)
« x :design var. (member cross-section areas)

» n(x) : compliance (a measure of structural flexibility)
— random var.
reliability w/ fixed distribution

PF{P(570->{H(X) <7} = 1—6} >1-96.

treating uncertainty in distribution

o reliability-based design optim. w/ uncertain input distribution
[Moon et al. 17, 18], [Ito, Kim, & Kogiso '18]
[Jung, Cho, & Lee "19], [Jung, Cho, Duan, & Lee, 20]
[Wang, Hao, Yang, Wang, & Gao '20], [Hao et al. '22]

. Kanno (Evoling Design and Discrete Diferentil Geometry) 22

reduction of compliance constraint

‘ Pr, {Pp{n(x) <7} >1-€} >1-6. ‘

o sufficient condition (w/ uncertainty set C):

7> max f'u (worst-case external work)
s.t. &=Bu, (compatibility)
Hx)o=f, (force-balance)

(&i,09) € C. (inclusion in uncertainty set)

« var.: member strains &, member stresses o, nodal displacements u

» strong duality of LP yields equivalent cstr.:

‘ J“Lagrange multiplier”, (dual objective value) < 7. ‘

» T can be treated with conventional nonlinear programming!

Y. Kanno (Evalving Design and Discrete Diferetial Geometry) 23

ex.) w/ continuous design variables (1/2)

.

. f Do

_ e -

= f’

S o

‘ -ﬂ“f

52 I o o o o o o

4 }
i R R R ground structure

Strain (10~ m/m)

! (188 members)
300 data points

e W/ interior-point method
(nonlinear programming)

e 1 — e =0.95 reliability
e 1 -6 =0.95 confidence level

e p =292 points are included
in the uncertainty set.

ometry) 24

Y. Kanno (Evolving Design ar
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ex.) w/ continuous design variables (1/2)

; fj
“ /’f,

= &

=0

H )@f

2 g

T e nominal optimal solution

Strain (10 m/m) . .
. . w/ linear regression result
300 data points & uncertainty set ( 9 )

e W/ interior-point method
(nonlinear programming)

o 1 — e =0.95 reliability
e 1 -6 =0.95 confidence level

e p =292 points are included
in the uncertainty set. proposed method

Y. Kanno Evoling Design and Discrte Diferrtial Georety) 24

ex.) w/ continuous design variables (2/2)

’
. ’gj 15 £
- jfﬂ ! *
2 f"#
£ ’ 4
&2 rd .
. I ‘ x
'
LA
R S o
Strain (10~ m/m) Strain (10~ m/m)
300 data points & uncertainty set close up

e x : nominal optimal solution
« all existing members have common absolute value of stresses
(well-known fact for volume min. under compliance cstr.)
e + : proposed method

« all existing members have
common worst-case absolute value of stresses  (not proved yet)

Y. Kanno (Evalving Design and Discrete Diferetial Geometry) 25

ex.) w/ discrete design variables (1/2)

o discrete member cross-section areas

« selected from predetermined values

reduced to MIP (mixed-integer linear programming)
« idea: similar to conventional truss optim.

« global opt. by MIP solver (branch-and-cut)

NN

nominal proposed

26
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ex.) w/ discrete design variables (2/2)

o discrete member cross-section areas

« selected from predetermined values

e reduced to MIP (mixed-integer linear programming)
« idea: similar to conventional truss optim.

« global opt. by MIP solver (branch-and-cut)

SOEVAN 7SN
RO
X YARANRYAN

nominal proposed

XXX

B
Ry
XX
problem setting

. Kanno (Evoling Design and Discrete Diferentil Geometry) 27

e data-driven computational mechanics  [Kirchdoerfer & Ortiz '16]

introduction of uncertainty analysis  [Guo, Du, Liu & Tang '21]
» upper & lower bounds for structural response

use of order statistics

« confidence for reliability that the structural response belongs to the
obtained bound

segmented regression for nonlinear material data

mixed-integer programming
» can find a bound w/ global optimality®

o > local opt. sol.: underestimate® of the structural response

application to truss design optimization
« reduction to nonlinear programming via duality of linear programming

ometry) 28

Y. Kanno (Evolving Design and Discrett
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Optimization methods for continuum and latticed shells consisting of
developable parts

Makoto Ohsaki
Kyoto University, Japan

Abstract

To reduce the cost and time for construction of continuum shells and latticed shells for covering large archi-
tectural space, it is important to design the structures as an assembly of developable parts. For this purpose,
this presentation summarizes the following three optimization methods developed as part of the JST CREST
ED’GE project:

1. A meshless and non-parametric two-level optimization approach is proposed for design of shell surfaces

consisting of approximately developable patches. Developability is measured by the area of local Gauss
map at the grid points. In the lower-level problem, the developability conditions are relaxed at some grid
points to generate internal boundaries between approximately developable surface patches. In the upper-
level problem, stiffness under the specified vertical loads is maximized. The design variables are the
heights of the selected grid points, where developability conditions of some grid points are automatically
relaxed. This way, a new class of structural shape optimization problem of shell surfaces consisting of
piecewise developable surfaces is proposed to design shells with desirable geometrical characteristics in
view of fabrication and construction.

. In the design of latticed shell consisting of straight beams, it is important to have planarity of beam plates

and surface panels while avoiding kinks at the joints. For this purpose, a hexagonal mesh consisting
of straight beams connected at joints without torsion or kink is generated from Koebe mesh on a unit
sphere obtained by spherical inversion in Mobius geometry. The parameters for Mobius transformation
are optimized to obtain the latticed shell close to the target surface.

. The cost and time for construction of gridshells consisting of quadrilateral meshes can be reduced by

designing the shell as an assembly of planar beams. A gridshell with a planar quadrilateral mesh and
planar curves is generated by discretizing an L-isothermic surface, where the directions of principal
stresses coincide with the directions of principal curvatures under the uniform pressure load. The cross-
sectional areas of gridshells are optimized to have the desired distribution of axial forces.

References

[1] K. Hayakawa, M. Ohsaki and J. Y. Zhang, Meshless non-parametric shape design of piecewise approxi-

(2]

(3]

(4]

mately developable surfaces using discretized local Gauss map, J. Int. Assoc. Shell Spatial. Struct., Vol. 64,
No. 1, pp. 5-14, 2024.

K. Kabaki, K. Hayakawa, M. Ohsaki, Y. Jikumaru and Y. Yokosuka, Design of gridshells consisting of
planar curves using Laguerre geometry, Proc. IASS Symposium 2024, Zurich, Switzerland, Int. Assoc.
Shell and Spatial Struct., Paper No. 340, 2024.

R. Watada and M. Ohsaki, Sequential generation method for hexagonal lattice shells with edge offset mesh,
Proc. IASS Symposium 2024, Ziirich, Int. Assoc. Shell and Spatial Struct., Paper No. 365, 2024.

M. Ohsaki, K. Hayakawa and J. Y. Zhang, Non-parametric structural shape optimization of piecewise
developable surfaces using discrete differential geometry, Proc. Asian Congress of Structural and Multidis-
ciplinary Optimization (ACSMO 2024), Zhengzhou, China, Paper B40314, 2024.
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Optimization methods for continuum
and latticed shells consisting of
developable parts

Makoto Ohsaki (Kyoto University)
Jingyao Zhang (Kyoto University)
Ryo Watada (Osaka Sangyo University)
Kentaro Hayakawa (Nihon University)
Kohei Kabaki (Kyoto University)

Outline of presentation

* Three topics from Kyoto Group of Crest project
Related to “Optimization of shells consisting of

developable parts”

1. Design of gridshells using Laguerre geometry
2. Design of latticed shells with hexagonal mesh using Mdbius
geometry

3. Structural optimization of shells consisting of piecewise
developable parts

Design of gridshells using

Laguerre geometry
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Lie sphere geometry

* Union of Mébius geometry and Laguerre geometry

* Directed sphere and plate in 5 or 6-dimensional vector

¢ Laguerre transformation:

Expressed by 5 X 5 matrix satisfying Expression by 5-dimensional vector

(K]
condition in bilinear form i
Center Normal
vector
Wi + g

3]+ %' = (I' y ;'Ix teRLACER

L] = b
Signed + =
- ) f1 00 TR radius
Condition for transformation Sphere Plate
(TE. A=E. E LG N
F! o L ol o il il | il
11 parameters int and A LU
Purpose

* Design a grid shell with preferred axial force distribution
= Assign target force distribution and solve
optimization problem
= Difficult to assign feasible distribution
of axial forces at equilibrium for specified loads

* Design the shape based on Laguerre geometry

* In most of mathematical approaches, deformation against loads
(material property) is not considered.

= |nvestigate effect of deformation by structural analysis

L-minimal generalized Dupin cyclide ,

= . Y
W K Schief, A Szereszewski and C Rogers (2009) b &

* Envelop of sphere of variable radius
translated along Cycloid

cosa —a,
! cosa .
(one parameter family of sphere) r=—————— | g,sina |+—| 2«
. 2(a, —c,cosacosu) .
* One of the curvature lines cosasinu 0
is a circle P
. (ay—¢c; =1)
* Both of the curvature lines
are planar

Constant o

Parameter (u, a) along curvature lines
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Membrane forces against uniform normal loads

* Equilibrium to uniform normal load Z with membrane forces
* Principal stresses T; and T, in the directions of principal curvature
lines
* 3rd fundamental form is ithothermic w.r.t. curvature lines
= L-isothermic surface
= T, and T, are obtained explicitly from local surface shape
and has one arbitrary parameter

Arbitrar Normal load
VA 47 v Curvature line 1 Curvature line 2
) S== 7 parameter —_— -
2K, kA5 i o
VA A, — Ay)? I ) - -
T2=_—(1_( 2 Y )+ 02 Tension T |, . = | Tension Ty
2Kq Ay K1 A7
W K Schief, A Szereszewski Ay, Ay : Norm of tangent vector (Parametric speed)
and C Rogers (2009) Ky, Ko Principal curvatures
Assignment of parameter
* Assign I to have specific force distribution.
* Example: Force in one direction can vanish
at a specific point
1
T, =0 = - —A%Z Normal load
1 2 Curvit_ure Ii_ne 1 ] Curvature line 2
T,=0/l)= E(2AlA2 — A%)Z e
. - -
TensionT; |, \ % i Tension Ty

Target membrane force (continuum shell)

* Force in one direction vanishes at the center of upper boundary edge

e Ve

T;: « direction
T,: u direction
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Covering area

Target axial force (gridshell) o o

» Convert target membrane stress to target axial force

* Zero membrane force = Zero axial force

e ez
o 0
Ty < — [ T; | i
(a/mm) (N/mm)
- |
T
P, '!
¥ T,:adirection 3 | B!

s (N) T2 9 direction ASTal force

Axial force

Structural optimization

Material property = Compatibility of deformation
= Bending moment and out-of-plane shear force
= No axial force exactly same as target value

* Objective function: Mean squared error of axial force
* Design variable: Radius of circular pipe of beam

(thickness = constant)

Find d d: Vector of beam radius
Minimize |[N — No||? N : Axial force vector
subjectto 20 < d; < 150 N, : Vector of target axial force

Optimization results (Case 2)

CrasscEaaion Uniform section

radius A,
Error from [ Small error in !
o 0
target Fe interior region =77 T i
axial force ’ L s 1 = Ny i .
—_—m eIl T i

- en
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Release support along upper boundary (Case 2)

Zero axial force at upper boundary = Release support at upper boundary

Mean axal force Mean ratio of shear Upper boundary
error (N) force to load ____._Z_-
Initial (Pin) 2948 4.11% ;
(Free) 463 24.6% !
Optimal (Pin) 218 2.94% \\ﬁ__‘._,a//
(Free) 394 18.9% )
w M ',.j? T
= 1'-"'{\-_ < 1 i i #*
s Ry % | wvorm, T
e ST o S e e 4
Pin Free Pin Free
Displacement of initial uniiform solution Displacement of optimal solution

Laguerre transformation of surface

* Cannot transform point to point

* Define point on the surface as contact point between
directed sphere and plate

* Apply Laguerre transformation on sphere and plane

* Find contact point between transformed

sphere and plane - Plane after
transformation

Sphere after

Point 5
transformation 1
o "= Contact plane '! Point
: ——) \
. Surface before Transformation
transformation
Contact sphere Surface after

transformation

Laguerre transformation of surface

* Preserve invariants of Laguerre geometry
= Favorable properties of surface are preserved
= Curvature lines are transformed to curvature lines
= Constructability is maintained

Expression by 5-dimensional vector

) ‘1N \II tERL A e f ®
ki X = ] EXK".ACc K )
Lt aa,
J Center Normal
'] i1 I il vector
Ly ] - g

e,

Condition of transformation
i ] ] Signed

il radius

Sphere Plate

AT Eped = B, Epe 6@
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Conversion by Laguerre transformation

* Inner product: (X, y)pe = (AX, Ay)pe
* Directed sphere contacting the surface at p: (g) +a (_nl)

+ Laguerre transformation of directed sphere:

a[(§) + (B4 (5) +a (—I?ﬁll)

+ L-isothermic surface: (ny, ny) = (ny,n,) = 2%, (n,,n,) =0

* Laguerre transformation of 3rd fundamental form (x, y: parameters) :
Il = (dn, dn) = 2% (dx? + dy?)
Il = (dfi, dfi) = e2%(dx? + dy?), § = 6 — log |||

Examples of Laguerre transformation

Black: before transformation
Red: after transformation

£ .\."I‘\..
ﬁﬁ..x _h%
; :"':.._l-'-_-
"'\..l_..'\. P i W

R
e

S i Rotation w.r.t. hyperbolic function
Rotation Scaling in projective space

Stress distribution after transformation (Case 1)

T T, Equilibrium 1Ty + 1, T, + Z

i

i

—iﬂ:f-_
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Design of latticed shells with hexagonal

mesh using Maobius transformation

Edge-offset (EO) mesh

Mesh with the same edge offset value Axis

Offset edge

- Edge offset mesh:
Planar beam with same height Beam
Planar face o ~ Edge
- VCone
S EQ mesh
Beam . - Vertex axis = Axis of cone
& i - Edge on cone

Generating EO mesh
Koebe mesh

* All edges contact to a unit sphere

* Generated from circle packing on the sphere
* EO mesh is parallel to Koebe mesh

* All edges contact the cone at vertex

Mesh parallelity

Corresponding
edges are all '
(UL o .. parallel w
1 Y [ 4

Koebe mesh K Mesh M

212



Generating Koebe mesh

Projection of circle packing on a plane to unit sphere Py
= Modify circle packing = Modify Koebe mesh

Mobius transformation:

[f(Z) = %, (a,b,c,d € Cad — bc # O)J
or
_ e 1L
f(2) = pe (Z o 3), s
(,BECP>0,—T<O<m) R / )
ra=ag+ia,f =Byt iy
= Mobius transformation can be determined Mobius transformation

by six real parameters ag, a;, Br, B, p,0 € R

Mobius transformation

E f(z) = pe'? (Lﬂi), (,BECP>0,—T<0<m)

Z+a

& zZ->Zt+a

% & translation
“ -

zZ— 1/z IZ - Z+ ,8

inversion translation
-

z - pz Izaeiez
dilation rotation y
 d -) el 5
This is omitted as this onl
caLi;i"rEQi'd Eoé’i mliﬁgnv Koebe Mesh K and its offset mesh

Sequential generation of EO mesh

The number of neighboring faces: 1
-> variables : {4, &5, 1

- . I
1 g o » ) ff
e \ \ newfacveL
\\ Mesh M NS L
parallel to K
Pre-fixed Koebe mesh K Generated EO mesh M

)
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Target surface I

Surface approximation
« Sequential optimization: R
Minimization of mean squared error of normal vector I
* Variables: : &¢1,&52,1f (f € F) !
(F,: surfaces considering symmetry) i

new face

f

minimize @, = Zielf’fepg"ni —yl? D
subject to [|lx; — ®;|| —DV <0 (i € I, f € Fy) =l = Zilleg
Bounds for n¢, &r1, &r2

- Fl

n; : Unit Vertex axis vector at vertex x; F,
11; : Unit normal vector at X; on surface Fs
=~ . F,
X; : Point on surface nearest to x; F“
5

Number of variables: |Fg| X 3 at maximum (about 15) \

Numerical example

Target surface shape } e,

0,01.6) ""----x____ p A_n/ 3

- 2 1
] hy
¥ ‘q [ 3
q (5,0,0)
- =
p, q: Parameter
for surface
= — — shape
[ e .
A -
o A0 anl'i‘ I LR ] p
DY =0.10
Effect of shape parameters Beam helght : 0.30
2% g -
53 04
2
Q wn
&%
25 % oo 0
S O w
23
oo
= 0
8 0:40 e ——il) D
Near the outer bottom
short Edge lengths long 0.40 050 R p

dense Faces sparse
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Structural performance

/4

simply
supported

EO mesh model

Concentrated load :
1.0 [kN]

Common
\target A
surface I
Lattice beam
Face reinforcement elements
$=0.030 [m], t= 0.005 [m]
E and G multiplied by 100

Regular hexagons filled
in a circle on the plane

Vertical
projection
onto I1

Non-EO mesh model .. ;-

~

Non-EO

Effect of beam torsion
(small deformation)

&
wEaawe
- .

e
me

Maximum deviation egpjck in
the thickness direction [m]
Torsional deformation

@ EO lattice
@ non-EO lattice

Bending moment

[ ol

Average of [Myy| [KN - m/m]

Load-Displacement

A 76.9
1
1

£

Load-disp. relation

——NonEO ——FO

Local deformation

EO mesh reduces local
deformation

Deformation (factor: 2000)

EO lattice (Min. strain energy)
(»,@) = (0.50,0.70)
E = 0.004239

@ EO lattice
@ non-EO lattice

(. 9) = (0.5,0.7)
EO: 0.004239 «Minimum
Non-EO: 0.004368

Deformation (factor: 2000)
Non-EO lattice

(».q) = (0.50,0.70)
E = 0.004368

30
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Fabrication

Mortise &
Tenon

Structural optimization of shells
consisting of piecewise developable

surface

Background

Many methods for designing free-form shells for
architectural roof and fagade

Large construction cost:

- cost for formwork for reinforced concrete (RC) shell
Developable surface for cost reduction:

- generated by bending plate Assemblage of developable Bézier surface [1]

Use same mesh for design, analysis and
optimization:

- dependency of solutions on triangular mesh
discretization

Discrete developable surfaces [2]

[1] J. Cuiand M. Ohsaki, J. Int. Assoc. Shell. Spatial Struct., Vol. 59 (3), pp. 199-214, 2018.
[2] M. Ohsaki and K. Hayakawa, J. Int. Assoc. Shell. Spatial Struct., Vol. 62 (2), pp. 93-101, 2021. 33
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Purpose

Two-level shape optimization method of curved surfaces:
limited class of surface:

piecewise developable surfaces

Developability of the polyhedral surface:
- vanishing area of discretized local Gauss map at each vertex

Optimize locations of selected points on the surface:
- minimize compliance (maximize stiffness)

Gauss map and developable surface

unit normal IS
Gauss map: vector & .7 \
. . el A
- mapping from point on the surface to & T / . W
a point on the unit sphere of unit - o i..,t; 2
normal vector x ’ unit sphere

Vanishing area of Gauss map

Gauss map of non-developable surface
— developable surface:

- plane:  point N
) Ik N
- cylinder: arc k T - . 'ijf'i‘
L # CA A,
-cone: arc ' T Fa ’
arcon
_.-" unit sphere

Gauss map of developable surface

Meshless approach

Surface represented by grid points
- Mesh structure (global connectivity of edges): not specified.
- Auxiliary edges: tentatively arranged to construct a locally triangulated surface.
- Gauss map: defined locally at each interior grid point.

Local gauss map

surface with grid points
grid points A, B, C and auxiliary
edges connecting to their
neighborhood points
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Discrete (polyhedral) Gauss map

Unit normal vector of triangular
region between edges j and j+1 iy
Af Aty L
nj = ) =(q,-P)x(@,,~Pp) ; / .
j e A #
n
Unit normal vector at point i ot AL /4 N
n —i ""i X / I a pf t—n, > :‘
i ﬁ :-Zn J ! I f.l.
i , Jj=1 j” ﬁ -y nf * I |i
e \\"'\-\.
'& 2
af 2
Local gauss map

Area of local Gauss map
Design surface

= —n <t -n)

Lower-level optimization problem
Generate piecewise developable surface

Minimization of the sum of area of local Gauss map
i i =
".

by minimizing the sum of (;)* (developability error)
%

Lower level problem

Minimize F(x)=Y.4,  4=>(a;)*=0
iel Jj=1

= depelopability condition ~ Desion surface

subjectto xe€ y
- exclusion of developability error at some selected points to
generate interior boundaries between patches

= Piecewise developable surface
x :vector of variables (selected coordinates of grid points)

I : set of indices of selected grid points
feasible region (upper and lower bounds) of x

- prevention of divergence of gradients of ¢;at a; =0
N b
ik
. I. .
L] #i g \

Loc

al gauss map

Two-level shape optimization of

surface with limited class
Stiffness maximization of the piecewise developable surface

FE-model: grid points = quadrilateral mesh

- Lower problem: Generate piecewise developable surface

updated in shape ..
optimization s e
(fixed in surface ™ * * « * * .. structural

T _' . :" analysis
r _— | ! L]

L] "
- L]
=

- Upper problem: Minimization of compliance against static loads

b}
i
¥

/ quadrilateral

o sheII element
pm-support
" nodal load

generation)

updated in surface
generation
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Example 1: Initial shape

Lower Problem: Generation of piecewise
developable surface

bounds for z-coordinates =
Structural analysis

Young’'s modulus, Poisson’s ratio: 200 GPa, 0.2

load (self-weight): 1.0x102 kN/m2, Shell thickness: 0.1 m

Upper Problem: Shape optimization
by simulated annealing

max. number of steps: 200 o i
neighborhood search: = :lIgnored developability condition

10 times at each temperature @ @ updated in upper-level problem
bounds for z-coordinates I3 : pin-supported

&
|
L

® 2 = :fixed in lower-level problem

Result of structural optimization

Initial surface for upper-level problem Optimal surface
(solution of lower problem) (solution of upper problem)

v'Initial surface for structural optimization: eight almost planar patches.

v'Optimal surface:
smooth cylindrical patch around center; and two ridges near boundary.

Properties of optimal solution

Displacement in z-direction

" v'Reduced magnitude
l of displacement in the
- optimal shape

* v'Smoother distribution
in the optimal shape

Initial Optimal

v'Large negative
bending stress in the
flat region in the initial
shape

v'Reduced and
smoother moment

1 distribution in the

Initial 3 Optimal X optimal shape

Minimum bending stress

| —

219



Error concentration using tanh function

Difficulty in previous method:

specify points for ignoring developability
= specify approximate locations of internal boundary

= Method without prior assignment of internal boundary
automatic concentration of developability error

Lower problem

Minimize F(x)=) 4,
iel

. = IIa rameter .
Minimize F(x)= Z tanh (c1 [4,(x)+ ,9) .

iel;,

Underestimate large developability error
— concentrate nondevelopable points

Example 2-1 (Shape generation: lower problem)

Int. bound
4;=4.9%1072 |‘

A,=22x10%

| |nitial
Optimal
I 4
& M
NN S
L

range of 4;

¢=100 300
Two internal boundaries
Center: cylinder
Side: plane
A4,<10°8: developable
> 104 non-developable
(int. boundary)

N
o
s}

o
s

No. grid points

Example 2-2 (Shape generation: lower problem)

= ’/Al =2.3x107? |‘

/Al =2.8x101

c=50
Center: non-developable
Interior: 4 planes

A, : less than 10-6
(developable)
except center

B |nitial

Optimal

No. of grid points

range of 4,

220




Example 3 (Struct. optimization: upper problem)

Contour: I q .
Initial of initial (W = 4.998 kNm) max. bending moment Rand_omlze gt el t_o
- have internal boundary in
- I arbitrary directions
Fixed in
Varied in lower problem
upper problem =
Optimal of initial (W = 5.555 kNm)
- i
iy | - &
ey bl
. . - Size on plane: 10 x 10 m
Optimal of optimal (3.386 kNm) Range of x: initial £8 m
o :._h - I Range of Z: initial =1 m
e w Randomize grid points: regular +0.015 m
. Young’s modulus: 200 GPa

Poisson’s ratio: 0.3
L

Example 3 (Struct. optimization: upper problem)

Contour:

max. bending moment F(x)= Z tanh(c, [4,(x)+ s)

Optimal ¢ = 100 I" il
% . - ..-.. .
-
-
-
Optimal ¢ = 10 Optimal ¢ = 200 a
¢ =10: Ambiguous internal boundary
¢ =100, 200: Corrugated shape near
variable points
47
Varied in
Example 4 upper problem Fixed in
B Contour: lower
Initial ¢ = 10 (W = 0.4338 KNM) max. bending moment & problem

i I

- | Size on plane: 10 x 10 m
Range of x: initial =8 m

Range of Z: initial =1 m

Optimal ¢ = 10 (W = 0.06668 kNm) - Randomize grid points: regular =0.01 m
- I Young’s modulus: 200 GPa
Poisson’s ratio: 0.3

'_* - - F(x)=2wltanh(c1lA‘.(x)+g)

Optimal ¢ = 100 i<l
J— ' ¢ =10: Ambiguous internal boundary
o " ¢ = 100: Clear internal boundary;
w W non-smooth shape near variable points
- 48
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Summary

* Lie spherical geometry can be used to design lattice shells that has high
constructability.

* Mathematical formulation does not incorporate the effect of deformation
related to material properties that should be considered even for small
deformation.

* Laguerre transformation preserves the preferable mechanical properties of
L-isothemic surfaces.

» Edge-offset surfaces allow the design of lattice shells with excellent
constructability and mechanical properties.

* Piecewise developable surface can be a new class of shell surfaces ensuring
efficient structural performance and constructability.

222




Evolving Design and Discrete Differential Geometry
- towards Mathematics Aided Geometric Design

Development of
Bidirectional Circulative
Design Platform

Presenter: Kentaro Hayakawa, Nihon Univ.

2025/3/14

Concept of Bidirectional Circulative Design Platform

2025/3/14

Concept of Bidirectional Circulative Design Platform

Bidirectional
Realize both

1. regular objective type
(= conventional design)

2. reverse objective type
(= optimization, inverse design)

design scheme

Circulative e -

o e -Jl‘l;l,l
Realize fast, efficient, and seamless kil
rotation of above bidirectional design

scheme
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2025/3/14

Framework

Software
Rhinoceros:  widely used modelling and CAD software
Grasshopper : visual programming plugin of Rhinoceros

Python / C#: available in grasshopper Ehinoceros

Geometric design tool as a set of components

T

2025/3/14

How to Use? What Can We Do?

e R
o Select and place
1 components
o
1 I'. i R Connect to other
A components

Rational geometric design tools including interactive
« analysis (curvature etc.) ’___l .

« form generation (CGC, CMC surface etc.)
* optimization

2025/3/14

Features of Proposed Design Platform

Easy generation of specific surface classes

Geometry of discrete surfaces
Developable surface, minimal surface, origami surface, etc.

Enhance reverse objective type design scheme for high efficiency, low cost,
beauty, security, and safety of structure

Versatility through combination of multiple components
inside/outside of platform

Geometry design + physics simulation

Geometry design + structural analysis + optimization
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2025/3/14

Example of Components

Utility
fSHewJIeH

Constant Curvature Surface
W T e I )
@ U5 G g
Optimization
BTG G I GO TS
i |
Origami

Shell and Membrane Structure

f,‘ More components will be added.

Demonstrations

Origami surface approximation

B Approximate input surface by rigid
e, » E e e origami surface developable to plane

[
L

Generation of piecewise developable surface and structural optimization
. - ; " Find positions of grid points to form
L ik a surface consisting of developable
¢ . la - patches

Surface generation from stress distribution

( f'-‘-\ Generate a surface equilibrated with
; » B gravity with a specified horizontal
g stress distribution

-- - - - =
Talraidne brBea@iBedrs i deilms

e mEmams R RN E == G oW -
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Development of bidirectional circulative

design platform - case example (pillow box)

Shun Kumagai
(Hachinohe Institute of Technology, Kajiwara group)

International Conference "Evolving Design and Discrete Differential Geometry
- towards Mathematics Aided Geometric Design”
2025/3/11

ES

et

S s e s

Context of this presentation

* This talk presents a case example of implementation and actual
use of components in the bidirectional circulative design platform.

* The components are designed to handle “pillow box”.

* For theoretical discussions and applications in architecture, please
refer to tomorrow’s talks by Prof. Koiso and Prof. Yokosuka.

Objective: pillow box of maximal volume

A pillow box is a closed, box-shaped surface formed by creasing a
double rectangular sheet rigidly along given curves.

Theorem (Koiso). For any a, b >0, there exists a unique pillow box with maximal volume
that is isometric to the rectangle with width 2a and height 2b. It is represented by a
developable surface that includes the "main curve” described on the next slide.
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Formula for maximum-volume pillow box

The main curve of the pillow box of input (a, b) is described by :

x=x(2) = 2L, Fl(z0), 05z<z, (0=x<1,(2))

1,(2)

f e (1-)

ey D 4
EAERRG {, 2o = zo(W) =3 1- 1__b|#| ,

2o (1) d
where u < 0 is a solution of the equation| a = f
0

¢
=
The configuration can be determined by any 1- <ug’ (1 = %))
of the input pairs (a, b), (b, 2,), or (b,c:=x(0)).

Formula for maximum-volume pillow box

The following description of the main curve represents one possible
isometric transformation process (t = 0 : rectangle, t = 1 pillowbox) :

Xy = xt(Z) = ilu‘t(z) ¥ Iu(ZO,t)' 0<z< Zots (0 <x< I[L(ZO,t))

P _¢ -
)= | J w(1-p) +t i s :=§<1_ s t)>’

bl

Zo,t (W) dg
where y < 0 is a solution of the equation|a = f
0

. A -9~
Pillow box components include an interactive solver for these
equations, which corresponds to the given input. (built-in python script)

Tool1: regular objective type .

\ Parameters of the solver
and the output process

e | Maximal depth z ~0.053757 z,
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Tool1: regular objective type .

DL L

I Input: ratio of (a, b) |

| Input: ratio of (a,b) |

'8 BN + 9

| Input: ratio of (b, z)) |

Height (and maximal depth) controlled |
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Tool3: reverse objective type (box width) ﬂ
SR LR

[ Width of the pillow box controlled | -

m Preprocess

L ! i J
Modified to implement tools of reverse objective type - ‘ "

Example of tool use: printing a pillow box

W [ Extrude surface to solid (thick sheet) |» :

Export to .stl

Mesh outpu_tifirom pillow box (t=0, flat) | A O =
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Example of tool use: discretization and optimizing ratio

| Optimizer : energy -> ratio |

Discretization and
calculation of internal
elastic energy

(by Prof. Yokosuka)

13

**This is a prototype of collaboration of components
in Grasshopper. Further progress and application
will be presented in Prof. Yokosuka’s talk.

m Preprocess

Postprocess

Arrange to fit the objective -> reverse objective type design .
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Discrete conformality and beyond.
Where geometry meets computer graphics and mathematical physics

Alexander I. Bobenko
Institute of Mathematics, Technische Universitit Berlin, Germany

Abstract

Structure-preserving discretization in the field of geometry is the paradigm of discrete differential geometry. In
some aspects, the discrete theory turns out to be even richer than its smooth counterpart. It focuses on develop-
ing constructive methods. The well-established theory of discrete conformal maps and circle patterns is related
to discrete integrable models of mathematical physics and has found applications in geometry processing. We
present their generalizations beyond the conformal limit: decorated discrete conformal maps [, 2] and ring pat-
terns [3, 4], which share the corresponding existence and uniqueness statements. The theory and construction
methods are based on convex variational principles related to hyperbolic geometry. We define discrete constant
mean curvature (cmc) surfaces (soap bubble surfaces) [5] in terms of sphere packings with orthogonally inter-
secting circles. These discrete cmc surfaces can be constructed from orthogonal ring patterns. The data used
for the construction is purely combinatorial - the combinatorics of the curvature line pattern. Numerous virtual
and printed models as well as animation movies will be demonstrated.

Figure 1: Left: Conformally parametrized tea pot costructed using discrete conformal mappings.
Right: A discrete cmc surface constructed using orthogonal ring patterns [5].

References

[1] A.L Bobenko, C.O. Lutz, Decorated discrete conformal maps and convex polyhedral cusps, Intern. Math.
Research Notices 2024:12 (2024), 9505-0534, doi.org/10.1093/imrn/rnae016

[2] A.L Bobenko, C. Lutz, Decorated discrete conformal equivalence in non-Euclidean geometries (2023)
arXiv:2310.17529 [math.GT]

[3] A.L Bobenko, T. Hoffmann, T. Rorig, Orthogonal ring patterns in the plane, Geometria Dedicata (2023),
doi.org/10.1007/s10711-023-00859-y

[4] A.L Bobenko, Spherical and hyperbolic orthogonal ring patterns: integrability and variational principles
(2024) arXiv:2409.06573 [math.MG] [math.GT]

[5] A.L Bobenko, T. Hoffmann, N. Smeenk, Constant mean curvature surfaces from ring patterns: Geometry
from combinatorics (2024) arXiv:2410.08915 [math.DG]
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Discrete conformality and beyond.

Where geometry meets computer graphics
and mathematical physics

Alexander Bobenko
Technische Universitét Berlin
Evolving Design and Discrete Differential Geometry -

towards Mathematics Aided Geometric Design,
Fukuoka, March 2025

| SFE | Duserebizates
| TRA | is Gesmtry
1108 | snd Cprperics

Alexander Bobenko Discrete conformality and beyond

Discrete Differential Geometry.

Development of discrete equivalents of notions and methods of
differential geometry.

» Structure preserving discretizations.

» Classical theory as a limit of refinements of the
discretization.

» Constructive. Computational
» Applications: computer graphics
» Discrete (integrable) models in physics

Alexander Bobenko Discrete conformality and beyond

Conformal maps

» conformal means angle
preserving

» infinitesimal lengths scaled by o el \“_
conformal factor e I s

|df| = e |dx|
independent of direction

» in the small like similarity
transformations

» Problem:

. conformally
surface in space

plane

Alexander Bobenko Discrete conformality and beyond
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Discrete conformal maps

(Orthogonal) circle patterns Discrete conformal

» angle properties equivalence
» convergence to conformal > metric properties
maps > [?,.j = eluty)/2 g,

> maps in the plane » works for surfaces

7 y iy b 4

[Luo, Springborn, Pinkall, Schréder,

[Thurston, Stephenson, Schramm, He,
AB, Gu, Sun, Wu ... 2004-]

AB, Springborn ... 1980’-]

Alexander Bobenko Discrete conformality and beyond

Generalizations?

Conformal mappings very rigid:

» Computer Graphics: large
variations of conformal factor,
optimization of conformality and
isometry, discretizations of
quasi-conformal

» Physics: conformal models —
massive models.

» Differential geometry: minimal
surfaces — cmc surfaces

Discrete models with a mathematical theory?

Alexander Bobenko Discrete conformality and beyond

I. Decorated discrete conformal mappings

%F\

Joint with Carl Lutz

Alexander Bobenko Discrete conformality and beyond
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Discrete conformal equivalence

» abstract surface triangulation
M= (V,E,T)

A discrete metric on M is a function

KZEHRN), I]I—>€,]

satifying all triangle inequalities:
Vike T : éij<£jk+éki
fjk < lyi + [,'j
i < f,‘/ + ij

Alexander Bobenko Discrete conformality and beyond

Discrete conformal equivalence

Definition [Luo '04]
Two discrete metrics ¢, ¢ on M are
(discretely) conformally equivalent if

1
5 Uity
f,’j = 62( ! /)f,'j

for some functionu: V — R

> use \j=2log/l

5\,'/':/\,'/'+U,'+Uj

Alexander Bobenko Discrete conformality and beyond

Mapping problem

» angles sum around vertex i

Q)= Za}k

iksi i

. . 1y
» Given mesh M, metric (; = ez, r
and desired angle sums ©;

Find conformally equivalent
metric £;; with

éj:éi

Alexander Bobenko Discrete conformality and beyond
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Variational principle

™

def kYA % L% s % <
> S(u) = > (afy‘-)\;j + aj Nk + Fg A — 5 N+ Ak + M)
ikeT
+2J1(ak) + 2 J1(a)) + 2 JI(5/k,.)) +3 6w
eV
» Milnor’s Lobachevsky function ’e

J(a) = —/ log |2sin t| dt
0

~ 1 .
I = e2(turty) solves mapping problem

u=(uy,...,uy) is critical point of S(u)
[Springborn-Pinkall-Schréder '08]
Alexander Bobenko Discrete conformality and beyond

Ronkin function. Convexity

> S(u) = Z (21((%7 %7 %) —7/2(5\,']‘-"-5\]/( +:\ki)) +Zé,-u,-
ijkeT eV
> f(X1,X2,X3) =1 X1 + a2 X3+ a3 X3
+.H(a1)+ﬂ(a2)+ﬂ(a3)
» Ronkin function;

free energy of the a = e* Q a; = e
thermodynamic limit of a dimer

model on hexagonal grid A
[Kenyon-Okounkov-Sheffield *06] as = exs

» convex

Alexander Bobenko Discrete conformality and beyond

How it works: Riemann mapping theorem

[AB-Pinkall-Springborn "15]

Alexander Bobenko Discrete conformality and beyond
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How it works: Riemann mapping theorem

[AB-Pinkall-Springborn *15]

Alexander Bobenko Discrete conformality and beyond

How it works: Riemann mapping theorem

-

[AB-Pinkall-Springborn *15]

Alexander Bobenko Discrete conformality and beyond

How it works: Conformal parametrization of surfaces

Alexander Bobenko Discrete conformality and beyond
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Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond
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Discrete conformal KPM tea pot

Alexander Bobenko Discrete conformality and beyond

Induced hyperbolic metric

Origin: Hyperbolic geometry interpretation

[AB, Pinkall, Springborn '15]

» circumcircle induces hyperbolic metric
(Klein model)

» euclidean triangle — ideal hyperbolic
triangle

> vertices at infinity (cusps)

» conformally equivalent discrete metrics
< same hyperbolic metric (with cusps)

» Definition of conformally equivalent
metrics with different triangulations
< same hyperbolic metric

Alexander Bobenko Discrete conformality and beyond

Discrete Uniformization

Theorem. (Gu-Luo-Sun-Wu 2018)
For any piecewise euclidean metric on a surface of genus g with
nmarked points and for any ©; satisfying the Gauss-Bonnet con-
dition 1

5 > ei=2g-2+n

there exists a discretely conformally equivalent metric with the
cone angles ©;. It is uniquely determined up to scale.

» DG [Gu-Luo-Sun-Wu '18] sequence of Delaunay
triangulations.

» CG [Gillespie-Springborn-Crane '21] effective numerical
realization.

Alexander Bobenko Discrete conformality and beyond
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Decorated Discrete Conformal (DCE)

» Mdbius equivalent decorated triangles

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)

» M@obius equivalent decorated triangles
2 _jp2_,2
» Inversive distance invariant l = 8”‘2,'7'&'*
I
> two decorated triangles are Mdbius equivalent iff the

inversive distances of their sides coincide

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal (DCE)

» M@obius equivalent decorated triangles
- N 22 g2
» Inversive distance invariant l = %’,krk
!
» two decorated triangles are Mdbius equivalent iff the

inversive distances of their sides coincide

Alexander Bobenko Discrete conformality and beyond
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Decorated Discrete Conformal (DCE)

» Mobius equivalent decorated triangles

> 7',' =eli i
22” _ (ezu,- _ e(U/‘+U/'))ri2 4 eluity) 43 + (eZUj _ e(“f+”f))l’j-2

» discretely conformally equivalent triangulated decorated
PE-surfaces (same combinatorics)

Alexander Bobenko Discrete conformality and beyond

Discrete Conformal as Special Case

» any two triangles are Mdbius equivalent, no inversive
distance for r =0

» infinitesimal circles r; — 0

> (7,-1- — eluity)/2 ¢

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal Maps

» Discrete conformal maps of inversive distance circle
patterns [Bowers-Stephenson '04]. Existence and uniqueness?

» Numerical computations [Bowers-Hurdal ‘03]

» Unified discrete Ricci flow [zhang et al. '14]

» Discrete conformal structures via duality structures
[Glickenstein "11]

» Decorated discrete conformal maps [AB-Lutz '23]. Variable
combinatorics. Existence and uniqueness theorems

Alexander Bobenko Discrete conformality and beyond

244



Decorated Discrete Conformal Mapping Problem

)

> Given:
e atriangulation 7 of the surface Sg,
e a decorated PE-metric (¢, r),
e and a desired angel sums ©;.
» Find: u; such that the DCE-changed metric w.r.t. u; has
angle sums ©;.

Alexander Bobenko Discrete conformality and beyond

Decorated Discrete Conformal Mapping Problem

Varying Combinatorics
e Consider PE-metrics (7, ¢) <> dists,
e if circles non-intersecting, there exist weighted Delaunay
triangulations (wDt), empty disc property
e sequences of wDts
e non-decorated [Gu-Luo-Sun-Wu '18, Springborn ’19]

Alexander Bobenko Discrete conformality and beyond

Uniformization theorem (AB, Lutz 2023)

Theorem
Given a hyperideally decorated PE-metric (dists,, r) on the
closed marked genus g surface (Sq, V). Then
e (existence) a decorated PE-metric DCE to (dists,, r)
realizing © € RY, exists iff © satisfies the GauB—Bonnet
condition

;
ﬂZ@, =29-2+|V|

e (uniqueness) there exists at most one decorated PE-metric

DCE to (dists,, r) realizing © € RZO, up to scale.

o (variational principle) u ¢ RV giving the change of metric
minimizes the discrete convex Hilbert—Einstein functional
(volume of a hyperideal hyperbolic tetrahedron).

The uniformization theorem by [Gu-Luo-Sun-Wu 18] is r = 0.

Alexander Bobenko Discrete conformality and beyond
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Il. Orthogonal ring patterns

Joint with Tim Hoffmann, Nina Smeenk

Alexander Bobenko Discrete conformality and beyond

Orthogonal circle patterns

. + . » Orthogonal circle patterns
as discrete complex
| analysis
(e [Schramm '97]
. . » Convergence to conformal
maps
» Integrable equations

|fx‘:m/|a fxify-

Orthogonal circle patterns

»> Orthogonal circle patterns
as discrete complex
analysis

[Schramm ’97]
/ » Convergence to conformal
\ maps

QS > Integrable equations

Il =181 f L1y

Alexander Bobenko Discrete conformality and beyond
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Orthogonally intersecting rings

» Aring is a pair of concentric circles Cj, ¢; of radii: r; and R;
» The outer circle C; intersects the inner circle ¢;
orthogonally

» Orthogonal rings have the same area

Alexander Bobenko Discrete conformality and beyond

Orthogonal ring patterns in a sphere [AB ’24]

__ cosR ; i i
> q= %7 is global invariant

» circle pattern limit g — 1
» parametrization in elliptic functions of modulus g < 1,
sinr =cn(p, q), sin R = dn(p, q)

Alexander Bobenko Discrete conformality and beyond

Q4 integrable equation

(p+p2+ iK'
(p—p2 + iK'
(p+ pa+ iK'
(p— pa+ iK'

(p+p1+iK')sn
(p—p1+iK")

(p+p3+iK')sn
(p— p3+iK') sn

sn

X
sn sn

sn

INERINEE S ERINTE
LS B NS EVESDVES
— = ——

sn

» Radii of spherical (hyperbolic) orthogonal ring patterns
» Master integrable equation in the ABS-classification ['09]
» Au = sinhu = 0in the smooth limit

» Variational principle [AB '24]. Elliptic generalization of
dilogarithms, hyperbolic volumes?

Alexander Bobenko Discrete conformality and beyond
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Koebe polyhedra and orthogonal circle patterns

» Orthogonal circle pattern«+» Koebe polyheder
» Circumscribed polyhedron with touching edges
[Koebe, Andreev, Thurston,...]

Alexander Bobenko Discrete conformality and beyond

Koebe polyhedra and minimal surfaces

» Koebe polyhedron as Gauss map of minimal surface
[AB-Hoffmann-Springborn, Annals '06]

> Animation film [AB-Newjoto-Techter '18]

Alexander Bobenko Discrete conformality and beyond

Koebe polyhedra and minimal surfaces

» Koebe polyhedron as Gauss map of minimal surface
[AB-Hoffmann-Springborn, Annals '06]

» Animation film [AB-Newjoto-Techter '18]

Alexander Bobenko Discrete conformality and beyond
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Gauss maps. Orthogonal ring (circle) patterns

minimal cme

Alexander Bobenko Discrete conformality and beyond

Discrete cmc surfaces

cme minimal cme
» circle patterns = minimal surfaces
» ring patterns = cmc surfaces

Alexander Bobenko Discrete conformality and beyond

C®-convergence?

smooth cmc discrete cmc
[AB-Heller-Schmitt '21] [AB-Hoffmann-Smeenk "24]
Alexander Bobenko Discrete conformality and beyond
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smooth cmc discrete cmc
[AB-Heller-Schmitt '21] [AB-Hoffmann-Smeenk '24]

Alexander Bobenko Discrete conformality and beyond

convergence?

Alexander Bobenko Discrete conformality and beyond

C~°-convergence?

[
smooth cmc discrete cmc
[AB-Heller-Schmitt '21] [AB-Hoffmann-Smeenk "24]
Alexander Bobenko Discrete conformality and beyond
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» AB, Lutz, Decorated discrete conformal maps and convex
polyhedral cusps, IMRN 2024:12 (2024)

» AB, Lutz, Decorated discrete conformal equivalence in
non-Euclidean geometries, DCG (2025)

» AB, Hoffmann, Rérig, Orthogonal ring patterns in the
plane, Geom. Dedicata (2023)

» AB, Spherical and hyperbolic orthogonal ring patterns:
Integrability and variational principles (2024)
arXiv:2409.06573

» AB, Hoffmann, Smeenk, Constant mean curvature
surfaces from ring patterns: Geometry from combinatorics
(2024) arXiv:2410.08915

» AB, Heller, Schmitt, Constant mean curvature surfaces
based on fundamental quadrilaterals, MPAG (2021)

Alexander Bobenko Discrete conformality and beyond
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Interactive Design and Efficient Simulation of Developable Surfaces with
Curved Folds

Jun Mitani
University of Tsukuba, Japan

Abstract

Developable surfaces with curved folds are widely used in engineering, architecture, digital fabrication, and
computational design. However, their strict geometric constraints make both modeling and simulation non-
trivial tasks. This talk introduces two complementary research approaches that address these challenges by
focusing on interactive 3D modeling and efficient crease pattern-based simulation.

The first approach, proposed by Mitani and Ohashi [1], presents an interactive 3D modeling framework that
enables users to directly manipulate curved fold structures in three-dimensional space. This method introduces
a novel user interface based on a handle curve, which serves as an auxiliary control element for shaping the de-
velopable surface. By specifying both a crease curve (the curved fold) and a handle curve, users can intuitively
deform the surface while ensuring developability and avoiding ruling collisions. This technique provides direct
control over the 3D shape, making it particularly useful for interactive design applications in CAD modeling
and digital fabrication.

In contrast, the second approach, developed by Sasaki and Mitani [2], focuses on efficiently generating
3D folded structures from 2D crease patterns. Instead of direct 3D manipulation, this method takes a given
crease pattern, approximates curved folds using polylines, and applies a ruling-aware triangulation to construct
a 3D model that accurately simulates the folded state. Implemented in a web-based Origami Simulator [3],
this approach enables fast and computationally efficient simulation, making it ideal for applications where the
input is a crease pattern rather than a predefined 3D model. The method allows for quick evaluation of different
folding scenarios and helps designers explore complex curved fold structures without manual 3D adjustments.

By integrating these two methods—interactive modeling and efficient simulation—we provide a powerful
framework for designing and analyzing developable surfaces with curved folds. This talk will discuss the
theoretical foundations, algorithmic implementations, and potential applications of these techniques in digital
fabrication, CAD modeling, and origami design.

References

[1] Jun Mitani, Kaoru Ohashi, “Interactive Curved Fold Modeling using a Handle Curve”, Computer-Aided
Design and Applications, 20(2) (2022) 275-289, https://doi: 10.14733/cadaps.2023.275-289.

[2] Kosuke Sasaki, Jun Mitani, “Simple implementation and low computational cost simulation of
curved folds based on ruling-aware triangulation”, Computers & Graphics, 102 (2021) 213-219,
https://doi:10.1016/j.cag.2021.09.012.

[3] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, “Fast interactive origami simulation using gpu
computation”, Origami 7 (2018) 1151-66.
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ah Interactive Design and
o Efficient Simulation of Developable Surfaces
with Curved Folds

(

a”
H Jun Mitani

University of Tsukuba, JAPAN

Today's talk

* Provide topics related to shape modeling
of origami.

* The main focus is on introducing several
origami design applications that we have
developed so far.

* There will be no novel points in view of
mathematics (sorry), but focusing on
interactive design approach for origami
shapes.

254




255



Geometry of ruled surfaces A

The trajectory traced by the continuous movement
of a straight element (ruling).

X(s,t) =p(s) +t-e(s)

p(s) : A curve that represents the movement of a straight line.

e(s) : A unit vector representing the direction of a straight line.

s: arc length Ex: Hyperbolic Paraboloid

X(s,0) =p(s) +t(q(s) — p(s))

p(s) and q(s) are two skew lines.

Developable surface

- I

geodesic on a surface direction of rulings

p(s)

p": principal normal direction

Another expression | T+ KA

T: torsion, K: curvature, T: unit tangent vector, B: unit binormal vector
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Geometry of Curved Folds

1y Kap(s) = k(s) cosa(s)

@ cotBy(s) =%
) cot Br(s) =%

[Tachi 2011]

(a) 3D crease curve (defined by k(s) and 7(s) )
(b) 2D crease curve (defined by k., (s) )
(c) Fold angle (a(s))

Two of above parameters (a),(b),and(c) define the other one. .

Even though the mathematics of curve fold
geometry is revealed, we still do not know how
to design attractive curved origami.

4

Following Topics

1. Three design tools we developed before
2. Curved folds on Origami Simulator
3. Design interface for a space curved fold
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How can we make a sphere with a single sheet of paper?

I

A square sheet wraps around the sphere.
The presence of fine wrinkles allows the paper to deform flexibly.
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Basic idea

I = unfold

fill the gaps

1_I

adding protrusions

adding flaps

»;"h"‘-hx » ¥ N

Unfold of a sphere

I,

l:l surface

ORI-REVO

- - 3
=a

K5 . ;’(f'“'
™ = *'.P, J&

e 3 !

- !

- -

=

https://mitani.cs.tsukuba.ac.jp/ja/software/orirevo/

259



260




Biaitl =

Interactive Design of Planar Curved Folding by Reflection
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b 4
e, e prs
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e

261




A fold can be added to a developable surface by reflecting a
part of the surface by an intersecting plane.

Mirror operation adds a planer curve fold.

A set of mirror operations

e AL Sl bad

-.-'-;"A*"'- ——

e
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Design tool for curved folds based on reflection

Demo

The perpendicular bisector of the line segment connecting the initial
coordinates of the vertex and the coordinates after moving is taken as the
mirror plane.

_--'-'-'--._. o~ "
--hh_ -.-:-.:_,-_..r -__ =
|
a ’ﬁ A
(F :
™
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Column-shaped Origami Design Based on Mirror
Reflections

f————— _am

| WL,
= -

-

- e
| T ‘ E

Making a cylindrical surface by a sweep operation

* Elements deciding the shape
« Profile polyline: lying on a vertical plane
« Trajectory path: perpendicular to the vertical plane
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Add a fold by a reflection

Top view

Reflection planes are placed according to the Trajectory path
* A reflection plane is positioned so that each corner of the polyline lies

on it.
* Then the reflection plane is orientated so that its normal vector

coincides with the bisector of the corner angle.

Trajectory path looks like a bounce trajectory of light rays by reflection planes.

The profile polyline and the trajectory path
defines the shape

M L% ';:q

+ 0 :Eﬁ'

LML
L~

Profile polyline Trajectory path

The Trajectory path represents the final shape as seen from above
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Reconstruction of known patterns : Miura pattern

Trajectory path

Profile polyline

Reconstruction of known patterns : Yoshimura
Pattern

* Degenerated line elements exist.

e
Trajectory
Profile polyline
Implemented system
x = ol ]
- | —..'_— — |
el [ ey
[
| TR
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Curved folds on Origami Simulator

Kosuke Sasaki, and Jun Mitani. Simple
implementation and low computational cost
simulation of curved folds based on ruling-aware
triangulation. Computers & Graphics, 2021.
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Origami Simulator used to support only straight folds

B - — — - B

https://origamisimulator.org/ developed by Amanda Ghassaei

Simulation on the past Origami Simulator

Crease pattern

Triangular mesh
L} =

Ear clipping algorithm

Simulation on the current Origami Simulator

Crease pattern

Triangular mesh

Ruling-aware triangulation

ol
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Better triangular mesh for curved folds

Developable surface
and its rulings

Folded paper

Without rulings With rulings

Outline of the proposed method

. .
b et —
®ee . -
H s+ Constrained Edge swap
essescccce Delaunay operation
Crease pattern Discretization ~ triangulation
Initial mesh Final mesh

1) Rulings on a smooth developable surface tend not to align conically.

2) Rulings and the curved creases tend to align orthogonally
on the unfolded pattern.

Edge swap operation

1. Find edges that meet:

(D Neither crease line nor borderline
(@ No more than three edges share the vertex Vz and V.

(3 The value of E becomes smaller by the edge-swap operation.

E is the value by which to evaluate the orthogonality
between rulings and creases on the planar state.

Smaller E values indicate more orthogonality.
E = (80— 0:)* + (6, — 6)°

2. The edge-swap operation is applied to the edge that has
the smallest value of £ after the edge-swap operation.
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Results of triangulation

1 g = ,

== = ==
e = L1 % =

- -'E _____ -- ..-.E —=

= = - -

i J‘;ﬁ‘{{“\- £ i -"5.:'\'.#.. .-'::

Crease pattern Initial mesh Final mesh

A
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Interactive Curved Fold Modeling using a Handle Curve

)

d
S’

Jun Mitani and Kaoru Ohashi, Interactive Curved Fold Modeling .
using a Handle Curve, CAD Conference 2022, July 11-13, Beijing
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Target shape

Developable surfaces with a single curved fold
(not limited a planer curved fold but a space
curved fold is allowed) w0

This shape is also made with a single crease curve

Q: How can we create this 3D model
on a CAD/CG software?

J
(
=
L=

Proposed method

Input : (1) Crease curve
(2) Handle curve < a copy of the crease curve
Edit: Handle curve

Output: Curved surface such that the handle curve
almost rides on it with the specified crease curve.

[ x
e

'1\ e g | -
-

L

VL )
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pseudo-ruling

Lines connect the points on the crease curve and the handle curve.

crease curve

handle curve

pseudo-ruling

crease curve + handle curve

N
pseudo-rulings
o

identical when the crease curve and the
handle curve are similar

fold angle

N e
Crings )+

fold angle a

n;-v';
a; = arccos i
[mllv'sl projection

Shape and orientation of the handle curve

C=sC+t
s=1 s+1
congruent similar
- cylindrical surface - conical surface
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User Interface

%0

Congruent handle curve

Y
aiffETRaNE

—

Similar handle curve

f

| ( O~ -

«ltis impossible to
specify this function

manually

B
MISITETLL!
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Examples

/
et A e

9

Summery

* The geometry of curve folding
has become quite clear in
mathematics.

* A user interface is crucial for
designing artistic shapes.

* We developed several design
tools for curved folds, and
created various shapes.

Future Work

* Many artworks are made by the
minute expansion and contraction
at the folds to achieve expressive
shapes

* A shape modeling tool that allows
for minute distortion in folds is
desirable

* Research and development using
heat-deforming materials that
take into account manufacturing
processes such as self-folding is
desirable
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Jun MITANI

University of Tsukuba, JAPAN

http://mitani.cs.tsukuba.ac.jp/
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Modeling of Discrete Developable Surfaces with a Break
Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi
University of Tsukuba, Japan

Jun Mitani
University of Tsukuba, Japan

Abstract

In recent years, industries such as manufacturing and architecture have increasingly adopted CAD software
for shape modeling and product design. This shift minimizes the cost and effort associated with physical
prototyping. Despite advancements, designing developable surfaces while maintaining intuitive and precise
interfaces remains a challenge. Developable surfaces, characterized by zero Gaussian curvature, are created
by twisting or bending unstretchable sheet materials. They are represented through a trajectory of straight
line elements called rulings. One remarkable technique is “Non-Crease”, which generates complex curvature
without traditional folds by creating indentations called breaks, which are degenerated creases with zero length.
By enabling the computational design of Non-Crease surfaces, it is expected to facilitate the digital archiving,
analysis, and creation of art pieces.

This research aims to support the design of developable surfaces with a break by proposing an interface that
integrates Gauss sphere-based trace diagrams|[1]. These diagrams map the behavior of surface normal vectors
onto the Gauss sphere, aiding in the visualization of curvature distribution around vertices. A key property of
trace diagrams on the Gauss sphere for developable surfaces is that the areas enclosed by the traces sum to zero.
By editing these diagrams, users can intuitively create and modify developable surfaces with breaks.

The methodology involves starting with a predefined template for developable surfaces with a break. The
trace diagram corresponding to this template is visualized and editable. Users adjust trace lengths and angles
to create their desired shapes, with the system performing optimizations to ensure the areas enclosed by traces
on the Gauss sphere sum to zero, a key constraint of developable surfaces. Trace intersections and the enclosed
areas are calculated in real-time to guide this process. Post-editing, the interface generates a crease pattern.
Finaly, crease pattern is validated 3D shape and physical realization, supported by Origami Simulator[2].

Results show that this interface enables effective control over the ruling angles and the creation of vari-
ous developable surface shapes. Optimizations minimize area discrepancies in trace diagrams, enhancing the
accuracy of the resultant designs.

Future work will address extending the system to handle shapes with multiple convex and concave regions,
improving usability, and reducing optimization errors. This study highlights the potential of trace diagram-
based modeling as a powerful tool for designing intricate and mathematically accurate developable surfaces.

References

[1] David Huffman, “Curvature and Creases: A Primer on Paper”, IEEE Trans. on Computer, Vol. C-25, No.
10, pp. 1010-1019, 1976.

[2] Amanda Ghassaei, Erik D. Demaine, Neil Gershenfeld, “Fast, Interactive Origami Simulation using GPU
computation”, Origami, Vol. 7, pp. 1151-1166, 2018.
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Modeling of Discrete Developable Surfaces with a Break
Using Trace Diagrams on the Gaussian Sphere

Kosuke Horiuchi Jun Mitani
University of Tsukuba, JAPAN

Background

* Shape modeling products such as CAD have become widespread.

* This research proposes an interface to support the design of developable surface
modeling.

* A developable surface is a type of curved surface created by twisting and bending
a single, inextensible sheet of material.

* Itis represented by the trajectory of straight-line elements called "rulings."

y of Tsukuba Kosuke Horiuchi

Background

* Non-Crease: A technique that enables the complex curvature of paper by
creating indentations called "breaks”, which are degenerated creases with zero

length instead of folds.
* Expected applications in archiving artworks and design production.

Discrete representation using
triangles with rulings as edges,
then unfolded.
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Background

* However, existing CAD software makes it difficult to intuitively design surfaces while
maintaining developable surface constraints.

* "Non-Crease" shapes are created using trace diagrams on the Gaussian sphere [1].

* These diagrams help understand the curvature distribution and shape around a
single vertex.

* The method is well-suited for "Non-Crease" design, where surfaces curve around a
break.
A

[1] David. Huffman, ' Curvature
and Creases: A Primer on Paper”,
|IEEE Trans. on Computer, Vol. C-25,
No. 10, pp. 1010-1019, 1976.

Trace Diagram on the Gaussian Sphere

* A mapping of how surface normal vectors change in space, projected onto a unit-
radius Gaussian sphere.

+ : Convex
— : Concave
A,B,C : Sector Angles

Trace Diagram at a Vertex of a Polyhedron (Cube)

Trace Diagram on the Gaussian Sphere

* A mapping of how surface normal vectors change in space, projected onto a unit-
radius Gaussian sphere.

+ : Convex
— : Concave
A,B,C : Sector Angles

Trace Diagram at a Vertex of a Polyhedron (Cube)

281




Trace Diagram on the Gaussian Sphere

* The area enclosed by a trace represents Gaussian curvature, clockwise is positive,
counterclockwise : negative

* At any point on a developable surface, Gaussian curvature is 0, and the sum of sector
angles is 2m.

+ :Convex — :Concave A,B,C : Sector Angles

p;t

2 [

Trace Diagrams at a Vertex of a Polyhedron (Cube) and a Developable Surface Vertex

Overview of the Interface and Modeling Process

The user selects a base shape template.
The system renders the trace diagram.
The user edits the trace diagram.

The system optimizes the trace diagram.

vk W e

The final shape is output as a crease pattern.

Template Renders trace Edit trace diagram Output
diagram

Trace Diagram Rendering

Other shapes will be considered at the end.

* Prepare the template trace diagram.

* The developable surface used has one convex and one concave part.
* Crease pattern consists of 12 rulings.

* Sector angles (angles between rulings) are all 360/12 = 30°.

Convex

4

Convex e S -

Concave

Concavel

Template Shape and Its crease pattern
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Trace Diagram Rendering

1. Compute the normal vectors of each developable surface face.
n; =p; XPi+1
2. Connect vertices corresponding to normal vectors in order.

Pi+1

>

Pi-1

Vertices Constituting the Developable Surface
Trace Diagram of the Template shape

Trace Diagram Region Segmentation

* The trace diagram forms a figure-eight shape.

» Two regions exist, and their areas indicate curvature.

* To compute the area of each region, segmentation is performed.
* Each region is divided by intersection points of traces.

Region 1

intersection
.

" Region 2

Intersection Determination Procedure

Input: List of vertex coordinates plotting traces in connection order.
1. Check for intersections between all trace pairs.

2. After finding an intersection, determine whether the point belongs to both
traces.

Xt
“lr
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Intersection Determination Procedure

Input: List of vertex coordinates plotting traces in connection order.
1. Check for intersections between all trace pairs.

* Let the endpoints of two traces be p;,p, and q4, q,,
respectively.

« If the two traces intersect, the intersection line of their planes
passes through the center of the sphere.

* The direction vector L of this intersection line is given by the
cross product of the normal vectors of the two planes. !

L=mn; Xn, ("1=P1xpz. n2=q1qu) a2
* The intersection line L has two intersection points I and I.
L
IL=—1,=-I
1= 2 1

Intersection Determination Procedure

2. After finding an intersection, determine whether the point belongs to both traces.
[Oarc — (61 +605)| <€

0 - COS_l P1pP2
are (Iplllpzl)
_ Iy
6, = cos™ (22
1 Gy
—1, P2’
0, = cos™?!
2 ity

Region Segmentation

After computing intersection points, traces are divided into positive
and negative regions.

Insert intersection coordinates into the vertex list.
Split the coordinate list into sections based on the intersection points.

[Pl- P2, q1, qz]
Py I P21 1,62]

[P1, I, p2,q1, 1, qz]

| T~

U, p2yai 1,42, pa]
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Result of Region Segmentation

Trace Diagram Area Calculation

* The enclosed region in a trace diagram forms a spherical polygon,
and its area is computed using spherical excess.

* The interior angle a; of a spherical polygon is obtained from the dot product of
adjacent normal vectors n;_q and n;.

* The area A of a spherical polygon is carllculated as:
Pi+1 AZZﬂ_(n_Z)T[
i=1

(n : number of vertices in the spherical polygon)

Result of Trace Diagram Area Calculation

* The areas of the two enclosed regions in a trace diagram should be equal, but
discrepancies arise.

* These differences are likely due to surface shape errors and rounding errors in
computation.

* Sector angles result in multiples of 30°. -
///
-

”~ \ -

L \ -,
v N

\
|
A
.
Region 1 : 0.5592 s
Region 2 : 0.5953
— Area difference : 0.0061
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Trace Diagram Optimization

* Objective Function

.-I-':LI = |Ajiv)— .'I._':'.‘" T -"!I-ll".-l.u:l ¥+ '.'-_'III siancel ¥ |
e \
trace vertices  Areas of the two regions Penalty for violating angle Penalty for vertex movement
constraints distance

* Angle constraint penalty:
Enforce angle constraints so that adjacent trace angles belong to
T ={30,150,210,330°}
m
Pt (W] = Z pede [y, — 1] ™ Number of Vertices of the Spherical Polygon
angh - altl |

; e T ¢; : Magnitude of the Interior Angles of the Spherical Polygon

Trace Diagram Optimization

* Distance constraint penalty:
To minimize displacement from initial vertex positions, a penalty function is used.

Pliskazee V] = 1'} W, 1."!'}: m : Number of Vertices of the Spherical Polygon
[ 1

* Vertex positions are updated using gradient descent.

= 1 P
W, L L a% fiv]
Vertex Coordinate at Learning Rate Gradient of the Objective Function

Step k for the i-th Vertex

Trace Diagram Optimization

Before Editing

After Editing & Optimization

University of Tsukuba Kosuke Horiuchi
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Trace Diagram Optimization

LJO0

Before Editing After Editing After Optimization
Before Editing After Editing After Optimization
Region 1 [rad] 0.5592 0.7111 0.8172
Region 2 [rad] 0.5953 0.6144 0.8236
Difference [rad] 0.0061 0.0967 0.0064

y of Tsukuba Kosuke Horiuch

Controlling Rulings and Development Diagram Output

* Origami Simulator is used to specify fold angles along rulings.
* Mountain folds are red, and valley folds are blue.
* Fold angle magnitude is represented by transparency.

Fold Angle of the ruling

Color of ruling - T

Concave

Correspondence Between Ruling

Fold Angle and Color Output crease pattern

Comparison of Surface Before and After Editing

* The development diagram is observed using Origami Simulator.

After Editing &

Before Editing Optimization
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Shapes Created with the Proposed Interface

* Example with 36 rulings.

University of Tsukuba Kosuke Horiuchi

Other shapes — 2 convex and 2 concave

Render trace diagrams for various shapes and consider optimization
methods

1. 2 convex and 2 concave

concave

A

A

convex | »
convex “

"
Region 1 Region 2 Region 3
0.3484 0.6979 0.3480

Region 1 + Region 3 - Region 2 = -0.0015

concave

trace diagram

University of Tsukuba Kosuke Horiuchi 26

Other shapes — 3 convex and 3 concave

2. 3 convex and 3 concave

University of Tsukuba Kosuke Horiuchi 27
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Other shapes — 3 convex and 3 concave

2. 3 convex and 3 concave

concave
concave

convex convex

convex convex
concave

concave

convex convex

concave

concave

ersity of Tsukuba Kosuke Horiuch

Other shapes — 3 convex and 3 concave

To region segmentation,

Summary

* This research proposed a shape modeling method for developable
surfaces using trace diagrams.

* Implemented functionalities for rendering, editing, and optimizing
trace diagrams.

* Confirmed that ruling control and developable surface creation are
possible through trace diagram editing.

niversity of Tsukuba Kosuke Horiuch
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Future Work

* Further minimize the area difference between trace regions.

* Support for various shapes (currently limited to one convex and one
concave part).

* Implement partial shape modification.

* Evaluate and improve usability.

iversity of Tsukuba Kosuke Horiuchi
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Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and
Prototype Architectural Design

Aida Safary
University of Tsukuba, Japan

Jun Mitani
University of Tsukuba, Japan

Abstract

In this research, we produce digital parametric tools of 3D origami-based architectural elements, enabling
the users to modify and manipulate basic geometrical features of these tools to explore and create extended
geometric variability options of the mentioned structures. In our first project, we designed a module for the
One-Fold project by Patkau architects with specific options for changing the shape parameters to give users
the ability to generate various structures of architectural shelters of the same 3D shape. The One-Fold project
consists of a rectangular or square plane with a single fold as of its diagonal line, which creates conic curve
borders when folded [1]. As our second research project, we developed a digital system for the parametric
design of David Huffman’s design with ellipses of two-degree two-vertices. In this design tool, we apply
parameters for changing the fold angle, the size of the structure, and the rotation of curved lines inside our 3D
shape. In this design tool, we applied an approach similar to the additive algorithm method for generating our
shape step by step as a quad mesh structure [2, 3]. In our future research project, we intend to compare our
digital tools with physical prototypes using 3D scanners, evaluate the Elastica curves of both models and use
the RMSE method for surface error analysis.

References

[1] Aida Safary, Hamid Shafieasl, and Jun Mitani, “Geometric design tool for One-Fold, a curved origami with
a single fold”, J. Geom. Graph., 28 (2024) 89-101.

[2] Erik D. Demaine, Martin L. Demaine, and Duks Koschitz, “Reconstructing David Huffman’s legacy in
curved-crease folding”, Origami 5 (2011) 39-52.

[3] Levi H. Dudte, Gary P. T. Choi, and L. Mahadevan, “An additive algorithm for origami design”, Proc. Natl.
Acad. Sci., 118 (2021) e2019241118.
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RPN

University of Tiukwha

Parametric Design Tools for 3D Curved-Origami Shapes in Conceptual and
Prototype Architectural Design

University of Tsukuba
2025.03.11

Aida SAFARY-Mitani Lab

Research Background and Objective:

® The primary aim of this research is to develop digital parametric tools for 3D origami-inspired

architectural components, allowing users to adjust and customize fundamental geometric
characteristics of these tools to investigate and generate a broader range of geometric variations

=

for the structures described.

https://www.patkau.ca/projects/one-fold Koschitz. "Reconstructing David Huffman’s legacy in
curved-crease folding." Origami 5 (2011): 39-52.

Demaine, Erik D., Martin L. Demaine, and Duks

Table of Contents- Research Projects

1 - Geometric Design Tool for One-Fold, a Curved Origami with
a Single Fold.

2-Parametrized Folded State shape Modeling of David
Huffman’s Ellipse.

3- Comparison and Calculation of Error Value Between Digital
models and Physical Prototypes of Digital Systems.
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Research Title:

Geometric Design Tool for One-Fold, a Curved Origami with a Single Fold.

Main Idea-Objective

To replicate the original pavilion model called one-fold, inspired by Paul Jackson’s
“One-Crease” artwork, By Patkau Architects, as A digital model.

"

Original Prototype Our Digital System Render

5

Steps of Methodology , /s v

Creation of Direction-Curve.
The apex would be the vertex of a cone.
Creation of Direction Surface.

Creation of Direction Vectors.

o & 0N~

Creation of Final Surface.

293




Direction Sectors(Curves)

CRamader 2 arc of a crcle with meawre of § where 8 > 1802, The conditaon of being Larper than
1809 is imporant 10 be able 30 so¢ That in the ncighborhood of the fold kine there is concavity,
Then we change (the amonet of @ i given by the user) and transfer ihe sector of the crcle soch & way
that o hes in the st

{(x.y.2): x,Z2E R& Y € [0, +=)}

‘ ' (ﬁ) '

The vadss of 20 1 unvenvely propomiond  Bie beegth of / N\
the [~ luy b

Finding the apex

/efter rotation of the circle we should find the apex point in a way that it would
connect the sectors of the semicircke structure to the most appropriate point in the z-
axis.

Finding the apex point.

Diagram of Process-Direction Surface vs Direction Vectors

The steps of emerging Direction-Surface can be seen from left to right . The right
surface appears upon when the apex is found and the Direction-Vectors are the
vectors that overlaps on the indicated line on it.
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Direction vectors-Direction Vector Unitization

Direction-Vectors = connecting the apex point Final Surface = Unitize direction-
with vertices of the Direction-Curve. VOO Lo
Direction-Vectors give direction to the final lengths from 20 plane.

surface's ruling lines.

Conic Structures

Applying first developability condition.

A &5

5 '4”" ~ . . ~ :A -‘ﬁfj - j —_—
¢ O A

<A 4 -~ A Hh

e ‘ <

/ o
’ l.\ " N
¥y~ 180
=1

Direction-Surface

Reflexing the surface on the other side of the z-axis to create the overall completed
Direction-Surface.
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Any Possible Quadrilaterals

CRosdor an arbitrary quadrilateral as bodow and divide half of it via #'s.
The value of angles are obzined from Direction-Surface

We cxtend the divoction vexton on 30 serface ssing e loageth thet we obamed from 2D suface, foe
indance in the Sollowing figure AB = A" AC = A" C and two odger and onwe angle panaates the
congrocnce of wiaagles ABC, and A" B' €. as well

=7y

Direction-Surface vs Final Surface

Final surfaces are according to the orientation of Direction-Vectors. Upper surfaces indicate the
Direction-Surface and the lower surfaces are final surfaces.

s o

Geometric Features

Iomain geometric features define our shape:;

.
-B.

-Apex movement,

——

4= M - 25" ¥ - Y
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Process Renders ‘... ' = " ‘

D o ¥

o value B value X - C parameter
chanoos changes. changes 16
Only quadrilaterals?

The system also works for convex - 2D planes, Star<shaped polygons,

One-Fold System

297




Construction of Physical Model

Base part Side part Front Part

Construction of Physical Model

Final Level

20

Research Title:

Parameterized Folded State Shape Modeling of David Huffman’s Ellipse.

.l

e

21
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Huffman design using ellipses with 2
degree-2 vertices.

Demaine, Erik D., Martin L. Demaine, and Duks
Koschitz. "Reconstructing David Huffman's legacy in
curved-crease folding." Origami 5 (2011): 39-52.

22

We decided to take a different approach.

Related paper:

Dudte, Levi H., Gary PT Choi, and L. Mahadevan. "An additive
algorithm for origami design." Proceedings of the National
Anew approach called the Additive 4 qemy of Sciences 11821 (2021): 62019241118,

algorithm method.

What is the idea of additive algorithm? What are the Steps?

T®¢ mitizl yeod and extension of the seed are based on specific defined rufes.

Consider our mitial sced a8 1he first raw of the crease patteen and X, as our initial point.

o
Parametersof x; and ¢; 8,4 6, 4 are / 9...:"‘;':. S
confirmed by default. we give the parameters P _‘."""'\ f
for Nap angle a; and f; . @
For the next seed creation the flap angle @ and i ey

f are determined automatically. : rt'g’v \,‘%‘%%
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Step 1: Dividing the crease pattern.

Dividing crease pattern

25

Step 2:

We select one of the following pieces:

As the first
user
parameter: 3,
We rotate the
selected picce
by B

26

Step 3:

Select the following new picce m second strip and
rotate it by (flap angle) a,,

27
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The angles 8,'s could be attained via 20 surface.
Now, we set the value of fi; accoeding to the belony
formulas:

Additive Method

amfly = oo ¥y oom 4 wm Oy an o,

l

8 orn! (0.",««0. 4 4nl, nr:mv'unr‘ﬂ. ~ oy | nx’ﬂ.nu‘n}
: oy | o d, f

We use the three points shown in the left figure and find the fourth point shown in
the right figures according to the corresponding lengths of unfolded surface.

29

We follow the same process until the end until we get the desired shape.

30
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For the outer side of the ellipse.

Frst, we evaluated the following angles (8, y) in the 2D state.

The first 3D line (Vector u) should be positioned in a state that the angles will be
preserved in 3D state. Subsequently we rotate our first quad in region S around
vector v in such a way that the mentioned angles after folding would be preserved.

31

Find the 4th point in the 30 surface{black point) according to 3 points of
quadnlateral(vellow points) as before and oreate the surfisce.

32

Repeating the process until the end.

We alw evalumed the 360 » condition sround the
points on lefiup and nght-down, and 1he ermoe is
rerodsee instances in Ihe figure), and i s
expecied due 1o the nature of e mplomentod
mothod.

33
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Final renders

The angle condition on each vertice is preserved.

34

Huffman’s Ellipse System:

mm
LY

-
3

"
.
5
[
L4

L dad
- .

e
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Research Title:

Comparison and Calculation of Error Value Between Digital Models and Physical
Prototypes of Our Designed Digital Systems .

36
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Types of Prototypes

Different techniques:

1-Traditional Physical Models.

2-Modern Digital Models (CAD models).

3-3D printing.

Archdaily.com

37

Prototype that we intended to create.

One-Fold: The original
project is made of metal

sheets but we deal with fabric
|:> in our own prototype.

A
-

Patkau.ca

38

From concept and sketches to prototyping:

Information, Final plans ,

Concepts,

goals, .. renders,

” Initial .
requirements, digital model
s sketches. .
restrictions designs

Prototyping

39
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Our example:

Fabric Structure,

Joint finishing master slim cables.

White sheet roll fabric.

40
3D printing and Error Evaluation
193D scannmg, collecting data points, surface reconstraction
2- Adjustng the scales of 3D pranted dugital model with the onganal digital model
S-Using Clond compare software 1o calculate the ormor valoe
RMSE v : .\_;:-l'i" - %)}
Vihere 7

n s the number of cosenvations,

W % the actuadl observed vue, {
® & 5 Ihe prodctod valua:

Digital Model Scanned Model of
Physical Prototype "

Cloud-compare Evaluation

1-Loading the models, selecting the models,
aligning models.

2- Model alignment.

One model should be used as a reference,
one model should be an aligned target.

42
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Energy Minimization & Bending energy

Smoothing energy = minimization.
Minimize energy = minimize area.

The goal is to minimize the energy of a membrane, which corresponds to minimizing its
surface area. This is mathematically expressed through the integrals shown in the image.

Elastica curves describe the equilibrium shape of thin, )
flexible rods or plates under bending. l ds — min
The energy associated with these curves is bending -
energy, given by: 4
2 2
[ 0.+ 1o P et — i
]
1 3
&=3 / - : Momzeane
Ap =0 dpen

whave K o the curvatire and s i 1he sec lwogn
43

We developed a Related Grasshopper Algorithm

They key to formulas wsod m thas
sonpe are elbpexcal inograls of the
first Kind, k(m) and the second
knd E(m),

K: The moduus (or cocentrcity
pomameter) 0L N <1

€ Tangent angle of the bending
beam,

e J “ /e
= k) = — 1 xin® B9
K®) f Tipare B = [ Vi

44

We developed a Related Grasshopper Algorithm

PRSar i et e s AANN e e
.

X (protype) = 98.99 )
P
X (digital) = 98.99 Y

.- - - =

45
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Conclusion and Future Work

1-Our project illustrated the efficiency of combining digital and physical prototyping in
architectural design.

2-Challenges included considering the accuracy of construction or the complexity of the
surfaces.

3-In the future, certain refinements will be undertaken in our methods and materials to
continue the advancement of design and construction..

46
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Hoberman’s Scissor Mechanism and Digital fabrication

Higa Miyashiro Pamela
University of Tsukuba, Japan

Yiyang Jia
Japan Women'’s University, Japan

Mitani Jun
University of Tsukuba, Japan

Abstract

The Hoberman mechanism, developed by Chuck Hoberman, is renowned for its applications in toys and ar-
chitecture. The Hoberman Sphere, a collapsible toy, exemplifies the mechanism’s versatility through its use
of circular elements with scissor-like linkages to expand and contract. These linkages are fundamental to
the mechanism’s deployment, which is also evident in architectural applications, most notably in the Hober-
man Arch, showcased at the 2002 Winter Olympics. This structure, composed of segmented arcs arranged in
multiple layers, highlights the scalability and adaptability of the mechanism. Our research on the Hoberman
mechanism spans geometric principles, movement profiles, and deployment constraints [1, 2, 3]. In this study,
we combine theoretical research, digital modeling, and physical prototyping. Using tools such as Rhinoceros
and Grasshopper, we facilitated digital simulations of scissor mechanisms. Additionally, we employed digital
fabrication techniques to create physical prototypes. We tested three configurations: an irregular polyline, a
regular dodecagon, and a circumscribed irregular dodecagon. These models allowed us to explore how geom-
etry impacts movement and to address the challenges posed by irregular configurations. We focused specifi-
cally on the irregular dodecagon model, as its closed and irregular geometry highlights the constraints of the
method. By maintaining proportional link lengths and angular relationships, we ensured proper deployment of
the mechanism. A physical prototype of the irregular dodecagon was fabricated, and its movement matched
the predictions from the simulations. Inspired by the Hoberman Arch, which incorporates multiple layers of
Hoberman mechanisms into a discretized semicircle, we added additional layers to the irregular dodecagon
model. However, the multi-layered design exhibited resistance and deformation during movement, suggesting
the presence of over-constraints in the model. To further investigate, we simulated the movement of the double-
layered irregular dodecagon. The simulation, combined with an in-depth geometric analysis, revealed that
multi-layered designs using irregular polygons inherently lead to over-constraints. Overall, our study demon-
strates the Hoberman mechanism’s adaptability in toys, architecture, and deployable structures. However, we
also identified limitations in the shapes that can successfully support multi-layered Hoberman mechanisms,
particularly in irregular configurations.

References

[1] Gomez, Alfonso, “Deployable Domes Based on Angulated Scissors: A Method of Design Based on Geo-
metrical Construction”, The International Journal of Designed Objects, 9 (2015) 1.

[2] Asefi, Maziar, Ebadia, Atefeh, and Ghasemib, Azam, “Geometry feasibility of angulated scissor-like ele-
ments in a constant perimeter”, (2019).

[3] Sun, Xuemin, Yao, Yan-An, and Li, Ruiming, “Novel method of constructing generalized Hoberman sphere
mechanisms based on deployment axes”, Frontiers of Mechanical Engineering, 15 (2020) 89-99.
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Hoberman's Scissor mechanism and its

fabrication.
CREST ED3GE meeting 2025

Higa Pamela
CGG Mitani Group

LB R 2025703

Scissor Mechanism *

Scissor mechanism unit

e Forms an X shape

e Pair of interconnected rigid
links.

e Links joined by a pivot point

Multiple connected units
e Deployable structures
e Controlled transformation
e One degree of freedom

Pivot point

Origami and Scissor Mechanism *

e Origami and
scissor mechanism
have similar
movement
behavior.

e Longterm goalis
to develop a
system for hybrid
structure:

Scissor mechanism
and origami

Image from Vlachaki et al., 2021 (Hybrid Deployable Structures)
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Hybrid Deployable Structures

23 1

Image from Vlachaki & Liapi, 2024 (Hybrid Origami-Linkage Structures)

Scissor mechanism in Micro robotics *

Video from Teoh et al,, 2018 (Rotary-Actuated Folding Polyhedrons) 5

Large-Scale Deployable Structures *

Hoberman Arch - Olympic Medals Plaza in Salt Lake City (2002). Image source: https://www.hoberman.com/
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Research Goals *

+ Study and understand Scissor mechanism,
specifically Hoberman's scissor mechanism for close
polygons and close polyhedral with radial movement.

+ Simulate movement trajectories and analyze
constraints.

+ Fabricate physical models to compare with simulation

Scissor Mechanism movements profiles

e Linear movement e Polar movement : o Radial (Hoberman

Scissor mechanism)

Hoberman'’s Scissor Mechanism and the Hoberman Spher&

Spherical icosidodecahedron Hoberman Sphere

Single degree of
freedom

Expanded circle  Contracted circle
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Hoberman's Arch *

Hoberman's arch Scissor Hoberman's arch Scissor
mechanism, one layer mechanism, multilayered

Generalized Angulated Elements i

Lineal movement
¢BCE=¢£ACD=1t
BC=AC
DC=EC

Polar movement
£BCE = 2zZACD =Tt

Radial movement (Hoberman's
Scissor mechanism)

BC/AC = EC/DC-m

£ACD = £BCE =1t - £BOD.

Generalized angulated element. (GAE)

Two angulated elements (A \i *

N

Constraints

i ]
By =8
H’ll = mz
Radial movement .
BC/AC - EC/DCom LWS anrlgLrJ]ltated elements for a Radial
£ACD - £BCE - - 2BOD. oveme 12
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Pantographic Grasshopper script

To study the movement of Hoberman Mechanism, we used a modified version of
Pantographic script for Rhinoceros- Grasshopper.

Input: polyline

The script takes the points of the polyline and places them as pivot points, and the
midpoints of each polyline segment as the connections between units.

g

Geometry construction Movement simulation with Physical model

trajectory path.

Two layered Irregular dodecagon

Hoberman's arch Physical model
-Presented resistance to movement.

Simulation
- Gaps between rings
during movement

15
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Irregular Polygon Over-Constraint *

Angled elements Angled elements
Lateral pair Axial pair

> .- = = =&
‘.\-K- R ﬂﬂ 1 BE i
e Y. X
- !:' Ne L. .
o~ X 50 = 2
“.\, (:\ . ’) 1=
- B Y Only regular polygons
—A%\-\J' . L/b’* can be multilayered.
Multilayered Scissor
mechanism.

(Hoberman's arch)

» Gap at the pivot point provides
enough flexibility to accommodate
the over-constraint.

Physical model

Radial movement

Any pivot point that lies on
the circle will move
towards the center of the
circumcircle

Circumscribed Polygon with ~ Polygon with all but one
Random Tangent Points vertex on a circle.
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Irregular sphere

» Exploring Irregularity:

» Applied irregular polygon concepts to
create a polyhedral structure with radial
movement toward the circumscribed
sphere's center.

» Construction Process: Arranged circles of
equal radius around a common
circumcenter.

» Circumscribed irregular polygons around
these circles to form the structure.

Irregular sphere - Joints constraints *

Pivot point and joints between
units trajectory simulations.

Central joints
between units

~~a

Pivot points

20

Irregular sphere - Joints constraints *

Pivot point and joints between
units trajectory simulations. i

. )‘ : -
v P NN ~
vot point :
'y _Joints betggerlnits
el = g

- -.ﬂn.\‘ .
R4 4

21
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Irregular sphere - Joints constraints *

The central joints connects
four units.

To prevent the joint from
being over constrained, these
four pivot points must be
equidistant from the central
joint

Irregular sphere - Joints constraints *

Example of non-equidistant
pivot points from the central
joint

24
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Sphere from
irregular polygons
for fabrication

+ A sphere was designed to
show irregularity limits in a
Hoberman mechanism.

The sphere is made of
three irregular polygons.

+ Two polygons lie on planes
that are not perpendicular
to each other.

+ One polygon has a
concave corner.

Central join between | | o

_"¢” Zunits [
= VI

26

Sphere Fabrication - Joint Desing *

« Thejoint adds degrees of freedom to the
movement when the joint is considered
independently.

« But when the whole system is
assembled, the system has 1 degree of
freedom.

27
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Physical
model of
regular
sphere

28

Summary

g

This work is in an early stage of development. This section of the research

aimed to understand the degree of irregularity achievable with shapes

constructed with Hoberman mechanism.

Found limitations for the multilayer mechanism.
Study the joints constraints for a polyhedral

Fabricated irregular polyhedral.

29

Future work

Study the movement and trajectory path of scissor mechanism that

includes lineal, polar and radial movement.
Apply the method on to wide variety of irregular shapes.

Wider the possibilities for origami + Scissor mechanism hybrid

structures.

g

30
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Surface Rationalization and Optimization in Structural Engineering Practice

Toby Mitchell
Thornton Tomasetti, Chicago, United States

Abstract

In this talk, we examine the nuances and challenges of deploying the techniques of architectural geometry
and discrete differential geometry in commercial structural engineering practice. By contrast to the academic
context, structural design of surface structures in building practice involves multiple overlapping optimization
objectives, many of which are not easily quantifiable, and many of which are not fully clear at the outset of
the design process. Instead, the particular mathematical techniques appropriate for a given design problem
must be uncovered by engineers working together with architects and other specialists in an iterative design
process that integrates structural and construction performance goals with other technical objectives as well
as subjective design intent. The author will examine approaches that have proven successful in his work on
practical engineering projects, such as

1. The use of graphic statics in the design of the flat-paneled negatively-curved grid shell of the Hangzhou
Greenland Center (which recently won the CTBUH’s Best Tall Building award in the Asian region [1]).

2. The use of the Airy stress function in structural design of the flat-paneled quad-dominant grid shell of
the Columbus, Ohio John Glenn airport renovation, and the utility of self-Airy shells in incorporating
multiple panelization objectives while retaining structural performance [2].

3. The use of the static-kinematic duality in the design of rigidly-foldable structural origami such as SOM’s
MAK pavilion, and in the design of doubly-curved flat-paneled cable nets [3]

In addition to discussing the specific mathematical techniques used in these projects, the author will focus on
the practical aspects of deploying architectural geometry and structural form-finding in design practice, such as
the need to educate engineers on specialized techniques that are not typically part of their education, the need
to solicit buy-in and facilitate authorship of architectural designers, the phasing of project development that
necessitates the use of “’lightweight” mathematical methods that do not rely on extensive information that will
not be available in the early phases of design development, and the need to respond to input from contractors
which often comes at the very end of a design process and may necessitate substantial design revisions.

References

[1] ”SOM Wins Seven Awards of Excellence from the Council on Tall Buildings and Urban Habitat”,
https://www.som.com/news/ctbuh-awards-24/.

[2] Cameron Millar, Toby Mitchell, Arek Mazurek, Ashpica Chhabra, Alessandro Beghini, Jeanne N. Clel-
land, Allan McRobie, and William F. Baker, On designing plane-faced funicular gridshells, Int. J. Space
Structures, vol. 38, issue 1 (2022), https://doi.org/10.1177/09560599221126656.

[3] Toby Mitchell, Arek Mazurek, Christian Hartz, Masaaki Miki, and William F. Baker, Structural Applica-
tions of the Graphics Statics and Static-Kinematic Dualities: Rigid Origami, Self-Centering Cable Nets,
and Linkage Meshes, Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Graphic
statics, pp. 1-8(8)
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Variable Projection (VarPro) Method and Form-finding of
Tension-compression Mixed Shells

Masaaki Miki
The University of Tokyo, Japan

Abstract

This presentation reviews recent advances in the form-finding of tension-compression mixed shells. Although
purely compressive stress states are traditionally considered ideal for shell structures, we propose that allowing
a mix of tension and compression can expand the range of feasible shell geometries. The key challenge lies
in the fact that the equilibrium problem becomes a hyperbolic boundary value problem, which is notoriously
difficult to solve. We point out that the introduction of the Airy’s stress function reveals that the equilibrium
equation is a bilinear partial differential equation (PDE). We then indicate that this PDE can be solved using the
Variable Projection (VarPro) method—developed specifically for bilinear problems. We also demonstrate that
the alignment of stress and curvature directions is governed by a bilinear PDE, which can be solved concurrently
with the equilibrium equation using the VarPro method.
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VARIABLE PROJECTION METHOD AND
FORM-EINDING OF T/C MIXED SHELLS

MASAAKI MIKI, ASSISTANT PROFESSOR; THE UNIVERSITY OF TOKYO

*THESE WORKS ARE IN CLOSE COLLABORATION.WITH TOBY MITCHELL

THREE SIGGRAPH PAPERS (2015, 2022 SA, 2024)

SIGGRAPH 2015

Form-finding of pure-compression shells using Airy
stress function and NURBS
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SIGGRAPH ASIA 2022

bl - e
‘ .,. _— V a7 ~ Form-finding of T/C mixed shells using Airy stress
. " function and NURBS

« Reported that the problem can be solved using the
Variable Projection (VarPro) method, a Least-

SIGGRAPH 2024

Alignment of conjugate stress and curvature nets in a
v. . NURBS-based T/C mixed shell form-finding

Reported that the alignment condition can be solved
using VarPro as well.




SYSTEM

A system is a structure based on a simple and stable
geometry, assembled with repeating and easily
manufactured components and standardized detailing; it
allows to create a variety of shapes.

Left: a skeleton inside the Statue of Liberty, engineered
by Gustave Eiffel.

WHAT DO WE SEE VALUE IN

A good system allows us to build arbitrary shapes
effectively. If the statue of Liberty is possible, the
Stanford Bunny at an architectural scale should also
be possible.

However, this is not what “we” do, because “we”
don't see any value in it.

an

I THINK THIS IS BEAUTIFUL. IT FOLLOWS THE PRINCIPLES OF
MECHANICS, RIGHT?. CAN WE DO THIS? - NO. -
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TENSION-COMPRESSION-BENDING

We don’t want bending

e ~
’ N
’ \
4 \
’ \
! \
’ \
’
'
'
i

\

TENSION COMPRESSION “\ggup"‘o/

STRUCTURALLY EFFICIENT SHAPES

Munich Olympic Stadium (Frie Otto)
— 7

~

|
“We” see value in shapes that follow the principles of
mechanics.

There are a few existing precedents whose
geometry follows the principles of mechanics.
However, they are extremely rare because their
construction is too expensive. They cost too much
because they lack systems easy to construct.

onal F1 Circuit (Tai

Good architecture should involve both
1. a structurally efficient shape, and

2. a good system that is easy to construct

For example,
Minimal surface = a structurally efficient shape
Partitioning with geodesic lines = a good system that
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FORM-FINDING USING SOAP FILM (TENSION)

Frie Otto film, Youtube

iy

https://www.archdaily.com/610531/frei-otto-and-the-
importance-of-experimentation-in-architecture

= S

www.archdaily.com

COMPUTATION FORM-FINDING OF TENSION STRUCTURES

PHYSICAL MODEL MAKING
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CATENARY ARCH (COMPRESSION)

FORM-FINDING BY INVERTED HANGING
EXPERIMENTS (COMPRESSION)

Heinz Isler
Highway service area, Solothurn, Switzerland

FORM-FINDING BY INVERTED HANGING
EXPERIMENTS (COMPRESSION)
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COMPUTATIONAL FORM-FINDING OF PURE-
COMPRESSION SHELLS

A simulation of the inverted hanging
experiments.

PURE-COMPRESSION DOMES

Masterpieces by engineers

Eduardo Torroja Pier Luigi Nervi

™

SHELL-LIKE STRUCTURES BY ARCHITECTS

Perhaps they are not pure shells, but they are beautiful.

TWA Flight Center at JFK Airport (Eero Saarinen) Sydney Opera House (Jom Utzon)
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WHAT IF A MIX OF TENSION AND
COMPRESSION IS ALLOWED?

Felix Candela Amancio Williams

Notoriously
difficult to
solve!

* Courtesy of Amancio Williams funds,
Canadian Centre for Architecture, Gift of
the children of Amancio Williams

T/C MIXED SHELLS = UNEXPLORED FRONTIER
TIC

The complete set of special class of

surfaces that can withstand gravity
with no-bending Pure-compression

\

ISN'T IT BENDING? — NO —

This is T/C This is bending
- fm
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AIRY STRESS FUNCTION

Positive Gaussian
curvature

Negative Gaussian
curvature

FORM-FINDING USING AIRY STRESS FUNCTION

Positive Gaussian
curvature

Negative Gaussian
curvature

Shell

Easy to solve. ;., The old books say it is

w-""=pl notoriously difficult to solve.
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BOUNDARY CONDITION - FREE EDGE -

e

(VERTICAL) EQUILIBRIUM EQUATION OF A SHELL

¢(x,y), Airy stress function  (given)
p(x,y), vertical load (given)
z(x,y), shell (unknown to be identified)

TYPES OF 2N°-ORDER PDES

Pure compression: elliptical
Easy to solve.
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TYPES OF 2NP-ORDER PDES

++ Elliptic problem

2 2 0 q
e.g., 2= * &7 _ 1 Laplace’s equation
S oxz T oyz T
The nature of those .
———————————————— two types of PDEs are oo Eo oo 0
( surprisingly different A

LAPLACE EQUATION 2%z | 9%z

P el

Typically solved as a boundary value
problem.

» Asolution is a smooth averaging between
the boundary values in general.

—p

Easy to solve.

WAVE EQUATION 6_22 . 6_22 B
dx? 6}:2 -

(T

« Typically solved as an initial value problem.
— » Asolution is a wave propagation over time.
>

* In the time-space domain, the waves run along
characteristic lines (diagonal lines in the left
figure)

» Normally solved by incrementing the state of

the wave step by step by incrementing the

time with a small time step.

1
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CHARACTERISTIC LINES = ASYMPTOTIC LINES OF
AIRY STRESS FUNCTION

Gaussian curvature =
positive

COMPATIBLE BOUNDARY CONDITIONS

Compatible
(a solution exists)

Compatible
(a solution exists)

WHEN THE PROBLEM DOES NOT HAVE SOLUTIONS

G Cas
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WHEN THE PROBLEM DOES HAVE A SOLUTION

**This study was supervised by Chris J. K. Williams

-I}H}-H_J._H-IHH{HW

T
Coincide! ——

'ik 1 1.0
e
ey

DING

ROACH)

RECIPROCAL STRUCTURE

¢: Airy stress function, z: shell

GOTE 0 GE PR

EF e g

Pin ¢, find z
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IDEA: UNPIN STRESS FUNCTION

¢: stress function (unknown function to be identified)

z: shell (unknown function to be identified) /-
0% 0%z _ 0% 9%z 929z
Te2iov2 il oxov oxdvihovZ ozl ( both —

o

CONCLUSION: IT IS A BILINEAR PDE

02902z _ 9% 0%z 02p 0%z

x29y? 2 oxdy oxd +?ﬁ=”

0
LLEL LU BV ST b S B L

BILINEAR LEAST SQAURES PROBLEM

Full Problem (Bilinear)

det gij

2
. 1 det gjj )
Find {¢, z} such that [ ;(qubvzzz —Vi2¢V122 + Yy 9V112) + p da - min

Primal Subproblem (Linear)

2
. _ 1 _ _ _ det gjj;
Given ¢, find z such that [ 5 (V11PV222 — Vi2hV152 + Vyr Yy, 2) + pF da - min
et gij

Dual Subproblem (Linear)

2
1 detgjj;
Given z, find ¢ such that [ E(vuqbvzzz'— Vi V127 + Voo pV112) + p da —» min

detg,-j
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ALTERNATING APPROACH (ALT)

——— Given a stress function, find a shell

———— Given a shell, find a stress tuni;t'té-rl Solution exists, and it is a solution.
-

VARIABLE PROJECTION (VARPRO)

———— Constrained Optimization

\ + Solution exists,

——— Given a shell, find a stress function L :
o and it is a solution.

e gt
P e o

T/C MIXED SHELL FORM-FINDING USING VARPRO

Airy stress function: ¢
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CONJUGATE CURVATURE NET

« Tracings of local frames on a surface that gives no local warpingg#=Can be used for planar quadrilateral panelization.
« Lines of curvature are special conjugate curvature nets in which two directions intersect orthogonally.

Planar quadrilateral
glass panel

CONJUGATE STRESS NET

« Tracings of local frames on a surface that give no shear stressgrCan be used for the basis geometry of a bending-free grid shell.

« Principal stress trajectories are a special case of conjugate stress net in which two directions intersect orthogonally.
« Itis a conjugate curvature net of an Airy stress function.

Airy’s stress function’s
curvature net

Shell’s stress net ~

= bending-free grid shell

ALIGNING TWO SYMMETRIC MATRICES

A: 2x2 real symmetric matrix

B: 2x2 real symmetric matrix
A + B is symmetric

A — B is symmetric

? is not symmetric AB - Symm

< When AB is symmetric, it represents a special state in which
eigenvectors of two matrices point to the same directions.
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ALIGNMENT BETWEEN THREE MATRICES

A: 2x2 real symmetric matrix
B: 2x2 real symmetric matrix

E: 2x2 real symmetric positive (semi) definite matrix

ReoER

AEB = symm

< When E is positive (semi)definite, a conjugate pair that
is simultaneously conjugate with 4,B and e exists.

CONTROLLING THE ALIGNMENT THROUGH E

Matrix E

Eigenvectors s
(Guide vectors)

Eigenvalues | 1 (1] ‘ 1 0
0

0 0.6

Matrices A

and B
v
Doubly
conjugate
directions

(a) Aligns principal directions (b) Aligns conjugate (c) Fully conjugate with v
(orthogonal, ignores guide directions (roughly aligned (aligned with v, ignores s)
vectors) with both the guide vectors)

BILINEAR PDES

Equilibrium equation:

3%z 3%¢p %z 3%¢p 9%z 9%¢p

0x0x dydy 0x0y 0x0y

Alignment condition:

» Both conditions are bilinear PDEs. "0

» Can be solved using VarPro. -
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STARFISH_B

TESTING MATERIAL SAMPLES

BUILDING A FORMWORK
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ASSEMBLING DEVELOPABLE STRIPS

FORMWORK ASSEMBLY IS READY

INGREDIENTS

Cement Steel fibers Tough binder
(Staples)
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CONCRETE PLACEMENT

24HRS
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48HRS

FORMWORK REMOVAL

CLEANING
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A MINIATURE T/C MIXED CONCRETE SHELL

A MINIATURE T/C MIXED CONCRETE SHELL

THANK YOU!

CONTACT: MASAAKI.MIKI@MMIKI.JP
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Curved Surface Structures with Excellent Mechanical Rationality and
Constructability/Fabricability

Yohei Yokosuka
Kagoshima University, Japan

Abstract

There are geometrically defined classes of surfaces and curves suitable for each surface shape, such as mem-
brane structures that resist tensile stress and shell structures that resist compressive stress. These surface and
curve classes are categorized as mechanically motivated and those motivated by constructability and mem-
ber fabrication. From a mechanical point of view, F. Otto uses an extremely minimal curved surface for the
membrane structure and H. Isler applied a suspended curved surface for the shell structure, designing a curved
surface structure that is mechanically rational. F. Candela uses HP curved surfaces in curved structures, de-
signing curved structures that are superior from constructability. In recent years, there has been progress in
research on the design of curved surface structures that rediscover the properties of both the mechanical and
constructional perspectives from geometry by means of discrete differential geometry. This presentation will
introduce a class of surfaces and curves that can be applied to curved structures in architecture.
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International Conference "Evolving Design and Discrete Differential Geometry - towards
Mathematics Aided Geometric Design"

Curved Surface Structures with Excellent Mechanical Rationality and
Constructability/Fabricability

Yohei YOKOSUKAD, Yoshiki IKUMARU?, Kazuki HAYASHI?,
Kentaro HAYAKAWA®, Yusuke SAKAI®

1) Graduate School of Science and Engineering, Kagoshima University

2) Information Networking for Innovation And Design, Toyo University

3) Graduate School of Engineering, Kyoto University

4) College of Industrial Technology Department of Conceptual Design, Nihon University
5) Sony Computer Science Laboratories, Inc

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

M Overview
1. Close relationship between shell and spatial structures and geometry
2. Research Case Studies

2.1 Discrete isothermic minimal surfaces

2.2 Discrete membrane O surface

2.3 Willmores surface and Mobius transformation

2.4 Airy stress function and Laguerre geometry

3. Conclusion

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures
(Static Mechanics * Constructability/Fabricability )

Minimal surface & Suspension Membrane Structure: Pure tension

Geodesic line & Membrane cutting line and cable placement: Shear free
CMC surface < Pneumatic membrane structures: Pure tension
Catenary curve & Reversed Hanging curve/membrane: Pure compression

Hyperbolic paraboloid surface < Shell structures: Doubly ruled surface
Rotational hyperboloid & Cooling tower, Tower: Doubly ruled surface
Ruled surface < Beam structures: Ruled surface

| Classical Surfaces Classes |
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Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures
(Static Mechanics * Constructability/Fabricability )

Minimal surface & Suspension Membrane Structure: Pure tension

Geodesic line < Membrane cutting line and cable placement: Shear free
CMC surface & Pneumatic membrane structures: Pure tension
Catenary curve & Reversed Hanging curve/membrane: Pure compression

How can these surfaces be characterized?

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures
(Static Mechanics)

Minimal surface & Suspension Membrane Structure: Pure tension

Geodesic line < Membrane cutting line and cable placement: Shear free
CMC surface & Pneumatic membrane structures: Pure tension
Catenary curve & Reversed Hanging curve/membrane: Pure compression

How can these surfaces be characterized?

= Critical points for variational problems

= At arbitrary boundary conditions, a certain functional is defined and the solution
that minimizes the functional is obtained.

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures

(Static Mechanics)
Minimal surface & Minimization of curved surface area E
Geodesic line (:)E Minimization of curve length on a surface i
CMC surface & Minimize curved surface area by specifying inner volume;
Catenary curve (:)E Minimization of gravitational potential E

How can these surfaces be characterized?
= Critical points for variational problems
= At arbitrary boundary conditions, a certain functional is defined and the solution
that minimizes the functional is obtained.
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1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures
(Constructability/Fabricability )

Hyperbolic paraboloid surface & Shell structures: Doubly ruled surface
Rotational hyperboloid & Cooling tower, Tower: Doubly ruled surface
Ruled surface & Beam structures: Ruled surface

How can these surfaces be characterized?

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close relationship between shell and spatial structures and geometry

O Geometry O Shell and Spatial Structures
(Constructability/Fabricability )

Hyperbolic paraboloid surface < Shell structures: Doubly ruled surface
Rotational hyperboloid & Cooling tower, Tower: Doubly ruled surface
Ruled surface < Beam structures: Ruled surface

How can these surfaces be characterized?

= Focusing on the direction of coordinate lines are taken, coordinate lines with zero
normal curvature are chosen.

= Asymptotic direction, which is limited to the case when Gaussian curvature is
negative.

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

1. Close
‘We would like to sample a finite number of points for practical use.
(« = Inherently, a discrete surface that is not smooth is not
differentiable at a point
= Discrete Differential Geometry
I o . ce
% Context of Variations and Coordinates
I surface
I
* Study of variational problems with triangular polyhedral
meshes by introducing the concept of curvature consistent
H between continuous and discrete surfaces
] * A comprehensive treatment of a class of surfaces with flat .
= . . with zero
n quadrilaterals as shape elements and good properties (Integrable
= geometry) re is
negative.
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2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

B Architecture : Form-finding of membrane structure
Otto, F. (1973) : Application to tension structures

Schek, H.J (1974) : Force density method
Barnes, M.R (1977) : Dynamic relaxation

B Mathematics

Courant, R(1950) : Problem to minimize Dirichlet integration (Dirichlet energy)

Hinata, M., Shimasaki, M., and Kiyono, T(1974) :Discretization by finite element method
Tsuchiya, T(1992) :Discretization of Dirichlet energy by finite element method

Pinkall, U., Polthier, K.(1993) : Dirichlet energy discretization (cotan formula)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

Functional (Dirichlet energy)

E=%”Q(ff+fv2)dudv (1)

fu s ﬁ : Tangent vector of ." coordinates on the surface

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

Minimal surface & Minimization of curved surface area
S Dirichlet energy minimization and isothermic
& Mean curvature is 0 and isothermic

% Coordinates issue

* Isothermic properties of continuous curved surfaces

LA =1

fu 5 ﬂ : Tangent vector of U,V coordinates on the surface

(M
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2. Research Case Studies
2.1 Discrete isothermic minimal surfaces

* Bobenko et al. constructed a Koebe polyhedron with a three-dimensional sphere s
from known minimal surfaces, and showed that it is possible to construct different
discrete isothermic minimal surfaces by giving their Christoffel duals (transformations).
= Christoffel's theorem that a surface constructed from a Gauss map of minimal
surfaces by a transformation preserving isothermality is a minimal surface.

¥ _j‘f}gﬂ? ey
- i & L % b s 1
; il ] |::> L .
l__r .‘1 e ' :. 1_ - .:""'
b a7 b ubetS Christoffel i -
L Bt transformation j-
Nt
Koebe polyhedron Discrete isothermal minimal surfaces

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of
Mathematics, 164, pp.231-264, 2006

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies

PR SN e e
"B Note: P

from
discr . ) .

—¢c| ° This method showed that different minimal surfaces can be

surf obtained by applying a coordinate-preserving transformation.

ns).

= Transformation itself is essential.

Koebe polyhedron Discrete isothermal minimal surfaces

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of
Mathematics, 164, pp.231-264, 2006

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies

21D \ e e 2

* B Note P
from

discn  Girele Pattern: ns).
=>C

surfy  Corresponds to discretization of curvature line coordinates
(discrete curvature line network)

Isothermic curvature line coordinates:
Corresponds to the condition that cross-ratio is equal to -1

Koebe polyhedron Discrete isothermal minimal surfaces

Bobenko, A.I., Hoffmann T., Springborn B. A., Minimal surfaces from circle patterns: Geometry from combinatorics, Annals of
Mathematics, 164, pp.231-264, 2006
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2. Research Case Studies
2.2 Membrane O surfaces

* The canopy of Tokyo Midtown is composed of
multi-layered curved surfaces and vertical members
connecting between the curved surfaces. The
orientation of the curved surface members adopts
the principal direction, and in one compartment, four
sides are flat surfaces.

Principal direction - curvature line coordinates in the
direction that follows the principal curvature

The canopy of Tokyo Midtown

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.2 Membrane O surfaces

- Discrete curvature line network = A curved surface covered by quadrilaterals to
which a circle is circumscribed. The quadrilateral connecting the intersections is flat.

* Vertex Offset = In a discrete curvature line network, the normals defined by the points
are mirrored in the plane orthogonal to the edge, and the sides spanned by the normals
are flat without torsion.

+ Curved surface structures consisting
of flat quadrilaterals have excellent +
properties in the view of i
Constructability/Fabricability.

Assembled beam with discrete curvature
line network and normal

Schief, W. K.: Integrable structure in discrete shell membrane theory, Proc. R. Soc. A (2014) 470: 20130757, 2014

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.2 Membrane O surfaces

* Membrane O surfaces = A class
of curved surfaces that are equilibrium N
by in_p]ane membrane stress without Assembled beam with discrete curvature

. . line network and normal
bending moment and in-plane shear
when a constant load is applied in the
normal direction.

* Equilibrium equation of in-plane

= Dual surface exists in the A
Combescure transformation \ -

surface /" b
= Corresponds to the force & Form diagram Mo eariace F
diagram and form diagram of ) & Force diagram
Graphic statics Combescure transformation (Parallel translation of edges)
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2. Research Case Studies

of curvi
by in-pl * A discrete curvature line network always has a
bending  gyrface 7.
when a
normal eper. e . .
Equi * The out-of-plane equilibrium equation is expressed
= by the orthogonal conditionals for surfaces 7 and #.
= Lf)rresponds t(? the lo.rcc © Form diagram P A urface 7
diagram and form diagram of & Force diagram
Graphic statics Combescure transformation (Parallel translation of edges)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.3 Willmore surface and Mobius transformation

* Klein geometry
=A geometry characterized by transformations and invariants
in those transformations.
Moébius geometry is a type of Klein geometry.

* Mobius transformation
= A transformation that maps a circle to a circle, and
cross-ratio is invariant under the Mdobius transformation.
= A discrete curvature line network can be mapped to a discrete
curvature line network.

Felix C. Klein
(1849-1925)

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.3 Willmore surface and Mdbius
transformation
* Inversion > Typical operations with
Moébius tranformation

C,M,M" aligned ?)
|cMm||cm | =k

C : Center of a circle
AL Points before
transformation cC M M'
M " Points after B " "
transformation ’k’

\/m - Radius of circle
Inversion

Mesnil, R., Douthe, C., Baverel, O., Leger, B.: Generalised Cyclidic Nets for Shape Modelling in Architecture, International
Journal of Architectural Computing, Volume 15, Issue 2, pp.1-22, 2017
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2. Research Case Studies Willmore eneri) it

L T

2.3 Willmore surface and Mobius e ".—\-.:{ninimization g

* Willmore Energy
= Invariant functional with Mobius
transformation

Q:j H>—-KdAd (3
S

+ pressure load: 100 N/m?

* membrane thickness: 1.0 mm

« elastic modulus : 100 N/mm?

+ shear elastic modulus: 60 N/mm?
* ratio of poisson : 0.3

H: Mean Curvature K. Gaussian Curvature

* Willmore surface
= Critical point of Willmore energy
= Mobius transformation allows
Willmore surfaces to be mapped to
Willmore surfaces.

tomax (N/mm?) | fomin (N/mm?)
Principal stress | Principal stress

max 1.4643 0.4123

min 0.5832 0.2668
Bobenko, A.IL., Schrdder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.3 Willmore surface and Mdbius
* Willmore Energy
= Invariant functional with Mobius
transformation

Q=_[ H>—-KdAd (3
N

H: Mean Curvature K. Gaussian Curvature

* Willmore surface
= Critical point of Willmore energy
= Mébius transformation allows
Willmore surfaces to be mapped to
Willmore surfaces.

ARK NOVA (Arata Isozaki, Anish Kapoor)
Bobenko, A.I., Schréder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies

2.3 Wil “ E—
- Willh Note:
=1In
tr

* It is not guaranteed that the Willmore surfaces are theoretically
O equilibrium by the membrane stresses. It is necessary to consider
the connection between the membrane O surface and the Willmore
H:Mef surface.

* Willr
= Critical point of Willmore energy
= Mobius transformation allows

Willmore surfaces to be mapped to
Willmore surfaces.

Arknova (Arata Isozaki, Anish Kapoor)
Bobenko, A.I., Schréder, P., Discrete Willmore Flow, Eurographics Symposium on Geometry Processing, 2005
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2. Research Case Studies
2.4 Airy stress function and Laguerre geometry

* Hanging membrane
B Architecture
Ramm, E., Bletzinger, K.-U., Reitinger, R.(1993) : Minimization of Shell structures
Block, P. and Ochsendorf, J.(2007) :Thrust Network Analysis
Miki, M., Igarashi, Block, P. (2015) : Airy stress function in parametric surface

B Mathematics

Vouga, E. Hobinger, M. Wallner, J. Pottmann, H.(2012) :Isotropic geometry
Koiso, M., Palmer, B.(2005) :Smooth hanging curve and Euler-Lagrange equation
Jikumaru, Y., Yokosuka, Y.(2022):Hanging membrane of isotropic stress

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry

- Laguerre geometry
= The object of Laguerre geometry is a plane.
= The normal is defined and the plane is the set of points that have the same perpendicular
distance from the origin.
= Laguerre transform acts on a plane

* Laguerre functional * Airy stress function
= invariant functional of Laguerre = Stress function equilibrium by in-plane
transformation membrane stress when a constant vertical

load is applied to a curved surface

2_
Q:I H-K ., @
s K

H: Mean Curvature K. Gaussian Curvature

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry

* Pottmann et al. showed the relationship between L-minimal surfaces and Airy
stress functions minimizing the Laguerre functional.

Airy stress function is L-minimal surface expressed by isotropic
biharmonic function model is biharmonic function

* Isotropic geometry
= Geometry of a surface represented as a function graph of = — /. vi
= No distance metering in height direction

[42] Pottmann, H., Grohs, P., Mitra, N., J. : Laguerre minimal surfaces, isotropic geometry and linear elasticity, Advances in
Computational Mathematics volume 31, Article number: 391, pp.391-419, 2009
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2. Research Case Studies
2.4 Airy stress function and Laguerre geometry

- Mean curvature and Gaussian K, =det(V’f)=f. +f, - f2 )

curvature in isotropic geometry 2H, =trace(Vif)=f. + [ (10)
i — Jxx yy
* Equilibrium equations and compatibility Equilibrium equations
conditionals introducing Airy stress inqisotro ic egmetr
functions pic g y
le(MVS):F, divM =0 (11) 2K Hrele (13)
M =adj(V’p) (12) ’
S : height @ : Airy stress function
M : stress tensor [ : vertical load Vouga, et al

Fraternali, et al

Curved Surface Structures with Excellent Mechanical Rationality and Constructability/Fabricability

2. Research Case Studies
2.4 Airy stress function and Laguerre geometry

* Mébius transformation allows
circles to be mapped to circles.

Ty * Lines of connecting the center
of circles become force diagram.

U

= Equilibrium in plane can be obtained
parametrically by Mobius transformation.

Temporary Structures with Curved Folding

Conclusion

* This presentation introduces four topics: discrete isothermal minimal surfaces,
discrete membrane O surfaces, Willmore surfaces and Mobius transforms, Airy
stress functions and Laguerre geometry.

* The viewpoints and representations of surfaces in non-Euclidean geometry are
important not only in conventional Euclidean geometry, but also in non-Euclidean
geometry, showing that invariant quantities and properties in transformations,
and the “transformations” themselves that preserve these properties, are of great
importance.
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Lie Spherical Geometry and Design of Curved Surface Structures

Yohei Yokosuka
Kagoshima University, Japan

Abstract

The purpose of this study is to employ discrete surfaces as shape elements and to construct a design method for
curved surface structures by parametric deformation using Lie spherical transformations. NURBS surfaces and
Bézier surfaces are useful parametric surface generation methods as surface design tools. However, the proper-
ties of the cross ratio and the developability of the surfaces covered by the coordinate lines are not preserved.
Lie spherical geometry can perform Lie spherical transformation, which maps curvature line coordinates to
curvature line coordinates. Curvature line coordinates can be represented by discrete surfaces filled with cir-
cles on the surface; the Mobius transform, one of the Lie spherical transforms, allows transformations that
preserve the cross ratio, and isothermal coordinates can be mapped to isothermal coordinates. This presenta-
tion will describe the method of generating 3-D and 2-D surfaces and the mechanical properties of isothermal
coordinates.
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Lie Sphere Geometry and Design of Curved Surface Structures

* Recent studies on discrete surfaces
+ It is possible to generate discrete curved surfaces with extremely good properties by
Mobius geometry and Laguerre geometry.
+ These curved surface with excellent fabricability and constructability can be
constructed.

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

* Recent studies on discrete surfaces
+ It is possible to generate discrete curved surfaces with extremely good properties by
Mobius geometry and Laguerre geometry.
+ These curved surface with excellent fabricability and constructability can be

constructed.

+ In this presentation, we introduce the formulation of Lie sphere geometry and the
method of modelling for gridshell structures.

+ we demonstrate the structural analysis of curved surface found by Lie sphere
geometry whether the curved surface has the similar mechanical performance.

A. 1. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006
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Lie Sphere Geometry and Design of Curved Surface Structures

* Klein geometry

Klein geometry classifies geometry by the operation of transformations on a set.
* Lie sphere geometry

Lie sphere geometry has a large group in Klein geometry.
Lie sphere geometry considers points and planes as part of spheres.
The curvature line coordinates are conserved by the Lie sphere transformation.

@)/

Lie Sphere Geometry and Design of Curved Surface Structures

* Oriented sphere: S(c,r)
3 P(v,d)
S(e,r)={xeR’;

S(c,r)={xeR’;

x—d=r} (D
x—c|2 =r'}

X :point ¢: center point 7 : signed radius

* Oriented plane: P(v,d) A d 4
Pw,d)={xeR5vx=d) () 05 g
V : unit normal (inward)  ( : signed height

A. 1. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

* Natural basis:

¢, =(1,0,0,0,0,0),e, =(0,1,0,0,0,0),e, =(0,0,1,0,0,0), @)
e, =(0,0,0,1,0,0),e; =(0,0,0,0,1,0),¢, =(0,0,0,0,0,1)

* Vector: §

S =(cl,cz,c3,%(l—‘c‘2 +r2),%(1—‘c‘2 -, r) %)

A. 1. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006
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* Natural Basis-

¢l +ci+el+ {% 1- ‘0‘2 + rz)}ZE{% - ‘c‘z - = 0]
‘ introduce an scalar product

<xay> = X0, X0, + X5+ X, = b vy

by (i)

* Vecty

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

+ Natural basis:

¢, =(1,0,0,0,0,0),e, =(0,1,0,0,0,0),e, =(0,0,1,0,0,0), @
e, =(0,0,0,1,0,0),e, =(0,0,0,0,1,0),¢, =(0,0,0,0,0,1)

* Vector: § an oriented sphere

S =(c],cz,c3,%(l—‘c‘2 +r2),%(1—‘c‘2 —r),r) &)

A. I. Bobenko and Yu. B. Suris, Discrete differential geometry: Integrable structure, Graduate studies in mathematics Vol. 98, AMS, 2008
Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, and W. Wang, Geometric modelling with conical meshes and developable surfaces, ACM Trans. Graphics 25, no.
3, pp.681-689, 2006

Lie Sphere Geometry and Design of Curved Surface Structures

* Two oriented spheres S, and S, are in oriented contact if and only if

(5,,8,)=0.

Xij
Xir
Xy
¢ Xt
% ¢
J

Figurel: One unit

Figure2: Mobius and Laguerre geometry
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* Equations generating Circular nets

(5.5)=0 (5.5)=0 (§.8)=0 (5.5)=0 (©

Figurel: One unit Figure2: M&bius and Laguerre geometry

Lie Sphere Geometry and Design of Curved Surface Structures

Great circle of spheres tangent to a point

Lie Sphere Geometry and Design of Curved Surface Structures

* The curvature line coordinates and curvature-line net are
conserved by the Lie sphere transformation,
it is expected to be useful for generating the curvature-line net.

Great circle of spheres tangent to a point
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Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circular net

Y

1. The set of four center points

constitute minimum unit.

2. The network of center

points are expanded to two

directions of X,Y.

3. When the network expand,

the plane including the center
point is rotated. To solve the

equation, find a new center

point.

4. If all center points are found,

all radius can be found also.

the constituent nodes of the

circular nets can be found.

Figure 3: center points and
orthonomal basis vector

m=2~M,n=1 m=2~M,n=2~N

Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circular net

G

1. The set of four center points

constitute minimum unit.

2. The network of center

points are expanded to two

directions of X,Y.

3. When the network expand,

the plane including the center
point is rotated. To solve the

equation, find a new center

point.

4. If all center points are found,

all radius can be found also.

the constituent nodes of the

circular nets can be found.

Figure 3: center points and

m=2~M,n=1 m=2~M,n=2~N

orthonomal basis vector

Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circular net

¢

Y

1. The set of four center points

constitute minimum unit.

2. The network of center

points are expanded to two

directions of X,Y.

3. When the network expand,

the plane including the center
point is rotated. To solve the

equation, find a new center

point.

4. If all center points are found,

all radius can be found also.

the constituent nodes of the

circular nets can be found.

Figure 3: center points and
orthonomal basis vector

m=2~M,n=1 m=2~M,n=2~N

Figure 4: grid number and symmetry condition
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Lie Sphere Geometry and Design of Curved Surface Structures

Y

* How to configure Circular net

For example:
i m=2~M,n=1

Rotation of a plane

e = R(em.n,gm,n )E;n.n

X

R (ex, 9) : Rodrigues’s rotation
matrix

Figure 3: center points and m=2~M,n=1 m=2~M,n=2~N
orthonomal basis vector

[
1 . . -
Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

Y

* How to configure Circular net

1. The set of four center points
constitute minimum unit. m
2. The network of center
c points are expanded to two X
I directions of X.Y.
3. When the network expand,
the plane including the center m=1n=1
point is rotated. To solve the
equation, find a new center
point.
4. If all center points are found,
all radius can be found also.
The constituent nodes of the
circular nets can be found.

Figure 3: center points and m=2~M,n=1 m=2~M,n=2~N
orthonomal basis vector

G

Figure 4: grid number and symmetry condition

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circular net
Tablel: Symbols

0{?;!:2&{;’}11;‘66 R:Nonlinear equation contact to S, ,3‘]., 3‘,( ,5, eR*? . Projective model of oriented sphere
Ci5C;5CsC € R?: Center point of oriented sphere T lis 1) € R : Signed radius of the oriented sphere
7 € R : Reference radius m, n : Grid number in X,Y direction

M ,N :Number of grids in X,Y direction €.e € R?: Orthonormal basis vector

X,y € R : Unkwon parameter in 2D plane @ € R : Specified angle

R(ex,G) : Rodrigues’s rotation matrix a, B,y € R: Specified parameter

& € R: Unkwon parameter in 1D line Xys Xips X5 Xy € R*: Constituent nodes of circular nets
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* How to configure Circularnet «m;=1n=1

Initial values (radius and center point):

— L1 L L1 11 Ll ll L1

— Ll
FoC,C) 00,00, =T, =

-¢

A=t = F el el (7)

Specified values: "' g

m=1Ln=1

Define next initial value: ¢, c“ et

Cll C C c]]
20 L1 20 _ 1l IR I3 2.1 1 [ k
' =¢l =0 va =c¢'+p" o (®)

e —¢ -
21 L2012l 21 20 20 21 21 21
Pent =ttt =t = et = )

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circularnet « m=2~M n=1

Equations(Nonlinear equations):

ml

1
. aml aml\ _ 1 1
f=(5ma) = (e ey )-2 e \ +e

J

_ (rkm.l ) - (rjn.l )z} _ ’l\.m,lr‘m.l -0

(10)

£, ={gm gm mi o\ L) 2+ ml|? — Y iyt —
4 =\8 S ) =6 TG > Ck € Tk Ui heh =
. . m=2~M,n=1
Specified values: ™', a™, g™, "
. ml _ . m]l ml m.l
Unkown value: x,y ¢l =c +xel + yel (1 )
L1 1,1 1,1 1,1 1,1 L1
Define next initial value: ¢/, /""", /"™, p" M
m,1 m,1 m,l m,1
c —C C, C
Ll ) mell il ml ©j k mll _ ml ml €p
i =G ¢ =¢; ta ol ml > G +ﬁ m,l m,1
g o= (12)
m+ll _ml m+1,1 m+1,1 JmALL  ml] m+ll _  m+l] m+l L m+l]
=R, T =1 4 LT =T e c

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circularnet em=1n=2~N

Equations(Nonlinear equations):

Y :<§["”,§'/J”>:<c:‘”,c',i">7%{c,."" 2+\c;:" — = = =0

ol )=t ) o <) co (O

Specified values: 6", a"", "",rj"" m=Ln=2-N
Unkown value: x,y ¢ =" +xe)" + ye” (14)

Define next initial value: ¢/"*"',¢,""',c/"", ;;"””,rk""”,;;"”*'
L _ ol L —C
Ll _ L j Lol _ 1 Sk Lntl _ L
G =6 +a |/77 1] ? Gk C "+ |:,7 T G =6
Ci i C

1+l Ln L+l Ln+l
— it =

J

(15)
= ek Lt _

Lin+l Ln 1,n+1 Ln+l
7 r; ‘ Y
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- How to configure Circularnet em=2~M n=2~N

Equations(Nonlinear equations):

fi=(5mmarmy =0, f=(5080) =0, fi=(5".5")=0  (16) e

Specified values: 7

mn-1

m=2~M,n=2~N
Unkown value: &,r,,7, K ’
=l mn
ma _ mn ama _ SJ i
=gt e e = —
J i k
(17)
m,n—1 m,n
C C,
ma _ . mn mnmn _ Ck 1
G =¢ +(§+y)e,] € = mn—1 mn c.’
" —¢

mn

j <

Lie Sphere Geometry and Design of Curved Surface Structures

* How to configure Circular net

The constituent nodes of the circular net x;,x;, x,;, X, :

ij 2
mon _mn mon mon
wn _ mn mn G 76 mn _ mn  mn G
Xt =Mt L X =M
i i i mn __mn i i i man __mon
G J G 1
e (8)
ma _ man o mn k j mn _ ma mn S TC
xpt ="+ 1 S xyt =t L
7 moan__mon man_ _mon
‘c,( c; " =]
X
i
C X/\j
ti X
c ¢
J

Lie Sphere Geometry and Design of Curved Surface Structures

* Numerical result of circular nets

0"'=015 a™'=0 0"=-030 a"=0
ﬂm,l =0 rkm,l =10 ﬁ],n =0 },:0

a. Model-1 b. Model-2
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* Numerical result of circular nets

e. Model-5

Lie Sphere Geometry and Design of Curved Surface Structures

* Subdivision

1. Create circles with half the diameter at the same position.

2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.

4. Repeat step1-3 to generate a gridshell structure.

Subdivision Result of 3 times subdivision

Lie Sphere Geometry and Design of Curved Surface Structures

* Subdivision

1. Create circles with half the diameter at the same position.

2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.

4. Repeat step1-3 to generate a gridshell structure.

Subdivision Result of 3 times subdivision
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* Subdivision

1. Create circles with half the diameter at the same position.

2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.

4. Repeat step1-3 to generate a gridshell structure.

Subdivision Result of 3 times subdivision

Lie Sphere Geometry and Design of Curved Surface Structures

* Subdivision

1. Create circles with half the diameter at the same position.

2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.

4. Repeat step1-3 to generate a gridshell structure.

Subdivision Result of 3 times subdivision

Lie Sphere Geometry and Design of Curved Surface Structures

* Subdivision

1. Create circles with half the diameter at the same position.

2. Draw a line (spoke) connecting the four nodes, which are the intersections of adjacent circles, with the center of the circle.
3. Draw a circle that passes through the four intersections (A, B, C, D) where the spoke and the half circle intersect.

4. Repeat step1-3 to generate a gridshell structure.

Subdivision €SUlt of 3 times subdivision
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+ Subdivision Gaussian curvature distribution (almost zero)

$

This result is considered as a discrete curvature line in which the discrete curved surface is subdivided along
the curvature line. Therefore, it is possible to construct a curved member by bending only one axis.

This gridshell structure has a property of excellent fabricability of members.

Circular net (red line and black line)

Line connecting a point and the center point
of the sphere (blue line) 1

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation
* Conical net

Lie Sphere geometry includes Mobius and Laguerre geometry, with Mobius geometry
constituting Circular nets and Laguerre geometry Conical nets.

The definition of a conical net is four planes having one shared point and tangent to
a cone.

Once the circular net is constructed, the normals v, v, ,v,,,v;, are obtained by the
following equation.

X, —¢ x; —¢, Xy —c; Xy =€,
Vlj =— = — ’ij = — =—
oy =e| 5= e el
(19)
X, —cC X, —cC X, —c X, —C,
P R S VR R "
|xkl _ck| |xkl -G |xli _CI| |x1i _ci|
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* Lie Sphere Transformation
* Conical net

The height d;,d,.d,,d, are obtained by the following equation

dij = <Vij7xij>’djk = <ij7‘xjk >7dkl = <Vk/9xk/>’dli = <Vli7x[i> (20)

ij>

Conical nets are obtained by solving the following simultaneous equations for each circle
in the circular nets

X dij
T
[sz/ Vi Vk]:l Y= djk (21)
z d,

Note that any three of the four planes are chosen, but any of the equations may be chosen.

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation
* Conical net

Circles of circular nets
and conical net points
form a cone.

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation

The Lie Sphere transformation is used for the coefficient matrix of the
quadratic form of the projective space.
As x,y e R*?, consider a linear transformation X > Ax 1

that satisfies the following inner product o000 0

0100 O O

(Ax,dy)=(x,y) (@2 0010 0 0

However, limited to 42 = 0001 0 0
T

A E4,2A :E4,2 (23) 00 0 0 =1 0

In this case A is the Lie Sphere transformation. 0000 0 -1

T. E. Cecil, Lie Sphere Geometry with Applications to Submanifolds second edition, Springer New York, 2008.
G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in Classical Geometries : A Treatment by Moving Frames, Springer, 2016.
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* Lie Sphere Transformation
Inversion

The inversion of the Lie Sphere transformation acts on the point R®. The mapping from
' to S? is obtained by

A =floT of RS’

f+(x)=x+l-eo+’x’2€w+0-e6 L, 0 0 0
2 2 01 0 0

l—’x’ l+’x’ T, =
:x+Te4+ 5 es+0-e 0 0 -1 0
00 0 O

[ (x+ue, +ve) =%(x+ue4) (24)

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation
Inversion

The inversion of the Lie Sphere transformation acts on the point R®. The mapping from
= ' to S¥is obtained by

A/:fJ:IOTIOfJf:R3HS3 2x 1—|)C|2
) 4,(x)= 2 76
f+(x):x+1-e0+’x’ e, +0-¢ I::> 1+|x| 1+|x|
1- ’x’z 1+ ’x’2 This mapping can be regarded as
=X+ 2 et ) e +0-¢ a Mébius transformation that

. maps point x € Ronto S* (the

-1 _ unit sphere) on [R*using a sphere
+ue, + =—(x+

fo (xtue, +vey) v (x+ue,) 24 of radius /2 and center (0,0,0,1)

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation
Inversion
NAS R* is pulled back to R* by the following transformation.
2
P 25
Yo s+———(y-s) (25)
[y

5s=1(0,0,0,1), p= J2  Alternatively, you canuse s =(0,0,0,~1)

Note that Inversion maps a point on the sphere of Lie Sphere geometry to a point on the
sphere, but the center point of the sphere does not map to the center point of the
sphere.
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* Lie Sphere Transformation Cross-ratios are preserved.
Inversion

Before transformation After transformation
* Rotated by &'
* There are three parameters.

B fyEasa ¥t
ERammsal

-1-1
=31 1- 17 1

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation
Offset
The Offset of the Lie Sphere transformation acts on the oriented plane, which is a pair

of normals and points.
The following map is acted on p using the natural basis of the 6-dimensional space RS.

A 0 0]
2 2
0 1+’7 % y
To= £ £
0 -— 1-— -t
2 2
0 ¢ 1]

p=v+0-¢,+2de, +1-e,=v—2de, +2de; +1-¢,
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* Lie Sphere Transformation
Offset

The Offset of the Lie Sphere transformation acts on the oriented plane, which is a pair
of normals and points.
The following map is acted on p using the natural basis of the 6-dimensional space RC.

1 0 0 0] The height i+ obtained in 1 i s} is
12 £ used to obtain the coordinate values
0 I+ 5 t E> directly in the equation that forms the
T, = 2 ) conical net.
o L 1-L x| |,
2 2
! | g |
0 ¢ r1 Yo ! : '
) ) el |

p=v+0-¢,+2de, +1-e,=v—2de, +2de; +1-¢,

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation

Offset —

: Constant face offset
1 Face Offset Mesh

It is possible to obtain a
surface with the sign of the
Gauss curvature reversed.

Lie Sphere Geometry and Design of Curved Surface Structures

* Lie Sphere Transformation

Offset ——
Note:
* It was shown that various shapes can be obtained by
manipulating Inversion and Offset. na
of the
* The number of parameters is only four: Inversion-3 and ersed.

Offset-1.The Lie Sphere transformation can also be used as a
parametric surface with fabricability properties.
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Christoffel Transformation

g I

Koebe
Polyhedron
Quadrilateral
sides touching a
Sphere surface.

Q Christoffel transformation

Discrete Minimal
Surface

* Transformation that hold when the cross-
ratio is -1

* Lines of the same color parallel to each other

* Gaussian curvature from positive to negative

Coptinuons generation of minimal surfacoes is possible

without solving 3 large sei of simultancous cquations.
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Numerical results

Casel: t,=

Case2: t,=0.50, t,=
a. Koebe Polyhedron

050, 1,=

0.00, t,=

0.00

=0. 25 t;=0.10
b. Discrete minimal surface

—0.40

Case4: t,=0.25,1,=—0.25, ;=
a. Koebe Polyhedron

0.10
b. Discrete minimal surface

Lie Sphere Geometry and Design of Curved Surface Structures

Conclusion

* We introduced Lie sphere geometry, and indicated importance of Lie quadric to
generate discrete curvature line. Next, we present the modeling technique of circular nets
based on Lie sphere geometry.

+ The following items regarding Lie sphere geometry were explained.
How to construct a surface by Lie Sphere geometry.
How to construct a conical net.
The inversion and offset transformations of the Lie Sphere transformation are

shown.

+ We confirmed that various surfaces with discrete curvature line coordinates can be
constructed by using only four parameters, three for inversion and one for offset.
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Form-finding of Composite Tensile Structures by Finite Element Technique
based on Nodal Coordinate Assumption

Yohei Yokosuka
Kagoshima University, Japan

Abstract

In general, the finite element method used in structural analysis uses a finite element method assumed displace-
ment in which the displacement of a node is formulated as an unknown function. On the other hand, the finite
element technique based on nodal coordinate assumption can formulate the coordinates of nodes themselves
as unknown functions and perform stress-deformation analysis and form-finding analyses. In this presentation,
I derive a virtual work equation using embedded coordinates and explain the differences in strain and stress
derived from the equilibrium equation after deformation. In the equilibrium equation, the displacement as-
sumption corresponds to the first Piola-Kirchhoff stress tensor and the coordinate assumption corresponds to
the Cauchy stress tensor. Therefore, when the before deformed configuration is used as the reference config-
uration, proposed method presents a natural formulation and is suitable for nonlinear analysis using the total
Lagrange method. In addition, the form-finding analysis of composite tensile structures with beam, truss, and
membrane elements using the nodal coordinate assumption based on finite element technique will be explained.
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Form-finding of Hybrid Tensile Structures with Active Bending
Using Finite Element Technique Assuming Nodal Coordinates
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Sakura TORIGOE?
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1) Graduate School of Science and Engineering, Kagoshima university
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1. Overview

- Bending-active structures'?

+ It is possible to realize a lightweight structure with a self-equilibrium shape due to
the tension of the membrane and cable and the temporary external force during

construction.

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of

Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

1. Overview

+ Bending-active structures!?

* Two types of numerical analysis are required:
1. Form-finding to obtain a self-equilibrium shape
2. Stress displacement analysis to verify the structural performance when an

external force is applied

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of

Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. https://doi.org/10.1260/0266-3511.28.3-4.187
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015
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1. Overview

+ Bending-active structures!?

+ Two types of numerical analysis are required:

Earm_findina ta ohtain a calf. eanilihrinm chane

y then an

+ Inheritance of residual stress of beam elements by active
bending is important in stress displacement analysis to verify
structural performance.

1) Lienhard, J., Alpermann, H., Gengnagel, C. and Knippers, J., Active Bending, A Review on Structures where Bending is used as a Self-Formation Process, Inter-national Journal of
Space Structures, Vol.28, No. 3&4, pp.187-196, 2013. hitps://doi.org/10.1260/0266-3511.28.3-4.187 3
2) Lienhard, J., Knippers, J., Bending-active Textile Hybrid, Journal of the International Association for Shell and Spatial Structures, 56 (1), pp.37-48, 2015.

1. Overview

* Finite Element Technique Assuming Nodal Coordinates>-*

+ Finite Element Technique Assuming Nodal Coordinates is a technique for form-
finding of tension structures, and is a finite element technique in which coordinate
values are directly unknown.

+ In this presentation, we introduce the discretization formulation of beam elements®,
and apply it to the form-finding problem of the composite tension structure by beam,
membrane, and cable elements.

3) Honma, T., Ataka, N., Geometorically Nonlinear Structural Analysis by FEM Using the Coordinate Value on a Deformed Body, INFORMATION, 7(5), pp.569-583, 2004.

4) Honma, T., Gouda, Y., Ataka, N, A Method of Tension Structure Analysis by Finite Element Technique Using the Coordinate Value on a Deformed Body, Journal of Structural and
Construction Engineering (Transactions of ALJ), Vol.71, No.602, pp.161-169, 2006 (in Japanese)

5) Torigoe, S., Yokosuka, Y. and Honma, T.: From-finding and Formula-tions of Finite Element Technique Assuming Nodal Coordinates,15th Colloquium Analysis and Generation of Structural Shapes and
Systems, pp.47-52, 2020 (in Japanese) 4

2. Formulation of beam elements

* position coordinate vector I
"

r(x,y,z)=S(x,y,z)X=[rX ry rz] (1) "
e, o
* shape function S = 3 dimensional beam element
3x24 S 00 . .
S=l0S o @ * generalized nodal coordinate vector X
005 2 0 0 0 0 0 0
_ X r r r 7, 7, 7,
_ X =| x Yx| 9x| 9% x| x| 9k
S [S, S, 8 S, 08 S S, Sx] "ox | oy oz, I ox | e ’
5, =283 41§, =L(&-28+¢) ’ !
=108 5,=L(1-£)¢ y O] 9| 0|y Ory| Ory| Oy
S, =28 438 s,-1(8-&) Dox| oyl ozl 7 ooxl oy, oz,
S, =Lén Sy =L&C 3a-i
’ e or,| Or,| or, or,| Or,| or,
X,¥,Z . local coordinates, X,Y,Z : global coordinates, i A~ A | A i Al Al Al @
x|, Oy| Oz|; ox|, Oy|, 0Oz,
L : initial length, & = x/L, n=y/L, ¢ =z/L: normalized coordinates ' / J /
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2. Formulation of beam elements

* Green-Lagrange strain )«

T
_ 1[@ ﬁ_lszXrGX_l

=— 5)
% 2\ ox ox 217 2

3 dimensional beam element

* curvature Ky,K:

T A2 nodal coordinate increment relation
y:_a_r a—fz_ 13XTH»-X
0z Ox 2L 7,=B,X-C Sy, =B'6X
= o' o' - xHx @b < =BoX o, =B, 06X
B 2 3 z > ’ ’
o o 2L k. =B_X Sk, =B..oX

G,H,,H. : constant matrix

* strain-nodal coordinate relation, strain increment-

(7a-)

2. Formulation of beam elements

* virtual work equation

[ or. (X.)e(X.&)ar +[ ox, (X.&)m, (X,&)dx

3 dimensional beam element

= T ®)
+ o, (X,&)m, (X,&)dx = 5XT 41
* constitutive equation
* discretized equilibrium equation t=Ey, m =Elk,
1, 1, m, = El k, (10a-c)
EAL[ B}"y.dé+EI L[ B, x,d¢ : a-e
+ELL[ B, x.dE~Af =0 © £ ¢ axial stress
0 m,,m, . bending moment
7

2. Formulation of beam elements

* virtual work equation

[, 0. (X.8)z(X.§)av + o, (X.&)m, (X&) dx

",
+J.L Ok, ( Notes on numerical calculation
+ Gauss's three-point integration is adopted
* Reference arrangement by this formulation follows the solution by the total
Lagrange method.
« discretiz  ° Degree of freedom is reduced the reduction operation of Or /9y, or / oz
EAL 1] Characteristics 0a-c)
.[0 + Strain and curvature cannot be separated into linear and nonlinear terms.
* No coordinate transformation required.
+ELL|

m,,m, . bending moment
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3. Comparison of numerical and analytical result (beam in 2D plane)

* second-order differential equation (post buckling)

d’v/dx’
E[————————=P(5-v) (n
2
{1+ (avraxy}
Material property
[ Elastic modulus | Cross-Sectional area | _Moment of inertia__ | __ Beam length | Buckling load |
[ 2.05x10% kN/m? | 10X 107 m? | 1.333x10° m* | 10m|  2697kN]|

Exact solution
* Analytical result is expressed by using curvature as rigorous definition.
+ Elliptic integral required.

Numerical solution
* Numerical analysis uses finite element technique assuming nodal coordinates to trace the equilibrium path
by the arc-length method.
+ Initial imperfection of the shape sin function is given.
- Divide into 50 elements 9

3. Comparison of numerical and analytical result (beam in 2D plane)

- second-order differential equation 50 1 Load factor *‘ngfN\i;
2 2 0T
d“v/dx 40 e
El—————————=P(6-v) an
2132 30
{1+ (avraxy'}

20
10

Material property Displacement
[ Elastic modulus | Cross-Sectional area | _Moment of inertia | _ Beam length | Buckling load | 0

[ 2.05%108 kN/m? | 1.0 X107 m? | 1.333x10° m* | 10m|  2697kN]| 0 2 4 o 8
Load factor — displacement curve
3.5 "Z-coordnatee s AR(9.5)  ——NR(9.5)

g - ARG.0) NR(9.0) 200 - Bendi —— MaxB-D(NR

S e < 2 ending axB-D(NR)

AR(SQ) NR(8.5) Moment MaxB-D(AR)

AR(8.0) NR(8.0)
AR(7.5) NR(7.5) 150

100

50

X-coordinate Displacement
0 1 2 3 4 5 6 7 8 9 10 0 2 4 6 8

Buckling forms of numerical results (NR) and analytical results (AR) Bending moment — displacement curve 1 0

3. Comparison of numerical and analytical result (beam in 2D plane)

50 - Load factor ——L-D(NR)

* second-order differential equation Do)

2 2 40
BB psoy) an

{1+(arv/afx)2}3’2

30

20

Material property

Displacement

[ Elastic modulus | Cross-Sectional area | _Moment of inertia__ | Beam length | Buckling load | 0
[ 2.05x10% kN/m? | 1.0 X107 m? | 1.333x10°m* | 10m|  2697kN]| 0 2 4 o 8
Load factor — displacement curve
3.5 Z-coordnatee s AR(9.5)  ——NR(9.5)
- AR(.0) NR(9.0) 200 - Bend MaxB-D(NR
- 2 < 2 ending —— MaxB-D(NR)
Qi:gia: zﬁz:;; Moment MaxB-D(AR)
AR(7.5) NR(7.5) 150
100
50
X-coordinate Displacement
0 1 2 3 4 5 6 7 8 9 10 " ) . . .

Buckling forms of numerical results (NR) and analytical results (AR) Bending moment - displacement curve 10
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4. Form-finding of Hybrid Tensile Structures with Active Bending

1. Form-finding analysis: geometrically non-

linear analysis by arc-length method

Modify boundary/load condition, beam section

Update membrane element area and cable length

Form-finding analysis

N (laminated beams with flat bars that allows
2. Structural analysis: geometrically non- .
shear slip )
linear analysis by Newton Raphson method
beam
cable e =—r
A E
membrane Structural analysis
Analysis flow (composite beams with bolt j‘()lnl that does
not allow shear slip)
Initial form
Analysis cases property of beam Material property of membrane, cable element
casel case2 case3 Membrane element
Cross-sectional _
< 40mmx400mm - 3 layers - 4 layers 3 - 5 layers Elastic modulus [ ‘Shear modulus. [ Thickness [ Poisson ratio
Form-finding | Structural analysis [ Form-finding | Structural analysis [ Form-finding Structural analysis 1.0e+5 kN/m? [ 6.0¢+4 kKN/m? l 1.0e-3m l 0.3
Moment offinertia 6.40c-6 5.76¢-5 8.53¢-6 1374 5.46¢-6 1.37c-4 Cable clement
5““"1"““,‘“"‘“‘“5 3204 9.60¢-4 427c-4 1.71e3 341e4 1.71e3 Elastic modulus. Sectional area
o 9.3 2080 924 3700 74.0 3700 205¢+8 KN/ | 3.95¢-5 m* 1

4. Form-finding

of Hybrid Tensile Structures with Active Bending

beam
cable
A

membrane

20m

Initial form

1. Form-finding analysis: geometrically non-
linear analysis by arc-length method
[

Modify boundary/load condition, beam section

X

Update membrane clement area and cable length
T
2. Structural analysis: geometrically non-

linear analysis by Newton Raphson method

Analysis flow

Form-finding analysis
(laminated beams with flat bars that allows
shear slip )

Structural analysis
(composite beams with bolt joint that does
not allow shear slip)

Analysis cases (sectional property of beam el Material property of membrane, cable element
casel case2 case3 Membrane element
40mmx400mm - 3 layers - 4 layers 3 - 5 layers. istic modulus [ Shear modulus. [ Thickness [ Poisson ratio
Form-finding _| Structural analysis | Form-finding | Structural analysis | Form-finding Structural analysis 1.0e+5 kKN/m? [ 6.0¢+4 KN/m? l 1.0e-3m l 0.3
Moment of merta
- 6.40¢-6 5.76¢-5 8.53¢-6 137e-4 5.46e-6 137e-4 Cable clement
Section modulus 3.20e-4 9.60e-4 427e4 1.71e3 34le4 1.71e3 Elastic modulus Scctional area
Allowable 693 208.0 92.4 370.0 74.0 370.0 205¢+8 KN/ | 3.95¢-5 m? 11

4. Form-finding of Hybrid Tensile Structures with Active Bending

linear analysis by arc-length method
[

‘ Modify boundary/load condition, beam section

1. Form-finding analysis: geometrically non- ‘

Update membrane element area and cable length

Form-finding analysis

N (laminated beams with flat bars that allows
2. Structural analysis: geometrically non- .
X K shear slip )
beam linear analysis by Newton Raphson method
a He=n = =
A
membrane Structural analysis
Analysis flow (composite beams with bi)llj'oll’ll that does
not allow shear slip)
Initial form
Analysis cases ( property of beam ) Material property of membrane, cable element
- : casel case2 cased Membrane element
ss-sectiond
e 40mmx400mm - 3 layers - 4 layers 3 - 5 layers Elastic modulus | Shear modulus | Thickness | Poisson ratio
Form-finding_| Structural analysis | _Form-finding | Structural analysis | _Form-finding | _Structural analysis 1.0e+5 KN/m? [ 6.0¢+4 kKN/m? [ 1.0e3m [ 0.3
Moment of nertia
) 6.40¢-6 5.76¢-5 8.53¢-6 137c-4 5.46¢-6 137c-4 Cable element
Sestion podlss 3204 9.60¢-4 427e4 1.71e3 34led 1.71e3 Elastic modulus Sectional arca
Aowabs 69.3 208.0 924 370.0 74.0 370.0 2.05¢+8 kN | 3955 m? 11
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4. Form-finding of Hybrid Tensile Structures with Active Bending

«, = membrane

Initial form

Analysis cases

1. Form-finding analysis: geometrically non-
linear analysis by arc-length method

Modify boundary/load condition, beam section

Update membrane element area and cable length

2. Structural analysis: geometrically non-

linear analysis by Newton Raphson method

property of beam

Analysis flow

Form-finding analysis
(laminated beams with flat bars that allows
shear slip )

s

Structural analysis
(composite beams with bolt joint that does
not allow shear slip)

Material property of membrane, cable element

casel case2 case3 Membrane clement
Crosssectional [ 46 1mx400mm - 3 layers - 4 layers 3 - 5 layers Flastic modulus | Shear modulus | Thickness | Poisson raio
_ Form-finding _| Structural analysis | Form-finding | Structural analysis | Form-finding | Structural analysis 1.0c+5 KN/m? l 6.0¢+4 KN/m* l 1.0e-3 m l 0.3
Moment of inertia 6.40¢-6 5.76¢-5 8.53¢-6 1.37c-4 5.46¢-6 1.37c-4 Cable element
S s 3204 9.60c-4 427e4 1.71e3 3dle4 1.71e3 Elastic modulus [ Sectional area
Allowable 69.3 208.0 92.4 370.0 740 3700 205¢+8 KN/ | 3.95¢-5 m? 11

4. Form-finding of Hybrid Tensile Structures with Active Bending

1. Form-finding analysis: geometrically non-
linear analysis by arc-length method

Modify boundary/load condition, beam section

Update membrane element area and cable length

2. Structural analysis: geometrically non-

linear analysis by Newton Raphson method

4, # membrane

Initial form

Analysis cases (sectional property of beam

Analysis flow

Form-finding analysis
(laminated beams with flat bars that allows
shear slip )

o F

Structural analysis
(composite beams with bolt joint that does
not allow shear slip)

Material property of membrane, cable element

- : casel case2 case3 Membrane clement
e 40mm>400mm - 3 layers - 4 layers 3 - 5 layers Elastic modulus | Shear modulus | Thickness | Toisson ratio
Form-finding _| Structural analysis | Form-finding _| Structural analysis | _Form-finding | Structural analysis 1.0¢+5 KN/m? [ 6.0¢+4 KN/m* [ 1.0¢-3m [ 0.3
Moment of imertia
m 6.40¢-6 5.76¢-5 8.53¢-6 1.37¢-4 5.46¢-6 1.37e-4 Cable element
Section modulus 3.20e-4 9.60¢-4 4274 171e-3 34le-d 171e-3 Elastic modulus [ Scctional arca
Allowable 693 208.0 92.4 370.0 740 370.0 205¢+8 KN/ | 3.95¢-5 m? 1

4. Form-finding of Hybrid Tensile Structures with Active Bending

] '
=55  Form-finding analysis =
k! + Concentrated force which induces buckling acts and the equilibrium path is traced o
3 by the arc-length method.
ack + Cables and membranes are not considered elastic stiffness. Cable tension and
membrane tension are constant at 10 kN and 1 kN/m, respectively.
5 Structural analysis i
* Release the concentrated force and change the roller support to a pin support.
+ Change the section property from a laminated beam to a composite beam.
+ Inherit the bending / axial stress at the time of structural analysis.
* Apply self weight (snow load + dead load) and solve by Newton-Raphson method.
Crossseeional |4 1 400mm - 3 layers ~ 4 layers 3, -5 layers Elastic modulus | Shear modulus | Thickness | Poisson ratio
Moment of mertia Formfinding _| Structural analyss Form-finding | Structural analysis | Form-finding Structural analysis 1.0e+5 kN/m? l 6.0¢+4 KN/m? l T.0e3m l 03
o 6.40¢-6 5.76e-5 8.53¢-6 137e4 5.46e-6 137e4 Cable element
Section modulus 32004 9.60¢-4 427e4 1.71e:3 34le-4 1.71e3 Elastic modulus [ Scctional arca
o 9.3 208.0 924 370.0 74.0 370.0 205¢+8 KN/ | 3.95¢-5 m? 12
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4. Form-finding of Hybrid Tensile Structures with Active Bending

20m

K

Gy

15B
A

Inheritance of stress for geometric stiffness matrix in structural analysis

:E

10B)7
[ (B
Form-finding gtructural analysis .

Fix)ds Ko =E LLx)ds |

Cross-sectional
e 40mm>400mm - 3 layers - 4 layers 3 - 5 layers Elastic modulus | Shear modulus | Thickness | Poisson ratio
Form-finding | Structural analysis | Form-finding | Structural analysis | Form-finding | Structural analysis 1.0c+5 KN/m? l 6.0¢+4 KN/m* l 1.0e-3m l 0.3
Moment of nertia
o 6.40¢-6 5.76¢-5 8.53¢-6 137c-4 5.46¢-6 137c-4 Cable element
5““":‘ "‘;"‘"‘“‘ 3.20e-4 9.60¢-4 4274 1.71e-3 3.41e4 1.71e-3 Elastic modulus | Sectional arca
Alowable 693 208.0 924 370.0 740 370.0 205¢+8 KN/ | 3.95¢-5 m?

4. Form-finding of Hybrid Tensile Structures with Active Bending

* Numerical results

Step=200

300 ;| ——FF _casel_allowable ——SA_casel_allowable
——FF_casel_unallowable SA_casel_unallowable

250
200 | Max bending
moment

150

100
W 50
Displacement

0 0.5 1.5 2 2.5 3 35 4
Step=600 Max bending — displacement : case-1

300 | —FF ¢
—FF ¢

——SA_case2_allowable

200 - Max bending

o -y 150 | moment
100

i 50
} i Displacement
Step=800 Step=1000 Step=1200 0 s P .
Form-finding : case-1 . .
Max bending — displacement : case-2
Z-coordinate I(step=512) 20 7 Load factor ~ ——casel ——case2 case3

-10

solution with

X-coordinate
0

2(step=625)

tep=526)

Displacement

10 15 N N )

rise among

Load factor — displacement : case-1-3
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* Numerical results

Step=800

Z-coordinate

-10

solution with

‘Step=1000

Form-finding : case-1

0

X-coordinate
0

300 1 ——FF _casel_allowable ——SA_casel_allowable
——FF casel_unallowable SA_casel_unallowable

200 | Max bending

N moment
i 150
e 100
' 50
Displacement
0
0 0.5 15 2 25 3 35 4
Step=600 . .
P Max bending — displacement : case-1
300 | ——FF _case2 allowable ~ ——SA_case2_allowable
250 | —FF

200 | Max ben

T 50
Step=1200 0

Displacement

0 0.5 1 15 2 25 3 3.5 4

Max bending — displacement : case-2

——casel(step=512)

Load factor ~ ——casel case2 ——case3

2(step=625)

Displacement
10 15 Py 4 4

rise among

Load factor — displacement : case-1-3

13
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4. Form-finding of Hybrid Tensile Structures with Active Bending

* Numerical results

.f-
_— "
AR
e
Step=200 Step=400 Step=600
+
Step=800 Step=1000 Step=1200

Form-finding : case-1

Z-coordinate

—— case2(step=625)

——case3(step=526)
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solution with

rise among

300 . ——FF_casel_allowable
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——SA _casel_allowable
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200 | Max bending
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allowable

300 —FF _ca a
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150 | moment
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0
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Max bending — displacement : case-2
20
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Displacement
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Load factor — displacement : case-1-3

4. Form-finding of Hybrid Tensile Structures with Active Bending

* Numerical results

2T
- A
A i
e,
Step=200 Step=400 Step=600
i
Step=800 Step=1000 Step=1200
Form-finding : case-1
Z-coordinate ’

——casel(step=512)

—— case2(step=625)

—— case3(step=526)

X-coordinate
-15 -10 5 0

- 5 10 15
solution with

rise among

300 . —FF_casel_allowable ——SA _casel_allowable
250 | —FF_casel_unallowable SA_casel_unallowable
200 | Max bending

150 | moment
100

50

N Displacement

005 1 15 2 25 3 35 4
Max bending — displacement : case-1

300 1 ——FF case2 allowable ~ ——SA case2 allowable
250 | —FF unallowable

200 | Max bendi

150 | moment .
100 /
50
0
0 05 1 L5 2 25 3 35 4

Max bending — displacement : case-2

—casel ——case2

Load factor case3

Displacement

0 1 2 3 4
Load factor — displacement : case-1-3

13

5. Conclusion

* We show the formulation of the beam element of the finite element technique
assuming nodal coordinates, and show the validity of this method by comparing the
analytical solution of the buckling form of the beam in the two-dimensional plane and

the result of numerical analysis.

* We showed that allowable solutions for each analysis can be obtained by
performing form-finding and stress displacement analysis of the hybrid tensile
structure, and proposed a bending-active structure by using this method.

+ It is possible to inherit the axial stress and bending stress by active bending even if
the cross-sectional shape changes in each analysis by dividing it into two stages.

14
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Nonlinear Finite Element Method by Embedded
Coordinates : Membrane Elements

Yohei YOKOSUKA
Graduate School of Science and Engineering, Kagoshima university

1.1 Coordinate systems and position vectors

I manifold The interior region of an object is regarded

i as a manifold M .

i An embedded coordinate system Q is given
as local coordinates that describe arbitrary
positions and physical quantities inside an

& - - o object.
x The global (Cartesian) coordinate system
- LI is given as the coordinates in which the
Ly Y i _ object is placed.
¥ o !J'i _ eRees « Deformation :
- .
w s e x=/(X) 0)
O . H. " + Embedded coordinates of points X, X are

N il ; equal :

v 5 o (X) =0, /(X)) @
, Mapping from embedded i to
1;.k:‘ N global coordinates before/after deformation:

ERR L ¥ =@ o0y, =0 0, 3)

1.1 Coordinate systems and position vectors

s I * Global coordinate system
¥ s X'\ x*x? )
i . + Orthonormal basis in global
€,€,,¢; )
& & - F * Embedded coordinates
& a &.6.8 (6)

IR * Position vectors before deformation
" Bl SRl R-Xe w
'+ ,‘,r kg N ? * Position vectors after deformation
. i = iyl 2 v
. , R =X (XXX ®
¥ > = 'R p « Displacement vectors
u=r—-R 9)
Ll T * Representation of Embedded coordinates
e i x=x(.8.8)
i (gl g2 g3 10
o ¥ =2 (88.8) a0
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1.2 Strain

+ Transformation of continuum
Let the material point R and its neighborhood R +dR

be a point.
Infinitesimal vector dR :
B B
R e, aR=R iy _axe, an
r e X'

R I“’" L] —;l"'" The infinitesimal vector after deformation is represented
J . as a linear mapping of the infinitesimal vector before

deformation as follows
H Infinitesimal vector dr :

dr=F-dR (12)
F : Deformation gradient tensor
Deformation gradient tensor F :

ox'

ox’

F=

e ®e,; (131)

1.2 Strain

* Green-Lagrange strainl (coordinate type)
Strain is defined as the difference in the inner product of an infinitesimal vector before and after
deformation.

dr-dr-dR-dR=(F-dR)-(F-dR)-dR-dR
=dR’ (F'F)dR - dR"dR (14)
=dR" (F'F-T)dR

Green-Lagrange strain E :

E%(F’F-') (15)

Green-Lagrange strain can be expressed in coordinates only, but the linear and nonlinear parts
cannot be separated; when Green-Lagrange strain is employed, it becomes a nonlinear finite
clement method.

1.2 Strain

* Green-Lagrange strain2 (displacement type)
Deformation gradient tensor Z:
au,

ZEV®u26X/ e, ®e, (16)
0
et a7
Whereas,
Z<dR:(ﬂe ®e j-dX‘ek:ﬂdX*(e ®e )»eA:ﬂ< “Ae
ox’ ox’ Y ox’ e
ou Ju a8
=—r-dX’'e,=—-dX’ =du
ox’ ox’
Therefore,
(I+Z)-dR=dR+du=d(R+u)=dr (I+Z)=F (19)
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1.2 Strain

« Green-Lagrange strain2 (displacement type)
Green-Lagrange strain E :
1 .,
E=E{V®u+(V®u)r +HVeu) (Vou)
_ l[ ou, N Ou, . Ou, Ou, ]e‘ ®e,

“2lax’ Tax' axtax’

(20)

1.3 Embedded coordinates and covariant and contravariant bases

« Covariant and Contravariant basis vectors
Let the material point R and its neighborhood R +dR
be a point.
Covariant basis vectors &,
Contravariant basis vectors g :
; g |0=Li=j
€870 Vo o ..
) 1 =0, i#j
gl = ol 2n
28 =8,8°8°=8

g =g8, g=¢"g

Covariant and Contravariant The other basis vector is determined by determining &;

basis vectors or g from the geometric relationship. The vector V
in the figure can be expressed in two ways.
i i
vV=vg =veg
(22)

vi=gv v =gy,

1.3 Embedded coordinates and covariant and contravariant bases

+ Covariant and Contravariant basis vectors

g’:ﬁ,(i,_/',k):(],2,3),(2,3,]),(3,I,2) @3)

vg'

Covariant and Contravariant
basis vectors
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1.3 Embedded coordinates and covariant and contravariant bases

The components of the infinitesimal vectord$',dX", dx' have the following relationship

o ox’ o' A g

ae =2 axi ax =X g a2 g g =ﬁ§ dy/ 24)

ox’ o&’ ’ o0&’ ox’
Covariant and contravariant basis vectors before transformation G,.G":
j Az
G,:(’iX e :67]1, G':G‘f e =G'G (25)
oc o ox’ !

Infinitesimal vector with embedded coordinates before deformation dR :

dR=G,d¢' =G'd¢, (26)
Covariant and contravariant basis vectors after transformation 8.8 :

ox’ or 3

g':é’f‘e’:é‘i;" “?e/—g/g’ 27
Infinitesimal vector with embedded coordinates after deformation dr :

dr=gd¢' =g'dg (28)

1.3 Embedded coordinates and covariant and contravariant bases

Product of covariant basis vectors before and after transformation

GG, =G, g-g,=¢g;

Green-Lagrange strainE :

(29)

1 1
E;=5(2,-6,). E=3(g,-G,)(¢' ®G') (30)

This can be considered as follows.

dR=G,d&, dr=gd¢'
g =(g,®G')-G,

dr=gd¢ =(g,®G')-G,d&' =FdR 31

F=g,®G, F'F=(G'®g)(g,®G’)=g,-£,(G'®G')=g,(G'®G)
1=(G'®G,)(G,®G')=G,-G,(G'®G’)=G,(G' ®G’)

2.1 Equilibrium of force

[

)
o 8de

=
: g.d¢*
-n’ \:\
¢t
gd¢'
&'

Parallel Hexahedron equilibrium

The equilibrium of force after deformation acting on a
parallel hexahedron with a width of d¢'in the direction

from point (&.6.6) to ¢ in the object is

[t’ +%d.§']dy, _tids, + pfdv=0 62)

where t': Cauchy stress vector, f : force in unit

volume, A : density.
+ Cauchy stress tensor T

T'(g, ®g,)=T, Tn' =t 33)
* Equilibrium equation

T

i

n'ds,d&’ + pfdv=0 (34)
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2.1 Equilibrium of force

gd¢'

Parallel Hexahedron equilibrium

+ Equilibrium equation
From the relation of the following equation

n'ds,d& =g'dv (35)
The equilibrium equation becomes

T

—g'dv+ pfdv=0

oE g P (36)
Furthermore, from the following formula defining nabla,

0
V=g/ —
g3 & (37

The equilibrium equation becomes

(V-T+pf)dv=0 (38)

2.2 Second Piola-Kirchhoff Stress

The Cauchy stress tensor represents stress in a equilibrium state after deformation.
The second Piola-Kirchhoff stress is used to express stresses with respect to the shape before
deformation. Consider pulling the Cauchy stress tensor back to its before deformation state.

The pullback of t"ds multiplied by the Cauchy stress vector multiplied by a infinitesimal area

is

F 'Tnds = SNdS

(39)

The following Nanson formula is used here.

nds = (det F)F'NdS

(40)

From equations (39) and (40), the following equation can be derived

F~'T(detF)F "NdS = SNdS

The stress tensor S becomes
S=F 'T(detF)F"

(41)

=(detF)7" (G, ®¢')(g, ®g,)(g/ ®G,)=(detF)7" (g g, ) (g, ¢')(G, ®G,) (42)

=(detF)7" (G, ®G,)

2.2 Second Piola-Kirchhoff Stress

S s the second Piola-Kirchhoff stress. If the component S’ of S, we obtain the following

equation.
$=5"(G,®G,)

(43)

The basis of the second Piola-Kirchhoff stress tensor shows a correspondence with the Green-

Lagrange strain.
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3.1 Constitutive equation of linear elastic body

From the relationship between the second Piola-Kirchhoff stress and Green-Lagrange strain
components, the constitutive equation can be expressed as follows.

§7 =C"E, (44)

where the second Piola-Kirchhoff stress tensor S and Green-Lagrange E  strain are expressed
as

$=5"(G,®G,), E=E,(G'®G’) 45)
The elasticity tensor is expressed as

C=C"(G,®G,8G,®G,) (46)
The constitutive equation can be expressed as follows

S=C:E @7

C:E=(C"G,®G,®G, ®G,):(E,G"®G")

=C"E,,(G,®G,®G, ®G,):(G"®G")

~CME, (G, ®G )(GA _Gm)(G} -G") (48)
=C"E, 0!8 (G,®G,)=C"E,(G,®G))
3.2 Constitutive equation of linear elastic body
* Generalized Hooke's law
CM =25,8,+ (8,8, +6,9,) (49)

where 4, # are Lame constants, can be expressed using the elastic modulus £ and Poisson's
ratio vV as follows.
_ vE
(1+v)(1-2v)
(50)

4.1 principle of virtual work

« Principle of virtual work
Ll(V-T+pf)-¢)‘rdv:0 1)

where OF : virtual displacement, Q: area of the object.
The following relationship exists.

V-(Tér)=T:(V®sr)+(V-T)-6r (52)
Using the above equation and Gauss' divergence theorem, the internal force work of the virtual
work becomes

J(V-T)-0rdv==[ T:(V®sr)dv+ | v-(Tor)dv (53)

The principle of virtual work is as follows.
[ T:(V®sr)dv+ [ V-(Tr)dv+ | pf-srdv=0

@I (V®or) dv—j -(Tor) dv+J‘npf-()rdv (54)
& [ T:(V@sr)dv= n-(Tor)ds+ | pf-ordv
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4.1 principle of virtual work

From the symmetry of T, we obtain

T:(V®§r):%T:(V®§r)+%TT (vesr)

1 N 1 c\T 1 . e\ ©3)

=3 TH(V@or)+ 2 T:(VEor) :T:E{[(V®0r)+(v ®sr) |}
The mechanical and geometric boundary conditions are given as follows

Tn=t (onT,),r=F (onT,) (56)
From the geometric boundary conditions, the following relationship holds

or=0 (onT,) (57
Based on the above, the principle of virtual work becomes

1 T _

[RE {E[(V®§r)+(V ®or) :I}dv:jl_’ ords+ | pf-ordv (58)
4.2 Pulling back the principle of virtual work
Next, we derive the principle of virtual work in a microvolume before deformation.
The surface force vector tds in a infinitesimal can be expressed as

‘tds = Tnds = T(det F)F 'NdS =ﬁFSFT (detF)F "NdS = FSNdS (59)

o

From the law of conservation of mass before and after deformation, density £ satisfies the
following relation with density 2, before deformation.
pdv=pdV (60)

As the interior region €2 and boundary region s,y before deformation, the mechanical
and geometric boundary conditions can be expressed as follows

FSN=t (onT,,)

r=r (onT,) ©n
4.2 Pulling back the principle of virtual work
Based on the above, the principle of virtual work becomes.

1 . T z s .
J’QT:{E[(V@()r)Jf(v@ar) ]}dv - L i-ords+ [ pf-orar (62)

The internal force work on the left side can be expressed as

T:%[(V@&r)qv ®or) ]}dv
s b3 (v oo {oren 2 anriar

|:[g‘ ®Z§f]+(i§f®g'ﬂ}(dew)dy (63)

[(g‘ ®dg, ) + (o‘gl ®g )}}(dei F)dr
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4.2 Pulling back the principle of virtual work

Transform the term [(g ®dg,)+(0g, ®g' )]

%[(g’®5g) (o2, @g')]

)
(e ou)(2 @08 )( 0 ) +(¢ @2 ) (08 ©¢ (& ©¢')]
)+(

=={5/(og-2)(¢" ®2')+(g - og, 5‘(g’®g‘)]

] 9
(¢
[(

-g) (g ®g')+(g 98, )(

og ]
o, -g,)(g @) +(g, -0, )(¢ @2')]
)

T2
I
2
e
2
:é[(dg.-g,)(g't’@g) (2-0e,)(e ®2')]= (03. g, +g,08,)(g ®¢')
Here, the following relationship is used

(o) (g, @ )=g g (g ®@g)=1 (65)

4.2 Pulling back the principle of virtual work

It can be expressed as a deformation gradient tensor F'=G'®g, F=g ®G' and the internal
force work can be expressed as

T:{%[(V®o‘r)+(V®(Yr)r]}dv
:(FSF"):[%(Jg,zg,+g,-5g,)(g‘®g’)}dV

-s: F'[z(Og, g, +8,-5%, )(g’@g’)}FdV
=S:B(0‘g,~g,+g,-0‘&)(0‘@&)(%’®g’)(g,®0’)}w o

s 5 ;
=s:[5(ag, ‘g, +g,-0g,)(G ®G’)]dV

=s-B 5(g, g, )(G’@G’)]dV

4.2 Pulling back the principle of virtual work

Here, from the definition of Green-Lagrange strain, the internal force work can be expressed as
follows

E; :%(g‘ -g,-G, -G,):%(g, ‘g, 7(c0nstant)),

s oG
s:[io(g,.g,)(c ®G )}w (69)
=8:[6E,(G' ®G’)|ar =s: 6k

From the above, the principle of virtual work in a small volume before deformation becomes
jms:o‘EdV:J'H :~ers+jmg,,r.(5rdv 70)

where a: virtual strain tensor. From the above equation deformation, we obtain from the balancing
equation expressed in terms of the Cauchy stress tensor referring to after deformation, the second
Piola-Kirchhoff stress tensor referring to before deformation, and the virtual work principle
expressed in terms of Green-Lagrange strain.
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4.2 Pulling back the principle of virtual work

Next, consider pulling back the equilibrium equation to the before deformation state using the
virtual displacement Su . However, instead of the Cauchy stress, the first Piola-Kirchhoff stress
tensoris given by IT . IL is the stress tensor, which represents the force acting on the face element
after deformation as a stress vector translated before deformation and not including rotation.

I = det(F)F'T=SF"

1)
IT is not a symmetric tensor. Therefore, from Eq. (55),
[deltF l'[]r {(V®su)dv
=1 :(V®su)dV =(SF") :62dV =(SF) :5Fd¥ ™)

=S" :F'SFdV =S:F'6FdV :S:&{%F’F)dl/

=S:0EdV

4.2 Pulling back the principle of virtual work

Following the strict formulation, &r obtain the clearer result.

The total Lagrange method with the reference configuration as the initial configuration is suitable
for case Or, and the updated Lagrange method with the reference configuration as the current
configuration is suitable for case du.
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Piecewise constant mean
curvature surfaces

Kazuki Hayashi (Kyoto University)

Yoshiki Jikumaru (Toyo University)

Makoto Ohsaki (Kyoto University)

Takashi Kagaya (Muroran Institute of Technology)
Yohei Yokosuka (Kagoshima University)

Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating
discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169.

Mean curvature flow

* Move vertex positions using mean curvature and normal vector

: Change in the location of node i

Vp, =—(H,-H)n,
: Mean curvature at node i Vp \ r
i

: Target mean curvature ! P;

: Unit normal vector at node i Node i b

B ooz g

* The stationary point of mean curvature flow has a constant mean
curvature (CMC) H at each vertex

Can we benefit from constant mean curvatures?

* Bezier, NURBs, T-spline etc. (params.: control net)

We can create almost any surface (# feasible as structural design)
* Mean curvature flow (params.: target mean curvatures)

- satisfy equilibrium condition for pressure load

Hayashi et al. “Mean curvature flow for generating discrete surfaces with piecewise constant mean curvatures”, Computer Aided Geometric Design, 2023
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CMC with internal boundary

* The resulting surfaces are too simple when mean curvature flow is
applied to a single closed surface

* By allowing GO continuous internal boundaries, various shapes can be
generated

*Internal boundary .
Double bubble Shintoyosu Brillia Running Stadium, Japan

=Derive curvature flow to obtain piecewise CMC (p-CMC) surfaces
based on the variational principle

v

Variational problem (continuous case)

* Define a plane P and two patches M, and M,
* Define another plane 7/, bounded by P and patch intersection

* Determine surface transformation from the variation of energy
functional E Volume of enclosed domain

(positive in concave direction)
E=V(M,M,,P)

la(m,

1

i=l Area

Arbitrary value

6

Stationary condition

arbltrary value

area volume

% )M, M,

2 velocity vector outer pointing unit normal vector _1 _1
SE = Z [M-(1+ 20, H VA ionary | H, =o-on M, Hy=——on M,
=1y, condition 1 2

(5E=0)

—J (201,H,) v dA H,=0on M,

M3 co-normal vector on the intersection 3
+ j v z an)) ds D an, =0 on oM, "M, oM,
—

MM, "My i=l

+ I “(a;n,)ds t,LPonoM,NnP

oMznP Obtained variation of £ and its stationary point
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Stationary condition

arbitrary value

volume

3 area
E=V (M, M, D)+ ajd(M,)
i=1
H, =—_1 on M, H, =__1 on M, Shape at the stationary point is
2¢, ’ 2a, - M, has a constant MC —1/(2a,)
stationary condition * M2 has a constant MC —1/(2&2)
(6E=0) H;=0 on M, _, "~ M;haszeroMC

3 + sing _sing, _sind, .
D an, =0 on oM, "M, N\oM, a o  a “
= - M, is orthogonal T1

t. L Pon aM NP The solution that satisfies the above uniquely exists
3 3 = Mean curvature flow is stable

Discretization of energy

volume

3 area

E=V (M, M,TT}+> a/A(M,)

i=1

discretize l
1 3 1
Ey= Y opaxr)+Xa 3 —|(a-p)x(r-p)

I'(p,q.r)eM,uM, i=1 T(p,q,r)eM;

r r
/
P cone volume P The norm of the outer product
l~l<p,(q—p)><(r—p)> \ of two vectors = 2 X (area)
q 23 q
Ra0 — Discrete version of mean curvature flow can be obtained

Discretization of energy variation

CESD IR e D2 CER

T(p,q,r)eM; UM, =l |T(p.q.,r)eM;
SE, = Z<VE(p),np>
4
If node p is inside mesh M, Denoted as J
Cuf o o, (a,-p)x(a;,-p) VEENT
VE(P) =2 a0t ”(q; _F (q:ﬂ I (@u-a)| o
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How to move the nodes?

If node p is inside mesh M;:

N
VE(p)= Z(_gq/‘ ol VA +%J x (qi+1 —-4q; )J

J=1

If node p is inside mesh M,:

o
VE(P)=Z(_EQJ- xq;, +%Jx(q/+1 _qj)]
J=1
If node p is inside mesh M3:
VE(p)=Z[%J (4,0 fq,»)]
J=1

If node pison M; N M, N Mj3:

2 MpMm; Np,M3 -
1 a a o
VE(p) = Z Z (—gql‘ X Qi1 +71] X (Qj41 — q/')> + Z (73] X (qj41— q,-)) Noder
i=1 j=1 =1 11

Structurally preferable shapes can be obtained
Example

through pure mathematic techniques

soeg 0

@ Fixed to move
shen

10 -
EI!'-
H-—
L L ] L) nie
-
TR
-
L] - b L -
e g—
Final geometry Error to the target mean curvature Energy functional history
= Piecewise smooth =k Precisely approximate the target shape == Good convergence
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Auxiliary patch

Exa m [ zle Larger external patch

* Convergence depends on the shape controlling parametersa <.,

external patch

X Large error

T i

14

Conclusion

* Formulated mean curvature flow for meshes with internal boundaries
* Parametrically generated various piecewise CMC discrete surfaces

* Convergence property depends on the boundary condition

* Transformation behavior depends on hyperparameters

Kazuki Hayashi, Yoshiki Jikumaru, Makoto Ohsaki, Takashi Kagaya, Yohei Yokosuka (2023) Mean curvature flow for generating
discrete surfaces with piecewise constant mean curvatures, Computer Aided Geometric Design, Volume 101, No. 102169. 15
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Evolving Design and Discrete Differential Geometry
- towards Mathematics Aided Geometric Design e

Form Generation of Rigid Origami
for Approximating a Curved Surface

Kentaro Hayakawa

| W Lervrsap
[E———
s gy

*Joint work with M. Ohsaki *
@ Kyoto Univeristy %

Kyoto Group, Nihon University

niME kP

K0T e VR TY

2025/3/13

Previous Studies

Generalization of typical crease patterns
Dudete et al. 2016, Tachi 2013, Zhao et al. 2018

Large DOFs of mechanism in many examples

Low approximation accuracy in sparse crease

patterns Dudte et al. 2016 Zhao et al. 2018

= Design flexibility: High, Constructability: Low

Rigid foldable quadrilateral mesh
Tachi 2010, He and Guest 2020 i
Rigid foldability for general quad mesh (Tachi 2009) = L | ,",’

Single DOF mechanism ] J————

He and Guest. 2020

= Design flexibility: Low, Constructability: High

PAPEVEVAE]

Purpose

Surface approximation by developable rigid origami with small DOF

Approximation error function reflecting appearance of origami surface
Use of an arbitrary initial crease pattern (not depend on typical crease patterns)

Small degrees of freedom of mechanism for controllability of folding motion
obtained by sequentially removing (fixing) crease lines

Selection criterion of fixed crease lines reflecting shape and folding mechanism to
avoid undesirable locking phenomenon
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Origami Surface as a Triangular Mesh

Crease line D|V|d|ng edge Folded shape
(Mountain fold) Face e
. Inner o
Crease line vertex b=
(Valley fold |
. A !
T . Development
L ’ to a plane
%,
Inner cut b ¥ i —
p b - Perimeter o
ine "-_‘l edge S i
Inner cut * | . Perimeter 1
(Set of cut lines) / | vertex
Perimeter cut Perimeter cut line Development
(Set of cut lines) diagram

2025/3/13

Overview of Form Generation Procedure

Triangulation of the target surface
+ Assignment of cuts

l

Generation of a developable
origami surface by minimizing
approximation error

/_+_\

Reselect fixed crease line
to avoid locked mechanism

Add fixed crease line to
reduce DOF of mechanism

J I I

Evaluation of
infinitesimal
mechanism

Locked

Not exist

. ~Satisfied - -
Termination Confirmation of
condition rigid foldability

Loop of form generation by
sequentially reducing number
of crease lines

2025/3/13

Developability Condi

Gaussian curvature at a vertex not
on a cutting lines

pedee

K, =2r— Z ), =0

k. Gaussian curvature at vertex v
6, angle between adjacent edges

n,2ze: number of edges around vertex v

Normal vectors of a pair of faces
adjacent to a dividing edge

=0

H"f; XV,

Vv, V, 1 unit normal vectors of faces f; and 1,

dividing _ crease
edge X _—" line
9. vertex v
Ot
v,
. 5
y facef;
A
face f,
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Developability Conditions

Direction vector of the edge going round : n

a cutting line i
o g
u,., =R(g, ~mu,, My —rrtal
" -
l‘* “L.Zﬂf“l+l =u l.
- X
> ok, =2(1-k)x
vers iy brv ¢
a4 e
u,;: direction vector of edge i r o

.- rotation angle between edge i and i+1 1 L o
R(0): rotation matrix about angle 8
n.% number of edges of cutting line ¢
V.t set of vertices on cutting line ¢

2025/3/13

Developability Conditions

Closed loop of cutting lines on the ! L

development diagram e
2 o St
Zlc,iuc,i =0 . ;
i=1 . .

| .

2n8" -1 ) i
lc,] + ,Z] - lt,m COS[ 1@»./] =0 sty e «

=

2081 i X 2.
> (71)'1E".+,sin[2q)c,/.]:0 . e A
i=1 Jj=1 k

I, length of edge i

2025/3/13

Definition of Design Variables

Target surface: Bézier surface.

Parameters representing the position of vertex v:
Bézier parameters ¢&,, v, that define a point on the surface
Offset distance ¢ in the direction normal to the Bézier surface.

r(6,,¥,,6,) =T(5,¥,) + V(%)

" ot et vertex v
vertex v pointon ofrfse ¥

Bézier surface HCRA) | &V (Ew,)
r(¢,.v,.¢,): position vector of vertex v r(.v,)

T(&,,p,): position vector of the point
on the target surface
V(¢,.w,): unit normal vector at point ¥(&,,y,)
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Definition of Approximation Error Function

Distance between

.
vertices and target surface i —'“‘-\\ B |
1 i i e B
G, = _ng
2% v

Surface area

G, =|4-4] .
Z\ _,'4\,
Unit normal vectors of 4 'v(‘: )
faces and target surface ! // LG
Sref||? V(&)
Gy = Z ”"/’ -vy " Zh:
IeF N |
2 V)
Vel

2025/3/13

Optimization Problem for Form Generation

min.  G(X) =Gp(X)+w,G, (X) + mG(X) [ =0
st.  Developability conditions Jes<vil=o
LX)l Em
: lower bounds of edge length I, Jrzg“l(_u'/(_“I 005[2%,]:0
000,050, ()
'Z bounds of inner angles Z; RS Sm[;%/] -

v, (X)- v (X)20
: avoidance of face flipping

X e y :bounds of design variables

X: parameters for determining the positions of the vertices of the rigid origami

2025/3/13

Overview of Form Generation Procedure

Triangulation of the target surface
+ Assignment of cuts

l

Generation of a developable
origami surface by minimizing
approximation error

Evaluation of
infinitesimal
mechanism

Frame model
(or other models

/_+—\

Reselect fixed crease line
to avoid locked mechanism

Not exist

.~ Satisfied - -
Termination Confirmation of
condition rigid foldability

Add fixed crease line to
reduce DOF of mechanism

J I
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Selection Criterion of Fixed Crease lines

Folding angle criterion

Fix a crease line with small folding angle
= Small shape difference

g Py

o= ‘V"IO” «~ The smaller the better J \

2P

=

Crease line h

Infinitesimal mechanism criterion

Fix a crease line with a large rotation in the infinitesimal mechanism
= Small possibility of locking phenomenon

] max(ﬁ,) & ..:/¢“’
0, =5———— « The larger the better \
2 max(g5)

Crease line h

2025/3/13

Selection Criterion of Fixed Crease lines

Mixed Criterion

Fix one or several crease lines with smallest scores

_0, __ (Shape criterion)

o, (Mechanism criterion)

O

Small shape difference
Small possibility of locking phenomenon

= High possibility of successful termination in the succeeding
optimization step without locked crease lines

= Reduction in the number of times to solve optimization problems

PAPEVEVAE]

Examples of HP Surface

Design variables are selected so that the symmetry

of the surface is preserved.
L s

TP Optimization parameters are set as:
I KT wy =02, wy=10
; Loiw = 1.0, O = /6, 6, = 51/6, -5<¢,<5

b

Mg Hak g

\

Cutting Cutting Cutting
Planes of line line line
symmetry Pattern X Pattern E Pattern H
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Examples of HP Surface

50
40 >
30 N &
x
§ 20 = o ..
10 N
U
' ' 0
- 0 5 10 15 20 25 30
Number of fixed crease lines
Without cut Pattern E ¥ without X e B H
40
30
Rz
X
e 20 e
S x xFosg
10 *ox Sy
t ' ® X
- - 0
0 5 10 15 20 25 30
Number of fixed crease lines
Pattern X Pattern H .
——— *—without —*-X —x—E H

2025/3/13

Examples of HP Surface

Fixed crease lines: 16, DOF: 5, G(X) = 24.0

Fixed crease lines: 18, DOF: 8, G(X) = 20.3

PAPEVEVAE]

Examples of HP Surface

Fixed crease lines: 18, DOF: 11, G(X) = 23.6

Fixed crease lines: 18, DOF: 12, G(X) = 28.2
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Examples of Dome Surface

Design variables are selected so that the symmetry
of the surface is preserved.
it e Optimization parameters are set as:
wy =02, wy=10
Lyin = 1.0, G, = 11/6, 6, = 51/6, -7.5<(,<7.5
\C_utting \Cutting \Cutting
Planes of line line line
symmetry Pattern X Pattern E Pattern EE

2025/3/13

Examples of Dome Surface

60
50 )
40 %
I
e g © st A
3 20 gyt
10 N 1
0
0 5 10 15 20 25 30 35
) Number of fixed crease lines
Without cut Pattern E e without —x-X —x—E EE
0
30
x.
P * x.
e 20 xR,
(=] x
g x X
10 % X8
x B
: 0 2 X
Pattern X Pattern EE 0 5 1015 20 25_ 308
Number of fixed crease lines
*without  ~x-X % EE

PAPEVEVAE]

Examples of Dome Surface

Fixed crease lines: 20, DOF: 1, G(X) = 47.5

Fixed crease lines: 20, DOF: 6, G(X) = 43.5
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Examples of Dome Surface

Fixed crease lines: 20, DOF: 9, G(X) = 15.4

Fixed crease lines: 20, DOF: 17, G(X) = 7.07

2025/3/13

Conclusions

Optimization approach for surface approximation by rigid origami
Developability conditions for an origami surface
Approximation error function reflecting the appearance of the surface

Selection criterion of the crease lines to be fixed for high possibility of
successful termination in the succeeding optimization step without
locked crease lines

Cut lines may improve the approximation accuracy but increase the
degrees of freedom of mechanism

410



Pillow boxes as developable surfaces with curved foldings

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

Pillow boxes are surfaces created by folding a double rectangle. They are often used for gift boxes and packag-
ing, and have architectural applications. In this talk, first we give the existence, uniqueness, and representation
formula of the pillow box which encloses the largest volume among pillow boxes made out of a double rectan-
gle with an arbitrary fixed size. The second topic is relating to a rigidity problem that is whether a piecewise
smooth closed surface can be isometrically-deformed changing the enclosed volume. By definition, a pillow
box is isometric to a double rectangle. We can construct a continuous isometric deformation of a half of any
pillow box into a (single) rectangle which fixes the “crease pattern”. However, we prove under a certain natural
symmetry assumption that there is no global isometric deformation of the whole pillow box into the double
rectangle which fixes the “crease pattern”. This talk consists of a recent joint research with Hiroyuki Kitahata
(Chiba U.), and another joint research with Atsufumi Honda (Yokohama National U.).
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International Conference "Evolving Design and Discrete Differential
Geometry - towards Mathematics Aided Geometric Design"

Pillow boxes as developable surfaces
with curved folds *

Miyuki Koiso
(Kyushu University, Japan)

March 12, 2025, Nishijin Plaza, Kyushu University

*This work is supported by JST CREST Grant Number JPMJCR1911
and JSPS KAKENHI Grant Number JP20H01801.

ICoIIaborators and papers I

® | learned a lot on pillow boxes from Prof. Jun Mitani (U. of
Tsukuba).

® Components of the bidirectional circulative design platform on
the optimal pillow boxes were introduced and explained by Prof.
Shun Kumagai yesterday.

® |n the next talk, Prof. Yohei Yokosuka will explain discretization of
pillow boxes and an application of them to temporary housing.

This talk includes some results from the following two papers.

[1] A. Honda and M. Koiso, Isometric deformations of pillow
boxes, preprint.

[2] H. Kitahata and M. Koiso, Optimal pillow boxes (tentative title),
in preparation.

Plan of the talk

1. Introduction

2. A variational problem for developable surfaces
“Find the optimal pillow box ! ”

3. Continuous isometric (i.e. not expanding,not
contracting) deformation from a planar double
rectangle to a pillow box
Future works

5. Summary
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1. Introduction: Developable surfaces

Def. 1. A piecewise (PW)-smooth surface M is said to be
developable if it is isometric to a planar region R (that is,
there exists a Lipschitz continuous bijective mapping F

from M onto R that preserves the length of each curve).

F() R

Remark 1. It is well-known that a smooth surface M is
developable if and only if the Gaussian curvature
K (p) of M vanishes at any pointp € M.

Real analytic developable surfaces
(€% surfaces with 0-Gaussian curvature)

Fact 1. Real analytic developable surfaces in E? are the following:
(1) cylinders, (2) cones, (3) tangent developable surfaces.

R A xS,

cylinder cone tangent developable surface

Since developable surfaces can be constructed by bending a
flat sheet, they are important in manufacturing objects from
sheet metal, cardboard, and plywood. Developable surfaces
with curved folds (Ex. Pillow boxes) are also important!

2. A variational problem for developable surfaces
“Find the optimal pillow box ! ”

What is a pillow box? r_

A double flat rectangle

(topologically, 2-spere S2) Fold

made of paper along curves pillow box
Def. 2 (Pillow box). A pillow box is a compact PW-smooth surface
without boundary with genus 0 that consists of four parts of
cylinders whose generators are parallel to either the y-axis or the
z-axis and that is isometric to a double rectangle.

Q: For a given double rectangle, find the pillow box with the
maximal volume. A: We will give a (rigorous) answer. "
Q3 - P

R : e Q4
3 —— - .
0, isometric
é‘*‘_ < < P,
T atQ, '
A double rectangle Pillow box

413




Existence and uniqueness of the optimal pillow box

Theorem 1 (K): For any given double rectangle R(2a, 2b) with
width 2a and height 2b (see the picture below) there exists a
unique pillow box M (2a, 2b) (which we call the optimal pillow box)
that encloses the largest volume. It has an explicit representation
using elliptic integrals. It consists of four (generalized) cylinders (of
C*class) of which the base curves (the top and the bottom half of
[, and two blue curves in the picture below right) are congruent

and they are elastic curves.

Remark 2.
(1) l}im M(2a,2b) = aright

circular cylinder with radius

R(2a,2b) _ap. M(20,2b) g

Ln.. = isometric 8 2a/m
—a o ol ; <> L : 4'. r l : (2 Zb)
a 2) lim M(2a, = two
A double ' ( )a_,oo .
rectangle Pillow box parallel rectangles with

width 2b and infinite length.

Remark on the optimal pillow box

Remark (Kitahata-K.) : By numerical computation, we observe that,
if a > b, then the volume of M(2a, 2b) is bigger than the volume
of M(2b,2a).

M(2a,2b) -
S S
isometric Ak‘

s
s
A double : '
rectangle

Pillow box

Representation of the optimal pillow box (1) --- base curves---

The base curve Iy:z = f(x) of the optimal pillow box is represented as follows.
{x=—1u(z)+c, 0<z<z, (0<x<¢)

x=L@)—-c 05z<z, (-c<x<0)

_uz(1-S
where, [,(2) = f:Md{ >0,(0<z<b), z :=£2'<1 -1 —ﬁ),
2

1-(we(1-5))
c= I#(zo) . 1 (< 0) is the curvature of I at the end points that is determined by
the following.

e (2)

a= foz" %« ..(3) |Thecrease I is (x, f(x), f(x)),
: : )2 (—c<x <o)
1—(#5(1—3)) —
' = —_‘_:J\\ ’ ‘(Si“\ -\‘;
Y1 TS q\ @, :fold -"%11‘ =
{ | bend ABE(, o éz' s Ly
* TEE —3 e }’ along Ty R
A rectangle S, 1/4 of the optimal

(y1 is called the crease pattern.) (T, is called the crease.) Ppillow box.
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Representation of the optimal pillow box (1)
--- surface and volume ---

Let [,:z = f(x) be the base curve of the optimal pillow box given
in the previous slide.
The parts S;, S, of the % of the optimal pillow box are represented as
S1={(x,f(x),z);—c<x<c¢0<z<f(x)}
{52 — (e fe@)—c<x<afwsy<by @
Hence, the volume V(f) of the optimal pillow box is

V= j f(x)(b f(x))dx - (5)

SR
/(szold /j
| 11 bend /d -<'~F1_/ . A‘?\’

ne along Ij o~

1/4 of a plIIow box
(y1 is called the crease pattern.) (T} is called the crease.)

" L+

A rectangle

3.Continuous isometric (i.e. not expanding,not contracting)
deformation from a planar double rectangle to a pillow box

Theorem 2 (K). We can deform the initial double rectangle R to any
given pillow box M that is isometric to R continuously and
isometrically if the crease pattern is permitted to be changed.

£ T“- pes < e > ; 7 S . ' /
= ‘l&{_ / - ¢ ¢ - e 7
~x B F . \

—
>

An isometric deformation from R to M. Here the crease
pattern is changed, which is not good for application!

Theorem 2 (Honda-K.). There exists no continuous isometric

deformation from a double rectangle to any pillow box without
changing crease pattern.

A continuous isometric deformation from a double rectangle to a
pillow box without changing the crease pattern. However, at each
stage, the upper half and the lower half are separated and they
intersect each other except the beginning and the end.
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Future work

Prove the following conjecture:

Conjecture (a generalization of Bellows Conjecture). Ifa
closed embedded piecewise-smooth surface M is deformed
continuously and isometrically without changing the crease
pattern, then the enclosed volume is preserved. Therefore,
M can not be deformed to a planar region.

Remark. Pillow boxes are good examples for the above
conjecture.

Remark. If a closed embedded polyhedron is deformed
continuously and isometrically without changing the crease
pattern (edges and vertices), then the enclosed volume is
preserved (Connelly, R.; Sabitov, I.; and Walz, A. "The
Bellows Conjecture." Contrib. Algebra Geom. 38, 1-10, 1997).

Summary

® We gave the definition of developable surfaces and pillow boxes.

® We gave the existence, uniqueness, and representation formula
of the optimal pillow box.

® \We gave a continuous isometric deformation from a planar
region to a pillow box with changing the crease pattern.

® \We explained the non-existence of continuous isometric
deformation from a planar region to any pillow box without
changing the crease pattern.

® We mentioned a generalization of the Bellows Conjecture as a
future work.
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Temporary structures with curved folding

Yohei Yokosuka
Kagoshima University, Japan

Abstract

Temporary housing needs to provide a large number of houses quickly after a disaster, so it is useful to have
temporary structures using curved folds that are superior in space-saving stocking, portability, and quick con-
struction, and can immediately expand flat plates into a three-dimensional structure. Koiso et al. derive an
explicit expression for the maximum volume solution of the pillow box and show that the bottom curve of the
pillow box is an elastic curve. In this presentation, a scaled experimental model of a temporary structure with
curve folding is fabricated to show that curve folding is possible with rigid body deformation. Furthermore, an
example of numerical analysis is shown where the generation of a curved surface shape that is the solution to the
maximum volume of a pillow box is linked to structural analysis and applied to a multi-objective optimization
problem where the volume evaluated as architectural planning performance and the maximum displacement
evaluated as structural performance are used as indices.
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International Conference "Evolving Design and Discrete Differential Geometry - towards
Mathematics Aided Geometric Design"

Temporary Structures with Curved Folding

Yohei YOKOSUKAD, Miyuki KOISO?, Kento OKUDA?Y, Shun KUMAGAI?,
Toshio HONMAD, Jun MITANI®), Yudai HIYOSHIV

1) Graduate School of Science and Engineering, Kagoshima University
2) Institute of Mathematics for Industry, Kyushu University

3) National Institute of Technology, Sasebo College

4) Hachinohe Institute of Technology

5) Information and Systems, University of Tsukuba

Temporary Structures with Curved Folding

Propose temporary structures with excellent portability and stiffness using the curve
folding in origami engineering.

In times of disaster, temporary tents and housing with safety need to be provided
quickly and in large quantities.

This presentation shows a form-finding and potential applications for structures suitable
for temporary housing by utilizing stiffness due to curved surfaces formed by curve
folding.

Lift up

Portable state Unfolding state Completed state

Temporary Structures with Curved Folding

Outline of Temporary Structures (Emergency Temporary Housing)
1995 Great Hanshin earthquake

Construction period — 32.43 days (Average)

Number of houses built — 245.9 houses/day

Worker — 7.4 persons/house
Total number of construction — 48,300 houses

2011 Tohoku earthquake

Total number of construction — 52,513 houses
(Rental type emergency housing 67,877 houses)
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Temporary Structures with Curved Folding

Types of Emergency Temporary Housings

* Construction Type Emergency Housing

= This type is possible to supply housing with excellent living performance.
Difficult to provide it quickly.

* Rental Type Emergency Housing
= Local governments lease private housing.
Difficult to secure numbers.

« Others (Container House, Trailer house)
= Need to secure a place to stock.

Temporary Structures with Curved Folding

Temporary Structures of Curved Folding

Unfold

=

Lift up

Portable state Unfolding state

Completed state
* Space-saving stock in portable condition

1S4

Pillow box shape to maximize internal volume
Jun MITANI, Miyuki KOISO, Kento OKUDA,

* Rapid construction of roof structures

Temporary Structures with Curved Folding

;
Maximum solution for internal volume of pillow box  Rectangle in plane () v

b
i) curvature K'in I’ i) curvature M at both ends points in curve r,

I'is orthogonal to x-axis at both end points
2 b-2z)
k=—(b-
b ( —-a a u
iii) integral]ﬂ(z) , u<0,0<z<b
u (1 _ £ j Cyllindrical surface S )i
_ I b ¢ z
u =)o L2
- y{(l—éj Lyiz=f(x)
b
b 4
zy=—|1- 1——— |,c:=1,(z,) I
°72 [ by ] “ @
B ), N TR Y o — TRy 7 ADIREHRKMEOIFAE & —TENE, SO0 - SRR R A i 222022 c
https://www.isc.meiji.ac.jp/~mathcareer2022/posterfiles/ps13.pdf X~
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Temporary Structures with Curved Folding

Maximum solution for internal volume of pillow box '

Rectangle in plane () v
b
iv) Let u satisfy the following equation
, 12 4 a u
crfo5)] |
0 b
Cylindrical surface §' Y
v) T, is given by the following equation =z 1 -
x=-1,(2)+¢,0<z<2,(0<x<c) [,:iz=f(x) 2
x=1,(2)+¢,0<z<2,(-c<x<0)

Integral 7,(z) is elliptic integral,
: . . —C
I’y is characterized by an elasticity curve

B ), N PR E e — UKy 7 ADRRURRMROIAE & — Rk, ROy T - SRR EA i 22022
https://www.isc.meiji.ac.jp/~mathcareer2022/posterfiles/ps13.pdf

Temporary Structures with Curved Folding

| Unfolding

I', : Crease

Plane diagram

Temporary Structures with Curved Folding

b=15
Maximum solution for internal volume
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Temporary Structures with Curved Folding

Simulation of Plane diagram including curved folding (Jun MITANI)

Kosuke Sasaki, Jun Mitani, Simple implementation and low computational cost simulation of curved folds based on ruling-aware triangulation,
Computers & Graphics, Volume 102, February 2022, Pages 213-219

Temporary Structures with Curved Folding

Problems of temporary structures with curved folding

1. Possibility of Rigid folding (Continuous isometric deformation)
2. Mechanism of Curved folding
3. Curved folding with thick surfaces

4. Structural stiffness

Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

If the cross-sectional curve of the surface is Crease, the folded shape can be generated
by mirror-reversing the surface on one side. However, it is generally unknown that it is
capable of continuous rigid folding.

* Continuous surface
Koiso and Okuda parameterized continuously isometric deformable surfaces with
boundary conditions only if they are cylindrical surface (ruling is parallel).

* Discrete surface
Numerically rigid folding is possible.

Rigid folding simulation with generalized inverse matrix can realize
continuous isometric deformation.
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Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

Number of nodes : 19

Number of elements : 50

Number of boundary conditions - 6
Degree of freedom - 51

51-50=1

Model with one rigid body
displacement mode
("1 —Fixed in Z direction

# —Fixed in Y direction

«]| —Fixed in X direction
CEAME, IOR—, RERIT —iRETI & Z OICH, R, 1991

Temporary Structures with Curved Folding

1. Possibility of Rigid folding (Continuous isometric deformation)

P E
e
2
o
ElE
§ ines
5
[-" R L
1 1
Ay — Iteration number
L | —]
Convergence History
c. front view d. right view
Numerical results
. i - T4 - - -
2. Mechanism of
Curved folding 18 = —
i N g
LI | 2 =, |

* Figure represents h e = |A
1/4 region F?J.- m g *'_“-'.E

* The pink line is the I = - i
original curve. ; % i . . |

i - |
it =l e —

* The rotation axes * - T E *
of the red lines are all i K - |
parallel. X 2 i |
— Possible if the & i
curved surface is a N
cylindrical surface

- B _.." é
! ]
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Temporary Structures with Curved Folding

3. Curved folding with thick surfaces

o]
[l [ [l
* Members that become columns and
beams are displaced without tilting.
* The neutral plane of the blue line is @

rigid and displaced. E

* The cross-sectional shape of the box
composed of braces allows for shear
deformation. These boxes are connected
to the columns and beams by hinges.

Temporary Structures with Curved Folding

3. Curved folding with thick surfaces

Scaled model

Total weight 1360 kgf

®baki-h Total weight 1328 kgf (TP B
4. Structural stiffness . 'E‘u_\_ L _F‘-EH
i iy h"‘n I e
T - = e
S A e o R \
] s LR [ '
- - v o ¥ o
'I-. 1L -'I_-. T II.

Member : i i
* Beam and Column 2% 1

2-38 X 184 mm (Wood: SPF)

taklie Total weight 1267 kgf Wiedel 1 Total weight 1395 kgf

* Brace N
12 X100 mm (Wood: plywood) o Eis., = on "j. e
L 'l I . -"\"'-\.\, I's . 1 W,
i . o S . L e
L. i, e e
[, e - £ L 1
; < g
4 . I
T J: L ! ;

Blue points: Reinfor t by
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Max displacement i =]

Max bend. Moment 1% bend. stress | £ [
Max comp. force |« “i% comp. stressi
Max tension force il tens. stress 3 —_—

o : TREL o, T
T e S, — -I-"':"
R i, A [
S 1. o~ ; T s
{lry e e e = Ty A
=1 ol . . =

Displacement and axial force Bending moment

These results show that allowable solutions of structural stiffness are obtained.

Temporary Structures with Curved Folding

plan view H a5 B =
+ Experimental model (1:3 scale) [ oS |[osr |
I B
S =Nl x4E
SN2 H o
| 1 <
7 X al =
X PN 3
Jl|L N N
= \ Z <
Z =
S > il s
AN A2\ Rt
= 1 =<
<
Ei
| | 2
<
S|
1 o
[}
I =
|
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I
I [
\ ‘—rg ),
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Temporary Structures with Curved Folding

XA AEER
+ Actual model + Experimental f’nodel (1:3 scale)
340.0 340.0 g
T N
! 1024 ! 1024 : ! 304.0
(! Il | | ]
= S

w 12.0
post and beam member : 2 X 8 column post and beam member : plywood (12mm)
brace : plywood (12mm) brace : plywood (5mm)

L.
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Temporary Structures with Curved Folding

Cross-sectional view in X direction

(Blue line: neutral plane, red line: axis of rotation)

Post and beam member

Temporary Structures with Curved Folding

’ Cutting of parts and materials

’ Cutting of brace member

Processing of post and beam
member

’ Assembling the unit

’ Fabrication of the foundation

’ Connecting units

Temporary Structures with Curved Folding

Assembling the unit
* belt hinge

Two belts support both sides of the brace
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Temporary Structures with Curved Folding

Assembling the unit
* Fixing belt hinges

Temporarily fixed with a tacker Wood, glue, and bolts to fix
the main structure

Temporary Structures with Curved Folding

Fabrication of the foundation

Installation image Foundation for beam material Foundation for post material

Temporary Structures with Curved Folding

Connecting units

Connect at the position of the spacer
Rotation axis through steel pipe

F Ry
Connecting units Adjustment of rotary shaft Installation of rotary shaft
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Temporary Structures with Curved Folding

Connecting units

Connecting units Pre-drilled spacers Installation of rotary shaft

Temporary Structures with Curved Folding

Connecting units

Parallel installation on the foundation and unit connection

u W=

Installation on the foundation Connection between units Installation of the whole area

Temporary Structures with Curved Folding

1=y hERE

TEEETILOMICOOERD

a0 (BHE)ENLTHRE S5 EIFRIME b EIFREE
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Temporary Structures with Curved Folding

Experimental result:

+ Thick models can be folded rigidly.
* push-up by a small number of people

Shape after bending Front view Side view

Temporary Structures with Curved Folding

Multi-objective optimization
Building planning performance
* Space Utilization Efficiency
The most flattened surface of the pneumatic membrane structure with the condition

that the rise at the boundary is vertical so that no dead space is created near the
boundary.

* Main level living
In general, living area levels are recommended based

on the number of household members.
= Maximum solution for inner volume with constant
surface area
= There is a maximum solution for the inner volume
that varies with r:=a/b .

. i ,,,,,,, — .
Effective height

N, 285BI 2 31 5 L7 Uil Falfiz i, HACEEEF 2 AT SR, pp.1053-1054, 1978

Mamoru KAWAGUCHI, Wrinkle-free most flattened rotational surface in pneumatic membrane structure, 1978
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Temporary Structures with Curved Folding

Multi-objective optimization
Structural performance

* Maximum Deflection w,_
The structural form adopted is a beam structures in the depth (b) direction.
The larger the span (b) of the frame, the greater the deformation and deflection due
to its self-weight, and thus the lower the structural performance.

= The maximum solution for the inner volume tends to increase in volume as b
increases.

= There is a trade-off between structural performance and building planning
performance, and a Pareto solution must be obtained through multi-objective
optimization.

Temporary Structures with Curved Folding

Multi-objective optimization formulation

Find r=alb M
Minimize [ =w [ (b=z), f,r)=1/V )
x=—1,(2)+¢,05z<z,(0<x<¢)
. o u 3.a,b
Subject to Lyiz=/(), {xz]ﬂ(z)+c,0£zSzo(—chSO) G-a0)

b 4 . ”g( _%j
zo(u):—(l 1b||], =1, ()= [P _aca(5)=  Geh
' 0[ ( [ C)ﬂ
1-| wl|1-=
b

However, p is the curvature of the 12

2
endpoints of I'0determined from equation Il _ £
o a jo [1 [yg[l bD } d¢ @)

Temporary Structures with Curved Folding

Implementation of multi-objective optimization (Rhinoceros + Kramba3D + Wallacei)

-For:m-ffhding of Surface

T —

bidirectional circulative design platform (Planning + Structure + Construction)
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Temporary Structures with Curved Folding

Multi-objective optimization (Wallacei)

0.13

=l
0.12 £
0.11 ..,.- ) r.3
0.1 .
C e e, r.2
0.09 R SR .
/2
0.08

0192 0.194 0196 0198 02 0202 0204 0206 0208 021 0212 0214
Pareto solution

r.2 r.3
Plan view Elevation view

Temporary Structures with Curved Folding

Conclusion

* The possibility concerning the application of temporary buildings by means of
curve folding is presented.

* Rigid foldable curved surfaces and thickness should be considered.
* A model with simplified joints was proposed.

* We presented an example of multi-objective optimization of a temporary structure

with a pillow box curve folding geometry by using bidirectional circulative design
platform.
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Local & Global Property Quantification With Persistent Homology

R. U. Gobithaasan
School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Kenjiro T. Miura
Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan.

Abstract

Topological Data Analysis (TDA) is a powerful algebraic topology framework that aims to understand the
shape and structure of complex datasets, particularly those with high dimensionality point cloud data X € R?
[1]. It has been successfully used for various types of Machine Learning tasks [2, 3]. Persistent Homology
(PH), the main methodology in TDA, quantifies the shape and structure of complex datasets by representing
the topological dan geometrical information of data in the form of Persistence Diagram denoted as Di(X). A
Dy(X) consisting of a set of 2-tuple (b;,d;) € R?, corresponds to a pairing between the births of k" homology
class at b; and its death at d; along the filtration of X. Dy(X) can be converted in the form of vector spaces
that can be directly used as features for machine learning (ML) pipelines. It is known that topological features
manifest as long-lived birth-death pairs in the D(X), indicating their presence across multiple spatial scales.
Recently it was found that (b;, d;) close to diagonal encodes the geometrical feature of X [4, 5]. The first part
of this talks delves the law of composition [6] which makes an art beautiful and its relation to the types of
shape analysis tools developed; hence leading to the development of Persistent Homology. We will then review
the variety of framework for capturing geometrical and topological features across different spatial scales for
understanding the underlying structure and relationships within the data. Overall, this talk provides insight into
the implementation of PH framework not just as ML tasks, but also for the development of visually pleasing
products.
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Local & Global Property Quantification
With Persistent Homology

from Shape Quantification to Product Design

Miura Group

School of Mathematical Sciences, Universiti Sains Malaysia, Malaysia.
Graduate School of Science and Technology, Shizuoka University, Japan.

10" March. — 13"*March 2025

1% kM NEK 8 | Shizuoka University 222

This talk covers on

@ Part I: Fr Designer’s Perspective to Mathematical defs.
» Visually Pleasing Shapes at various resolution.
» Shape Descriptors.
© Part II : Intro to Topological Data Analysis:
» One-Parameter
» Multi-Parameter PH.
Q@ Part III: WIP

» Framework for Aesthetic Design.

Moving Forward: Simplified Life cycle of Aesthetic Design

Ideal Setup for Aesthetic Design (AD):

Dh=ignier Wlnchindst Enginoe
CAD ~ CAM & CAE

Luarnes & Surfares Mnmakctare Structune Analy=is

\ R

Solving the Puzzle: Putting Them Together
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John Ruskin: philosopher, art historian and art critic

Laws of composition e Principality: dominant element
o Global characteristics e Repetition: recurring shapes/colours or
o Local characteristics forms

o Loc. + Glo. characteristics o Continuity: natural visual flow

o Curvature: curved lines adds grace rather
than rigid straight lines

o Radiation: emanate outward from a central
point.

o Contrast: use of opposing elements.

o Interchange: elements are arranged to
support one another.

o Consistency: in style and visual treatment.

e Harmony: shapes, lines, colors, light/
shadow—work together to create a pleasing
visual.

o = ] E

frametitle Local Vs. Global Characteristics

o Local Characteristics: Geometry = Fine Details
o Global Characteristics: Topology =Global Properties

Figure: Great Wave off Kanagawa (Hokusai)

o
i

i
i

Shape Analysis: Local to Global Descriptors

o Shape analysis focuses on quantifying the properties of shapes to analyze,
compare, and classify shapes. Three types of shape descriptors:

@ Geometrical Descriptors: Local descriptors that are invariant under rigid
motions: geometric properties of a shape: area, perimeter and curvature

@ Neighborhood Descriptors : based on geodesic distance on the manifold
around a point, e.g. density function

@ Topological Descriptors: analyze shapes based on their connected
components and holes: Morphological Analysis, and Persistent Homology .

o
i

il
it
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Geometrical Descriptors: Curvature
- B o Logarithmic Curvature Graph (LCG):
o Ruskin’s proposal: beautiful curves [3] ; a2
l‘-*l'.: _.1:; He—
o <
!,.I:_#\ - ey
' lag
o Farin’s idea on fair curves: few

monotonic curvature segments.

o Fundamental Equation of LAC:
log(p3) = alog(p) +C

Neighbourhood Descriptors: Density Function
o Gaussian kernel density estimate
(KDE)!

o Distance-To-Measure (DTM) employs

PR T — KDTRee Nearest Neighbor’s Algo 2

i OTE ——s S
P 5 i & - L] [
01 . ; +| ] u N
& = =
] ] &
] LY "

“SciPy: gaussian_kde

YGUDHI's DTM: m — 1 & z5p

Topological Descriptors: Connectivity & n'*D holes
Topological Data Analysis (TDA)

o TDA’s theme: Data has shape, shapes has meaning .

1
a Prs

Point chowd
& om [y P ) e BT
a

-

: ' [Flrlhlirl‘l T: ‘!l'

L
| Homalogy | Mapper ] - "
b = ] J
§ i _ ‘;'-r' | 'ql'_’
Prrgvinree Disgra—u

Vopeogpenl vins Sures: e dirmarmion holey

A grajh SN
Tt ] Airurteare leops i Aaes
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Topological Descriptors: Euler Characteristics

Definition (Euler Characteristics)

Let K be a a simplical complex with By, 51, s, . .. as Betti numbers denoting k"
dimensional holes. Then we define the Euler characteristic to be the alternating

sum : x(K) = >0 (=1)"8,.

Pelar in RE
Fif B, -4 X(K)=5-3+0=2
il T
: .- . o Alternatively, we can directly
ri i e g compute x(K) =3 5 (—1)"|K"],
=, B o where |K"| denotes the carnality
[ iy i of set of n-simplices.
=) L

Persistent Homology: One-Parameter Persistence

Input: (X, dx):

L G.eomletric 2.Algebraic 3.Representation
Reahzatlon' . Topology Theory
E;)I?lsigu(c )t(;;nolfnscii;i?igal Compute the d-th Output: produqe a

1 homology vector spaces barcode or Persistence
complex with single scale (HA(X)[t > 0. diagram D,

parameter ¢ > 0.

output: Dp = {[by,d1), ..., [bk,di)}, where b; & d; are birth and death of features,

respectively.
o Lifespan = d; — b;.

Handcrafted Persistence Signatures (Vectors) for ML

e ey Dy e

Persistence Image

Landscape

[ 0 200 400 600 800 1000

o Persistence Landscape: Peter Bubenik (Uni. Florida).

o Persistence Image: Hendry Adams et. al (Colorado State Uni.)
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Topological Machine Learning (TML)

o (Many success stories) of TML in various field of study.

Loy T

[

et ol s

LSk

Why One-parameter PH is effective?

@ PH detects topological information:

» connected components & k** dimensional holes.
» Long lifespan detects topological information

@ Also detects geometric information:

» curvature: (Bubenik et. al (2019) and Turkes et.al (2022))

» (many) short lifespan detects geometrical information.

» Accuracy: Outperformed PointNet & NN Deep.

@ Highly tunable one-parameter PH for ML: {Signal (L+G), one-filtration
(Types of Simplicial Complex), Signature( Types of Persistence Vectors)}

Example: Classification Point Cloud

e it TR, e AL LA TLEES

- - ! A GACAATTRICAL FEATLURER

oy
"t
=,
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Example: Classification Framework

i e
L

Persistent Homology:

o
3
W

il

Example: Classification Results

Feature SVM RFC L. Reg k-NN PointNet PH
Geo 80.00 66.67 53.54  47.71 85.93 95.00
Topo  61.04 475 3229  30.00 68.73 98.75

@ Can we push further?

» {Signal, ene-filtration Multi-filtration, Signature}

Persistent Homology: Multi-parameter Persistence
Input: (X, d%):

1. Geometric Realization 2.Alg. Topology & Repr. Theory
construct a family F = (F})icrm
of subcomplexes F; C K that is
increasing with respect to
inclusions, i.e., such that F; C Fy

for any ¢,t' € R™ with ¢t <¢'. ECT xr:t€R"™ = x(F)

The Euler Characteristic Transform (ECT) ;
also known as EC Profile of an m-parameter
filtration F is the map:

variations of output yr include:
o Euler characteristic curve (ECC) of F when m = 1,
o Euler characteristic surface (ECS) of F when m = 2.

o Smooth ECP (SECT) [Munch et. al., Mic. St. Uni, USAJ& Differentiable ECT
(DECT) [Reick, et. al., TUM, Germany].

o
i
il

it
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Bi-filtration: Alpha Complex (radius) Vs. Density

I Fay, e e

S——e.s <0 ¢ @& @& (¢
Eumn”m!

T d o i i
A il o o Lp
L]
] e (P 15 s )
bbb e s e P-4 e e DT, iy

Multi-parameter Persistence Homology

m = 2: BEuler Characteristic Surface

va b

PH for Geometric Modelling 10" March. — 13'" March 2025 20 /34

Moving Forward: PH for Pleasing Visuals/Products

Scalable Curvature Estimate Beyond: X € R?

Idea: Principal Component Analysis (PCA)

@ Define a local neighborhood N, for each point p (e.g., k-NN or fixed
radius).

@ Calculate the covariance matrix C), for points in N, and compute its
eigenvalues \; < Ay < A3 and eigenvectors vy, v, vs.

@ Estimate Curvature type I: k; = A\
Q@ Estimate Curvature type II: k;; = /\1+§7;+/\3 (Normalized)

@ Radius of curvature, 2D:(p; = 1), and 3D: (p; = —=) where ¢ = I or IL

PH for Geometric Modelling 10" March. — 13t" March 2025 21 /34
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Moving Forward: PH for Pleasing Visuals/Products

Wavy Surface: Est. Curvature Vs Gaussian/Mean Curvature

Carwal s Ty

i
T EERE L

PH for Geometric Modelling

Moving Forward: PH for Pleasing Visuals/Products

Two-Circle: Est. Curvature Type II with its Histogram

e - i —

Ll T L]
I _.'""- P .-'|i| :\-_. E a-'-": _ar;l
e e Dt

Eaeri [

Rasfiar. of Corvrture - Type I

PH for Geometric Modelling
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ML: Predicting Curvature with One-Parameter PH
Bubenik et.al(2019), Turkes et.al(2022)

W v e 1

¥
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|
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o = 3 £ = 9vac
Result: Predicting Curvature with One-Parameter PH
Turkes et.al(2022): SVR and its Mean Squared Error (MSE)
Bl A mrrple il P aesals 10 eatan F 1 L] 1o Wi
e Rl T
e B It 15 = o i
b -1 oL - N - ¥ a
A | bk | B e | BT
Vs wmrai T e P, s st =
MSE = e ML = 03 MSE = 308 RESE = 33 RESL = 22000
L-gom 10 monpls N ' nemgsa 10 [ ] 3% wha e FY caap
: ¥ 3 el 39 w8 ¥T oA 3
R O R N R
1 [ | i I e
BASE = 0.3 MSE — 0.5 WSE = £33 WESE = .38 WISE = 0153

PH for Geometric Modelling
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Moving Forward: PH for Pleasing Visuals/Products
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PH for Geometric Modelling
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Moving Forward: Aesthetic Generative Design (AGD)
Towards for Aesthetic Design (AD):
LOG

Local Characteristics
Shape Descriptor —

Signal
Vv
Persistent Homology

— Aesthetic Design
——
Local + Neigh.+ Global

Towards Aesthetic Generative Model
@ ANN as a Computational Building Block

» Generative Adversarial Network (GAN).

© ANN as a Universal Function Approximator (UFA): |f(z) — f (x)] <€
» Topological & Geometrical Loss.

Towards Aesthetic Generative Design (AGD) Framework

@ Computational Building Block of GAN = Generator + Discriminator
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Towards Aesthetic Generative Design (AGD) Framework

@ GAN'’s Function Approximator: Topological & Geometrical Loss.

2TH Wa et Sk AT Preiuck Do pivnl. kom0 Clpomnad Thoath

Tijwalegira! brmlivies Popudngirad lyoe Tige g el foalomes

Figure: Waibel et al., 2022, Capturing Shape Information with Multi-Scale Topological
Loss Terms for 3D Reconstruction

Ideal Aesthetic Generative Design (AGD) Framework

LCG Local Char. Strength
7 N
Shape Design > Signal + Structure Analysis
—— ~ P
Multi-Param PH Local + Neigh.+ Global Local 4+ Neigh.+ Global

Solving the Puzzle: Seamless + Scalable

Ly Alaetulribst Enginmer
- N - il -"__-H-_"."'\-
CAD = CAM & AR
b g " st
I & Bk iRt e - e R P
I-L*"ﬁrumw
Fipimi TE 24
i A FY .ﬁ-_....q-_'l_':-ill-'l:".l'v&w:.:.- Hals

Thank You

o For your attention.
o Prof. Kenjiro Miura: for having me in the team

o CREST Team: Grant Number JPMJCR1911, Japan Science and Technology
(JST) Agency.
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Advancing Precision and Smoothness of Shape Preserving with Quintic
Trigonometric Bézier Curve

Md Yushalify Misro
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.

Abstract

This study integrates an optimization technique into positivity- and monotonicity-preserving interpolation
methods to enhance curve smoothness by refining free shape parameters. These parameters play a pivotal
role in defining curve geometry, granting users the flexibility to fine-tune the final shape. However, selecting
them arbitrarily can compromise both aesthetics and accuracy, leading to undesired results. To address this
challenge, an optimization-driven approach is introduced to systematically determine the optimal shape param-
eters. Within this framework, three smoothness metrics —arc length minimization, strain energy minimization,
and curvature variation energy minimization— are employed. The resulting curves are analyzed and compared
to assess their ability to preserve data while maintaining smoothness. The findings affirm that this method not
only optimizes free shape parameters effectively but also surpasses conventional techniques in computational
efficiency.
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Advancing Precision and Smoothness
of Shape Preserving Interpolation
with Quintic Trigonometric Bézier Curves

CREST SIMPOSIUM, Fukuoka | 10 — 13 March 2025

Associate Professor Dr. Md Yushalify Misro
School of Mathematical Sciences,
Universiti Sains Malaysia

.

Shape Preserving Interpolation

o Data visualization Misinterpretation
Shape-preserving interpolation } ‘.-'h"' Avoid undesired oscillations >> of data

used to maintain certain Ex

geometric properties of

Unrealistic results

the original data
4 " CAGD Mimic smooth
Generate smooth curves and transition of most
Ensures the interpolated surfaces while maintaining > physical phenomena
function for positive data nature of data More stable for

remains positive numerical computation

+ Image interpolation
Retain original edges, textures
and overall structure.

b— :

Shape Preserving Types

Positivity-preserving

Convexity-preserving
interpolation

interpolation

Monotonicity-preserving
interpolation

Range-restricted
interpolation
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I Positivity-preserving interpolation

Dougherty et al. (1989) ¢ Used cubicand quintic Hermite interpolations.
* To guarantee positivity, modifications on the derivative values
in the curve segments that are negative are required.

Butt and Brodlie (1993) ¢ Used piecewise cubic Hermite interpolation.
* Insertion extra intermediate knots for curve segments that are
not positive is necessary.

Harim et al. (2020), * Rational quartic interpolation spline with shape parameters
Zhu (2018) *  Positivity preserving condition was derived on one shape
parameter.
* The developed interpolant are C! and C? continuous,
respectively.
Hussain et al. (2018) * Rational quintic function with 3 shape parameter to achieve

C? continuity.
¢ Has2 free parameters.

Range-restricted interpolation

Sarfraz et al. (2015) Preserved the shape of range-restricted data using quadratic
trigonometric spline with three parameters.

* Derived shape preserving constraints on two parameters

Karim et al. (2019) Rational cubic spline function (cubic/quadratic).
¢ Consists of three shape parameters with two free parameters to

allow flexibility for curve enhancement.

Zakaria et al. (2016) Rational cubic Ball functions in the form of (cubic/quadratic).
¢ Used the arithmetic mean approach to estimate the derivative
values in this study.

* The generated interpolation are C! continuous.

Tyada et al. (2021) C! rational cubic over cubic trigonometric fractal interpolation
functions with 4 shape parameters.

* Datadependent constraints for shape preservation were derived on

the scaling factors and shape parameters.
5 .

'—

Karim (2016), * Developed monotonicity-preserving interpolation schemes using
Tahat et al. (2016) rational cubic Ball function with three and four shape parameters.
¢ One shape parameter was constrained for shape preservation.
e (! continuity

Monotonicity-preserving interpolation

Ahmad and Misro (2022)  * Integrated a rational cubic Ball curve.
¢ Examined the curvature profile to test the smoothness of their
interpolations.

Ahmad et al. (2017) ¢ Used multiquadric quasi-interpolation.
¢ Multiquadric quasi-interpolation was inappropriate for interpolating
the dataset and did not generate a smooth curve.

Vijay and Chand (2023) * Proposed novel method based on rational quadratic trigonometric
fractal interpolation function constructed through iterated function
system.

« Developed interpolant is C! continuous and offers no free parameter.
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Convexity-preserving interpolation

Hussain et al. (2016) Used cubic polynomial interpolation with two shape parameters in

Ball form.
« Convexity preserving constraints were developed on both
parameters.
Han (2015) « Developed C? interpolant using rational quartic spline with one

shape parameter.

Han (2018) ¢ Presented a united form of the classical Hermite interpolation with
up to €3 order continuity.
* Convexity is preserved by setting the parameter on each subinterval
with the given values.

Jena (2021) * Developed nonlinear Hermite interpolatory subdivision scheme
based on quadratic rational Bernstein Bezier curves for curve
interpolation.

* Conditions were developed for the limit curve to preserve convexity
of data.

« Thelimit curve is C* continuous. .

— -

Optimization
Hu et al. (2023) ® Optimize the shapes of rational quartic interpolation splines and quintic
Zheng et al. (2022) generalized Hermite interpolation curves

® Enhanced Tunicate Swarm Algorithm and Improved Grey Wolf Algorithm
were implemented

Li and Li (2020) ® Solvedthe nonlinear curve fitting problem by incorporating the Particle
Swarm Optimization
® Optimization was used to find the optimal number of hidden knots with is the
key factor to achieve a good generalization.

Huet al. (2021) ® Optimized the shape of shape-adjustable generalized cubic developable Ball
surfaces by using an Improved Marine Predators Algorithm

As of now, there is still lack of studies on the implementation of optimization in shape
preserving interpolation.

8
Problem Statement
blussalnetiaI2018) o — Previous studies on shape-
Cevelopeclaihiapey 02 preserving interpolation, such as

preserving scheme using a
rational quintic function.
However, the scheme is

complex due to the rational
form, which can make it
more challenging to
implement and compute

Karim (2016) and Tahat et al.
(2016), assessed the smoothness
of their interpolation curves
through visual comparison.
However, this method is
inadequate because visual
assessments can be subjective
and do not provide the precise
metrics needed for a thorough
analysis of the smoothness of
the curves

—=
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Problem Statement

The technique for selecting _« ) There is lack of research on
free shape parametersin « 03 <« /) 04 = the use of optimization
previous studies reliedon n e techniques in shape-

visual comparison. This preserving interpolation,
technique is prone to bias N thus efficiency of this
and may result in non- ’ implementationis
smooth interpolation unexplored and required
curves. further study.

—=

Optimized Shape Preserving
Interpolation

Shape-preserving ‘ Optimization
interpolation + method

Implementation of optimization method in finding the optimal free shape parameter
values Optimal curves in terms of smoothness

Procedure to find the best possible solution to a given problem with minimal
effort.

Optimization algorithms have been applied across various fields.

11

- —

Objectives

To develop shape preserving To assess the smoothness of
algorithms on quintic interpolation by analyzing three
trigonometric Bézier curves to different smoothness metrics
preserve data shape

To apply optimization methods ‘ I

To compare the efficiency of
optimization algorithm in preserving
data shape by implementing different
optimization methods

in finding the optimal free shape
parameter values

12
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Research Methodology

This study will implement the quintic trigonometric Bézier curve with two shape parameters
introduced by Misro et al. (2017) given by:

-..:...q,”_.-TH_,lg;- (1)
——
T
il md] = s i 00 - o i : : :
Satisfy all the geometric properties
CTERE R T BT b R e of Bezier Curves:
FaiiE il = sm i il =opaE i Hagnds Vooa @« %),
Frdnimdl =gy (] =sm@iiSomd « Jumil =P 1. Non-negativity
2. Symmetry
Pl il = S B = o E 0l & - Forad] 3. Partitionofunity
fulng md | = ovmifi ' = Sy
my—xl . -}
where B = ——— with @s [, =|.
'h|‘ -

The shape parameters a;, i € (—4,1] are responsible in controlling each end of the curve.

13

Research Methodology

To ensure continuity (up to C2 continuous), the following interpolating conditions will be applied to
find the unknown control

X Arithmetic Mean
=2 Method (AMM)

B & AWK =D A s M) i
ol Wl o 2 e
B gk s
) [ERENT A, By»v. . ()
[T R AT R W ] HefAm
where k= 7.5 =1

14
Research Methodology
Arithmetic Mean Method (AMM)
® The first-order and second-order derivatives formula are obtained from Hussain
etal.(2018).
First-order derivatives Second-order derivatives
by i
dy m Ay iy - A B = M v 1) = Al e
B '.l' L I X AT fim '_'” R, X T
- W, ) h,
dy iy Al = Mg b——— I ow Wy + Uy — Algl—
b vk s [T
e =al
where A with i, = T
15
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Methodology

The C? quintic trigonometric Bézier curve with two shape parameters in Eq (1)
defined over each subinterval I; can be written as:

. ' "'.\...’ i
i .::_--,Illp-.‘ vid | = w1 = dn e [y e ———— i A - sl
- 1 + & 10 [
ol s PR+ i Y+ a et g
il &y = ..:..-.,-l- s e i, L . I.l = i | = oy
Wl = (3)
. { A did = B ML h — -, mi]
e Ll L L] ||._ . ‘||| e,
b Nl -+
Hhad
e L LR e L i o ]
i+

e T
i = = o @ v ) = - e

16

Shape Preserving Constraints Ladli
The interpolant in Eq (3) does not guarantee to preserve the shape of data.

This section derive data dependent constraints on the shape parameter «a; for
the four shape preservation.

Four theorems for shape preservation are provided.

17

Positivity Preserving Interpolation l_uli

Theorem 1

Thee & sjusiand b trigsmsetriy Ddaier curvis Dterpedat b deflresd owr e tsarvsl s T | reseTor ble

flvmy ol pesibneey dwis il bl slegpe pessnedors 6, (F i snldnterved [, satiily ibe Follosang

el ol L

i =41 ihal gesshinre pesitbve ael sl | nberpsdiat g owry

O' e S 3
- . 5 I._Q--'-’- {u LB, + -=l. Al ’-:}

Proof: Mahzir, S. S., & Misro, M. Y. (2023). Shape pi g interpolation of positive and range-restricted data using quintic ic bézier curves. E
Journal, 80, 122-133.

18
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'Y

Positivity Preserving Interpolation Ludll

Remark

The safficins coaslibions o Thaemm 1 can b rewerikiom ax

foe (= 1] ikt prwelore pesibne msal sneedh bod eepecd sting curnr,

uOiu.-., 2hod, et it @
ek, + &ldrd, 3 LA

o

(N LR+ o AT - AR |
wilh lll'@‘. aml &, = may {ll, e o

The [ paasesrlore w amld o are (Esilive el soiolers sabded s pespabtios (E2] acd [LE] s that Al

iy L sgere © 5" en b changrl Lo Ble mpoal ssgin

Range-restricted Interpolation o@

Theorem 2

TR BT T 1 B TR R P |

Vo ihmtn By ol m ot vmoaplil L, Ulesd 7 qpadnd a0 g wiesd rae 1 e
il onch sulvigterval

vy e eyl [ore sy, ks Bew alame Ul slraigll o o e sdipse peusarecborns .
wbinly il Dihmwe aolls s naehils e

£ 1! which proslice spoed iy Dnberpalal ligg oo (hal Bes alaie (e stisdght L

! [k = w A L |
1 :..t"E I — 8= 2, +and\R, + ] - J.
L o Tk H# b ansll X, =00
Bt et ol
! ot E‘ 2his, N ]’I:ll:a i — W — Ay — }

Proof: Mahir, S. S., & Misro, M. Y. (2023). Shape preserving interpolation of positive and range-restricted data using quintic trigonometric bézier curves. Alexandia
Jouml, 80, 122-133. 20

Range-restricted Interpolation o@

Remark 2
The ol nomt cvmsloims in Thimanom T ram b resritiomn s
L1} whish proclies o speaad erpelating rerve thet les aloss cle wonighil D,

M fe - m B, — i) :I
AL - .
e Bl ] b Ardhy 4 DR — Al

iy
| Ay
k L h ool < 0 el DN Y,
o= B e Ry B Ol T S
a,
L LR ™ [EE St
{ Wil = b oW Wl = w7 = ALA (e =y ‘.}
L mein o i ' o
| B, = g
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Monotonicity Preserving Interpolation

Tha § ¥ cpaada; 1 Bl ilada o iba

pararE o
i

Bt danl 5 = 0, 0K o bk e wppd b o )

& aly
ik > L
| ] ;
[ i,
[y "L i iy -
L " v

R ook e

sl | 0 ey e 00 o 402

Proof: Mahzir, S. ., Misto, M. Y., & Mura, K. T. (2024). Preserving monotone or convex data using quintic trigonometiic Bézier curves. AIMS
Mathematics, 9(3), 5971-5994 22

Convexity-Preserving Interpolation

Theorem 4 U

The £ yanik: ingomoners Béocor cuncs defined will preserve e copvexaty of comve deta i b
parasaeTs o, B, 8. arel & o each soh el saesty e bollowap ook

Bk, 1], e B e s o el el i e, o o o m L
it

wiharrr 0 il aer dePewd o 010l jlski W o8

| & [
|
Vi s, o § b i b e e v oll g b &
| &

Kook =k

fow L s b g 0070 mmdd i |80

Proof: Mahir, S. S., Misro, M. Y., & Mura, K. T. (2024). Preserving monotone or convex data sing quintic trigonometric Bézier curves. AIMS
9

(3), 5971-5994.
28

Define the interpolating function and
continuity conditions
¥
Obtain the unknown control points
equations
¥

> l Develop shape preserving conditions ]

on a;

L ]

Choose the appropriate ; values

¥

Demonstrate the shape preserving
interpolation method

Flowchart [
|

Curve is smooth
and preserve shape of data?

Analyze and compare the resulting
curves

24
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Example 1 —Positivity-preserving Interpolation

Table 1: Amount of creatinine in the blood of six individuals from Hussain et al. (2018)

i 1 2 3 4 5 6
x; (years) 20 30 32 35 37 39
yi (mg/dl) | 151 0.18 1.06 06 0.51 47

[

should be between 0.50 - 1.10 mg/dL.

The normal creatinine level for an adult }

——

Fig 4a: C? quintic trigonometric Bézier curve interpolation

16

A

m\
1

o\

06

)

02

Fig 4b: Positivity-preserving interpolation for several 8 values

(2]
=
: 20 25 = 3 0 e = = =
w Fig 4c: Positivity-preserving interpolation Fig 4d: Comparison with existing scheme
w 5\
14 ) ‘
I g | J \
. ! J \
Example 2 —Range-restricted Interpolation
Table 3: Data lying above y = x + 2 from Hussain et al. (2018)
i 1 3 4 5
Xi 0 21 30 32
Yi 228 33.9 38.9 43.6
27
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Fig 6a: C? quintic trigonometric Bézier curve interpolation

s 10 15 20
x-axis

2 30 35

Fig 6¢c: Range-restricted interpolation

Results

.____

Fig 6b: Range-restricted interpolation for several B

values
]
u
} i
s w15 2 2w
xeaxis
Fig 6d: Comparison with existing scheme
]
7
» L]
s w15 2 2 w0

Example 3: Monotonicity-preserving Interpolation

Table 5: Monotone data set taken from Karim and Kong (2012).

i 1 2 3 4 5
xi 6 10 295 30
¥i 15 15 25 30

29

Fig 8a: C? quintic trigonometric Bézier curve interpolation

5 10 15
x-axis

20 25 20

Fig 8b: Monotonicity-preserving interpolation for several 8

values
20
2 Aol Z
P >
20 =
15
10
o s 10 15 20 25 20
xeaxis

Fig 8c: Monotonicity-preserving interpolation

Fig8

d: Comparison with existing scheme

Results
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Table 7: Convex data set taken from Hussain et al. (2014)

i 1 4
Xi 7
i 04 | 04 | 25

-4

Example 4: Convexity-preserving Interpolation

1

This study developed shape preserving
conditions on the quintic trigonometric
Bezier curves

This method reduced the complexity of
previous study

Optimization method ensure optimal ;
values and helps in reducing time

Fig 10a: C2 quintic trigonometric Bézier curve interpolation Fig 10b: Convexity-preserving interpolation for several 8
values
]
(P [ ]
6
- -
s —
#* L
. -
-
Convex curve can be
(2] 2 verified by connecting
_.I , L any two points on the
= o] curve. If none of the
0 ’ lines lie below the
Q e e curve thenitis convex. 38 s s & .
,,,,,,, |
m Fig 10c: Convexity-preserving interpolation Fig 10d: Comparison with existing scheme
‘I }\ [ ——
4
as as 55 6 es a5 a5 40
Conclusion Future Works

1 Toapply optimization methods for ¢;
parameter and compare their
effectiveness

2 Can be extended to shape preservation of
surfaces

55
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Thanks youw !
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Extension of k-curve

Kenjiro T. Miura
Graduate School of Science and Technology, Shizuoka University, Japan

Abstract

The k-curve[!, 2] is a recently published interpolating spline which consists of quadratic Bézier segments
passing through input points at the loci of local curvature extrema. We extend this representation to control the
magnitudes of local maximum curvature in a new scheme called extended- or ex-curves.

k-curves have been implemented as the curvature tool in Adobe Hlustrator® and Photosh0p®, and are
highly valued by professional designers. However, because of the limited degrees of freedom of quadratic
Bézier curves, it provides no control over the curvature distribution.

We propose new methods that enable the modification of local curvature at the interpolation points by
degree elevation of the Bernstein basis as well as application of generalized trigonometric basis functions. By
using ek-curves, designers acquire much more ability to produce a variety of expressions, as illustrated by our
examples.

References

[1] Yan, Z., Schiller, S., Wilensky, G., Carr, N., Schaefer, “k-curves: Interpolation at local maximum curva-
ture”, ACM Transactions on Graphics 36(4), Article 129 (2017).

[2] Yan, Z., Schiller, S., Schaefer, S., “Circle reproduction with interpolatory curves at local maximal curvature
points”. Computer Aided Geometric Design 72(6), 98-110 (2019).
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Log-aesthetic Curve and Similarity Geometry
+ x-Curve

Kenjiro T. Miura
Shizuoka University, Japan

Kenijiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity,"
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.

Today’s talk

Two topics
a. Log-aesthetic curve + Similarity geometry:

Standard curve for aesthetic design

b. k-curve . —
e

1. Aesthetic curve

2. Cute curve

N

Examples of aesthetic surfaces : Sculpture

L=

David statue Basara statue ({& 37 %€ )

3
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Examples of aesthetic curve : Japanese sord

R A7), B AT B FRERRN~MANRY, X8 —RETHES, #X EE

— - ——

TR B, B WL, BROTFRRMMAREMILER], EE —R=E 83X FREERGAE

3 7, B R®RE SROIFEHAERY, ZE R #X BRABRMIEFABERRE XA=F+AR

u_*—_-"-—-‘_-

Examples of aesthetic curve : Wings of butterfly

SARTTA EA¥TFIY

Impressions of curve and surface

< Different impressions >

Divergent curve
*David and F355 -

)

Convergent curve David (left) and Basara (right)
*Basara and Celica - /_ﬁ_—
Depend on designers’ Kansei

So far mathematical approaches
has been avoided.

Celica (top) and F355(bottom) 6
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Researches on aesthetic curves and surfaces

Fairness metrics Aesthetic curves

using Construction
Bézier Evolute
B-spline Typical curve
NURBS Class A Bézier
etc.

Logarithmic spiral
Clothoid curve
Quaternion IC
GCS

Log-aesthetic curve
GLAC

Aesthetic curves

* Clothoid curve

D. S. Meek and D. J. Walton, The use of Cornu spirals in drawing planar
curves of controlled curvature, Journal of Computational and Applied
Mathematics 25(1989), 69-78.

* GCS (generalized Cornu spiral)

A. Jamaludin et al., The generalised Cornu spiral and its application to
span generation, Journal of Computational and Applied Mathematics
Vol.102, No.1, P-37-47, 1999.

s
-

_..~=-"'/ '

GCS

The curvature profile is given by

c L i

7] - —_—

! 4 ra
where «:curvature, s : arc length, S:total length, p, ¢, r : cnst> 1
The domain of the curve 0 =5 = S.
The sign of the curvature derivative is always positive or negative, so

the curvature is monotonically increasing/ decreasing.

I o= e

a (%4 r-)- ,
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Unit Quaternion Integral Curve

K.T. Miura, Unit Quaternion Integral Curve: a new type of fair free-form curves,
CAGD, 17(2000) 39-58.

t
C(t) =P, +f q(®)vq(t)~tdt
0

where ¢ is a unit quaternion.

L L
-

For @ @ arepiers o Spe ol rogee

Miura, K.T., "Unit Quaternion Integral Curve: A New Type of Fair Free-Form Curves," Computer Aided Geometric Design,
vol.17, no.1, pp.39-58, 2000
10

GLAC

Gobithaasan, R.U. (2010). The Development of Planar Curves with High Aesthetic Value
(Doctoral dissertation, Universiti Sains Malaysia, Jan. 2010).

Radius of curvature-shifted GLAC

1
ril:.h: - |;r.a.+-.|'fll + i‘
Curvature-shifted GLAC

(o) = Lt
Difference
Directional angle of ROC-shifted GLAC : hypergeometric function
Directional angle of curvature-shifted GLAC : integrable 1

Example of aesthetic curves

Typical example of aesthetic curves
logarithmic (equiangular) spiral

o Counterexample :
Nautilus Logarithmic spiral Archimedean spiral

r=r,+a@
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Logarithmic spiral

General expression

C(t) — e(a+ih)t, (t > 0)

Main property
P=CyS+¢
p :radius of curvature,

s :arc length
Self-similarity
C'(t)=C(t+1)
= e“eibC(t) 13

Logarithmic spiral

Reasons to be aesthetic

Self-similarity
Golden ratio

$= ‘E;l =1.618033989...

l'Golden section connects art and mathematics |

Golden spiral: a kind of logarithmic spirals

About the fixed point (intersection of red lines)
rotate by 90 degrees clockwise and scale by 1/¢

"
——— 14
Golden spiral

Clothoid curve

General exprgssion

an:kwm,azm
0
Main property
T v p’l =CySt¢

p:.roc, s:arclength

Self-affinity

Reparametarize as s(t) = ¢, (e’ —1)/ c,

Clothoid curve

pO)=e’pt+1)
s'(0) = st +1)—s(1) = e’ s(t)
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Circle involute curve

General expression

C(t)=(cost+tsint,sint —rcost)

Main property
Pl =cys+c

: ¥ 4 p:roc, s:arclength

Self-affinity
Reparametrize ast = ¢, (e’ —1)/ ¢,
p(6)=plt+1)=e""p(t)
5'(8) = s(t+1)=s(l) = e’s(t)

Circle involute curve

Involute gear

Self-affinity

[Ref: Mathematics of shape, Ryuji Takagi]

Extension #2 Self-affinity

2.3 HEaw

al, (bl F>¥a—F=i2t bR (Tercotie. P81, (¢} AWM,
18
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Logarithmic Curvature Histogram #1

Logarithmic curvature histogram

Horizontal axis : log of radius of curvature
Vertical axis: log of small change of arc length with respect to small
change of log of radius of curvature

ds
P8 o )

i oy vrrEr

19
Tslibe |; LOCH Biwsw” shogrs o amsl thwiir improssions
Logarithmic Curvature Histogram #2
ey g |
i 4 a K
i 23 -
e = | - F | — S
& ] 1 CREET R EFEELF AT
Wil LT g
(L 1 - M - e .
20

A general equation of aesthetic curves

log(pj—s)=a10gp+C, ph=cyste, p=ce”
o

The fundamental equation of aesthetic curves

Logarithmic spiral o=1

Clothoid curve o=-1

Circle involute o= 2

Nielsen’s spiral a=0

o=1/8
o=1/4
o=1/2

21
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Parametric expression

1

p(s)=(cs+¢ );

ﬁ=cos0, d—y=sin€
ds ds
de -1

—=(cys+¢) “
s

a-l
s ia(“n”’ﬁ) “
C(s)=F +e“ Ie @ o gy

0

Extended clothoid curve »”

Self-affinity

Main property
P =cys+¢
p :radius of curvature, s:arclength

The curve without head portion C(t)

. o t=as+b
Self-affinity N

s
pl()=e“p(t+1) \
Vo o) = B
s'(t)=s(t+1)—s(1)=e"s(t) S

wheres(t) =c,(e” —1)/ ¢, ’ _—

The original curve C(s)
23

Butterfly’s wings
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M. Yoshida snd T. Salio, steractive Aesthetic Curve Segments. The Visusl
Compuier {Pagalic Graphicsp, Vod, 22, N B- 11, pp B6-005, 100G

T |

25

INTERACTIVE DESIGN USING LAC

26

Compound-Rhythm LAC

¥ | !

\
| ] f
P! -

\ =

| } |
T e -

- = = -
i %, ‘ ‘.' :

| PR a

Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity,"
Computer-Aided Design & Applications, Vol. 10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1033,
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G? C-Shape & S-Shape with
LAC triplets

Eriiarf fafir

241 Teamgrh ol 1w sy il Ui il fuaids B e o @ B e sl L i e

Kenijiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity,"
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/<:adaps,2013.1021—10358

LAC as plugin for Rhino 3D

g b el i) ey .

Kenjiro T. Miura, Dai Shibuya, R.U. Gobithaasan, Shin Usuki, "Designing Log-aesthetic Splines with G2 Continuity,"
Computer-Aided Design & Applications, Vol.10, No.6, pp.1021-1032, 2013, DOI: 10.3722/cadaps.2013.1021-1032.
29

Design examples

[EE e e

30
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Applications for Archtecture

i” ljr:’l ] o I
i kA 11

Ll LI 31

SIMILARITY GEOMETRY

32

Similarity Geometry of the Plane Curve #1

Since we know that the arc length s may vary, thus the representation of plane
curves is parameterized by direction angle 6 which is invariant by scaling.

We assume the curve is not a straight line. Let a plane curve be given as a
function of its direction angle by €(8) and let a unit tangent vector T™ and a

unit normal vector N, Then

- _dCds 1 T
O=Faw= ™
NSIm(6) = —— N

()—K—S) ©)

33
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Similarity Geometry of the Plane Curve #2

Similarity Frenet frame FS™(0) = (T (), NS™(8))

ipsim(g) = Fsim(g) <_KSim(9) -1 >

de 1 ()]
where
imilari — sim _ladk _ _dp _
Similarity curvature S(0) = k5'™(6) = el
_1ldp
pdd

Similarity curvature is a similarity geometry invariant!

34

Similarity Curvature of LAC and its evolute

s _ . \e2
o= (a—1)S
LAC: general solution  §(8) = L(a,1;0) = oDaeT

LG = 50)*-T (6 +2)5(0)

where S(6): similarity curvature of LAC, T(6+x/2):that of its evolute

Assume that T(6+7/2)=(2-a)L(e, %, O)=L(1/(2-a), 2-a) /., 6).
ROC-shift GLAC: general solution

S(6) = L(a,A;0) — L(a,X;0) -
1+C((@-DA0+1)T-a  1+v((@—1)A0+1)T-a

Sato, M.; Shimizu, Y.: The log-aesthetic curve and Riceati equations from the viewpoint of similarity geometry, Proc. JSIAM2014, 2014,

Similarity Radius of Curvature

av
w= l1-a
_ (a=1)Ag+1

LAC: general solution ~ V(8) = M(a, A; 6) = N

av(e) _ 2
LD —r(0+Z)v(e) -1
where V(0)=1/S(0): Similarity ROC of LAC

1
General solution of V(0):  V(0) = LC((a-1)i642)i7a

L(a,2;6)
Similarity ROC of Curvature-shift GLAC: a 1
((@=1)20+1)71(v+((a—1)A0+1)T-a)
Vie—GaLc(6) = — 2
( = :
V(—g) = — (02011 c;((ﬁ—l)aeﬂ) = M(B,2-0)(1 + v((1 — )20 + 1)F-1)
36
where f=2-a

Kenjiro T. Miura, R.U. Gobithaasan, Sho Suzuki, Shin Usuki, Reformulation of Generalized Log-aesthetic Curves with Bernoulli Equations,
Computer-Aided Design and Applications , Volume 13, Issue 2, pages 265-269, 2016. DOI:10.1080/16864360.2015.1084200.
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Similarity Curvature of Typical Curve

as _ -1 o2 n+1
ag n+1 (n—1)2

where n is degree of the curve. Fi

Sato, M., & Shimizu, Y. (2016). G of I hetic curves by formalism. JSIAM Letters, 8, 49-52

37

o-Curve and t-Curve

g L a 1 5 {51
ey
Kenjiro T. Mi ho Suzuki, R.U. Shin Usuki, Jun-ichi Inoguchi, Masayuki Sato, Kenji Kajiwara, Yasuhiro Shimizu, "Faimess
metric of pl s defined w ry i nts,” Compu ided Design and Applications, DOI:10.1080/16864360.2017.1375677, 2017.

K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, t-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering,
2020,7(2), 155-164. 38

g-Curve

We define ¢ curve by its Cesaro equation as follows:

0=p%=aps" +ap_1s" 4+ ags+ag (5.13)

In the above equation, ¢ = p* is given by a polynomial
function of arc length s.

20|
o]
0|
08|

s

39
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g-Curve
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K.T. Miura, S. Suzuki, S. Usuki, R.U. Gobithaasan, t-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engineering,
2020,7(2), 155-164. .

1-Curve

Mg . W Fati gk 0 = ol ok T, . I na

K.T. Miura, . Suzuki, S. Usuki, R.U. Gobithaasan, t-curve -Introduction of Cusps to Aesthetic Curves, Journal of Computational Design and Engincering.,
2020, 7(2), 155-164. 2
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K-CURVE

Kawaii Engineering

Kawaii Engineering, editor: Michiko Ohkura, Springer 2019.

Japanese word: “/mhH L
English word: cute, lovable, charming, (cool)

For 2D and 3D objects, kawaii preference for curved shape is in common.

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, “k-Curves:
Interpolation at Local Maximum Curvature,” TOG, 36(4), 129, 2017.
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ek-Curves:
Controlled Local Curvature Extrema

Kenjiro T. Miura!

“u -
e . R.U. Gobithaasan?
- ;
¥ .= s Péter Salvi
Zud A5
";,l . o Dan Wang!
- : 3 H Tadashi Sekine!
Shin Usuki®
[ Jun-ichi Inoguchi*
Kenji Kajiwara®
1Shizuoka University
" 2University Malaysia Terenggan
K-CUTYVis B I
3Budapest U. of T. and E.
KT. Miura et al. ek-Curves: Controlled Local Curvature Extrema, The Visual Computer, 2021. 4University of Tsukuba

SKyushu University

K-curves

The k-curve is a recently published interpolating spline which consists of
quadratic Bézier segments passing through input points at the loci of local
curvature extrema. [Yan2017]. It has the following properties:

1. It passes through all input point.
2. All the curvature extremum points are input points.
3. Curvature continuity (G2 continuity) is guaranteed except for inflection points.

Zhipei Yan, Stephen Schiller, Gregg Wilensky, Nathan Carr, Scott Schaefer, “k-Curves:
Interpolation at Local Maximum Curvature,” TOG, 36(4), 129, 2017.

K-curves examples
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Disadvantages of k-curves and its improvement

The values of curvature extrema can’t be controlled !

[Yan2019]
Increase DOF by using rational quadratic Bézier curve.

Proposed method
Increase DOF by elevating degree from quadratic to cubic.

Advantage
Not only rational quadratic Bézier, but also other various
type of curves

Z.Yan, S. Schiller, and S. Schaefer, “Circle reproduction with interpolatory curves at local
maximal curvature points,” Computer Aided Geometric Design, vol. 72,
no. 6, pp. 98-110, 2019.

ek-curves: extended k-curves

Constrained cubic curve

% = 0: polynomial of degree 9 in terms of parameter t

For one curve segment
1. Proof of at most one curvature extremum{[1]

2. Uniqueness of the solution passing the input point[2]

[1] K. T. Miura, “One peak,” November 2020. [Online].
Available: https://mc2-lab.com/KTMiuraOnePeak.pdf

[2]K. T. Miura , “Unique solution,” November 2020.

[Online]. Available: https://mc2-
lab.com/KTMiuraUniqueSolution.pdf

ek-curves: Local modifications

a=0.85 a=0.85 a=0.85

All a=0.85
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ek-curves: Global modifications

ek-curves: Comparison with Log-Aesthetic Curves

Log-aesthetic curves

n u
L]
' L] L]
& u Y
3 w i ] o =
- & -
¥ - ® = &
- - -
i
EgK-curves
0
#
& "
¥ L » L ] b
- a i
] & q & | o
CAD’24, Eger, Hungary Kenjiro T. Miura

ek-curves: Sample code in Julia and Movie file

Contributions

4.

5.

. Inherent nice properties of k-curve

. Applicable for various curves(polynomial, rational, trigonometric, etc.)

Not necessary to increase # of input points to control curvature extrema
Global and local control of curvature extrema

As fast as k-curves

Prototype in Julia
P. Salvi, (2020, November) ek-curves. [Online] Available:
https://github.com/salvipeter/ekcurves/tree/master

Movie file
[Online] Available: https://mc2-lab.com/ek-curves.mp4

477




ek-curves: Movie file

e wn Weg— . a

Future works

Surface
1. Log-aesthetic surface?
2. Not K-surface, but k-surface?

K-Surfaces: Bézier-Splines Interpolating at Gaussian Curvature Extrema (2023)
Tobias Djuren, Maximilian Kohlbrenner, Marc Alexa
ACM Transactions on Graphics (Proc. of Siggraph Asia)
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Intrinsic and extrinsic singularities and curvatures of piecewise smooth
surfaces

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

Abstract

We study piecewise-smooth (PS in short) surfaces which are two-dimensional topological manifolds made by
connecting finitely many smooth surfaces. We discuss intrinsic and extrinsic singular points of such surfaces
and give new definitions which represent curvature and sharpness at each point in the ‘edges’ and at each ‘ver-
tex’ of such a surface. Especially, the intrinsic singularities are defined intrinsically by using a generalization
of the classical Bertrand-Puiseux Theorem, which gives a power series expansion of the length of the geodesic
circle with respect to the radius. Then, as an application of the new concepts mentioned above, we represent the
well-known Gauss-Bonnet Theorem that gives a relationship between curvatures and topology for surfaces in a
simple form. We discuss also the definition and characterization of PS developable surfaces which are locally
isometric to planar domains. Our definitions of intrinsic curvatures can estimate how far a PW-smooth surface
is from being developable.
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International Conference "Evolving Design and Discrete Differential
Geometry - towards Mathematics Aided Geometric Design"

Intrinsic and extrinsic singularities and

curvatures of piecewise smooth surfaces*

Miyuki Koiso
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March 13, 2025, Nishijin Plaza, Kyushu University

*This work is supported by JST CREST Grant Number JPMJCR1911
and JSPS KAKENHI Grant Number JP20H01801.

Plan of talk

Motivation
Bertrand-Puiseux Theorem and its generalization

Definitions of intrinsic singular points and
curvatures

Gauss-Bonnet Theorem.

5. Idea of the proof of the generalized Bertrand-
Puiseux Theorem

6. Summary

1.Motivation

Definition (Piecewise smooth surface) .

Let M = U, M; be a 2-dim. connected
oriented C®- manifold included in R3. If M

call M a piecewise smooth (PW-smooth in
short) surface in R3.

(i) Each M; is an oriented connected smooth submanifold
with piecewise smooth boundary @ M; and unit normal
vector field v; in R3.

(iii) For each i, the unit normal v; satisfies the following
condition: For any local coordinates (uq, u,),

a a . . . .
{ﬁ’ﬁ' vi} gives the canonical orientation of R3.
1 2
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| 1.Motivation (continuation) |

Definition (Extrinsic singular points) .

Let M = UX_, M; be a PW-smooth surface.

(i) If M; N M; # ¢ and i # j, then M; N M; is called
an extrinsic edge (or simply, edge) of M.

(i) Ifp = My NN My € M° (M4, ..., My are all
different, and N = 3) is called an extrinsic vertex (or
simply, vertex) of M.

1.Motivation (continuation)

Def. 1. A piecewise (PW)-smooth surface M is said to be
developable if it is isometric to a planar region R (that is,
there exists a Lipschitz continuous bijective mapping F

from M onto R that preserves the length of each curve).

;

Remark 1. It is well-known that a smooth surface M is
developable if and only if the Gaussian curvature
K (p) of M vanishes at any point p € M.

Question. Estimate how far a PW-smooth surface is
from being developable.

| 2. Bertrand—Puiseux Theorem and its generalization

Let M be a PW-smooth surface. For p,q € M,
dist(p, q) := the smallest length of PW C*®curves

connecting p and q in M.

|Remark. A shortest path is not necessarily smooth!

ﬁ,—,.v
pA is a straight
? line segment.

£o°

y Aq is a part of
a helix.

Cylinder covered with a disc and
its non-smooth shortest path
Cylinder and geodesics connecting p, q.
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2. B-P Theorem and its generalization (continuation)

Let M be a PW-smooth surface. The Gaussia

curvature of M at a regular point p € M is
denoted by K(p). The geodesic circle in M
with center at p and radius r is defined as C(p;r)
C(p;r) = {q € M|dist(q,p) = r}, and the
length of C(p; ) is denoted by L(p;1). p

177
Bertrand (1848. For general R-mfd, Gray1974). If w

p € M is a regular point, then for small r > 0,
L(p;r) = 2mr —ZK(p)r3 +o(r?).

Rem. If M is a plane, C(p; ) is a round K( p
’ p) <0
circle with radius r and L(p; )= 2mr. saddle G/

2. B-P Theorem and its generalization (continuation)

Next, let M = U]- M; be a PW-smooth surface.
And |etp = Ml Ne-N MN'

'l/;.'- - ‘\ In a neighborhood U; of a point
| ," ! ar'lf-'»" t "" p € M;, we use the geodesic polar
. E; | -, ; U coordinate (r, 8) to represent any
\ % ') pointasq; = q(r,0) € M;nU;,
S (O (r) < 6 <L),

o; is the inner angle of M; at p, K;(p) is the Gaussian
curvature of M; at p, k;l(r) is the signed geodesic curvature
of the edge M; N M;_; and kéz(r) is that of M; N M; ;.

2. B-P Theorem and its generalization (continuation)

Let M = U; M; be a PW smooth surface. And let p € MPe.
Theorem 1 (Koiso) (1) Letp = M; N =N My be a

vertex of M. then L(p;7) = (XL, 0;)r — /_EM1 g m
%Z{V:l(kj]l(o) + kf;z(o)) r?— &1 m
=2 (Ki@)ai + (k1)'(0) + (kb3)'(0) 73 + 0(r2).

(2) Let p be an interior point of an edge E= M; N

M,. Denote by k;(p) the geodesic curvature of £ L
M;atp w.rt. the inner normal. Then, L(p; r) = 2nr — |

(ks (@) + k()12 = Z (Ky (p) +Ko (p))r® +0(r®).

Cor. 1. The area of geodesic discs are given by
integrating L(p; r) with respect to r.
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2. B-P Theorem and its generalization (continuation)

For a regular arc y € M, the signed geodesic curvature
dety yv)
lyI3

kg is expressed as kg =

Example1. M = M; UM, U M3,p €
E =M; N M, where M; isapartofa
cylinder with radius R, M, and M3 are
flat disks with radius R. Then,

L(p;r) = 2nr — %r2+ o(r?).

2. B-P Theorem and its generalization (continuation)

Example 2. Let M be a cube. Then, for I:-'__..-'r"’
each vertex p, L(p; ) = zma_

Example3. M = M; U M,, p € E=M; N M,,

. _ cot@ 2 PLs 3 3
Lp;r) =2nr —2——1° = 2517+ 0(r®)
) My = Cep; )
C (P, ) éf’
P . o/ Sk
%=
\u/
|3. Definition of intrinsic singular points and curvatures (cont.)|
Let M = Uj M]- be a PW-smooth surface. Let p € a8 |r)El
M°. Represent the length L(p; r) of the geodesic a7 M

circle C(p;r) in M with center at p and radius r as
L(p;7) = a1 ()1 + az(p)r?+as(p)r3+ o(r?).
Def. 1(K). (i) If a, (p) # 2m,

we call p an intrinsic vertex of M.
(ii) We call the set of points that
satisfy both a,(p) = 2mand a,(p) # 0 Pl
intrinsic edges of M. :

E;
Cylinder M = 213»=1 M;
(Eq, E; : edges of M)
P

(P;: vertices) "-_I# -

3 P,* Pillow box
Def. 2 (K). (i) We call S(p) := 21 — a,(p) the sharpness of M at p.
(ii) We call k. (p) := —a,(p) the edge curvature of M at p.

(iii) We call K (p) :== —(3/m)as(p) the Gaussian curvature of M at p.

Theorem 2 (K). A PW-smooth surface is locally
developable. & S(p) = k.(p) = K(p) = 0, VpeM.
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4. Gauss-Bonnet Theorem

The classical Gauss-Bonnet Theorem can be
represented as follows.

Proposition 1 (K). Let M be a closed PW-smooth
surface with Euler characteristic y. And let £ be the
union of all intrinsic edges of M. Then, it holds that

Sy KdA+ [ ke ds+ Ypen S(p)=2my,
where dA is the area element of M and ds is the line
element at regular points of E.

5. Idea of the proof of the generalized
Bertrand—Puiseux Theorem

Let M be a PW-smooth surface. And letp = M; N ---N
My € M°. Near the pointp € M;, we use the geodesic polar
coordinate (r, 8) to represent any point as g; = q(r, 8), (9%
(r) < 6 < 9i(r)), and metric ds? = dr? + h?d6?, where

1 i
h = (q¢ - q9)z. Then, L(p;7) = ?1:1 ;Z(%) h(r,0)do.
1

Let
L(p;7) = a1 (p)r + az(p)r?+az(p)r3+ o(r?).

Then, using L'Hopital’s rule, we obtain My n
i E
N[O, e)de) - MY

. 1
i . .
111%( N ﬁz(r)hrde)= N (9% — 95) =the sum of the
g

i=1Jof(r)
inner angles around p, here we used lim0 h,=1.
ro+

5. Idea of the proof of the generalized
Bertrand—Puiseux Theorem (continuation)

Recall the length of the geodesic circle C(p; ) is
L(r) = L(p;1) = a1(P)r + az(p)r?+as(p)r3+ o(r®)

=¥V, 1;?((:)) h(r,0)d6. Then, using 'Hopital’s rule again, w s

Lmmarr _ @) -1 : 0 MZ
a, = lim ——=—— = lim T=72i=1 ((kg)z + (kg)1 :

r—+0 T r—+0

L) —ayr —apr? o L'(r) - 2a,
az; = lim = lim Cipsr)

r—+0 r3 =40 67 % >
1 . i i
= =23, (0uki(p) + lim( (h)' () + (b)), u
where g; is the inner angle of M; at p. Moreover we estimate the error
term. From these we obtain the result.
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6. Summary

® We generalized the classical Bertrand—Puiseux Theorem to PW-
smooth surfaces (say M). For example,

letp = My N---N My be a vertex of M. Then the length of the
geodesic circle C(p;r) in M with center at p and radius 7 is

L(pir) = (Zy 0)r = 21 (kb1 (0) + kp(0)) 72 =
BN (K)o + (Kby)'(0) + (k) (0)) 73 + 0(r),
where K; is the Gauss. curvature, and k;j is the geodesic curvature.

® We defined intrinsic singular points (edges and vertices) and
curvatures of PW-smooth surfaces.

® \We gave a simple representation of the Gauss-Bonnet Theorem
using the intrinsic singular points at curvatures there.

® We explained ideas of the proof of the main result.
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Geometric shape generation for ideal lighting

Yoshiki Jikumaru
Faculty of Information Networking for Innovation And Design, Toyo University, Japan

Kentaro Hayakawa
Department of Conceptual Design, College of Industrial Technology, Nihon University, Japan

Kazuki Hayashi
Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto
University, Japan

Miyuki Koiso
Institute of Mathematics for Industry, Kyushu University, Japan

Shun Kumagai
Hachinohe Institute of Technology, Japan

Abstract

In this talk, we propose a geometric shape generation of roof design for ideal lighting. The idea is based on
the variational problem for anisotropic energy, originally proposed as a mathematical model for crystal growth.
In our implementation, users can intuitively specify the direction in which they want to improve lighting.
Moreover, our approach allows us to generate shapes with natural “internal boundary”. While the main idea
will be introduced in the smooth setting, we also propose a discretization for triangulated surfaces and shape
generations.

Let S? be the unit sphere in the 3-dimensional Euclidean space R? and y : S — R be a positive-valued
smooth function. For a smooth surface M in R3, we define the anisotropic energy Fy(M) as follows:

(M) = f Y(N) dA,
M

where N denotes the unit normal vector field along M and dA denotes the area element. The minimizer of the
anisotropic energy among all closed “surfaces” enclosing the same volume is called the Wulff shape. Moreover,
a critical point of the anisotropic energy under volume-preserving variations can be characterized as a “constant
anisotropic curvature” condition. If y = 1, the functional gives the area, and therefore, this situation can be
regarded as a generalization of constant mean curvature (CMC) surfaces, which gives a mathematical model
of soap bubbles. The above model of “generalization of soap bubbles” is useful for shape generation in the
following two ways:

e While soap bubbles are “homogeneous”, Wulff shapes, in general, “change the size of the faces according
to the direction of the normal vector”, which can be used to specify the “direction of lighting”.

e While soap bubbles have “no edges”, Wulff shapes generally have “edges”, and natural “internal bound-
aries” can be generated without connecting several surface pieces.

References

[1] Miyuki Koiso and Bennett Palmer, Geometry and stability of surfaces with constant anisotropic mean
curvature, Indiana University Mathematics Journal 54 (2005), 1817-1852.
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The “target” objects IN

Figure: London City Hall Figure: Entrance of Metro Bilbao

https://hash-casa.com/2021/09/08/londoncityhall/

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 2/26

A “summary” of this talk IN

A “summary” of this talk

e Shape generation with “corners” without connecting surface patches.

e The user specifies the direction in which they want to create more faces by
changing the parameters (“ideal lighting”).

® The idea came from the geometry of anisotropic energy, which originates the
crystal growth model.

@OC

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 3/26
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Introduction: Isoperimetric problem

Isoperimetric problem (2D, & & RRE) IN

The following problems are equivalent and called the isoperimetric problem:

Isoperimetric problem (Queen Dido’s problem)

® Among all “closed curves” in the plane of fixed perimeter,
which curve maximizes the area of its enclosed region?

® Among all “closed curves” in the plane enclosing a fixed area,
which curve minimizes the perimeter?

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 4/26

Isoperimetric problem (2D, % &5 78) l\N

The following problems are equivalent and called the isoperimetric problem:
Isoperimetric problem (Queen Dido’s problem)
® Among all “closed curves” in the plane of fixed perimeter,
which curve maximizes the area of its enclosed region?

® Among all “closed curves” in the plane enclosing a fixed area,
which curve minimizes the perimeter?

The answer is the circle.
(the “most symmetric” shape)

Mathematically, we must clarify the class of “curves”.

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 4/26
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Isoperimetric problem (3D) l\N

Isoperimetric problem (“Mathematical soap bubbles”)

Among all “closed surfaces” enclosing a fixed volume, which surface minimizes the

area?
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 5/26
3 Q e Q Q

Anisotropic” isoperimetric problem l\N

Can we consider the following types of “anisotropic” objects (e.g., crystals)?

Figure: A salt crystal Figure: An alum crystal

https://mmlnp.exblog.jp/28347204/, https://kyokoippoppo.hatenablog.com/entry/2021/04/18/083916

They have some “preferred” directions (faces) — “anisotropic” energy
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 6/26

“Anisotropic” isoperimetric problem l\N

Anisotropic isoperimetric problem (“Mathematical crystals”)

Among all “closed surfaces” enclosing a fixed volume,
which surface minimizes the “anisotropic” energy?

— the answer is called the Wulff shape (“anisotropic sphere”).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 7/26
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A mathematical formulation

A brief review of the area functional I\N

Let M be a 2-dimensional manifold and r : M — R3 be an immersion.
For the (local) coordinates (x, y), define the area element d A as follows:

dA = ||ry X ry|| dzdy. (1
The area A and (algebraic) volume V' enclosed by the surface are defined as follows:

A:/MdA, V:é/M(r,N)dA, @

where N denotes the unit normal.

“Solution” of the isoperimetric problem

Among all “closed surfaces” enclosing a fixed volume, the sphere minimizes the area.

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 8/26

A brief review of the area functional I\N

Theorems

e For a small perturbation (variation) 7. = 7 + £V + O(?), we have

d

de

Ar.) = ;EM = —Q/M?-L(V,N> dA, )

e=0
for boundary-fixed variations. Here H: mean curvature, IN: unit normal.

® A stationary point of the area for volume-preserving variations must be CMC.

e |f a closed CMC surface r is “stable (2nd var. > 0)”, then r must be the sphere.

J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature. Math Z. 185,
339-353 (1984).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 9/26
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Anisotropic energy I\N

Definition (anisotropic energy)

For a function v : S? — R+, the anisotropic energy F, for asurface r is defined by

For) = /M ~(N) dA. @)

Theorem (J. E. Taylor, 1978)

Among all “closed surfaces” enclosing a fixed volume, the minimizer of 7, is given by
the Wulff shape:

Wy =0 () {z € B®| (2, N) < 7(N)}. (5)
Nes?
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 10/26

Examples I\N

A trivial choice: v = 1. Then F, = A, and W, becomes the sphere.

= |V, N Ns|: =1:
v = [N1| + [ Na| + | N3] v=1 7:(N§+N28+N§)1/8:

Figure: Wulff shape Figure: Wulff shape Figure: Wulff shape

— The anisotropy naturally generates the “corners” (without connecting patches).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 11/26

Cahn-Hoffman map I\N

The Cahn-Hoffman map gives a “parametrization” of the Wulff shape.

Definition (Cahn-Hoffman, 1972)

For a function 7 : S — R, define the Cahn-Hoffman map &, as follows:
&(N)=Dy+~y(N)N, NeS§? (6)
where Dy denotes the gradient on S? at IV.

Trivial example: if y = 1, then &,(IN) = N.
LP-norm example: if y(Ny, N2, N3) = (N? + N2 + N2)1/?, then

&(N) = &,(N1, Ny, N3) = (N? + NE + NE)-P/p(NP=H NP=H NETY). (1)

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 12/26
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CAMC condition I\N

Proposition and Definition

The first variation of the anisotropic energy (fixed boundary):

4
de

Fy = -2/ AV, N)dA. (8)
e=0 M

Here, A is called anisotropic mean curvature.
As in the “soap bubble” case, a stationary point of F, under volume-preserving
variations must have constant anisotropic mean curvature (CAMC).

M. Koiso and B. Palmer. Geometry and stability of surfaces with constant anisotropic mean curvature.
Indiana Univ. Math. J. 54 (2005), 1817-1852

— a story analogous to CMC surfaces!

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 13/26

A discretization

Discrete anisotropic energy I\N
For a triangular mesh M in R?, the anisotropic energy F, is given by
Fy =D 2(N7)AT), ©
T

where A(T) is the area of the triangle T

Figure: A triangular mesh and the unit normal N1 on a triangle T'.
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First variation l\N

Let us consider a variation of vertices (v,: “variation vector”):

p(e) =p+evy+ 0(52). (10)

i1

Figure: A variation of vertices
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First variation l\N
Theorem

Then, the first variation formula can be written as follows:

4
de

Fy = Z<Vp]:w”p>a
e=0 D

Vp]'—'y=§ Z éy(N])X(q]_'_l—q]) .\_H‘.‘.;_
T=(p,q;,qj+1)Estar (p)

Note: if v = 1, the privileged cotangent formula is retrieved.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57-60.

U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Exper. Math. 2(1): 15-36 (1993).
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Discrete CAMC surface l\N

For a given constant Ay, a triangular mesh is called CAMC-Ay if
VpFy +2A0V,V =0, )
holds away from the boundary.

The CAMC-Aq condition is defined without defining the discrete anisotropic mean
curvature. The idea originates discrete CMC surfaces by Polthier-Rossman.

K. Polthier and W. Rossman, Discrete constant mean curvature surfaces and their index J. reine und
angew. Math. 549(549):47-77 (2002).
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Basic properties l\N

For a closed CAMC- A surface, the Minkowski-type formula holds:

3 (/(N7) + Aolp, NT)AT) = 0 <= F, + 38V =0. (12)

Theorem

| H

Let v : S? = R be of class C? and “convex”. If a discrete CAMC surface has only
one interior vertex, then the second variation is non-negative.

Y. Jikumaru, Geometry of equilibrium curves and surfaces for discrete anisotropic energy, JSIAM Lett. 14 (2022) 57-60.
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Example of shape generation: v = (N} + N5 + N§)!/8 l\N
For each triangle, we can compute the Cahn-Hoffman map:

&(N) = &(N1, Na, Ns) = (N} + Ng + N5)~"/8(N{, NF, NG). (13)
The energy gradient:

V,Fy = % S (NG x (g1 — q)- (14)

T=(p,qj 9j+1)

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 19/26

Technical part for shape generation
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General setting l\I\I
In general, if the unit normal IN is parametrized by
N = (N1, Ny, N3) = (cosx cosy, cos x siny, sinz), (15)

then the Cahn-Hoffman map for y = y(z, y) is given by
Ty

=X + o=t
T UNE AN
where the unit tangent vectors X, Y are given

x = [l - Na NNy A/N2Z+NZ), Y= Na , M 0.
VNE+NZ /NP + N VNE+ N3 /N + N3
an

Y + N, (16)

— if vy = y(z,y) is given, we can compute &,.

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 20/26

Energy density determined by the Gielis formula I\N

We use the so-called Gielis’ (super)formula to generate various shapes in a
parameter-controllable setting.

R nE = ‘E—Lt—

Figure: Various shapes generated by the formula, motivated by botany.

J. Gielis, A generic geometric transformation that unifies a large range of natural and abstract shapes, Amer. J.

Botany, 90(3), 333-338 (2003).
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 21/26

Energy density determined by the Gielis formula I\N

For example, define r; and r5 as follows:

1/(2l2)
N2k2 + N2k2
_ 2 2\k 2k1\1/(211) _ 1 2

r1=((VF + N)R 4 NPVC), -y = ((N12+N22)k2 (18)
In this case, the user can specify 4 parameters.
Then for the energy density v = ryry, we have

TlB
5 = Aro X + ———Y + r1maN. (19)
V/N? + N2

Here, A and B are given on the next page:
GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 22/26
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Energy density determined by the Gielis formula I\N
Although the expressions are complicated, all quantities can be computed explicitly.
A= T(VE + N+ Ny~ (N;?’“*\/N% + NF = Na(IV} + NS)’“*%) :

1/(2l2)—1 )
k <N12k2 o N§k2> /(2l2) <N1N22k21 _ lekleQ)

b \(VE+ NP (NF + N3)k2

N12k2 + NQQ]Q 1/(212)
(N? + N3)k2

x_ (- NiNg  NiNs /N? 1 N2 y - [_ N3 Ny ol.
VNZENZ JNExNZ VLR VNZ+ N2 /NZ+NZ
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ry = (V2 4+ NBYo 4 N2y (

Which direction do you want to create larger faces? l\N

The direction in which the user wants to create more surfaces becomes “bigger™:

The surface is called the Frank shape.
® Convex direction: large faces (“preferable” directions).
® Concave direction: small faces (“unpreferable” directions).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 24/26

Demonstration video I\N

Let’s take a look at a demonstration (link).

GSG for ideal lighting Yoshiki JIKUMARU INIAD, Toyo University 25/26
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Summary l\N

Summary

® Shape generation with “corners” without connecting surface patches.

® The user specifies the direction in which they want to create more faces by
changing the parameters (“ideal lighting”).

® The idea came from the geometry of anisotropic energy, which originates the
crystal growth model.

0dc
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Geometric Shape Generation by Singular Generalized Miura-ori with
Canonical and Non-canonical Arrangements

Hiroyuki Tagawa
Department of Architecture, Mukogawa Women’s University, Japan

Abstract

Generalized Miura-ori with the canonical arrangement, including well-known Miura-ori as well as proposed
arc- and spiral-shaped Miura-ori [ ], can be folded flat without causing self-intersections. A total of 26 patterns
of singular generalized Miura-ori, which is defined as the generalized Miura-ori that has symmetry and regu-
larity in included angles to enable rigid flat-foldability with linked one degree-of-freedom motion, is counted
for the canonical arrangement as follows: 11 patterns for K; = K4, K = K3, 11 patterns for K; = Kp, K3 = Ka,
and 4 patterns for K| = K> = K3 = K4 [2]. Among 26 patterns, the arc- and spiral-shaped Miura-ori, which are
classified as K; = K3, K3 = Ky, are the only patterns in which all the fold lines are not parallel to each other.
Non-canonical arrangement is obtained by exchanging the included angles at the diagonal positions of the Units
2 and 3 in the canonical arrangement and accordingly changing the mountain and valley folding directions as
shown in Fig. 1. These exhibit 3D cylindrical or vault shape while satisfying the linked folding conditions.
A total of 17 patterns of singular generalized Miura-ori is counted for the above non-canonical arrangement
as follows: 11 patterns for K1 = K4, K) = Kj, 2 patterns for K; = KJ, K} = K4, and 4 patterns for K; =
K = Kg = K. Huffman tessellation and the dual of Miura-ori (Hourglass mode) are classified as K| = K, =
K} = K. Cylindrical closed shape is obtained by the optimization on included angles of the quadrilaterals and
deployment angle as shown in Fig. 2.

1= pendd ool
wind und
l+gamd 7 -0 ppd 5 -1 |

K

pni - funl g - |

Figure 3: *
Fig. 1 Dual conversions Fig. 2 Cylindrical closed shape obtained by optimization
References

[1] H. Tagawa, N. Yoshioka, T. Suzuki, “Proposal of arc- and spiral-shaped Miura-ori and its application to the
design of large roof architecture”, Proceedings of the IASS symposium 2022, Beijing, China, 2022.

[2] H. Tagawa, A. Sugimura, A. Mukai, K. Inomata, “Counting-up and classification of all combination pat-
terns of singular generalized Miura-ori”, Proceedings of the IASS symposium 2024, Zurich, Switzerland,
2024.
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