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Preface

This lecture note is a collection of slides presented at the workshop “Topological Data 
Analysis and Industrial Mathematics”, held at Nishijin Plaza, Fukuoka, Japan, from 
August 5 to 8, 2025. The workshop was organized by the Institute of Mathematics for 
Industry (IMI), Kyushu University, and supported by JSPS KAKENHI, Grant-in-Aid 
for Scientific Research (B) 25K00921 and (S) 25H00399, NICT commissioned re-
search No.22301, and the JST Moonshot R&D Program (JPMJMS2021).

The aim of this workshop was to bring together researchers from academia and indus-
try to discuss recent developments and applications of Topological Data Analysis (TDA) 
in the fields of science, engineering, and industrial mathematics. By bridging topology, 
geometry, and data-driven modeling, the workshop explored how mathematical frame-
works can promote innovation in complex systems, biomedical sciences, and other 
related areas.

The program was organized around the following three main themes:

     •   Applications and theoretical extensions of persistent homology
     •   Applications of TDA to industrial and biomedical sciences
     •   Meta-level discussions on the role of mathematics for industry

Through these interdisciplinary discussions, this workshop provided a platform for 
mathematicians, engineers, and data scientists to collaborate and advance both the 
mathematical foundations and practical applications of topological data analysis.

� Organizing Committee Chair: Keunsu Kim

Organizing Committee Members

     •   Keunsu Kim (Kyushu University)
     •   Matias de Jong van Lier (Kyushu University)
     •   Shizuo Kaji (Kyushu University / Kyoto University)
     •   Jae-Hun Jung (POSTECH/POSTECH MINDS)
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Program 

 

DDaayy  11  ((AAuugg  55,,  TTuuee)) 

▪ 14:00 - 14:20, Registration 

▪ 14:20 - 14:30, Opening Remark  

▪ 14:30 - 15:30, Suyoung CHOI (Ajou University) - Plenary Talk 

▪ 15:30 - 16:00, Coffee Break 

▪ 16:00 - 16:40, Yusuke IMOTO (Kyoto University) 

▪ 16:50 - 17:30, Junwon YOU (POSTECH) 

 

 

 

DDaayy  22  ((AAuugg  66,,  WWeedd)) 

▪ 10:00 - 10:40, Tetsuji TANIGUCHI (Hiroshima Institute of Technology / Math. Research 

Institute Calc for Industry) 

▪ 10:50 - 11:15, Raiki YOSHIMURA (Nagoya University) 

▪ 11:15 - 11:40, Eunwoo HEO (POSTECH) 

▪ 11:40 - 12:00, Photo 

▪ 12:00 - 14:00, Lunch Break 

▪ 14:00 - 14:40, Sungrim Seirin-LEE (Kyoto University)  

▪ 14:50 - 15:30, Emerson ESCOLAR (Kobe University) 

▪ 15:30 - 16:00, Coffee Break 

▪ 16:00 - 16:40, Tomoki UDA (University of Toyama) 

▪ 16:50 - 17:30, Keunsu KIM (Kyushu University) 

▪ 1177::3300  --            ,,  BBaannqquueett 

  TThhee  bbaannqquueett  iiss  ssuuppppoorrtteedd  bbyy  PPOOSSTTEECCHH  MMIINNDDSS  ((PPII::  PPrrooff..  JJaaee--HHuunn  JJuunngg))..   
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DDaayy  33  ((AAuugg  77,,  TThhuu)) 

▪ 10:00 - 10:40, Ippei OBAYASHI (Okayama University) 

▪ 10:50 - 11:15, Daiki TATEMATSU (Nagoya University) 

▪ 11:15 - 11:40, Seongjin CHOI (POSTECH) 

▪ 11:40 - 12:00, Poster pre-persentation  

▪ 12:00 - 14:00, Lunch Break 

▪ 14:00 - 15:00, Tea Performance 

▪ 15:00 - 16:30, Poster Session 

 

DDaayy  44  ((AAuugg  88,,  FFrrii)) 

▪ 10:00 - 10:40, Jisu KIM (Seoul National University) 

▪ 10:50 - 11:15, Dongwoo GANG (Seoul National University) 

▪ 11:15 - 11:40, Sebastian Elias GRAIFF ZURITA (Kyoto University) 

▪ 11:50 - 12:30, Shamisen Performance and Closing  
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Topological Data Analysis for Non-Destructive
Testing in Civil Engineering

Suyoung Choi

Department of Mathematics, Ajou University, Korea

We explore the potential applications of industrial mathematics in civil engineering,
with a focus on non-destructive testing (NDT). In particular, we introduce topological
data analysis (TDA) techniques that can enhance model performance when analyzing
ground-penetrating radar (GPR) survey images.

References.

[1] Meiyan Kang et al. “A Novel Shape-Aware Topological Representation for GPR
Data with DNN Integration”. In: arXiv preprint arXiv:2506.06311 (2025).

[2] Jianwei Lei et al. “GPR detection localization of underground structures based on
deep learning and reverse time migration”. In: NDT & E International 143 (2024),
p. 103043.

[3] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 779–788.

[4] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with re-
gion proposal networks”. In: Advances in neural information processing systems
28 (2015).

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medi-
cal image computing and computer-assisted intervention. Springer. 2015, pp. 234–
241.
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Civil Engineering
The planning, design, construction, and maintenance of the built and natural 

environment including infrastructure such as roads, bridges, canals, dams, 

airports, pipelines, sewage systems, buildings, and railways.

L. Euler was also one of pioneers of civil engineering. 

AI

Math

Data

Real-
world

problem

Collect real-time industrial data from sensors, machines, and digital 
systems to reflect the physical environment and operational states.

DATA

Use artificial intelligence to learn patterns from data and make 
automated decisions for optimization, fault detection, and predictive 
maintenance.

AI

Translate data into interpretable mathematical models that support 
analysis, simulation, forecasting, and algorithmic reasoning.

Math

AIM: Solve Real world Problem

How Do We Solve Industrial Problems Using Math?

In the era of the Fourth Industrial Revolution, the integration of Data, 
Mathematics, and Artificial Intelligence (AI) enables industries to 
address complex, real-world.

Industrial Mathematics

Topological Data Analysis for 
Non-Destructive Testing in Civil 
Engineering

2025 Topological Data Analysis and Industrial Math

2025. 8. 5

Suyoung Choi (Ajou Univ.)
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Urban problems

Urban problems

• Rapid urbanization increases underground 

safety concerns.

• Many underground facilities are poorly 

documented or mismatched with design 

drawings.

• Accurate underground information is essential 

for safe and efficient urban development.

Civil Engineering DNN

Topological Data Analysis

Real-world Problem: 
Underground Utility Detection  

AI

Math

Data

Real-
world

problem

Industrial Mathematics
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NDT (nondestructive testing)

“A method of inspecting an object without transforming it when
you want to know the internal defects or components of the object”

• Does not permanently alter the article being inspected

• Save both money and time in product evaluation, troubleshooting and 

research

• Can be used to detect flaws in an in-process machine part

Underground exploration in Korea
• Implementationplanfordisasterandsafetymanagement technology development 2016

(2016년재난및안전관리기술개발시행계획)

• Special law on Underground Safety Management 2022.1. 28

(지하안전관리에관한특별법)

Developers planning large-scale underground excavation projects, as defined by 

government regulation, are required to conduct an underground safety assessment.

(대통령령으로정하는규모이상의지하굴착공사를수반하는사업을하려는지하개발사업자는반드시지하안전평가를실시해야함)

Problems: 

Underground Utilities: water pipes, gas lines, electrical cables …

Water Gas

Electrical

Locating and identifying utilities are essential and necessary!

Impact our daily lives! 

Industrial Problem –Underground Utility Detection

4



Electrical Resistivity Surveys

geophysical method used to investigate subsurface structures by measuring the

soil’s resistance to electrical current

GPR (Ground-penetrating radar)

“A geophysical method that uses radar pulses 

to image the subsurface”

Is it possible to find out the type and characteristics of 

underground burial without digging the ground?

GPR 레이더탐사

GPRレーダー

GPR radar

충격반항기법탐사

衝撃弾性波法
Impact Echo

전기비저항탐사

電気探査(比抵抗法)

Electrical 
Resistivity Surveys

NDT (nondestructive testing)
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Proj 1 : Pipe detection (GPR)

GPR (Ground-penetrating radar)

Project Goal:

To detect underground pipes or 
cavities using GPR data

Proj 1 : Pipe detection (GPR)

supported by

KEPCO Research Institute (KEPRI)

Impact-echo method

technique that uses sound waves from small impacts to find cracks or voids 
inside concrete structures.

6



Proj 1 : Pipe detection (GPR)

Cavity Pipe

Proj 1 : Pipe detection (GPR)

GPR (Ground-penetrating radar) : B-scan image

Proj 1 : Pipe detection (GPR)

GPR (Ground-penetrating radar)
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Proj 1 : Pipe detection (GPR)

How to improve?
1. Sim2Real (Simulation to Reality)
• Train models using simulated underground scenarios.

• Transfer knowledge to real GPR data through domain adaptation.

• Reduce data collection cost and improve model robustness.

2. TDA (Topological Data Analysis)
• Extract shape-based features from GPR images.
• Identify persistent topological structures that correspond to underground 

objects.
• Improve interpretability and detection accuracy.

Proj 1 : Pipe detection (GPR)

The Risk of False Predictions

FP FNTP

• FP (False Positive) : Detecting a pipe where there is none
→ Leads to wasted time, cost, and unnecessary digging

• FN(False Negative) : Failing to detect an actual pipe
→ Can cause serious safety hazards, such as accidents or 
infrastructure damage

20

Proj 1 : Pipe detection (GPR)

Cavities

Not cavities but similar images
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Proj 1 : Pipe detection (GPR)

Data Generation and Collection

Proj 1 : Pipe detection (GPR)

Why TDA?
1. Needs
• Cavity patterns in GPR data are typically homeomorphic 

to S-shaped

• Shapes may distort due to noise, but TDA is stable 
under such perturbations

2. Challenges
• No straightforward way to apply TDA directly to image 

data

• Too many 1-cylces appear in persistence diagrams, 
making interpretation difficult

Proj 1 : Pipe detection (GPR)

Why Sim2Real?
1. Needs
• Real GPR data is hard to obtain

• Ground truth is uncertain, even with field data

• On-site surveys are costly and require road 
closures

2. Challenges
• Simulated GPR data is often unrealistic

• Simulation is time-consuming to generate

(Reference image)
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Proj 1 : Pipe detection (GPR)

Image to cubical complex

25540030

2554023052

019020015

1801420150

���e�
thresholds

  

  

Proj 1 : Pipe detection (GPR)

Cubical Complex

Proj 1 : Pipe detection (GPR)

Doing TDA

Point Cloud Filtration
Seq. of 

Betti numbers
Analysis

HOW?

• Does it make sense?

• Is it computable?

• Does it produce meaningful results?
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Threshold: 0.30

Lifetime-weighted topological 

representation for object detection.

Proj 1 : Pipe Detection (GPR)

Proj 1 : Pipe detection (GPR)

Colored by the life time of each generator of 

Proj 1 : Pipe detection (GPR)

Observation
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Thank you for your attention!

Suyoung Choi (Ajou Univ.)
schoi@ajou.ac.kr

12



Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

RNA Landscape Analysis via Combinatorial Hodge
Decomposition

Yusuke Imoto

Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University,
Japan

Cell differentiation can be conceptualized as movement on Waddington’s epigenetic
landscape, yet reconstructing this landscape from high-dimensional single-cell data
remains challenging. Here, we propose landscape analysis, a novel framework for
single-cell RNA-seq data that reconstructs an RNA landscape, which is Waddington’s
landscape-like structure, and performs downstream dynamical analysis utilizing this
landscape. Single-cell RNA-seq measures transcript levels for approximately 20,000
genes per cell, producing a high-dimensional expression matrix. By applying RNA
velocity, we convert these static profiles into vectors that predict each cell’s future
transcriptional trajectory. We then perform Hodge decomposition on this velocity field
to extract the potential that forms the gradient component. The resulting potential
surface defines the RNA landscape’s height. Finally, by geometrically or statistically
analyzing the potential, we derive biologically meaningful insights such as single-cell
trajectories, time-resolved differential expression dynamics, and gene functions in cell
differentiation. We applied landscape analysis to time-series scRNA-seq data of the
PGCLC induction system, identifying differentiation pathways and candidate genes
driving induction.

References.

[1] Roberto Buizza and Tim N Palmer. “The singular-vector structure of the at-
mospheric global circulation”. In: Journal of Atmospheric Sciences 52.9 (1995),
pp. 1434–1456.

[2] Yusuke Imoto and Yasuaki Hiraoka. “V-mapper: Topological data analysis for
high-dimensional data with velocity”. In: Nonlinear Theory and Its Applications,
IEICE 14.2 (2023), pp. 92–105.

[3] Martin Leutbecher and Tim N Palmer. “Ensemble forecasting”. In: Journal of
computational physics 227.7 (2008), pp. 3515–3539.

[4] Lek-Heng Lim. “Hodge Laplacians on graphs”. In: Siam Review 62.3 (2020),
pp. 685–715.

[5] Pascal Oettli et al. “Meteorological Landscape of Tropical Cyclone”. In: EGU-
sphere 2025 (2025), pp. 1–28.
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

PHLP: Interpretable Link Prediction via Persistent
Homology and Its Extension to Knowledge Graph

Completion

Junwon You

Basic Science Research Institute, POSTECH, Korea

We introduce PHLP, a novel and interpretable link prediction framework that uti-
lizes persistent homology to extract topological features from local subgraphs. Un-
like conventional GNN-based methods, PHLP offers a transparent feature extrac-
tion process that captures topological patterns underlying graph connectivity. PHLP
achieves near–state-of-the-art performance across standard benchmarks without relying
on GNNs. We also briefly present preliminary results on extending PHLP to knowledge
graph completion, demonstrating its potential in capturing relational patterns through
topological representations. This research conducted together with Eunwoo Heo and
Jae-Hun Jung.

References.

[1] Lada A Adamic and Eytan Adar. “Friends and neighbors on the web”. In: Social
networks 25.3 (2003), pp. 211–230.

[2] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE
transactions on neural networks and learning systems 32.1 (2020), pp. 4–24.

[3] Lin Yao et al. “Link prediction based on common-neighbors for dynamic social
network”. In: Procedia Computer Science 83 (2016), pp. 82–89.

[4] Junwon You, Eunwoo Heo, and Jae-Hun Jung. “Phlp: Sole persistent homology for
link prediction-interpretable feature extraction”. In: arXiv preprint arXiv:2404.15225
(2024).

[5] Ziwei Zhang, Peng Cui, and Wenwu Zhu. “Deep learning on graphs: A survey”. In:
IEEE Transactions on Knowledge and Data Engineering 34.1 (2020), pp. 249–270.
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Preliminaries: Persistent Homology

➢ Persistent homology is a method for computing topological features of a 

data space at different spatial resolutions.

➢ For given data points, we assume that the given data is a set of samples 

drawn from some underlying unknown manifold.

➢ To approximate this manifold with sampled data points, we use a 

simplicial complex. 

Preliminaries

Definition 1. Abstract simplicial complex.

An abstract simplicial complex is a collection 𝐾𝐾 of non-empty subsets a set 𝑉𝑉(𝐾𝐾) such that, for every 
element 𝜎𝜎 ∈ 𝐾𝐾, all non-empty subsets 𝜎𝜎′ ⊆ σ are also contained in 𝐾𝐾.

2025-08-04 TDA+IM 2025 3/47

Contents

➢ Preliminaries: Persistent Homology (PH)

➢ Application1: PHLP: Sole Persistent Homology for Link Prediction -

Interpretable Feature Extraction

➢ Application2: Knowledge Graph Completion through PHLP

2025-08-04 TDA+IM 2025

PHLP: Interpretable Link Prediction via 
Persistent Homology and Its Extension to 

Knowledge Graph Completion

Junwon You
Joint work with Eunwoo Heo and Jae-Hun Jung

TDA+IM 2025
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Preliminaries: Persistent Homology
Preliminaries

Definition 4. Persistent homology groups.

For a simplicial filtration ℱ, the 𝑝𝑝-th persistence homology groups are defined as the images 
of the homomorphisms 𝐻𝐻𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑖𝑖𝑖𝑖(ℎ𝑝𝑝𝑖𝑖,𝑗𝑗: 𝐻𝐻𝑝𝑝 𝐾𝐾𝑖𝑖 → 𝐻𝐻𝑝𝑝 𝐾𝐾𝑗𝑗 ) which is induced by the inclusion 
𝐾𝐾𝑖𝑖 ↪ 𝐾𝐾𝑗𝑗 of ℱ, where 0 ≤ 𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑛𝑛 and each 𝐻𝐻𝑝𝑝(𝐾𝐾𝑖𝑖) represents 𝑝𝑝-th homology group of 𝐾𝐾𝑖𝑖
for 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛. The 𝑝𝑝-th persistence Betti numbers are the dimensions 𝛽𝛽𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑 𝐻𝐻𝑝𝑝𝑖𝑖,𝑗𝑗 of the 

vector space 𝐻𝐻𝑃𝑃
𝑖𝑖,𝑗𝑗 .

➢ Defien 𝜇𝜇𝑝𝑝𝑖𝑖,𝑗𝑗 = 𝛽𝛽𝑝𝑝𝑖𝑖,𝑗𝑗−1 − 𝛽𝛽𝑝𝑝𝑖𝑖,𝑗𝑗 − (𝛽𝛽𝑝𝑝𝑖𝑖−1,𝑗𝑗−1 − 𝛽𝛽𝑝𝑝𝑖𝑖−1,𝑗𝑗) for 0 < 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛.

▪ 𝜇𝜇𝑝𝑝𝑖𝑖,𝑗𝑗 counts the number of independent classes that are born at 𝐾𝐾𝑖𝑖 and die at 𝐾𝐾𝑗𝑗.

▪ Additionally, we define 𝜇𝜇𝑝𝑝𝑖𝑖,𝑛𝑛+1 (or 𝜇𝜇𝑝𝑝𝑖𝑖,∞ ) to denote the number of independent classes that are born at 𝐾𝐾𝑖𝑖 and never die.

➢ Note that we can define a function 𝑓𝑓 that induces the filtration ℱ such that 𝑓𝑓 𝐾𝐾𝑖𝑖 = 𝑎𝑎𝑖𝑖 where 0 ≤
𝑖𝑖 ≤ 𝑛𝑛 and 𝑎𝑎0 < 𝑎𝑎1 < ⋯ < 𝑎𝑎𝑛𝑛.
▪ In the case of the Rips filtration, 𝑓𝑓 is defined as 𝑓𝑓 𝕍𝕍ℝ𝑟𝑟 𝑃𝑃 = 2𝑟𝑟.
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Preliminaries: Persistent Homology
Preliminaries

Definition 3. Simplicial filtration.

A filtration ℱ = ℱ(𝐾𝐾) of a simplicial complex 𝐾𝐾 is a nested sequence of its subcomplexes:
∅ = 𝐾𝐾0 ↪ 𝐾𝐾1 ↪ ⋯ ↪ 𝐾𝐾𝑛𝑛 = 𝐾𝐾.

➢ For a finite metric space (𝑃𝑃, 𝑑𝑑), a Rips filtration 𝕍𝕍ℝ𝑟𝑟 𝑃𝑃 ↪ 𝕍𝕍ℝ𝑟𝑟′ 𝑃𝑃 𝑟𝑟≤𝑟𝑟′ is a sequence of 

nested Rips complex, each constructed for a different value of the scale parameter 𝑟𝑟. 

Image from https://christian.bock.ml/posts/persistent_homology/
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Preliminaries: Persistent Homology
Preliminaries

Definition 2. Vietoris-Rips complex.

Let (𝑃𝑃, 𝑑𝑑) be a finite metric space. For a real value 𝑟𝑟 > 0, the Vietoris-Rips (Rips) complex 𝕍𝕍ℝ𝑟𝑟(𝑃𝑃) is 
the abstract simplicial complex where a simplex 𝜎𝜎 ∈ 𝕍𝕍ℝ𝑟𝑟(𝑃𝑃) if and only if the distance 𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 2𝑟𝑟 for 
all pairs of vertices 𝑝𝑝, 𝑞𝑞 ∈ 𝜎𝜎.

➢ The choice of the parameter 𝑟𝑟 is crucial for the approximation of the manifold since it 

determines the scale at which we construct the simplicial complex.

➢ Instead of selecting a single 𝑟𝑟, we use a process called filtration, where we vary 𝑟𝑟 over a 

range of values and observe how the topological structure evolves.
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Preliminaries: Persistent Homology
Preliminaries

Image from https://www.math.ens.psl.eu/~eaamari/teaching/2022-2023/M2_Jussieu/Lesson%205.pdf
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Preliminaries: Persistent Homology
Preliminaries

Definition 5. Barcode.

The 𝑝𝑝-dimensional barcode 𝐵𝐵𝑝𝑝(ℱ𝑓𝑓) of a filtration ℱ𝑓𝑓 is defined as a multi-set of intervals 

𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗 ∈ ഥℝ2 for all non-zero 𝜇𝜇𝑝𝑝𝑖𝑖,𝑗𝑗, 0 < 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 + 1, with multiplicity 𝜇𝜇𝑝𝑝𝑖𝑖,𝑗𝑗, where ഥℝ = ℝ ∪±∞. 
The persistence of a class that is born at 𝐾𝐾𝑖𝑖 and dies at 𝐾𝐾𝑗𝑗 is defined as 𝑎𝑎𝑗𝑗 − 𝑎𝑎𝑖𝑖 . 

Definition 6. Persistence Diagram.

The 𝑝𝑝-dimensional persistence diagram 𝐷𝐷𝐷𝐷𝑚𝑚𝑝𝑝 ℱ𝑓𝑓 of a filtration ℱ𝑓𝑓 is obtained by plotting 
each point 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗 for all 𝑎𝑎𝑖𝑖, 𝑎𝑎𝑗𝑗 ∈ 𝐵𝐵𝑝𝑝(ℱ𝑓𝑓) on the extended plane ഥℝ2. Additionally, points on 
the diagonal ∆= (𝑥𝑥, 𝑥𝑥) are added with infinite multiplicity.

2025-08-04 TDA+IM 2025 7/47
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Preliminaries: Link Prediction (LP)

➢ Problem definition

Application1: Link Prediction

Problem. Link Prediction.

Consider a network 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), where 𝑉𝑉 represents the entity nodes in the network, and 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉
represents the set of "true" links between entities. We are given the set of entities 𝑉𝑉 and a subset E′ ⊂
𝐸𝐸 of true links known as observed links. The objective of link prediction is to discover the unobserved 
true links 𝐸𝐸\E′.

➢ In the binary classification formulation of the link prediction task, the potential links 𝐿𝐿 are 

classified as either true links or false links. Thus, Link prediction model 𝑀𝑀𝑏𝑏 is a function that maps 

links in 𝐿𝐿 to positive and negative labels i.e. 𝑀𝑀𝑏𝑏: 𝐿𝐿 → {0,1}.

➢ In the probability estimation formulation, potential links are associated with existence probabilities. 

Thus, Link prediction model 𝑀𝑀𝑝𝑝 is a function that maps links in 𝐿𝐿 to a probability i.e. 𝑀𝑀𝑝𝑝: 𝐿𝐿 → [0,1].

2025-08-04 TDA+IM 2025 12/47

Preliminaries: Link Prediction (LP)

➢ What is Network?

▪ 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸), 𝑉𝑉: the set of entities, 𝐸𝐸: the set of links.

▪ Example 𝑉𝑉: the set of airports, 𝐸𝐸: the set of two airport pairs.

▪ 𝑉𝑉 = 𝐿𝐿. 𝐴𝐴. , 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,… , 𝐸𝐸 = 𝐿𝐿. 𝐴𝐴. , 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , 𝐿𝐿. 𝐴𝐴. , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,… .
▪ Social network, citation network, biological network.

➢ What is Link Prediction (LP) problem?

▪ LP is the problem of predicting the existence of a unseen link between two entities 

in a network based on observed links.

Application1: Link Prediction

2025-08-04 TDA+IM 2025 11/47

Preliminaries: Link Prediction (LP)

➢ What is Network?

Application1: Link Prediction

Image from: https://www.sec.gov/Archives/edgar/data/701345/000119312513080344/g486396001.jpgImage from https://www.kbhaskar.com/project/facebook/featured.png

Facebook Social Network USAir Airline Network
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Our methods
Application1: Link Prediction

➢ Motivation

2025-08-04 TDA+IM 2025 15/47

Introduction to Link Prediction (LP)

➢ Graph Neural Network (GNN) methods

▪ These methods leverage GNNs to learn powerful representations by aggregating 

node features from neighborhoods. 

▪ GNN-based models have achieved significant score improvements in capturing 

intricate relationships within graphs.

▪ However, GNN-based methods are comprised of neural networks, making it 

challenging to understand why a certain prediction was made.

➢ In this context, we present a novel approach to LP, called PHLP, which 

uses the topological information of a graph for the prediction.

Application1: Link Prediction

2025-08-04 TDA+IM 2025 14/47

Preliminaries: Link Prediction (LP)
Application1: Link Prediction

Image from https://graph-neural-networks.github.io/static/file/chapter10.pdf

➢ Heuristic methods.

2025-08-04 TDA+IM 2025 13/47
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Extracting angle hop subgraph

➢ 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸): given graph, 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉: given target nodes

➢ The 𝑘𝑘-hop enclosing subgraph 𝒩𝒩𝑢𝑢,𝑣𝑣
𝑘𝑘 = 𝑉𝑉′, 𝐸𝐸′ for (𝑢𝑢, 𝑣𝑣) is defined as 

▪ 𝑉𝑉′ = 𝑧𝑧 ∈ 𝑉𝑉 ∶ 𝑑𝑑 𝑢𝑢, 𝑧𝑧 ≤ 𝑘𝑘 𝑜𝑜𝑜𝑜 𝑑𝑑 𝑧𝑧, 𝑣𝑣 ≤ 𝑘𝑘 ,
▪ 𝐸𝐸𝐸 = { 𝑧𝑧, 𝑤𝑤 ∈ 𝐸𝐸 ∶ 𝑧𝑧 ∈ 𝑉𝑉′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤 ∈ 𝑉𝑉′ }.

2025-08-04 TDA+IM 2025

➢ The (𝑘𝑘, 𝑙𝑙)-angle hop enclosing subgraph 

𝒩𝒩𝑢𝑢,𝑣𝑣
(𝑘𝑘,𝑙𝑙) = 𝑉𝑉′, 𝐸𝐸′ for (𝑢𝑢, 𝑣𝑣) is defined as 

▪ 𝑉𝑉′ = 𝑧𝑧 ∈ 𝑉𝑉 ∶ 𝑑𝑑 𝑢𝑢, 𝑧𝑧 ≤ 𝑘𝑘 𝑜𝑜𝑜𝑜 𝑑𝑑 𝑧𝑧, 𝑣𝑣 ≤ 𝑙𝑙 ,
▪ 𝐸𝐸′ = { 𝑧𝑧, 𝑤𝑤 ∈ 𝐸𝐸 ∶ 𝑧𝑧 ∈ 𝑉𝑉′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤 ∈ 𝑉𝑉′ }.
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction
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Preliminaries: Link Prediction (LP)
Application1: Link Prediction

➢ Limitation and Motivation
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Filtration of the Subgraph

➢ DRNL (Double radius node labeling, Zhang et al.)

▪ 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎,𝑏𝑏 𝑤𝑤 = 1 +min 𝑑𝑑 𝑤𝑤, 𝑎𝑎 , 𝑑𝑑 𝑤𝑤, 𝑏𝑏 + 𝑞𝑞𝑤𝑤 𝑞𝑞𝑤𝑤 + 𝑟𝑟𝑤𝑤 − 1 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑 𝑤𝑤, 𝑎𝑎

+ 𝑑𝑑 𝑤𝑤, 𝑏𝑏 = 2𝑞𝑞𝑤𝑤 + 𝑟𝑟𝑤𝑤, 𝑞𝑞𝑤𝑤 ∈ ℤ, 𝑟𝑟𝑤𝑤 ∈ 0,1 .

2025-08-04 TDA+IM 2025

𝑑𝑑 𝑤𝑤, 𝑎𝑎 , 𝑑𝑑 𝑤𝑤, 𝑏𝑏 (0,-), (-,0) (1,1) (1,2), (2,1) (1,3), (3,1) (2,2) (1,4), (4,1) (2,3), (3,2) …

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎,𝑏𝑏 𝑤𝑤 1 2 3 4 5 6 7 …
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Filtration of the Subgraph

➢ To apply the Rips filtration, we define an edge-weight function using 

node labeling that reflects the topology of the given graph.

➢ DRNL (Double radius node labeling, Zhang et al.)

▪ 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎,𝑏𝑏 𝑤𝑤 = 1 +min 𝑑𝑑 𝑤𝑤, 𝑎𝑎 , 𝑑𝑑 𝑤𝑤, 𝑏𝑏 + 𝑞𝑞𝑤𝑤 𝑞𝑞𝑤𝑤 + 𝑟𝑟𝑤𝑤 − 1 , 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑 𝑤𝑤, 𝑎𝑎 +

𝑑𝑑 𝑤𝑤, 𝑏𝑏 = 2𝑞𝑞𝑤𝑤 + 𝑟𝑟𝑤𝑤, 𝑞𝑞𝑤𝑤 ∈ ℤ, 𝑟𝑟𝑤𝑤 ∈ 0,1 .

➢ Degree DRNL

▪ 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎,𝑏𝑏 𝑤𝑤 = 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎,𝑏𝑏 𝑤𝑤 + 𝑀𝑀 −deg(𝑤𝑤)
𝑀𝑀 , where 𝑀𝑀 denotes the maximum 

degree of nodes in a subgraph. 
2025-08-04 TDA+IM 2025 20/47

Ablation Studies: Angles of PHLP
Application1: Link Prediction

➢ Table VI presents the performance of PHLP 

(dim 0) concerning various (𝑘𝑘, 𝑙𝑙)-angle hop 

subgraphs.

➢ The best angle varies by datasets, highlighting 

the importance of varying angles to achieve 

the best performance. 

➢ Therefore, using MA-PHLP is recommended to 

maximize performance consistently across 

datasets.

2025-08-04 TDA+IM 2025 19/47
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Filtration of the Subgraph

➢ For given subgraph 𝒩𝒩 = 𝑉𝑉′, 𝐸𝐸′ , 𝑓𝑓: 𝑉𝑉′ → ℕ denotes a node labeling.

➢ The edge-weight function 𝑊𝑊:𝑉𝑉′ → ℝ is defined as

▪ 𝑊𝑊 𝑤𝑤, 𝑧𝑧 = max 𝑓𝑓 𝑤𝑤 , 𝑓𝑓 𝑧𝑧 + m𝑖𝑖𝑖𝑖(𝑓𝑓 𝑤𝑤 ,𝑓𝑓 𝑧𝑧 )
max(𝑓𝑓 𝑤𝑤 ,𝑓𝑓 𝑧𝑧 )

▪ The min/max term refines values further, enhancing the discriminative power by 

reducing the occurrence of identical edge weights.

2025-08-04 TDA+IM 2025 24/47

Ablation Studies: Effects of Degree DRNL
Application1: Link Prediction

➢ To assess the proposed Degree DRNL regarding the influence of incorporating degree 

information, we conducted experiments using DRNL and Degree DRNL and compared 

the results.

➢ Across all datasets, MA-PHLP yields 

higher AUC scores when used with 

Degree DRNL than with DRNL.

➢ The substantial improvement observed 

in the Power dataset is noteworthy, 

where Degree DRNL yields an increase 

of over 4 points in the AUC score.

2025-08-04 TDA+IM 2025 23/47

Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

➢ Filtration of the Subgraph

2025-08-04 TDA+IM 2025 22/47
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Multiangle PHLP (MA-PHLP)

➢ The MA-PHLP maximizes the advantages of PHLP by examining data from various 

angles through the extraction of subgraphs based on a hyperparameter, the maximum 

hop (max hop, denoted as 𝐻𝐻). 

➢ The types of anlges are elements of all combinations of 𝑘𝑘 and 𝑙𝑙 within the set { 𝑘𝑘, 𝑙𝑙 ∈
ℤ2 ∶ 0 ≤ 𝑙𝑙 ≤ 𝑘𝑘 ≤ 𝐻𝐻, 𝑘𝑘 > 0}. Denotes the cardinality of this set as 𝑁𝑁. 

➢ The MA-PHLP predicts the likelihood of the link existence with the following probability: 

▪ 𝑝𝑝 = σ𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖𝑧𝑧𝑖𝑖 , where 𝛼𝛼 = 𝛼𝛼1,⋯ , 𝛼𝛼𝑁𝑁 ∈ ℝ𝑁𝑁 is a trainable parameter, and 𝑧𝑧𝑖𝑖 denotes the 

prediction probability of a PHLP for each type of angle hop for 𝑖𝑖 = 1,2,⋯ ,𝑁𝑁.

2025-08-04 TDA+IM 2025 27/47

Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Predicting the existence of the target link.

➢ Step5. By above process, we convert any link (𝑢𝑢, 𝑣𝑣) to a single vector 𝑥𝑥 𝑢𝑢,𝑣𝑣 . Thus we 

converted LP problem as a binary classification task of given vectors.

➢ Step6. We employ MLP classifier Φ for prediction. The classifier Φ predicts the existence 

of a link between two target nodes with the following probability:

▪ 𝑧𝑧𝑢𝑢𝑢𝑢 = 𝜎𝜎(Φ 𝑥𝑥 𝑢𝑢,𝑣𝑣 ).

➢ Step7. This classifier Φ is trained with the binary cross-entroy loss function 𝐵𝐵𝐵𝐵𝐵𝐵. 

▪ σ 𝑢𝑢,𝑣𝑣 ∈𝒳𝒳 𝐵𝐵𝐵𝐵𝐵𝐵(𝑧𝑧𝑢𝑢𝑢𝑢, 𝑦𝑦𝑢𝑢𝑢𝑢), where 𝑦𝑦𝑢𝑢𝑢𝑢 denotes the label of the target link.
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Predicting the existence of the target link.

➢ Step1. For the given target nodes 𝑢𝑢, 𝑣𝑣 , extract the (𝑘𝑘, 𝑙𝑙)-angle hop subgraph 𝒩𝒩𝑢𝑢,𝑣𝑣
(𝑘𝑘,𝑙𝑙), 

denoted as 𝒩𝒩−, assuming that the target link does not exist during the process. 

➢ Step2. On this subgraph calculates the edge-weights and extracts topological features 

by calculating PD and its vectorization, persistence image. 

➢ Step3. If 𝑘𝑘 ≠ 𝑙𝑙, for symmetry, repeat the same process with the (𝑙𝑙, 𝑘𝑘)-angle hop 

subgraph and consider the average of the two vectors, denoting this vector as 𝑥𝑥 𝑢𝑢,𝑣𝑣
− .

➢ Step4. To observe the difference in topological features, we consider a subgraph 𝒩𝒩+

obtained by connecting the target link. For this graph, 𝑥𝑥 𝑢𝑢,𝑣𝑣
+ denotes the vector 

obtained using this method. Concatenate these vectors as a single vector 𝑥𝑥 𝑢𝑢,𝑣𝑣 .
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Hybrid Method

➢ The proposed approach easily integrates with existing subgraph methods. Subgraph methods 

treat the LP task as a binary classification problem comprising two components: a feature 

extractor 𝐹𝐹 and classifier 𝑃𝑃.

➢ Step1. Subgraph extraction: For the given graph 𝐺𝐺 and target nodes (𝑢𝑢, 𝑣𝑣), 𝑘𝑘-hop subgraph 𝒩𝒩𝑢𝑢,𝑣𝑣
𝑘𝑘

is extracted.

➢ Step2. Feature extraction: Existing methods extract features 𝑍𝑍 = 𝐹𝐹(𝒩𝒩𝑢𝑢,𝑣𝑣
𝑘𝑘 ).

➢ Step3. Persistence image calculation: Our method extracts topological features and denotes as 𝐼𝐼. 
Use MLP Φ to transforms 𝐼𝐼 into a format similar to 𝑍𝑍. 

➢ Step4. Concatenate 𝛼𝛼1𝑍𝑍 and 𝛼𝛼2Φ(𝐼𝐼) where 𝛼𝛼1 and 𝛼𝛼2 are trainable parameters. This concatenated 

vector is classified using the existing method’s classifier. 
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Our methods: Persistent Homology for Link Prediction
Application1: Link Prediction

Hybrid Method

➢ The proposed approach easily integrates with existing subgraph methods. Subgraph methods 

treat the LP task as a binary classification problem comprising two components: a feature 

extractor 𝐹𝐹 and classifier 𝑃𝑃.

➢ Step1. Subgraph extraction: For the given graph 𝐺𝐺 and target nodes (𝑢𝑢, 𝑣𝑣), 𝑘𝑘-hop subgraph 𝒩𝒩𝑢𝑢,𝑣𝑣
𝑘𝑘

is extracted.

➢ Step2. Feature extraction: Existing methods extract features 𝑍𝑍 = 𝐹𝐹(𝒩𝒩𝑢𝑢,𝑣𝑣
𝑘𝑘 ).

➢ Step3. Persistence image calculation: Our method extracts topological features and denotes as 𝐼𝐼. 
Use MLP Φ to transforms 𝐼𝐼 into a format similar to 𝑍𝑍. 

➢ Step4. Concatenate 𝛼𝛼1𝑍𝑍 and 𝛼𝛼2Φ(𝐼𝐼) where 𝛼𝛼1 and 𝛼𝛼2 are trainable parameters. This concatenated 

vector is classified using the existing method’s classifier. 
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Results: MA-PHLP
Application1: Link Prediction
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Ablation Studies: Comparison with TLC-GNN
Application1: Link Prediction

➢ To demonstrate that the proposed method extracts superior topological information compared to the other 

method TLC-GNN which use PH, we conducted the experiments. The TLC-GNN was constructed by 

augmenting the GCN model with PI information. We replaced the PI component of the TLC-GNN model with 

the PI vector produced by MA-PHLP, resulting in the MA-PHLP-GNN.

➢ The MA-PHLP-GNN outperformed the TLC-GNN significantly on the CiteSeer and PubMed datasets while 

achieving similar performance on the Cora dataset.

➢ The TLC-GNN does not exhibit performance improvement for the PubMed dataset despite adding topological 

information. However, the proposed MA-PHLP-GNN demonstrates substantial performance enhancement.
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Ablation Studies: Persistence Image Resolution
Application1: Link Prediction

➢ We conducted ablation studies to evaluate 

the sensitivity of MA-PHLP (0-dim) to the 

resolution of persistence images (PIs).

➢ As shown in the figure, model performance 

remains relatively stable as long as the 

resolution is not too small.

➢ This suggests that PI resolution is not a 

highly sensitive hyperparameter.

➢ Based on this observation, we set 𝑚𝑚 = 16 as 

a balanced choice between computational 

cost and performance for all experiments.
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Results: hybrid methods
Application1: Link Prediction
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Preliminaries: Knowledge Graph (KG)

➢ Knowledge in graph from:

▪ Capture entities, types, and relations

➢ Nodes are entities

➢ Nodes are labeled with their types

➢ Edges between two nodes capture 

relationships between entities

➢ KG can store semantic data

➢ KG can be formulated as 𝐾𝐾𝐾𝐾 = ℰ, ℛ, 𝒯𝒯 where 

ℰ is the set of entities, ℛ is the set of relations 

and 𝒯𝒯 ⊂ ℰ × ℰ × ℛ is the set of triples ℎ, 𝑡𝑡, 𝑟𝑟 .

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

Image from: https://deeppavlov.ai/research/tpost/bn15u1y4v1-improving-knowledge-graph-
completion-wit
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Preliminaries: Knowledge Graph (KG) 

➢ What is Knowledge Graph?

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

Image from: https://deeppavlov.ai/research/tpost/bn15u1y4v1-improving-knowledge-graph-completion-wit
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Extension to Knowledge Graph Completion
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Preliminaries: Knowledge Graph (KG)

Knowledge Graph Embedding (KGE)

➢ Maps entities and relations into a vector space while preserving 

the structural information of the KG.

➢ Enables the prediction of triples using embeddings.

▪ Define scoring function 𝑓𝑓:𝒯𝒯 → [0,1] such that:

▪ If ℎ, 𝑟𝑟, 𝑡𝑡 ∈ 𝒯𝒯, then 𝑓𝑓 ℎ, 𝑟𝑟, 𝑡𝑡 ≈ 1
▪ Else, 𝑓𝑓 ℎ, 𝑟𝑟, 𝑡𝑡 ≈ 0.

➢ One well-known KGE method is TransE (NeurIPS 2013).

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025 39/47

Preliminaries: Knowledge Graph (KG)

Knowledge Graph Completion (KGC)

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

(h, t, ?)
(h, ?, r)
(?, t, r)
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Preliminaries: Knowledge Graph (KG)

Examples of knowledge graphs

➢ Google Knowledge Graph Search API

▪ powers semantic search results.

➢ Amazon Product Graph

▪ recommend products based on user preferences and item relationships.

➢ Facebook Graph API

▪ captures user connections, interactions, and interests.

➢ Microsoft Satori Knowledge Graph

▪ supports structured information for Bing search and Cortana.

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025 37/47
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Our Method
Application2: Knowledge Graph
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Subgraph-based GNNs for KGC
Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

➢ Limitation of KGE (e.g., TransE)

▪ Rely on manually defined scoring functions.

▪ Assume simple relational patterns. 

▪ Struggle with complex relational structures.

➢ Subgraph-based GNN Approach

▪ For a triple ℎ, 𝑡𝑡, 𝑟𝑟 , extract its enclosing subgraph.

▪ Then they apply message passing, which uses semantic embeddings of entities and relations to capture 

the relational context.

▪ The resulting embedding reflects the local graph structure and is used for final prediction.

➢ These subgraph-based GNN methods currently achieve state-of-the-art performance in many KGC 

benchmarks. 

➢ However, most models still rely heavily on structural and semantic information only.

41/47

Preliminaries: Knowledge Graph (KG)

TransE (NeurIPS 2013)

Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

Image from: https://aws-dglke.readthedocs.io/en/latest/kg.html

ℎ + 𝑟𝑟 ≈ 𝑡𝑡

40/47

➢ This method is simple yet effective.

➢ But it struggles with symmetric relations.

▪ Ex. “is a friend of”

▪ If A is a friend of B, then:

▪ A+r=B and B+r=A, thus, A+2r=A so r=0.

➢ To address this, many extensions have been 

proposed:

▪ TransR, TorusE, RotatE, DistMult, ComplEx, and others.
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Results
Application2: Knowledge Graph
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Our Method
Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

3. Subgraph Conversion to Weighted Simple Graph.

Given a knowledge graph 𝐾𝐾𝐾𝐾 = ℰ,ℛ, 𝒯𝒯 where ℰ is the set of entities, ℛ is the set of relations and 𝒯𝒯 ⊂ ℰ × ℰ × ℛ is 

the set of triples (ℎ, 𝑡𝑡, 𝑟𝑟), we define a simple graph of 𝐾𝐾𝐾𝐾 as 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) where 𝑉𝑉 = ℰ and 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 if 𝑢𝑢, 𝑣𝑣, 𝑟𝑟 ∈ 𝒯𝒯 or 

𝑣𝑣, 𝑢𝑢, 𝑟𝑟 ∈ 𝒯𝒯 for any 𝑟𝑟 ∈ ℛ. 

➢ 1) Fixed Filtration. This follows the same edge weighting scheme used in PHLP. We use Degree DRNL, a node labeling 

method that assigns node labels based on distance and node degrees.

➢ 2) Filtration Learning. We introduce a learnable edge weighting function that utilizes the head, tail, and relation features. Let 

ℎ, 𝑡𝑡, 𝑟𝑟 ∈ 𝒯𝒯 be a triple, and let feature vectors derived from a GNN be denoted as 𝑥𝑥ℎ, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑟𝑟 , respectively. Then the weight 

function 𝑊𝑊 𝑢𝑢, 𝑣𝑣 is defined as:

𝑊𝑊 𝑢𝑢, 𝑣𝑣 = 1
|𝒯𝒯𝑢𝑢,𝑣𝑣|

෍
ℎ,𝑡𝑡,𝑟𝑟 ∈𝒯𝒯𝑢𝑢,𝑣𝑣

Φ(𝑥𝑥ℎ, 𝑥𝑥𝑡𝑡, 𝑥𝑥𝑟𝑟)

where Φ is a learnable multilayer perceptron and 

𝒯𝒯𝑢𝑢,𝑣𝑣 = ℎ, 𝑡𝑡, 𝑟𝑟 ∈ 𝒯𝒯 ℎ, 𝑡𝑡, 𝑟𝑟 = 𝑢𝑢, 𝑣𝑣, 𝑟𝑟 or ℎ, 𝑡𝑡, 𝑟𝑟 = 𝑣𝑣, 𝑢𝑢, 𝑟𝑟 for any 𝑟𝑟 ∈ ℛ}. 

This allows the filtration to reflect semantic information from the knowledge graph.
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Our Method
Application2: Knowledge Graph

2025-08-04 TDA+IM 2025

➢ 1. Subgraph Extraction 𝑲𝑲𝑮𝑮𝒔𝒔𝒔𝒔𝒔𝒔. Given a target triple (ℎ, 𝑡𝑡, 𝑟𝑟), we extract a local enclosing subgraph KG𝑠𝑠𝑠𝑠𝑠𝑠 from 

the knowledge graph 𝐾𝐾𝐾𝐾.

➢ 2. Subgraph-based GNN Encoding. Let's denote the GNN feature extractor as F(we employed the Rest model 

[1]). It produces a representation vector 𝑉𝑉𝐹𝐹 = F(KG𝑠𝑠𝑠𝑠𝑠𝑠) based on semantic and structural information.

➢ 3. Subgraph Conversion to Weighted Simple Graph. The extracted subgraph KG𝑠𝑠𝑠𝑠𝑠𝑠 is transformed into a 

weighted simple graph 𝐺𝐺 = 𝑉𝑉, 𝐸𝐸 , 𝑊𝑊: 𝐸𝐸 → ℝ≥0. Two weighting schemes are considered (next slide).

➢ 4. Persistent Homology via Graph Filtration. We construct a filtration on the weighted graph: 𝐾𝐾𝜖𝜖1 = ∅ ↪ 𝐾𝐾𝜖𝜖2
↪ 𝐾𝐾𝜖𝜖3 ↪ ⋯ ↪ 𝐾𝐾𝜖𝜖𝑚𝑚 = 𝕏𝕏 where 𝐾𝐾𝜖𝜖𝑖𝑖 = 𝜏𝜏 ∈ 𝕏𝕏 𝑖𝑖𝑖𝑖 𝜏𝜏 = 1 𝑜𝑜𝑜𝑜 𝜏𝜏 = 𝑢𝑢, 𝑣𝑣 𝑠𝑠. 𝑡𝑡.𝑊𝑊 𝑢𝑢, 𝑣𝑣 ≤ 𝜖𝜖𝑖𝑖}, 𝕏𝕏 = 𝑉𝑉 ∪ 𝐸𝐸 and 𝜖𝜖1 ≤ 𝜖𝜖3 ≤ 𝜖𝜖3
≤ ⋯𝜖𝜖𝑚𝑚. From this filtration, we compute persistence diagrams (PDs) and convert them to persistence images 

(PIs). This gives us the topological representation, denoted by 𝑉𝑉𝑇𝑇.

➢ 5. Fusion and Prediction. We concatenate the representations 𝑉𝑉𝐹𝐹 and 𝑉𝑉𝑇𝑇, and feed the result into a multilayer 

perceptron (MLP) classifier for final prediction.

[1] Liu, T., Lv, Q., Wang, J., Yang, S., & Chen, H. (2023). Learning rule-induced subgraph representations for inductive relation prediction. Advances in 
Neural Information Processing Systems, 36, 3517-3535.
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Preliminaries: Persistent Homology

➢ Persistence diagrams (barcodes) offer valuable topological insights, but they must be transformed 

into fixed-dimensional vectors that preserve this information in order to be integrated into deep 

learning architectures. We use persistence image as a vectorization method. 

➢ First, a barcode 𝐵𝐵 is rotated via the map 𝑇𝑇:ℝ2 → ℝ2, 𝑏𝑏, 𝑑𝑑 ↦ 𝑏𝑏, 𝑑𝑑 − 𝑏𝑏 .

➢ Next, the persistence surface 𝜌𝜌𝐵𝐵:ℝ2 → ℝ corresponding to 𝐵𝐵 is defined as

𝜌𝜌𝐵𝐵 𝑧𝑧 = ෍
𝑢𝑢∈𝑇𝑇(𝐵𝐵)

𝑤𝑤 𝑢𝑢 𝑔𝑔𝑢𝑢(𝑧𝑧)

where 𝑤𝑤 is a weight function and 𝑔𝑔𝑢𝑢 is a Gaussian function. 

➢ The persistence image 𝐼𝐼 𝜌𝜌𝐵𝐵 𝑃𝑃𝑖𝑖 𝑖𝑖 is the collection of pixels, where 𝐼𝐼 𝜌𝜌𝐵𝐵 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖׭
𝜌𝜌𝐵𝐵𝑑𝑑𝑑𝑑 and ۬𝑖𝑖 𝑃𝑃𝑖𝑖 is 

the partition of a compact subset 𝐴𝐴 ⊆ ℝ2 (in practice, a rectangular domain divided into 𝑛𝑛 × 𝑛𝑛
pixels).

Preliminaries
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Q&A
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Thank you!
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Analysis
Application1: Link Prediction
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Analysis
Application1: Link Prediction

➢ Set 𝒵𝒵 ⊂ ℝ2×𝑘𝑘×𝑟𝑟2, where 𝑘𝑘 is the number of angles, 𝑟𝑟 represents PI resolution and each element 

𝑧𝑧1, 𝑧𝑧2 ∈ 𝒵𝒵 represents concatenated PIs for cases with (𝑧𝑧1) and without (𝑧𝑧2) a target link.

➢ Define a function ℎ:ℝ𝑘𝑘×𝑟𝑟2 → ℝ as ℎ 𝑣𝑣1,⋯ , 𝑣𝑣𝑘𝑘 = 1
𝑘𝑘 σ𝑖𝑖=1

𝑘𝑘 || 𝑣𝑣𝑖𝑖||1 where 𝑣𝑣𝑖𝑖 are PIs.

➢ For visualization, transform 𝒵𝒵 into the points in ℝ2 by a function 𝐺𝐺, defined as G 𝑧𝑧1, 𝑧𝑧2 =
ℎ 𝑧𝑧1 , ℎ 𝑧𝑧2 .

➢ Distribution Analysis:

▪ Compared distributions of points for positive and negative links using both DRNL and Degree DRNL.

▪ NS and Yeast datasets show significant differences in distributions between positive and negative links, 

correlating with high performance.

▪ C. elegans and Power datasets show more similar distributions with Degree DRNL, aligning with lower 

performance scores.

▪ The difference between DRNL and Degree DRNL on Power dataset supports the highest performance 

increase.
2025-08-04 TDA+IM 2025 50/47

Preliminaries: Persistent Homology
Preliminaries
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AUC score
Application1: Link Prediction
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예측
실제

Positive Negative

Positive TP FN

Negative FP TN

𝐹𝐹𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑃𝑃
𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

https://only-wanna.tistory.com/entry/Classification-Metrics%EB%B6%84%EB%A5%98-%EB%AA%A8%EB%8D%B8-
%EC%A7%80%ED%91%9C-%EC%95%8C%EC%95%84%EB%B3%B4%EA%B8%B0-TPR-FPR%EA%B3%BC-ROC-Curve-
%EC%82%AC%EC%9D%B4-%EA%B4%80%EA%B3%84-%EB%B0%8F-AUC
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Potential of Mathematics for Industry, and the
Dilemma in the Midstream

Tetsuji Taniguchi

Hiroshima Institute of Technology / Math. Research Institute Calc for Industry,
Japan

In an era where data utilization is essential across all industries, the importance of
mathematics for industry has grown dramatically. However, we face the harsh reality
that the value of our work is not properly recognized, and our services are often under-
priced. In particular, we mathematicians who operate in the “midstream”—translating
business challenges into mathematical models—face a serious dilemma: our technical
skills are appreciated, but they fail to translate into tangible business outcomes. In this
presentation, I will report on my company’s real-world experience in confronting this
“midstream dilemma.” Based on this, I will present to you the fundamental, inherent
challenges that we have uncovered within the business model of applying mathematics
to industry.

References.

[1] SunMath Calc for Industry, Inc. SunMath Calc for Industry. https://sunmath-
calc.co.jp/. Accessed: 2025-08-25. 2025.

[2] YouTube. Mathematics for Industry Promotional Video. https://www.youtube.
com/watch?v=-e64M-gR2H8. Accessed: 2025-08-25. 2025.
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

A Data-Driven Framework for Predicting Liver
Failure Dynamics and Living Donor Transplant

Prognosis

Raiki Yoshimura

Graduate School of Science, Nagoya University, Japan

Acute liver failure (ALF) is one of the most critical hepatic conditions, characterized
by rapid progression and a high risk of multi-organ failure and death. Liver transplan-
tation remains the only curative treatment, yet predicting which patients will require
it is still a major clinical challenge due to the significant heterogeneity in disease pro-
gression. In our first study, we analyzed time-series clinical data from 320 patients
with acute liver injury and applied machine learning techniques to identify key prog-
nostic indicators. We found that prothrombin time (PT) serves as a central biomarker
for tracking individual disease trajectories. By stratifying patients into six distinct
PT dynamic patterns, we were able to quantify the severity of ALF and predict its
progression from admission data. Furthermore, we demonstrated the feasibility of
modeling future PT dynamics using mathematical approaches, offering a personalized
framework for understanding and anticipating ALF progression. While liver transplan-
tation offers a potential cure for end-stage liver disease, outcome prediction remains
a critical issue, particularly in living donor liver transplantation (LDLT), which has
gained prominence due to shorter wait times and better graft quality. In our second
study, we retrospectively analyzed data from 748 LDLT recipients and developed a
machine learning model to predict early graft loss (within 180 days postoperatively)
with higher accuracy than conventional models. We stratified patients into five groups
based on risk and further identified a specific intermediate-risk group (G2) with char-
acteristics similar to those who experienced early graft loss (G1), but with different
survival outcomes. Using data available within the first 30 days post- transplant, we
constructed a hierarchical model capable of distinguishing these populations, facilitat-
ing earlier clinical intervention such as consideration of retransplantation or alternative
donor strategies. Together, these studies address the continuum of liver disease—from
acute liver injury to post-transplant outcomes—through the lens of time-resolved, indi-
vidualized prediction. By leveraging machine learning and mathematical modeling, we
present a framework that supports more precise and proactive clinical decision-making
across the full trajectory of severe liver disease.

References.

[1] William Bernal et al. “Acute liver failure”. In: The Lancet 376.9736 (2010), pp. 190–
201.

[2] David G Koch et al. “Development of a model to predict transplant-free survival
of patients with acute liver failure”. In: Clinical Gastroenterology and Hepatology
14.8 (2016), pp. 1199–1206.

[3] Ramesh Kumar et al. “Prospective derivation and validation of early dynamic
model for predicting outcome in patients with acute liver failure”. In: Gut 61.7
(2012), pp. 1068–1075.
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Digital Twin for Life Science : Mathematical Modeling, Simulation, and AI
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We study life and health science using mathematical model and AI.

A Data-Driven Framework for Predicting 
Liver Failure Dynamics and 

Living Donor Liver Transplant Prognosis

Nagoya Univ. Department of Natural Science Interdisciplinary Biology Lab(iBLab)
Raiki Yoshimura
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Kyushu cohort data were analyzed in collaboration with Kyushu University Hospital

Kyushu cohort of 10% of the nation's acute liver failure patients transported

Admission test

Blood test Blood test Blood test Blood testBlood test

Day0 Day1 Day2 Day3 Day7

Admission test data
• Sex
• age
• Etiology
• Hepatic encephalopathy
• diagnosis
• liver atrophy

Time-series blood test data
• WBC • Ferritin
• Plt • PTs
• Alb • PT%
• Tbil • PTINR
• Dbil • APTT
• AST • Fib
• ALT • ATIII
• LDH • IgG
• ALP • IgA
• gGTP • IgM
• Che • AFP
• NH3 • PIVKA
• BUN • sIL2R
• Cre • D-bil/T-bil
• CRP • MELDscore

Treatment information
• FFP prescribing (U)
• Anticoagulation
• CHDF
• PE
• Steroid pulse therapy

Treatment

Treatment Treatment Treatment TreatmentKyushu Univ. 
Hospital

Iki/
Tsushima

Okinawa 
islands

Kyushu

Western
Shikoku

About
10%

Used Data : Acute Liver Injury 
(ALI) patients/ Failure (ALF)
• ALT more than 200 U/l
• T. Bil. more than 4 mg/dl
• PT-INR over 1.2 at admission

Acute liver Injury / Failure (ALI / ALF) as a typical disease

The number of ALF 
patients in Japan

300 cases/year

Rare

Life-saving rates without 
transplantation in Japan

≦≦50%

Serious
Viruses
Drugs
Autoimmune response
Alcohol

Normal Liver

Rapid expansion of 
hepatocyte necrosisLiver Injury

cytotoxic T cell

fibrin deposition

Oxygen deprivation

Prolonged cytotoxic 
T cell activity

There are no quantitative indicators available
to detect aggravation in many diseases

Quantitative prognostication would greatly contribute to the establishment of early treatment.

Treatment decision
based on physician’s experience

Mild Severe

Data-driven Quantitative
prognostic approaches

Restored
(No need 
transplant)

Severe
(Need

transplant)

Need surgery

Intensive Care (IC)

Admission
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Time series dynamics of PT% with large individual differences

Time series dynamics of PT% appear to reflect disease progression

ー：Mild
ー：Severe

Which factors has important information for the prediction?

PT% (prothrombin time activity percentage) was identified as an important factor.

＊ PT% （prothrombin time activity percentage）：
Hepatic function index using blood clotting time that strongly relies on clotting factors (CFs) synthesized mainly in the liver

SevereMild

Does the blood test data contain information on disease progression?

Extraction

Predict the necessity of LT on day 7

Severe
Day1 Day7Day7Day7

ROC-AUC：
0.95±0.03

Random
Forest

Day1 Day2 Day3 Day4 Day7

B
io

m
ar

ke
r

Biomarkers reflecting 
the patient’s condition 

Severe

Mild

Blood test data may contain information reflecting the progression of the disease.

Day0 Day1 Day2 Day3 Day7

Time-series blood 
test data
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Reconstruction of time series data of PT values by mathematical modeling

PT changes can be understood in terms of a simple process of biomolecule production and elimination

Days after admission

PT
 %

ー：Fitting
・：Real data

𝑅𝑅2 ≅0.92

Days after admission

PT
 %

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑔𝑔 − 𝐷𝐷𝐷𝐷(𝑡𝑡)None-linear Mixed-effects model

Admission

PT% PT%PT%

Day0 Day3 Day7

Treatment

Treatment Treatment

PT%

Day1

Treatment

PT%

Day2

Treatment

𝑔𝑔 (constant)：Increase rate in PT value
𝐷𝐷(constant)： Decrease rate in PT value
𝑃𝑃(0) (constant) ：An Initial value in PT value

Mathematical model for predicting PT change patterns

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑔𝑔 − 𝐷𝐷𝐷𝐷(𝑡𝑡)

𝑔𝑔 (constant)：Increase rate in PT value
𝐷𝐷(constant)： Decrease rate in PT value
𝑃𝑃(0) (constant)：An Initial value in PT value

Coagulation factors (CFs) 
strongly dependent on

PT values

𝑔𝑔
The rate of increase in PT 
due to the production of 

CFs from the liver

𝐷𝐷
The rate of decrease in PT 

due to the consumption 
and breakdown of CFs

＊ PT% (prothrombin time activity percentage ) :
Hepatic function index using blood clotting time that strongly relies on clotting factors (CFs)

synthesized mainly in the liver

VII

V
IIX

etc…

Developed a simple mathematical model based on biological processes

Can patients be stratified by time-series patterns of change in PT%?

ー：Mild
ー：Severe

Days after admission

PT% itself was suggested to be a biomarker reflecting the progression of the patient's condition

No-need IC Responding IC Resisting IC

Severe ratio：0.0% Severe ratio：1.8% Severe ratio：48.2%
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The Difference between 
Day0 and Day7

68.9 %

When information from the time of admission can be used 
to predict with a good prediction performance？

the clinical outcome 
was determined up to 2 
days post-admission

Treatment effects are 
reflected in blood 
test data.

120
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Day0 Day1 Day2 Day3 Day7

Admission Treatment Blood test Treatment Blood test Treatment Blood test Treatment Blood test Treatment

Prediction
on admission

ー：RF Prediction ■：95%Prediction Interval

Prediction performance was changed by adding data from another day 

Adding Day2 data, the prediction performance was improved
Days after admission

PT
 %

𝑅𝑅2 ≅0.77
ー：RFの予測値に
よる再構築

■：95%信頼区間
・ ：実際のPT値
・・

Admission

Blood data Blood dataBlood data

Day0 Day3 Day7

Treatment

Treatment Treatment
Blood data

Day1

Treatment

Blood data

Day2

Treatment

Day1 Day2

Blood data

Treatment

Blood data

Treatment

𝑅𝑅2 ≅0.72𝑅𝑅2 ≅0.84

Estimated parameters as response variables

・・・

Estimated parametersPatient ID

1

2

N

・・・

𝑔𝑔1, 𝐷𝐷1, 𝑃𝑃 0 1

𝑔𝑔2, 𝐷𝐷2, 𝑃𝑃 0 2

𝑔𝑔𝑁𝑁, 𝐷𝐷𝑁𝑁, 𝑃𝑃 0 𝑁𝑁

・・・

Admission data
• Sex
• age
• Etiology
• Hepatic

encephalopathy
• diagnosis
• liver atrophy

Time-series blood test data
• WBC • Ferritin
• Plt • PTs
• Alb • PT%
• Tbil • PTINR
• Dbil • APTT
• AST • Fib
• ALT • ATIII
• LDH • IgG
• ALP • IgA
• gGTP • IgM
• Che • AFP
• NH3 • PIVKA
• BUN • sIL2R
• Cre • D-bil/T-bil
• CRP • MELDscore

Admission
Blood BloodBlood

Day0 Day3 Day7

Treatment

Treatment Treatment
Blood

Day1

Treatment
Blood

Day2

Treatment

𝑋𝑋

Random
Forest

𝑌𝑌
An RF model was trained to predict the parameters as the response variables 

with the information at the time of admission as the explanatory variable

43



This work has already published!

Please check it out if you’re interested in ↑Access

Summary, Issues and Prospects
◼ Exploring biomarker in blood data

Integrate data science and clinical medicine
⇒ Realize the new treatment system of ALF

◼ Evaluation of predictive ability with 
additional information

◼ Quantitative prediction of time-series 
changes in PT

TThhee  nneeww  
TTrreeaattmmeenntt  
ssyysstteemm  ffoorr

AALLFF

Improvement life-saving rates 
through short-term prognostication

Validation of treatment response 
by VIRTUAL PATIENT

Treatment decision

Decisions on treatment 
based on predicted results

A machine to predict parameters of mathematical model

𝑔𝑔𝐴𝐴, 𝐷𝐷𝐴𝐴Patient A ・・・

Patient X 𝑔𝑔𝑋𝑋, 𝐷𝐷𝑋𝑋

・・・

Medical Treatment

Treatment

Update
information

Treatment optimization
by using VIRTUAL COHORT• PT% are strongly associated with disease 

progression

• Development of mathematical models to 
describe PT dynamics

• Future prediction of disease progression based 
on data at the time of admission

• Predictive ability improves with additional 
information up to Day 2

• Treatment information does not improve 
predictive ability
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Liver transplantation as a last resort for end-stage liver disease

In Western countries, DDLT is the primary method of liver transplantation.

Illustrated by Zoe Hansen in Mark Gurarie, et.al., verywellhealth, 2024

Cirrhosis MASLD SLD

HCC ALF MASH CLI

◼ End-stage disease causes liver dysfunction

Recovery Graft loss

？

◼ Some patients experience graft loss

Mayo clinic.「Living-donor liver transplant」
https://www.mayoclinic.org/tests-procedures/living-donor-liver-transplant/pyc-20384846

◼ Conventional Studies: simple statistical model

Predictive score, D-MELD, e-GLR： Limited accuracy

An approach to predict how a disease will change 
and how treatment will work before it happens

◼ Exploration of biomarkers and predictive models utilizing them
➢ Acute Liver Failure

➢ Research that combines AI and mathematical models

◼ Prediction based on clinical data from early postoperative timing
➢ Liver Transplantation

➢ Research that using machine learning
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Definition of three clinical outcomes

Graft loss caused directly by the effects of the surgery

Early Graft Loss
Graft loss within 180 days (About 20% of all graft loss)

Graft loss not directly related to the effects of the surgery

Non-early Graft Loss
Graft loss after 180 days (180 ~ 7500 days)

Definition of three clinical outcomes

Graft loss caused directly by the effects of the surgery

Early Graft Loss
Graft loss within 180 days (About 20% of all graft loss)

Graft loss not directly related to the effects of the surgery

Non-early Graft Loss
Graft loss after 180 days (180 ~ 7500 days)

Kyushu University Hospital as a volume center for transplant treatment in Japan

Accepts patients from a wide range of locations, with little regional bias and a large number of patients

Kyushu University Hospital
10% Transplantation in Japan
(about 500 patients / year)

Kyushu Univ. 
Hospital

Iki/
Tsushima

Okinawa 
islands

Kyushu

Western
Shikoku

About
10%

Mono BUN HTLV1
NLR Cr HCVAB
LMR GFR Precondition
Age Na Relationship

Height WBC Blood relative
Weight PLT Blood type

BMI Hb ABO
BSA Diagnosis Portal vein thrombosis
T-BIL HCC DM

Albumin Sex Refractory ascites
PT Sex combination CKD

APTT HBsAb Child class

Surgery time History of upper 
abdominal laparotomy

Blood loss Liver resection or liver 
transplant history

Warm ischemic time Esophageal varices
Cold ischemic time Portocaval shunt (>10mm)

Portal blood flow / GW Veno-venous bypass
Post reperfusion portal 

pressure Biliary reconstruction

Final portal pressure Bile duct suture method
Portal modulation Biliary stent

T-BIL (14POD)

Ascites (14POD)

Ascites (30POD)

PT (14POD)

CNI

MMF induction

Simulect

Bile leak

Age Graft weight
Height GV / SLV
Weight GRWR

BSA After surgery
BMI Max T-BIL

Total liver volume Max ALT
Donor:Recipient weight ratio HBcAb

Predict GV / SLV HTLV1
During surgery Sex

Blood loss Technique
Surgery time Blood type

Expected residual liver

Skin incision

Blood loss

Surgery time

Expected residual liver

Graft weight

GV / SLV

GRWR

Complication 
CDclass

Max T-BIL

Max ALT

Preoperative
(e.g., Basic information, blood test)

interoperative
(e.g., Surgical time)

Postoperative
（14th and 30th day）

R
ec

ip
ie

nt
D

on
or

748 patients
(Graft loss: 177)
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Definition of three clinical outcomes

Graft loss caused directly by the effects of the surgery

Early Graft Loss
Graft loss within 180 days (About 20% of all graft loss)

Graft loss not directly related to the effects of the surgery

Non-early Graft Loss
Graft loss after 180 days (180 ~ 7500 days)

Early graft loss prediction using machine learning

Only 7 factors are needed to make a prediction with high enough performance

machine 
learning

Supervised
Random Forest

classification problem

Feature selection using SHAP: 7 features

Early graft loss prediction using machine learning

Early graft loss can be predicted with high accuracy by information up to 30 days postoperatively.

machine 
learning

Random Forest

classification problem

Pre-operative

Inter-operative Post-operative
(until 30 days)

Predictions with
all explanatory variables
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Patient stratification using supervised random forests

All patients can be discussed within the space based on patients with early graft loss

UMAP・
Clustering

machine 
learning

Surpervised
Random Forest

Early Graft Loss 
Prediction Model

Distance matrix based on 
patients with early graft loss

Calculate the distance 
between patients

Patients with early graft loss

Clinical data

Non-Early graft loss：180 ~ 7500 days

Early Graft loss：0 ~ 180 days

Non-early graft loss patients have high heterogeneity: Needs stratification?

Diversity in timing of graft loss

Predicting non-early graft loss using machine learning

Non-early graft loss is controlled by different factors than early graft loss

AUC: 0.59

AUC: 0.78
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Summary and Future directions

◼Summary
✓ Early graft loss can be accurately predicted using clinical data up to 30 days postoperatively

✓ This prediction requires only seven key variables

✓ Patient stratification: identification of individuals at risk for intermediate graft loss (G2)

✓ A hierarchical prediction approach enables highly accurate group-level predictions

◼ Future directions

✓ Establishing the feasibility of outcome prediction using data obtained over 30 days 

postoperatively.

✓ Understanding the dynamics of pre- and postoperative clinical states

✓ Investigating the mechanisms that determine post-transplant outcomes

Hierarchical binary classification model

Multi-class classification with emphasis on G1 identification by combining two binary classification models

G1 
prediction

G1

(-)

non-G1*

G3+G4+G5
Prediction

G2*

G3*+G4*+G5*

G3+G4+G5

(+)

(-)

G1*

(+)

◼Model detail

Sensitivity： 0.96

G
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ft 
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bi
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y

Patient stratification using supervised random forests

Divided into 3 groups：Early (G1), Intermediate (G2), and Long or No graft loss patients(G3+G4+G5)

Patient stratification

Early graft loss
Non-early graft loss

Survival Time Analysis by Group

Logrank
（Bonferroni ）

G2-G1
：p < 0.01

G2-G3
：p = 0.055

G2-G4
：p = 0.02

G2-G5
：p = 0.01

G
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ft 
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iv
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y
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Prediction of the necessity of Liver transplantation on admission

Time Series Dataset

Random
Forest

Training
data

Testing
Data

Learning
Model

Check
Accuracy

Patients has sufficient information to predict the necessity of LT on admission

Day1 Day2 Day3Day1 Day2 Day3Day0

Predicting necessity of Liver 
Transplantation (LT)

ROC-AUC:
0.92±0.07

Data on admission

Restored
(No need 
transplant)

Severe
(Need

transplant)
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R2 VS MSE

Ref: https://www.enmanreg.org/r2/

Mean Mean

数理モデリングによるPT値の時系列データの再構築

入院時データから三つのパラメータを推定できないか？

ー：数理モデルに
よる再構築

・：実際のデータ

入院後日数（日）

PT
 値

(%
)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝑔𝑔 − 𝐷𝐷𝐷𝐷(𝑡𝑡)

𝑔𝑔 (定数)：PT値の増加量
𝐷𝐷(定数)：PT値の減少率
𝑃𝑃0 (定数)：PT値の初期値

PT
 (s

): 
Bl

oo
d 

cl
ot

tin
g 

tim
e

PT (%): Activity percentage

Clotting time

Amount of CFs

PT%
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Quantifying the Topological Structure of Graphs:
The Total Persistence Difference

Eunwoo Heo

Department of Mathematics, POSTECH, Korea

Persistent homology (PH) has been widely applied to graph data to extract topological
features. However, little attention has been paid to how different distance functions on a
graph affect the resulting persistence diagrams and their interpretations. In this paper,
we define a class of distances on graphs, called path-representable distances, and in-
vestigate structural relationships between their induced persistent homologies. In par-
ticular, we identify a nontrivial injection between the 1-dimensional barcodes induced
by two commonly used graph distances: the unweighted and weighted shortest-path
distances. We formally establish sufficient conditions under which such embeddings
arise, focusing on a subclass we call cost-dominated distances. The injection prop-
erty is shown to hold in 0- and 1-dimensions, while we provide counterexamples for
higher-dimensional cases. To make these relationships measurable, we introduce the
total persistence difference (TPD), a new topological measure that quantifies changes
between filtrations induced by cost-dominated distances on a fixed graph. We prove a
stability result for TPD when the distance functions admit a partial order and apply
the method to the SNAP EU Research Institution E-Mail dataset. TPD captures both
periodic patterns and global trends in the data, and shows stronger alignment with
classical graph statistics compared to previously proposed PH-based measures.

References.

[1] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. “Vines and
vineyards by updating persistence in linear time”. In: Proceedings of the twenty-
second annual symposium on Computational geometry. 2006, pp. 119–126.

[2] Herbert Edelsbrunner and John Harer. Computational topology: an introduction.
American Mathematical Soc., 2010.

[3] Eunwoo Heo, Byeongchan Choi, and Jae-Hun Jung. “Persistent Homology with
Path-Representable Distances on Graph Data”. In: arXiv preprint arXiv:2501.03553
(2025).

[4] Mai Lan Tran, Changbom Park, and Jae-Hun Jung. “Topological data analysis of
Korean music in Jeongganbo: a cycle structure”. In: Journal of Mathematics and
Music 17.3 (2023), pp. 403–432.
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2025-08-17 The Total Persistence Difference. 3

00 Persistent Homology on graph data

Persistent Homology (PH)

A mathematical tool in topological data analysis (TDA) that enables the 
inference of topological information about data.

2025-08-17 The Total Persistence Difference. 2

Eunwoo Heo 
with Byeongchan Choi, Jae-hun Jung

2025-08-17 The Total Persistence Difference. 1

Department of Mathematics
POSTECH / Ph.D.

hew0920@postech.ac.kr

Quantifying the Topological Structure of Graphs 

- The Total Persistence Difference.

2025 Topological Data Analysis and Industrial Mathematics 
Bridging Theory and Applications
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01

Motivation

2025-08-17 5The Total Persistence Difference.

01

Motivation

2025-08-17 The Total Persistence Difference. 4

Persistence Diagram (PD)
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01

Motivation
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Motivation
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Motivation
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2025-08-17 12The Total Persistence Difference.

03 Discovery

2025-08-17 11The Total Persistence Difference.

02

Yes.

No.

2025-08-17 10The Total Persistence Difference.

02

No.
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2025-08-17 15

04 When ? 

Path-representable distance (example)

The Total Persistence Difference.

2025-08-17 14

04 When ? 

Path-representable distance

The Total Persistence Difference.

2025-08-17 13The Total Persistence Difference.

03 Discovery
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04 When ? 

Categorical interpretation

The Total Persistence Difference.

2025-08-17 17

04 When ? 

Main Theorem

The Total Persistence Difference.

2025-08-17 16

04 When ? 

Dominated Path-representable distance

The Total Persistence Difference.
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05 High-dimensional case

2025-08-17 20

04 When ? 

Categorical interpretation

The Total Persistence Difference.

2025-08-17 19

04 When ? 

Categorical interpretation

The Total Persistence Difference.
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24

06 Application : the total persistence difference (TPD)

The total persistence difference (TPD)
A B

A
B

2025-08-17 The Total Persistence Difference.

2025-08-17 23The Total Persistence Difference.

06 Application : the total persistence difference (TPD)

The total persistence difference (TPD)

2025-08-17 22The Total Persistence Difference.

05 High-dimensional case
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27

06 Application : the total persistence difference (TPD)

Experiments and Applications (prior work)

Hajij, Mustafa, et al. "Visual detection of structural changes in time-varying graphs using 
persistent homology." 2018 ieee pacific visualization symposium (pacificvis). IEEE, 2018.

2025-08-17 The Total Persistence Difference.
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06 Application : the total persistence difference (TPD)

Experiments and Applications (prior work)

Hajij, Mustafa, et al. "Visual detection of structural changes in time-varying graphs using 
persistent homology." 2018 ieee pacific visualization symposium (pacificvis). IEEE, 2018.

2025-08-17 The Total Persistence Difference.
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06 Application : the total persistence difference (TPD)

Stability Theorem for the total persistence difference (TPD)

2025-08-17 The Total Persistence Difference.
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30

06 Application : the total persistence difference (TPD)

Comparison with Prior Work

2025-08-17 The Total Persistence Difference.

29

06 Application : the total persistence difference (TPD)

The Pearson correlation for the classical graph statistics

r = 0.735 r = 0.609

2025-08-17 The Total Persistence Difference.

28

06 Application : the total persistence difference (TPD)

Experiments and Applications (proposed method)

2025-08-17 The Total Persistence Difference.
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Thank you

2025-08-17 The Total Persistence Difference. 32

Eunwoo Heo 
with Byeongchan Choi, Jae-hun Jung

Department of Mathematics
POSTECH / Ph.D. (conferred Aug 8, 2025)

hew0920@postech.ac.kr
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Summary

2025-08-17 The Total Persistence Difference.
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Pathological State Inference System based on
Mathematical Model and TDA for Personalized

Treatment in Dermatology

Sungrim Seirin-Lee

Kyoto University Institute for the Advanced Study of Human Biology (ASHBi),
Kyoto University, Japan

Skin diseases typically appear as visible information-skin eruptions distributed across
the body. However, the biological mechanisms underlying these manifestations are
often inferred from fragmented, time-point-specific data such as skin biopsies. The
challenge is further compounded for human-specific conditions like urticaria, where
animal models are ineffective, leaving researchers to rely heavily on in vitro experiments
and sparse clinical observations. In this presentation, I will introduce an innovative
methodology that combines mathematical modeling with topological data analysis,
allowing for the estimation of patient-specific parameters directly from morphological
patterns of skin eruptions. This framework offers a new pathway for personalized
analysis and mechanistic insight into complex skin disorders.

References.

[1] Akanksha Maurya et al. “Hybrid topological data analysis and deep learning for
basal cell carcinoma diagnosis”. In: Journal of Imaging Informatics in Medicine
37.1 (2024), pp. 92–106.

[2] John T Nardini et al. “Topological data analysis distinguishes parameter regimes in
the Anderson-Chaplain model of angiogenesis”. In: PLOS Computational Biology
17.6 (2021), e1009094.

[3] Sungrim Seirin-Lee et al. “Mathematical-based morphological classification of skin
eruptions corresponding to the pathophysiological state of chronic spontaneous
urticaria”. In: Communications Medicine 3.1 (2023), p. 171.

[4] Thomas Thorne, Paul DW Kirk, and Heather A Harrington. “Topological approx-
imate Bayesian computation for parameter inference of an angiogenesis model”.
In: Bioinformatics 38.9 (2022), pp. 2529–2535.
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

A Topological Analysis of the Space of Recipes

Emerson Escolar

Graduate School of Human Development and Environment, Kobe University, Japan

In recent years, the use of data-driven methods has provided insights into underlying
patterns and principles behind culinary recipes. In this exploratory work, we introduce
the use of topological data analysis, especially persistent homology, in order to study
the space of culinary recipes. In particular, persistent homology analysis provides a
set of recipes surrounding the multiscale “holes” in the space of existing recipes. We
then propose a method to generate novel ingredient combinations using combinato-
rial optimization on this topological information. We made biscuits using the novel
ingredient combinations, which were confirmed to be acceptable enough by a sensory
evaluation study. Our findings indicate that topological data analysis has the potential
for providing new tools and insights in the study of culinary recipes. This talk is based
on https://doi.org/10.1016/j.ijgfs.2024.101088

References.

[1] Yong-Yeol Ahn et al. “Flavor network and the principles of food pairing”. In:
Scientific reports 1.1 (2011), p. 196.

[2] Emerson G Escolar, Yuta Shimada, and Masahiro Yuasa. “A topological analysis
of the space of recipes”. In: International Journal of Gastronomy and Food Science
39 (2025), p. 101088.

[3] Juan CS Herrera. “The contribution of network science to the study of food recipes.
A review paper”. In: Appetite 159 (2021), p. 105048.

[4] Donghyeon Park et al. “Kitchenette: Predicting and recommending food ingredi-
ent pairings using siamese neural networks”. In: arXiv preprint arXiv:1905.07261
(2019).
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Topological Data Analysis
Keyword: the “shape” of data

Background for today’s talk
Data science & Recipes
• Ahn, Yong-Yeol, et al. "Flavor network and the principles of food pairing." Scientific 

reports 1.1 (2011): 196.
• Teng, Chun-Yuen, Yu-Ru Lin, and Lada A. Adamic. "Recipe recommendation using 

ingredient networks." Proceedings of the 4th annual ACM web science conference. 
2012.

• H. Lee, Helena, et al. "RecipeGPT: Generative pre-training based cooking recipe 
generation and evaluation system." Web Conf. WWW 2020. 2020.

• Marın, Javier, et al. "Recipe1m+: A dataset for learning cross-modal embeddings for 
cooking recipes and food images." IEEE Transactions on Pattern Analysis and 
Machine Intelligence 43.1 (2021): 187-203.

• Goel, Mansi, and Ganesh Bagler. "Computational gastronomy: A data science 
approach to food." Journal of Biosciences 47.1 (2022): 12.

• etc. 
• This research: study the “holes” of recipe space, try to get hints from it to 

create new combinations of ingredients 
• => Use topological data analysis

A topological analysis of the space of recipes
ESCOLAR, Emerson G.

Kobe University Graduate School of Human Development and Environment

Escolar, E. G., Shimada, Y., & Yuasa, M. (2025). A topological analysis of the space of recipes. 
International Journal of Gastronomy and Food Science, 39, 101088.
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Persistent Homology
A tool in topological data analysis

Two holes detected.

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]

“Holes” in data

Chazal, Frédéric, and Bertrand Michel. Frontiers in artificial intelligence 4 (2021): 667963.

Clusters: Cluster analysis
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Computed example:

In a bit more detail…
• Given a filtration of a finite simplicial complex, there exists a set q-

cycles 𝑧𝑧! !"#
$ and a unique multiset of pairs 𝑏𝑏!, 𝑑𝑑! !"#

$  such that 
the following hold.
• (for each 𝑖𝑖) 𝑧𝑧! is “born” at 𝑏𝑏! in the filtration (birth)
• (for each 𝑖𝑖) 𝑧𝑧! “dies” at 𝑑𝑑! in the filtration (death)
• For each threshold value 𝑡𝑡, the homology classes of the 𝑧𝑧! “alive” at 𝑡𝑡 

(𝑧𝑧!	with 𝑏𝑏! ≤ 𝑡𝑡 < 𝑑𝑑!) forms a basis for the homology of the simplicial 
complex at 𝑡𝑡 (basis)

• 𝑏𝑏!, 𝑑𝑑! !"#
$  is called the qth persistence diagram

• Each 𝑧𝑧!  is called a representative cycle – represents some q-
dimensional hole (using the interpretation of homology)

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]

Two holes detected
With birth and death:
(0.4593, 0.9398)
(0.7654, 1.6777)Vietoris-Rips filtration

Persistent Homology
A tool in topological data analysis
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• Ahn, Yong-Yeol, et al. "Flavor network and the principles of food 
pairing." Scientific reports 1.1 (2011): 196

• Use only list of ingredients
• as 0–1 vectors

• dissimilarity: 𝑑𝑑%&' 𝑦𝑦, 𝑥𝑥 = 1 − (,*
( *

= 1 – cosine(angle between x and y)

The data

The steps of the analysis
• (A) Apply persistent homology to analyze the “space of recipes”
• (B) From the “holes” in the space of recipes, create new 

combinations of ingredients that can be used as hints for new recipes
• (C) Check using cooking experiments, sensory evaluations

Recipe data
Persistence diagram 

and cycles around 
holes

New 
combination of 

ingredients

(A)
Persistent 
Homology

(B)
Combinatorial 
Optimization

(C)
Cooking 

experiments, 
sensory 

evaluations

New
recipe

...

This research: study the “holes” of recipe space, try to get 
hints from it to create new combinations of ingredients.
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Two holes detected
With birth and death:
(0.4593, 0.9398)
(0.7654, 1.6777)Vietoris-Rips filtration

Recall: Persistent Homology

Example…
• 𝑥𝑥" 	= 	 [1, 0, 0, 1]	
• 𝑥𝑥# 	= 	 [0, 0, 1, 1]	
• 𝑥𝑥$ 	= 	 [0, 1, 1, 0]	
• 𝑥𝑥% 	= 	 [1, 1, 0, 0]	
• 𝑥𝑥& 	= 	 [1, 0, 0, 0]

Pairwise dissimilarities using

𝑑𝑑'() 𝑦𝑦, 𝑥𝑥 = 1 −
𝑦𝑦, 𝑥𝑥
𝑦𝑦 𝑥𝑥

Vietoris-Rips filtration:

Threshold 𝑡𝑡	 = 1 − !
" Threshold 𝑡𝑡	 = 0.5

Ingredient combinations as Vectors

	

1
1
1
1
1
1
1
1
1
1
1
0
⋮

	

	Beef	
Potato
Carrot
Onion

Shirataki
Water

Soy	sauce
Mirin
Sugar

Hondashi
Sake
Tofu
⋮

Nikujaga
https://cookpad.com/recipe/1519259

	

1
0
1
0
0
1
1
1
1
0
1
1
⋮

	

Sukiyaki
https://cookpad.com/recipe/7746800

…
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['butter', 'cinnamon', 'cream', 'egg', 'milk', 'nutmeg', 'vanilla', 'wheat']
['butter', 'cane_molasses', 'milk', 'rye_flour', 'wheat', 'yeast']

['cherry', 'cream', 'egg', 'gelatin', 'wheat']
['butter', 'olive', 'olive_oil', 'wheat']

['butter', 'cane_molasses', 'egg', 'oat', 'raisin', 'vanilla', 'walnut', 'wheat']
['gin', 'lemon']

['butter', 'cane_molasses', 'cinnamon', 'cream', 'egg', 'milk', 'vanilla', 'wheat']
['apple', 'butter', 'cane_molasses', 'cinnamon', 'egg', 'milk', 'vanilla', 'walnut', 'wheat']

['lemon', 'lime', 'orange_juice']
['butter', 'wheat', 'yeast']

['cherry', 'lemon', 'lime', 'orange', 'orange_juice', 'pineapple']
['butter', 'cane_molasses', 'milk', 'wheat', 'whole_grain_wheat_flour', 'yeast']

['butter', 'cream', 'milk', 'potato', 'wheat']
['butter', 'cane_molasses', 'egg', 'milk', 'rye_flour', 'wheat', 'yeast']

['butter', 'cane_molasses', 'cinnamon', 'egg', 'milk', 'pecan', 'vanilla', 'vegetable_oil', 'wheat']
['cherry', 'cream', 'gelatin', 'wheat']

['gin']
['butter', 'cane_molasses', 'cinnamon', 'egg', 'lard', 'milk', 'oat', 'vanilla', 'walnut', 'wheat']

['butter', 'milk', 'wheat', 'yeast']
['butter', 'cane_molasses', 'cocoa', 'coconut', 'egg', 'milk', 'oat', 'vanilla', 'walnut', 'wheat']

['butter', 'honey', 'milk', 'wheat', 'whole_grain_wheat_flour', 'yeast']
['butter', 'lard', 'milk', 'wheat']

['butter', 'cane_molasses', 'cinnamon', 'egg', 'lard', 'milk', 'oat', 'vanilla', 'wheat']
['butter', 'cherry', 'cream', 'gelatin', 'wheat']

['butter', 'cane_molasses', 'cinnamon', 'egg', 'lard', 'oat', 'raisin', 'vanilla', 'walnut', 'wheat']
['apple', 'butter', 'cane_molasses', 'cinnamon', 'egg', 'milk', 'pecan', 'vanilla', 'vegetable_oil', 'walnut', 

'wheat']
['butter', 'cane_molasses', 'cinnamon', 'cocoa', 'egg', 'milk', 'vanilla', 'wheat', 'yeast']

['apple', 'butter', 'cane_molasses', 'cinnamon', 'egg', 'milk', 'pecan', 'vanilla', 'vegetable_oil', 'wheat']
['butter', 'egg', 'milk', 'nutmeg', 'raisin', 'wheat']

['gin', 'lemon', 'orange_juice']
['butter', 'cane_molasses', 'cocoa', 'egg', 'milk', 'vanilla', 'walnut', 'wheat']

['butter', 'cane_molasses', 'coconut', 'egg', 'oat', 'raisin', 'vanilla', 'walnut', 'wheat']
['butter', 'cream', 'wheat']

['cherry', 'lemon', 'lime', 'orange', 'pineapple']
['gin', 'lemon', 'lime', 'orange_juice', 'teaʼ]

・
・
・

Representative cycle 𝑧𝑧!:
List of recipes surrounding a hole

18

Just an “image”, do not take literally

In a bit more detail…
• Given a filtration of a finite simplicial complex, there exists a set q-

cycles 𝑧𝑧! !"#
$ and a unique multiset of pairs 𝑏𝑏!, 𝑑𝑑! !"#

$  such that 
the following hold.
• (for each 𝑖𝑖) 𝑧𝑧! is “born” at 𝑏𝑏! in the filtration (birth)
• (for each 𝑖𝑖) 𝑧𝑧! “dies” at 𝑑𝑑! in the filtration (death)
• For each threshold value 𝑡𝑡, the homology classes of the 𝑧𝑧! “alive” at 𝑡𝑡 

(𝑧𝑧!	with 𝑏𝑏! ≤ 𝑡𝑡 < 𝑑𝑑!) forms a basis for the homology of the simplicial 
complex at 𝑡𝑡 (basis)

• 𝑏𝑏!, 𝑑𝑑! !"#
$  is called the qth persistence diagram

• Each 𝑧𝑧!  is called a representative cycle – represents some q-
dimensional hole (using the interpretation of homology)

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]

Persistent homology, applied to recipe data

Degree-1 persistence diagram of the 
recipe data.

Histogram of the lifespans of the 
birth-death pairs. 
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Finding new combinations using optimization

Problem formulation (original):

𝑦𝑦∗ = argmax
(⊂-, ( ".

𝑑𝑑%&' 𝑦𝑦, 𝑋𝑋 = argmin
(⊂-, ( ".

max
*∈0

𝑦𝑦, 𝑥𝑥
𝑦𝑦 𝑥𝑥

• Using the “epigraph trick”, we turn min max problem into a 
minimization problem:
The max

*∈0

(,*
( *

is equal to min 𝜆𝜆 𝜆𝜆 ≥ (,*
( *

	∀𝑥𝑥 ∈ 𝑋𝑋

• We also apply a projection to 𝑆𝑆 to decrease the dimensionality of 
the problem

Finding new combinations using optimization

• Let 𝑆𝑆  be the set of all ingredients used in the recipes surrounding a hole. 
Think of these as candidate ingredients
• Consider the following problem:

𝑦𝑦∗ = argmax
"⊂$, " &'

𝑑𝑑()* 𝑦𝑦, 𝑋𝑋 = argmin
"⊂$, " &'

max
+∈-

𝑦𝑦, 𝑥𝑥
𝑦𝑦 𝑥𝑥

• Find the combination 𝑦𝑦 that is the most dissimilar to the set of existing 
recipes 𝑋𝑋 
• Under the condition that 𝑦𝑦 is exactly 𝑡𝑡 ingredients from the candidate 

set 𝑆𝑆

Can we use it to make a new recipe? Center?
• Average number of ingredients in 

original data: 8.49±3.51
• Ingredients in this cycle:

[‘almond’, ‘bell_pepper’, ‘black_pepper’, ‘butter’, 
‘cane_molasses’, ‘champagne_wine’, 
‘cheddar_cheese’, ‘cherry’, ‘chicken’, ‘cinnamon’, 
‘cocoa’, ‘cranberry’, ‘cream’, ‘cream_cheese’, 
‘egg’, ‘garlic’, ‘gelatin’, ‘lard’, ‘lemon’, ‘lime’, ‘milk’, 
‘oat’, ‘onion’, ‘orange’, ‘orange_juice’, ‘pepper’, 
‘pineapple’, ‘potato’, ‘raspberry’, ‘rum’, ‘seed’, 
‘vanilla’, ‘walnut’, ‘wheat’, ‘yeast’]
35 ingredients

• Too many ingredients!

19
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Biscuits preparation
• Four solutions (NCS, NR, NG, NCB) with 𝑡𝑡 = 5 ingredients were selected.
• The ingredients suggested biscuits.

24

Control No corn starch
(NCS)

No raisin
(NR)

No gin
(NG)

No cranberry
(NCB)

Sugar* 30 30 30 30 30
Whole grain wheat flour 45 90 45 45 45
Starch (cornstarch) 45 - 45 45 45
Cranberry (dried 
cranberry) 10 10 20 10 -

Raisin 10 10 - 10 20
Gin 10 10 10 - 10
Water - - - 10 -
Cream cheese 80 80 80 80 80

Table: Compositions of the biscuits

*Sugar was added because the recipe data does not contain seasonings (e.g. salt and sugar) as ingredients

Some example optimal solutions (with 𝑡𝑡 = 5)

•   …
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘olive oil’, ‘raisin’) 
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘raisin’, ‘starch’)
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘raisin’, ‘whole grain wheat flour’)
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘starch’, ‘whole grain wheat flour’)
(‘cranberry’, ‘cream cheese’, ‘raisin’, ‘starch’, ‘whole grain wheat flour’)
  …

• many optimal solutions with the same dissimilarity to existing recipes!

Finding new combinations using optimization
(Mixed Integer Linear Programming Problem)

• Thus, equivalent to the following Problem:
minimize 𝜆𝜆

subject	to 𝑣𝑣1𝑧𝑧 − 𝜆𝜆 ≤ 0 ∀	𝑣𝑣 ∈ 𝜋𝜋- 𝑥𝑥
𝑡𝑡 𝑥𝑥

	 𝑥𝑥 ∈ 𝑋𝑋

11𝑧𝑧 = 𝑡𝑡

𝑧𝑧 ∈ 0,1 $, 𝜆𝜆 ∈ ℝ

• Use software (e.g. GLPK; coin-or/Cbc; IBM® ILOG® CPLEX®) to solve
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Recall: The steps of the analysis
• (A) Apply persistent homology to analyze the “space of recipes”
• (B) From the “holes” in the space of recipes, create new 

combinations of ingredients that can be used as hints for new recipes
• (C) Check using cooking experiments, sensory evaluations

Recipe data
Persistence diagram 

and cycles around 
holes

New 
combination of 

ingredients

(A)
Persistent 
Homology

(B)
Combinatorial 
Optimization

(C)
Cooking 

experiments, 
sensory 

evaluations

New
recipe

...

Results of the sensory evaluation

-3 -2 -1 0 1 2 3

Overall judgment
Palatability

Taste
Texture

Color
Aroma

Sourness
Sweetness

Texture
Color

Control NCS NR NG NCB

Bright Dark

Hard Crispy

Weak

Weak

Strong

Strong

Dislike

Dislike

Dislike

Dislike

Bad

Dislike

Like

Like

Like

Like

Good

Like

a a ab b b

Figure 1: Sensory properties of biscuits
Mean (n=19). 
Only “color” exhibits significant difference (p < 0.05, Tukey’s HSD test)

0.0
1.0
2.0
3.0
4.0
5.0
6.0

Contro
l

NCS NR NG
NCB

順
位
の
平
均
値

n.s.

Figure 2: Ranking order
Mean (n=19). No significant difference in ranking 
order of biscuits, by Newell and MacFarlane test

Scores of palatability and overall 
judgment of all biscuits were about 1.0, 
indicating that the suggested ingredient 
combinations are potentially viable for 
recipes of biscuits

Sensory evaluation of biscuits
Comparison sample
Control, NCS, NR, NG, NCB

Panel
19 untrained non-expert Japanese male and 
female students (21.3 ± 2.6 years old)

Factors
Scoring method: -3 ~ +3
Intensity of color, texture, sweetness, sourness
Preferences for aroma, color, texture, taste, 
palatability, overall judgment

Control NCS

NR NG NCB
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Summary
• Analysis of recipes

• Persistent homology to explore geometric structure
• Combinatorial optimization to find new combinations

• TDA (+optimization) has the potential for providing new insights in the 
study of culinary recipes

Ingredients (ordered in decreasing frequency of usage in the original data)

Observations:
• Tends to suggest using ingredients not commonly used 

in the existing recipes (we are maximizing dissimilarity of 
ingredient combinations compared to the existing 
recipes 
(Novelty-seeking)

• Does not just preferentially use only rare ingredients, 
because the initial analysis using persistent homology 
constrains candidate ingredients to only those 
appearing in representative cycles 
(Usage of structural/geometric information)

Testing novelty (simple check)
• Generate 31,478 suggestions from our method 

(up to 20 solutions for the representative cycles of the top 5% 
birth–death pairs)
• Result:

ØEqual to existing recipes: 61 (0.19%) 
ØStrict subcombinations of existing recipes: 506 (1.6%)

• Point: most of the suggestions from our method do not fall into 
either of these cases

• Next slide: look at the big picture of ingredient usage patterns
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Thank you for your attention!

Thanks to Funding:
Casio Science Promotion Foundation, Japan (Grant number 40-29) 
Research Grant of Graduate School of Human Development and Environment, Kobe University
JSPS Grant-in-Aid for Transformative Research Areas (A) (22H05105)
 “Establishing data descriptive science and its cross-disciplinary applications”
JSPS Grant-in-Aid for Scientific Research (C) (24K06846) 
 “Development of new methods for data analysis of processes using topological ideas”
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Ellipse Cloud: Anisotropy-Aware Persistent
Homology

Tomoki Uda

Faculty of Science, University of Toyama, Japan

Persistent homology is a widely used tool in topological data analysis, yet standard fil-
tration methods often fail to capture anisotropic structures inherent in real-world data.
We propose Ellipse Cloud, a preprocessing-based approach that enhances anisotropic
features in persistent homology. Our method constructs a Vietoris–Rips (VR) filtra-
tion using ellipse tangency times instead of pairwise Euclidean distances, extending the
standard VR filtration to an anisotropic setting. This formulation allows anisotropy to
be incorporated into persistent homology while remaining compatible with standard
computational frameworks. A key computational challenge in this framework involves
determining critical time points at which expanding ellipses first interact, which we
address through an efficient numerical algorithm.

To evaluate the effectiveness of our approach, we apply it to a toy problem involving
a highly noisy two-dimensional point cloud with multiple ring structures. While stan-
dard persistent homology struggles to capture the underlying rings due to excessive
noise, our anisotropic filtration successfully identifies optimal 1-cycles that preserve
the original structures to a greater extent. More generally, our proposed preprocessing
technique tends to increase the lifetime of significant persistence pairs, lowering birth
values and raising death values compared to standard VR filtrations. These results sug-
gest that incorporating anisotropic filtrations can provide more informative topological
summaries of geometrical structures in data. Potential applications include sensor cov-
erage problems, where sensors often exhibit directional sensitivity rather than isotropic
coverage.

In the talk, we will also introduce the Python library ‘EllPHi’ for anisotropic per-
sistent homology analysis. ‘EllPHi’ provides the fast and accurate ellipse-tangency
solver. The related source codes are available in [GitHub (https://github.com/t-
uda/ellphi)](https://github.com/t-uda/ellphi).

References.

[1] Vincent Peter Grande and Michael T Schaub. “Non-isotropic persistent homology:
Leveraging the metric dependency of ph”. In: Learning on Graphs Conference.
PMLR. 2024, pp. 17–1.

[2] t-uda. EllPHi: A Fast Ellipse-Tangency Solver for Anisotropic Persistent Homol-
ogy. https://github.com/t-uda/ellphi. Open-source software, MIT License.
2025.
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Given spatial data with a speciÞc metric, it is said to exhibit anisotropy 
if its local properties differ depending on the direction of measurement.

Definition. Anisotropy?

Small 
/ short Large 

/ long

Far            / sparse

Near / dense

Far / sparse

Typical example:


Sensors or radars 
have directivity.

We hereafter focus on anisotropic distance structure.

Persistent Homology (PH)

Standard PH 
w/ circular disks

Anisotropic PH 
w/ ellipses

?

2025-08-06 (Wed) TDA+IM @ Fukuoka

Ellipse Cloud: 
Anisotropy-Aware 

Persistent Homology

（富山大学学術研究部理学系数理情報学プログラム）

Tomoki Uda 
Faculty of Science 

University of Toyama
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Intersection of quadratic curves

To be honest, I do not know the Þrst appearance of the 
calculation method for conics’ intersections. 
Any relevant literature would be quite helpful! Thanks!

Does anybody know by whom and when it was invented?

Other (hopefully) related information already provided: 
• “On Heuristic Detection of Ellipsoids Collision” — by engineers  
• “Origami Math Book states the pencil method” — by a school teacher 
• “Projective Geometry Book is a citation source” — Wikipedia

• Mathematicians studied quadratic curves (a.k.a. conic sections) from B.C.

• Apollonius wrote “Conics” around the 2nd century B.C.

• In history, conics have a connection to astronomy. (J. Kepler 16th century)

• Wikipedia - [[Conic sections]] - § Intersecting two conics: 

— one can locate the intersection by identifying the degenerate pencil.

• There is an implementation note and existing software for computing and 

judging ellipse intersections. 
davideberly/GeometricTools

Q. How to find the 
point of tangency 
(or intersection) 
of two ellipses?

While computational geometry has explored anisotropic approaches 
(e.g., anisotropic Voronoi diagrams), such ideas have been 
less extensively developed within persistent homology frameworks.


A TDA-based approach, Non-isotropic Persistent Homology (NIPH), 
proposed by Grande et al. (2023), incorporates anisotropy through 
directional scaling. However, NIPH inherently focuses on anisotropy 
along a single, speciÞed direction, potentially overlooking more 
complex or multi-directional anisotropic structures in real-world 
data. Kališnik et al. (arXiv 2024) recently introduced the Ellipsoid 
Complex, which infers local anisotropy by Þtting data-driven 
ellipsoids before computing persistent homology. While their 
framework pursues a goal similar to ours, its reliance on iterative 
numerical heuristics brings additional computational overhead and 
may limit robustness in high-dimensional, noisy settings, leaving 
efficiency and accuracy as open challenges.

Preceding Studies
TL;DR: The existing TDA methods have not well explored anisotropy yet. 

Much research should still be done in this direction.

TDA

2000

2020

📚📚

📚📚
📚📚

📚📚
📚📚📚📚

📚📚

📚📚
📚📚

Co
m

pu
t. 

Ge
om

.
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• Fact: Two (quadratic) polynomials share some roots 
          the Bézoutian, determinant of the Bézout matrix, is 0.


• davideberly/GeometricTools takes this approach.


1. Collect the ellipse polynomial terms in 


2. Compute Bézout’s determinant → quartic(= degree 4) in 


3. Solve the quartic equation in 


4. Back-substitute  into the ellipse equation → Þnd 


5. Reject non-intersecting falsy solutions 

⟺

x
y

y
y x

(x, y)

Yet another way: Bézoutian

Bad from computational viewpoint (wasting many computations!)

Pencil of conics

“Well-known” method [citation needed]

1. Given two conics  and  (expressed by quadratic polynomials)


2. Consider their pencil , a linear combination of  and 


3. Find  for which  degenerates to two lines 

(The degeneracy condition is a cubic equation in ）


4. Obtain the intersection point  
by combining the line equation with either  or 

Q0 Q1

Qμ Q0 Q1

μ Qμ

μ

(x, y)
Q0 Q1

Key Fact:  go through the intersections of Qμ Q0, Q1

Find the degenerate pencil
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↓


Find  such that where 
.

minimize
x∈R2, t≥0

t2 subject to {Q0(t, x) = 0,
Q1(t, x) = 0.

(x, t, μ) ∇F = 0,
F(x, t, μ) = t2 + μ0Q0(t, x) + μ1Q1(t, x)

Lagrange multiplier method

Constrained 
minimization


Find a stationary 
point of the 
Lagrangian

By , we have , where


.


(Impose normal vectors to be linearly dependent.)

∇xF = 0 x = x̄(μ) = − A−1
μ bμ

Aμ = μ0A0 + μ1A1, bμ = μ0b0 + μ1b1

What is  ?x̄(μ)

Given ellipses , decompose it as





•    -th center point


•    axes (orthogonal)


•   reference radii


•   time, expansion parameter

Qi(t, x) = ⊤x Ai x + 2bi ⋅ x + ci = 0

Qi(t, x) = ⊤(x − x̄i) ⊤Pi (ri 0
0 r′ i)

−2

Pi (x − x̄i) − t2 .

x̄i i

Pi

ri ≥ r′ i > 0

t

Simultaneous Expansion Model
Ellipse Cloud

For each pair , 
Þnd the tangency time .

(Qi, Qj)
t

Another 
smart way

Because the model includes a parameter ,  
the intersection problem becomes complicated.

t

given

Isotropic

Euclidean

Anisotropic

Tangency
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Takes the maximum value 
at . 

Futhermore, at time 

 , 

 is the point of tangency.

μ ↦ Qμ(t, x̄(μ))

μ = μ̄

t̄ = Qμ̄(0,x̄(μ̄))
x̄(μ̄)

• davideberly/GeometricTools also uses the Lagrange multiplier to 
determine whether two given ellipses intersect or not.


• It implements a Boolean query of the relative position of them:

A. If two ellipses intersect.

B. If one includes another strictly.

C. Neither; if two ellipses are separated.


• It is straightforward to solve the tangency problem in the same way, 
but it has not been implemented in this software yet.


• Thus, our proposed method and software are still new.


• Especially, we can prove the unique existence of the solution.

Note: Lagrange multiplier method

 = the center point of the pencilx̄(μ)

Completing the square of
 yields 

the center point of , 
which coincides with .

Qμ = μ0Q0 + μ1Q1
Qμ

x̄(μ)

Key points: 

•  does NOT depend on . 
(The center is always located 
even when  is an imaginary 
ellipse.) 

• Find a stationary point only 
on the center curve .

x̄(μ) t

Qμ

x̄(μ)
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1. For each point , take the k-nearest neighbour


2. Compute the mean  and the covariance matrix, and eigendecompose it


3. Place ellipse 


4. Compute a quasi-metric  by ellipse tangency


5. Build VR Þltration from  and compute PH (PD)

xi

x̄i

Qi(t, x) = ⊤(x − x̄i)⊤Pi diag(r1, r2) Pi(x − x̄i) − t2 = 0
dij

(dij)

k-NN covariance construction

Numerical performance

Solve the algebraic equation    to obtain Q0(0,x̄(μ)) = Q1(0,x̄(μ)) μ̄

Sketch of proof and the plot of Qμ

Show convexity. Calculate the 2nd derivative of  w.r.t. . Proved.Qμ(t, x̄(μ)) μ
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Cumulative histograms of 1000 PDs in the same experiment conÞguration.

Compared to the standard PH, the anisotropic PH exhibits:


• Birth time is earlier and death time is later.


• Fewer birth-death pairs have shorter lifetimes.


• More birth-death pairs have longer lifetimes.

Ellipse PH captures anisotropic ring structures in greater extent. 
In this toy experiment, we found many optimal 1-cycles whose 
corresponding persistence are much longer.
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• Inverse analysis? → 🆗🆗 possible as in the standard VR Þltration


• PD optimization? → 🚧🚧 possible but not implemented yet [WIP]


• ✅ The gradient of the tangency problem is computable.


• 🚧🚧 Future work: ellipses’ axes optimization? What about DoF?


• Shapes other than ellipses? → 🚧🚧 possible in principle but hard


• ✅ The Lagrange multiplier method is applicable in a similar way.


• ❓ No closed-form solutions nor assurance, in general, though.


• Higher dimension (ellipsoids)? → 🆗🆗 extensible in the same way


• Other Þltrations like alpha complex?


• ✅ Ellipsoid Complex proposed by Kališnik et al. (arXiv 2024) 


• ❓ Computational cost issues? Intersection of  ellipses?≥ 2

Q & A

Summary

• Seeking detailed references on conics’ intersections 📚📚🙏🙏; 
Suggestions welcome!


• Proposed method


• Ellipse Cloud construction


• Fast and accurate computation of ellipse tangency


• Software implementation 

• Looking for applications to real-world data


• Suggestions of anisotropic problems are welcome too!
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Nonnegative Matrix Factorization with Topological
Regularization

Keunsu Kim

Institute of Mathematics for Industry, Kyushu University, Japan

In this study, we propose Top-NMF, a novel model that incorporates topological regu-
larization into Nonnegative Matrix Factorization (NMF), a widely used dimensionality
reduction technique. While conventional regularization methods focus on preserving
relationships between data points to guide low-dimensional representations, Top-NMF
explicitly controls the topological structure of the support of each basis vector. We
interpret each data point as a real-valued function defined over a structured domain
(such as a grid or a graph), and treat each basis vector in the same way. Our focus is on
the support of each basis vector, and we introduce quantitative topological descriptors
derived from persistent homology as regularization terms. These descriptors encour-
age the support to exhibit desirable properties such as connectedness and modularity.
These regularization terms can be applied across diverse domains including time series,
images, and graphs and guide the model to learn basis vectors that reflect meaning-
ful structures. We provide a theoretical formulation, describe the optimization scheme,
and demonstrate through experiments that Top-NMF achieves structurally faithful and
interpretable decompositions.
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𝕩𝕩5 ∈ ℝ28×28

unfold

𝕩𝕩5 ∈ ℝ784

ℝ784

More clarify data points

𝑟𝑟-dim 
subspace

𝕩𝕩𝑖𝑖 𝑖𝑖=1
40 and each 𝕩𝕩𝑖𝑖 ∈ ℝ28×28

Linear Dimensionality Reduction
Given 𝑛𝑛 𝑑𝑑-dimensional data points 𝕩𝕩1,⋯ , 𝕩𝕩𝑛𝑛 and 
𝕩𝕩𝑖𝑖 ∈ ℝ𝑑𝑑 .

Want to reduce the dimensionality to 𝑟𝑟 < 𝑑𝑑. 

Criterion is to minimize the Loss function​ 𝐿𝐿.

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 = ෍
𝑖𝑖=1

𝑛𝑛

𝕩𝕩𝑖𝑖 − ෍
𝑗𝑗=1

𝑟𝑟

𝑤𝑤𝑖𝑖𝑖𝑖𝕧𝕧𝑗𝑗

2

𝕩𝕩𝑖𝑖 ≈ 𝑤𝑤𝑖𝑖𝑖𝕧𝕧1 +⋯+𝑤𝑤𝑖𝑖𝑟𝑟𝕧𝕧𝒓𝒓 ⟺ 𝑋𝑋 ≈ 𝑊𝑊𝑊𝑊
i.e., find basis vectors 𝕧𝕧𝒋𝒋 ∈ ℝ𝑑𝑑 and corresponding coefficients 𝑤𝑤𝑖𝑖𝑖𝑖.   

𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑖𝑖 ∈ ℝ𝑛𝑛×𝑟𝑟

Coefficient matrix

𝑉𝑉 =
𝕧𝕧1
⋮
𝕧𝕧𝑟𝑟

∈ ℝ𝑟𝑟×𝑑𝑑

Basis matrix

Ex)

𝕨𝕨 ≔ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑖𝑖=1,⋯,𝑛𝑛
𝑗𝑗=1,⋯,𝑟𝑟

𝕧𝕧 ≔ 𝕧𝕧𝑗𝑗 𝑗𝑗=1,⋯,𝑟𝑟

Linear Dimensionality Reduction  
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In this study,

Method:
1. Quantify desirable properties of 𝕧𝕧𝑗𝑗 ​ (e.g., sparseness, connectedness) 

into a scalar 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝕧𝕧)

2. Encourage the desirable properties by using them as a regularization 
term.

𝐿𝐿 𝕨𝕨, 𝕧𝕧 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 + 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟(𝕧𝕧)

3. Optimize 𝑤𝑤𝑖𝑖𝑗𝑗 ​ and 𝕧𝕧𝑗𝑗 ​ jointly under nonnegativity constraints.

given a

Goal: Obtain interpretable basis vectors 𝕧𝕧𝑗𝑗 ∈ ℝ≥0
𝑑𝑑 .

𝕩𝕩1,⋯ , 𝕩𝕩𝑛𝑛 and 𝕩𝕩𝑖𝑖 ∈ ℝ≥0
𝑑𝑑 ,

PCA basis NMF basis
NMF: Nonnegative Matrix Factorization

subject to
𝑤𝑤𝑖𝑖𝑖𝑖, 𝕧𝕧𝑗𝑗 ≥ 0, nonnegative constraint

Nonnegative Matrix Factorization(NMF)

(Daniel D. Lee, and H. Sebastian Seung) Learning the parts of objects by non-
negative matrix factorization, nature (1999):

Given dataset 𝕩𝕩1,⋯ , 𝕩𝕩𝑛𝑛 and 𝕩𝕩𝑖𝑖 ∈ ℝ≥0
𝑑𝑑 ,

minimize

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 = ෍
𝑖𝑖=1

𝑛𝑛

𝕩𝕩𝑖𝑖 − ෍
𝑗𝑗=1

𝑟𝑟

𝑤𝑤𝑖𝑖𝑖𝑖𝕧𝕧𝑗𝑗

2

𝕩𝕩𝑖𝑖 ≈ 𝑤𝑤𝑖𝑖𝑖𝕧𝕧1 + ⋯+ 𝑤𝑤𝑖𝑖𝑟𝑟𝕧𝕧𝑟𝑟
𝑖𝑖 = 5

Ex: PCA basis, 𝑟𝑟 = 10.

Principal Component Analysis(PCA)

minimize 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 = ෍
𝑖𝑖=1

𝑛𝑛

𝕩𝕩𝑖𝑖 − ෍
𝑗𝑗=1

𝑟𝑟

𝑤𝑤𝑖𝑖𝑖𝑖𝕧𝕧𝑗𝑗

2
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𝒮𝒮 𝕧𝕧𝑗𝑗 = 1
𝑑𝑑 − 1

⋅ 𝑑𝑑 −
𝕧𝕧𝑗𝑗 1
𝕧𝕧𝑗𝑗 2

∈ [0,1]

Sparsity score of 𝕧𝕧𝑗𝑗 ∈ ℝ𝑑𝑑

Ex) 𝑑𝑑 = 5

(Patrik O. Hoyer) Non-negative matrix factorization with sparseness constraints,
Journal of machine learning research (2004)

Cf. 𝕧𝕧𝑗𝑗 2 ≤ 𝕧𝕧𝑗𝑗 1 ≤ 𝑑𝑑 𝕧𝕧𝑗𝑗 2

Quantify desirable properties of 𝕧𝕧𝑗𝑗

Quick Review of sparsity of 𝕧𝕧𝑗𝑗

To divide each of the difficulties under 
examination into as many parts as 
possible, and as might be necessary 
for its adequate solution. 
- René Descartes

Philosophy

Difficult
???

Easy

Easy

Easy
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In this study,

Method:
1. Quantify desirable topological properties of 𝕧𝕧𝑗𝑗 ​ (e.g., sparseness, 

connectedness) into a scalar 𝐿𝐿𝒕𝒕𝒕𝒕𝒕𝒕(𝕧𝕧)

2. Encourage desirable properties by using 𝐿𝐿𝒕𝒕𝒕𝒕𝒕𝒕(𝕧𝕧) as a regularization term.

𝐿𝐿 𝕨𝕨, 𝕧𝕧 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 + 𝜆𝜆𝒕𝒕𝒕𝒕𝒕𝒕 ∙ 𝐿𝐿𝒕𝒕𝒕𝒕𝒕𝒕(𝕧𝕧)

3. Optimize 𝑤𝑤𝑖𝑖𝑗𝑗 ​ and 𝕧𝕧𝑗𝑗 ​ jointly under nonnegativity constraints.

given a

Goal: Obtain interpretable basis vectors 𝕧𝕧𝑗𝑗 ∈ ℝ𝑑𝑑 .

𝕩𝕩1,⋯ , 𝕩𝕩𝑛𝑛 and 𝕩𝕩𝑖𝑖 ∈ ℝ≥0
𝑑𝑑 ,

Recall

subject to 𝑤𝑤𝑖𝑖𝑖𝑖, 𝕧𝕧𝑗𝑗 ≥ 0.

Top-NMF

NMF basis s-NMF basis
Each basis vector is localized.

+

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣; 𝑎𝑎𝑗𝑗 𝑗𝑗=1,⋯,𝑟𝑟 = ෍
𝑗𝑗=1

𝑟𝑟

𝒮𝒮 𝑣𝑣𝑗𝑗 − 𝑎𝑎𝑗𝑗
2

𝑎𝑎𝑗𝑗 = 0.7
S-NMF: Nonnegative Matrix Factorization with sparsity regularization

Nonnegative Matrix Factorization with sparsity regularization (S-NMF)

Fetch olivetti faces dataset

subject to
𝑤𝑤𝑖𝑖𝑖𝑖, 𝕧𝕧𝑗𝑗 ≥ 0, nonnegative constraint

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 = ෍
𝑖𝑖=1

𝑛𝑛

𝕩𝕩𝑖𝑖 − ෍
𝑗𝑗=1

𝑟𝑟

𝑤𝑤𝑖𝑖𝑖𝑖𝕧𝕧𝑗𝑗

2

There is no guarantee of acquiring a localized basis. 

*𝑎𝑎𝑗𝑗 is desirable sparsity score
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Want

.   .   . 

Each basis time series has a 
sparsity score ≈ 0.66.

Sparsity score cannot distinguish between the two decompositions

𝕩𝕩1 = 1,1,0,1,1

𝕧𝕧1 = 1,1,0,0,0 𝕧𝕧2 = 0,0,0,1,1

𝕧𝕧1 = 1,0,0,1,0 𝕧𝕧2 = 0,1,0,0,1

Filtration and barcode

∈ [0,1]28×28𝑥𝑥: 𝑃𝑃𝑃𝑃(𝑥𝑥):

0-dim homology: # components
1-dim homology: # holes

Superlevel set filtration on a cubical complex: pixel intensity ≥ 1 − 𝜀𝜀

Persistent Homology

Usual flow in 
Topological Data 
Analysis (TDA)

Topological Data 
“Processing”

Inverse 
analysis

Machine 
Learning

Feature 
Extraction

(filtered) 
Topological Space

Operation on 
Feature

Lifting/Realisation of 
the operation

Machine 
Learning /

Visualisation

From Topological Data “Analysis” to Data “Processing”

Made by Matias de Jong van Lier
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superlevel set filtration 
on a cubical complex

We can distinguish between the two decompositions using the persistent homology.

ΡΕ 0 𝑣𝑣 = 0

ΡΕ 0 𝑣𝑣 = 1

ΡΕ 𝑘𝑘 𝕧𝕧𝑗𝑗 : = ෍
(𝑏𝑏,𝑑𝑑)∈ΡΗ𝑘𝑘

fin(𝑣𝑣𝑗𝑗)

(𝑑𝑑 − 𝑏𝑏)2

𝑣𝑣 ∶ 0,1,2,3,4 → ℝ≥0

Superlevel set filtration on a cubical complex: pixel intensity ≥ 1 − 𝜀𝜀

0 < 𝜀𝜀 < 1 𝜀𝜀 < 0

0 1 0 1 2 3 4

0 3 0 1 2 3 4

Observe the variation of sublevel set

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠≥1−𝜀𝜀 𝕧𝕧1 = ȁ𝑖𝑖 ∈ 0,1,2,3,4 𝕧𝕧1 𝑖𝑖 ≥ 1 − 𝜀𝜀

Superlevel set filtration on a cubical complex: pixel intensity ≥ 1 − 𝜀𝜀

0 < 𝜀𝜀 < 1 𝜀𝜀 < 0

0 1 0 1 2 3 4

0 3 0 1 2 3 4

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠≥1−𝜀𝜀 𝕧𝕧1 = ȁ𝑖𝑖 ∈ 0,1,2,3,4 𝕧𝕧1 𝑖𝑖 ≥ 1 − 𝜀𝜀
Observe the variation of

𝕧𝕧1 = 1,1,0,0,0

𝕧𝕧1 = 1,0,0,1,0
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Top-NMF basisNMF basis

Observation

Korean character example

𝕩𝕩1 𝕩𝕩2 𝕩𝕩3 𝕩𝕩4 𝕩𝕩5 𝕩𝕩6

𝕩𝕩𝑖𝑖, 𝕧𝕧𝑗𝑗 ∈ ℝ64×64 = ℝ4096

We desire the basis as follows:

𝕧𝕧1 𝕧𝕧2 𝕧𝕧3 𝕧𝕧4 𝕧𝕧5

ㄱ,ㄷ,ㄹ

子音(consonant): except for あいうえお
母音(vowel): あいうえお

ㅏ, ㅑ

+=
𝕩𝕩1 = 𝕧𝕧2 + 𝕧𝕧1

L 𝕨𝕨, 𝕧𝕧 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡(𝕧𝕧)

Top-NMF on image dataset

ΡΕ 𝑘𝑘 𝕧𝕧𝑗𝑗 : = ෍
(𝑏𝑏,𝑑𝑑)∈ΡΗ𝑘𝑘

fin(𝑣𝑣𝑗𝑗)

(𝑑𝑑 − 𝑏𝑏)2

Find a solution 𝑤𝑤𝑖𝑖𝑖𝑖, 𝑣𝑣𝑗𝑗 ≥ 0, which 
minimizes

Superlevel 
cubical 
filtration

for 𝑘𝑘 = 0,1.

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 𝕧𝕧 =෍
𝑗𝑗=1

𝑟𝑟

ΡΕ 0 𝕧𝕧𝑗𝑗

i.e. Top-NMF yields basis vectors 
with connected supports.

𝕧𝕧𝑗𝑗 ΡΗ𝑘𝑘
fin(𝕧𝕧𝑗𝑗)
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Clique Deviation Metric in a Graph

Top-NMF learning process

0-dim

1-dim

Top-NMF learning process

98



𝕩𝕩1 =
1
3 , 0,

1
3 ,
1
3 ,
2
3 ,
1
3 𝕩𝕩2 =

1
3 , 0,

1
3 ,
2
3 , 1,

2
3

𝕧𝕧1 =
4
13 , 0,

4
13 ,

9
13 , 1,

9
13 𝕧𝕧2 =

2
3 , 0,

2
3 ,
1
3 , 1,

1
3 𝕧𝕧1 = 1,0,1,0,1,0 𝕧𝕧2 = 0,0,0,1,1,1

NMF basis Desirable basis

𝕩𝕩1 =
13
42 ∙ 𝕧𝕧1 +

5
14 ∙ 𝕧𝕧2

𝕩𝕩2 =
13
14 ∙ 𝕧𝕧1 +

1
14 ∙ 𝕧𝕧2

𝕩𝕩1 =
1
3 ∙ 𝕧𝕧1 +

1
3 ∙ 𝕧𝕧2

𝕩𝕩2 =
1
3 ∙ 𝕧𝕧1 +

2
3 ∙ 𝕧𝕧2

Want decompose the structure via clique graphs.𝐺𝐺 = (𝒱𝒱, ℰ) : fully connected weighted graph,
with edge weights in the range [0,1] (not 
vertex weights).

𝕩𝕩1 =
1
3 , 0,

1
3 ,
1
3 ,
2
3 ,
1
3 𝕩𝕩2 =

1
3 , 0,

1
3 ,
2
3 , 1,

2
3

𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵 𝐵𝐵𝐵𝐵𝐶𝐶𝐶𝐶

𝕧𝕧1 = 1,0,1,0,1,0 𝕧𝕧2 = 0,0,0,1,1,1

Ex)

1
3 , 0,

1
3 ,
1
3 ,
2
3 ,
1
3 = 1

3 ∙ 1,0,1,0,1,0 + 1
3 ∙ 0,0,0,1,1,1

𝕩𝕩1 =
1
3 ∙ 𝕧𝕧1 +

1
3 ∙ 𝕧𝕧2

Given an undirected graph, 
clique is a fully connected subgraph.

99



Topological quantifiers and 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡
ΡΕ 𝑘𝑘 𝑣𝑣 := ෍

(𝑏𝑏,𝑑𝑑)∈ΡΗ𝑘𝑘
fin(𝑣𝑣)

(𝑑𝑑 − 𝑏𝑏)2

𝒲𝒲ΡΕ 𝑘𝑘 𝑣𝑣 := ෍
(𝑏𝑏,𝑑𝑑)∈ΡΗ𝑘𝑘

fin(𝑣𝑣)

(1 − 𝑑𝑑) ∙ (𝑑𝑑 − 𝑏𝑏)2

𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣 ≔ −ΡΕ 0 𝑣𝑣 − ΡΕ 1 𝑣𝑣

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑣𝑣 ≔
max

(𝑏𝑏,𝑑𝑑)∈ΡΗ1
fin(𝑣𝑣)

(𝑑𝑑 − 𝑏𝑏)

3

Persistence Energy

Weighted Persistence Energy

Clique Deviation Metric

Periodic Score

𝐶𝐶𝐶𝐶𝐶𝐶 𝕧𝕧𝑗𝑗 ≔ −ΡΕ 0 𝕧𝕧𝑗𝑗 − 𝛼𝛼 ∙ ΡΕ 1 𝕧𝕧𝑗𝑗 for 𝛼𝛼 > 0.

We assign a fixed weight of 1 to each vertex.

• ΡΕ 0 : connect only the necessary vertices
• ΡΕ 1 : create as many holes as possible among 
the connected vertices.

Interpretation of Low CDM Value

A small value of 𝐶𝐶𝐶𝐶𝐶𝐶 𝕧𝕧𝑗𝑗 implies high values of ΡΕ 0 𝕧𝕧𝑗𝑗 and ΡΕ 1 𝕧𝕧𝑗𝑗 ,
By using this as the 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 , we encourage each basis vector to:

ΡΕ 0 = 4

Ex) 

Theorem:
𝑣𝑣 is a local minimizer of 𝐶𝐶𝐶𝐶𝐶𝐶 if and only if it takes the value 1 on a disjoint union of cliques.

*Clique: #node ≥ 3

To distinguish two decomposition, 
we introduce the clique deviation metric

Key point: We assign a fixed weight of 1 to each vertex.

ΡΕ 0 𝕧𝕧𝑗𝑗 = 0.

𝕧𝕧𝑗𝑗

𝕧𝕧𝑗𝑗

Two cases, 

To justify the key point, assume each vertex is assigned the maximum edge 
weight among its incident edges.

i.e., ΡΕ 0 information is meaningless. 

ΡΕ 𝑘𝑘 𝕧𝕧𝑗𝑗 : = ෍
(𝑏𝑏,𝑑𝑑)∈ΡΗ𝑘𝑘

fin(𝑣𝑣𝑗𝑗)

(𝑑𝑑 − 𝑏𝑏)2
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In this study,

Method:
1. Quantify desirable topological properties of 𝕧𝕧𝑗𝑗 ​ (e.g., sparseness, 

connectedness) into a scalar 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡(𝕧𝕧)

2. Encourage desirable properties by using the quantifiers as a 
regularization term.

𝐿𝐿 𝕨𝕨, 𝕧𝕧 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡(𝕧𝕧)

3. Optimize 𝑤𝑤𝑖𝑖𝑗𝑗 ​ and 𝕧𝕧𝑗𝑗 ​ jointly under nonnegativity constraints.

given a

Goal: Obtain interpretable basis vectors 𝕧𝕧𝑗𝑗 ∈ ℝ𝑑𝑑 .

𝕩𝕩1,⋯ , 𝕩𝕩𝑛𝑛 and 𝕩𝕩𝑖𝑖 ∈ ℝ≥0
𝑑𝑑 ,

Recall

subject to 𝑤𝑤𝑖𝑖𝑖𝑖, 𝕧𝕧𝑗𝑗 ≥ 0.

Theorem:

Gradient descent algorithm converges.

L 𝕨𝕨, 𝕧𝕧 = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎 𝕨𝕨, 𝕧𝕧 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡(𝕧𝕧)

Find a solution 𝑤𝑤𝑖𝑖𝑖𝑖, 𝕧𝕧𝑗𝑗 ≥ 0, which 
minimizes

We solve this problem 
using gradient descent.

Top-NMF

𝕨𝕨 ← 𝕨𝕨− 𝜕𝜕𝜕𝜕
𝜕𝜕𝕨𝕨

𝕧𝕧 ← 𝕧𝕧 − 𝜕𝜕𝜕𝜕
𝜕𝜕𝕧𝕧

(Mathieu Carrière, et al.) Optimizing persistent homology based functions, 
International conference on machine learning. PMLR (2021).

(Damek Davis, et al.) Stochastic subgradient method converges on tame 
functions, Foundations of computational mathematics (2020).
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Applications of Persistent Homology to Materials
Science, and Persistent Homology Software

HomCloud

Ippei Obayashi

Center for Artificial Intelligence & Mathematical Data Science, Okayama University,
Japan

In this presentation, I will discuss persistent homology, a mathematical tool that char-
acterizes the shape of data using topology. Mathematical foundations and applications
to materials science will be presented. Our persistent homology-based software, Hom-
Cloud, will also be introduced.

References.

[1] Yasuaki Hiraoka et al. “Refinement of interval approximations for fully commuta-
tive quivers”. In: arXiv preprint arXiv:2310.03649 (2023).

[2] Emi Minamitani et al. “Topological descriptor of thermal conductivity in amor-
phous Si”. In: The Journal of Chemical Physics 156.24 (2022).

[3] Ippei Obayashi, Yasuaki Hiraoka, and Masao Kimura. “Persistence diagrams with
linear machine learning models”. In: Journal of Applied and Computational Topol-
ogy 1.3 (2018), pp. 421–449.

[4] Ippei Obayashi, Takenobu Nakamura, and Yasuaki Hiraoka. “Persistent homology
analysis for materials research and persistent homology software: HomCloud”. In:
journal of the physical society of japan 91.9 (2022), p. 091013.
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Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Understanding Depression during the COVID-19
Pandemic as Topographical Maps

Daiki Tatematsu

Graduate School of Science, Nagoya University, Japan

The COVID-19 pandemic changed our lifestyles. It is expected that the changes in
mental health also occurred because of these changes. In this study, we used the
questionnaire responses that asked high school students in Tokyo about their depression
before and during the COVID-19 pandemic and analyzed the group characteristics of
changes in depression as topographical maps using energy landscape analysis (ELA),
a method of multidimensional time-series data analysis. As a result, we visualized
how the topographical maps of the depression changed in the COVID-19 pandemic
and found that the COVID-19 pandemic has made the students less likely to become
depressed. These results suggest that ELA is useful for the analysis of psychiatric
questionnaires.

References.

[1] Takahiro Ezaki et al. “Energy landscape analysis of neuroimaging data”. In: Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 375.2096 (2017), p. 20160287.

[2] Ronald C Kessler et al. “Screening for serious mental illness in the general popu-
lation”. In: Archives of general psychiatry 60.2 (2003), pp. 184–189.

[3] Ingrid A van de Leemput et al. “Critical slowing down as early warning for the
onset and termination of depression”. In: Proceedings of the National Academy of
Sciences 111.1 (2014), pp. 87–92.

[4] Takamitsu Watanabe et al. “Energy landscape and dynamics of brain activity
during human bistable perception”. In: Nature communications 5.1 (2014), p. 4765.
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Depression in the COVID-19 Pandemic

The COVID-19 Pandemic
has Changed Our Lifestyles

Changes in Mental Health
such as Depression

Research the Relationship between the COVID-19 Pandemic and Depression
for the Next Pandemic

Daiki Tatematsu

Raiki Yoshimura

Shingo Iwami

Understanding depression during the 
COVID-19 pandemic as topographical maps

Topological Data Analysis and Industrial Mathematics 2025 (TDA+IM 2025)
Thursday, Aug 7th 2025, 10:50AM-11:15AM(JST)

Daiki Tatematsu1, Shingo Iwami1
1interdisciplinary Biology Laboratory (iBLab), Dept. Biological Science, 
Grad. Sch. Science, Nagoya University, Japan
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Understand the Mental Health as Topographical Maps
Psychiatric questionnaires

such as K6 are commonly analyzed 
with significance tests after scoring

The mental state should be understood 
simply and clearly as topographical maps

A deep valley is formed.
→ Small Variance & Small Autocorrelation

I. A. Van de Leemput et al., PNAS, 2014
M. Scheffer et al., JAMA Psychiatry, 2024

Sc
or

e

Good State Bad State

Observed

Healthy

Unhealthy Healthy Unhealthy

Observed

A shallow valley is formed.
→ Large Variance & Small Autocorrelation

These previous studies used time series analysis
and the topographical map of mental Health is only used as a concept

Monthly Questionnaire for Approximately 2 years, 
including the COVID-19 Pandemic

Participant
ID=1 …

Obtain the Responses

1st

State of Emergency
2nd ,3rd ,4th

State of Emergency

Questionnaire 
about Depression (K6)

Kessler R. C. et al., Arch. Gen. Psychiatry, 2003

Pa
rti

cip
an

t’s
 ID

 (n
=8

4)

Analyze the data collected from 
the survey for 84 high school students

who participate in the Tokyo Teen Cohort

Survey for High School Students in Tokyo

S.Ando et al., Int. J. Epidemiol., 2019
N. Okada et al., Psychiatry Clin. Neurosci., 2019
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Flow Chart of the Analysis 1 : Preprocessing

D. Tatematsu, N. Nakamura et al., in revision

Jul 2019 - Dec 2019 Jun 2020 - Dec 2020 Jan 2021 - Sep 2021

2020
12/31

2020
4/7

2020
1/16

1st SoE
2020
4/7

2020
5/25~

1st Case
in Japan

1st Report
in Wuhan

~ ~ ~2021
1/8

2021
3/21

2021
4/25

2021
6/20

2021
7/21

2021
9/30

Analyze the Changes in Topographical Maps of Depression 
during the COVID-19 Pandemic

2nd SoE 3rd SoE 4th SoE

Jan 2020 - May 2020

Before 
COVID-19 Pandemic Interval

From 1st case
to 1st SoE 2nd - 4th SoE

Topographical Maps of Depression during COVID-19 Pandemic

Energy Landscape Analysis (ELA)

A

B

C

D

E

F

特徴量

安定状態１

安定状態２

エネルギー
(起こりにくさ)

状態遷移

Multidimensional 
(Time Series) Data

Understand Multidimensional (Time Series) Data as Topographical Maps

T. Watanabe et al., Nat. Commun., 2014
T. Ezaki et al., Phil. Trans. R. Soc. A., 2017

Features

Stable State 1

Stable State 2

Energy
(Not often happens)

Transition

e.g.) ABCDEF

e.g.) ABCDEF

Bold : Big
Fine : Small

Topographical Maps

ELA
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Topographical Maps of Depression in 4 Periods

0 … Below average
1 … Above average
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within individual

D. Tatematsu, N. Nakamura et al., in revision

Disconnectivity Graphs
(=Summary of the Topographical Map )

Energy Threshold

b/w 010111 & 000000
111111

Energy Thresholds
(=Summit of Mountain)

Stable States
(=Bottom of Valley)

E=0.5

E=0.9

E=1.1

E=1.2

E=0.8

E=1.2E=0.9

E=0.3

E=0.4

E=0.9

E=0.7

E=1.5

E=0.7

E=0.9

E=0.9

E=1.2

E=0.6

E=0.4

000000, 111111, 010111
are the Stable States

The 6 Features Network
Expressing the Transition in This Research

(=Topographical Map of Depression)

000000
E=0

100000
E=6

010000
E=2

001000
E=7

000100
E=3

000010
E=1.3

000001
E=0.7

・A node represents a state.

・Each node connects to nodes
that differ by only 1 bit.

・Each node has an energy (=Height).

000000→111111
Energy Barrier
(How difficult
to transition)

Becker O. M., Karplus M., J. Chem. Phys, 1997

Flow Chart of the Analysis 3 : ELA (Disconnectivity Graphs)

Energy Threshold

b/w 000000 & 111111

D. Tatematsu, N. Nakamura et al., in revision

Calculate the Energies (=Heights) of All Possible States (26=64 states) 

Flow Chart of the Analysis 2 : ELA (Maximum Entropy Model)

D. Tatematsu, N. Nakamura et al., in revision
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Next Step

Other Types of Data Associated with the Subjects

Questionnaire
for the Family GPS

MRI Biological
Information

Comparison with Previous Studies

Qu M., Yang K., Cao Y. et al.,  JAMA Netw. Open, 2022

Chinese junior high school students (13-15 y/o) 
significantly decreased depression scores 

during the online class period under the lockdown. 
→ Scored and 2 point Significance Test

As overall population trends, the COVID-19 lifestyle
seems to have a positive impact on the student’s depression

Japanese high school students (16-18 y/o)
are less likely to become depressed

during the COVID-19 pandemic
(and more likely to remain in the previous state during the SoEs).

→ Topographical Maps of Depression 
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Data Acquisition, Psychiatry
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Poster Session

Predict vaccine-induced antibody dynamics
from 1 or 2 blood samplings

using mathematical models and machine learning

While biomedical data is highly accurate, the amount of data is 
limited, and there is a need to develop analytical methods that 
effectively utilize a small amount of data. In this study, we used 
data collected from approximately 2,500 individuals in the 
Fukushima vaccine cohort, Japan's largest and longest cohort for 
the COVID-19 vaccine. By applying an integrated approach of 
mathematical models and machine learning, we estimated IgG(S) 
antibody titer dynamics from 1 or 2 IgG(S) antibody titer data, age, 
and sex. This means that IgG(S) antibody titer data at any given 
time can be predicted from 1 or 2 blood samples. This approach 
can be applied to speeding up vaccine evaluation.

Summary

● Questionnaire for Approximately 2 years, 
including the COVID-19 Pandemic, 
for High School Students in Tokyo

→

● Topographical Maps of Depression
during the COVID-19 Pandemic

→
Less Likely to Become Depressed
during the COVID-19 Pandemic.
More Likely to Remain in the Previous State 
during the SoEs.

We analyzed the relationship
between the COVID-19 pandemic 
and depression 
using Energy Landscape Analysis (ELA).
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The COVID-19 Pandemic
has Changed Our Lifestyles

Changes in Mental Health
such as Depression
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Symmetric Simplicial Lifting for Hypergraph
Learning

Seongjin Choi

Department of Mathematics, POSTECH, Korea

The formulation of higher-degree sheaf Laplacians on hypergraphs is hindered by the
fundamental challenges of sparsity and orientational ambiguity. To address this, we
propose a foundational methodology: symmetric simplicial lifting. This technique
embeds a hypergraph into a richer structure, allowing for the systematic construction
of Laplacians of arbitrary degree. We validate our framework with the Hypergraph
Neural Sheaf Diffusion (HNSD) model, which leverages a degree-zero sheaf Laplacian
to learn diffusion processes. The model achieves strong performance on key hypergraph
benchmarks, demonstrating that our approach offers a principled pathway for higher-
order signal analysis. This work is joint with Gahee Kim and Yong-Geun Oh.
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Adjacency in hypergraphs

v0

v1
v2

v3

v4
e e′

• Nodes v, v′ are adjacent if ∃e ∋ v, v′ with |e| = 2.
• Hyperedges e, e′ are adjacent if |e| = |e′| and ∃e′′ such that

• e, e′ ⊂ e′′, |e′′| − |e| = 1: upper adjacent OR
• e, e′ ⊃ e′′, |e| − |e′′| = 1: lower adjacent

• Degree n (n > 1) sheaf Laplacian describes how features of
hyperedge of cardinality n+ 1 are diffused to its adjacent
hyperedges.

2

Background: Sheaf Laplacian on graphs

1

Figure 1: Node feature xv is diffused to u by −F T
u⊴eFv⊴e(xv).

• Cellular sheaf transfers node feature to its incident edge.
• Graph Laplacian =⇒ Sheaf Laplacian: How the node features
are diffused to its adjacent nodes in complicated ways.

1Image from Bodnar, Cristian, et al. ”Neural sheaf diffusion: A topological perspective
on heterophily and oversmoothing in gnns.” Advances in Neural Information
Processing Systems 35 (2022): 18527-18541.

1

Symmetric Simplicial Lifting
for Hypergraph Learning

Seongjin Choi
POSTECH
joint work with Gahee Kim(KAIST AI), Yong-Geun Oh(POSTECH)
TDA + IM 2025
7th August 2025
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0-dim’l objects in configuration space

[v0]v0

[v1]v1
[v2]v2

[v3]v3

[v4]v4

[0]

[0] := {0}

• {f : [0] → x | x ∈ E
⊔
V}: f is represented by (v)x for v ∈ x

• (v2)e ∼ (v2)e′ ∼ (v2)v: Represent the shared node v2
• ∆(H)0 := {f : [0] → x | x ∈ E

⊔
V}/ ∼

5

Idea: Embed hypergraph into its configuration space

v0

v1
v2

v3

v4

• hyperedge e, e′: observed relations
• All possible oriented subrelations from the observed relations.
• Ex. (v0, v1, v2, v3) in e, (v2, v3, v4) in e′.

4

Problem: Sparsity of adjacent hyperedges

v0

v1
v2

v3

v4
e e′

Figure 2: Degree n sheaf Laplacian vanishes for ∀n.

• The existence of a hyperedge does not imply non-vanishing
Laplacians.

• No hyperedge e′′ with |e′′| = 2 =⇒ L0 = 0.
• No adjacent hyperedge pair =⇒ Ln = 0 for n > 0.

3
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Mathematical structure of ∆(H)

We will show that ∆(H) := {∆(H)n}n∈N is a symmetric simplicial set.

Intuitions of symmetric simplicial set

• A collection of oriented n-dimensional objects (n-simplices)
represented by tuples.

• Given any n-simplex σ = (σ0, σ1, . . . , σn), any new tuple formed
from the vertex set {σ0, . . . , σn} must also be a simplex (e.g.,
(σµ(0), · · · , σµ(m)) for µ : [m] → [n]).

• Think of it as a ‘tuple’ version of a simplicial complex.

8

2-dim’l objects in configuration space

[v3, v3, v3]e = [v3, v3, v3]e′

[v0, v2, v3]e [v2, v3, v4]e′

[2][2] := {0 < 1 < 2}

• {f : [2] → x | x ∈ E
⊔
V}: f is represented by (u, v,w)x for

u, v,w ∈ x
• (v2, v2, v2)e ∼ (v2, v2, v2)e′ ∼ (v2, v2, v2)v2 : Represent the shared
node v2

• ∆(H)2 := {f : [2] → x | x ∈ E
⊔
V}/ ∼

7

1-dim’l objects in configuration space

[v3, v3]e = [v3, v3]e′

[v0, v1]e
[v1, v2]e

[v3, v4]e′

[v2, v4]e′

[1][1] := {0 < 1}

• {f : [1] → x | x ∈ E
⊔
V}: f is represented by (v,w)x for v, x ∈ x

• (v2, v2)e ∼ (v2, v2)e′ ∼ (v2, v2)v2 : Represent the shared node v2
• ∆(H)1 := {f : [1] → x | x ∈ E

⊔
V}/ ∼

6

126



Facet of n-simplex

Let δni : [n− 1] → [n] is the unique order preserving injection from
{0 < · · · < n− 1} to {0 < · · · < î < · · · < n}. Equation (1) induces a
map

X(δni ) : Xn → Xn−1.
Hence dni (σ) := X(δni )(σ) ∈ Xn−1 for i ∈ [n].

Defn. ith facet of σ
The ith facet of σ, denoted by dni (σ), is defined as

X (δni ) (σ) ∈ Xn−1.

• We denote σ ≺ τ and say σ is a facet of τ (or τ is a cofacet of σ)
if σ is ith facet of τ for some i ∈ [n].

• For σ ≺ τ , [σ : τ ] := (−1)i where σ = dni (τ).

11

Tuple representation of n-simplex

Let (i)[n] : [0] → [n] is a function with (i)[n](0) = i for i ∈ [n].
Equation (1) induces a map

X((i)[n]) : Xn → X0.

Hence σi := X((i)[n])(σ) ∈ X0 for i ∈ [n].

Defn. Tuple representation of σ
(σ0, · · · , σn) is called the tuple representation of σ.

σ0

σ1

σ2

σ3

σ

Figure 3: Tuple representation of 3-simplex σ

10

Symmetric simplicial set

Defn. Symmetric simplicial set
A collection X = {Xn}n∈N is called a symmetric simplicial set if it is
equipped with a family of functions

{X(µ) : Xn → Xm}{µ:[m]→[n]} (1)

satisfying if µ : [m] → [n], ν : [n] → [p] then

X(ν ◦ µ) = X(µ) ◦ X(ν). (2)

An element of Xn is called an n-simplex in X.

Equation (1) says X(µ) : (σ0, · · · , σn) → (σµ(0), · · · , σµ(n)).
Equation (2) says

X(ν◦µ)(σ0, · · · , σp) = (X(µ) ◦ X(ν)) (σ0, · · · , σp) = (σν◦µ(0), · · · , σν◦µ(p)).

9
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Example

[v0]e

[v1]e

[v2]e

[v3]e

[v4]e′
[v3, v4]e′

[v2, v3]e [v2, v3]e′

[v1, v2, v0]e

Ex. Symmetric simplicial lifting ∆(H)

• ∆(H)(µ)
(
[vj0 , · · · , vjn ]e

)
:= [vjµ(0),··· ,vjµ(m)

] for each µ : [m] → [n].

• Tuple representation of [v1, v2, v0]e is (v1, v2, v0).
• 0th facet of [v1, v2, v0]e is [v̂1, v2, v0]e = [v2, v0]e.
• [v1, v2]e, [v2, v3]e are lower adjacent since [v2]e is common facet.
• [v2, v3]e′ , [v3, v4]e′ are upper adjacent since [v2, v3, v4]e′ is common
cofacet. 14

Adjacency of two n-simplices

Since the ’facet’ notion is defined, we can discuss adjacency.

Defn. Upper/lower adjacency
Let σ, σ′ be two n-simplices. σ, σ′ are said to be

1. upper adjacent if ∃τ ∈ Xn+1 such that

σ ≺ τ, σ′ ≺ τ.

2. lower adjacent if ∃µ ∈ Xn−1 such that

µ ≺ σ, µ ≺ σ′.

13

Illustration of facets

σ
d20(σ)d21(σ)

d22(σ)σ0 σ1

σ2

Figure 4: 3 Facets of 2-simplex σ.

Rmk.
The concept of an ith facet does not require an orientation on X.

12
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Diffusion of features

F(τ)

F(σ) F(σ′)

F(µ)

(−1)[σ
′ :τ ]F∗(σ′≺τ)(−1)[σ:τ ]F(σ≺τ)

(−1)[µ:σ]F∗(µ≺σ) (−1)[µ:σ′ ]F(µ≺σ′)

Figure 6: adjacent σ, σ′ with one common cofacet τ , one common facet µ.

Feature xσ at simplex σ is diffused to its adjacent simplex σ′ by

(−1)[σ:τ ]+[σ′:τ ]F∗(σ′ ≺ τ)F(σ ≺ τ)(xσ)

+ (−1)[µ:σ]+[µ:σ′]F(µ ≺ σ′)F∗(µ ≺ σ)(xσ).

Aggregating all such possible feature diffusions results in the
construction of the sheaf Laplacian.

17

Compatibility conditions

• We can easily check that

δni ◦ δ
n−1
j = δnj ◦ δ

n−1
i−1 : [n− 2] → [n].

• Equation (2) implies

dn−1j ◦ dni (σ) = dn−1i−1 ◦ dnj (σ). (4)

F(σ)

F(dni (σ)) F(dnj (σ))

F
(
dn−1j

(
dni (σ)

))
= F

(
dn−1i−1

(
dnj (σ)

))

F(dni (σ)≺σ) F(dnj (σ)≺σ)

F(dn−1
j (dni (σ))≺d

n
i (σ)) F(dn−1

i−1 (d
n
j (σ))≺d

n
j (σ))

Figure 5: Condition (3) respects the identity (4).

16

Cellular sheaf on symmetric simplicial set

Defn. Cellular sheaf of degree m
A cellular sheaf (X,F) of degree m consists of the following data:

• For n ∈ [m], n-simplex σ ∈ Xn, a R-vector space F(σ), called the
stalk at σ.

• For n ∈ [m], n-simplex σ ∈ Xn and facet dni (σ), a linear map

F (dni (σ) ≺ σ) : F (dni (σ)) → F(σ)

satisfying the following compatibility conditions:

F
(
dn−1j (dni (σ)) ≺ dni (σ)

)
◦ F (dni (σ) ≺ σ)

= F
(
dn−1i−1 (d

n
j (σ)) ≺ dnj (σ)

)
◦ F

(
dnj (σ) ≺ σ

) (3)

for every n ∈ [m], i ∈ [n], j < i, and σ ∈ Xn.

Elements of F(σ) are called features at simplex σ.
15
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Embedding property of ∆

Thm. ∆ is an embedding.

∆(H) ∼= ∆(H′) ⇐⇒ H ∼= H′.

v0

v1
v2

v3

v4
[[v0, v1, v2, v3]e]

[[v2, v3, v4]e′ ]

Idea:

• e ⇐⇒ {[v0, v1, v2, v3]e, [v1, v0, v2, v3]e, · · · }
• e′ ⇐⇒ {[v2, v3, v4]e′ , [v3, v2, v4]e′ , · · · , }

20

Normalized degree n sheaf Laplacian

Defn. Normalized degree n sheaf Laplacian

1. The σ-component of the diagonal blocks, denoted by DkF (x)σ , is
defined as

∑
{τ |σ≺τ}

F∗(σ ≺ τ)F(σ ≺ τ)(xσ)

+
∑

{µ|µ≺σ}

F(µ ≺ σ)F∗(µ ≺ σ)(xσ).

2. For a k-cochain x, the σ-component of the normalized degree k
sheaf Laplacian, denoted by LkF (x)σ , is defined by

(
(DkF )−

1
2 LkF (DkF )−

1
2

)
(x)σ.

19

Degree n sheaf Laplacian

Defn. Degree n sheaf Laplacian
Let F be a cellular sheaf on X and k ∈ N.

1. A k-cochain, denoted by x = (xσ)σ∈Xk , is an element of the direct
sum of stalks over all k-simplices in X.

2. For a k-cochain x, the σ-component of the degree k sheaf
Laplacian LkF (x)σ is defined by

∑
σ′,τ

(−1)[σ:τ ]+[σ′:τ ]F∗(σ ≺ τ)F(σ′ ≺ τ)(xσ′)

+
∑
σ′′,µ

(−1)[µ:σ]+[µ:σ′′]F(µ ≺ σ)F∗(µ ≺ σ′′)(xσ′′)

for all possible σ′, σ′′, τ , and µ.

18
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Cora dataset

Cora is a citation network of scientific publications.

• Node: a single scientific publication, a total of 2,708 papers.
• Hyperedge: connect papers that are co-cited by another
publication.

• Node features: The presence (1) or absence (0) of each word
from a dictionary of 1,433 unique words is recorded in this vector.

• Node labels: {Case Based, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning,
Theory}

23

Generalization of sheaf Laplacian on graphs

Thm.
Suppose G is a graph and F is a cellular sheaf on G. Then F
induces a cellular sheaf F̂ on ∆(G) satisfying

L0F̂ = LF .

Idea: Define a cellular sheaf F̂ on ∆(G) by

F̂([vi0 , · · · , vin ]e) :=
{
F(v) if {vi0 , · · · , vin} = {v}
F(e) otherwise.

and linear map F̂([vi0 , · · · , v̂il , · · · , vin ]e ≺ [vi0 , · · · , vin ]e) by
{
F(v ∈ e) if {vi0 , · · · , v̂il , · · · , vin} ̸= {vi0 , · · · , vin}
Id otherwise.

22

Degree 0 sheaf Laplacian of ∆(H)

Thm. Formula for degree 0 sheaf Laplacian
For a 0-cochain x, L0F (x)[v]v is

∑
{w|w,v∈e for e}

{e|v,w∈e}

F∗([v]v ≺ [v,w]e)F([v]v ≺ [v,w]e)(xv)

+
∑

{w|w,v∈e for e}
{e|v,w∈e}

F∗([v]v ≺ [w, v]e)F([v]v ≺ [w, v]e)(xv)

−
∑

{w|w,v∈e for e}
{e|v,w∈e}

F∗([v]v ≺ [v,w]e)F([w]w ≺ [v,w]e)(xw)

−
∑

{w|w,v∈e for e}
{e|v,w∈e}

F∗([v]v ≺ [w, v]e)F([w]w ≺ [w, v]e)(xw).

21
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Results: Node classification accuracy

Cora Citeseer Cora-CA DBLP-CA Senate AVG.

CEGCN 75.32 ± 1.69 71.43 ± 1.34 76.68 ± 1.30 87.19 ± 0.30 48.17 ± 3.68 71.74
HNHN 76.36 ± 1.92 72.64 ± 1.57 77.19 ± 1.49 86.78 ± 0.29 50.85 ± 3.35 72.76
LEGCN 72.23 ± 1.60 71.84 ± 1.17 72.23 ± 1.60 84.26 ± 0.40 73.24 ± 10.29 74.76
HCoN 51.77 ± 2.23 43.48 ± 1.12 72.37 ± 1.08 89.98 ± 0.26 46.28 ± 4.66 60.78

HyperGCN 74.19 ± 1.41 69.42 ± 3.49 70.00 ± 3.74 86.78 ± 2.39 53.66 ± 6.35 70.78
AllDeepSets 76.88 ± 1.80 70.83 ± 1.63 81.97 ± 1.50 91.27 ± 0.27 48.17 ± 5.67 73.82

SheafHyperGNN 77.80 ± 2.24 73.93 ± 1.06 81.65 ± 1.50 88.93 ± 0.66 74.65 ± 5.90 79.39

HNSD(OURS) 79.28 ± 0.82 74.40 ± 1.47 82.58 ± 1.15 89.85 ± 0.44 78.45 ± 5.87 80.91

26

Hypergraph Neural Sheaf Diffusion (HNSD) (Continued)

We learn the cellular sheaf F on ∆(H) of degree 1 via

F([v]v ≺ [v,w]e) = MLP(xv ∥ x[v,w]e) ∈ Rd2

where

x[v,w]e = α′

(
Mα

(
WT

[
xv
1

]
⊙

[
xw
1

]))

with α = ReLU, α′ = tanh.

25

Hypergraph Neural Sheaf Diffusion (HNSD)

Given: Hypergraph H = (V, E) with 0-cochain y (node features)
Task: Predict a label of each node in H

1. Preprocess 0-cochain y with MLP so that x ∈ Rd. We fix d = 8.
2. X0 ∈ R|V|d×f0 (f0 = 1) is a matrix with the first column x
3. A general layer of HNSD on H is defined by

Xt+1 = α
(
(Id− L0F(t))(Id⊗Wt

1)XtWt
2

)
∈ R|V|d×fk+1

where
• t ∈ {0, · · · , L} is layer with fL= the number of labels, 1 ≤ L ≤ 8
• α is nonlinear function
• W1

t ∈ Rd×d,W2
t ∈ Rft×ft+1 are learnable matrices at layer t

• F(t) is cellular sheaf on ∆(H) at layer t

24
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Thank you!

Seongjin Choi
Ph.D. Candidate

jincs10@postech.ac.kr

https://sites.google.com/view/seongjinchoi/home
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Summary

• We embed hypergraph into symmetric simplicial set, ‘tuple’
version of simplicial complex.

• Symmetric simplicial lifting solves problems of adjacency
sparsity and lack of orientation. This enables the definition of
higher-degree sheaf Laplacians.

• HNSD shows competitive performance across established
benchmarks.

27

133





Topological Data Analysis and Industrial Mathematics

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Topological Data Analysis for Feature Extraction
and Model Evaluation

Jisu Kim

Department of Statistics, Seoul National University, Korea

Topological Data Analysis (TDA) generally refers to utilizing topological features from
data. A central topic in TDA is persistent homology, which observes data at various
resolutions and summarizes topological features that persistently appear. TDA has
been proven valuable in enhancing machine learning applications. This work explores
how TDA can enhance machine learning workflows, focusing on two areas: feature
extraction and model evaluation. Persistent homology, while rich in structural infor-
mation, is often challenging to integrate directly into statistical and machine learning
frameworks. To address this, various featurization techniques map persistence-based
information into Euclidean or functional spaces, enabling its incorporation into neu-
ral networks and other learning algorithms. I will examine different approaches that
efficiently transform topological summaries into differentiable layers and leverage geo-
metric representations for visualization and dimensionality reduction. In addition to
feature extraction, TDA has recently been applied to evaluate data quality and model
performance. By quantifying the topological structure of generated or transformed
data, TDA-based methods provide robust evaluation metrics that improve the relia-
bility of model assessment. I will present how this is done in particular in generative
modeling scenarios.
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Layer based on Differentiable Euler Characteristic Curve”. In: ().
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Topological structures in the data provide information.

1

1http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg
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Persistent Homology: observe topological structure with
multi resolutions.
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Topological Data Analysis is applied to Machine Learning.

▶ A Survey of Topological Machine Learning Methods (Hensel, Moor,
Rieck, 2021)

▶ Roughly, there are two directions applying Topological Data Analysis
(TDA) to Machine Learning:
▶ Make features from TDA to add topological features to data X :

more common
▶ PLLay: Efficient Topological Layer based on Persistence Landscapes

(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
▶ Generalized penalty for circular coordinate representation (Luo,

Patania, Kim, Vejdemo-Johansson, 2021)
▶ ECLayr: Fast and Robust Topological Layer based on Differentiable

Euler Characteristic Curve (Lee, Kim, Kim, 2025?)
▶ Evaluate quality of data X or model fθ using TDA: recently of

interest
▶ TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

9 / 65

A (very) rough introduction to Machine Learning

▶ For given problem and data, machine learning / deep learning learns
a parametrized model.
▶ Given data X ,
▶ Parametrized model fθ,
▶ Loss funciton L adapted to a problem,
▶ Machine Learning computes a solution that minimizes the loss

function: argminθ L(fθ,X ).
▶ For many cases, computing an explicit formula for the minimizer is

impossible or too expensive (e.g. inverting a large matrix). So, we
often use gradient descent using ∇θL(fθ,X ):

θn+1 = θn − λ∇θL(fθ,X ).

8 / 65

Persistent Homology: observe topological structure with
multi resolutions.

▶ Georges Seurat, A Sunday afternoon on the island of La Grande
Jatte (Un dimanche après-midi à l’Île de la Grande Jatte)

7 / 65
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Topological holes in the data provide information.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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PLLay is differentiable.

▶ A deep learning model learns its parameters by back propagation,
which is to apply gradient descent layer-wise.

▶ For a deep learning layer to be learnable, it should be differentiable:

Theorem (Theorem 3.1 in Kim et al. [2020])
The PLLay function Sθ,ω is differentiable with respect to the input data
X .

27 / 65
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PLLay is stable.

▶ PLLay is stable with respect to perturbations in input X :

Theorem (Theorem 4.2 in Kim et al. [2020])
Let X ∼ P and Pn be the empirical distribution. Further, let DP ,DX be
the persistence diagrams of P , X , respectively. Then

|Sθ,ω(DX )− Sθ,ω(DP)| = O(W2(Pn,P)),

where W2 is 2-Wasserstein distance.

29 / 65

PLLay is stable.

▶ PLLay is stable with respect to changes in persistence diagrams:

Theorem (Theorem 4.1 in Kim et al. [2020])
For two persistence diagrams D,D′,

|Sθ,ω(D)− Sθ,ω(D′)| = O(dB(D,D′)),

where dB is the bottleneck distance.

28 / 65
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Euler Characteristic is computationally efficient.
▶ Euler Characteristic of a simplex or cubical complex is an alternating

sum of betti numbers: for a simplex / cubical complex K ,

χ(K ) =
∞∑
k=0

(−1)k |K k | =
∞∑
k=0

(−1)kβk ,

where K k is the set of k-dimensional simplices in K , and βk is the
k-th Betti number of K .

▶ χ(K ) = 5 − 6 = 1 − 2 = −1

▶ χ(K ) = 4 − 6 = 1 − 3 = −2

32 / 65
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Computation Time

Model Data
MNIST Br35H Synthetic

ECC 3.129 sec 0.458 sec 2.17 sec
PH 33.700 sec 11.033 sec 59.288 sec

35 / 65

EClayr: Build topological layer using Euler Characteristic
Curves

▶ ECLayr: Fast and Robust Topological Layer based on Differentiable
Euler Characteristic Curve (Lee, Kim, Kim, 2025?)

1. From data X , choose an appropriate simplicial complex K and a
function f to build a filtration.

2. From the filtration, compute the Euler Characteristic Curve
C : R → R, and vectorize to get E ∈ Rv .

3. For a parametrized differentiable map gθ : Rm → R, compute
Oθ := gθ(E).

34 / 65
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We rely on the kernel density estimator to extract
topological information of the underlying distribution.

▶ The kernel density estimator is

p̂h(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
nhd ||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute ẑα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}

5. The (1 − α) confidence band for E[ph] is
[
p̂h − ẑα√

nhd
, p̂h +

ẑα√
nhd

]
.

52 / 65

153



154



R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

▶ website:
https://cran.r-project.org/web/packages/TDA/index.html

▶ Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

▶ R is a programming language for statistical computing and graphics.
▶ R has short development time, while C/C++ has short execution

time.
▶ R package TDA provides an R interface for C++ library

GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.

60 / 65

There are many programs for Topological Data Analysis.

▶ There are many programs for Topological Data Analysis: e.g.,
Dionysus, DIPHA, GUDHI, javaPlex, Perseus, PHAT, Ripser, TDA,
TDAstats

59 / 65

Introduction

Persistent Homology

Featurization using Persistence Landscape

Featurization using Euler Characteristic Curves

Featurization using Circular Coordinates

Statistical Inference For Homological Features

Evaluation using Confidence of Topological Data Analysis

Computation for Topological Data Analysis: R Package TDA

References

58 / 65

155



References II

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological
machine learning methods. Frontiers Artif. Intell., 4:681108, 2021. doi:
10.3389/frai.2021.681108. URL
https://doi.org/10.3389/frai.2021.681108.

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frédéric Chazal,
and Larry Wasserman. PLLay: Efficient Topological Layer based on
Persistent Landscapes. arXiv e-prints, art. arXiv:2002.02778, February
2020.

Pum Jun Kim, Yoojin Jang, Jisu Kim, and Jaejun Yoo. TopP&R: Robust
Support Estimation Approach for Evaluating Fidelity and Diversity in
Generative Models. arXiv e-prints, art. arXiv:2306.08013, June 2024.
doi: 10.48550/arXiv.2306.08013.

Hengrui Luo, Alice Patania, Jisu Kim, and Mikael Vejdemo-Johansson.
Generalized penalty for circular coordinate representation. Foundations
of Data Science, 3(4):729–767, 2021.

63 / 65

References I

Peter Bubenik. Statistical topological data analysis using persistence
landscapes. arXiv preprint arXiv:1207.6437, 2012.

Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The
structure and stability of persistence modules. arXiv preprint
arXiv:1207.3674, 2012.

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo,
and Larry Wasserman. Stochastic convergence of persistence
landscapes and silhouettes. In Annual Symposium on Computational
Geometry, pages 474–483. ACM, 2014.

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson.
Persistent cohomology and circular coordinates. Discrete &
Computational Geometry, 45(4):737–759, 2011.

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
Applied mathematics. American Mathematical Society, 2010. ISBN
9780821849255. URL
http://books.google.com/books?id=MDXa6gFRZuIC.

62 / 65

Introduction

Persistent Homology

Featurization using Persistence Landscape

Featurization using Euler Characteristic Curves

Featurization using Circular Coordinates

Statistical Inference For Homological Features

Evaluation using Confidence of Topological Data Analysis

Computation for Topological Data Analysis: R Package TDA

References

61 / 65

156



Statistical Inference for Persistent Homology

Featurization using Persistent Homology

R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

1 / 35

Thank you!
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X → R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistence diagrams. Then

dB(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1 − α implies

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1 − α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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∞-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f , g : X → R be two functions, and let Dgm(f ) and Dgm(g) be
corresponding persistent homologies. Then

Λ∞(Dgm(f ), Dgm(g)) ≤ ∥f − g∥∞.

13 / 35

161



Statistical Inference for Persistent Homology

Featurization using Persistent Homology

R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

16 / 35

Confidence band for the persistence landscape can be
computed using the bootstrap algorithm.

▶ Confidence band for the persistence landscape can be also computed
using multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014].
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R Package TDA provides distance functions and density
functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.

X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) p̂h : Rd → [0,∞) is
defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−∥y − xi∥2

2

2h2

)
,

where h is a smoothing parameter.
The function kde() computes the KDE function p̂h on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")

20 / 35
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R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par(mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)
for (i in seq(along = one)) {
for (j in seq_len(dim(DiagGrid[["cycleLocation"]][[one[i]]])[1])) {
lines(DiagGrid[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,

col = i + 1)
}

}
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")

24 / 35

R Package TDA computes Persistent Homology over a grid.

▶ The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
▶ gridDiag() evaluates the real valued input function over a grid.
▶ gridDiag() constructs a filtration of simplices using the values of the

input function.
▶ gridDiag() computes the persistent homology of the filtration.

▶ The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

23 / 35
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R Package TDA computes Vietoris-Rips Persistent
Homology.

▶ The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
▶ ripsDiag() constructs the Vietoris-Rips filtration using the data

points.
▶ ripsDiag() computes the persistent homology of the Vietoris-Rips

filtration.
▶ The user can choose to compute persistent homology using either

C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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R Package TDA computes Persistence Landscape.

▶ Let Λp be created by tenting each point p = (x , y) =
(
b+d

2 , d−b
2

)
representing a birth-death pair (b, d) in the persistence diagram D.

▶ The persistence landscape of D is the collection of functions

λk(t) = k max
p

Λp(t), t ∈ [0,T ], k ∈ N,

where k max is the kth largest value in the set.
▶ The function landscape() evaluates the persistence landscape

function λk(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 − α) bootstrap confidence band for E[p̂h] is used as the
confidence band for the persistence landscape.

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "l", xlab = "(Birth+Death)/2",

ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")
axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,
border = NA)

lines(tseq, Land)

34 / 35

R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 − α) bootstrap confidence
band for E[p̂h].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)

print(bandKDE[["width"]])

## 90%
## 0.06189347
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Persistent Vector Bundles and Stiefel–Whitney
Classes in Data Analysis

Dongwoo Gang

Department of Mathematical Sciences, Seoul National University, Korea

In this talk, we introduce a new method to estimate Stiefel–Whitney classes—topological
invariants that detect features like orientability and embedding obstructions—directly
from point cloud data. We first extend classical vector bundle theory to persistent
vector bundles in the setting of topological data analysis. By applying cohomology op-
erations to persistent cohomology, we compute these classes in a persistent setting. We
demonstrate the method with applications in image analysis, molecular conformation,
and high-dimensional data.
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Geometric properties of curves in ensemble
forecasting

Sebastian Elias Graiff Zurita
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In this talk, we analyze ensemble forecasting trajectories from a geometric point of view.
We focus on the oriented turning angles to cluster and distinguish different weather
scenarios. Ensemble forecasting is a method used in weather prediction, which consists
of running multiple forecast simulations, each with slightly varied initial conditions or
model parameters, to capture the inherent uncertainty in weather forecasting. Collec-
tively, these outputs map the range and likelihood of future states, and it is crucial
to identify and label them to take the proper preventive actions in each situation.
We quantify the shape of the trajectory with the Frenet frame, which is a coordinate
system attached to a moving point along a curve. In two dimensions, the curvature
at each point of the curve defines the frame; in three dimensions, the torsion is ad-
ditionally included; and analogous quantities extend to higher dimensions. As a first
step in this research, we emphasize the oriented turning angle (the cumulative signed
change of direction) as a feature for grouping ensemble forecasting data. We apply
this to heavy-rain datasets and show that the turning angle helps distinguish different
meteorological scenarios. We think that studying these techniques further will improve
interpretation of ensemble information and uncertainty assessment.
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Smooth curves (2D)

The principal object of study is the parametric 
curve:

For convenience, we reparameterize it by the 
arc-length

giving the arc-length parameterization of the 
curve:

Geometry of curves

Let us start with the following concepts in 2D, 
3D, and general dimension:

● Smooth curves

○ Arc-length parameterization

○ Frenet frame

○ Orientation

○ Turning angle

● Discrete analogues

Geometric Properties of Curves 
in Ensemble Forecasting

Sebastián Elías Graiff Zurita
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Similarly, we consider an arc-length 
parameterized curve, 

Smooth curves (3D)

Image: Commons.Wikimedia/Bevin Maultsby

Frenet frame (2D)

The Frenet frame describes the geometric 
properties of a particle moving along a 
differentiable curve.

The Frenet frame satisfies the Frenet formula:

Given a arc-length parameterized curve, 
consider:

Smooth curves (2D)
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All the previous concepts are generalized for 
any dimension. The generalized tangents, are 
obtained recursively.

Smooth curves (ND)

In three dimensions, the Frenet frame is given 
by the normal, tangent and binormal vectors,

Which satisfies the Frenet-Serret formulas:

Frenet frame (3D)

Comparing with a two dimensional space, now 
we have an extra dimension where the curve 
can curl, giving raise to the torsion:

Smooth curves (3D)

Image: Commons.Wikimedia/Bevin Maultsby
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Orientation (ND)

A Frame, seeing it as an ordered basis, has an 
orientation depending on the sign of the 
determinant being positive or negative.

The orientation distinguishes between two 
possible “handedness” of coordinate systems:

• In 2D, this corresponds to clockwise vs 
counter-clockwise.

• In 3D, right-handed vs left-handed.

The Frenet frame is generalized by a system of 
orthonormal vectors that aligns with higher 
derivatives of a curve.

Frenet frame (ND)

All the previous concepts are generalized for 
any dimension. The generalized tangents, are 
obtained recursively.

Smooth curves (ND)
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The k-finite difference,

is used to define the discrete Frenet frame,

and the signed deflection and turning angle:

Discrete analogues

A discrete curve is simply a sequence of 
points,

were we consider

Discrete analogues

In two dimensions, the turning angle has a 
natural sign depending on the orientation of 
the Frenet frame. 

Let us consider its extension to high 
dimensions by simply taking

Turning angle (ND)
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Ensemble Forecasting

Ensemble Forecasting

Ensemble Forecasting

Ensemble forecasting is a method used in 
weather prediction that involves running 
multiple forecast simulations, each with slightly 
varied initial conditions or model parameters, 
to capture the uncertainty of the atmosphere 
and improve forecast reliability.
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Data analysis workflow

Ensemble Forecasting
(High dimensional)

Dimensionality Reduction
(Low dimensional)

Post processing/analysis Ensemble turning angle graph
(Two dimensional)

Ensemble Forecasting

Ensemble Forecasting
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Input Data (full matrix)

Input Data (space axis)

Longitud

Latitud

Input Data (time axis)

Forecasting Time

(Initialization Time) 
x (Ensemble Member)

187



Example: Lorenz ‘63 model

Example: Lorenz ‘63 model

The Lorenz system (1963) is a classical 
example of a system that can exhibit chaotic 
behavior.

Example: Lorenz ‘63 model
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Example: Lorenz ‘96 model (2D PCA projection)

Example: Lorenz ‘96 model

The Lorenz ‘96 model is a dynamical system 
defined in N dimensions. It is commonly used 
as a model problem in geosciences:

Example: Lorenz ‘96 model
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Image: Pascal OETTLI, Center for Environmental 
Remote Sensing, Chiba University

TIGGE Dataset (2018)

TIGGE Dataset (2018)

The THORPEX Interactive Grand Global 
Ensemble (TIGGE) is an implementation of 
ensemble forecasting for global weather 
forecasting established in 2006 by the World 
Meteorological Organization.

Initialization Time: 
Every 6 hours.

Forecasting Time:
Every 6 hours, for up to 2 weeks.

Ensemble Members:
20 perturbed, 1 control point.

Data:
Geopotential height at 500 hPa.

Example: Lorenz ‘96 model (3D PCA projection)
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TIGGE Dataset (2018)

TIGGE Dataset (2018) (2D PCA projection)

TIGGE Dataset (2018)
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TIGGE Dataset (2018)

Blue Group

Red Group

TIGGE Dataset (2018)

TIGGE Dataset (2018)

192



Thanks!

TIGGE Dataset (2018)

TIGGE Dataset (2018) (Statistical Analysis)
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Introduction

Ground Penetrating Radar (GPR) is a widely used non-destructive

testing (NDT) technique for subsurface exploration, particularly in in-

frastructure inspection and maintenance. However, it is often lim-

ited structural awareness. In this study, we propose a novel mathe-

matical framework that combines Topological Data Analysis (TDA) with

Kernel Density Estimation (KDE). TDA is used to extract robust topologi-

cal features from B-scan images, and KDE models the distributions of these

features across space. By computing distances between the resulting distri-

butions, we can localize buried objects.

Data Description

A typical GPR survey setup is illustrated in Fig. 1(a) illustrates in the field,

included here for visual context. While this study does not use real-world

data, the same principles are replicated in simulation. We generated 341

synthetic B-scan images using the open-source FDTD simulator gprMax.

The simulation domain included a single buried pipe and multiple soil layers.

A representative simulation setup and its synthetic B-scan output are shown

in Fig. 1(b).

(a) Field data collection (b) gprMax synthetic B-scan

generated.
Fig. 1: Field Data Collection and Simulated Data Generation

Toplogical Feature Extraction

We applied topological data analysis (TDA) to extract structural patterns

from simulated GPR images as illustrated in Fig.2. H1 loops are extracted,

some sample are shown in Fig. 3, which indicate circular or arc-like structures

that potentially correspond to buried pipes.

Fig. 2: From raw B-scan to extracted H1 loops for shape analysis.

Fig. 3: Detected H1 features (in red) highlighting arc-like pipe structures.

Distribution-Based Detection

To identify pipe-like patterns, we focus on classifying the detected H1 loops

based on their spatial distributions.

Fig. 4 shows these procedures.

Step 1. Select a representative parabolic shape as a reference.

Step 2. Using Kernel Density Estimation (KDE) get the spatial distri-

bution of each H1 features.

Step 3. The similarity between distributions is quantified using the

Wasserstein distance.

Step 4. Features exhibiting similar KDE profiles are classified as pipe-

related, while dissimilar ones are discarded.

Fig. 4: Classification of KDE-based features using Wasserstein distance.

Results

The framework achieved an F1-score of 0.86, with balanced precision and

recall (both 0.86), as summarized in Fig. 5. Although the overall accuracy

was 0.76, the high F1-score highlights the model’s robustness in handling

potential class imbalance. The confusion matrix shows a high number of

true positives and relatively few false detections, confirming the method’s

reliability.

Fig. 5: Evaluation metrics showing F1-score, precision, recall, and accuracy.

Conclusion

This study explores a topology- and distribution-driven approach, which

shows initial promise. However, its performance can be further improved,

and real-world validation remains necessary.

2025 Topological Data Analysis and Industrial Mathematics

195



Support Estimation with Topological guarantee
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1. Introduction

A support of a probability distribution P is the minimal closed set whose P-probability is 1. Support
estimation is one of the main interests of statistics, machine Learning, and industry due to its wide range
of applications like anomaly detection (Devroy and Wise, 1980) and clustering (Cuevas et al., 2000).
Support estimation is closely related to density estimation since support of a P whose probability density
function is p is often defined as {x : p(x) > 0}. Cuevas and Fraiman (1997) proposed a plug-in
method for support estimation using the upper-level set of a kernel density estimator as a support
estimator and showed its measure-based metric and Hausdorff metric convergence rates.
Although the plug-in estimator offers useful geometric inference of the support, it does not provide any
guarantees regarding accurate inference of the topological structure of the support. One approach to
performing topological inference on the support is to construct a set which is homotopy equivalent to
the support.
In this poster, I investigate the conditions under which the plug-in estimator (Cuevas and Fraiman,
1997) is homotopy equivalent to the support for both fixed and random data settings.

2. Background

2.1. Notation

Distance between a set X and a point y is defined as

d(y ,X) = inf
x∈X

∥y − x∥2

where ∥·∥2 is usual Euclidean L2 norm.

For a subset X ⊂ Rd and r > 0, its r -offset Xr is defined as

Xr =
{
y ∈ Rd : d(y ,X) < r

}
=

⋃

x∈X

B(x , r)

and 0-offset X0 be just X itself.

2.2. Homotopy equivalence

A homotopy between two continuous maps f0, f1 : X → Y is a continuous map
F : X × [0, 1] → Y such that for all x ∈ X, F (x , 0) = f0(x), and F (x , 1) = f1(x). Two maps f0
and f1 are called homotopic if such homotopy F exists, and denote f0 ≃ f1.

Using homotopy between maps, we define the homotopy equivalence between two topological spaces as
follows.

A continuous map f : X → Y is called a homotopy equivalence if there exists a map
g : Y → X such that g ◦ f ≃ idX and f ◦ g ≃ idY. X and Y are said to be homotopy
equivalent or have the same homotopy type if such homotopy equivalence exists, and denote
X ≃ Y.

It is worth knowing that being homotopy equivalent is an equivalence relation.
A special case of homotopy equivalence called a deformation retract is a widely used deformation map
from a space to its subspace.

A deformation retract of a space X onto a subspace A ⊂ X is a continuous map
F : X × [0, 1] → X such that

F (x , 0) = x , F (x , 1) ∈ A for ∀x ∈ X,

F (a, t) = a for ∀a ∈ A and ∀t ∈ [0, 1]

The subspace A ⊂ X is called a deformation retract of X if such a deformation retract exists.
And of course, A ≃ X if A ⊂ X is a deformation retract of X.

2.3. Kernel Density Estimation

Let P be a Borel probability distribution in Rd with probability density p. A kernel density estimation is
a nonparametric density estimation that estimates p using a kernel function K : Rd → R satisfying∫

Rd
K (x)dx = 1,

∫

Rd
xK (x)dx = 0, and 0 <

∫

Rd
x2K (x)dx < ∞.

Here we define a kernel density estimator(KDE) p̂h : Rd → R as

p̂h(x) :=
1

nhd

n

∑
i=1

K

(
x − Xi

h

)

for given data {X1, · · · ,Xn} ⊂ Rd and bandwidth 0 < h < ∞.
An expected value of KDE EP [p̂h(x)] := ph(x) is often called a smoothed density. A smoothed density
can be viewed as a convolution of p and Kh(·) = K (·/h)/hd , and it is useful for geometrical inference.

(Gine and Guillou, 2002)

∥p̂h − ph∥∞ = OP

(√
log 1/h
nhd

)

3. Topological Consistency of plug-in Estimator

Cuevas and Fraiman (1997) defines the plug-in based support estimator p̂−1
h [λn,∞) where {λn}n∈N is

a decreasing sequence of positive numbers, converging to 0. A main result of this paper is to investigate
the conditions when this plug-in based estimator is homotopy equivalent to the true support supp(P) of
P . Directly targeting supp(P) requires h → 0, however this requires the existence of a density function
p, which is often violated due to a manifold assumption. It also incurs the curse of dimensionality in the
convergence rate of p̂h. Instead, I would like to fix h > 0. Then plug-in estimator will naturally converge
to supp(ph), and mild geometric conditions on the kernel K and supp(P) ensure that supp(ph) and
supp(P) are homotopy equivalent.

Lemma 1.

Let P be a probability distribution in Rd and K be the kernel function. If the kernel K and supp(P)
satisfy mild geoemtric conditions, then supp(ph) deformation retracts to supp(P). i.e.,
supp(ph) ≃ supp(P), and supp(ph) ≃ p−1

h [ξ,∞) for small enough ξ > 0.

Now the problem becomes whether the plug-in estimator p̂−1
h [λn,∞) constructed from a finite sample is

homotopy equivalent to p−1
h [ξ,∞). I will examine the conditions under which this equivalence holds for

both fixed and random data.

1 Luc Devroy and Gary L. Wise. (1980) Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math., 38(3):480-488, 1980.

2 Antonio Cuevas, Manuel Febrero, and Ricardo Friaman. (2000) Estimating the number of clusters. Canadian Journal of Statistics, 28(2):367-382, 2000.

3 Antonio Cuevas and Ricardo Fraiman. (1997). A plug-in approach to support estimation. Ann. Statist., 25(6):2330-2321, 1997.

4 Evarist Gine and Armelle Guillou. (2002). Rates of strong uniform consistency for multivariate kernel density estimators. Annales de l’Institut Henri Poincare (B)
Probabilitiy and Statistics, 38(6):907-921, 2002

5 Jisu Kim, Jaehyeok Shin, Alessandro Rinaldo, and Larry A. Wasserman. (2019). Uniform convergence rate of the kernel density estimator adaptive to intrinsic
volume dimension. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019

3.1. Fixed Data

Let f and g be two real-valued functions. To see whether the level sets of these functions deformation
retract to each other, we first need the level sets to be interleaved.

Lemma 2.

Let f , g : U ⊂ Rd → R be two real valued functions. Let ξ1, ξ2, λ ∈ R be satisfying ξ1 < λ < ξ2
and supx∈f −1[ξ1,ξ2] |f (x)− g(x)| ≤ min {λ − ξ1, ξ2 − λ}. Then the following holds:

f −1 [ξ2,∞) ⊂ g−1 [λ,∞) ⊂ f −1 [ξ1,∞)

Whether there are deformation retracts between level sets is a well-known question in Morse Theory and
is solved by flows. Let Y := f −1[ξ,∞) ⊂ g−1[λ,∞) := X. When f = g , a flow integrating the
gradient ∇f would give a deformation retract of X to Y, where a flow
ψ : D ⊂ (X\Y)× [0,∞) → X\Y satisfies

d

ds
ψ(x , s) = ∇f (ψ(x , s))

Hence we can hope that when ∇f and ∇g are close, we can build a vector field W that is ”close” to
both ∇f and ∇g to make a deformation retract.

Lemma 3.

Let f , g : Rd → R be two real valued smooth functions. Let ξ1 < ξ2 be such that f has no critical
points in D := f −1[ξ1, ξ2]. Suppose ∇f and ∇g satisfy

∥∇f (x)−∇g(x)∥2 ≤
1

2
min
x∈D

∥∇f (x)∥2 for all x ∈ D.

Then there exists a smooth vector field W : D → Rd that approximates both ∇f (x) and ∇g(x)

With Lemma 3, we can finally build a deformation retraction from X to Y

Lemma 4.

Let f , g : Rd → R be two nonnegative real valued smooth functions. Suppose X := f −1[ξ,∞) and
Y := g−1[λ,∞) satisfies that Y ⊂ X. Suppose W : X\Y → Rd is a vector field approximating both
∇f (x) and ∇g(x). Then X deformation retracts to Y. In particular, X ≃ Y.

Now combining all the above lemmas, we can say the homotopy equivalence between level sets of
plug-in estimator and smoothed density.

Theorem 5.

Suppose the kernel function K is smooth. Let 0 < ξ1 < λn < ξ2 satisfying that ph has no critical
points in D := p−1

h [ξ1, ξ2]. Now, suppose p̂h satisfies the followings:

sup
x∈D

|p̂h(x)− ph(x)| ≤ min {λn − ξ1, ξ2 − λn} , (1)

sup
x∈D

∥∇p̂h(x)−∇ph(x)∥2 ≤
1

2
min
x∈D

∥∇ph(x)∥2 . (2)

Then p−1
h [ξ1,∞) deformation retracts to p̂−1

h [λn,∞), and p̂−1
h [λn,∞) deformation retracts to

p−1
h [ξ2,∞). In particular, p−1

h [ξ1,∞) ≃ p̂−1
h [λn,∞) ≃ p−1

h [ξ2,∞).

The following corollary summarizes the topological consistency of the plug-in estimator under mild
conditions.

Corollary 6.

Let 0 < ξ1,n < λn < ξ2,n < ξ0, ∀n, where ξ0 is minimum nonzero homological critical value of ph, and
ξ2,n ↘ 0. Suppose for each n, Theorem 5 is satisfied for ξ1,n, ξ2,n. Then under mild geometric
assumption, p−1

h [λn,∞) ≃ supp(ph) ≃ supp(P) for all large n and small enough h.

3.2. Random Data

To control the probability of geometric conditions (1) and (2), the function space of kernel should not
be too complex. One common approach is to assume that the function space is a uniformly bounded
VC-class. Hence we need the following additional assumption.

uniformly bounded VC class. Let K : Rd → R be a kernel function with ∥K∥∞, ∥K∥2 < ∞. I
assume that,

Fh := {Kx ,h : x ∈ U} ,
is a uniformly bounded VC class with dimension ν. That is, there exists A, ν > 0, for every
probability measure Q on Rd and for every ϵ ∈ (0, ∥K∥∞), the covering numbers
N (Fh, L2(Q), ϵ) satisfies

N (Fh, L2(Q), ϵ) ≤
(
A ∥K∥∞

ϵ

)ν

.

Under Assumption 3, we have the desired high probability bound, which is Corollary 13 and 21 in Kim et
al. (2019).

Proposition 7.

(Corollary 13 and 21 in Kim et al. (2019)) Let P be a probability distribution in Rd , and X1, · · · ,Xn be
i.i.d. from P. Let K be a kernel function having compact support and of a uniformly bounded VC class.
Then, for any ϵ > 0, with probability at least

1− exp
(
C
(
log(h−1 ∧ 1)− nh2d+2ϵ2

))
,

we have

max

{
sup
x∈U

|p̂h(x)− ph(x)| , sup
x∈U

∥ ∇p̂h(x)−∇ph(x)∥2
}

≤ ϵ,

where C is a constant depending only on P and K.

In our setting, let ϵ := min
{

λn − ξ1, ξ2 − λn,
1
2 minx∈D ∥∇ph(x)∥2

}
gives the high probability bound

for Theorem 5, and let ϵn := min
{

λn − ξ1,n, ξ2,n − λn,
1
2 minx∈Dn ∥∇ph(x)∥2

}
gives the high

probability bound for Corollary 6.

4. Conclusion

Compared to existing methods such as the union of balls or simplicial complexes, the plug-in estimator is
more robust to outliers, enabling more reliable inference of the distribution’s support. Moreover, since it
is an application of a statistically well-studied object-KDE-probabilistic analysis can be conducted more
easily. Fixing the bandwidth h > 0 of the kernel function helps alleviate the curse of dimensionality, and
much faster convergence rates of both the kernel density estimator and the plug-in estimator can be
achieved.
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MIレクチャーノートシリーズ刊行にあたり

　本レクチャーノートシリーズは、文部科学省 21世紀 COEプログラム「機
能数理学の構築と展開」（H15-19年度）において作成した COE Lecture Notes
の続刊であり、文部科学省大学院教育改革支援プログラム「産業界が求める
数学博士と新修士養成」（H19-21年度）および、同グローバル COEプログラ
ム「マス・フォア・インダストリ教育研究拠点」（H20-24年度）において行わ
れた講義の講義録として出版されてきた。平成 23年 4月のマス・フォア・イ
ンダストリ研究所（IMI）設立と平成 25年 4月の IMIの文部科学省共同利用・
共同研究拠点として「産業数学の先進的・基礎的共同研究拠点」の認定を受け、
今後、レクチャーノートは、マス・フォア・インダストリに関わる国内外の
研究者による講義の講義録、会議録等として出版し、マス・フォア・インダ
ストリの本格的な展開に資するものとする。
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COE Lecture Note Mitsuhiro T. NAKAO 
Kazuhiro YOKOYAMA

Computer Assisted Proofs - Numeric and Symbolic Approaches - 
199pages

August 22, 2006 

COE Lecture Note M.J.Shai HARAN Arithmetical Investigations - Representation theory, Orthogonal 
polynomials and Quantum interpolations-  174pages

August 22, 2006 

COE Lecture Note Vol.3 Michal BENES 
Masato KIMURA 
Tatsuyuki NAKAKI

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005  
155pages October 13, 2006

COE Lecture Note Vol.4 宮田　健治 辺要素有限要素法による磁界解析 -機能数理学特別講義  21pages May 15, 2007

COE Lecture Note Vol.5 Francois APERY Univariate Elimination Subresultants - Bezout formula, Laurent series 
and vanishing conditions -  89pages

September 25, 2007

COE Lecture Note Vol.6 Michal BENES 
Masato KIMURA 
Tatsuyuki NAKAKI

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006  
209pages

October 12, 2007

COE Lecture Note Vol.7 若山　正人 
中尾　充宏

九州大学産業技術数理研究センター キックオフミーティング  
138pages

October 15, 2007

COE Lecture Note Vol.8 Alberto PARMEGGIANI Introduction to the Spectral Theory of Non-Commutative Harmonic 
Oscillators  233pages

January 31, 2008

COE Lecture Note Vol.9 Michael I.TRIBELSKY Introduction to Mathematical modeling  23pages February 15, 2008

COE Lecture Note Vol.10 Jacques FARAUT Infinite Dimensional Spherical Analysis  74pages March 14, 2008

COE Lecture Note Vol.11 Gerrit van DIJK Gelfand Pairs And Beyond  60pages August 25, 2008

COE Lecture Note Vol.12 Faculty of Mathematics, 
Kyushu University

Consortium “MATH for INDUSTRY” First Forum  87pages September 16, 2008

COE Lecture Note Vol.13 九州大学大学院 
数理学研究院

プロシーディング「損保数理に現れる確率モデル」 
― 日新火災・九州大学 共同研究2008年11月 研究会 ― 82pages

February 6, 2009
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COE Lecture Note Vol.14 Michal Beneš,  
Tohru Tsujikawa 
Shigetoshi Yazaki

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2008  
77pages

February 12, 2009

COE Lecture Note Vol.15 Faculty of Mathematics, 
Kyushu University

International Workshop on Verified Computations and Related Topics  
129pages

February 23, 2009

COE Lecture Note Vol.16 Alexander Samokhin Volume Integral Equation Method in Problems of Mathematical Physics  
50pages

February 24, 2009

COE Lecture Note Vol.17 矢嶋　　徹 
及川　正行 
梶原　健司 
辻　　英一 
福本　康秀

非線形波動の数理と物理  66pages February 27, 2009

COE Lecture Note Vol.18 Tim Hoffmann Discrete Differential Geometry of Curves and Surfaces  75pages April 21, 2009

COE Lecture Note Vol.19 Ichiro Suzuki The Pattern Formation Problem for Autonomous Mobile Robots 
―Special Lecture in Functional Mathematics―　23pages

April 30, 2009

COE Lecture Note Vol.20 Yasuhide Fukumoto 
Yasunori Maekawa

Math-for-Industry Tutorial: Spectral theories of non-Hermitian 
operators and their application　184pages

June 19, 2009

COE Lecture Note Vol.21 Faculty of Mathematics,  
Kyushu University

Forum “Math-for-Industry” 
Casimir Force, Casimir Operators and the Riemann Hypothesis　
95pages

November 9, 2009

COE Lecture Note Vol.22 Masakazu Suzuki 
Hoon Hong 
Hirokazu Anai 
 Chee Yap 
Yousuke Sato 
Hiroshi Yoshida

The Joint Conference of ASCM 2009 and MACIS 2009:  
Asian Symposium on Computer Mathematics Mathematical Aspects of 
Computer and Information Sciences  436pages

December 14, 2009

COE Lecture Note Vol.23 荒川　恒男 
金子　昌信

多重ゼータ値入門　111pages February 15, 2010

COE Lecture Note Vol.24 Fulton B.Gonzalez Notes on Integral Geometry and Harmonic Analysis　125pages March 12, 2010

COE Lecture Note Vol.25 Wayne Rossman Discrete Constant Mean Curvature Surfaces via Conserved Quantities  
130pages

May 31, 2010

COE Lecture Note Vol.26 Mihai Ciucu Perfect Matchings and Applications　66pages July 2, 2010
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COE Lecture Note Vol.27 九州大学大学院 
数理学研究院

Forum “Math-for-Industry” and Study Group Workshop 
Information security, visualization, and inverse problems, on the basis 
of optimization techniques　100pages

October 21, 2010

COE Lecture Note Vol.28 ANDREAS LANGER MODULAR FORMS, ELLIPTIC AND MODULAR CURVES 
LECTURES AT KYUSHU UNIVERSITY 2010　62pages

November 26, 2010

COE Lecture Note Vol.29 木田　雅成 
原田　昌晃 
横山　俊一

Magmaで広がる数学の世界　157pages December 27, 2010

COE Lecture Note Vol.30 原　　　隆 
松井　　卓 
廣島　文生

Mathematical Quantum Field Theory and Renormalization Theory　
201pages

January 31, 2011 

COE Lecture Note Vol.31 若山　正人 
福本　康秀 
高木　　剛 
山本　昌宏

Study Group Workshop 2010 Lecture & Report　128pages February 8, 2011

COE Lecture Note Vol.32 Institute of Mathematics  
for Industry, 
Kyushu University

Forum “Math-for-Industry” 2011 
“TSUNAMI-Mathematical Modelling” 
Using Mathematics for Natural Disaster Prediction, Recovery and 
Provision for the Future　90pages

September 30, 2011

COE Lecture Note Vol.33 若山　正人 
福本　康秀 
高木　　剛 
山本　昌宏

Study Group Workshop 2011 Lecture & Report　140pages October 27, 2011

COE Lecture Note Vol.34 Adrian Muntean 
Vladimír Chalupecký

Homogenization Method and Multiscale Modeling　72pages October 28, 2011

COE Lecture Note Vol.35 横山　俊一 
夫　　紀恵 
林　　卓也

計算機代数システムの進展　210pages November 30, 2011

COE Lecture Note Vol.36 Michal Beneš 
Masato Kimura 
Shigetoshi Yazaki

Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010 
107pages

January 27, 2012 

COE Lecture Note Vol.37 若山　正人 
高木　　剛 
Kirill Morozov 
平岡　裕章 
木村　正人 
白井　朋之 
西井　龍映 
栄　伸一郎 
穴井　宏和 
福本　康秀

平成23年度 数学・数理科学と諸科学・産業との連携研究ワーク
ショップ　拡がっていく数学　～期待される “見えない力”～ 
154pages

February 20, 2012
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COE Lecture Note Vol.38 Fumio Hiroshima 
Itaru Sasaki 
Herbert Spohn 
Akito Suzuki

Enhanced Binding in Quantum Field Theory　204pages March 12, 2012

COE Lecture Note Vol.39 Institute of Mathematics  
for Industry,  
Kyushu University

Multiscale Mathematics: Hierarchy of collective phenomena and 
interrelations between hierarchical structures　180pages

March 13, 2012

COE Lecture Note Vol.40 井ノ口順一 
太田　泰広 
筧　　三郎 
梶原　健司 
松浦　　望

離散可積分系・離散微分幾何チュートリアル2012　152pages March 15, 2012

COE Lecture Note Vol.41 Institute of Mathematics 
for Industry,
Kyushu University

Forum “Math-for-Industry” 2012 
“Information Recovery and Discovery”　91pages

October 22, 2012

COE Lecture Note Vol.42 佐伯　　修
若山　正人
山本　昌宏

Study Group Workshop 2012 Abstract, Lecture & Report　178pages November 19, 2012

COE Lecture Note Vol.43 Institute of Mathematics 
for Industry, 
Kyushu University

Combinatorics and Numerical Analysis Joint Workshop　103pages December 27, 2012

COE Lecture Note Vol.44 萩原　　学 モダン符号理論からポストモダン符号理論への展望　107pages January 30, 2013

COE Lecture Note Vol.45 金山　　寛 Joint Research Workshop of Institute of Mathematics for Industry 
(IMI), Kyushu University 
“Propagation of Ultra-large-scale Computation by the Domain-
decomposition-method for Industrial Problems (PUCDIP 2012)”　
121pages

February 19, 2013

COE Lecture Note Vol.46 西井　龍映
栄　伸一郎
岡田　勘三
落合　啓之
小磯　深幸
斎藤　新悟
白井　朋之

科学・技術の研究課題への数学アプローチ
―数学モデリングの基礎と展開―　325pages

February 28, 2013

COE Lecture Note Vol.47 SOO TECK LEE BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE 
COMPLEX CLASSICAL GROUPS　40pages

March 8, 2013

COE Lecture Note Vol.48 溝口　佳寛
脇　　隼人
平坂　　貢
谷口　哲至
島袋　　修

博多ワークショップ「組み合わせとその応用」　124pages March 28, 2013
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COE Lecture Note Vol.49 照井　　章
小原　功任
濱田　龍義
横山　俊一
穴井　宏和
横田　博史

マス・フォア・インダストリ研究所　共同利用研究集会 II
数式処理研究と産学連携の新たな発展　137pages

August 9, 2013

MI Lecture Note Vol.50 Ken Anjyo
Hiroyuki Ochiai
Yoshinori Dobashi
Yoshihiro Mizoguchi
Shizuo Kaji

Symposium MEIS2013:
Mathematical Progress in Expressive Image Synthesis　154pages

October 21, 2013

MI Lecture Note Vol.51 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2013
“The Impact of Applications on Mathematics”　97pages

October 30, 2013

MI Lecture Note Vol.52 佐伯　　修
岡田　勘三
髙木　　剛
若山　正人
山本　昌宏

Study  Group  Workshop  2013 Abstract,  Lecture  &  Report　142pages November 15, 2013

MI Lecture Note Vol.53 四方　義啓
櫻井　幸一
安田　貴徳
Xavier Dahan

平成25年度　九州大学マス・フォア・インダストリ研究所　
共同利用研究集会　安全・安心社会基盤構築のための代数構造
～サイバー社会の信頼性確保のための数理学～　158pages

December 26, 2013

MI Lecture Note Vol.54 Takashi Takiguchi
Hiroshi Fujiwara

Inverse problems for practice, the present and the future　93pages January 30, 2014 

MI Lecture Note Vol.55 栄　伸一郎
溝口　佳寛
脇　　隼人
渋田　敬史

Study Group Workshop 2013 数学協働プログラム Lecture & Report
98pages

February 10, 2014

MI Lecture Note Vol.56 Yoshihiro Mizoguchi
Hayato Waki
Takafumi Shibuta
Tetsuji Taniguchi
Osamu Shimabukuro
Makoto Tagami
Hirotake Kurihara
Shuya Chiba

Hakata Workshop 2014
~ Discrete Mathematics and its Applications ~　141pages

March 28, 2014

MI Lecture Note Vol.57 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2014:
“Applications + Practical Conceptualization + Mathematics = fruitful 
Innovation”　93pages

October 23, 2014

MI Lecture Note Vol.58 安生健一
落合啓之

Symposium MEIS2014:
Mathematical Progress in Expressive Image Synthesis　135pages

November 12, 2014
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MI Lecture Note Vol.59 西井　龍映
岡田　勘三
梶原　健司
髙木　　剛
若山　正人
脇　　隼人
山本　昌宏

Study  Group  Workshop  2014  数学協働プログラム 
Abstract, Lecture  &  Report　196pages

November 14, 2014

MI Lecture Note Vol.60 西浦　　博 平成26年度九州大学 IMI共同利用研究・研究集会（I）
感染症数理モデルの実用化と産業及び政策での活用のための新
たな展開　120pages

November 28, 2014

MI Lecture Note Vol.61 溝口　佳寛
Jacques Garrigue
萩原　　学
Reynald Affeldt

研究集会　
高信頼な理論と実装のための定理証明および定理証明器
Theorem proving and provers for reliable theory and implementations 
(TPP2014)　138pages

February 26, 2015

MI Lecture Note Vol.62 白井　朋之 Workshop on “β-transformation and related topics”　59pages March 10, 2015

MI Lecture Note Vol.63 白井　朋之 Workshop on “Probabilistic models with determinantal structure”　
107pages

August 20, 2015

MI Lecture Note Vol.64 落合　啓之
土橋　宜典

Symposium MEIS2015:
Mathematical Progress in Expressive Image Synthesis　124pages

September 18, 2015

MI Lecture Note Vol.65 Institute of Mathematics 
for Industry, Kyushu 
University

Forum “Math-for-Industry” 2015
“The Role and Importance of Mathematics in Innovation”　74pages

October 23, 2015

MI Lecture Note Vol.66 岡田　勘三
藤澤　克己
白井　朋之
若山　正人
脇　　隼人
Philip Broadbridge
山本　昌宏

Study  Group  Workshop  2015 Abstract, Lecture  &  Report　
156pages November 5, 2015

MI Lecture Note Vol.67 Institute of Mathematics 
for Industry, Kyushu 
University

IMI-La Trobe Joint Conference
“Mathematics for Materials Science and Processing”
66pages

February 5, 2016

MI Lecture Note Vol.68 古庄　英和
小谷　久寿
新甫　洋史

結び目と Grothendieck-Teichmüller群
116pages

February 22, 2016

MI Lecture Note Vol.69 土橋　宜典
鍛治　静雄

Symposium MEIS2016:
Mathematical Progress in Expressive Image Synthesis　82pages

October 24, 2016

MI Lecture Note Vol.70 Institute of Mathematics 
for Industry,  
Kyushu University

Forum “Math-for-Industry” 2016
“Agriculture as a metaphor for creativity in all human endeavors”　
98pages

November 2, 2016

MI Lecture Note Vol.71 小磯　深幸
二宮　嘉行
山本　昌宏

Study Group Workshop 2016 Abstract, Lecture & Report　143pages November 21, 2016
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MI Lecture Note Vol.72 新井　朝雄
小嶋　　泉
廣島　文生

Mathematical quantum field theory and related topics　133pages January 27, 2017

MI Lecture Note Vol.73 穴田　啓晃
Kirill Morozov
須賀　祐治
奥村　伸也
櫻井　幸一

Secret Sharing for Dependability, Usability and Security of Network 
Storage and Its Mathematical Modeling　211pages

March 15, 2017

MI Lecture Note Vol.74 QUISPEL, G. Reinout W.
BADER, Philipp
MCLAREN, David I.
TAGAMI, Daisuke

IMI-La Trobe Joint Conference 
Geometric Numerical Integration and its Applications　71pages

March 31, 2017

MI Lecture Note Vol.75 手塚　　集
田上　大助
山本　昌宏

Study Group Workshop 2017 Abstract, Lecture & Report　118pages October 20, 2017

MI Lecture Note Vol.76 宇田川誠一 Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論
―Tzitzéica方程式の楕円関数解を出発点として―　68pages

August 4, 2017

MI Lecture Note Vol.77 松谷　茂樹
佐伯　　修
中川　淳一
田上　大助
上坂　正晃
Pierluigi Cesana
濵田　裕康

平成29年度　九州大学マス・フォア・インダストリ研究所
共同利用研究集会（I）　
結晶の界面，転位，構造の数理　148pages

December 20, 2017

MI Lecture Note Vol.78 瀧澤　重志
小林　和博
佐藤憲一郎
斎藤　　努
清水　正明
間瀬　正啓
藤澤　克樹
神山　直之

平成29年度　九州大学マス・フォア・インダストリ研究所
プロジェクト研究　研究集会（I）
防災・避難計画の数理モデルの高度化と社会実装へ向けて　
136pages

February 26, 2018

MI Lecture Note Vol.79 神山　直之
畔上　秀幸

平成29年度　AIMaPチュートリアル
最適化理論の基礎と応用　96pages

February 28, 2018

MI Lecture Note Vol.80 Kirill Morozov
Hiroaki Anada
Yuji Suga

IMI Workshop of the Joint Research Projects 
Cryptographic Technologies for Securing Network Storage
and Their Mathematical Modeling　116pages

March 30, 2018

MI Lecture Note Vol.81 Tsuyoshi Takagi
Masato Wakayama
Keisuke Tanaka
Noboru Kunihiro
Kazufumi Kimoto
Yasuhiko Ikematsu

IMI Workshop of the Joint Research Projects
International Symposium on Mathematics, Quantum Theory, 
and Cryptography　246pages

September 25, 2019

MI Lecture Note Vol.82 池森　俊文 令和2年度　AIMaPチュートリアル
新型コロナウイルス感染症にかかわる諸問題の数理　
145pages

March 22, 2021



シリーズ既刊

Issue Author／Editor Title Published

MI Lecture Note Vol.83 早川健太郎
軸丸　芳揮
横須賀洋平
可香谷　隆
林　　和希
堺　　雄亮

シェル理論・膜理論への微分幾何学からのアプローチと 
その建築曲面設計への応用　49pages

July 28, 2021

MI Lecture Note Vol.84 Taketoshi Kawabe
Yoshihiro Mizoguchi
Junichi Kako
Masakazu Mukai
Yuji Yasui

SICE-JSAE-AIMaP Tutorial
Advanced Automotive Control and Mathematics　110pages

December 27, 2021

MI Lecture Note Vol.85 Hiroaki Anada
Yasuhiko Ikematsu
Koji Nuida
Satsuya Ohata
Yuntao Wang

IMI Workshop of the Joint Usage Research Projects
Exploring Mathematical and Practical Principles of Secure Computation 
and Secret Sharing　114pages

February 9, 2022

MI Lecture Note Vol.86 濱田　直希
穴井　宏和
梅田　裕平
千葉　一永
佐藤　寛之
能島　裕介
加葉田雄太朗
一木　俊助
早野　健太
佐伯　　修

2020年度採択分　九州大学マス・フォア・インダストリ研究所
共同利用研究集会
進化計算の数理　135pages

February 22, 2022

MI Lecture Note Vol.87 Osamu Saeki, 
Ho Tu Bao, 
Shizuo Kaji, 
Kenji Kajiwara, 
Nguyen Ha Nam, 
Ta Hai Tung,
Melanie Roberts, 
Masato Wakayama, 
Le Minh Ha, 
Philip Broadbridge

Proceedings of Forum “Math-for-Industry” 2021
-Mathematics for Digital Economy-　122pages

March 28, 2022

MI Lecture Note Vol.88 Daniel PACKWOOD
Pierluigi CESANA, 
Shigenori FUJIKAWA, 
Yasuhide FUKUMOTO,
Petros SOFRONIS, 
Alex STAYKOV

Perspectives on Artificial Intelligence and Machine Learning in 
Materials Science, February 4-6, 2022　74pages

November 8, 2022
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MI Lecture Note Vol.89 松谷　茂樹
落合　啓之
井上　和俊
小磯　深幸
佐伯　　修
白井　朋之
垂水　竜一
内藤　久資
中川　淳一
濵田　裕康
松江　　要
加葉田雄太朗

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
材料科学における幾何と代数 III 　356pages

December 7, 2022

MI Lecture Note Vol.90 中山　尚子
谷川　拓司
品野　勇治
近藤　正章
石原　　亨
鍛冶　静雄
藤澤　克樹

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
データ格付けサービス実現のための数理基盤の構築　58pages

December 12, 2022

MI Lecture Note Vol.91 Katsuki Fujisawa
Shizuo Kaji
Toru Ishihara
Masaaki Kondo
Yuji Shinano
Takuji Tanigawa
Naoko Nakayama

IMI Workshop of the Joint Usage Research Projects
Construction of Mathematical Basis for Realizing Data Rating Service
610pages

December 27, 2022

MI Lecture Note Vol.92 丹田　　聡
三宮　　俊
廣島　文生

2022年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
時間・量子測定・準古典近似の理論と実験
〜古典論と量子論の境界〜　150pages

Janualy 6, 2023

MI Lecture Note Vol.93 Philip Broadbridge
Luke Bennetts
Melanie Roberts
Kenji Kajiwara

Proceedings of Forum “Math-for-Industry” 2022
-Mathematics of Public Health and Sustainability-　170pages

June 19, 2023

MI Lecture Note Vol.94 國廣　　昇
池松　泰彦
伊豆　哲也
穴田　啓晃
縫田　光司

2023年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
現代暗号に対する安全性解析・攻撃の数理　260pages

Janualy 11, 2024

MI Lecture Note Vol.96 澤田　茉伊 2023年度採択分 九州大学マス・フォア・インダストリ研究所
共同利用研究集会
デジタル化時代に求められる斜面防災の思考法　70pages

March 18, 2024



シリーズ既刊

Issue Author／Editor Title Published

MI Lecture Note Vol.97 Shariffah Suhaila Syed Jamaludin
Zaiton Mat Isa
Nur Arina Bazilah Aziz 
Taufiq Khairi Ahmad Khairuddin
Shaymaa M.H.Darwish 
Ahmad Razin Zainal Abidin 
Norhaiza Ahmad 
Zainal Abdul Aziz
Hang See Pheng
Mohd Ali Khameini Ahmad

International Project Research-Workshop (I)
Proceedings of 4th Malaysia Mathematics in Industry Study Group 
(MMISG2023)　172pages

March 28, 2024

MI Lecture Note Vol.98 中澤　　嵩 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共
同利用研究集会
自動車性能の飛躍的向上を目指す Data-Driven 設計　92pages

January 30, 2025

MI Lecture Note Vol.99 Jacques Garrigue 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共
同利用研究集会
コンピュータによる定理証明支援とその応用　308pages

March 17, 2025

MI Lecture Note Vol.100 Yutaka Jitsumatsu
Masayoshi Ohashi
Akio Hasegawa
Katsutoshi Shinohara
Shintaro Mori

IMI Workshop of the Joint Usage Research Projects
Mathematics for Innovation in Information and Communication 
Technology
274pages

March 19, 2025

MI Lecture Note Vol.101 Makoto Ohsaki 
Yoshiki Jikumaru

IMI Workshop of the Joint Usage Research Projects
Evolving Design and Discrete Differential Geometry:towards 
Mathematics Aided Geometric Design
528pages

October 1st, 2025
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