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Preface

This lecture note is a collection of slides presented at the workshop “Topological Data
Analysis and Industrial Mathematics”, held at Nishijin Plaza, Fukuoka, Japan, from
August 5 to 8, 2025. The workshop was organized by the Institute of Mathematics for
Industry (IMI), Kyushu University, and supported by JSPS KAKENHI, Grant-in-Aid
for Scientific Research (B) 25K00921 and (S) 25H00399, NICT commissioned re-
search N0.22301, and the JST Moonshot R&D Program (JPMJIMS2021).

The aim of this workshop was to bring together researchers from academia and indus-
try to discuss recent developments and applications of Topological Data Analysis (TDA)
in the fields of science, engineering, and industrial mathematics. By bridging topology,
geometry, and data-driven modeling, the workshop explored how mathematical frame-
works can promote innovation in complex systems, biomedical sciences, and other
related areas.

The program was organized around the following three main themes:

» Applications and theoretical extensions of persistent homology
 Applications of TDA to industrial and biomedical sciences
» Meta-level discussions on the role of mathematics for industry

Through these interdisciplinary discussions, this workshop provided a platform for
mathematicians, engineers, and data scientists to collaborate and advance both the
mathematical foundations and practical applications of topological data analysis.

Organizing Committee Chair: Keunsu Kim

Organizing Committee Members

» Keunsu Kim (Kyushu University)

» Matias de Jong van Lier (Kyushu University)
 Shizuo Kaji (Kyushu University / Kyoto University)
* Jae-Hun Jung (POSTECH/POSTECH MINDS)
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Program

Day 1 (Aug 5, Tue)
= 14:00 — 14:20, Registration
= 14:20 — 14:30, Opening Remark
= 14:30 — 15:30, Suyoung CHOI (Ajou University) — Plenary Talk
= 15:30 - 16:00, Coffee Break
= 16:00 - 16:40, Yusuke IMOTO (Kyoto University)
= 16:50 - 17:30, Junwon YOU (POSTECH)

Day 2 (Aug 6, Wed)
= 10:00 - 10:40, Tetsuji TANIGUCHI (Hiroshima Institute of Technology / Math. Research
Institute Calc for Industry)
= 10:50 - 11:15, Raiki YOSHIMURA (Nagoya University)
*  11:15 - 11:40, Eunwoo HEO (POSTECH)
=  11:40 - 12:00, Photo
= 12:00 — 14:00, Lunch Break
= 14:00 - 14:40, Sungrim Seirin—LEE (Kyoto University)
= 14:50 - 15:30, Emerson ESCOLAR (Kobe University)
=  15:30 - 16:00, Coffee Break
= 16:00 — 16:40, Tomoki UDA (University of Toyama)
= 16:50 — 17:30, Keunsu KIM (Kyushu University)
= 1730 - , Banquet
The banquet is supported by POSTECH MINDS (PI: Prof. Jae—Hun Jung).



Day 3 (Aug 7, Thu)

10:00 - 10:40, Ippei OBAYASHI (Okayama University)
10:50 — 11:15, Daiki TATEMATSU (Nagoya University)
11:15 - 11:40, Seongjin CHOI (POSTECH)

11:40 — 12:00, Poster pre—persentation

12:00 — 14:00, Lunch Break

14:00 — 15:00, Tea Performance

15:00 — 16:30, Poster Session

Day 4 (Aug 8, Fri)

10:00 — 10:40, Jisu KIM (Seoul National University)

10:50 - 11:15, Dongwoo GANG (Seoul National University)

11:15 = 11:40, Sebastian Elias GRAIFF ZURITA (Kyoto University)
11:50 — 12:30, Shamisen Performance and Closing



Contents

Preface = ¢ ¢ ¢ ¢ ¢ ¢ o o o o o e e e e e e e e e e e e e e e e e e e e e e e 1

Topological Data Analysis and Industrial Mathematics:
Bridging Theory and Applications =« = =« « = =« « ¢« o« o o e o o000 . i

WOrkShOp Program .............................. iV
Abstracts & Slides for Mini-courses

1. Topological Data Analysis for Non-Destructive Testing in Civil Engineering + + + 1
Suyoung Choi (Department of Mathematics, Ajou University, Korea)

2. RNA Landscape Analysis via Combinatorial Hodge Decomposition + + « « « « - 13
Yusuke Imoto (Institute for the Advanced Study of Human Biology (WPI-ASHBI),
Kyoto University, Japan)

3. PHLP: Interpretable Link Prediction via Persistent Homology and Its Extension to
Knowledge Graph Completion ........................ 15
Junwon You (Basic Science Research Institute, POSTECH, Korea)

4. Potential of Mathematics for Industry, and the Dilemma in the Midstream - - + - 35
Tetsuji Taniguchi (Hiroshima Institute of Technology /
Math. Research Institute Calc for Industry, Japan)

5. A Data-Driven Framework for Predicting Liver Failure Dynamics and
Living Donor Transplant Prognosis = + =+ =+ =« ¢ o o o o e 00000 . 37
Raiki Yoshimura (Graduate School of Science, Nagoya University, Japan)

6. Quantifying the Topological Structure of Graphs: The Total Persistence Difference 53
Eunwoo Heo (Department of Mathematics, POSTECH, Korea)

7. Pathological State Inference System based on Mathematical Model and
TDA for Personalized Treatment in Dermatology =+ + + =« « = + = « = « « « « - 65
Sungrim Seirin-Lee (Kyoto University Institute for the Advanced Study of Human
Biology (ASHBI), Kyoto University, Japan)

8. A Topological Analysis of the Space of Recipes * + « = =« « ¢ = =« o o o o 67
Emerson Escolar (Graduate School of Human Development and Environment,
Kobe University, Japan)

9. Ellipse Cloud: Anisotropy-Aware Persistent Homology < = + + « = =« « « = « 79
Tomoki Uda (Faculty of Science, University of Toyama, Japan)

10. Nonnegative Matrix Factorization with Topological Regularization + + + « « - - 89
Keunsu Kim (Institute of Mathematics for Industry, Kyushu University, Japan)

11. Applications of Persistent Homology to Materials Science,
and Persistent Homology Software HomCloud + + « = = « « = = « « « « « « « =« 103
Ippei Obayashi (Center for Artificial Intelligence & Mathematical Data Science,
Okayama University, Japan)

Vi



12. Understanding Depression during the COVID-19 Pandemic as Topographical
MAapPS * * * + t ot e e e e e e e e e e e e e 115
Daiki Tatematsu (Graduate School of Science, Nagoya University, Japan)

13. Symmetric Simplicial Lifting for Hypergraph Learning =+ + « « « « « « « « « - 123
Seongjin Choi (Department of Mathematics, POSTECH, Korea)

14. Topological Data Analysis for Feature Extraction and Model Evaluation - -+ - - 135
Jisu Kim (Department of Statistics, Seoul National University, Korea)

15. Persistent Vector Bundles and Stiefel-Whitney Classes in Data Analysis - + - + 171
Dongwoo Gang (Department of Mathematical Sciences, Seoul National University, Korea)

16. Geometric properties of curves in ensemble forecasting = + + + = =+ ¢ ¢ o - . 179
Sebastian Elias Graiff Zurita (Kyoto University Institute for Advanced Study,
Kyoto University, Japan)

POSTER

1. A Topology and Distribution-Based Method for Pipe Localization in Ground
Penetrating Radar Data ........................... 195
MEIYAN KANG (AJOU UNIVERSITY)

2. Support Estimation with Topological guarantee =« + < < = « « < = = « ¢ « « « 196
Hyeongyu Kim (Seoul National University)

3. Predict vaccine-induced antibody dynamics from 1 or 2 blood samplings using
mathematical models and machine learning - = = = = « « « « ¢ ¢ e oo .. 197
Daiki Tatematsu (Nagoya University), Shingo Iwami (Nagoya University)

4. Limit Theorems for Verbose Persistence Diagrams + = = « + « = = « « « « « 198
Jeong-hwi Joe (KAIST), Woojin Kim (KAIST), Cheolwoo Park (KAIST)

Vii



viii



TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Topological Data Analysis for Non-Destructive
Testing in Civil Engineering

Suyoung Choi

Department of Mathematics, Ajou University, Korea

We explore the potential applications of industrial mathematics in civil engineering,
with a focus on non-destructive testing (NDT). In particular, we introduce topological
data analysis (TDA) techniques that can enhance model performance when analyzing
ground-penetrating radar (GPR) survey images.

References.

1]
2]

Meiyan Kang et al. “A Novel Shape-Aware Topological Representation for GPR
Data with DNN Integration”. In: arXiv preprint arXiv:2506.06511 (2025).
Jianwei Lei et al. “GPR detection localization of underground structures based on
deep learning and reverse time migration”. In: NDT & FE International 143 (2024),
p. 103043.

Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 779-788.

Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with re-
gion proposal networks”. In: Advances in neural information processing systems
28 (2015).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional net-
works for biomedical image segmentation”. In: International Conference on Medi-

cal image computing and computer-assisted intervention. Springer. 2015, pp. 234—
241.



Topological Data Analysis for
Non-Destructive Testing in Civil
Engineering

2025 Topological Data Analysis and Industrial Math
2025.8.5

Suyoung Choi (Ajou Univ.)

Industrial Mathematics

How Do We Solve Industrial Problems Using Math?

AIM: Solve Real world Problem
In the era of the Fourth Industrial Revolution, the integration of Data,

and Artificial (Al) enables industries to
address complex, real-world.

DATA

Collect real-time industrial data from sensors, machines, and digital
systems to reflect the physical environment and operational states.

Use artificial intelligence to learn patterns from data and make
automated decisions for optimization, fault detection, and predictive
maintenance.

Translate data into interpretable mathematical models that support
analysis, simulation, forecasting, and algorithmic reasoning.

Civil Engineering

The planning, design, construction, and maintenance of the built and natural
environment including infrastructure such as roads, bridges, canals, dams,

airports, pipelines, sewage systems, buildings, and railways.

L. Euler was also one of pioneers of civil engineering.




Industrial Mathematics

Real-world Problem:

Underground Utility Detection

Real-
world
problem

Civil Engineering

Urban problems

* Rapid urbanization increases underground
safety concerns.

« Many underground facilities are poorly
documented or mismatched with design
drawings.

» Accurate underground information is essential

for safe and efficient urban development.

Urban problems




Industrial Problem —Underground Utility Detection

Underground Utilities: water pipes, gas lines, electrical cables ..

Impact our daily lives!

[ Locating and identifying utilities are essential and necessary!

Underground exploration in Korea

« Implementation plan for disaster and safety management technology development 2016
(2016 XHit o okt |2 | = oHL Al A=)

» Special law on Underground Safety Management 2022.1.28

(XIsterEiztzlof 23t SEE)

Developers planning large-scale underground excavation projects, as defined by

government regulation, are required to conduct an underground safety assessment.

(HEEBo R Pohe 112 02| XS} ZEBALE EIBI= AIRS S124i= ROPHUAMURH= BIEA| X[SIRPHEI IS HA| SH0R)

=

NOT (nondestructive testing)

“A method of inspecting an object without transforming it when
you want to know the internal defects or components of the object”

» Does not permanently alter the article being inspected

« Save both money and time in product evaluation, troubleshooting and
research

« Can be used to detect flaws in an in—process machine part




NOT (nondestructive testing)

Is it possible to find out the type and characteristics of

underground burial without digging the ground?

GPR (Ground—penetrating radar)

“A geophysical method that uses radar pulses

to image the subsurface”

Electrical Resistivity Surveys

geophysical method used to investigate subsurface structures by measuring the

soil’s resistance to electrical current




Impact-echo method

technique that uses sound waves from small impacts to find cracks or voids
inside concrete structures.

Proj 1: Pipe detection (GPR)

supported by
KEPCO Research Institute (KEPRI)

GPR (Ground-penetrating radar)

Project Goal:

To detect underground pipes or
cavities using GPR data




GPR (Ground—penetrating radar)

GPR (Ground—penetrating radar) : B-scan image

Proj 1: Pipe detection (GPR)

Cavity Pipe




Proj 1: Pipe detection (GPR)

Cavities

Not cavities but similar images

Proj 1: Pipe detection (GPR)

The Risk of False Predictions

I 1 |

» FP (False Positive) : Detecting a pipe where there is none
— Leads to wasted time, cost, and unnecessary digging

* FN(False Negative) : Failing to detect an actual pipe
— Can cause serious safety hazards, such as accidents or
infrastructure damage

Proj 1: Pipe detection (GPR)

How to improve?

1. Sim2Real (Simulation to Reality)

 Train models using simulated underground scenarios.

» Transfer knowledge to real GPR data through domain adaptation.
» Reduce data collection cost and improve model robustness.

2. TDA (Topological Data Analysis)

» Extract shape-based features from GPR images.

« Identify persistent topological structures that correspond to underground
objects.

* Improve interpretability and detection accuracy.




Why Sim2Real?

1. Needs
» Real GPR data is hard to obtain
» Ground truth is uncertain, even with field data
« On-site surveys are costly and require road

closures

(Reference image)

2. Challenges
» Simulated GPR data is often unrealistic
« Simulation is time-consuming to generate

Why TDA?

1. Needs

» Cavity patterns in GPR data are typically homeomorphic
to S*-shaped

« Shapes may distort due to noise, but TDA is stable
under such perturbations

2. Challenges

» No straightforward way to apply TDA directly to image
data

* Too many 1-cylces appear in persistence diagrams,
making interpretation difficult

Proj 1: Pipe detection (GPR)

Data Generation and Collection




Proj 1: Pipe detection (GPR)

Doing TDA

» Does it make sense?
+ Isit computable?

* Does it produce meaningful results?

Seq. of

‘ Point Cloud ‘ ‘ Filtration ‘ ‘ Betti numbers

‘ ‘ Analysis ‘

Proj 1: Pipe detection (GPR)

Cubical Complex

Proj 1: Pipe detection (GPR)

Image to cubical complex
1

Give
thresholds
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Observation

Proj 1: Pipe detection (GPR)

Colored by the life time of each generator of 5,

Threshold: 0.30 i
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Thank you for your attention!

Suyoung Choi (Ajou Univ.)
schoi@ajou.ac.kr
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

RINA Landscape Analysis via Combinatorial Hodge
Decomposition

Yusuke Imoto

Institute for the Advanced Study of Human Biology (WPI-ASHBI), Kyoto University,
Japan

Cell differentiation can be conceptualized as movement on Waddington’s epigenetic
landscape, yet reconstructing this landscape from high-dimensional single-cell data
remains challenging. Here, we propose landscape analysis, a novel framework for
single-cell RNA-seq data that reconstructs an RNA landscape, which is Waddington’s
landscape-like structure, and performs downstream dynamical analysis utilizing this
landscape. Single-cell RNA-seq measures transcript levels for approximately 20,000
genes per cell, producing a high-dimensional expression matrix. By applying RNA
velocity, we convert these static profiles into vectors that predict each cell’s future
transcriptional trajectory. We then perform Hodge decomposition on this velocity field
to extract the potential that forms the gradient component. The resulting potential
surface defines the RNA landscape’s height. Finally, by geometrically or statistically
analyzing the potential, we derive biologically meaningful insights such as single-cell
trajectories, time-resolved differential expression dynamics, and gene functions in cell
differentiation. We applied landscape analysis to time-series scRNA-seq data of the
PGCLC induction system, identifying differentiation pathways and candidate genes
driving induction.

References.

[1] Roberto Buizza and Tim N Palmer. “The singular-vector structure of the at-
mospheric global circulation”. In: Journal of Atmospheric Sciences 52.9 (1995),
pp. 1434-1456.

[2] Yusuke Imoto and Yasuaki Hiraoka. “V-mapper: Topological data analysis for
high-dimensional data with velocity”. In: Nonlinear Theory and Its Applications,
IEICE 14.2 (2023), pp. 92-105.

[3] Martin Leutbecher and Tim N Palmer. “Ensemble forecasting”. In: Journal of
computational physics 227.7 (2008), pp. 3515-3539.

[4] Lek-Heng Lim. “Hodge Laplacians on graphs”. In: Siam Review 62.3 (2020),
pp. 685-715.

[5] Pascal Oettli et al. “Meteorological Landscape of Tropical Cyclone”. In: EGU-
sphere 2025 (2025), pp. 1-28.
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

PHLP: Interpretable Link Prediction via Persistent
Homology and Its Extension to Knowledge Graph
Completion

Junwon You
Basic Science Research Institute, POSTECH, Korea

We introduce PHLP, a novel and interpretable link prediction framework that uti-
lizes persistent homology to extract topological features from local subgraphs. Un-
like conventional GNN-based methods, PHLP offers a transparent feature extrac-
tion process that captures topological patterns underlying graph connectivity. PHLP
achieves near—state-of-the-art performance across standard benchmarks without relying
on GNNs. We also briefly present preliminary results on extending PHLP to knowledge
graph completion, demonstrating its potential in capturing relational patterns through
topological representations. This research conducted together with Eunwoo Heo and
Jae-Hun Jung.

References.

[1] Lada A Adamic and Eytan Adar. “Friends and neighbors on the web”. In: Social
networks 25.3 (2003), pp. 211-230.

[2] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE
transactions on neural networks and learning systems 32.1 (2020), pp. 4-24.

[3] Lin Yao et al. “Link prediction based on common-neighbors for dynamic social
network”. In: Procedia Computer Science 83 (2016), pp. 82-89.

[4] Junwon You, Eunwoo Heo, and Jae-Hun Jung. “Phlp: Sole persistent homology for
link prediction-interpretable feature extraction”. In: arXiv preprint arXiv:2404.15225
(2024).

[5] Ziwei Zhang, Peng Cui, and Wenwu Zhu. “Deep learning on graphs: A survey”. In:
IEEE Transactions on Knowledge and Data Engineering 34.1 (2020), pp. 249-270.
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PHLP: Interpretable Link Prediction via

Persistent Homology and Its Extension to
Knowledge Graph Completion

Junwon You
Joint work with Eunwoo Heo and Jae-Hun Jung
TDA+IM 2025

Contents

» Preliminaries: Persistent Homology (PH)

» Application1: PHLP: Sole Persistent Homology for Link Prediction -
Interpretable Feature Extraction

> Application2: Knowledge Graph Completion through PHLP

2025-08-04 TDA+IM 2025

Preliminaries
Preliminaries: Persistent Homology

» Persistent homology is a method for computing topological features of a
data space at different spatial resolutions.

» For given data points, we assume that the given data is a set of samples
drawn from some underlying unknown manifold.

» To approximate this manifold with sampled data points, we use a
simplicial complex.

Definition 1. Abstract simplicial complex.

An abstract simplicial complex is a collection K of non-empty subsets a set V(K) such that, for every
element o € K, all non-empty subsets ¢’ € o are also contained in K.

2025-08-04 TDA+IM 2025 3/47
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Preliminaries

Preliminaries: Persistent Homology

Definition 2. Vietoris-Rips complex.

Let (P,d) be a finite metric space. For a real value r > 0, the Vietoris-Rjps (Rips) complex VR" (P) is
the abstract simplicial complex where a simplex o € VR"(P) if and only if the distance d(p, q) < 2r for
all pairs of vertices p,q € 0.

» The choice of the parameter r is crucial for the approximation of the manifold since it
determines the scale at which we construct the simplicial complex.

> Instead of selecting a single r, we use a process called filtration, where we vary r over a
range of values and observe how the topological structure evolves.

2025-08-04 TDA+IM 2025 4/47

Preliminaries

Preliminaries: Persistent Homology

Definition 3. Simplicial filtration.

A filtration F = F(K) of a simplicial complex K is a nested sequence of its subcomplexes:
B=Ky > K &K, =K.

> For a finite metric space (P,d), a Rips filtration {VR"(P) - WRT'(P)] , is a sequence of

nested Rips complex, each constructed for a different value of the scale parameter r.

rsr

Image from https://christian.bock.ml/posts/persistent_homology/

2025-08-04 TDA+IM 2025 5/47

Preliminaries

Preliminaries: Persistent Homology

Definition 4. Persistent homology groups.

For a simplicial filtration F, the p-th persistence homology groups are defined as the images
of the homomorphisms H;,'j = im(h;,'j:Hp(Kl-) - Hp(l(]-)) which is induced by the inclusion
K; © K; of F, where 0 <i <j <n and each H,(K;) represents p-th homology group of K;
for 0 <i < n. The p-th persistence Betti numbers are the dimensions ﬁ;;'j = dim Hli,'j of the

vector space Hy'.

N . Lj _ (pii-1 ij i-1,j-1 i-1,j ;o
> Defien )’ = (8, = B,") — (B, —By, foro<i<j<n.
- u;/ counts the number of independent classes that are born at K; and die at K;.

= Additionally, we define uz"“ (or ué;‘” ) to denote the number of independent classes that are born at K; and never die.
> Note that we can define a function f that induces the filtration F such that f(K;) = a; where 0 <
i<nanday<a < <ap

= In the case of the Rips filtration, f is defined as f(VR,(P)) = 2r.

2025-0 TDA+IM 2025 6/47
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Preliminaries

Preliminaries: Persistent Homology

Definition 5. Barcode.

The p-dimensional barcode B, (Fy) of a filtration F; is defined as a multi-set of intervals
[a;,a;) € R? for all non-zero u;’,0 < i <j <n+ 1, with multiplicity u;’, where R = RU *oo.
The persistence of a class that is born at K; and dies at K; is defined as a; — a;.

Definition 6. Persistence Diagram.

The p-dimensional persistence diagram ngp(}‘f) of a filtration F; is obtained by plotting
each point (a;, a;) for all [a;, a;) € B,(F) on the extended plane R2. Additionally, points on
the diagonal A= (x,x) are added with infinite multiplicity.

2025-08-04 TDA+IM 2025 7/47

Preliminaries

Preliminaries: Persistent Homology

aching/2022-2023/M2_Jussieu/Lesson%205.pdf

2025-08-04 TDA+IM 2025 8/47

PHLP: Sole Persistent Homology for Link

Prediction — Interpretable Feature Extraction

Junwon You" ', Eunwoo Heo™ ", Jae-Hun Jung’
"POSTECH
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Application1: Link Prediction

Preliminaries: Link Prediction (LP)

» What is Network?

Image from htty kbhaskar.com/project/facebook; png Image from: https://www.secgov/Archives/edgar/data/701345/000119312513080344/486396001,jpg
Facebook Social Network USAIr Airline Network
2025-08-04 TDA+IM 2025 10/47

Application1: Link Prediction

Preliminaries: Link Prediction (LP)

» What is Network?
= G = (V,E), V: the set of entities, E: the set of links.
= Example V: the set of airports, E: the set of two airport pairs.
= V ={L.A.,NewYork, Chicago, ...}, E = {(L.A., NewYork), (L. A., Chicago), ... }.

= Social network, citation network, biological network.

» What is Link Prediction (LP) problem?

= LP is the problem of predicting the existence of a unseen link between two entities
in a network based on observed links.

TDA+IM 2025 11/47

Application1: Link Prediction

Preliminaries: Link Prediction (LP)

» Problem definition

Problem. Link Prediction.

Consider a network G = (V,E), where V represents the entity nodes in the network, and E € |V| x |[V|
represents the set of "true" links between entities. We are given the set of entities V and a subset E' ¢
E of true links known as observed links. The objective of link prediction is to discover the unobserved
true links E\E'.

> In the binary classification formulation of the link prediction task, the potential links L are
classified as either true links or false links. Thus, Link prediction model M, is a function that maps
links in L to positive and negative labels i.e. My,: L - {0,1}.

» In the probability estimation formulation, potential links are associated with existence probabilities.

Thus, Link prediction model M,, is a function that maps links in L to a probability i.e. M,: L — [0,1].

2025-08-04 TDA+IM 2025 12/47
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Application1: Link Prediction

Preliminaries: Link Prediction (LP)

» Heuristic methods.

Image from https://graph-neural-networks.github.io/static/file/chapter10.pdf

2025-08-04 TDA+IM 2025 13/47

Application1: Link Prediction

Introduction to Link Prediction (LP)

» Graph Neural Network (GNN) methods

= These methods leverage GNNs to learn powerful representations by aggregating
node features from neighborhoods.

= GNN-based models have achieved significant score improvements in capturing
intricate relationships within graphs.

= However, GNN-based methods are comprised of neural networks, making it
challenging to understand why a certain prediction was made.

» In this context, we present a novel approach to LP, called PHLP, which
uses the topological information of a graph for the prediction.

2025-08-04 TDA+IM 2025 14/47

Application1: Link Prediction

Our methods

> Motivation

2025-08-04 TDA+IM 2025 15/47
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Application1: Link Prediction

Preliminaries: Link Prediction (LP)

» Limitation and Motivation

2025-08-04 TDA+IM 2025 16/47

Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

2025-08-04 TDA+IM 2025 17/47

Application1: Link Prediction
Our methods: Persistent Homology for Link Prediction
Extracting angle hop subgraph
» G = (V,E): given graph, u,v € V: given target nodes
> The k-hop enclosing subgraph Nk, = (V',E") for (w,v) is defined as
= V' ={zeV:dwz) <kord(zv) <k},
" E'={(zw)EE:zeV' andweV'}
» The (k,1)-angle hop enclosing subgraph
le_i‘,'l) = (V',E") for (u,v) is defined as
= V={zeV:duz) <kord(zv)<l}
= E'={(zw)€eEE:zeV' andweV'}.

2025-08-04 TDA+IM 2025 18/47
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Application1: Link Prediction

Ablation Studies: Angles of PHLP

» Table VI presents the performance of PHLP
(dim 0) concerning various (k, [)-angle hop
subgraphs.

> The best angle varies by datasets, highlighting

the importance of varying angles to achieve
the best performance.

» Therefore, using MA-PHLP is recommended to
maximize performance consistently across
datasets.

2025-08-04 TDA+IM 2025 19/47

gﬁ?tmg;ﬁ:ﬂz?nPersistent Homology for Link Prediction

Filtration of the Subgraph

»> To apply the Rips filtration, we define an edge-weight function using
node labeling that reflects the topology of the given graph.

» DRNL (Double radius node labeling, Zhang et al.)

;f,’ll;)(w) =1+ min(d(w, a),d(w, b)) + qw(qw + 1y — 1), where d(w,a) +

d(w,b) =2q,, + 1, qw €Z, 7, € {0,1}.
» Degree DRNL

R W) = e (w) + W, where M denotes the maximum

degree of nodes in a subgraph.
2025-08-04 TDA+IM 2025 20/47

Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

Filtration of the Subgraph
» DRNL (Double radius node labeling, Zhang et al.)

;f,f;)(w) =1+ min(d(w, a),d(w, b)) + qw(qw + 1y — 1), where d(w, a)

+d(w,b) =2q,, + 1, qw €Z, 1, € {0,1}.

dw@),dw.h)| (0,-), (-,0) (1n (1,2, @1 ] (1,3), BN @2 (14), @1 ] @23), 32
;gr'l’;)(w) 1 2 3 4 5 6 7

2025-08-04 TDA+IM 2025 PAVZYA
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Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

> Filtration of the Subgraph

2025-08-04 TDA+IM 2025 22/47

Application1: Link Prediction

Ablation Studies: Effects of Degree DRNL

> To assess the proposed Degree DRNL regarding the influence of incorporating degree
information, we conducted experiments using DRNL and Degree DRNL and compared
the results.

» Across all datasets, MA-PHLP yields
higher AUC scores when used with
Degree DRNL than with DRNL.

» The substantial improvement observed
in the Power dataset is noteworthy,
where Degree DRNL yields an increase
of over 4 points in the AUC score.

2025-08-04 TDA+IM 2025 23/47

Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction
Filtration of the Subgraph

» For given subgraph & = (V',E"), f:V' - N denotes a node labeling.

» The edge-weight function W:V’ — R is defined as

. - min( W)/ (2))
W(w,z) = max(f(w),f(z)) + max(F ) F(2))

= The min/max term refines values further, enhancing the discriminative power by
reducing the occurrence of identical edge weights.

2025-08-04 TDA+IM 2025 24/47

23




Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

Predicting the existence of the target link.
» Stepl. For the given target nodes (u, v), extract the (k,[)-angle hop subgraph Nlﬁﬁ'”,
denoted as V', assuming that the target link does not exist during the process.

» Step2. On this subgraph calculates the edge-weights and extracts topological features
by calculating PD and its vectorization, persistence image.

> Step3. If k # I, for symmetry, repeat the same process with the (I, k)-angle hop

subgraph and consider the average of the two vectors, denoting this vector as x, .

> Step4. To observe the difference in topological features, we consider a subgraph ¥+
obtained by connecting the target link. For this graph, x(tw) denotes the vector

obtained using this method. Concatenate these vectors as a single vector x(yy).

2025-08-04 TDA+IM 2025 25/47

Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

Predicting the existence of the target link.

> Step5. By above process, we convert any link (u,v) to a single vector x(, ;). Thus we
converted LP problem as a binary classification task of given vectors.

» Step6. We employ MLP classifier @ for prediction. The classifier ® predicts the existence
of a link between two target nodes with the following probability:

" Zw = cr(CD(x(u,,,))).
» Step7. This classifier @ is trained with the binary cross-entroy loss function BCE.

* Yuwyex BCE (Zuy, Yuv), where Yy, denotes the label of the target link.

2025-08-04 TDA+IM 2025

Application1: Link Prediction

Our methods: Persistent Homology for Link Prediction

Multiangle PHLP (MA-PHLP)

» The MA-PHLP maximizes the advantages of PHLP by examining data from various
angles through the extraction of subgraphs based on a hyperparameter, the maximum
hop (max hop, denoted as H).

» The types of anlges are elements of all combinations of k and [ within the set {(k,) €
Z?:0 <1<k < H,k > 0}. Denotes the cardinality of this set as N.

» The MA-PHLP predicts the likelihood of the link existence with the following probability:

"p= 2?’:1 QA;iZj, where a = (a;,+,ay) € RY is a trainable parameter, and z; denotes the

prediction probability of a PHLP for each type of angle hop for i = 1,2,---,N.

2025-08-04 TDA+IM 2025 27/47
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Application1: Link Prediction

Results: MA-PHLP

2025-08-04 TDA+IM 2025 28/47

I Application1: Link Prediction
Our methods: Persistent Homology for Link Prediction

Hybrid Method

» The proposed approach easily integrates with existing subgraph methods. Subgraph methods
treat the LP task as a binary classification problem comprising two components: a feature
extractor F and classifier P.

> Stepl. Subgraph extraction: For the given graph G and target nodes (u,v), k-hop subgraph N;f,
is extracted.

> Step2. Feature extraction: Existing methods extract features Z = F(JV,5,).

> Step3. Persistence image calculation: Our method extracts topological features and denotes as I.
Use MLP @ to transforms I into a format similar to Z.

» Step4. Concatenate «;Z and a,®(I) where a; and a, are trainable parameters. This concatenated
vector is classified using the existing method's classifier.

2025-08-04 TDA+IM 2025 29/47

I Application1: Link Prediction
Our methods: Persistent Homology for Link Prediction

Hybrid Method

» The proposed approach easily integrates with existing subgraph methods. Subgraph methods
treat the LP task as a binary classification problem comprising two components: a feature
extractor F and classifier P.

> Step1. Subgraph extraction: For the given graph G and target nodes (u,v), k-hop subgraph ¥,
is extracted.

> Step2. Feature extraction: Existing methods extract features Z = F(IV;5,).

>  Step3. Persistence image calculation: Our method extracts topological features and denotes as 1.
Use MLP @ to transforms I into a format similar to Z.

» Step4. Concatenate a,Z and a,®(I) where a; and «a, are trainable parameters. This concatenated
vector is classified using the existing method's classifier.

2025-0
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Application1: Link Prediction

Results: hybrid methods

2025-08-04 TDA+IM 2025 31/47

I Application1: Link Prediction

Ablation Studies: Persistence Image Resolution

» We conducted ablation studies to evaluate
the sensitivity of MA-PHLP (0-dim) to the
resolution of persistence images (Pls).

»  As shown in the figure, model performance
remains relatively stable as long as the
resolution is not too small.

»  This suggests that Pl resolution is not a
highly sensitive hyperparameter.

» Based on this observation, we set m = 16 as
a balanced choice between computational
cost and performance for all experiments.

TDA+IM 2025 32/47

Application1: Link Prediction

Ablation Studies: Comparison with TLC-GNN

»  To demonstrate that the proposed method extracts superior topological information compared to the other
method TLC-GNN which use PH, we conducted the experiments. The TLC-GNN was constructed by
augmenting the GCN model with PI information. We replaced the Pl component of the TLC-GNN model with
the PI vector produced by MA-PHLP, resulting in the MA-PHLP-GNN.

»  The MA-PHLP-GNN outperformed the TLC-GNN significantly on the CiteSeer and PubMed datasets while
achieving similar performance on the Cora dataset.

»  The TLC-GNN does not exhibit performance improvement for the PubMed dataset despite adding topological
information. However, the proposed MA-PHLP-GNN demonstrates substantial performance enhancement.

TDA+IM 2025 33/47
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Extension to Knowledge Graph Completion

Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

» What is Knowledge Graph?

Image from: h/tpost/bn15ulydvi-improving-knowledge-graph-completion-wit

TDA+IM 2025 35/47

Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

» Knowledge in graph from:

= Capture entities, types, and relations
» Nodes are entities
> Nodes are labeled with their types

> Edges between two nodes capture
relationships between entities

» KG can store semantic data

> KG can be formulated as KG = (§,R,T) where
£ is the set of entities, R is the set of relations
and T c € x € X R is the set of triples (h, t,7). oo sy

2025-08-04 TDA+IM 2025 36/47
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Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

Examples of knowledge graphs
» Google Knowledge Graph Search API
powers semantic search results.

» Amazon Product Graph

recommend products based on user preferences and item relationships.

» Facebook Graph API

captures user connections, interactions, and interests.

»  Microsoft Satori Knowledge Graph

supports structured information for Bing search and Cortana.

2025-08-04 TDA+IM 2025 37/47

Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

Knowledge Graph Completion (KGC)

~ l‘
N </
/
. . ., (h, t, ?)
S Tt “
\\ N // - (hl ?I r)
RN R 2.t
~
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Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

Knowledge Graph Embedding (KGE)

» Maps entities and relations into a vector space while preserving
the structural information of the KG.

» Enables the prediction of triples using embeddings.
= Define scoring function f:7 — [0,1] such that:
= If (hrt) €T, then f(hrt) =1
= Else, f(h,1,t) =0.

» One well-known KGE method is Transt (NeurlPS 2013).

2025-08-04 TDA+IM 2025 39/47
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Application2: Knowledge Graph

Preliminaries: Knowledge Graph (KG)

TranskE (NeurlPS 2013)
h+r=t

> This method is simple yet effective.

»  But it struggles with symmetric relations.
= Ex. 'is a friend of”

= If Ais a friend of B, then:

= A+r=B and B+r=A, thus, A+2r=A so r=0.

» To address this, many extensions have been

proposed:
Image from: https://aws-dglke readthedocs.io/en/atest/kg.html = TransR, TorusE, RotatE, DistMult, ComplEx, and others.
2025-08-04 TDA+IM 2025 40/47

Application2: Knowledge Graph

Subgraph-based GNNs for KGC

> Limitation of KGE (e.g., TransE)
= Rely on manually defined scoring functions.
= Assume simple relational patterns.

= Struggle with complex relational structures.

» Subgraph-based GNN Approach
= For a triple (h,t,7), extract its enclosing subgraph.

= Then they apply message passing, which uses semantic embeddings of entities and relations to capture
the relational context.

= The resulting embedding reflects the local graph structure and is used for final prediction.

v

These subgraph-based GNN methods currently achieve state-of-the-art performance in many KGC
benchmarks.

» However, most models still rely heavily on structural and semantic information only.

2025-0: TDA+IM 2025 41/47
Application2: Knowledge Graph
Our Method
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Application2: Knowledge Graph

Our Method

>

1. Subgraph Extraction KGg,;. Given a target triple (h,t,r), we extract a local enclosing subgraph KGyg,;, from
the knowledge graph KG.

2. Subgraph-based GNN Encoding. Let's denote the GNN feature extractor as F(we employed the Rest model
[1]). It produces a representation vector V; = F(KGg,;) based on semantic and structural information.

3. Subgraph Conversion to Weighted Simple Graph. The extracted subgraph KGg,; is transformed into a
weighted simple graph G = (V,E), W:E - Rs,. Two weighting schemes are considered (next slide).

4. Persistent Homology via Graph Filtration. We construct a filtration on the weighted graph: K., = ¢ < K,
S Ke, & 9K =Xwhere K, ={teX]|ifltl=1ort=wv)s.t. Wu,v) <e}, X=VUE and €; < €3 < &5
< -+ €. From this filtration, we compute persistence diagrams (PDs) and convert them to persistence images
(PIs). This gives us the topological representation, denoted by V.

5. Fusion and Prediction. We concatenate the representations Vi and Vr, and feed the result into a multilayer
perceptron (MLP) classifier for final prediction.

[1] Li, T, L, Q, Wang, J, Yang, S, & Chen, H. (2023). Learning rule-induced subgraph representations for inductive relation prediction. Advances in
Neural Information Processing Systems, 36, 3517-3535.
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Application2: Knowledge Graph

Our Method

3. Subgraph Conversion to Weighted Simple Graph.

Given a knowledge graph KG = (§,R,T) where € is the set of entities, R is the set of relations and 7 c € X E X R is
the set of triples (h,t,7), we define a simple graph of KG as G = (V,E) where V = € and (u,v) € E if (w,v,7) €T or
(v,u,r) €T for any r € R.

>

1) Fixed Filtration. This follows the same edge weighting scheme used in PHLP. We use Degree DRNL, a node labeling
method that assigns node labels based on distance and node degrees.

2) Filtration Learning. We introduce a learnable edge weighting function that utilizes the head, tail, and relation features. Let
(h,t,7) €T be a triple, and let feature vectors derived from a GNN be denoted as xj, x,, x,, respectively. Then the weight
function W (w,v) is defined as:

1
W) = — D (xp, xe, %)
ol .
AT)ET
where @ is a learnable multilayer perceptron and
o = (R t,7) €T | (ht,7) = (wv,7) or (h,t,7) = (v,u,7) for any r € R}.

This allows the filtration to reflect semantic information from the knowledge graph.

2025 A+IM 2 44/47
Application2: Knowledge Graph
Results
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Thank you!
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Preliminaries
Preliminaries: Persistent Homology

> Persistence diagrams (barcodes) offer valuable topological insights, but they must be transformed
into fixed-dimensional vectors that preserve this information in order to be integrated into deep
learning architectures. We use persistence image as a vectorization method.

> First, a barcode B is rotated via the map T:R? - RZ,(b,d) - (b,d — b).
> Next, the persistence surface pg:RR? > R corresponding to B is defined as

p@= ) W)

UET(B)

where w is a weight function and g, is a Gaussian function.

» The persistence image (I(PB)Pi)i is the collection of pixels, where I(pg)p, = ffp_ ppdz and L; P; is
i
the partition of a compact subset A € R? (in practice, a rectangular domain divided into n x n
pixels).

2025-08-04 TDA+IM 2025 48/47
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Preliminaries

Preliminaries: Persistent Homology
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Application1: Link Prediction
Analysis

> SetZc RZX"XTZ, where k is the number of angles, r represents Pl resolution and each element
(z1,2,) € Z represents concatenated Pls for cases with (z;) and without (z,) a target link.

. . 2 — — 1 — —
> Define a function h: R¥*™ - R as h(vy, -, v;) = P K 117ill; where v; are Pls.

> For visualization, transform Z into the points in R? by a function G, defined as G(zy,z;) =
(h(z1)' h(zz))~

» Distribution Analysis:
= Compared distributions of points for positive and negative links using both DRNL and Degree DRNL.

= NS and Yeast datasets show significant differences in distributions between positive and negative links,
correlating with high performance.

= C elegans and Power datasets show more similar distributions with Degree DRNL, aligning with lower
performance scores.

= The difference between DRNL and Degree DRNL on Power dataset supports the highest performance

TDA+IM 2025

Application1: Link Prediction

Analysis

TDA+IM 2025 51/47
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Application1: Link Prediction

AUC score
% | Positive Negative
A
Positive TP FN
Negative FP N
TPR = L
" TP+FN
FPR = Fp
T FP+TN
2025-08-04

TPR

FPR

Jassifcation
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EC:
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Potential of Mathematics for Industry, and the
Dilemma in the Midstream

Tetsuji Taniguchi

Hiroshima Institute of Technology / Math. Research Institute Calc for Industry,
Japan

In an era where data utilization is essential across all industries, the importance of
mathematics for industry has grown dramatically. However, we face the harsh reality
that the value of our work is not properly recognized, and our services are often under-
priced. In particular, we mathematicians who operate in the “midstream” —translating
business challenges into mathematical models—face a serious dilemma: our technical
skills are appreciated, but they fail to translate into tangible business outcomes. In this
presentation, I will report on my company’s real-world experience in confronting this
“midstream dilemma.” Based on this, I will present to you the fundamental, inherent
challenges that we have uncovered within the business model of applying mathematics
to industry.

References.

[1] SunMath Calc for Industry, Inc. SunMath Calc for Industry. https://sunmath-
calc.co.jp/. Accessed: 2025-08-25. 2025.

[2] YouTube. Mathematics for Industry Promotional Video. https://www.youtube.
com/watch?v=-e64M-gR2H8. Accessed: 2025-08-25. 2025.
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

A Data-Driven Framework for Predicting Liver
Failure Dynamics and Living Donor Transplant
Prognosis

Raiki Yoshimura

Graduate School of Science, Nagoya University, Japan

Acute liver failure (ALF) is one of the most critical hepatic conditions, characterized
by rapid progression and a high risk of multi-organ failure and death. Liver transplan-
tation remains the only curative treatment, yet predicting which patients will require
it is still a major clinical challenge due to the significant heterogeneity in disease pro-
gression. In our first study, we analyzed time-series clinical data from 320 patients
with acute liver injury and applied machine learning techniques to identify key prog-
nostic indicators. We found that prothrombin time (PT) serves as a central biomarker
for tracking individual disease trajectories. By stratifying patients into six distinct
PT dynamic patterns, we were able to quantify the severity of ALF and predict its
progression from admission data. Furthermore, we demonstrated the feasibility of
modeling future PT dynamics using mathematical approaches, offering a personalized
framework for understanding and anticipating ALF progression. While liver transplan-
tation offers a potential cure for end-stage liver disease, outcome prediction remains
a critical issue, particularly in living donor liver transplantation (LDLT), which has
gained prominence due to shorter wait times and better graft quality. In our second
study, we retrospectively analyzed data from 748 LDLT recipients and developed a
machine learning model to predict early graft loss (within 180 days postoperatively)
with higher accuracy than conventional models. We stratified patients into five groups
based on risk and further identified a specific intermediate-risk group (G2) with char-
acteristics similar to those who experienced early graft loss (G1), but with different
survival outcomes. Using data available within the first 30 days post- transplant, we
constructed a hierarchical model capable of distinguishing these populations, facilitat-
ing earlier clinical intervention such as consideration of retransplantation or alternative
donor strategies. Together, these studies address the continuum of liver disease—from
acute liver injury to post-transplant outcomes—through the lens of time-resolved, indi-
vidualized prediction. By leveraging machine learning and mathematical modeling, we
present a framework that supports more precise and proactive clinical decision-making
across the full trajectory of severe liver disease.

References.

[1] William Bernal et al. “Acute liver failure”. In: The Lancet 376.9736 (2010), pp. 190
201.

[2] David G Koch et al. “Development of a model to predict transplant-free survival
of patients with acute liver failure”. In: Clinical Gastroenterology and Hepatology
14.8 (2016), pp. 1199-1206.

[3] Ramesh Kumar et al. “Prospective derivation and validation of early dynamic
model for predicting outcome in patients with acute liver failure”. In: Gut 61.7

(2012), pp. 1068-1075.
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We study life and health science using mathematical model and Al.

Digital Twin for Life Science : Mathematical Modeling, Simulation, and AI
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There are no quantitative indicators available
to detect aggravation in many diseases

Treatment decision
based on physician’s experience Intensive Care (IC)

Mild -»’ Severe ‘
‘ Need surgery

Data-driven Quantitative
prognostic approaches
- TResmred

Admission ()

=

transplant)

Severe

S
iy

Quantitative prognostication would greatly contribute to the establishment of early treatment.

Acute liver Injury / Failure (ALl / ALF) as a typical disease

Viruses
Normal Liver Drugs

Rieonol € e Serious
EE:[? Prolonged cytotoxic
T cell activity Life-saving rates without
transplantation in Japan

=50%

Rapid expansion of
hepatocyte necrosis

{. @O 300 cases/year

Rare

The number of ALF
patients in Japan

N/
cytotoxic T cell (@) . Q

fibrin deposition

Kyushu cohort of 10% of the nation's acute liver failure patients transported

Day0 Day1l Day?2 Day3 Day7
Iki/ Western | | | | |
Tsushima Shlko | I I I T
Blood test Blood test Blood test Blood test Blood test
Kyushu UlDN 4 Admission test Treatment Treatment Treatment Treatment
HQS?'tal Treatment
Time-series blood test data Admission test data
Kyushu + WBC -+ Ferritin . Sex
« Plt . PTs . age
3 L o ;oo
. i . °
" * Hepatic encephalopathy
. 22'.:. . ':;TT « diagnosis
Okinawa About AT . ATH + liver atrophy
islands 10% « LDH «  IgG
« ALP . IgA Treatment information
Used Data : Acute Liver Injury : QC?‘TP : 'féﬂp + FFP prescribing (U)
(ALI) patients/ Failure (ALF) . NHe3 5 B +  Anticoagulation
* ALT more than 200 U/I . BUN . SI2R + CHDF
+ T Bil. more than 4 mg/dl . Cre «  D-bil/T-bil o =
* PT-INR over 1.2 at admission « CRP «  MELDscore + Steroid pulse therapy

Kyushu cohort data were analyzed in collaboration with Kyushu University Hospital
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Does the blood test data contain information on disease progression?

DayQ Dayl Day? Day3 Day?

YA 2

/@ Biomarkers reflecting g
\J the patient’s condition

Time-series blood L@ [mild

test data EXraction e

.
g oo } @ | severe
| oo
g .
Dayl Day2 Days Daya

Predict the necessity of LT on day 7

|—> Severe [+ 'y

ay? L ROC-AUC :
i 0.95+0.03

Biomarker

B
(H

Blood test data may contain information reflecting the progression of the disease.

Which factors has important information for the prediction?

Mild | Severe

High
I'F% o .......'........ T T |
P‘t [T ) on-+ S S S & ——
Cre ..-.‘.-.—.-—.- - w
BUN +_......... e me e
ALT B ..
LDH ol woms o v wne v s
Alb e
D{T-hil s -2
AST - e
Low

-0.2 -01 0.0 0.1 0.2 0.3 04 Q.5
SHAP value

* PT% (prothrombin time activity percentage) :
Hepatic function index using blood clotting time that strongly relies on clotting factors (CFs) synthesized mainly in the liver

PT% (prothrombin time activity percentage) was identified as an important factor.

Time series dynamics of PT% with large individual differences

— : Mild
: Severe

Time series dynamics of PT% appear to reflect disease progression
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Can patients be stratified by time-series patterns of change in PT%?

No-need ic Responding ic Resisting Ic

— 1 Mild
— i Severe

Days after admission

Severe ratio : 00% Severe ratio : 18% Severe ratio : 482%

PT% itself was suggested to be a biomarker reflecting the progression of the patient's condition

Mathematical model for predicting PT change patterns

* PT% (prothrombin time activity percentage) :
Hepatic function index using blood clotting time that strongly relies on clotting factors (CFs)
synthesized mainly in the liver

dapP (t) g (constant) : Increase rate in PT value
- 7 = g — D P(t) D(constant) : Decrease rate in PT value
dt P(0) (constant) : An Initial value in PT value
Coagulation factors (CFs)
strongly dependent on
PT values
D Sl
9 VI .o
—) E——) TN
The rate of increase in PT X ” The rate of decrease in PT [ TS
due to the production of due to the consumption =
CFs from the liver V and breakdown of CFs

etc...

Developed a simple mathematical model based on biological processes

Reconstruction of time series data of PT values by mathematical modeling

Day0 Dayl Day2 Day3 Day7

PT% PT% PT% PT% PT%

PT%

Days after admission d ( t)
None-linear Mixed-effects model

g (constant) : Increase rate in PT value
=g — DP (t) D(constant) : Decrease rate in PT value
dt P(0) (constant) : An Initial value in PT value

r2=0.92

— : Fitting
* ! Real data

PT%

Days after admission

PT changes can be understood in terms of a simple process of biomolecule production and elimination
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Estimated parameters as response variables

Day0
Blood Blood Blood Blood Blood
Patient ID Estimated parameters Admission Treatment Treatment Treatment Treatment
o Treatment
°
1 .—'-."( 91,D1,P(0) i §
° Time-series blood test data  agmission data
WBC . Ferritin
o e Sex

3 Coh OO .
° sa = Ab .« PT% . age
w 2 a 92D P(O)Z « Tl +  PTAR «  Etiology
] DR s &Gw + Hepatic
. . : . AT LA encephalopathy
. 3 3 . LDH. o 1gG E diagnosis

. . . Q h& . AP . lgA «  liveratrophy
- gGTP . lgMm

Che AFP
o < NH3 © PIVKA
N —— 9w, Dy, P(0)y - BUN - SR
. ce « Db
. crP + MELDscore

\_'_I \ )
T

Y X

An RF model was trained to predict the parameters as the response variables
with the information at the time of admission as the explanatory variable

Prediction performance was changed by adding data from another day

DayO Dayl Day?2
1 | |
1 1 1
Blood data Blood data Blood data Blood data Blood data
Admission Treatment Treatment Treatment Treatment
Treatment
C——
— : RF Prediction : 95%Prediction Interval ~ R? = 082
r2=0.77
— : REDFANEIC
Bt
: 95%{SFAX
- REEOPTE
X
i
o
Days after admission
Adding Day2 data, the prediction performance was improved
When information from the time of admission can be used
to predict with a good prediction performance ?
T
N
120 i Prediction
g 1on admission
s ! The Difference between
g 100 i Day0 and Day7
‘S 1
° : 68.9 %
> 80 |
2 - . Treatment effects are
S i the clinical outcome reflected in blood
% 60 ! was determined up to 2 / test data.
2 ! days post-admission
1
i
1
40 !
H
Admission Treatment Blood test Treatment Blood test Treatment Blood test Treatment Blood test Treatment
L 1 L 1 L 1 L 1 L 1
Day0 Dayl Day2 Day3 Day7
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Summary, Issues and Prospects

B Exploring biomarker in blood data

PT% are strongly associated with disease
progression

Quantitative prediction of time-series
changes in PT

Development of mathematical models to
describe PT dynamics

Future prediction of disease progression based
on data at the time of admission

Evaluation of predictive ability with
additional information

Predictive ability improves with additional
information up to Day 2

Treatment information does not improve
predictive ability

Integrate data science and clinical medicine
= Realize the new treatment system of ALF

Improvement life-saving rates

through short-term prognostication
A machine to predict parameters of mathematical model

Treatment optimization
by using VIRTUAL COHORT
® o

Patient A 4gA,DA g
.

.

b
; 1< |8
o Patient X ., ~ap gy, Dy | e

e o o
Validation of treatment response
by VIRTUAL PATIENT
The new ,4#////'
Treatment
system for
Update =~ ALF
information

¢
50

Treatment

Medical Treatment

Decisions on treatment
based on predicted results

v N
LA

Treatment decision

This work has already published!

Please check i

t out if you're interested in

tAccess
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Thank you for listening

interdisciplinary Biology Laboratory (iBLab) Division of Natural Science,
Graduate School of Science, Nagoya University

Acute Liver Failure study

Professor Assistant Professor Assistant Professor
Yoshihiro Ogawa Masatake Tanaka Takeshi Goya
Department of Medicine and Department of Medicine Department of Medicine and
Bioregulatory Science, and Bioregulatory Science, Bioregulatory Science,
Kyushu University Kyushu University Kyushu University

Liver transplantation study

Professor Professor

Tomoharu Yoshizumi Takasuke Fukuhara
Faculty of Medical Sciences, Faculty of Medical Sciences,
Graduate School of Medical Sciences, Graduate School of Medical Sciences,
Kyushu University, Japan Kyushu University, Japan

An approach to predict how a disease will change
and how treatment will work before it happens

B Prediction based on clinical data from early postoperative timing
» Liver Transplantation

» Research that using machine learning

Liver transplantation as a last resort for end-stage liver disease

B End-stage disease causes liver dysfunction ® Some patients experience graft loss

Mayo clinic. [Living-donor liver transplant |
hitps://www.mayoclinic.orghests-procedures/living-donor-liver 20384846

Recovery -»' Graft loss

Illustrated by Zoe Hansen in Mark Gurarie, et.al., verywellhealth, 2024

HCC ALF MASH CLlI . . . -
B Conventional Studies: simple statistical model

Cirrhosis MASLD SLD Predictive score, D-MELD, e-GLR : Limited accuracy

In Western countries, DDLT is the primary method of liver transplantation.
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Preoperative
(e.g., Basic information, blood test)

Kyushu University Hospital Mono BUN HTLVL
0, s NLR cr HCVAB
10% Transplaqtat|on in Japan o i preconditon
(about 500 patients / year) Age Na Relationship
. o Height WBC Blood relative
ki Western 2 Weight PLT Blood type
Tsushima Shikoku o BMI Hb ABO
s~ o BSA Diagnosis Portal vein thrombosis
Kyushu Univ. & T8I Hee oM
. Albumin Sex Refractory ascites
Hosenal — PT Sex combination
‘ APTT HBsAb Child class
Kyushu
Age Graft weight
Height GV/SLv
/‘ Weight GRWR
. BSA After surgery
lenawa About — BMI Max T-BIL
islands 10% g Total liver volume Max ALT
G DonorRecipient weight ratio HBCAb
[a) Predict GV / SLV HTLV1
During surgery Sex
748 patients Blood loss Technique
Surgery time Blood type

(Graft loss: 177)

Expected residual liver

interoperative
(e.g., Surgical time)

History of upper
abdominal laparotomy
Liver resection of liver

transplant history

Esophageal varices
Portocaval shunt (>10mm)
Veno-venous bypass

Surgery time

Blood loss

‘Warm ischemic time
Cold ischemic time
Portal blood flow / GW
Post reperfusion portal
pressure
Final portal pressure
Portal modulation

Biliary reconstruction

Bile duct suture method
Biliary stent

Skin incision
Blood loss
Surgery time
Expected residual liver
Graft weight
GV/SLV
GRWR

Kyushu University Hospital as a volume center for transplant treatment in Japan

Postoperative
(14th and 30th day)

T-BIL (14POD)
Ascites (14POD)
Ascites (30POD)

PT (14POD)
CNI
MMF induction
Simulect

Bile leak

Complication
CDclass

Max T-BIL

Max ALT

Accepts patients from a wide range of locations, with little regional bias and a large number of patients

Early Graft Loss

Non-early Graft Loss

Definition of three clinical outcomes

Graft loss within 180 days (About 20% of all graft loss)
Graft loss caused directly by the effects of the surgery

Graft loss after 180 days (180 ~ 7500 days)
Graft loss not directly related to the effects of the surgery

Early Graft Loss

Definition of three clinical outcomes

Graft loss within 180 days (About 20% of all graft loss)
Graft loss caused directly by the effects of the surgery
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Early graft loss prediction using machine learning

Predictions with
all explanatory variables

classification problem

Pre-operative
machine
learning

. Random Forest
Post-operative

Inter-operative (ot 30 days)

Early graft loss can be predicted with high accuracy by information up to 30 days postoperatively.

Early graft loss prediction using machine learning

Feature selection using SHAP: 7 features

classification problem

machine
learning

Supervised
Random Forest

Only 7 factors are needed to make a prediction with high enough performance

Definition of three clinical outcomes

Non-early Graft Loss
(J
h Graft loss after 180 days (180 ~ 7500 days)
Graft loss not directly related to the effects of the surgery
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Predicting non-early graft loss using machine learning

Auc: 0.78

Auc: 0.59

Non-early graft loss is controlled by different factors than early graft loss

Diversity in timing of graft loss

T PR
@ Early Graftloss : 0 ~ 180 days

1

1

1

1

1

1
S eees

1 Non-Early graft loss : 180 ~ 7500 days

g -3

1

1

1

1

1

Non-early graft loss patients have high heterogeneity: Needs stratification?

Patient stratification using supervised random forests

Distance matrix based on UMAP -
patients with early graft loss Clustering
Early Graft Loss @ @
Prediction Model —
machine
Clinical data =% learning -> N~

Surpervised
Random Forest

Patients with early graft loss

All patients can be discussed within the space based on patients with early graft loss




Patient stratification using supervised random forests

Patient stratificati . . .
atient strafification Survival Time Analysis by Group

Early graftloss Logrank
Non-early graftloss (Bonferroni )

G2-G1

“4 1 p<0.01
G2-G3

: p =0.055

A G2-G4
1 p=002

Graft survival probability
~

G2-G5
:p=0.01

Divided into 3 groups : Early (G1), Intermediate (G2), and Long or No graft loss patients(G3+G4+G5)

Hierarchical binary classification model

B Model detail
1Y
G1*
=
3
©
Qo
[=}
a
61 o g
prediction 7
() -~ £
Y G3+G4+G5 15}
®a= = prediction \(ﬂ 268
-

non-G1*
G3*+G4*+G5

Sensitivity 1 0.96

Multi-class classification with emphasis on G1 identification by combining two binary classification models

Summary and Future directions

| Summary

v’ Early graft loss can be accurately predicted using clinical data up to 30 days postoperatively
v' This prediction requires only seven key variables

v Patient stratification: identification of individuals at risk for intermediate graft loss (G2)

v' Ahierarchical prediction approach enables highly accurate group-level predictions

M Future directions

v Establishing the feasibility of outcome prediction using data obtained over 30 days
postoperatively.
v" Understanding the dynamics of pre- and postoperative clinical states

v Investigating the mechanisms that determine post-transplant outcomes
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Thank you for listening

interdisciplinary Biology Laboratory (iBLab) Division of Natural Science,
Graduate School of Science, Nagoya University

Acute Liver Failure study

Professor Assistant Professor Assistant Professor
Yoshihiro Ogawa Masatake Tanaka Takeshi Goya
Department of Medicine and Department of Medicine Department of Medicine and
Bioregulatory Science, and Bioregulatory Science, Bioregulatory Science,
Kyushu University Kyushu University Kyushu University

Liver transplantation study

Professor Professor

Tomoharu Yoshizumi Takasuke Fukuhara

Faculty of Medical Sciences, Faculty of Medical Sciences,
Graduate School of Medical Sciences, Graduate School of Medical Sciences,
Kyushu University, Japan Kyushu University, Japan

Prediction of the necessity of Liver transplantation on admission
Time Series Dataset Training o ) )
> dat Predicting necessity of Liver
Y ata Transplantation (LT)
u' Learning ROC curve
Day0 o Model 10
Random Zos
Data on admission Forest % e
© ]
i e # -1 9 b = 2
ﬁ 0.4
Check 2
Y Accurac £ ROC-AUC:
=00 0.92+0.07
D‘O 0.‘2 D‘A 0.‘6 018 1‘0
- False Positive Rate (Positive label: True)
o’ Restored o] SSvere > Testi ng p—
mores 0 Data
Patients has sufficient information to predict the necessity of LT on admission
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PT (s): Blood clotting time

Clotting time

Amount of CFs

-
= = | =

PT%

PT (%): Activity percentage

PT f8(%)

HIBEET VSV LXK DPTEORRYIT—5 DBIBRE

01234567 01234567 01234567 01234567 01234567 01234567

dP(t) g (£%) : PTIEOIEME
=g —DP(t) D(E%) : PTEDRAE
dt Py (B2 : PTIEOYIARE

— BIBEFTILIC
FDEEE
- RB0T—5

701234567 01234567 01234567

ABEEH (B)
ABRE T — NS =DD/ S A —FZHEE TSR ?

Mean

R2 VS MSE

Mean

Ref: https://www.enmanreg.org/r2/
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Quantifying the Topological Structure of Graphs:
The Total Persistence Difference

Eunwoo Heo
Department of Mathematics, POSTECH, Korea

Persistent homology (PH) has been widely applied to graph data to extract topological
features. However, little attention has been paid to how different distance functions on a
graph affect the resulting persistence diagrams and their interpretations. In this paper,
we define a class of distances on graphs, called path-representable distances, and in-
vestigate structural relationships between their induced persistent homologies. In par-
ticular, we identify a nontrivial injection between the 1-dimensional barcodes induced
by two commonly used graph distances: the unweighted and weighted shortest-path
distances. We formally establish sufficient conditions under which such embeddings
arise, focusing on a subclass we call cost-dominated distances. The injection prop-
erty is shown to hold in 0- and 1-dimensions, while we provide counterexamples for
higher-dimensional cases. To make these relationships measurable, we introduce the
total persistence difference (TPD), a new topological measure that quantifies changes
between filtrations induced by cost-dominated distances on a fixed graph. We prove a
stability result for TPD when the distance functions admit a partial order and apply
the method to the SNAP EU Research Institution E-Mail dataset. TPD captures both
periodic patterns and global trends in the data, and shows stronger alignment with
classical graph statistics compared to previously proposed PH-based measures.

References.

[1] David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. “Vines and
vineyards by updating persistence in linear time”. In: Proceedings of the twenty-
second annual symposium on Computational geometry. 2006, pp. 119-126.

[2] Herbert Edelsbrunner and John Harer. Computational topology: an introduction.
American Mathematical Soc., 2010.

[3] Eunwoo Heo, Byeongchan Choi, and Jae-Hun Jung. “Persistent Homology with
Path-Representable Distances on Graph Data”. In: arXiv preprint arXiv:2501.03553
(2025).

[4] Mai Lan Tran, Changbom Park, and Jae-Hun Jung. “Topological data analysis of
Korean music in Jeongganbo: a cycle structure”. In: Journal of Mathematics and
Music 17.3 (2023), pp. 403-432.
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Quantifying the Topological Structure of Graphs

- The Total Persistence Difference.

2025 Topological Data Analysis and Industrial Mathematics
Bridging Theory and Applications

Eunwoo Heo Department of Mathematics

with Byeongchan Choi, Jae-hun Jung POSTECH / Ph.D.
hew0920@postech.ac.kr

Persistent Homology (PH)

A mathematical tool in topological data analysis (TDA) that enables the
inference of topological information about data.

00 persistent Homology on graph data
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%([K— Persistence Diagram (PD)

0

1 Motivation

0

1 Motivation
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02

Does d; < ds implies that bed;(d;) € bed;(dsz) ? No.
02
Does d; < ds implies that bed;(d;) € bed;(ds) ? No.
?
Yes.
” Discovery
(p
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” Discovery

% When ?

I Path-representable distance

% When ?

IPath-representabIe distance (example)
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% When ?

IDominated Path-representable distance

% When ?

IMain Theorem

% When ?

ICategoricaI interpretation
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% When ?

ICategoricaI interpretation

% When ?

ICategoricaI interpretation

% High-dimensional case
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% High-dimensional case

% Application : the total persistence difference (TPD)

IThe total persistence difference (TPD)

% Application : the total persistence difference (TPD)

IThe total persistence difference (TPD)
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% Application : the total persistence difference (TPD)

IStabiIity Theorem for the total persistence difference (TPD)

% Application : the total persistence difference (TPD)

I Experiments and Applications (prior work)

Hajij, Mustafa, et al. "Visual detection of structural changes in time-varying graphs using
persistent homology." 2018 ieee pacific visualization symposium (pacificvis). |EEE, 2018.

% Application : the total persistence difference (TPD)

I Experiments and Applications (prior work)

Hajij, Mustafa, et al. "Visual detection of structural changes in time-varying graphs using
persistent homology." 2018 ieee pacific visualization symposium (pacificvis). IEEE, 2018.
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% Application : the total persistence difference (TPD)

I Experiments and Applications (proposed method)

% Application : the total persistence difference (TPD)

I The Pearson correlation for the classical graph statistics

r=0.735 r=0.609

% Application : the total persistence difference (TPD)

I Comparison with Prior Work
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Summary

Thank you

Eunwoo Heo Department of Mathematics

with Byeongchan Choi, Jae-hun Jung POSTECH / Ph.D. (conferred Aug 8, 2025)
hew0920@postech.ac.kr
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Pathological State Inference System based on

Mathematical Model and TDA for Personalized
Treatment in Dermatology

Sungrim Seirin-Lee

Kyoto University Institute for the Advanced Study of Human Biology (ASHBI),
Kyoto University, Japan

Skin diseases typically appear as visible information-skin eruptions distributed across
the body. However, the biological mechanisms underlying these manifestations are
often inferred from fragmented, time-point-specific data such as skin biopsies. The
challenge is further compounded for human-specific conditions like urticaria, where
animal models are ineffective, leaving researchers to rely heavily on in vitro experiments
and sparse clinical observations. In this presentation, I will introduce an innovative
methodology that combines mathematical modeling with topological data analysis,
allowing for the estimation of patient-specific parameters directly from morphological
patterns of skin eruptions. This framework offers a new pathway for personalized
analysis and mechanistic insight into complex skin disorders.

References.

[1] Akanksha Maurya et al. “Hybrid topological data analysis and deep learning for
basal cell carcinoma diagnosis”. In: Journal of Imaging Informatics in Medicine
37.1 (2024), pp. 92-106.

[2] John T Nardini et al. “Topological data analysis distinguishes parameter regimes in
the Anderson-Chaplain model of angiogenesis”. In: PLOS Computational Biology
17.6 (2021), €1009094.

[3] Sungrim Seirin-Lee et al. “Mathematical-based morphological classification of skin
eruptions corresponding to the pathophysiological state of chronic spontaneous
urticaria”. In: Communications Medicine 3.1 (2023), p. 171.

[4] Thomas Thorne, Paul DW Kirk, and Heather A Harrington. “Topological approx-
imate Bayesian computation for parameter inference of an angiogenesis model”.
In: Bioinformatics 38.9 (2022), pp. 2529-2535.
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August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

A Topological Analysis of the Space of Recipes

Emerson Escolar

Graduate School of Human Development and Environment, Kobe University, Japan

In recent years, the use of data-driven methods has provided insights into underlying
patterns and principles behind culinary recipes. In this exploratory work, we introduce
the use of topological data analysis, especially persistent homology, in order to study
the space of culinary recipes. In particular, persistent homology analysis provides a
set of recipes surrounding the multiscale “holes” in the space of existing recipes. We
then propose a method to generate novel ingredient combinations using combinato-
rial optimization on this topological information. We made biscuits using the novel
ingredient combinations, which were confirmed to be acceptable enough by a sensory
evaluation study. Our findings indicate that topological data analysis has the potential
for providing new tools and insights in the study of culinary recipes. This talk is based
on https://doi.org/10.1016/j.ijgfs.2024.101088

References.

[1] Yong-Yeol Ahn et al. “Flavor network and the principles of food pairing”. In:
Scientific reports 1.1 (2011), p. 196.

[2] Emerson G Escolar, Yuta Shimada, and Masahiro Yuasa. “A topological analysis
of the space of recipes”. In: International Journal of Gastronomy and Food Science
39 (2025), p. 101088.

[3] Juan CS Herrera. “The contribution of network science to the study of food recipes.
A review paper”. In: Appetite 159 (2021), p. 105048.

[4] Donghyeon Park et al. “Kitchenette: Predicting and recommending food ingredi-
ent pairings using siamese neural networks”. In: arXiv preprint arXiv:1905.07261
(2019).
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A topological analysis of the space of recipes

ESCOLAR, Emerson G.

Kobe University Graduate School of Human Development and Environment

Escolar, E. G., Shimada, Y., & Yuasa, M. (2025). A topological analysis of the space of recipes.
International Journal of Gastronomy and Food Science, 39, 101088.

Background for today’s talk
Data science & Recipes

Ahn, Yong-Yeol, et al. "Flavor network and the principles of food pairing." Scientific
reports1 1 (2011) 196.

Teng, Chun-Yuen, Yu-Ru Lin, and Lada A. Adamic. ”ReCIBI e recommendation using
|ngred|ent networks." Proceedmgs of the 4th annual ACM web science conference.
2012.

H. Lee, Helena, et al. "RecipeGPT: Generative pre-training based cooking recipe
generation and evaluation system." Web Conf. WWW 2020. 2020.

Marin, Javier, et al. "RecipeTm+: A dataset for learning cross-modal embeddings for
cookmg recipes and food |ma§es IEEE Transactions on Pattern Analysis and
Machine Intelligence 43.1 (2021): 187-203.

Goel, Mansi, and Ganesh Bagler. "Computatlonal%astronomy A data science
approach to food." Journal of Biosciences 47.1
* etc.
This research: study the “holes” of recipe space, try to get hints from it to
create new combinations of ingredients

» =>Use topological data analysis

Topological Data Analysis
Keyword: the “shape” of data
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Clusters: Cluster analysis
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“Holes” in data

Chazal, Frédéric, and Bertrand Michel. Frontiers in artificial intelligence 4 (2021): 667963.

Persistent Homology
Atoolin topological data analysis

— ®

Two holes detected.

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]
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Persistent Homology
A tool in topological data analysis

Two holes detected

With birth and death:

(0.4593, 0.9398)
Vietoris-Rips filtration (0.7654, 1.6777)

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]

In a bit more detail...

* Given a filtration of a finite simplicial complex, there exists a set g-
cycles {z;};_,and a unique multiset of pairs {[b;, d;)};_; such that
the following hold.

* (foreach i) z; is “born” at b; in the filtration (birth)
* (for each i) z; “dies” at d; in the filtration (death)

» For each threshold value t, the homology classes of the z; “alive” at t
(z; with b; < t < d;) forms a basis for the homology of the simplicial
complex at t (basis)

* {[b;, d;)};- is called the gth persistence diagram

* Each z; is called a representative cycle — represents some q-
dimensional hole (using the interpretation of homology)

Computed example:
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This research: study the “holes” of recipe space, try to get
hints from it to create new combinations of ingredients.

The steps of the analysis

* (A) Apply persistent homology to analyze the “space of recipes”

* (B) From the “holes” in the space of recipes, create new
combinations of ingredients that can be used as hints for new recipes

* (C) Check using cooking experiments, sensory evaluations

()
Cooking
(A) (B) experiments,
Persistent Combinatorial sensory

evaluations

Homology Optimization New
combination of

ingredients

Persistence diagram
and cycles around
holes

...| New
recipe

The data

* Ahn, Yong-Yeol, et al. "Flavor network and the principles of food
pairing." Scientific reports 1.1 (2011): 196

* Use only list of ingredients
* as 0-1 vectors

(y,x)
Il
=1-cosine(angle between x and y)

* dissimilarity: d¢os(y,x) =1 —
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Ingredient combinations as Vectors

Beef
Potato
Carrot
Onion

Shirataki
Water
Soy sauce
Mirin
Sugar
Hondashi
Sake
Tofu

Nikujaga

,
GO RR RRE RRRERE R R R

i

PR RO RRE RRPROO R OR

Sukiyaki

1519259  http: pe/7746800

Example...
«x; = [1,0,0,1
0,0,1,1

]

* X2 = ]
0,1,1,0]
]

]

« X3 =
1,1,0,0
1,0,0,0

¢ Xy =

[
[
[
[

* Xg

Pairwise dissimilarities using

(v, x)
d x)=1-—
cos(2 %) = 1=

Vietoris-Rips filtration:

1
Thresholdt =1 ——= Threshold t = 0.5

2}

Recall: Persistent Homology

Vietoris-Rips filtration

Two holes detected
With birth and death:
(0.4593, 0.9398)
(0.7654, 1.6777)
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Persistent homology, applied to recipe data

Degree-1 persistence diagram of the Histogram of the lifespans of the
recipe data. birth-death pairs.

[Edelsbrunner; Letscher; Zomorodian ‘02], [Zomorodian; Carlsson ‘04]

In a bit more detail...

* Given a filtration of a finite simplicial complex, there exists a set g-
cycles {z;};_,and a unique multiset of pairs {[b;, d;)};_; such that
the following hold.

* (foreach i) z; is “born” at b; in the filtration (birth)
* (for each i) z; “dies” at d; in the filtration (death)

» For each threshold value t, the homology classes of the z; “alive” at t
(z; with b; < t < d;) forms a basis for the homology of the simplicial
complex at t (basis)

* {[b;, d;)};- is called the gth persistence diagram

* Each z; is called a representative cycle — represents some q-
dimensional hole (using the interpretation of homology)

. ['butter’, 'cinnamon’, ‘cream’, 'egg’, 'milk', 'nutmeg, ‘vanilla’, 'wheat']

R e re S e ntat Ive C C le 7 . ['butter, 'cane_molasses', 'milk', 'rye_flour’, 'wheat', 'yeast]
p y i° ['cherry', ‘cream’, ‘egg’, 'gelatin'’, 'wheat']
['butter’, 'olive’, ‘olive_oil, 'wheat]

['butter’, 'cane_molasses', ‘egg, ‘oat, raisin’, 'vanilla', ‘walnut', ‘wheat]

List of recipes surrounding a hole = = e

['apple, 'butter’, 'cane_molasses', 'cinnamon’, 'egg', 'milk’, 'vanilla', 'walnut', 'wheat']
['lemon’, 'lime', ‘orange_juice’]

['butter’, 'wheat', 'yeast']

['cherry', 'lemon’, 'lime’, 'orange’, ‘orange_juice', 'pineapple’]

['butter’, ‘cane_molasses', 'milk’, 'wheat', 'whole_grain_wheat_flour', 'yeast']

['butter’, 'cream’, 'milk’, 'potato’, 'wheat']

['butter’, ‘cane_molasses', 'egg', 'milk’, 'rye_flour’, ‘wheat', 'yeast']

['butter’, ‘cane_molasses', 'cinnamon’, 'egg’, 'milk’, 'pecan’, 'vanilla’, 'vegetable_oil', ‘wheat']
['cherry’, 'cream’, 'gelatin’, 'wheat']

['gin]

['butter’, 'cane_molasses', 'cinnamon’, 'egg’, 'lard’, 'milk’, 'oat’, 'vanilla', ‘'walnut', ‘wheat']
['butter', 'milk’, 'wheat', 'yeast']

. CaNe_molasses', 'cocoa’, 'coconut’, 'egg’, 'milk’, 'oat’, 'vanilla', ‘walni ‘wheat']
['butter', 'honey’, 'milk’, 'wheat', ‘whole_grain_wheat_flour', 'yeast']
['butter’, 'lard’, 'milk’, 'wheat']

s&ignamon’, 'egg’, 'lard’, 'milk’, 'oat’, lla', 'wheat']
butter', 'cherry', 'cream’, 'gelatin’, 'wheat']
['O™er', 'cane_molasses', 'cinnamon’, 'egg’, 'lard’, 'oat’, 'raisin’, 'vanilla', 'walnut’, 'wheat']

['apple’, 'butter', 'cane_molasses', 'cinnamon’, 'egg’, 'milk’, 'pecan’, 'vanilla', 'vegetable_oil', 'walnut’,
'wheat']

['butter', 'cane_molasses', 'cinnamon’, 'cocoa’, 'egg’, 'milk, 'vanilla', 'wheat', 'yeast']
['apple’, 'butter’, 'cane_molasses', 'cinnamon’, 'egg’, 'milk’, 'pecan’, 'vanilla’, 'vegetable_oil', 'wheat']
['butter’, 'egg', 'milk’, 'nutmeg’, 'raisin’, 'wheat']

“; ” s ['gin', 'lemon’, ‘orange_juice']
Just an “image”, do not take literally [butter’, ‘cane_molasses', ‘cocoa, ‘egg’, milk, vanilla', walnut’ wheat]
['butter', 'cane_molasses', 'coconut', 'egg', 'oat’, 'raisin’, 'vanilla', 'walnut', ‘wheat']

['butter’, 'cream’, 'wheat']

['cherry’, 'lemon’, 'lime', 'orange’, 'pineapple’]

['gin', 'lemon’, 'lime’, 'orange_juice’, 'tea']

18

['butter’, ‘cane_molase®
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Can we use it to make a new recipe? Center?

* Average number of ingredients in
original data: 8.49+3.51

Ingredients in this cycle:

[‘almond’, ‘bell_pepper’, ‘black_pepper’, ‘butter’,
‘cane_molasses’, ‘champagne_wine’,
‘cheddar_cheese’, ‘cherry’, ‘chicken’, ‘cinnamon’,
‘cocoa’, ‘cranberry’, ‘cream’, ‘cream_cheese’,
‘egg’, ‘garlic’, ‘gelatin’, ‘lard’, ‘lemon’, ‘lime’, ‘milk’,
‘oat’, ‘onion’, ‘orange’, ‘orange_juice’, ‘pepper’,
‘pineapple’, ‘potato’, ‘raspberry’, ‘rum’, ‘seed’,
‘vanilla’, ‘walnut’, ‘wheat’, ‘yeast’]

35 ingredients

* Too many ingredients!

Finding new combinations using optimization

* Let S be the set of all ingredients used in the recipes surrounding a hole.
Think of these as candidate ingredients
* Consider the following problem:
(y, x)

Y, = argmax d¢os(y,X) = argmin max———
* ycs, |y|=t cos ycs, ly|=t X€X ||}’||||x||

* Find the combination y that is the most dissimilar to the set of existing
recipes X

* Under the condition that y is exactly t ingredients from the candidate
setS

Finding new combinations using optimization

Problem formulation (original):

: (v, x)
Yy, = argmax d.os(y,X) = argmin max———
yeslyl=t yes, lyl=t XX ||y|lllx]|
* Using the “epigraph trick”, we turn min max problem into a
minimization problem:

(yx) . . (y,%)
The m ltom >
© an}?(”J’H”x” 'S equat to min {AP iy llixll

* We also apply a projection to S to decrease the dimensionality of
the problem

VxEX}

74




Finding new combinations using optimization
(Mixed Integer Linear Programming Problem)

* Thus, equivalent to the following Problem:

minimize A
. s (x)
subject to vTz—21<0 VUE{ - xEX}
< VEllx||
1Tz=t¢t
z €{0,1}5, AER

* Use software (e.g. GLPK; coin-or/Cbc; IBM® ILOG® CPLEX®) to solve

Some example optimal solutions (witht = 5)

[ ]
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘olive oil’, ‘raisin’)
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘raisin’, ‘starch’)
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘raisin’, ‘whole grain wheat flour’)
(‘cranberry’, ‘cream cheese’, ‘gin’, ‘starch’, ‘whole grain wheat flour’)
(‘cranberry’, ‘cream cheese’, ‘raisin’, ‘starch’, ‘whole grain wheat flour’)

* many optimal solutions with the same dissimilarity to existing recipes!

Biscuits preparation

* Four solutions (NCS, NR, NG, NCB) with t = 5 ingredients were selected.
* The ingredients suggested biscuits.

Table: Compositions of the biscuits

No corn starch Noraisin No gin No cranberry

Control (NCS) (NR)  (NG) (NCB)

Sugar” 30 30 30 30 30

Whole grain wheat flour 45 90 45 45 45

Starch (cornstarch) 45 - 45 45 45

Cranberry (dried 10 10 20 10

cranberry)

Raisin 10 10 - 10 20

Gin 10 10 10 - 10

Water - - - 10 -

Cream cheese 80 80 80 80 80
*Sugar was added because the recipe data does not contain seasonings (e.g. salt and sugar) as ingredients 24
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Sensory evaluation of biscuits

Comparison sample
Control, NCS, NR, NG, NCB

Panel Control  NCS

19 untrained non-expert Japanese male and

female students (21.3 == 2.6 years old)
NR NG NCB

Factors
Scoring method: -3~ +3
Intensity of color, texture, sweetness, sourness

Preferences for aroma, color, texture, taste,
palatability, overall judgment

H 6.0
esults of the sensory evaluation n.s.
o 50
Color Bright 2@ ab b Dark *E]: 4.0
Texture Hard Crispy S 3.0
Sweetness | Weak Strong g 2.0
Sourness | Weak Strong =10
Aroma Dislike Like 0.0
Color | Dislike Like S PR
o ) RO <
Texture Dislike Like O
Taste Dislike Like Figure 2: Ranking order
Palatability Bad Good Mean (n=1.9). No significant difference in ranking
order of biscuits, by Newell and MacFarlane test
Overall judgment Dislike Like
-3 -2 -1 0 1 2 3 | Scores of palatability and overall
j t of all biscuit: t1.0,
--Control #-NCS -NR -o-NG -s-NCB Judgment of all biscuits were about 1.0
) . o indicating that the suggested ingredient
Figure 1: Sensory properties of biscuits combinations are potentially viable for
Mean(n=19). ) recipes of biscuits
Only “color” exhibits significant difference (p < 0.05, Tukey’s HSD test)

Recall: The steps of the analysis

* (A) Apply persistent homology to analyze the “space of recipes”

* (B) From the “holes” in the space of recipes, create new
combinations of ingredients that can be used as hints for new recipes

* (C) Check using cooking experiments, sensory evaluations

()
Cooking
(A) (B) experiments,
Persistent Combinatorial ety
A evaluations
Homology |(* persistence diagram || Optimization
and cycles around
holes

New
combination of
ingredients

;
recipe
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Testing novelty (simple check)

* Generate 31,478 suggestions from our method
(up to 20 solutions for the representative cycles of the top 5%
birth—-death pairs)
* Result:
»Equal to existing recipes: 61 (0.19%)
» Strict subcombinations of existing recipes: 506 (1.6%)
* Point: most of the suggestions from our method do not fall into
either of these cases

* Next slide: look at the big picture of ingredient usage patterns

B Original data
0.040 I Suggested combinations

Observations:
* Tends to suggest using ingredients not commonly used
in the existing recipes (we are maximizing dissimilarity of

0.035 -

3’ 0.030 ingredient combinations compared to the existing
% recipes
g 0.025 (Novelty-seeking)
8 . * Does not just preferentially use only rare ingredients,
— because the initial analysis using persistent homology
°>’ 0.020 - constrains candidate ingredients to only those
'g appearing in representative cycles
o) (Usage of structural/geometric information)
~ 0.015 A

0.010 -

0.005 -

0.000

Ingredients (ordered in decreasing frequency of usage in the original data)

* Analysis of recipes
» Persistent homology to explore geometric structure
* Combinatorial optimization to find new combinations
* TDA (+optimization) has the potential for providing new insights in the
study of culinary recipes
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Thank you for your attention!

Thanks to Funding:
Casio Science Promotion Foundation, Japan (Grant number 40-29)
Research Grant of Graduate School of Human Development and Environment, Kobe University

JSPS Grant-in-Aid for Transformative Research Areas (A) (22H05105)
“Establishing data descriptive science and its cross-disciplinary applications”
JSPS Grant-in-Aid for Scientific Research (C) (24K06846)
“Development of new methods for data analysis of processes using topological ideas”
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Ellipse Cloud: Anisotropy-Aware Persistent
Homology

Tomoki Uda

Faculty of Science, University of Toyama, Japan

Persistent homology is a widely used tool in topological data analysis, yet standard fil-
tration methods often fail to capture anisotropic structures inherent in real-world data.
We propose Ellipse Cloud, a preprocessing-based approach that enhances anisotropic
features in persistent homology. Our method constructs a Vietoris—Rips (VR) filtra-
tion using ellipse tangency times instead of pairwise Euclidean distances, extending the
standard VR filtration to an anisotropic setting. This formulation allows anisotropy to
be incorporated into persistent homology while remaining compatible with standard
computational frameworks. A key computational challenge in this framework involves
determining critical time points at which expanding ellipses first interact, which we
address through an efficient numerical algorithm.

To evaluate the effectiveness of our approach, we apply it to a toy problem involving
a highly noisy two-dimensional point cloud with multiple ring structures. While stan-
dard persistent homology struggles to capture the underlying rings due to excessive
noise, our anisotropic filtration successfully identifies optimal 1-cycles that preserve
the original structures to a greater extent. More generally, our proposed preprocessing
technique tends to increase the lifetime of significant persistence pairs, lowering birth
values and raising death values compared to standard VR filtrations. These results sug-
gest that incorporating anisotropic filtrations can provide more informative topological
summaries of geometrical structures in data. Potential applications include sensor cov-
erage problems, where sensors often exhibit directional sensitivity rather than isotropic
coverage.

In the talk, we will also introduce the Python library ‘EIIPHi’ for anisotropic per-
sistent homology analysis. ‘ElIPHi’ provides the fast and accurate ellipse-tangency
solver. The related source codes are available in [GitHub (https://github.com/t-
uda/ellphi)](https://github.com/t-uda/ellphi).

References.

[1] Vincent Peter Grande and Michael T Schaub. “Non-isotropic persistent homology:
Leveraging the metric dependency of ph”. In: Learning on Graphs Conference.
PMLR. 2024, pp. 17-1.

[2] t-uda. EllPHi: A Fast Ellipse-Tangency Solver for Anisotropic Persistent Homol-
ogy. https://github.com/t-uda/ellphi. Open-source software, MIT License.
2025.
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- ]
Ellipse Cloud:

Anisotropy-Aware
Persistent Homology

Tomoki Uda

Faculty of Science

University of Toyama
EILXFEMAREPRZRBCEEHEF 7O 5 L)

2025-08-06 (Wed) TDA+IM @ Fukuoka

Standard PH
w/ circular disks

Anisotropic PH
w/ ellipses

Given spatial data with a specific metric, it is said to exhibit anisotropy
if its local properties differ depending on the direction of measurement.

Typical example:
Small P P

/ sho

Sensors or radars
Large have directivity.

/ long

We hereafter focus on structure.

Far / sparse

Near / dense
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TL;DR: The existing TDA methods have not well explored anisotropy yet.
Much research should still be done in this direction.

While computational geometry has explored anisotropic approaches
(e.g., anisotropic Voronoi diagrams), such ideas have been
less extensively developed within persistent homology frameworks.

A TDA-based approach, Non-isotropic Persistent Homology (NIPH),
proposed by Grande et al. (2023), incorporates anisotropy through
directional scaling. However, NIPH inherently focuses on anisotropy
along a single, specified direction, potentially overlooking more
complex or multi-directional anisotropic structures in real-world
data. Kalisnik et al. (arXiv 2024) recently introduced the Ellipsoid
Complex, which infers local anisotropy by fitting data-driven
ellipsoids before computing persistent homology. While their
framework pursues a goal similar to ours, its reliance on iterative
numerical heuristics brings additional computational overhead and
may limit robustness in high-dimensional, noisy settings, leaving
efficiency and accuracy as open challenges.

Q. How to find the
point of tangency
(or intersection)
of two ellipses?

To be honest, | do not know the first appearance of the
calculation method for conics’ intersections.
Any relevant literature would be quite helpful! Thanks!

* Mathematicians studied quadratic curves (a.k.a. conic sections) from B.C.
* Apollonius wrote “Conics” around the 2nd century B.C.
« In history, conics have a connection to astronomy. (J. Kepler 16th century)

* Wikipedia - [[Conic sections]] - § Intersecting two conics:
— one can locate the intersection by identifying the degenerate pencil.

* There is an implementation note and existing software for computing and
judging ellipse intersections.

T— _
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1. Given two conics Qg and Q (expressed by quadratic polynomials)
2. Consider their pencil Qﬂ, a linear combination of Q, and Q,
3. Find u for which Q” degenerates to two lines

(The degeneracy condition is a cubic equation in )

4. Obtain the intersection point (x, y)
by combining the line equation with either Q or Q,

Key Fact: Q}, go through the intersections of Qg, Q;

» Fact: Two (quadratic) polynomials share some roots
<= the Bézoutian, determinant of the Bézout matrix, is 0.

« Qdavideberly/GeometricTools takes this approach.

—_

. Collect the ellipse polynomial terms in x

. Compute Bézout’s determinant — quartic(=degree 4) in y

2

3. Solve the quartic equation in y

4. Back-substitute y into the ellipse equation — find x
5

. Reject non-intersecting falsy solutions (x, y)

Bad from computational viewpoint (wasting many computations!)
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Isotropic
Euclidean

U

Anisotropic
Tangency

Given ellipses Q{(t,X) = X A; X +2b; - X + ¢; = 0, decompose it as

-2
00 =T(x—%) P, <g f) Pi(x—%) 2.

« X; i-th center point
given

« P, axes (orthogonal)

For each pair (Q;, Q)),

* i 2 17> 0 reference radi find the tangency time 7.

« t time, expansion parameter

Because the model includes a parameter ¢,
the intersection problem becomes complicated.

e (l, X) = 0’ )
minimize > subject to {QO Constrained
xeR?, 120 0,(t,x) = 0. minimization
l Find a stationary
Find (X, t, 1) suchthat VF = 0, where point of the
F(X, 1, 1) = 1 + p1oQp(t, X) + 1,0, (1, X). Lagrangian

By V,F'=0, we have x = X(i) = —Aﬂ'lbﬂ, where

A, = Ao+ Ay, by, = Hobg + piby.

(Impose normal vectors to be linearly dependent.) -
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Center points of the pencil

Completing the square of

Q,, = Qo + 1,0, vields 2

the center point of O, (

which coincides with X(u). \’

Key points: o
® X(u) does NOT depend on t.

/ 7
(The center is always located /

even when Q“ is an imaginary /
w— Qo(t=0.3) Qo(t=0.513) |

ellipse.)
® Find a stationary point only —0u(t=0.3) i
intersection

X center points X of the pencil

on the center curve X(y). - - -+ : ; 5

x

. Odavideberly/GeometricTooIs also uses the Lagrange multiplier to
determine whether two given ellipses intersect or not.

« It implements a Boolean query of the relative position of them:
A. If two ellipses intersect.
B. If one includes another strictly.
C. Neither; if two ellipses are separated.

« It is straightforward to solve the tangency problem in the same way,
but it has not been implemented in this software yet.

e Thus, our proposed method and software are still new.

« Especially, we can prove the unique existence of the solution.

u = Q,(t,X(n))
Takes the maximum value
at u = L.
Futhermore, at time

=1/ Qu0XG),

is the point of tangenc
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Show convexity. Calculate the 2nd derivative of O, (7, X(u)) w.r.t. u. Proved.

Center points of the pencil

| 0\ -

— Qu(0.%)
— Q0.
— 0.0.%)

x Ts
x
x
a4

1 / / 1.0
/ 05

-2 —Qu(t=0.3) Qo(t=0.513)

— Qy(t=0.3) e Qu(t=0.513)
X center points X of the pencil @  intersection 0.0

-3 -2 -1 o 1 2 0.0 02 0.4 0.6 08 10

x "

Solve the algebraic equation Oy(0,X(¢)) = O,(0,X(4)) to obtain j

=

1. For each point x;, take the k-nearest neighbour

2. Compute the mean ; and the covariance matrix, and eigendecompose it
3. Place ellipse Q(t,x) = (x — %) P, diag(ry, 1) P(x — %) — > =0

4. Compute a quasi-metric dij by ellipse tangency

5. Build VR filtration from (d;;) and compute PH (PD)




Ellipse PH captures anisotropic ring structures in greater extent.
In this toy experiment, we found many optimal 1-cycles whose
corresponding persistence are much longer.

Cumulative histograms of 1000 PDs in the same experiment configuration.
Compared to the standard PH, the anisotropic PH exhibits:

* Birth time is earlier and death time is later.

» Fewer birth-death pairs have shorter lifetimes.

* More birth-death pairs have longer lifetimes.
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Seeking detailed references on conics’ intersections .,
Suggestions welcome!

Proposed method
« Ellipse Cloud construction .
« Fast and accurate computation of ellipse tangency

« Software implementation

Looking for applications to real-world data

Suggestions of anisotropic problems are welcome too! 5

Inverse analysis? — (@ possible as in the standard VR filtration

PD optimization? — ## possible but not implemented yet [WIP]

» W4 The gradient of the tangency problem is computable.

« 4 Future work: ellipses’ axes optimization? What about DoF?
Shapes other than ellipses? — ## possible in principle but hard

» 4 The Lagrange multiplier method is applicable in a similar way.
* 7 No closed-form solutions nor assurance, in general, though.
Higher dimension (ellipsoids)? — (& extensible in the same way
Other filtrations like alpha complex?

. Ellipsoid Complex proposed by Kalisnik et al. (arXiv 2024)

» ? Computational cost issues? Intersection of > 2 ellipses?
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Nonnegative Matrix Factorization with Topological
Regularization

Keunsu Kim

Institute of Mathematics for Industry, Kyushu University, Japan

In this study, we propose Top-NMF, a novel model that incorporates topological regu-
larization into Nonnegative Matrix Factorization (NMF), a widely used dimensionality
reduction technique. While conventional regularization methods focus on preserving
relationships between data points to guide low-dimensional representations, Top-NMF
explicitly controls the topological structure of the support of each basis vector. We
interpret each data point as a real-valued function defined over a structured domain
(such as a grid or a graph), and treat each basis vector in the same way. Our focus is on
the support of each basis vector, and we introduce quantitative topological descriptors
derived from persistent homology as regularization terms. These descriptors encour-
age the support to exhibit desirable properties such as connectedness and modularity.
These regularization terms can be applied across diverse domains including time series,
images, and graphs and guide the model to learn basis vectors that reflect meaning-
ful structures. We provide a theoretical formulation, describe the optimization scheme,
and demonstrate through experiments that Top-NMF achieves structurally faithful and
interpretable decompositions.

References.

[1] Mathieu Carriere et al. “Optimizing persistent homology based functions”. In:
International conference on machine learning. PMLR. 2021, pp. 1294-1303.

[2] Patrik O Hoyer. “Non-negative matrix factorization with sparseness constraints”.
In: Journal of machine learning research 5.Nov (2004), pp. 1457-1469.

[3] Daniel D Lee and H Sebastian Seung. “Learning the parts of objects by non-
negative matrix factorization”. In: nature 401.6755 (1999), pp. 788-791.
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Nonnegative matrix factorization
with topological regularization

Keunsu Kim (¥ 4 - 7> X)
Assistant professor (Non-tenure track)
Institute of Mathematics for Industry
at Kyushu University
2025.08.06
(with Matias de Jong van Lier and Shizuo Kaji)

Workshop for Topological Data Analysis and Industrial Mathematics

https://sites.google.com/view/keunsukim,

Background

2024.08. Ph.D.

2018.02. B.S.

90




Linear Dimensionality Reduction

Linear Dimensionality Reduction

W = [W”] € R™"

Given n d-dimensional data points {xy,:+,x,} and Coefficient matrix
X; € ]Rd.
V1
. . . v=|:le Rrxd
Want to reduce the dimensionality to r < d. v
.
i.e, find basis vectors v; € R and corresponding coefficients w;;. Basis matrix
X; ® Wppvq ++wpv, & X =WV
Criterion is to minimize the Loss function L. W= {Wij}i=1,---,n
n r 2 j:lyA.A'T
Ex) Lapx(w,v) = Z X; — ZWUW}
V= {Vif,
i=1 j=1 { ]}}:1’...’7-

More clarify data points {x;}#%, and each x; € R?8%28

r-dim
subspace

unfold

|

X5 € R28%28 Xs € R784
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Principal Component Analysis(PCA)

2
n

r
X; — Z Wi;Vj
J=1

minimize  Lg,, (W, V) = z

i=1

Ex: PCA basis, r = 10.

~ Wi@+ '“-l-Wi

i =

(Daniel D. Lee, and H. Sebastian Seung) Learning the parts of objects by non-
negative matrix factorization, nature (1999)

Nonnegative Matrix Factorization(NMF)
Given dataset {x;, -, x,} and x; € R%,
minimize ., . 2
X = ;WUW/’
subject to

Lapx(w‘ V) = Z
w;j,v; = 0, nonnegative constraint

i=1

PCA basis NMF basis

NMF: Nonnegative Matrix Factorization

In thIS StUdy, given a {xy,,x,} and x; € RY,,
Goal: Obtain interpretable basis vectors v; € R%,.

Method:
1. Quantify desirable properties of v; (e.g., sparseness, connectedness)
into a scalar Lyqq (V)

2. Encourage the desirable properties by using them as a regularization
term.

L(w,v) = Lapx(w' v) + /1reg *Lyeg W)

3. Optimize w;; and v; jointly under nonnegativity constraints.
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Philosophy

To divide each of the difficulties under
examination into as many parts as
possible, and as might be necessary
for its adequate solution.

- René Descartes

Difficult

277

Quantify desirable properties of v;

Quick Review of sparsity of v;

(Patrik O. Hoyer) Non-negative matrix factorization with sparseness constraints,
Journal of machine learning research (2004)

Sparsity score of v; € R?
Ct vl < liill, = vlvjll,

1 [lv;ll,
S(Wj)—m' \/E—m E[O,l]

B)d=5 &P
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n r 2
Nonnegative Matrix Factorization with sparsity regularization (S-NMF) Lapx(wr v) = Z X; — Z WiV
i=1 j=1

+
Lo (vt} y,.,) = D NS -l

subject to
w;j,vj = 0, nonnegative constraint
*a; is desirable sparsity score

Fetch olivetti faces dataset

. . . _o7
NMF basis Each basis vector is localized. s"NMF basis  a;

S-NMF: Nonnegative Matrix Factorization with sparsity regularization

There is no guarantee of acquiring a localized basis.

Top-NMF

In this study, givena %} and x € R, Recall

Goal: Obtain interpretable basis vectors v; € R%.

Method:

1. Quantify desirable topological properties of v; (e.g., sparseness,
connectedness) into a scalar L, (v)

2. Encourage desirable properties by using L;,,(v) as a regularization term.
L(w,v) = Lapx(wr v) + /1tap . me(w) subject to w;j,v; > 0.

3. Optimize w;; and v; jointly under nonnegativity constraints.
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From Topological Data "Analysis” to Data “Processing”

TR ( (filtered) Feature )
Usual flow in ST Topological Space Extraction
EEEE— @

Topological Data

] l l

e N

L Topological Data J

“Processing”
Operation on
Feature

Machine
Learning

Machine
Learning /
Visualisation

Lifting/Realisation of
the operation

Made by Matias de Jong van Lier

0-dim homology: # components
1-dim homology: # holes

Filtration and barcode

X € [0,1]28><28 PH(X)Z

Persistent Homology

Superlevel set filtration on a cubical complex: pixel intensity > 1 —¢

Want

+

Wl = (11150:0;0) Vz = (0:0;0;1;1)

+

v; = (1,0,0,1,0) v, =(0,1,0,0,1)
x; = (1,1,0,1,1)
Each basis time series has a
sparsity score = 0.66.

Sparsity score cannot distinguish between the two decompositions
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Superlevel set filtration on a cubical complex: pixel intensity > 1 — &

Observe the variation of

vy = (111101010) Suppzl—e(vl) = {l € {0,1,2,3,4} |V1[l] =21- 5}

0<e<1 £<0

Wl = (110501 1:

|
¢
'
|

w ° 3 : 0 1 2 3 4

—

Superlevel set filtration on a cubical complex: pixel intensity > 1 — &

Observe the variation of sublevel set

v:{0,1,2,3,4} > Ry suppz1-£(v1) = {i € {0,1,23,4} |v4[i] 21— ¢}

0<e<1 | £<0
o I B o : 3 s
superlevel set filtration PE®) (Wj): = (d — b)?

on a cubical complex din
(b, d)EPHM(v))

_ PE@(v) =0

_ PE@(v) =1

We can distinguish between the two decompositions using the persistent homology.
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Top-NMF on image dataset

PEO(w):= > (@-by
Superlevel GAPHED g = 0,1.
cubical fin
Vj filtration PH"(v))

Leop(v) = Z PEO(v;)

Find a solution wy;,v; = 0, which =

minimizes /

LW, V) = Lgpy(W, V) + Agop - Liop (V) 4} . . .
o top - ew i.e. Top-NMF yields basis vectors
with connected supports.

Korean character example

X1 X, X3 X4 Xs Xg

R64X64 — ]R4096

Vi V2 V3 Vg Vs X, = V, 4+ v

X;, Vj €

We desire the basis as follows:

/ AN

-
ac.a FE(vowel): H1L 5 X
& (consonant): except for » U\ 5 X 5

Observation

NMF basis Top-NMF basis

/ N
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Top-NMF learning process

Top-NMF learning process

Clique Deviation Metric in a Graph
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Given an undirected graph,
clique is a fully connected subgraph.

G = (V,&): fully connected weighted graph, |Want decompose the structure via clique graphs.
with edge weights in the range [0,1] (not
vertex weights).

v, = (1,0,1,0,1,0) v, = (0,0,0,1,1,1)
Ex)
AB AC ADBC BDCD AB AC ADBC BDCD - +
_(L,l121 _(t,12,2 -
X, = 3'"3'3"3'3 Xy = 3330 b3
1 1121 1 1
- 0,=,=,—,— = -=-(1,0,1,0,1,0 -=-(0,0,0,1,1,1
(03553) = 5 o100 ) +3-(00011 )
1
X =5 Vi+5 Vv,
11121 _(t,12 2
=\3%3333 ¥2=\3V33 03
NMF basis Desirable basis
(At 499 (2,211
vi=(5035 G 2=305313 v, = (1,0,1,0,1,0) v, = (0,0,0,1,1,1)
13 5 I
xlzﬁ.\y1+ﬁ.v2 X1—3 W1+3 vy
13 1 X —l-w +g-w
XZZﬁ'W1+ﬁ'W2 2_3 1 3 2
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To distinguish two decomposition,

. . S . PE® (v)): = d —b)?
we introduce the clique deviation metric ) Z @

(b,d)EPHEM (v))
Key point: We assign a fixed weight of 1 to each vertex.

To justify the key point, assume each vertex is assigned the maximum edge
weight among its incident edges.

Vi > —— —_ —_—

Two cases,
v, — - PE@(v;) = 0.

i.e, PE© information is meaningless.

Ex)
We assign a fixed weight of 1 to each vertex.

cDM(v;) = —PE©(v;) — a - PE®(v;) for a > 0.

PE©® =4

Interpretation of Low CDM Value

A small value of CDM(v;) implies high values of PE©(v;) and PE®(v;),
By using this as the L, , we encourage each basis vector to:

« PE@ : connect only the necessary vertices

« PE®W : create as many holes as possible among
the connected vertices.

Theorem:
v is a local minimizer of CDM if and only if it takes the value 1 on a disjoint union of cliques.
*Clique: #node > 3

Topological quantifiers and L,

PE® (v): = Z (d—-b)? Persistence Energy
(b,d)EPH{™ (v)

CDM(v) :== —PE@ (v) — PE® (v) Clique Deviation Metric
max (d-b)
_ (ba)ePHINw) iodic S
PerScore(v) = 21— Periodic Score
V3

WPE® (v): = Z A-d)-(d-b)? Weighted Persistence Energy

(b,d)EPH{M (v)
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Top-NMF We solve this problem

Find a solution wy;,v; = 0, which using gradient descent.
minimizes
aL
W W— —
L(W:V) = Lapx(w: W) + Atap : Ltop(w) ow
daL
Vev— —
av
Theorem:

Gradient descent algorithm converges.

(Damek Davis, et al.) Stochastic subgradient method converges on tame
functions, Foundatic of computational F ics (2020).

(Mathieu Carriére, et al.) Optimizing persistent homology based functions,
International conference on machine learning. PMLR (2021).

In this StUdy, given a {x;,,x,} and x; € RS, Recall

Goal: Obtain interpretable basis vectors v; € R%.

Method:
1. Quantify desirable topological properties of v; (e.g., sparseness,
connectedness) into a scalar Leop, (V)

2. Encourage desirable properties by using the quantifiers as a
regularization term.

LW, V) = Lapx(W, V) + Aeop * Leop(V) subject to wj,v; > 0.

3. Optimize w;; and v; jointly under nonnegativity constraints.
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS
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Applications of Persistent Homology to Materials
Science, and Persistent Homology Software
HomCloud

Ippei Obayashi

Center for Artificial Intelligence & Mathematical Data Science, Okayama University,
Japan

In this presentation, I will discuss persistent homology, a mathematical tool that char-
acterizes the shape of data using topology. Mathematical foundations and applications
to materials science will be presented. Our persistent homology-based software, Hom-
Cloud, will also be introduced.

References.

[1] Yasuaki Hiraoka et al. “Refinement of interval approximations for fully commuta-
tive quivers”. In: arXiv preprint arXiv:2310.03649 (2023).

[2] Emi Minamitani et al. “Topological descriptor of thermal conductivity in amor-
phous Si”. In: The Journal of Chemical Physics 156.24 (2022).

[3] Ippei Obayashi, Yasuaki Hiraoka, and Masao Kimura. “Persistence diagrams with
linear machine learning models”. In: Journal of Applied and Computational Topol-
ogy 1.3 (2018), pp. 421-449.

[4] Ippei Obayashi, Takenobu Nakamura, and Yasuaki Hiraoka. “Persistent homology
analysis for materials research and persistent homology software: HomCloud”. In:
journal of the physical society of japan 91.9 (2022), p. 091013.
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Understanding Depression during the COVID-19
Pandemic as Topographical Maps

Daiki Tatematsu

Graduate School of Science, Nagoya University, Japan

The COVID-19 pandemic changed our lifestyles. It is expected that the changes in
mental health also occurred because of these changes. In this study, we used the
questionnaire responses that asked high school students in Tokyo about their depression
before and during the COVID-19 pandemic and analyzed the group characteristics of
changes in depression as topographical maps using energy landscape analysis (ELA),
a method of multidimensional time-series data analysis. As a result, we visualized
how the topographical maps of the depression changed in the COVID-19 pandemic
and found that the COVID-19 pandemic has made the students less likely to become
depressed. These results suggest that ELA is useful for the analysis of psychiatric
questionnaires.

References.

[1] Takahiro Ezaki et al. “Energy landscape analysis of neuroimaging data”. In: Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 375.2096 (2017), p. 20160287.

[2] Ronald C Kessler et al. “Screening for serious mental illness in the general popu-
lation”. In: Archives of general psychiatry 60.2 (2003), pp. 184-189.

[3] Ingrid A van de Leemput et al. “Critical slowing down as early warning for the
onset and termination of depression”. In: Proceedings of the National Academy of
Sciences 111.1 (2014), pp. 87-92.

[4] Takamitsu Watanabe et al. “Energy landscape and dynamics of brain activity
during human bistable perception”. In: Nature communications 5.1 (2014), p. 4765.
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Understanding depression during the
COVID-19 pandemic as topographical maps

Daiki Tatematsu Shingo Iwami

Raiki Yoshimura

Depression in the COVID-19 Pandemic

The COVID-19 Pandemic Changes in Mental Health
has Changed Our Lifestyles > such as Depression

Research the Relationship between the COVID-19 Pandemic and Depression
for the Next Pandemic
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Survey for High School Students in Tokyo

-

Analyze the data collected from
the survey for 84 high school students
who participate in the Tokyo Teen Cohort

S.Andoetal., Int. J. Epidemiol., 2019
N. Okada et al., Psychiatry Clin. Neurosci., 2019

Monthly Questionnaire for Approximately 2 years,
including the COVID-19 Pandemic

Questionnaire
about Depression (K6)

I
)

[

c
[a)

»
k™

c

©

o

Q Kessler R. C. et al., Arch. Gen. Psychiatry, 2003
=]

=t
D“_‘ Obtain the Responses

Participant E’f E’ @ cos

ARG

-_— L B N |
1t 20 310 gth
State of Emergency  State of Emergency

Understand the Mental Health as Topographical Maps

Psychiatric questionnaires The mental state should be understood

such as K6 are commonly analyzed imol d clearl t hical
with significance tests after scoring simply and clearly as topographical maps

Good State Bad State
%
Observed

< Observed
o

&

Unhealthy Healthy Unhealthy
Healthy
A deep valley is formed. A shallow valley is formed.
7ﬁ — Small Variance & Small Autocorrelation — Large Variance & Small Autocorrelation

1. A. Van de Leemput et al., PNAS, 2014
M. Scheffer etal., JAMA Psychiatry, 2024

These previous studies used time series analysis
and the topographical map of mental Health is only used as a concept
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Energy Landscape Analysis (ELA)

Energy .
Topographical Maps
Multidimensional (Not often happens) pograp P

(Time Series) Data

Features
A

B
¢ \/\/\/\/\/\/\/\ﬁ/ Bold : Big
Fine : Small
p AW\
E \/\/\/\/\/\"/\/\/\/\/\/\ Stable State 2
F /\[\/\/\l\/\/\/\/\/\/ \/ e.g.) ABCDEF
Stable State 1
e.g.) ABCDEF T, Bl oot bl Trane, e Sog. A 2017

Understand Multidimensional (Time Series) Data as Topographical Maps

Topographical Maps of Depression during COVID-19 Pandemic

F Shcase
c ic 2% o D

B ebon case 15t SoE 2nd SoE 3¢ SoE  4th SoE
BN B B

Jul 2019 - Dec 2019 Jan 2020 - May 2020, Jan 2021 - Sep 2021

I
»

Analyze the Changes in Topographical Maps of Depression
during the COVID-19 Pandemic

Flow Chart of the Analysis 1 : Preprocessing

D. Tatematsu, N. Nakamura et al., in revision|
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Flow Chart of the Analysis 2 : ELA (Maximum Entropy Model)

Calculate the Energies (=Heights) of All Possible States (26=64 states)

D. Tatematsu, N. Nakamura et al., in revision|

Flow Chart of the Analysis 3 : ELA (Disconnectivity Graphs)

The 6 Features Network
Expressing the Transition in This Research
(=Topographical Map of Depression)

Stable States
(=Bottom of Valley)

Disconnectivity Graphs
(=Summary of the Topographical Map )

Energy Thresholds

(=Summit of Mountain)

6

Energy Threshold
s b/w 010111 & (1’22‘1)22
) 010111 F
| 4
3, Energy Threshold
- 1T 111
w b/w 000000 & 111111

+ A node represents a state.

+ Each node connects to nodes

that differ by only 1 bit.

+ Each node has an energy (=Height).

5 000000111111
Energy Barrier

(How difficult
to transition)

1

000000, 111111, 010111
are the Stable States

Becker 0. M., Karplus M., J. Chem. Phys, 1997

D. Tatematsu, N. Nakamura et al., in revision|

Topographical Maps of Depression in 4 Periods

1stCase
inJapan

IstReport
inWuhan

1st§ok

Jul 2019 - Dec 2019 Jan 2020 - May 2020
. . .

2nd 300 Jth§of

Jan 2021 - Sep 2021
.

E E E B
TioTr 4 -
4 “ A
= > = [o10101
25 010101 s =8
2 2 it 2 1
B 1 Y, B

“lo00000 @ o @on

e.g.)
010111
555555
hlw'slole
0 --- Below average

1--- Above average
within individual

D. Tatematsu, N. Nakamura et al., in revision|

119



Jul 2019 - Dec 2019 Jan 2020 - May 2020
. .
.68 468 197

Energy

.78

unuoon@ o @on 000 ° @

Topographical Maps of Depression in 4 Periods

e.g.)

PANSRENTICY

Jan 2021 - Sep 2021 0 - Below average
s 1 Above average
within individual

IstReport 1stCase st
inWuhan inJapan 1 SOE

6

4.59 459 1.69 Ja
1_38Am'17|T 3.92 392 1.0 i

e
> [010101

@
11111 £
2.90

3.78

Less Likely to Become Depressed during the COVID-19 Pandemic

D. Tatematsu, N. Nakamura et al., in revision|

More Likely to Remain in the Previous State during the SoEs

Comparison with Previous Studies

Japanese high school students (16-18 y/o0)
are less likely to become depressed

Chinese junior high school students (13-15 y/o)
significantly decreased depression scores during the COVID-19 pandemic
during the online class period under the lockdown. (and more likely to remain in the previous state during the SoEs).
— Scored and 2 point Significance Test — Topographical Maps of Depression
N ] 204,31 4G oE
o0 EEEEER

Jul 2019 - Dec 2019 Jan 2020 - May 2020

s
R R Nt
B, angion 3, ”“L 3 otg 14
i) 0""“ i H Q | Qwu h
() 1 @ €)oo ot @)

*lodatoo!

D. Tatematsu, N. Nakamura et al., in revision

Qu M., Yang K., Cao Y. et al., JAMA Netw. Open, 2022
As overall population trends, the COVID-19 lifestyle
seems to have a positive impact on the student’s depression

Next Step

Questionnaire
for the Family GPS

MRI Biologic_al
Information

Other Types of Data Associated with the Subjects
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Summary

@ Questionnaire for Approximately 2 years,
including the COVID-19 Pandemic,

for High School Students in Tokyo The COVID-19 Pandemic Changes in Mental Health
. . has Changed Our Lifestyles | 2 such as Depression
We analyzed the relationship

_, between the COVID-19 pandemic
and depression
using Energy Landscape Analysis (ELA).
R T 208, 30 4t S o
® e B R

® Topographical Maps of Depression

during the COVID-19 Pandemic
Less Likely to Become Depressed

_, during the COVID-19 Pandemic. ] 0
More Likely to Remain in the Previous State .
® @-

during the SoEs. atoon

o=

Enewy

Poster Session

Predict vaccine-induced antibody dynamics
from 1 or 2 blood samplings
using mathematical models and machine learning

While biomedical data is highly accurate, the amount of data is
limited, and there is a need to develop analytical methods that
effectively utilize a small amount of data. In this study, we used
data collected from approximately 2,500 individuals in the
Fukushima vaccine cohort, Japan's largest and longest cohort for
the COVID-19 vaccine. By applying an integrated approach of
mathematical models and machine learning, we estimated 1gG(S)
antibody titer dynamics from 1 or 2 IgG(S) antibody titer data, age,
and sex. This means that 1gG(S) antibody titer data at any given
time can be predicted from 1 or 2 blood samples. This approach
can be applied to speeding up vaccine evaluation.

Data Acquisition, Psychiatry

Analysis Methods (ELA)
Tetsuo Ishikawa
De of

ded Intel

S Abe

ure and Informatic

hiro Ezaki

York at Buffalo,

hool of Medicine, Chiba
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Symmetric Simplicial Lifting for Hypergraph
Learning

Seongjin Choi
Department of Mathematics, POSTECH, Korea

The formulation of higher-degree sheaf Laplacians on hypergraphs is hindered by the
fundamental challenges of sparsity and orientational ambiguity. To address this, we
propose a foundational methodology: symmetric simplicial lifting. This technique
embeds a hypergraph into a richer structure, allowing for the systematic construction
of Laplacians of arbitrary degree. We validate our framework with the Hypergraph
Neural Sheaf Diffusion (HNSD) model, which leverages a degree-zero sheaf Laplacian
to learn diffusion processes. The model achieves strong performance on key hypergraph
benchmarks, demonstrating that our approach offers a principled pathway for higher-
order signal analysis. This work is joint with Gahee Kim and Yong-Geun Oh.

References.

[1] Seongjin Choi, Gahee Kim, and Yong-Geun Oh. “Hypergraph Neural Sheaf Dif-
fusion: A Symmetric Simplicial Set Framework for Higher-Order Learning”. In:
IEEFE Access (2025).
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Symmetric Simplicial Lifting
for Hypergraph Learning

Seongjin Choi

POSTECH

joint work with Gahee Kim(KAIST Al), Yong-Geun Oh(POSTECH)
TDA + IM 2025

7th August 2025

Background: Sheaf

1

Figure 1: Node feature x, is diffused to u by —F]qeFrae(X).

- Cellular sheaf transfers node feature to its incident edge.

- Graph Laplacian == Sheaf Laplacian: How the node features
are diffused to its adjacent nodes in complicated ways.

TImage from Bodnar, Cristian, et al. "Neural sheaf diffusion: A topological perspective
on heterophily and oversmoothing in gnns.” Advances in Neural Information
Processing Systems 35 (2022): 18527-18541.

Adjacency in hypergraphs

oV

- Nodes v, V" are adjacent if 3e 5 v,V with |e| = 2.
- Hyperedges e, e’ are adjacent if |e| = |e’| and Je” such that
- e,e’ ce” |e”| —|e| =1 upper adjacent OR
- e, e De’ le] —|e”| = 1: lower adjacent
- Degree n (n > 1) sheaf Laplacian describes how features of
hyperedge of cardinality n + 1 are diffused to its adjacent
hyperedges.
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Problem: Sparsity of adjacent hyperedges

eV

Figure 2: Degree n sheaf Laplacian vanishes for vn.

- The existence of a hyperedge does not imply non-vanishing
Laplacians.

- No hyperedge e” with [¢”’| =2 = [°=0.
- No adjacent hyperedge pair = L" =0 forn > 0.

Idea: Embed hypergraph into its configuration space

- hyperedge e, e’: observed relations
- All possible oriented subrelations from the observed relations.
-+ Ex. (Vo,V1,V2,Vv3) in e, (v2,v3,Vs) in €.

0-dim’l objects in configuration space

[0] = {0} ooy

{[VO]VD.

- {f:[0] = x| x € E|]V}: fis represented by (v)x for v € x
© (v2)e ~ (v2)er ~ (v2)v: Represent the shared node v,
cA(H)o:={f:[0] = x|xeE[V}/ ~
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1-dim’l objects in configuration space

M=(0<1 wl=towle = [

V3ivuler Y o

- {f: 1] = x| x € EV}: fis represented by (v, w), for v,x € x
© (2, Va)e ~ (V2,V2)er ~ (V2,V2)y,: Represent the shared node v,
s AH» ={f:[N]=>x|xe€eEJV} ~

2-dim’l objects in configuration space

[P={0<1< 2} [vs, v, ¥3le = [v§1‘v_;, wle (2l
- -_ S / :

[vo, Vé';..V3]e
[} Ty,

[VZT/% Valer

- {f:[2] = x| x € E||V}: fis represented by (u, v, w), for
U,V,w € Xx

< (Va, Vo, Vo)e ~ (Va, Vo, Va)er ~ (V2, V2, Va)y,: Represent the shared
node v,

s AH ={f:[2) = x|xeE |V} ~

Mathematical structure of A(H)

We will show that A(H) := {A(H)n}nen is @ symmetric simplicial set.
Intuitions of symmetric simplicial set
- A collection of oriented n-dimensional objects (n-simplices)
represented by tuples.

- Given any n-simplex o = (09,01, . ..,0n), any new tuple formed
from the vertex set {0y, ...,o,} must also be a simplex (e.g,
(0u0)s*** +Tp(my) for pu: [m] — [n]).

- Think of it as a ‘tuple’ version of a simplicial complex.
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Symmetric simplicial set

Defn. Symmetric simplicial set
A collection X = {X, }nen is called a symmetric simplicial set if it is
equipped with a family of functions

X(u) = Xn = X} sty [0y ()
satisfying if u : [m] — [n],v : [n] — [p] then
X(v o p) = X(u) o X(v). @
An element of X, is called an n-simplex in X.

Equation (1) says X(u) : (00, ,00) = (Tpu(0)s* > Tp(n))-
Equation (2) says

X(vou)(oo, -+ ap) = (X(1) 0 X(¥)) (90, + ,0p) = (Twopu(0)s " * s Twop(p))-

Tuple representation of n-simplex

Let (1) ¢ [0] — [n] is a function with (i);,(0) =i for i € [n].
Equation (1) induces a map

X((/)[n]) Xy — Xo.
Hence o := X((1)n) (o) € Xo for i € [n].

Defn. Tuple representation of o
(00, ,0n) is called the tuple representation of o.

Figure 3: Tuple representation of 3-simplex o

Facet of n-simplex

Let o : [n — 1] — [n] is the unique order preserving injection from
{0<---<n-1}to{0<---<i<---<n} Equation (1) induces a
map

X(67) = X = X1
Hence d}'(o) := X(0]")(0") € Xn—1 fori € [n].
Defn. ith facet of o
The ith facet of o, denoted by df'(o), is defined as

X(8") (0) € Xp_1.

- We denote o < 7 and say o is a facet of 7 (or 7 is a cofacet of o)
if o is ith facet of 7 for some i € [n].
- Foro <7, [o: 7] := (=1)" where o = d](7).
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Illustration of facets

02

di(o) d3(o)
o

% dBo) O

Figure 4: 3 Facets of 2-simplex o.

Rmk.

The concept of an ith facet does not require an orientation on X.

Adjacency of two n-simplices

Since the 'facet’ notion is defined, we can discuss adjacency.

Defn. Upper/lower adjacency
Let o,0’ be two n-simplices. o, ¢’ are said to be

1. upper adjacent if 37 € X, such that
o<T1,0 <T.

2. lower adjacent if 3u € X,_q such that

p=op<a.

[vale
[V37 V“]e/

[vole [v5, v3]e [V, V3] ® [Valer
5
LV“VLVOT; Lv2le

[]e

Ex. Symmetric simplicial lifting A(H)
 AH)W) (Vo +Viile) = [y, ] fOr €ach s [m] — [n].
- Tuple representation of [vq, V5, Vgle IS (V4, V2, Vo).
- 0th facet of [v4, V2, Vole is [V1, V2, Vole = [V2, Vole-
* [v1,Va]e, [V, v3]e are lower adjacent since [v;]e is common facet.

* [va, valer, [V3, va]er @re upper adjacent since [va, v3, V4] is common
cofacet.
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Cellular sheaf on symmetric simplicial set

Defn. Cellular sheaf of degree m
A cellular sheaf (X, F) of degree m consists of the following data:

- For n € [m], n-simplex o € X, a R-vector space F(o), called the
stalk at o.

- For n € [m], n-simplex o € X, and facet df(c), a linear map
F(di(0) < o) : F(d](o)) = F(o)
satisfying the following compatibility conditions:
F (d.””(d,”(a)) < d,”(a)) o F(d'(c) < o)
= F (d7(d](0) < d7(0)) o F (d7(0) < 0)

foreveryn e [m], i€ [n],j<i and o € X,.

©)

Elements of F (o) are called features at simplex o.

Compatibility conditions

- We can easily check that
508" =807 [n—2] = [n].

- Equation (2) implies
d'~"od!(0) = d'7 0 df (o). (4)

/ =
F(d(o))
4= A (0)=d () %f(a)wdrm)
F(dr (d(0)) = F (917 (d()))

Figure 5: Condition (3) respects the identity (4).

Diffusion of features

F(7)

—1)le *IF(HT/ \ Yo' T (o <7)

F(o)

(=)l ”1f*(n<v)\ / 11 F (<o)

Figure 6: adjacent o, 0’ with one common cofacet 7, one common facet p.

Feature X, at simplex ¢ is diffused to its adjacent simplex ¢’ by
(=N HE T F (6! < 7) Fo < 7)(%0)
+ (=N S F (< 6") FH (< 0)(Xo)-

Aggregating all such possible feature diffusions results in the
construction of the sheaf Laplacian.
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Degree n sheaf Laplacian

Defn. Degree n sheaf Laplacian
Let F be a cellular sheaf on Xand k € N.

1. A k-cochain, denoted by x = (X, )sex,, iS an element of the direct
sum of stalks over all k-simplices in X.

2. For a k-cochain x, the o-component of the degree k sheaf
Laplacian L% (x), is defined by

Z(_‘I)[”i"]*[”’:"]f*(o < T)]:(U/ < 7)(Xo1)

o',

+ ) (e E (< 0) F (1< 0 (o7
&

for all possible ¢’,¢”, 7, and p.

Normalized degree n sheaf Laplacian

Defn. Normalized degree n sheaf Laplacian

1. The o-component of the diagonal blocks, denoted by fo(x)(,, is
defined as

> Fio=7)F(o < 7)(X)
{rlo=<r}
+ Y Flu=o)F (n =< 0)(Xo)-
{nlp=a}

2. For a k-cochain x, the o-component of the normalized degree k
sheaf Laplacian, denoted by £%(x),, is defined by

(P2 LE05) ) (0,

Embedding property of A

Idea:

we <= {[vo,v1,V2,V3le, [Vi, Vo, V2, Vale, - - }
s el = {[v2,v3,Vuler, [V, Vo, Vieler, o+, }
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Degree 0 sheaf Laplacian of A(H)

Thm. Formula for degree 0 sheaf Laplacian

For a 0-cochain x, L%(X)py, is

Z F (Vv = v, wle) F([V]y < [v, w]e)(xv)
{w|w,vee for e}
{elv,wee}

+ Z F (Vv = [w, V]e) F([V]y < [w, V]e)(xv)
{w|w,vee for e}
{elv,wee}

= D> F(v < W) F (Wl < [v, wle) ()
{w|w,vee for e}
{e|v,wee}

=D F(ve < W VI)F (Wl < [, VIe) Oxw).
{w|w,vee for e}
{e|v,wee}

21

Generalization of sheaf Laplacian on graphs

Thm.

Suppose G is a graph and F is a cellular sheaf on G. Then F
induces a cellular sheaf F on A(G) satisfying

[ = B

Idea: Define a cellular sheaf F on A(G) by

F) it v, b ={v)
F(e) otherwise.

ﬁ([v/'ov"' ’V’n]e) = {

and linear map F([Viy,--- , -+, Vile < [Vigs--- » Vi, Je) by
]:(VE e) if{‘//ov"' \7'\ vvrn}7£ {V'uv"' 7VVn}
Id otherwise.

22
Cora dataset

Cora is a citation network of scientific publications.

- Node: a single scientific publication, a total of 2,708 papers.

- Hyperedge: connect papers that are co-cited by another
publication.

- Node features: The presence (1) or absence (0) of each word
from a dictionary of 1,433 unique words is recorded in this vector.

- Node labels: {Case Based, Genetic Algorithms, Neural Networks,
Probabilistic Methods, Reinforcement Learning, Rule Learning,
Theory}

23
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Hypergraph Neural Sheaf Diffusion (HNSD)

Given: Hypergraph H = (V, E) with 0-cochain y (node features)
Task: Predict a label of each node in H

1. Preprocess 0-cochain y with MLP so that x € RY. We fix d = 8.

2. Xo € RVIdxfo(fy = 1) is a matrix with the first column x
3. A general layer of HNSD on H is defined by

Xer1 = ((m — L5 ® wg)x[wg) c RV fuss

where
- te{0,---,L}is layer with fi= the number of labels, 1< L <8
- ais nonlinear function
- W] € R™9 W? e Rt are learnable matrices at layer t
- F(t) is cellular sheaf on A(H) at layer t

2%
Hypergraph Neural Sheaf Diffusion (HNSD) (Continued)

We learn the cellular sheaf F on A(H) of degree 1via

F(My < [V, wle) = MLP(x, || xp,) € R
where

X[V,W]g =da <MC¥ (WT |: )flv :| © |: XI‘W :|>>
with o = RelLU, o’ = tanh.

25

Results: Node classification accuracy

Cora Citeseer Cora-CA DBLP-CA Senate AVG.

CEGCN 7532+169 7143+134 7668+130 87.19:030 48.17+3.68 |7174
HNHN 7636 +192 7264157 7719+149 8678:029 5085:335 |7276
LEGCN 7223 +160 7184:117 7223+160 8426040 7324%1029 | 7476
HCoN 5177 +223 4348+112 7237+108 8998:026 46.28:466 | 60.78
HyperGCN 7419+ 141 69.42+349 7000:+374 8678+239 5366635 | 7078

AllDeepSets 76.88 +1.80 70.83 +1.63 8197 +150 91.27+027 4817:567 |73.82
SheafHyperGNN | 77.80 + 224 7393 +1.06 81.65+1.50 8893 +0.66 74.65+590 |79.39

HNSD(OURS) ‘ 79.28 £+ 0.82 7440+ 147 8258+ 1.15 89.85:0.44 78.45+587 | 80.91

26
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- We embed hypergraph into symmetric simplicial set, ‘tuple’
version of simplicial complex.

- Symmetric simplicial lifting solves problems of adjacency
sparsity and lack of orientation. This enables the definition of
higher-degree sheaf Laplacians.

- HNSD shows competitive performance across established
benchmarks.

Thank you!

Seongjin Choi
Ph.D. Candidate

jincslO@postech.ac.kr

https://sites.google.com/view/seongjinchoi/home
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Topological Data Analysis for Feature Extraction
and Model Evaluation

Jisu Kim

Department of Statistics, Seoul National University, Korea

Topological Data Analysis (TDA) generally refers to utilizing topological features from
data. A central topic in TDA is persistent homology, which observes data at various
resolutions and summarizes topological features that persistently appear. TDA has
been proven valuable in enhancing machine learning applications. This work explores
how TDA can enhance machine learning workflows, focusing on two areas: feature
extraction and model evaluation. Persistent homology, while rich in structural infor-
mation, is often challenging to integrate directly into statistical and machine learning
frameworks. To address this, various featurization techniques map persistence-based
information into Euclidean or functional spaces, enabling its incorporation into neu-
ral networks and other learning algorithms. I will examine different approaches that
efficiently transform topological summaries into differentiable layers and leverage geo-
metric representations for visualization and dimensionality reduction. In addition to
feature extraction, TDA has recently been applied to evaluate data quality and model
performance. By quantifying the topological structure of generated or transformed
data, TDA-based methods provide robust evaluation metrics that improve the relia-
bility of model assessment. I will present how this is done in particular in generative
modeling scenarios.
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[1] Kwangho Kim et al. “Pllay: Efficient topological layer based on persistent land-
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[2] Hajin Lee, Jisu Kim, and Kwangho Kim. “ECLayr: Fast and Robust Topological
Layer based on Differentiable Euler Characteristic Curve”. In: ().

[3] Hengrui Luo et al. “Generalized penalty for circular coordinate representation”.
In: arXiv preprint arXiv:2006.02554 (2020).

135



Topological Data Analysis for
Feature Extraction and Model Evaluation

Jisu KIM

Topological Data Analysis and Industrial Mathematics
2025-08-08

1/65

Introduction
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Topological structures in the data provide information.

Lheep:// garchi de/galform/virgo/millennium/poster _half jpg
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Persistent Homology: observe topological structure with
multi resolutions.

4/65

Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.

» Georges Seurat, A Sunday afternoon on the island of La Grande
Jatte (Un dimanche aprés-midi a I'lle de la Grande Jatte)

7/65
A (very) rough introduction to Machine Learning
> For given problem and data, machine learning / deep learning learns
a parametrized model.
» Given data X,
» Parametrized model f,
> Loss funciton £ adapted to a problem,
» Machine Learning computes a solution that minimizes the loss
function: arg ming L(fy, X).

» For many cases, computing an explicit formula for the minimizer is
impossible or too expensive (e.g. inverting a large matrix). So, we
often use gradient descent using VyL(fy, X):

Oni1 =00 — AV L(fp, X).
8/65
Topological Data Analysis is applied to Machine Learning.

» A Survey of Topological Machine Learning Methods (Hensel, Moor,
Rieck, 2021)

» Roughly, there are two directions applying Topological Data Analysis
(TDA) to Machine Learning:

> Make features from TDA to add topological features to data X
more common
» PLLay: Efficient Topological Layer based on Persistence Landscapes
(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
> Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)
» ECLayr: Fast and Robust Topological Layer based on Differentiable
Euler Characteristic Curve (Lee, Kim, Kim, 20257?)
> Evaluate quality of data X' or model fy using TDA: recently of
interest
» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
9/65
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Topological structure is featurized as persistence landscape
to be further applied in machine learning framework.
» Featurization using Persistence Landscape

> PLLay: Efficient Topological Layer based on Persistent Landscapes
(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)

10/ 65

Topological structure is featurized as euler characteristic

curve to be further applied in machine learning framework.

» Featurization using Euler Characteristic Curve

» ECLayr: Fast and Robust Topological Layer based on Differentiable
Euler Characteristic Curve (Lee, Kim, Kim, 20257)

11/65

Topological structure is featurized as circular coordinates to
be further applied in machine learning framework.

Featurization using Circular Coordinates

> Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)

Year 1990 GCC (mod 1) with penalty=1*LA1+0*L*2
DI

Year 2006 GCC (mod 1) with penalty=1*LA1+0*L*2
Bl=1.124 CHI=137.308 TAU=0.502 DBI=1.544 CHI=2286.833 TAU=0.696
et ne . o e . 100
. T
T - - —_—
ry s = »3
B ydeer T 00 B . .
@ . oo o R
[0 DI or
: .
e . [ R
b do “ e s b do “ e s

12/65
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Data or Model is evaluated using Topological Data Analysis.

» Evaluation using Confidence of Topological Data Analysis
» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

13 /65

Persistent Homology

14 /65

Topological holes in the data provide information.

15 /65
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The number of holes is used to summarize geometrical
features.

» Geometrical objects :
> 7, L,c,2,0,H, A, 0, X % A, E, O, 35
> A H WA B
> g B, N K FE B3

» The number of holes of different dimensions is considered.
1. Bo =# of connected components .
2. 31 =# of loops (holes inside 1-dim sphere)

3. (2 =# of voids (holes inside 2-dim sphere) : if dim > 3

16 /65
Example : Objects are classified by homologies.
1. Bp =# of connected components .
2. 1 =# of loops
(5o \ A 0 [ 1 [ 2 [5]
a,L,c,2, A, | 0,0, 8,
I PR I ELI
TS AR
L3 | ®my | s | | |
AL
L ¢ | # | L]
I R S R
L7 | | | | & |
17 /65

Homology of finite sample is different from homology of
underlying ma6nifold, hence it cannot be directly used for

the inference.

» When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.
» Homology is not robust:

Underlying circle: Bo=1, B1=1 100 samples: Bo=100, 1 =0

’- -° «,

18 /65
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

21/65
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Persistent homology computes homologies on collection of

sets, and tracks when topological features are born and
when they die.

22 /65

Featurization using Persistence Landscape

23/65

Persistent homology is further summarized and embedded

into a Euclidean space or a functional space.

> The space of the persistent homology is complex, so directly
applying in machine learning is difficult.

» If the persistent homology is further summarized and embedded into
a Euclidean space or a functional space, then applying in machine
learning becomes much more convenient.

> e.g., Persistence Landscape, Persistence Silhouette, Persistence
Image
Persistent Homology
2 . A
e

c <

®

33

0w
[}
=
o

00 05 10 15

24 /65
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Persistence Landscape is a functional summary of the
persistent homology.

Persistent Homology Persistence Landscape

7

1.5

Death

0.5 0
(Death-Birth)/2
-04 00 04 08

o
© T 71 1 1T T 1
00 05 10 15 00 05 10 15
Birth
(Birth+Death)/2
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PLLay: Build topological layer using Persistence Landscape

» PLLay: Efficient Topological Layer based on Persistence Landscapes
(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)

1. From data X, choose an appropriate simplicial complex K and a
function f to compute the Persistece diagram D.

2. From the persistence diagram D, compute the persistence landscape
A:NxR—R.

3. Compute the weighted average function X, (t) := ZkK;“l wiAk(t),
and vectorize to get A, € R™.

4. For a parametrized differentiable map gy : R” — R, compute
S0.w(D) = go(AL).

26 /65

PLLay is differentiable.

> A deep learning model learns its parameters by back propagation,
which is to apply gradient descent layer-wise.

» For a deep learning layer to be learnable, it should be differentiable:

Theorem (Theorem 3.1 in Kim et al. [2020])

The PLLay function Sy, is differentiable with respect to the input data
X.

27 /65
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PLLay is stable.

» PLLay is stable with respect to changes in persistence diagrams:

Theorem (Theorem 4.1 in Kim et al. [2020])
For two persistence diagrams D, D’,

|S6.(D) = S6.(D")| = O(ds(D, D)),

where dg is the bottleneck distance.

28 /65
PLLay is stable.
» PLLay is stable with respect to perturbations in input X:
Theorem (Theorem 4.2 in Kim et al. [2020])
Let X ~ P and P, be the empirical distribution. Further, let Dp, Dx be
the persistence diagrams of P, X, respectively. Then
[50.(Dx) = S0.(Dp)| = O(Wa(Pa, P)),
where W, is 2-Wasserstein distance.
20 /65
Experiments
Accuracy for MNIST data Accuracy for ORBIT5K data
0.9
0.8
z 5.0.8
c g
3071 Zo7 - MLP
< < —o- MLP+S
0.6 - MLP+P
0.6
02]e—e—t—t—a—t—p—\ = OW
00 01 02 03 00 01 02 03 &= CNNis
Corrupt and noise probability Corrupt and noise probability -~ CNN+P
Sd for MNIST data Sd for ORBIT5K data - CNN+P()
0.15 0.15
5 0109 - 0.10
© 0.05- @ 0.05 .
Ay p——— ) ) ] 0,004 —— N .
30/65
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Featurization using Euler Characteristic Curves

31/65

Euler Characteristic is computationally efficient.

» Euler Characteristic of a simplex or cubical complex is an alternating
sum of betti numbers: for a simplex / cubical complex K,

oo

X (K) = S 1K = -1,

k: k=0

o

where K is the set of k-dimensional simplices in K, and Sy is the
k-th Betti number of K.

> X(K)=4-6=1-3=-2

32/65

Euler Characteristic Curve is computationally efficient
compared to Persistent Homology.

» Euler Characteristic Curve (ECC) C : R — R computes the Euler
characteristic along a filtration.

» ECC does not involve computing persistent homology, hence more
computationally efficient compard to persistent homology.

33/65
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EClayr: Build topological layer using Euler Characteristic
Curves

» ECLayr: Fast and Robust Topological Layer based on Differentiable
Euler Characteristic Curve (Lee, Kim, Kim, 20257)

1. From data X, choose an appropriate simplicial complex K and a
function f to build a filtration.

2. From the filtration, compute the Euler Characteristic Curve
C:R — R, and vectorize to get £ € R".

3. For a parametrized differentiable map gy : R™ — R, compute
Op = go(€).

34/65
Computation Time
Data
Model | —yisT Br35H | Synthetic
ECC 3.129 sec | 0.458 sec 2.17 sec
PH 33.700 sec | 11.033 sec | 59.288 sec
35/65
Experiments
36/65
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Featurization using Circular Coordinates

37/65

Circular coordinates provide topological representations of

reduced dimension.
> Persistent cohomology and circular coordinates (de Silva, Morozov,
Vejdemo-Johansson, 2011)
» Topological Learning for Motion Data via Mixed Coordinates
(Vejdemo-Johansson, Pokorny, Skraba, Kragic, 2015)

data loop
° o o ® % ° o o ® %
o . (Y o o )
L] L]
° ] ° ° [ ] o
° ° . ° Q .
° 00~ ° o Oo~ o
%0 o ° »® % o o »®
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Circular coordinates provide topological representations of
reduced dimension.

» circuiar coordinate is a function that maps from data points X to

circle S*.
circular coordinates loop
©
. o . e, I
. e . %
o
B s .
. . $ o
. = . * .
< & o
. .
.'o . % . 0’.

39 /65
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Circular coordinates provide topological representations of
reduced dimension.

» circuiar coordinate is a function that maps from data points X to

circle S*.
circular coordinates loop
. o, I . e, JECIEN
e . . e . .
. 3 .

. H . H °
. . - . . .
L) < e o
. . . .
AT ¢ ACTI D5 @C

00

40/ 65

Circular coordinates provide topological representations of
reduced dimension.

» circuiar coordinate is a function that maps from data points X to
torus Tk = (S1)k.

circular coordinates loop
.
°
L]
° ® o ° o
s o o° [N
[} °
° ° [ ] °
L]
4 °
i .. o .. L]
° % o ° »°
]
L]

41/65

Circular coordinates with generalized penalty better

visualizes topological information from data.
» Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)
» When computing circular coordinates, we solve an optimization
problem.
» We switch L, loss by L; loss for circuiar coordinate values to change
more abructly: better visualizes topological information from data.

Circular coordinates/constant edges, Circular coordinates/constant edges,

1st cocycle (mod 23 - 0*L1 +1%2) 1st cocycle (mod 23 - 1+L1 + 0*L2)

10

42/65
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Circular coordinates with generalized penalty better
visualizes topological information from data.

> Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)

» Voting data in 2006 is more bipolarized than voting data in 1990.

Year 1990 GCC (mod 1) with penalty=1*LA1+0"LA2 Year 2006 GCC (mod 1) with penalty=1*LA1+0*LA2
DBI=1.124 CHI=137.308 TAU=0.502 DBI=1.544 CHI=2286.833 TAU=0.696
ot ue . P
. T
Tl - = = oy "
3 t o n 3
B v T 0 8 . .
1} o ° °° e Py o B3 .
o o DR i or
.
.
P e P . * S
b a o i b i 5 i
43 /65

Statistical Inference For Homological Features

44 /65
We rely on the kernel density estimator to extract
topological information of the underlying distribution.
» The kernel density estimator is
~ _ 1 - X — X,‘
Pn(X)*WEK( h )
45 /65
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

46 / 65

Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

48 /65
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

49/ 65

Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle 200 samples
o o
« «
o o
[ ]
L]
o o
N A N
5 o ‘_g o
0o mo A
o o
o o
o o
[S) [S)
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Death Death
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Confidence band for persistent homology separates

homological signal from homological noise.
Let M be a compact manifold, and X = {X1,---, X, } be n samples. Let
fm and fx be corresponding functions whose persistent homology is of
interest. Given the significance level a € (0,1), (1 — «) confidence band
¢y = ¢n(X) is a random variable satisfying

P (dg(Dgm(fum), Dgm(fx)) < c,) > 1 — .

Circle 200 samples

Birth
0.00 0.10 0.20 0.30

Birth
0.00 0.10 0.20 0.30

0.00 _0.10 0.20 0.30 000 0.10 0.20 0.30 51/65
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,...,x,}, compute the kernel density
estimator pj.

2. Draw X* = {x{,..., x5} from X = {x1,...,x,} (with replacement),
and compute 6* = v nh?||p(x) — pn(x)||oc, Where pj is the density
estimator computed using X*.

3. Repeat the previous step B times to obtain 67,...,0%
4. Compute 2, = inf{q : é Zle I(HJT‘ >q) < n}

5. The (1 — «) confidence band for E[ps] is [ﬁh - \/ZAH"W, P+ —= } .

52/65
Evaluation using Confidence of Topological Data Analysis
53 /65
Existing evaluation metrics for generative models are
vulnerable to noise.
» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
» To evaluate generative models, metrics compare the support of real
image distributions and fake image distributions.
» Existing evaluation metrics tend to overestimate the support of the
data distribution: vulnerable to noise
54 /65
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TopP&R robustly evaluates generative models by retaining
only topologically and statistically significant features with
confidence.

» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

55 /65

We find threshold ¢, that selects statistically and
topologically significant features.
» TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

56 / 65

Experiments

» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

57 /65
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Computation for Topological Data Analysis: R Package TDA

58/ 65

There are many programs for Topological Data Analysis.

» There are many programs for Topological Data Analysis: e.g.,
Dionysus, DIPHA, GUDHI, javaPlex, Perseus, PHAT, Ripser, TDA,
TDAstats

59 /65

R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

> website:
https://cran.r-project.org/web/packages/TDA/index.html

» Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

» R is a programming language for statistical computing and graphics.

» R has short development time, while C/C++ has short execution
time.

» R package TDA provides an R interface for C++ library
GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.

60 /65
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D> be multiset of points. Bottleneck distance is defined as

d (D, Da) = inf sup [[x — 1(x)]oc,
Y x€Dy

where v ranges over all bijections from D; to D;.

Circle 100 samples
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, D, be multiset of points. Bottleneck distance is defined as

dg(D1, D2) = inf sup [[x — 7(x)/loc>
Y xeDy

where ~ ranges over all bijections from D; to D>.

3
o
<
< o
@9 sup [ x=71(x)[|oc = 0.1
o XEDy
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, D, be multiset of points. Bottleneck distance is defined as

dp(D1, D2) = inf sup [[x — (x|,
Y xeDy

where 7 ranges over all bijections from D; to D-.

(=]
«
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&
_E o
@ sup |[x—72(x) [l = 0.15
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, D, be multiset of points. Bottleneck distance is defined as

dg(D1, D) = infsup [[x = v(x)||cc;
Y x€Dy

where ~ ranges over all bijections from D; to D,.

3
IS}
1
s o
5o inf sup [lx = 7(x) 0 = 0.1
IS 7 xeDy
8
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Death
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem

[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f, g : X — R be two
continuous functions. Let Dgm(f) and Dgm(g) be corresponding
persistence diagrams. Then

dp(Dgm(f), Dgm(g)) < [If — gllcc-

6/35

Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.
Let M be a compact manifold, and X = {X1,---, X,} be n samples. Let
fm and fx be corresponding functions whose persistent homology is of

interest. Given the significance level o € (0,1), (1 — «) confidence band
¢n = cp(X) is a random variable satisfying

P(Dgm(fu) € {D : dg(D, Dgm(fx)) < cp}) > 1 —a.

Circle 200 samples
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fy — fx|| < ¢5) > 1 — « implies

so the confidence band of corresponding functions fy can be used for
confidene band of persistent homologies Dgm(fy).

P (dg(Dgm(fu), Dgm(fx)) < cn) > P(||fu — fx|loo < cn) > 1 —aq,

8/35

Featurization using Persistent Homology

9/35

Persistence Landscape of the underlying manifold can be
inferred from Persistence Landscape of finite samples.
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Confidence band for persistent homology quantifies the
randomness of the persistence landscape.

Circle 200 samples
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oo-landscape distance gives a metric on the space of
persistence landscapes.

Definition

[Bubenik, 2012] Let Dy, D, be multiset of points, and A1 , A, be

corresponding persistence landscapes. oo-landscape distance is defined as

Ao (D1, D2) = || A1 = Azlloo-

0.05

(Death-Birth)/2

-0.05

(Birth+Death)/2
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oo-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f,g : X — R be two functions, and let Dgm(f) and Dgm(g) be
corresponding persistent homologies. Then

Nss(Dgm(f), Dgm(g)) < |If — gllo-

13/35
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Confidence band for the persistence landscape can be

computed using the bootstrap algorithm.

» Let Ay and Ax be persistence landscapes of the manifold M and
samples X. From Stability Theorem, P (||fy — fx|| < c,) > 1—«a
implies
P (Ax(t) — cn < Am(t) < Ax(t) + o Vt) > P(||fm — fxl| < cn) > 1—a,
so the confidence band of corresponding functions fy can be used
for confidene band of the persistence landscape A\y.
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Confidence band for the persistence landscape can be
computed using the bootstrap algorithm.

» Confidence band for the persistence landscape can be also computed
using multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014].
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R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

16 /35
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R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators

17/35

R Package TDA provides a function to sample on a circle.
The function circleUnif() generates n sample from the uniform
distribution on the circle in R? with radius r.

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions and density
functions over a grid.
Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.
X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = 1im[1], to = 1im[2], by = by)
Grid <- expand.grid(margin, margin)
19 /35
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) pp, : RY — [0, 00) is
defined as

A | % —lly = xill3
Ph(y)*n(mh)dz:exp< T 2>7

i=1

where h is a smoothing parameter.
The function kde() computes the KDE function p, on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")

20/35
R Package TDA provides KDE function over a grid.
The Gaussian Kernel Density Estimator (KDE) p, : RY — [0, 00) is
defined as
. 1 : —lly - Xi||§>
= ex ,
Bn(y) o Tﬂ'h)d; P( 52
where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.
Sample X KDE
g -
i _
T‘ 7\ T T T T
-1.0 00 05 1.0
21/35
R Package TDA: Statistical Tools for Topological Data Analysis
Persistent Homology and Persistence Landscape
22/35
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
» gridDiag() evaluates the real valued input function over a grid.
> gridDiag() constructs a filtration of simplices using the values of the
input function.
» gridDiag() computes the persistent homology of the filtration.
» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

23/35

R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par (mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)
for (i in seq(along = ome)) {
for (j in seq_len(dim(DiagGrid[["cycleLocation"1] [[one[i111)[11)) {
lines(DiagGrid[["cycleLocation"]] [[one[il]1[j, , 1, pch = 19, cex = 1,
col =i + 1)
}
¥
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistent homology of
sublevel (and superlevel) sets of the input function.
> gridDiag() evaluates the real valued input function over a grid.
» gridDiag() constructs a filtration of simplices using the values of the
input function.
> gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
GUDHI, Dionysus, or PHAT.

Sample X KDE KDE Diagram
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R Package TDA computes Vietoris-Rips Persistent
Homology.

» Vietoris-Rips complex consists of simplices whose pairwise distances
of vertices are at most 2r apart, i.e.

Rips(X, r) = {{x1, ..., xx} C X : d(xi,x;) < 2r, forall 1 <i j<k}.

0.0 05 1.0

-1.0

-10 -05 00 05 1.0

» Rips filtration is formed by Rips complices with gradually increasing

r. 26 /35

R Package TDA computes Vietoris-Rips Persistent
Homology.

» The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
» ripsDiag() constructs the Vietoris-Rips filtration using the data
points.
> ripsDiag() computes the persistent homology of the Vietoris-Rips
filtration.
» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")

27/35

R Package TDA computes Vietoris-Rips Persistent
Homology.

» The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
> ripsDiag() constructs the Vietoris-Rips filtration using the data
points.
> ripsDiag() computes the persistent homology of the Vietoris-Rips
filtration.
» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistence Landscape.

> Let A, be created by tenting each point p = (x,y) = (#, %)
representing a birth-death pair (b, d) in the persistence diagram D.

» The persistence landscape of D is the collection of functions

() = km:zx/\p(t), te[0,Tl,keN,

where k max is the kth largest value in the set.

> The function landscape() evaluates the persistence landscape
function Ax(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par (mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes Persistence Landscape.

> Let A, be created by tenting each point p = (x,y) = (#, %)
representing a birth-death pair (b, d) in the persistence diagram D.
> The persistence landscape of D is the collection of functions

A(t) = kmaxAy(t), tel0,T],keN,
P

where k max is the kth largest value in the set.

» The function landscape() evaluates the persistence landscape
function A(t).
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R Package TDA: Statistical Tools for Topological Data Analysis

Statistical Inference on Persistence Homology and Persistence
Landscape

31/35

167



R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 — «) bootstrap confidence
band for E[pp].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)
print (bandKDE[["width"]])

#i# 90%
## 0.06189347
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R Package TDA computes the bootstrap confidence band

for the persistent homology.

The (1 — «) bootstrap confidence band for E[p] is used as the
confidence band for the persistent homology.

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],
main = "KDE Diagram")
Sample X KDE Diagram
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 — «) bootstrap confidence band for E[pp] is used as the
confidence band for the persistence landscape.

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples

axis(1); axis(2)

polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"1],
rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,
border = NA)

lines(tseq, Land)

"
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 — «) bootstrap confidence band for E[pp] is used as the
confidence band for the persistence landscape.
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Persistent Vector Bundles and Stiefel-Whitney
Classes in Data Analysis

Dongwoo Gang

Department of Mathematical Sciences, Seoul National University, Korea

In this talk, we introduce a new method to estimate Stiefel-Whitney classes—topological
invariants that detect features like orientability and embedding obstructions—directly

from point cloud data. We first extend classical vector bundle theory to persistent

vector bundles in the setting of topological data analysis. By applying cohomology op-

erations to persistent cohomology, we compute these classes in a persistent setting. We

demonstrate the method with applications in image analysis, molecular conformation,

and high-dimensional data.

References.

[1] Marco Contessoto et al. “Persistent cup-length”. In: arXiv preprint arXiv:2107.01553
(2021).

[2] Dongwoo Gang. “Persistent Stiefel-Whitney Classes of Tangent Bundles”. In: arXiv
preprint arXiv:2503.15854 (2025).

[3] Umberto Lupo, Anibal M Medina-Mardones, and Guillaume Tauzin. “Persistence
steenrod modules”. In: Journal of Applied and Computational Topology 6.4 (2022),
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[4] John Willard Milnor and James D Stasheff. Characteristic classes. 76. Princeton
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TOPOLOGICAL DATA ANALYSIS AND INDUSTRIAL MATHEMATICS

August 5th - August 8th, 2025, Nishijin Plaza, Fukuoka, Japan

Geometric properties of curves in ensemble
forecasting

Sebastian Elias Graiff Zurita
Kyoto University Institute for Advanced Study, Kyoto University, Japan

In this talk, we analyze ensemble forecasting trajectories from a geometric point of view.
We focus on the oriented turning angles to cluster and distinguish different weather
scenarios. Ensemble forecasting is a method used in weather prediction, which consists
of running multiple forecast simulations, each with slightly varied initial conditions or
model parameters, to capture the inherent uncertainty in weather forecasting. Collec-
tively, these outputs map the range and likelihood of future states, and it is crucial
to identify and label them to take the proper preventive actions in each situation.
We quantify the shape of the trajectory with the Frenet frame, which is a coordinate
system attached to a moving point along a curve. In two dimensions, the curvature
at each point of the curve defines the frame; in three dimensions, the torsion is ad-
ditionally included; and analogous quantities extend to higher dimensions. As a first
step in this research, we emphasize the oriented turning angle (the cumulative signed
change of direction) as a feature for grouping ensemble forecasting data. We apply
this to heavy-rain datasets and show that the turning angle helps distinguish different
meteorological scenarios. We think that studying these techniques further will improve
interpretation of ensemble information and uncertainty assessment.
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Geometric Properties of Curves
in Ensemble Forecasting

Sebastian Elias Graiff Zurita

Geometry of curves

Let us start with the following concepts in 2D,
3D, and general dimension:

e Smooth curves
o Arc-length parameterization
o Frenet frame
o Orientation

o Turning angle

Discrete analogues

Smooth curves (2D)

The principal object of study is the parametric
curve:

For convenience, we reparameterize it by the
arc-length

giving the arc-length parameterization of the
curve:
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Smooth curves (2D)

Given a arc-length parameterized curve,
consider:

Frenet frame (2D)

The Frenet frame describes the geometric
properties of a particle moving along a
differentiable curve.

The Frenet frame satisfies the Frenet formula:

Smooth curves (3D)

Similarly, we consider an arc-length
parameterized curve,

Image: Commons.Wikimedia/Bevin Maultsby
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Smooth curves (3D)

Comparing with a two dimensional space, now
we have an extra dimension where the curve
can curl, giving raise to the torsion:

Image: Commons.Wikimedia/Bevin Maultsby

Frenet frame (3D)

In three dimensions, the Frenet frame is given
by the normal, tangent and binormal vectors,

Which satisfies the Frenet-Serret formulas:

Smooth curves (ND)

All the previous concepts are generalized for
any dimension. The generalized tangents, are
obtained recursively.
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Smooth curves (ND)

All the previous concepts are generalized for
any dimension. The generalized tangents, are
obtained recursively.

[E1(s), ..., En(s)] = Gram=Schmidt[y’(s),¥”(s), . . ., ¥ ()]

Frenet frame (ND)

The Frenet frame is generalized by a system of
orthonormal vectors that aligns with higher
derivatives of a curve.

Orientation (ND)

A Frame, seeing it as an ordered basis, has an

orientation depending on the sign of the

determinant being positive or negative.

The orientation distinguishes between two
possible “handedness” of coordinate systems:

® |n 2D, this corresponds to clockwise vs
counter-clockwise.
® |n 3D, right-handed vs left-handed.
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Turning angle (ND)

In two dimensions, the turning angle has a
natural sign depending on the orientation of
the Frenet frame.

Let us consider its extension to high
dimensions by simply taking

Discrete analogues

A discrete curve is simply a sequence of
points,

were we consider

Discrete analogues

The k-finite difference,

is used to define the discrete Frenet frame,

and the signed deflection and turning angle:

184




Ensemble Forecasting

Ensemble forecasting is a method used in
weather prediction that involves running
multiple forecast simulations, each with slightly
varied initial conditions or model parameters,
to capture the uncertainty of the atmosphere
and improve forecast reliability.

Ensemble Forecasting

Ensemble Forecasting
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Ensemble Forecasting

Ensemble Forecasting

Data analysis workflow

Ensemble Forecasting
(High dimensional)

Post processing/analysis

Dimensionality Reduction
(Low dimensional)

Ensemble turning angle graph
(Two dimensional)
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Input Data (time axis)

(Initialization Time)
x (Ensemble Member)

Forecasting Time

Input Data (space axis)

Latitud

Longitud

Input Data (full matrix)
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Example: Lorenz ‘63 model

The Lorenz system (1963) is a classical
example of a system that can exhibit chaotic
behavior.

Example: Lorenz ‘63 model

Example: Lorenz ‘63 model

time

time

pPC2

PC1
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Example: Lorenz ‘96 model

The Lorenz ‘96 model is a dynamical system
defined in N dimensions. It is commonly used
as a model problem in geosciences:

Example: Lorenz ‘96 model

X1 X6
X2 X7
X3 X8
X4 X9
X5 X10

Example: Lorenz ‘96 model

time time

time

(2D PCA projection)
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x4

Example: Lorenz ‘96 model

time time

time

(8D PCA projection)

PC3

PC2
PC1

TIGGE Dataset (2018)

The THORPEX Interactive Grand Global
Ensemble (TIGGE) is an implementation of
ensemble forecasting for global weather
forecasting established in 2006 by the World
Meteorological Organization.

Initialization Time:

Every 6 hours.
Forecasting Time:

Every 6 hours, for up to 2 weeks.
Ensemble Members:

20 perturbed, 1 control point.
Data:

Geopotential height at 500 hPa.

TIGGE Dataset (2018)

Image: Pascal OETTLI, Center for Environmental
Remote Sensing, Chiba University
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TIGGE Dataset (2018)

TIGGE Dataset (2018)

pPC2

PC1

(2D PCA projection)

TIGGE Dataset (2018)

pPC2 _—

PC1
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TIGGE Dataset (2018)

pPC2

PC1

TIGGE Dataset (2018)

pPC2

PCI

TIGGE Dataset (2018)

Red Group

Blue Group
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TIGGE Dataset (2018) (Statistical Analysis)

TIGGE Dataset (2018)

Thanks!
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Introduction

Ground Penetrating Radar (GPR) is a widely used non-destructive
testing (NDT) technique for subsurface exploration, particularly in in-
frastructure inspection and maintenance. Howeve it often
ited structural awareness. In this study, we propose a novel mathe-
matical framework that combines Topological Data Analysis (TDA) with
Kernel Density Estimation (KDE). TDA is used to extract robust topologi-
cal features from B-scan images, and KDE models the distributions of these

is lim-

o,

features across space. By computing distances between the resulting distri-
butions, we can localize buried objects.

Data Description

A typical GPR survey setup is illustrated in Fig. 1(a) illustrates in the field,
included here for visual context. While this study does not use real-world
data, the same principles are replicated in simulation. We generated 341
synthetic B-scan images using the open-source FDTD simulator gprMax.
The simulation domain included a single buried pipe and multiple soil layt
A representative simulation setup and its synthetic B-scan output are shown

in Fig. 1(b).

TS,

(a) Field data collection (b) gprMax synthetic B-scan
generated.

Fig. 1: Field Data Collection and Simulated Data Generation

Distribution-Based Detection

To identify pipe-like patterns, we focus on classifying the detected H; loops

based on their spatial distributions.
Fig. 4 shows these procedures.

Step 1. Select a representative parabolic shape as a reference.

Step 2. Using Kernel Density Estimation (KDE) get the spatial distri-
bution of each H; features.

Step 3. The similarity between distributions is quantified using the
Wasserstein distance.

Step 4. Features exhibiting similar KDE profiles are classified as pipe-
related, while dissimilar ones are discarded.

Fig. 4: Classification of KDE-based features using Wasserstein distance.

Toplogical Feature Extraction

We applied topological data analysis (TDA) to extract structural patterns
from simulated GPR images as illustrated in Fig.2. H; loops are extracted,
some sample are shown in Fig. 3, which indicate circular or arc-like structures
that potentially correspond to buried pipes.

Fig. 2: From raw Bescan to extracted Hy loops for shape analysis.

Fig. 3: Detected Hy features (in red) highlighting arc-like pipe structures

Results

The framework achieved an Fl-score of 0.86, with balanced precision and

recall (both 0.86), as summarized in Fig. 5. Although the overall accuracy
was (.76, the high Fl-score highlights the model’'s robustness in handling
potential class imbalance. The confusion matrix shows a high number of
true positives and relatively few false detections, confirming the method’s
reliability.

Fig, 5: Evaluation metrics showing Fl-score, precision, recall, and accuracy.

Conclusion

This study explores a topology- and distribution-driven approach, which
shows initial promise.

and real-world validation remains necessary.

However, its performance can be further improved,
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Support Estimation with Topological guarantee
Hyeongyu Kim

Seoul National University

1. Introduction

A support of a probability distribution P is the minimal closed set whose P-probability is 1. Support
estimation is one of the main interests of statistics, machine Learning, and industry due to its wide range
of applications like anomaly detection (Devroy and Wise, 1980) and clustering (Cuevas et al., 2000).
Support estimation is closely related to density estimation since support of a P whose probability density
function is p is often defined as {x : p(x) > 0}. Cuevas and Fraiman (1997) proposed a plug-in
method for support estimation using the upper-level set of a kernel density estimator as a support
estimator and showed its measure-based metric and Hausdorff metric convergence rates.

Although the plug-in estimator offers useful geometric inference of the support, it does not provide any
guarantees regarding accurate inference of the topological structure of the support. One approach to
performing topological inference on the support is to construct a set which is homotopy equivalent to
the support.

In this poster, | investigate the conditions under which the plug-in estimator (Cuevas and Fraiman,
1997) is homotopy equivalent to the support for both fixed and random data settings.

2. Background

m Distance between a set X and a point y is defined as
d(y,X) = inf ||y —
(. X) = inf [ly = xl,

where ||-||, is usual Euclidean Ly norm.
m For a subset X C R? and r > 0, its r-offset X' is defined as

X" = {ye R : d(y,X) r} = U Bxn)

xEX
and 0-offset X be just X itself.

2.2. Homotopy equivalence

= A homotopy between two continuous maps fj, fi : X — Y is a continuous map
F:X x [0,1] =Y such that for all x € X, F(x,0) = fy(x), and F(x,1) = fi(x). Two maps fy
and f; are called homotopic if such homotopy F exists, and denote fy >~ f
Using homotopy between maps, we define the h
follows.
m A continuous map f : X — Y is called a homotopy equivalence if there exists a map
g :Y — X such that go f ~ idx and f o g >~ idy. X and Y are said to be homotopy
equivalent or have the same h type if such h py equival exists, and denote
X~Y.
It is worth knowing that being h is an equi relation.
A special case of homotopy eqmvalence called a deformation retract is a widely used deformation map
from a space to its subspace.
m A deformation retract of a space X onto a subspace A C X is a continuous map
F: X x [0,1] = X such that

F(x,0) =x, F(x,1) € A for Vx € X,
F(a,t)=a for Yac A and Vt€ [0,1]

q e between two | spaces as

The subspace A C X is called a deformation retract of X if such a deformation retract exists.
And of course, A~ X if AC X is a deformation retract of X.

2.3. Kernel Density Estimation

Let P be a Borel probability distribution in R? with probability density p. A kernel density estimation is
a nonparametric density estimation that estimates p using a kernel function K : R? — R satisfying

/' K(x)dx =1, / XK (x)dx = 0, and 0 < / 2K (x)dx < oo
RY RY Jrd

Here we define a kernel density estimator(KDE) f; : Ry — R as
1 & Xi
=t W (B2

nhd 1; ( )

for given data {Xi, -+, X,} C RY and bandwidth 0 < h < co.
An expected value of KDE Ep [p;(x)] := pn(x) is often called a smoothed density. A smoothed density
can be viewed as a convolution of p and Kx(+) = K(-/h)/h?, and it is useful for geometrical inference.

= (Gine and Guillou, 2002)
Tog 1/h
nhd

3. Topological Consistency of plug-in Estimator

Cuevas and Fraiman (1997) defines the plug-in based support estimator ‘"1[/\ o) where {A,} el is
a decreasing sequence of positive numbers, converging to 0. A main result of this paper is to investigate
the conditions when this plug-in based estimator is homotopy equivalent to the true support supp(P) of
P. Directly targeting supp(P) requires h — 0, however this requires the existence of a density function
p., which is often violated due to a manifold assumption. It also incurs the curse of dimensionality in the
convergence rate of py. Instead, | would like to fix h > 0. Then plug-in estimator will naturally converge
to supp(pp), and mild geometric conditions on the kernel K and supp(P) ensure that supp(p;) and
supp(P) are homotopy equivalent.

Pi(x)

180 = Phllo = Op (

Lemma 1

Let P be a probability distribution in RY and K be the kernel function. If the kernel K and supp(P)
satisfy mild geoemtric conditions, then supp(py) deformation retracts to supp(P). i.e.,
supp(py) = supp(P), and supp(py) = p;, *[&, o) for small enough & > 0.

Now the problem becomes whether the plug-in estimator ;3;1[)\,,, o) constructed from a finite sample is
homotopy equivalent to p;l[g’,. o). | will examine the conditions under which this equivalence holds for
both fixed and random data.

Luc Devroy and Gary L. Wise. (1980) Detection o abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math. 36(3):480-485, 1980,
Antonio Cuevas, Manuel Febrero, and Ricardo Friaman. (2000) Estimating the number of lustrs. Canadian Journalof Statstcs, 28(2):367-382, 2000,

Antonio Cuevas and Ricardo Fraiman. (1997). A plug-in approach to support estimation. Ann. Statst., 25(6)2330-2321, 1097

Evarist Gine and Armelle Guillou. (2002). Rates of strong uniform consistency for multivriate kel density estimators. Annales de I'nstitut Heri Poincare (8)
Probabiitly and Statstics, 38(6):907-921, 2002

Jisu Kim, Jachyeok Shin, Alessandro Rinaldo, and Larry A. Wasserman. (2019). Uniform convergence rate of the kernel density estimator adaptive to intrinic
volume dimension. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019

a

3.1. Fixed Data

Let f and g be two real-valued functions. To see whether the level sets of these functions deformation
retract to each other, we first need the level sets to be interleaved

Lemma 2

Letf,g:UU CRI =5 R be two real valued functions. Let &1, &2, A € R be satisfying {1 < A < &
and sup,cp-1(g, &) | (%) x)| < min{A — &1,& — A}. Then the following holds:

(&, 00) C g [A,0) C £ [61,0)

Whether there are deformation retracts between level sets is a well-known question in Morse Theory and
is solved by flows. Let Y := f~1[¢,00) C g7[A, ) := X. When f = g, a flow integrating the
gradient Vf would give a deformation retract of X to Y, where a flow

P : D C (X\Y) x [0,00) — X\Y satisfies

@ 9(x.5) = VF((x,5)

Hence we can hope that when Vf and Vg are close, we can build a vector field W that is "close” to
both Vf and Vg to make a deformation retract.

Lemma 3.

Let f, g : R? — R be two real valued smooth functions. Let & < & be such that f has no critical
points in D := (&}, &)|. Suppose Vf and Vg satisfy
[V£(x) =

x|l < 3 mln IV£(x)|l, forall x € D.

Then there exists a smooth vector field W : D — ]Rd that approximates both Vf(x) and Vg(x)

With Lemma 3, we can finally build a deformation retraction from X to Y

Lemma 4.

Let f, g : R? — R be two nonnegative real valued smooth functions. Suppose X := f~1[&, c0) and
Y = g [A, ) satisfies that Y C X. Suppose W : X\'Y — RY is a vector field approximating both
V£(x) and Vg(x). Then X deformation retracts to X. In particular, X ~ Y.

Now combining all the above lemmas, we can say the homotopy equivalence between level sets of
plug-in estimator and smoothed density.

Suppose the kernel function K is smooth. Let 0 < &1 < A, < { satisfying that py, has no critical
points in D := p; 1[@‘ 1.82]. Now, suppose py, satisfies the followings:

$:g|ﬁh(x) = p(x)| < min {/\n —G1.62—An}, 1)

sup [|Vpy(x) = Ven(x)ll2 < 5 """ [IVpn(x) - 2)
xeD

Then p;, l[é 1, ) deformation retracts to

) deformation retracts to p, *[An, 00), and ﬁ;l[/\,..
Py [E2,00). In particu/ar, Py (6L

©0) 2 p,  [An, ) = pj, (G2, 00

The following corollary summarizes the topological consistency of the plug-in estimator under mild
conditions.

Corollary 6.

Let0 < &1,0 < Ap < 82,0 < Go, Vn, where o is minimum nonzero homological critical value of py, and
&2.n ¢ 0. Suppose for each n, Theorem 5 is satisfied for G1,n, &2,n. Then under mild geometric
assumption, p;l[/\,.. 0) = supp(py) == supp(P) for all large n and small enough h.

3.2. Random Data

To control the probability of geometric conditions (1) and (2), the function space of kernel should not
be too complex. One common approach is to assume that the function space is a uniformly bounded
VC-class. Hence we need the following additional assumption.
= uniformly bounded VC class. Let K : R? — R be a kernel function with ||K||,, ||K||, < co. |
assume that,
Fhi={Kn:x €U},

is a uniformly bounded VC class with dimension v. That is, there exists A, v > 0, for every

probability measure Q on RY and for every € € (0, ||K||,), the covering numbers

N (Fp L2(Q), €) satisfies
AllK o

€

N(Fn L2(Q).€) <

Under Assumption 3, we have the desired high probability bound, which is Corollary 13 and 21 in Kim et
al. (2019).

(Corollary 13 and 21 in Kim et al. (2019)) Let P be a probability distribution in R?, and Xy, - - - , X, be

iid. from P. Let K be a kernel function having compact support and of a uniformly bounded VC class.
Then, for any € > 0, with probability at least

1—exp (C (Iog(h’1 Al) — nhz‘”zez)) 0
we have
ax { sup 6400 s s | Vn(x) — Tn(e)la f < e
xell xell
where C is a constant depending only on P and K.

In our setting, let € := min {A, — &1, 8 —
for Theorem 5, and et &, = min { Ap —
St ity B e (ol 5,

4. Conclusion

Compared to existing methods such as the union of balls or simplicial complexes, the plug-in estimator is
more robust to outliers, enabling more reliable inference of the distribution’s support. Moreover, since it
is an application of a statistically well-studied object-KDE-probabilistic analysis can be conducted more
easily. Fixing the bandwidth h > 0 of the kernel function helps alleviate the curse of dimensionality, and
much faster convergence rates of both the kernel density estimator and the plug-in estimator can be
achieved

)l,} gives the high probability bound
)5} gives the high

An Emineep HVPh
E1m €20 — An, 3 mingep, || Vpn(x
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Predict vaccine-induced antibody dynamics
om 1 or 2 blood samplings using mathematical models and machine learning
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Introduction

] Limitation of Medical Data

e.g.)

Evaluation of Vaccinatian
in the Early Pandemic

Cost and
Ethical Limitations

Rapid Research Results
with Small Data

The number of data

Small Data should be reduced!

I Estimate Antibody Dynamics from 1 or 2 Blood Samplings

The Integrated Approach of Mathematical Models and Machine Learning
to Reduce the Number of Data Required and Speed Up Research

Fukushima Vaccine Cohort

: COVID-19 Vaccine-Induced IgG(S) Antibody Data

n=2526 BB

ealth Information

% Data

The largest and longest COVIX- 19 vaccine cohort in Japan,
cansisting mainly of healthcarc prafessianals and paticnts
living in Fukushima Prefecture (Soma, Minamisoms, Hirata)

. IgG(S) Anllhody Titer

Utilize Data from the COVID-19 pandemic as Ground Truth

Methods

| : Estimate Individual-Level Immune Features
Using Mathematical Models

-0
MOS0 (e a0
o =0 MO = M) ug_,
PL0) as_
dite aaly

Gi=o 29 — pao) - caae) {49 w0 a0
e
S

e

il irmune esure)

A comparatlvely large number of IgG(S) data are collected in a clinical trial or pre-cohort (=A Subjects),
and r2and pp (=i

B Subjects: Estimate Individual-Level Immune Features
Using Mathematical Models + Machine Learning

Use as PEPE
Training Data! Training!

By using A subjects as training data for the machine learning,
19G(S) antibody dynamics of new subjects (=B Subjects) is available from only 1 or 2 blood samples.

immune features) are used for machine learning training.

Results

| : Only Mathematical Models

Estimated Data from

Fukushims Vaccine Cohort
s e

2% Ground Truth

Parameters stimationATtbody Dynamics
+ Reconstruction thematical h
) Reconrueton” SEHERIRSTWoRers
Samplingsccording Ui
e

N:@eﬂmn hm;r)m‘-\,\him Mathematical Models

Observation Error

. b.‘:,

Compare

Calculate Accuracy k*

rtonol Count
w2 s o
$on/zsmnes 4Vaceine oot
gty

v-axis: How many &

w often
13 Blou Sampled?

1Day / 3 Samplings. P \ P

SDay/ 3 Sompints Lnoe @ P ptond
5 Day / 3 Samplings. LR Sampling.
Sour /3 Somptnes .

1Day / 4 Samplings * -

Somr /4 Semaines o0 ®

9Day /4 Samplings
1Day /5 Samplings.
3Day /5 Samplings
5Day /5 Samplings
7Day /5 Samplngs

9Dy /5 Samplngs = = =
10ay /8 Samplings i

308y 6 Samplngs

5Day/ 6 Samplnes

7Dy Samplngs — ~_ |

9Day /6 Samplngs

680
10ay /7 Somplings. vy 7 Bars = = =
3Day /7 Samplings Saritg 7 B

5Day /7 Samplings Ater29Vaccie ¢ i

7Day /7 Samplings

9Day /7 Samplings ~ _

Day of 1+Blood Sampling from 2 Vacine.

Day of 1< Blood Sampling from 21 Vaceine

b Highly accurate estimation of antibody dynamics only by mathematical models
requires more than 5 blood samples.

| B Subjects: Mathematical Models + Machine Learning

Estimated Data from
Fukushima
oS oy Least Sauares
Vaccine Cohort  Observaton Error
Mathematical Wodel

i Recanstructon
Detection Limit i ; o s Using Mthematical Mmr\‘k
_/\ _.Jf'h‘jh_ ~ "% T, 2 A

o o
or 2o G amibody 608 gt nmation Use as Training Data
Uiy Mathematica Model
B Wi, B ok Parameters
(¢ i L] +
i o T2k

Estimated Data rom Aoty Dmanisof A Sujct
Fukushima Wisthematical Mocels

Antibody Dynamics of A Subject

Vaccine Cohort achine Loaing

Caetate ecuracy )|

Reconstruction
Using Maching Learming Using Mathematical Model

Use 200 A Subjects
for Machine Learning Training

2 Blood Samplings
after 5.& 30 Days cf ¥ Vaccine
s @) T B Subjocts

TR
N N N

The number of blood samplings required for highly accurate estimation
P of antibody dynamics can be reduced from more than 5 times to 1 or 2 times
by mathematical models + machine learning.

Conclusion

| How to use it in the Next Pandemic

Clinical Trial (or Pre-Cohort)

Vaccine Development Evaluation by Only

- echanim of Vaccines For 200 subjects, 1 or 2 Blood Samplings
Outbreak of Nt Ry o Mathematical §,bloog samples - Rapid Vaccine Evaluation
v en’s
a Pandemic Model Buliding (e, i i, etc) Sty 5l atter 2
¢ .
. ® Mathematical Model Use for Machine Learning

Development

. . +

Mathematical models + machine learning reduce the number of blood sampling
and speed up vaccine evaluation.
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