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Preface 

  

This lecture note is a collection of extended abstracts presented at the symposium 

“Advancing Materials Data, Design, & Discovery” held at I2CNER Hall C, Ito Campus, 
Kyushu University, from April 23–25, 2025. 

The symposium was organized and hosted by the International Institute for Carbon-Neutral 

Energy Research (I2CNER), the Institute of Mathematics for Industry (IMI), Kyushu 

University, and the Computational Energy Materials Design Infrastructure (CEMDI) platform 

at INRS. 

This event was supported by the FY2025 IMI Joint Usage International Project Research-

Workshop (I): “Promoting Materials Data, Design, and Discovery” (Reference No: 2025B007). 

Artificial Intelligence (AI) is transforming Materials Science, with Machine Learning enabling 

data-driven predictions, accelerated discoveries, and the integration of informatics-based 

approaches alongside traditional computational methods. The application of AI in this field 

relies on novel methodologies that combine insights from both materials science and 

information technology, fostering a close synergy between disciplines. International efforts—

including initiatives in the U.S., Europe, China, and Japan—have advanced the development 

of AI-based tools for materials discovery, with collaborations between academia and 

industry playing a key role in driving progress. 

The 2025 symposium brought together computational and experimental materials scientists, 

as well as mathematicians, to discuss breakthroughs in AI-driven materials research. Topics 

included the integration of computational chemistry and physics methods, emerging 

computational techniques, the generation and use of high-quality datasets, and new 

mathematical models for complex materials systems. Collaborative initiatives between 

Japan and Canada, supported by research hubs and joint programs, highlighted the global 

and interdisciplinary nature of this work. 

This symposium marked the fourth edition of the series overall (and the third with 

participation from CEMDI), which was launched in 2022 under the framework of the IMI 

Joint Usage Research Programs. Over the years, the series expanded internationally, 

fostering exchange, networking, and collaboration among researchers from multiple 

countries. We hope that the discussions and findings presented in this volume will continue 

to inspire innovation and strengthen international partnerships in AI-driven materials 

science.  
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Program 

3rd CEMDI-PAIMS SYMPOSIUM 

ADVANCING MATERIALS DATA, DESIGN, & DISCOVERY 

 

Hosted by: 

International Institute for Carbon-Neutral Energy Research (I2CNER) 

Institute of Mathematics for Industry (IMI) 

Kyushu University, Japan 

Date: April 23–25, 2025 

Venue: I2CNER Hall C, Ito Campus, Kyushu University 

 

 

WEDNESDAY, APRIL 23, 2025 

Time: 9:30 AM – 5:20 PM (JST) 

 

Session I: Opening Remarks 

Chair: Aleksandar Staykov 

• 9:30 AM — Tatsumi Ishihara (Director, I2CNER, Kyushu University, Japan) 

Introduction to International Institute for Carbon-Neutral Energy Research 

(I2CNER) 

• 9:40 AM — Kenji Kajiwara (Director, IMI, Kyushu University, Japan) 

Introduction to Institute of Mathematics for Industry (IMI) 

• 9:50 AM — Rusoma Akilimali (Technology and Innovation Advisor, PRIMA, 

QC, Canada) 

Promoting Québec-Japan Collaboration in Advanced Materials 
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• 10:00 AM — Fiorenzo Vetrone (Professor and UNESCO Chair, INRS, 

Université du Québec, Canada) 

Introduction to Institut National de la Recherche Scientifique and Goals of 

UNESCO Chair in Materials and Technologies for Energy Conversion, Saving 

and Storage 

• 10:10 AM — Kulbir Ghuman (Director CEMDI, Associate Professor, INRS, 

Université du Québec, Canada) 

Computational Energy Materials Design Infrastructure (CEMDI): Goals and 

Opportunities 

• 10:20 AM — Aleksandar Staykov (Associate Professor, I2CNER) 

Perspective of Artificial Intelligence in Materials Science (PAIMS) 

10:30 – 10:40 AM — Coffee Break 

 

Session II: AI for Materials Discovery 

Chair: Pierluigi Cesana 

• 10:40 AM — Xiangdong Ding (Professor and Dean, School of Materials 

Science and Engineering, Xi'an Jiaotong University; Deputy Director, State 

Key Laboratory for Strength and Technology of Materials) 

Self-supervised probabilistic models for exploring shape memory alloys 

• 11:10 AM — Tom Woo (Professor, University of Ottawa, Canada) 

Machine Learning Assisted Design of Porous Materials for CO2 capture 

using Integrated Atomistic Scale and Process Scale simulations 

• 11:40 AM — Daniel Packwood (Associate Professor, iCeMS, Kyoto 

University, Japan) 

Machine learning for functional molecular materials and supramolecular 

assemblies 

12:10 PM – 1:10 PM — Lunch 
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Session III: AI for Materials Discovery 

Chair: Tsuneyuki Ozaki 

• 1:10 PM — Adroit Fajar (Assistant Professor, I2CNER, Kyushu University) 

Can AI Truly Revolutionize Molecular Design? 

• 1:40 PM — Adrian Xiao Bin Yong (Postdoctoral Fellow, I2CNER CESD, 

Kyushu University) 

Dismai-Bench: Benchmarking generative models using disordered materials 

• 2:10 PM — El Tayeb Bentria (Researcher, QEERI, HBKU, Qatar) 

Computational Materials Science in the Era of Large Language Models: 

Challenges and Opportunities 

• 2:40 PM — Chandra Veer Singh (Professor, University of Toronto, Canada) 

AI-enabled discovery of high-entropy materials for electrochemical energy 

conversion and storage 

3:10 – 3:20 PM — Coffee Break 

 

Session IV: Computational Modelling for Electrochemical Devices 

Chair: David S. R. Rocabado 

• 3:20 PM — Jose C. M. Madrid (Postdoctoral Fellow, INRS, Université du 

Québec, Canada) 

Aluminium and Iron Impurity Segregation in Yttria-Stabilized Zirconia Grain 

Boundaries 

• 3:50 PM — Takaya Fujisaki (Assistant Professor, Faculty of materials for 

energy, Shimane University, Japan) 

Optimizing Graphene Defects for Enhanced H2S Adsorption in Solid Oxide 

Fuel Cells – A First-Principles Investigation 

• 4:20 PM — Alex Hernandez-Garcia (Assistant Professor, Mila, Université de 

Montréal, Canada) 

A Curated Dataset of Crystal Structures and Experimentally Measured Ionic 

Conductivities for Lithium Solid-State Electrolytes 
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• 4:50 PM — Tsuneyuki Ozaki (Professor, INRS-EMT, Canada) 

Intense terahertz field-induced impact ionization in narrow bandgap 

semiconductors 

 

 

THURSDAY, APRIL 24, 2025 

Time: 9:30 AM – 5:00 PM (JST) 

 

Session I: Computational Chemistry for Material Design 

Chair: Chandra V. Singh 

• 9:30 AM — Gilles Peslherbe (Professor, Concordia University, Canada) 

Multiscale Modeling and Design of Electrocatalysts for the Paradigm 

Nitrogen Reduction Reaction: from Data-Driven High Throughput Screening 

to DFT Accounting for Electrode Potential Atomistic Details 

• 10:00 AM — Juan Shang (Assistant Professor, I2CNER, Kyushu University) 

Applications of DFT calculations in theoretical design of photocatalyst and 

elucidation of materials degradation mechanism 

• 10:30 AM — Daniel Gueckelhorn (PhD student, INRS, Université du 

Québec, Canada) 

Density functional theory study of electrical properties of misfit dislocations 

in SrTiO3 

10:50 – 11:00 AM — Coffee Break 

 

Session II: AI for Materials Discovery 

Chair: Sergei Manzhos 

• 11:00 AM — Kazuki Yoshizoe (Professor, RIIIT, Kyushu University) 

Accelerating Molecular Discovery with Game AI Methods and 

Supercomputers 
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• 11:30 AM — Shivam Dangwal (PhD Student, WPI-I2CNER, Department of 

Automotive Science, Kyushu University, Japan) 

Towards prediction of formation enthalpy of high-entropy alloys for 

hydrogen storage: Machine learning, density functional theory and 

experimental approaches 

• 11:50 AM — Junji Hyodo (Associate Professor, Center for Energy System 

Design (CESD), I2CNER, Kyushu University) 

Accelerated discovery of novel proton conducting ceramics utilizing 

experimental data and machine learning 

12:20 – 1:20 PM — Lunch 

 

Session III: Modeling and Calculations: From Atomic Structure to Applications 

Chair: Edoardo Fabbrini 

• 1:20 PM — Alfio Grillo (Professor, Politecnico di Torino, Italy) 

Combining asymptotic homogenization and strain-gradient inelasticity for 

determining the effective coefficients of a multi-layered, elasto-plastic 

biological material 

• 1:50 PM — Shunsuke Kobayashi (Assistant Professor, Osaka University, 

Japan) 

Dislocation and Disclination in Crystalline Materials: A Differential 

Geometry Approach 

• 2:20 PM — Fiorenzo Vetrone (Professor, INRS, Université du Québec, 

Canada) 

Frontiers in Rare Earth Doped Nanoparticles: Design, Properties, and 

Applications 

2:50 – 3:00 PM — Coffee Break 
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Session IV: Accelerating Materials Discovery – New Approaches and Methods 

Chair: Daniel Packwood 

• 3:00 PM — Linh Thi Hoai Nguyen (Assistant Professor, I2CNER, Kyushu 

University) 

Accelerating Material Discovery through an Automated and Data-Driven 

Workflow 

• 3:30 PM — Natsuhiko Yoshinaga (Professor, Department of Complex and 

Intelligent Systems, Future University, Hakodate, Japan) 

Reinforcement Learning for Self-Assembly Problems 

• 4:00 PM — Antoine Diez (Postdoctoral Fellow, Kyoto University, Japan) 

Multicellular Simulations with Shape and Volume Constraints Using Optimal 

Transport 

• 4:30 PM — Ettore Barbieri (Senior Researcher, JAMSTEC, Japan) 

Algorithms for Aggregation, Percolation, and Thermoelasticity in 

Pyroresistivity of Conductive Polymer Composites 

 

 

FRIDAY, APRIL 25, 2025 

Time: 9:30 AM – 5:30 PM (JST) 

 

Session I: Experimental Materials Science Supported by Computational Analysis 

Chair: Paul O’Brien 

• 9:30 AM — Jacqueline Hidalgo-Jiménez (PhD student, Graduate School of 

Integrated Frontier Sciences, Department of Automotive Science, Kyushu 

University, Japan) 

Theoretical and experimental study on the significance of electronegativity 

in a high entropy oxide photocatalyst 
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• 9:50 AM — Edoardo Fabbrini (PhD student, Graduate School of 

Mathematics, Kyushu University, Japan) 

Modeling, Analysis and Finite Element Simulations of Kinematically 

Incompatible von Kármán Plates 

• 10:20 AM — Sergei Manzhos (Associate Professor, Institute of Science 

Tokyo) 

Large-scale electronic structure materials modeling with the help of 

machine learning-enhanced DFTB and OF-DFT 

• 10:50 AM — Yu Kaneko (Senior Research Scientist, Digital Strategy Center, 

Daicel Corporation, Osaka, Japan) 

Cellulose Solvent Search by usage of Molecular Dynamics Simulation and 

Machine Learning 

 

Session II: Materials Discovery for CO₂ Capture – Experiments, Computational 

Chemistry & AI 

Chair: Linh T. H. Nguyen 

• 11:30 AM — Paul O’Brien (Associate Professor, York University, Canada) 

Machine Learning for Direct Air Carbon Capture: Challenges and 

Opportunities 

• 12:00 PM — Tanay Sahu (PhD Student, York University, Canada) 

Identification and Evaluation of CO₂ Photocapture Materials 

• 12:20 PM — Victor Eke (Master’s Student, York University) 

A Comprehensive Life Cycle Assessment of Low- Temperature Direct Air 

Carbon Capture and Storage (LT-DACCS) Systems: Evaluating Global 

Warming Potential and Energy Requirements Across Diverse Regions 

• 12:40 PM — Yasser Salah Eddine Bouchareb (PhD Student, INRS, Université 

du Québec, Canada) 

Optimization of Transition Metal Alloy Adsorbents for CO₂ Capture Using 

Machine Learning (ML) and Density Functional Theory (DFT). 

1:00 – 2:00 PM — Lunch (Lunch Meeting with Directors – By Invitation Only) 
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Session III: Modeling and Calculations – From Atomic Structure to Applications 

Chair: Jacqueline Hidalgo-Jiménez 

• 2:00 PM — Maryam Nurhuda (Postdoctoral Fellow, Institute for Integrated 

Cell-Materials Science (iCeMS), Kyoto University, Japan) 

Can it be detected? A Computational Protocol for Evaluating Chemiresistive 

Sensor for Early Disease Detection 

• 2:30 PM — David Samuel Rivera Rocabado (Associate Professor, Graduate 

School of Advanced Science and Engineering, Hiroshima University, Japan) 

Decoding and engineering catalytic activity: ESDA for CO adsorption and 

activation on Ru-based catalysts 

• 3:00 PM — Marcos Gomes Eleuterio da Luz (Professor, Departamento de 

Física, Universidade Federal do Paraná - Curitiba, Brazil) 

Basic Cells Special Features and Their Influence on Global Transport 

Properties of Long Periodic Structures 

3:30 PM — Karel Svadlenka (Professor, Tokyo Metropolitan University, Japan) 

Variational Analysis of Elastoplastic Deformation of Structured Materials 

• 4:00 PM — Tomonari Inamura (Professor, Institute of Science Tokyo) 

Designing Long-Life Shape Memory Alloys Using the Triplet Condition 

 

Session IV: Quebec-Japan Collaboration, Closing Remarks, and Awards 

Chair: Kulbir Ghuman 

• 4:30 PM — Emilie Mikura (Attachée en recherche, science et innovation, 

Délégation générale du Québec à Tokyo, Japan) 

Quebec-Japan Collaboration 

• 4:40 PM — Adélie De Marre (Scientifique en résidence, Soutenue par le 

Fonds de recherche du Québec, Délégation générale du Québec à Tokyo, 

Japan) 

Quebec-Japan Collaboration 

• 4:50 PM — Oral Presentation Awards (Sponsored by Royal Society of 

Chemistry) 

x



• 5:00 PM — Organizers’ Closing Remarks 

• 5:15 PM — Lab Tours 

 

 

With the support from the FY2025 IMI Joint Usage International Project 

Research-Workshop (I): 

“Promoting Materials Data, Design, and Discovery” (Reference No: 2025B007) 
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PRIMA Québec, the Advanced Materials Research and Innovation hub, supports and 
facilitates the advanced materials ecosystem by promoting collaborative innovation for the 
economic development of Quebec. It is the privileged catalyst between the industrial and 
research communities, and has nearly 170 industrial members, for a total of 220 members. 
Among 181 funded projects between 2015 and 2024, about a hundred intellectual 
properties have been generated. 
 
Mandate 
 

• Support Québec’s industrial and societal challenges by stimulating collaborative 
innovations between industries and researchers in the advanced materials sector  

• Facilitate access and increase support for leading-edge equipment users, while 
providing the expertise required for innovation projects  

• Ensure the transfer of knowledge by training and preserving the qualified personnel 
currently working within researcher-industry partnerships 
 

PRIMA is a leader in advanced materials through its knowledge of the ecosystem and its 
expertise when supporting companies – for a more competitive Québec in a number of 
areas thanks to sustained growth in the advanced materials ecosystem. An advanced 
material can be defined as any new or significantly improved material that provides a 
distinct advantage in (physical or functional) performance when compared to conventional 
materials. As a Sectoral Industrial Research Group (SIRG), PRIMA Québec relies on 
financial support from both the Quebec government and the private sector when promoting 
research-industry relations. 
 
 

1



References 
[1] PRIMA Québec Web Page: 

https://www.prima.ca/en/ 
[2] 2035 Roadmap: 

https://www.prima.ca/wp-content/uploads/2025/02/2025-02-12_2035-Roadmap_EN.pdf 
[3] Green Hydrogen Manufacturing: Value Chain Development: 

https://www.prima.ca/wp-content/uploads/2024/12/Manufacturing_Value_Chain_Green-Hydrogen.pdf 
 

2 3



Advancing Materials Data, Design, and Discovery 
April 23–25, 2025, Kyushu University, Fukuoka, Japan  

 

 
 
Computational Energy Materials Design Infrastructure (CEMDI): Goals and Opportunities 

Kulbir K. Ghuman 
Institut National de la Recherché, Centre Énergie Matériaux Télécommunications, 1650 Boul. Lionel-
Boulet, Varennes, Quebec, Canada J3X 1S2 

 
E-mail: kulbir.ghuman@inrs.ca 

 
Institute of Mathematics for Industry, Kyushu University, Japan 

 
  

Abstract: The Computational Energy Materials Design Infrastructure (CEMDI), www.cemdi.inrs.ca, 
founded in 2022 at INRS-EMT, drives innovation in clean energy through advanced computational 
research and global collaboration. By leveraging Quebec’s leading computational expertise, CEMDI 
fosters national and international partnerships to tackle climate change challenges. With established 
collaborations in Japan, we are actively expanding our network to accelerate breakthroughs in 
sustainable materials research. 
This talk will outline CEMDI’s key objectives: driving energy and materials innovation, facilitating 
global collaborations, empowering emerging researchers, bridging the academia-industry gap, and 
advancing equity, diversity, and inclusion in materials science. I will also draw on examples from my 
own research to illustrate how CEMDI’s approach translates into tangible advancements in energy 
materials design. Additionally, I will highlight CEMDI’s ongoing initiatives, interdisciplinary events 
that unite researchers from mathematics, chemistry, physics, materials science, engineering, and AI, 
as well as collaboration opportunities for students, principal investigators, and industry partners 
within CEMDI’s ecosystem - all aimed at accelerating sustainable technology development to combat 

climate change. 
About the speaker:  Kulbir Kaur Ghuman, PhD is an early-career 
researcher, appointed as Associate Professor at Institut national de la 
recherche scientifique, Centre Énergie Matériaux Télécommunications 
(INRS-EMT) and a Tier-2 Canada Research Chair in ‘Computational 
Materials Design for Energy and Environmental Applications’. Before 
joining INRS-EMT she worked as a postdoctoral fellow at University of 
Toronto, Paul Scherrer institute (Switzerland),  and Kyushu University, 
(Japan). Her current laboratory, Insilico Matters Laboratory (IML), is 
equipped with advanced software and computational infrastructure, 
dedicated to understanding the theoretical underpinnings of the behavior 
of complex materials and chemical reactions. She has established 
several novel structure-property relationships and mechanisms for 

optimizing fuel cell materials and designing efficient catalysts imperative for mitigating climate 
change. Currently, she is also spearheading a recently established consortium ‘Computational Energy 
Materials Design Infrastructure (CEMDI)’ at INRS that aspires to foster innovation in the area of 
energy materials research via collaboration and advanced computational techniques.  
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Recent breakthroughs in machine learning (ML) are transforming the landscape of high-
performance materials design, yet developing robust models to unravel complex structure-
property relationships remains a significant challenge. This difficulty is exacerbated by the 
scarcity of labeled datasets with well-characterized crystal structures, particularly for materials 
where functional properties are tightly linked to crystallographic symmetry. In this work, we 
present a self-supervised probabilistic model (SSPM) that autonomously learns unbiased 
atomic representations from crystal structure data derived from high-throughput first-
principles calculations. By leveraging these representations, SSPM effectively uncovers the 
probabilistic relationships between material composition and crystal structure, significantly 
enhancing the performance of downstream ML models. To demonstrate the model's potential, 
we apply SSPM to the discovery of shape memory alloys (SMAs). Out of the top 50 predictions 
made by the model, 23 have been experimentally or theoretically confirmed as SMAs, 
including the identification of a novel SMA candidate, MgAu. This approach not only advances 
materials discovery but also offers a powerful tool for accelerating the design of functional 
materials. 
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Metal organic frameworks (MOFs) are crystalline, nanoporous materials that have attracted 
significant attention as sorbents for gas separation applications such as CO2 capture, where 
they are being commercialized. While there are now many studies that use computational 
high-throughput (HT) screening and machine learning models to accelerate the screening of 
MOFs CO2 capture, almost all screen the materials for a select few adsorption properties, 
such as CO2 capacity or selectivity. Very few studies consider the industrial process that the 
materials will be used in. In this work, atomistic scale modeling is integrated with detailed 
process level simulations to evaluate how a material will perform in a real gas separation 
process. This allows us to evaluate MOFs based on more holistic metrics such as the energy 
consumption of the CO2 capture, or to determine how much MOF sorbent would be required.  
Machine learning models have been used to accelerate various stages of this multi-scale 
workflow. This has allowed us to screen more than ~30,000 experimentally characterized 
MOFs in a month, whereas the screening only 2,000 MOFs without the ML acceleration 
previously took close to a year. The goal of this work is to design materials at the atomic 
level, that will be high performing based on industrial scale metrics such as how much 
energy the process will use or how pure the CO2 that is extracted will be. 
 

[1] twoo@uottawa.ca, Woo lab website:  http://titan.chem.uottawa.ca 
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Over the last several years, machine learning and other data science techniques have made a 
profound impact on computational materials science. On the one hand, data science 
techniques have significantly broadened the scope of molecular simulation, allowing us to 
study more complex materials over longer time scales. On the other, these techniques have 
allowed us to extract obscure structure-function correlations from material databases, which 
can subsequently be used to design new functional materials. In this presentation, I will 
illustrate these points by introducing two topics from our group’s research. The first topic 
concerns the formation of supramolecular clusters via on-surface molecular self-assembly 
(Figure 1). By utilizing machine-learned intermolecular potentials, we have developed new 
methodology for simulating the molecular self-assembly process and predicting what kinds 
of supramolecular clusters will form. This simulation enables one to screen different types of 
molecules for the purposes of designing new supramolecular materials with novel 
functionality [1]. The second topic concerns the design of organic semiconductor materials. 
We have developed a pipeline which integrates both supervised and unsupervised machine 
learning, as well as chemical expertise, for discovering organic semiconducting materials 
with specific band gaps and high charge mobilities [2,3]. 
 

 
 

Figure 1. Simulated assembly of phthalocyanine molecules on a gold surface. 
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Artificial intelligence (AI) has been hailed as a game-changer across nearly every 
scientific discipline, and chemistry is no exception. With the promise of accelerating 
molecular discovery, predicting novel compounds, and optimizing reaction conditions, 
AI-driven approaches have captured the imagination of researchers and industry leaders 
alike. But amidst the excitement, a fundamental question remains: Can AI truly 
revolutionize molecular design, or is it just another overhyped tool? [1] In this talk, we’ll 
explore the real impact of AI on molecular design from the perspective of an 
experimental chemist engaged in various data science projects. 
 
Before discussing AI’s role, it is important to understand the conventional approach to 
molecular design. In our research group, we developed a novel chemical—an ionic 
liquid (IL) for metal separation—aimed at improving processes in the metal mining 
industry [2]. After synthesizing the IL, we further optimized it by transforming it into a 
membrane for real-world industrial applications [3,4]. However, achieving a practical 
solution required optimizing numerous experimental parameters, a painstaking process 
that spanned several years. Eventually, we succeeded in developing a useful technology 
for industry [5], but the process underscored the challenges of traditional molecular 
design: it is slow, labor-intensive, and heavily reliant on trial and error. 
 
Recognizing the potential of machine learning (ML) to accelerate molecular discovery—
even before the advent of models like ChatGPT—we expanded our approach. Instead of 
designing a single novel chemical at a time, we generated a library of over 100 candidate 
ILs and used ML to screen for the most promising ones based on their metal selectivity. 
Despite working with relatively small datasets, we leveraged precise molecular 
descriptors (such as the σ-profile) and a simple yet effective ML model—random 
forest—to achieve reasonably accurate predictions. Following ML-based predictions, we 
successfully synthesized and tested three ILs that demonstrated selective extraction 
capabilities for critical metals such as platinum (Pt), lithium (Li), and neodymium (Nd) 
[6]. Encouraged by these results, we extended our exploration to deep eutectic solvents 
(DESs), a new class of green extractants considered potential successors to ILs. 
However, because DESs are a relatively new material, relevant datasets were virtually 
nonexistent. To overcome this, we integrated ML predictions (random forest, extreme 
gradient boosting, and multilayer perceptron) with thermodynamic principles governing 
eutectic mixtures. This combined approach allowed us to estimate the formation of 
approximately 3,000 DESs with reasonable accuracy [7]. 
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More recently, we have turned our attention to generative AI, which offers the potential 
to facilitate inverse molecular design—where desirable properties dictate molecular 
structures rather than vice versa. Generative models, such as variational autoencoders 
(VAEs) and generative adversarial networks (GANs), can explore vast chemical spaces 
to identify promising IL candidates. However, these models typically require extensive 
datasets, and the availability of IL-related data is limited. To address this challenge, we 
fine-tuned a large language model (LLM), specifically GPT [8], on a small IL dataset to 
generate novel IL structures. As shown in Figure 1(a), the model achieved a low test loss 
(approximately 0.1), indicating its ability to learn chemical grammar patterns from the 
dataset and reliably generate new ILs. These generated molecules were further optimized 
for specific properties—such as CO₂ dissolution and eco-friendliness—using the 
SMILES-X molecular property prediction tool [9]. To validate our results, we cross-
checked them with density functional theory (DFT) and COSMO-RS simulations, 
followed by surrogate experimental measurements [10]. 
 

 
Figure 1. (a) Test loss distribution and (b) a few examples of the generated ILs. 

 
AI is already demonstrating its ability to transform molecular design by significantly 
accelerating discovery and optimization processes. While traditional methods remain 
crucial, AI-driven approaches are enabling researchers to explore chemical spaces at 
unprecedented speeds. However, challenges such as limited datasets and the need for 
experimental validation still remain. As AI techniques continue to evolve, their 
integration with experimental chemistry will likely unlock even greater advancements in 
materials and molecular design. 
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Generative modeling of material structures has received significant attention in recent
years, with the main interest of leveraging them for materials discovery [1, 2]. Initially
limited to the generation of molecules [3, 4] and proteins [5], generative modeling has
since advanced to include inorganic materials [6, 7, 8] as well. However, current ef-
forts for inorganic materials [12, 13, 14] have predominantly focused on small, periodic
crystals (≤20 atoms), and there has been less emphasis on disordered systems, despite
their relevance across a wide spectrum of applications [9, 10, 11]. Disordered systems
usually have complex and irregular structures, necessitating large atomic representa-
tions and requiring more powerful generative models than those developed for simple
crystals. Furthermore, current generative models have also been developed by eval-
uating on the new unverified materials being generated, using heuristic metrics such
as charge neutrality, leading to a narrow evaluation of the models’ performance. It is
therefore difficult to make meaningful comparisons between model architectures, and
determine which design choices are better. To develop better generative models, for
both the generation of simple crystals and more complex disordered structures, better
evaluation methods are needed.

In this work, we present the Disordered Materials & Interfaces Benchmark (Dismai-
Bench) [15], a new framework for evaluating generative models of inorganic materials.
Dismai-Bench evaluates models using datasets of disordered structures with a wide
range of disorder, as shown in Fig. 1. Models are trained on one dataset at a time, and
evaluated through direct comparison between the generated structures and the train-
ing structures using structure similarity metrics. By restricting the material space of
generated materials, this approach circumvents the issues of existing methods which
attempt to evaluate on new unknown materials being generated. The Dismai-Bench
datasets were also chosen such that they are sufficiently challenging to provide mean-
ingful evaluation of a model’s performance. Dismai-Bench assesses a generative model’s
capability to learn complex structural patterns, and informs model architecture design
whether for the generation of small crystals or large disordered structures.

We selected four recent diffusion models to be benchmarked on Dismai-Bench, includ-
ing two models that use graph representations (CDVAE [12] & DiffCSP [13]) and two
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Figure 1. Datasets used in Dismai-Bench. Figure reprinted with per-
mission from [15].

models that use coordinate-based representations (CrysTens [16] & UniMat [14]). The
coordinate-based models use simple material representations derived from raw atomic
coordinates as input to the generative models. On the other hand, the graph represen-
tations contain atom neighbor information, more comprehensive geometrical features,
and symmetry invariances, providing stronger expressive power than the coordinate-
based representations. We also included a generative adversarial network (GAN) that
we developed, known as CryinGAN [15], in the benchmark results. CryinGAN is a
model that we designed to demonstrate the application of Dismai-Bench in the de-
velopment of a generative model. We chose a simple coordinate-based representation,
and tested multiple different GAN architectures. Through direct comparison between
the generated and training structures, we were able to identify the best performing
architecture (CryinGAN), as well as reasons for why the other architectures were less
successful. We use CryinGAN to demonstrate the benefits and importance of robust
generative model evaluation.

An overall ranking of all generative models based on their general performance on each
Dismai-Bench dataset is shown in Fig. 2 (refer to [15] for full details of the benchmark
results). The graph diffusion models, CDVAE and DiffCSP, demonstrated the best
performance overall due to the strong expressive power of the graph representation.
However, the graph models were only successful in performing diffusion on atomic co-
ordinates alone, but suffered when performing joint diffusion with atomic species or
lattice parameters, indicating room for further improvement. On the other hand, the
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model that we designed to demonstrate the application of Dismai-Bench in the de-
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and tested multiple different GAN architectures. Through direct comparison between
the generated and training structures, we were able to identify the best performing
architecture (CryinGAN), as well as reasons for why the other architectures were less
successful. We use CryinGAN to demonstrate the benefits and importance of robust
generative model evaluation.

An overall ranking of all generative models based on their general performance on each
Dismai-Bench dataset is shown in Fig. 2 (refer to [15] for full details of the benchmark
results). The graph diffusion models, CDVAE and DiffCSP, demonstrated the best
performance overall due to the strong expressive power of the graph representation.
However, the graph models were only successful in performing diffusion on atomic co-
ordinates alone, but suffered when performing joint diffusion with atomic species or
lattice parameters, indicating room for further improvement. On the other hand, the

Figure 2. Spider chart of generative model ranking based the models’
general performance on each dataset. The models are ranked 1-5, where
the outermost ring corresponds to rank 1 (best), and the center of the
chart corresponds to rank 5 (worst). Figure reprinted with permission
from [15].

coordinate-based diffusion models, CrysTens and UniMat, struggled with most tasks
in Dismai-Bench. These models were adapted from generative models used for image
and video generation, and the benchmark results show that such models do not trans-
late well to learning complex atomic structures. The less expressive coordinate-based
representation also contributed to these models’ weaker performance. For CryinGAN,
despite that it also used a coordinate-based representation, it was able to demonstrate
superior performance to the coordinate-based diffusion models, even though diffusion
models are often reported to outperform GANs in image synthesis tasks [16, 17, 18].
However, CryinGAN does not outperform the graph diffusion models, likely as a re-
sult of its weaker expressive power and lack of invariances. Nonetheless, CryinGANs
surprisingly good performance is a testament to the importance of robust evaluation
in model development.

In summary, we have developed the first vigorous benchmark for generative models
of inorganic materials that provides meaningful evaluation for comparing between ar-
chitectures, understanding model strengths and weaknesses, and ultimately informing
design choices. Building the next generation of generative models will rely on not only
developing better architectures and representations, but also adopting better evalu-
ation methods. We hope that this work will help advance future generative models
for both ordered and disordered materials, and inspire the development of other new
innovative benchmarks.
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Large Language Models (LLMs) are fundamentally next-word prediction systems trained 
on massive text corpora, yet they offer capabilities that extend well beyond language 
generation. Recent research papers demonstrate how they can be immensely beneficial 
in computational materials science, making it imperative to expand our horizons and 
explore this new territory. This paper discusses recent research in computational 
materials science, using examples to illustrate the role of large language models (LLMs) 
in the field. The examples will include: First, a case where their integration has facilitated 
progress, where we highlight how LLMs, when integrated into domain-specific 
frameworks, have accelerated problem-solving in materials science such as autonomous 
LLM-based “agents” capable of independently performing and refining computational 
tasks. Second, we present our in-house tool Kateeb where LLMs offer comprehensive, 
end-to-end solutions through automated database generation and the structuring of large 
datasets. Third, we present our research on understanding carbonyl corrosion reaction 
mechanisms, a challenge that is beyond the capabilities of LLMs and explain why.  
 
 
1. Introduction 
The integration of Large Language Models (LLMs) into scientific research has opened new 
horizons for knowledge discovery and innovation. In materials science, researchers have 
begun leveraging LLMs for tasks ranging from automated literature reviews to text-guided 
experimental design, thereby accelerating research workflows while reducing human effort 
and time expenditures [1]. Recent progress in LLM architecture has revealed not only their 
ability to parse vast datasets rapidly but also their capacity to generate structured outputs, 
from experiment notebooks computational input files from different codes and research 
papers, at scales traditionally unattainable by human experts alone [2]. 
Historically, materials science has evolved through distinct paradigms, from  the discovery 
of natural materials and development of standardized processing techniques for agricultural 
use, to the industrial revolution, and modern design of methodologies that have each required 
higher-level data management and interpretation [3], [4], [5]. Today’s “fourth industrial 
revolution,” driven by artificial intelligence (AI) and automation, has stimulated research in 
“intelligent materials” and sustainability-focused manufacturing for example However, the 
vast amount of data generated in the last 200 years, encompassing millions of material 
structures, makes it impossible for the human brain to reason alone and identify the next major 
breakthrough. LLMs has emerged as powerful tools: they can parse extensive repositories of 
text-based documents, extract and compile relevant information, and deliver it in readily 
usable formats [2]. Such an approach has demonstrated orders-of-magnitude speed 
improvements processing one paper in mere seconds compared to tens of minutes or hours 
by a human expert [6]. 
Despite these advantages, several questions remain regarding the scope and limitations of 
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LLMs in computational materials science. Complex atomistic problems, especially those 
involving multiple quantum mechanical interactions and chemical reaction pathways in 
catalysis and corrosion science, are not trivially distilled into purely language-based 
descriptions. For instance, iron carbonyl (Fe(CO)x, x=1-5) corrosion serves as an example of 
a phenomenon whose mechanistic intricacies challenge the use of LLM approach to speed up 
the tasks [7].  
This work aims to illuminate the broader landscape of LLM integration into computational 
materials science by: (i) discussing core advantages and disadvantages of adopting these 
models in research workflows, (ii) presenting practical cases where LLMs have already 
accelerated materials discovery and design, (iii) detailing a specific scientific challenge 
catalytic reactions that remains beyond the direct capabilities of current LLMs. 

2. Advantages and Disadvantages of Large Language Models in Materials Science 
Large Language Models (LLMs) have gained prominence for their remarkable ability to 
process natural language at an unprecedented scale. This aptitude has immediate benefits for 
the materials science community, particularly when handling large volumes of unstructured 
text data such as journal articles, lab reports, and simulation logs. One of the primary 
advantages of LLMs lies in their capacity for rapid data mining and synthesis[8]. By 
extracting key parameters such as processing temperatures, materials compositions, and 
performance metrics from heterogeneous sources, LLMs can quickly transform unstructured 
data into structured, easily searchable databases. This streamlined approach not only 
accelerates literature reviews but also aids in the identification of emerging research trends, 
guiding investigators toward promising new materials or unexplored processing methods [1], 
[8] 
In addition to accelerating data management, LLMs have begun to integrate with 
computational toolchains. Newly emerging “agent” paradigms extend beyond passive text 
generation, facilitating tasks such as writing simulation input scripts or specifying 
experimental conditions in real-time[9]. These integrated systems can greatly reduce the 
knowledge gap between specialists in machine learning and those in computational materials 
science, thereby democratizing access to advanced analytical workflows. 
Despite these advantages, LLMs also face limitations that restrict their utility in certain 
contexts. For instance, while they excel at parsing existing data and generating high-level 
summaries, they often lack intrinsic understanding of fundamental physical principles. As a 
result, purely language-based models can struggle with understanding complex atomistic 
phenomena especially if the prompt commands are not engineered correctly. leading to 
incomplete or even misleading conclusions if not carefully supervised. Another concern 
centers on their reliance on preexisting datasets and potential bias in training corpora, which 
can diminish the reliability of their predictions in less-studied domains or novel material 
systems.  
 
3.  Case Studies of LLM-Driven Acceleration in Materials Research 
Multiple case studies highlight how integrating LLMs into computational workflows can 
substantially accelerate materials research and discovery [1]. One case study involves 
structured data generation from vast corpora of scientific documents. As the volume of 
materials science publications grows exponentially, traditional manual curation often 
becomes prohibitively time-consuming and prone to human error. We have introduced an 
automated platforms named “Kateeb” [2] which is a specialized tool designed for scientists 
to efficiently download and compile large volumes of scientific literature focused on their 
specific research topics. By leveraging the advanced capabilities of GPT-4o, Kateeb enables 
researchers to construct accurate and reliable databases based on validated scientific findings. 
This platform ensures that the unstructured extracted data sourced from peer-reviewed 
publications, is converted to structured database to supporting rigorous meta-analyses, 
comprehensive trend assessments, and evidence-based research developments. These 
structured databases can be directly imported into statistical analysis toolkits or machine 
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learning frameworks, enabling fast identification of trends such as the most effective synthesis 
routes for novel alloys or correlations between process conditions and material properties [1], 
[8] 
 

 
Figure 1: (a) Research paper downloader that can use scholar semantic API to download 
thousand of papers on selected topic selecting Bulk or relevant search, (b) Database generator 
that uses OpenAI API to read the PDF files and extract 100% structured data. 
 
 
Finally, recent developments in “agenized” LLMs have demonstrated how natural language 
understanding can be fused with advanced simulation tools. These agents such as DARWIN 
1.5 [9]autonomously generate computational input files for atomistic simulations (e.g., 
density functional theory or molecular dynamics), run those simulations, check the 
convergence of the results and interpret the results in real time [1], [9]. which promise to 
accelerate iterative design cycles in materials R&D. Although many of these tools are still in 
the experimental phase, preliminary evidence suggests they can dramatically reduce the time 
spent on routine tasks, freeing researchers to focus on conceptual breakthroughs and 
hypothesis-driven exploration. 
 

3. A Scientific Challenge Beyond LLM Capabilities and Final Notes 
 
While LLMs can rapidly analyze large volumes of text describing experimental observations 
and computational results, they face inherent limitations when it comes to explaining the 
fundamental physics and chemistry of a reaction, especially when there is no existing 
knowledge about it [10] . An example is carbonyl corrosion [7], where only one DFT study 
has calculated the adsorption and desorption energy of iron Pentacarbonyl on Iron surface, 
obtaining a value of about 3.8 eV. This value does not explain the phenomenon that occurs at 
temperatures between 100°C and 250°C. 
Even if we assume an LLM could propose intricate reaction pathways similar to Figure 3, the 
complexity of the problem and the novelty of the catalytic reactions which lie beyond the 
scope of standard DFT, and the unlimited possiblites can lead to endless loop that the user 
have no say in it. As a result, a researcher who did not initiate this line of inquiry themselves 
would likely be unable to advance, since the necessary insights to progress would not be 
evident from the LLM’s output alone. 

(a) (b)
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Figure 2: Schematic representation of pathways considered in this study leading to iron pentacarbonyl 
formation on Fe Surface. 
 
Looking ahead, the continued evolution of LLMs in materials science will likely involve 
tighter integration with domain knowledge: ontology-driven data structures, specialized 
corpora, and direct incorporation of computational methods beyond language-based 
reasoning. As more sophisticated multi-modal AI approaches emerge, bridging text with 
computational physics, experimental data, and even real-time instrumentation control may 
become more feasible [6]. These developments could close some of the current gaps in 
understanding complex processes, paving the way for truly autonomous research systems. 
 
5. Conclusion 
Large Language Models (LLMs) are rapidly reshaping the research landscape in 
computational materials science, offering new horizon in knowledge extraction, database 
curation, and materials property prediction. Yet, their intrinsic constraints must be recognized 
to maintain scientific rigor. While LLMs excel at automating literature reviews, organizing 
extensive datasets, and highlighting emerging research trends, they lack the depth to 
independently formulate robust hypotheses or execute nuanced scientific writing. 
In this work, we have shown how our tool, Kateeb, can efficiently download large amounts 
of data and use LLMs to extract information and generate structured databases. This process 
improves data management and speeds up research workflows. However, LLMs do not 
understand physical principles and cannot be used alone for material design, multi-scale 
modeling, or complex quantum mechanical problems such as carbonyl corrosion. To ensure 
reliable results, they must be combined with physics-based models and expert knowledge. 
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Electrochemical energy conversion and storage are playing a key role in our transition to 

green energy future. Chemical reactions critical to this transition include CO2 reduction 

(CO2RR), nitrogen reduction reaction (NRR), hydrogen evolution reaction (HER), and 

oxygen evolution reaction (OER). Technologies facilitating these reactions require catalysts 

to accelerate chemical transformations of reactant species while maintaining stability – most 

of these catalysts utilize precious metals such as platinum and palladium. We need to design 

and optimize new catalytic materials made of less expensive materials or substantially 

decrease the utilization of expensive materials. However, the scaling relationships inherent in 

certain catalytic reactions present a technical challenge in achieving strong adsorption of 

some intermediates while maintaining weak adsorption of others, which leads to general 

activity-descriptor plots in a volcano plot, which limits the compositional space to few costly 

and non-earth abundant chemical elements. To overcome this barrier, we need catalysts 

comprising of earth-abundant chemical elements that circumvent such scaling relations. In 

this regard, high-entropy alloys (HEAs), typically composed of five or more equimolar 

elements, could provide unique opportunities to design catalysts that meet current state of the 

art catalyst but minimize or eliminate expensive elements since the cocktail effect offers 

promising opportunities to unlock remarkable properties.[1-4] However, the vast chemical 

space of HEAs make trail-and-error experimental approaches and even time-saving 

theoretical computation inefficient for HEA discovery. Moreover, for HEA catalysis, the 

structure-performance relations are unclear due to the complex surfaces. 

Leveraging machine learning techniques to analyze local coordination environment of 

active sites, we have recently found that HEA catalysts are efficient to circumvent the scaling 

relationships in the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR), 
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mainly due to diverse active sites on HEA surfaces, and thus breakthroughs in catalytic 

performance.[5, 6] Specifically, we found an unusual Sabatier principle on HEA surface and 

new descriptors of μ and σ in the Gaussian distribution [X ~ N(μ, σ2)] of ΔGH* for HER 

activity on PtFeCoNiCu catalyst.[5] For CO2RR, the rotation of key intermediate, *COOH 

and *CHO, on different surface sites of FeCoNiCuMo catalyst decreases the free energy 

change of the rate-determining step.[6] In addition, our ongoing investigations focus on 

elucidating the selectivity of C2+ products on HEA catalysts. In these HEA catalysis works, 

we have built a database of more than 10,000 adsorption energies of H, C, and O species on 

HEAs, and it is still growing. We believe that this database will significantly aid HEA 

catalyst researchers once integrated and made publicly accessible, and that the unique ability 

of HEA catalysts to circumvent the scaling relations could also lead to activity breakthrough 

in other reactions. 

We will also present our recent data on computational catalyst design for other chemical 

reactions, including NRR and OER. Additionally, some results will be presented on the 

computational design of new materials for solid state batteries. 
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Yttria-stabilized zirconia (YSZ) is highly valued for its high ionic conductivity and thermal 
stability, making it indispensable in high-temperature applications like solid oxide fuel cells. 
However, performance in YSZ is intricately related to the behavior of impurities at grain 
boundaries, especially with respect to their effect on ionic transport. The present work 
systematically investigates segregation behaviors of aluminum (Al) and iron (Fe) impurities in 
YSZ grain boundaries by using molecular dynamics simulations. We have investigated the 
dynamics of Al and Fe impurities across two grain boundary configurations, symmetric and 
mixed boundaries, with respect to their relative impacts on oxygen ionic conductivity.  Our 
findings indicate that Al impurities, because of its relatively low solubility, have a tendency to 
segregate extensively along the grain boundaries and, therefore, reducing significantly the ionic 
conductivity. On the other hand, impurities like Fe exhibit a lesser tendency to segregate and, 
hence, can potentially stabilize the crystal structure of YSZ without adversely impacting 
conductivity. Since both ions, Al and Fe, are positive ions, the barrier of ion diffusion at grain 
boundaries is enhanced, further affecting the overall conductivity of both species. These results 
improve our understanding of the impurities segregation in YSZ while providing pathways to 
optimize the electrochemical performance of YSZ-based devices by manipulating impurities 
concentrations and grain boundary engineering. 
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Introduction  
Solid oxide fuel cells (SOFCs) have attracted significant attention as sustainable energy  

technology. Recently, integrated systems combining fuel cells with aquaculture have  emerged 
as promising solutions for recouping fuel cell investment costs. In these  integrated systems, 
aquaculture residues are fermented to generate biogas, which fuels the  SOFCs [1]. However, 
biogas typically contains hydrogen sulfide (H₂S) impurities that  poison fuel cell performance 
even at low concentrations. Recent research suggests that  graphene-based materials, 
particularly those doped with nitrogen atoms, can effectively  adsorb and remove H₂S from fuel 
streams [2]. Yet, the relationship between defect  structures in nitrogen-doped graphene and 
their H₂S adsorption capabilities is not fully  understood[3]. This study employs density 
functional theory (DFT) calculations to  elucidate the role of graphene defect structures in 
enhancing H₂S adsorption and removal  capabilities.  

Methods  
DFT calculations were performed to study graphene sheets with nitrogen-containing  pyridinic 

defects of varying sizes. Figure 1 illustrates the defect structures, including  graphene with one 
benzene-ring unit removed (1C6), highlighting a single benzene-ring  vacancy termed "1C6," 
and larger defects(3C6 defect, and ∞C6 defect). All computational  models were constructed 
using periodic graphene sheets with systematically introduced  nitrogen-containing defects. 
Adsorption energies, optimized geometries, and electronic  structures were computed using the 
Vienna Ab-initio Simulation Package (VASP) with  the Perdew–Burke–Ernzerhof (PBE) 
functional and projector-augmented wave (PAW)  method. Also, 900 eV energy cutoff and a 
4×4×1 k-point mesh were employed. Transition  state search and reaction pathway analysis 
were conducted using the climbing-image  nudged elastic band (CI-NEB) method. 
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Results  
The DFT calculations revealed that large pyridinic nitrogen 

defects (∞C6 defect) enhance the adsorption property of H₂S compared to small defect 
(1C6 defect) as seen in Figure 2,  suggesting 
stronger binding interactions.   
Moreover, reaction pathway analyses   
indicated that larger pyridinic nitrogen   
defects considerably lowered the activation   
barriers for the dissociation of H₂S into 
sulfur   
and hydrogen, promoting more efficient   
desulfurization. In contrast, smaller defects   
exhibited higher reaction barriers, making   
dissociation energetically unfavorable. 
These   
computational insights highlight the critical   
importance of defect size in optimizing   
graphene materials for efficient H₂S   
adsorption and dissociation for SOFCs.  
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Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium 
ion batteries in the near future thanks to their higher theoretical energy density and 
improved safety. However, their adoption is currently hindered by their lower effective 
ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly 
ion-conductive materials using conventional theoretical calculations and experimental 
validation is both time-consuming and resource-intensive. While machine learning holds 
the promise to expedite this process, relevant ionic conductivity and structural data 
is scarce. Here, we present a domain-expert-curated database of ∼600 synthesized 
solid electrolyte materials and their experimentally measured room temperature ionic 
conductivities gathered from literature. Each material is described by their measured 
composition, space group and lattice parameters. A full-crystal description in the form 
of a crystallographic information file (CIF) is provided for 320 structures for which 
atomic positions were available.  

We discuss various statistics and features of the dataset and provide training 
and testing splits that avoid data leakage. Finally, we benchmark seven existing ML 
models on the task of predicting ionic conductivity and discuss their performance. The 
goal of this work is to facilitate the use of machine learning for solid-state electrolyte 
materials discovery.  

Lithium-ion batteries (LIBs) used in most consumer electronics and electric vehicles 
have seen immense progress in terms of energy density, power density, safety and 
durability. However, their performance is reaching a plateau. Solid-state batteries are 
regarded as the next generation of batteries that may allow significant improvement 
over these characteristics Janek & Zeier (2016, 2023). The key difference between 
these two technologies is their electrolyte, the medium which allows the transport of 
ions during charge and discharge. A solid-state electrolyte (SSE)—as opposed to a 
liquid electrolyte in LIBs—permits new design choices that ultimately lead to better 
battery properties Betz et al. (2019), let alone the fact that solid electrolytes are not 
flammable unlike their liquid counterparts.  
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SSEs have a long research history, starting from Faraday’s first discovery of fast ion 

transport in β-PbF2 and Ag2S about 200 years ago Funke (2013), until the relatively 
recent development of Li-based ionic conductors, such as Li10GeP2S12 Kamaya et 
al. (2011). 

Ionic conductivity (σ), expressed in siemens per centimeter (S/cm), measures how 
easily ions can move through a medium or material. Ideal SSEs, also called “superionic” 
or “fast-ionic” conductors, are electrolytes that exhibit ionic conductivity comparable to 
those observed in liquid electrolytes and molten solids (> 1 mS/cm). Only a limited 
number of room temperature ideal SSEs are known thus far within a small number 
of classes of materials such as LISICON (e.g., Li14ZnGe4O16), NASICON (e.g., 
Li1.3Al0.3Ti1.7(PO4)3), garnet (e.g., Li7Li3Zr2O12), perovskite (e.g., Li0.5La0.5TiO3), and 
argyrodite (e.g., Li6PS5Cl) Janek & Zeier (2023).  

Until now, the discovery of novel SSEs has largely relied on an incremental, ex 
perimental approach which consists, for example, of substituting atoms and 
elements in known compounds. This has allowed the discovery of some highly ion-
conductive materials, but greatly limits the search space given that the experimental 
synthesis and characterization of a new, stable, inorganic solid-state electrolyte is a 
difficult and costly process that can take months to years Zhao et al. (2022).  

Computational discovery, on the other hand, requires time-consuming atomistic 
simulations, such as ab initio molecular dynamics (AIMD), to accurately capture the 
complex relationship between ionic conductivity and the material’s structure and 
composition Ceder et al. (2018); Qi et al. (2021); Bielefeld et al. (2020). These 
calculations can take from several hours to a few days for a single ionic conductivity 
and their parameters are often materials specific. Therefore, they are not well suited 
for large-scale explorations of hypothetical materials.  

Machine learning (ML) has the potential to greatly accelerate the discovery of novel 
SSEs. Naturally, it can be used to predict ionic conductivity directly using, for example, 
graph neural networks (GNNs), which have been used extensively and successfully 
in materials science Schmidt et al. (2019); Butler et al. (2018). Machine-learned force 
fields or interatomic potentials (MLFF or MLIP) can also be used to obtain ionic 
conductivity through molecular dynamics in the “classical” way while using significantly 
less resources Wines & Choudhary (2024). Finally, generative frameworks can 
accelerate dynamics simulations Nam et al. (2024) and, provided that good ionic 
conductivity models are developed, there exists a wide range of frameworks that 
could generate new materials conditioned on that property Hernandez-Garcia et al. 
(2023); Zhu et al. (2024); Zeni et al. (2023); Merchant et al. (2023). However, the 
main obstacle to the development and validation of these models—and to some extent 
theoretical models—is the scarcity of relevant experimental ionic conductivity and 
structural datasets. Indeed, as detailed in the next section, the few datasets that exist 
contain partial material descriptions and ionic conductivity measurements at various 
temperatures. To the best of our knowledge there does not exist another open access 
dataset of experimental room temperature ionic conductivities with corresponding full 
crystal descriptions.  
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In this work, we assembled a curated database of 599 synthesized solid electrolyte 
materials and their experimentally measured room temperature ionic conductivity along 
with descriptors of their space group, lattice parameters, and chemical composition. 
The database is analyzed in terms of the distribution of ionic conductivity, space groups, 
elements, and repeated compositions. We also propose a training and testing split that 
avoids data leakage between similar entries while balancing distributions of properties 
across splits. We use this split to benchmark the performance of 7 machine learning 
models at directly predicting room temperature ionic conductivity (σRT). Our database 
and benchmarks aim to significantly accelerate the ML-assisted discovery of novel SSEs 
with fast ion diffusion. 
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Laser-based few-cycle terahertz (THz) radiation sources have seen significant 
advancements in the past 20 years, driven by major progress in intense femtosecond 
laser sources. More recently, scientists have developed several critical technologies to 
generate intense THz pulses [1-6], leading to a new field of nonlinear THz spectroscopy 
[7-9]. In this talk, I will review our recent results on nonlinear THz effects in narrow-
band semiconductors, such as InSb and Ge. We reveal the intricate interplay between 
two major nonlinear THz effects, intervalley scattering and impact ionization, generated 
by an intense few-cycle THz pulse in an undoped (100) indium antimonide 
semiconductor at room temperature. Our results show an initial transmission 
enhancement when increasing the peak electric field to 91 kV/cm, followed by increased 
absorption for higher fields. Our analytical model shows that the THz strength of 91 
kV/cm is the critical field. Below this field, absorption bleaching (induced by intervalley 
scattering of electrons in the conduction band) is dominant, whereas above it, impact 
ionization starts to be the dominant energy loss mechanism. The temporal and amplitude  
change of the total average effective carrier mass and the total carrier density allow us to 
monitor the THz strength fields where each scattering effect is dominant. We find that 
the change in the carrier populations is not the only factor that influences the current 
density; indeed, the average drift velocity of each valley is also a decisive factor derived 
from the carrier momentum change.  
We have developed a theoretical model that qualitatively matches the experimental 
results very well. However, a quantitative discrepancy exists between the simulated and 
experimentally observed data, especially under conditions where impact ionization is 
dominant. We believe this discrepancy is due to the empirical formula we use for the 
impact ionization rate [10]. 
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Electrochemical reactions provide a cost-effective and sustainable approach to converting low-value 

chemicals into value-added products while promoting carbon neutrality. For instance, the nitrogen 

reduction reaction (NRR) offers a green alternative for ammonia synthesis under ambient conditions, 

potentially replacing the energy-intensive Haber-Bosch process. However, large-scale implementation 

remains challenging due to the low activity and selectivity of electrocatalysts. To accelerate catalyst 

discovery, data-driven and machine-learning approaches are increasingly exploited in computational 

catalysis, by leveraging material databases for high throughput screening. Machine learning 

algorithms efficiently explore chemical space, while density functional theory (DFT) calculations 

provide detailed insights into the electronic structure of promising candidates. While these methods 

are valuable for initial screening, they do not fully capture the electrochemical environment of the 

catalytic process, where the electrode potential plays a crucial role. In this contribution, we present a 

comprehensive computational framework for electrocatalyst design for the NRR, starting with high-

throughput screening of bimetallic alloy catalysts, followed by DFT characterization to assess the 

catalytic activity of potential candidates. To address the limitations of conventional models, we 

employ grand-canonical ensemble DFT (GCE-DFT) to further investigate the effect of constant 

electrode potential on nitrogen species adsorption and activation energies, particularly for the 

potential limiting step of the NRR. This approach helps paint a more realistic picture of 

electrochemical processes at the atomistic level, shedding light on electrocatalyst determinants for the 

NRR, and affording sustainable catalyst design strategies for electrochemical reactions beyond 

ammonia synthesis. 
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This abstract contains two parts of work describing the application of Density Functional 
Theory (DFT) computations to materials science research. One is in the field of 
chemistry, where computational studies are used to help design efficient photocatalysts.  
The other part is in the field of engineering, where theoretical calculations are performed 
to explain the mechanisms behind experimental phenomena and help understand the 
performance degradation of engineered materials. 
 
1. Improved photocatalytic performance of eosin Y-sensitized anatase by anchoring 
group modification.  
 
A great number of attempts on H2 production from water using photocatalyst have been 
made to construct solar energy conversion systems to chemical energy.  Eosin Y-
sensitized anatase has been identified as an efficient photocatalyst because of its activity 
in visible light [1]. Though eosin Y having carboxyl groups could be fixed by ester-like 
linkage on anatase in the organic solvent, the linkage was not stable in water because of 
hydrolysis [2]. In order to overcome the unstableness of the eosin Y-sensitized anatase in 
water, we attempted a strong chemical fixation of dye on anatase particles. We proposed 
the use of a pyridine ring as an anchoring group in place of a conventional carboxyl 
group. 

 
Comparative study on the hybrid interface of anatase and eosin Y with the different 
anchoring groups were performed by density functional theory (DFT) and time-
dependent density functional theory (TDDFT) calculations. The geometries, binding 
interaction between dye and anatase, electronic structures and transfer as well as the 
effect of isomers (orto-, meta, para-) on the dye-anatase systems were investigated and 
discussed. Theoretical results indicated that EY with carboxyl and pyridine anchors had 
visible adsorption and electron transfer from the dye to the particle. Compared to 
carboxyl-para, which had the best optical performance among carboxyl groups, the 
adsorption strength of pyridine-orto was close to that of carboxyl-para, while the 
oscillator strength increased significantly, which was more than 10 times higher than that 
of carboxyl-para. Non-equilibrium Green’s function (NEGF) method was successfully 
employed to elucidate the distinctive electron transport in the pyridine-linked molecular 
junction compared to the carboxyl-linked junction. This study provides a potential 
design for EY-sensitized anatase in photoelectrochemical water splitting application, 
where the binding strength and photocatalytic activity were improved simultaneously.  
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2. Enhanced hydrogen-induced degradation of pipeline steels by the CO2 mixing in 
hydrogen environments 
 
Many countries are trying to or have already blended hydrogen into the existing natural 
gas pipeline network to transport and use hydrogen efficiently. However, hydrogen 
atoms are easy to enter into metals, resulting in a large internal hydrogen concentration 
in the material [3]. Under the right conditions, hydrogen can degrade the mechanical 
properties of pipeline steels, which is known as hydrogen embrittlement (HE) [4]. HE 
can be a very complicated process and is a potential threat to the safety of HENG 
pipelines. The HE behavior of pipeline steels in the actual hydrogen-enriched natural gas 
(HENG) is important in evaluating the feasibility of mixing hydrogen into natural gas 
grids.  
 
Our studies found that CO2 contained in HENG could significantly enhance the HE of 
pipeline steels. Further, the enhanced sensitivity of pipeline steel to HE induced by the CO2 
effect is pressure dependent.  The CO2 effect at low pressure was more pronounced than that 
at high pressure. To elucidate what kind of role CO2 play in the hydrogen uptake in 
metals, DFT calculations were performed to characterize hydrogen-metal interactions in 
the CO2-free and CO2-containing systems. Results show that CO2 can strengthen the 
adsorption of H2 and fasten the dissolution (migration from surface to subsurface) of the 
H atom when CO2 is adsorbed on the iron surface. Due to the fast adsorption of H2 itself, 
the promoted H dissolution rate by CO2 is the major reason for the enhanced hydrogen 
uptake and HE of the steel. First-principles molecular dynamics calculations indicate 
CO2 adsorption rate on the iron surface decreased with increasing hydrogen pressure. 
Due to the inherent rapid entry of hydrogen into material at high pressure, the slow 
adsorption rate of CO2 in high-pressure CO₂-enriched hydrogen mixtures could not 
enhance hydrogen uptake significantly.  
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Nearly 200 years after the discovery of the first perovskite and subsequent thorough
investigations, these materials are still relevant today. Applications ranging from solar
cells [1] to neuromorphic devices [2] and the resulting demand for novel material com-
positions resulting from this led to a steep increase in publications in this field [3]. One
prominent candidate that has been under investigation for decades is SrTiO3. This ma-
terial is often used as a model system for complex solid-state phenomena. On the one
hand, there are well-established applications, such as the use as dielectric in capacitors
[4] or the use of substrates [5]. On the other hand, phenomena like superconductivity [6]
or quantum paraelectricity [7] are still missing an explanation. Possible explanations
often connect structural and electrical properties. Hereby, complex phonon-electron
interactions are introduced that still lack validation.
In this work, we present a defect-based approach. Hereby, the coupling of properties
and therefore certain effects are caused by defects and are not a property of the entire
bulk structure. Defects of particular interest are dislocations. The dislocation density
in SrTiO3 is around 106 cm−2 but can be higher under mechanical stress [8]. These
linear defects cause an abrupt change in the arrangement of atoms and can distort the
lattice in the nanometer range. Along dislocations, experiments show a high concen-
tration of oxygen vacancies which results in an enhanced conductivity in the normally
non-conductive SrTiO3 [9]. Oxygen vacancies are also a fundamental component of
existing explanations and underline the importance of dislocations [10]. Furthermore,
dislocations open up the possibility of investigating further effects like flexoelectricity
or Raman scattering.
Dislocations in SrTiO3 were already investigated experimentally and theoretically [9,
11]. However, theoretical studies either focus on structural properties using molecu-
lar dynamics simulations [12] or electrical properties using density functional theory
(DFT) [13]. One problem with existing DFT studies is the use of very simplified struc-
tures in order to keep the computational time low [13]. These structures are basically
vacancy structures, as visualized in Figure 1a, that miss the two key points of dis-
locations: change in atomic arrangement and the existence of a strain gradient with
a non-zero Burgers vector. Especially the formation energy of vacancies is heavily
influenced by strain [14]. In order to overcome the problem we use the DFT code
SIESTA [15] which supports linear scaling for large systems allowing us to calculate
realistic structures, shown in Figure 1b, and obtain insights into the structural as well
as electrical properties.
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The SrTiO3 dislocation shows a significant strain of approximately 10% around the
dislocation core. This strain value would be impossible to introduce globally in the
bulk phase without destroying the material. This results in a local polarization of up
to 75 µCcm−2. This polarization is even stronger than that in the polar tetragonal
phase of BaTiO3 with a value of 26µCcm−2 [16].

Figure 1. a) Simplified representation of a trivial SrTiO3 dislocation
used in existing DFT studies [13]. b) Realistic SrTiO3 dislocation geom-
etry used in this work. A double dislocation is used in order to enable
periodic boundary conditions.

The resulting electrical properties also undergo major changes. The band gap decreased
from 2.26 eV for the bulk phase to 1.94 eV caused by additional states oxygen 2p states
in the valence band.
The calculations also show a drastic reduction in the formation energy of oxygen va-
cancy. In bulk SrTiO3 the simulated formation energy is 8.53 eV. At the dislocation
core, the formation energy is as low as 6.80 eV. Assuming that the formation of va-
cancies is a thermally activated process following the Arrhenius equation, the rate for
vacancy formation at the dislocation is 31 magnitudes higher at 300K compared to the
bulk phase.

The results of this defect-based approach can indeed confirm experimental findings
and give quantitative insights into fundamental processes. The aim of further simula-
tions will be the determination of the oxygen vacancy location, whether they appear
in a chain or in a zig-zag pattern along the dislocation as well as the conduction mech-
anism, especially the formation of polarons.
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Molecular Discovery with Monte-Carlo Tree Search and Machine Learning 
We present ChemTSv2 [2], our novel framework that combines Monte-Carlo Tree 
Search (MCTS) with advanced machine learning models to accelerate the discovery of 
novel molecules. Our approach harnesses the strengths of both simulation-based and 
data-driven evaluation methods, thereby creating a powerful tool for navigating vast 
chemical spaces efficiently. Initially devised for Go, a two-player game popular in East 
Asian countries, MCTS has evolved into one of the standard algorithms for solving 
problems from various domains, including molecular design, highlighting its cross -
domain applicability and potential for future multidisciplinary challenges.  
Overview of the Methodology 
At the core of ChemTSv2 is an MCTS algorithm that incorporates machine learning 
models at multiple stages. In its original context in Go, MCTS evaluates numerous 
possible moves to find the optimal strategy; in our framework, it systematically explores 
chemical structures. We begin with generative models that quickly propose candidate 
molecules. Then, during the simulation (or rollout) phases of MCTS, each candidate is 
evaluated using two complementary methods: 
• Fast, Data-Driven Evaluations: Machine learning predictors rapidly (within 

milliseconds) estimate key molecular properties, such as electronic and optical 
characteristics. This swift feedback is critical for guiding the search through the 
extensive chemical space. 

• Detailed Simulation-Based Evaluations: For higher precision, we employ 
quantum chemical calculations using tools like Gaussian v16. Although these 
computations can take several minutes per molecule, they provide accurate 
assessments of properties—including excitation energies, stability, and reactivity—
that are essential for material design and validation. 

This approach allows ChemTSv2 to overcome a common limitation of purely data-driven 
methods. Traditional machine learning models often generate molecules resembling their 
training data (the out-of-distribution problem). In contrast, our MCTS-based approach can 
explore diverse and unexpected chemical structures, just as recent advanced Go programs 
have generated novel strategies that defy human intuition. 
High-Performance Computing and Parallelization 
The enormity of chemical space presents a significant computational challenge. To manage 
this, we have developed a massively parallelized version of our MCTS algorithm [1]. 
Running ChemTSv2 on supercomputers enables us to execute hundreds or thousands of 
simulations concurrently, dramatically reducing the overall search time and allowing us to 
tackle more complex materials design problems. 
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Results and Current Achievements 
Our research has yielded promising results, including identifying several novel 
fluorescent molecules [3]. These initial successes demonstrate that integrating MCTS 
with machine learning is effective for novel findings that conventional screening 
methods might have overlooked. Our code is publicly available and is used by many 
research teams. By sharing our tools and methodologies, we aim to foster further 
research in material informatics and algorithmic search, inviting the community to 
explore new applications and improvements.  
Future Directions and Broader Implications 
Our goal is to refine and extend this tool to address broader challenges. One immediate 
direction is to improve our algorithms to better capture the multi-objective aspect of 
molecular discovery by considering multiple factors, such as stability, toxicity, and 
synthetic feasibility. 
Moreover, the design of the parallel MCTS algorithm is inherently modular, suggesting 
that it could be generalized to other domains that require efficient exploration of large, 
complex search spaces. Our code currently contains chemistry-specific parts, but we can 
use the code base to parallelize many other MCTS applications with little modification.  
Conclusion 
In summary, our work demonstrates how algorithms from game AI—specifically, 
Monte-Carlo Tree Search—can be repurposed and augmented with machine learning 
techniques to revolutionize the field of molecular discovery. By leveraging both fast 
machine learning predictors and high-accuracy simulation tools, and by harnessing the 
power of supercomputing for parallel execution, we have developed a framework for 
identifying novel molecules. The implications of this work extend beyond chemistry, 
offering the potential for developing efficient, scalable search algorithms applicable to a 
wide range of scientific and engineering problems.  
 
 

 
Figure 1. Our approach combines Algorithms, Machine Learning, and HPC. 
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High-entropy alloys (HEAs) are alloys having configurational entropies exceeding 1.5R (R: gas 
constant) [1]. HEAs have emerged as new solid-state hydrogen storage materials  but reversible 
storage at room temperature is still a challenge [2]. The ability of HEAs to  store hydrogen at 
room temperature depends on Gibbs energy which is dependent on  formation enthalpy (ΔH). 
The prediction of hydride formation enthalpy is thus the key  issue in the design of new HEAs 
for room-temperature hydrogen storage. In this study,  the formation enthalpy (ΔH) for model 
AB2-type (A: hydride forming, B: non-hydride  forming) HEAs (TixZr2-xCrMnFeNi, for x = 0.5, 
1.0 and 1.5) was predicted through  machine learning (ML) and the results were validated 
through experiments and density  functional theory (DFT).  

For modeling machine learning a dataset of 420 data was used. The data were curated  using 
the leverage method. Gaussian process regression (GPR) was used to train the data  using 4 
different kernels. The validation of the model was done using K-fold cross validation and self-
validation. For DFT calculations, a 48-atom supercell of Ti-Zr-Cr Mn-Fe-Ni HEAs with the 
C14 Laves phase was modeled. Ti and Zr were placed at A  sites whereas other elements were 
placed at B sites. For the modeling of high-entropy  hydride, it was assumed that AB2-type 
HEA forms AB2H3-type high-entropy hydride  and hydrogen occupies A2B2 sites ensuring 
minimum repulsion between hydrogen  atoms. For the experimental approach, the synthesis 
of HEAs was done using arc melting equipment. Characterization of HEAs were done using 
X-ray diffraction (XRD) and scanning electron microscope (SEM). Pressure-composition-
temperature (PCT)  isotherms, as shown in Fig. 1 (a), were obtained at different temperatures 
using Sievert type equipment, using van’t Hoff plot as shown in Fig. 1(b), the formation 
enthalpy was  calculated for the HEAs.  

The predicted ΔH through ML algorithm Gaussian process regression using exponential  kernel 
are -32.1 kJ/mol, -27.7 kJ/mol and -22.0 kJ/mol for x = 0.5, 1.0 and 1.5  respectively. The values 
are consistent with experiments and DFT as shown in Fig. 1(c).  It is concluded that for Ti-Zr-
based HEAs, the formation enthalpy becomes less negative  with the increase in Ti content [3]. 
Experimental results indicate that the room  
temperature hydrogen storage performance of HEAs is primarily governed by enthalpy  rather 
than entropy, highlighting enthalpy prediction as the key factor in HEA design. 
This study presents ML as a fast and reliable method for designing HEAs with hydride  
formation enthalpies ranging from −25 to −39 kJ/mol, optimized for room-temperature  
hydrogen storage.  
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Figure 1 (a) Pressure-composition-temperature isotherms and (b) corresponding van’t  Hoff 
plot for TiZrCrMnFeNi HEA. (c) Comparison of ΔH using ML, experiments, and  DFT.  
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The development of proton-conducting electrolyte materials is crucial for the 
realization of the next-generation fuel cells that operate at intermediate temperatures (300-
450°C). Proton-conducting ceramics have traditionally been developed based on trial-and-
error experiments relying on exploration in the analogous system to the well-known 
materials or researchers’ intuition. However, this process is time-consuming because of 
the broad space for searching in chemistry. Here, I present the success in the efficient 
development of novel proton-conducting ceramics, SrSn0.8Sc0.2O3−δ, utilizing small 
experimental data and machine learning [1]. 

We predicted the proton concentration in hypothetical perovskite oxides by the 
Gradient-boosting regressor using the reliable literature data and the experimental data we 
obtained. The database includes 761 data for 65 compounds with various experimental 
conditions (temperature, water partial 
pressure, etc.). By selecting the reliable 
candidate utilizing a descriptor-target map, 
we could choose the SrSn0.8Sc0.2O3−δ  by the 
first experiment trial. The blue plots in 
Figure 1 show the temperature dependence 
of predicted proton concentration, whereas 
the red ones depict those of experimental 
results in SrSn0.8Sc0.2O3−δ. The predicted and 
measured data agreed well, especially at 
high temperatures. The developed materials 
show relatively high proton conductivity at 
~1 mS∙cm−1 at 338°C, demonstrating the 
efficient discovery of novel electrolyte 
material utilizing machine learning 
prediction. 
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Fig. 1 Temperature dependence of predicted 
(blue) and measured (red) proton concentration in 
SrSn0.8Sc0.2O3−δ.[1] 
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In the course of the years the phenomenon known as remodeling has catalyzed the 
attention of an increasing number of scientists working in theoretical, computational and 
applied biomechanics. According to the definition given by Taber [1], remodeling is 
understood as the process by which a living tissue is capable of transforming its internal 
structure. The structural transformations that may occur can be of various kind and, 
although they can all be viewed as the manifestation of the activation of some peculiar 
structural degrees of freedom, the origin of such activation covers events of genetic 
nature, interactions taking place at the cellular and intercellular level, and interactions 
involving the tissue as a whole with its surrounding world.  

Each type of interaction that concurs to the remodeling of a tissue is marked by certain 
mechanical, physical and chemical aspects, which, in turn, are characterized by their 
own time- and length-scales. These become even more important when remodeling 
takes place in biological media that, because of their particular internal structure and 
geometry, can be envisaged as composite materials featuring two or more phases, well 
separated by sufficiently sharp interfaces. In this case, the structural transformations 
can be directly associated with the phases constituting the composite under study, and 
the interphase interactions, occurring at the interfaces, assume a very precise role in 
the determination of the macroscopic behavior of the tissue as a whole.  

Among the various forms that remodeling can take, in this contribution we focus on the 
case in which it is a mere mechanical process. In particular, we consider a bio logical 
composite material constituted by two solid phases that, under the action of mechanical 
stimuli, undergo deformations and inelastic distortions. Although both are studied at the 
scale of each phase (thus, at the scale identified with the microscopic one), the inelastic 
distortions are assumed to represent a structural reorganization that pertains to lower 
scales, not explicitly resolved.  

For our purposes, we consider an “idealized” hierarchical medium, which could be 
regarded as a very essential approximation of bone tissue, and we base our study on 
the hypothesis that the internal structure of the medium is obtained by indefinitely 
repeating a “representative cell”. Hence, the idealized composite has periodic internal 
structure and its “representative cell” has the property of condensing in itself all the most 
relevant pieces of information about its geometry and mechanical behavior. 
Within this setting, we attribute the evolution of the inelastic distortions representing 
remodeling to the generation of irreversible strains in the medium, which could be due, 
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for example, to damage. In the literature, this type of process is often studied in analogy 
with the theory of finite strain plasticity (see, e.g., [2]). In our contribution, however, we 
take a step forward, and we make the fundamental hypothesis that the inelastic 
distortions vary spatially over a length scale covering more representative cells of the 
composite. A case of biomechanical interest in which such a condition is verified is given 
in [3].  

To account explicitly for the spatial variability of the inelastic distortions, we resort to the 
theory of strain gradient plasticity put forward by Gurtin&Anand [4], and we adapt it to 
our context. Above all, given the periodic structure of the composite material at hand, 
we perform the two-scale Asymptotic Homogenization of the model equations. This 
leads to the determination of an effective, homogenized version of the composite, the 
mechanical response of which is characterized by effective elastic and viscoplastic 
parameters. In doing this, we also provide a homogenized version of the flow rule that, 
in the model put forward in [4], governs the evolution of the inelastic distortions.  

To reduce the complexity of the calculations, we consider the particular case of a 
laminated, multi-layered composite material under uniaxial loading and symmetric 
boundary conditions.  

The contents of this contribution and of the related presentation constitute some of the 
main results of a recent work of ours [5].  
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Dislocations and disclinations are one-dimensional lattice defects in crystalline materials, 
often referred to as Volterra defects. They represent the breaking of translational T(3) and 
rotational SO(3) symmetries in periodic structures. Recently, we have modeled Volterra 
defects using differential geometry on a Riemann-Cartan manifold [1-3]. 
 
First Study: Screw Dislocation Modeling [1] 
Our initial work focused on the theoretical modeling and numerical analysis of screw 
dislocations. By expressing Cartan’s first structure equation in variational form and 
solving it numerically using isogeometric analysis, we successfully modeled arbitrary 
dislocation configurations. Additionally, we solved the elastic embedding from the 
intermediate to the current configuration by minimizing the strain energy functional via 
IGA. This approach removed the stress singularity by relaxing the dislocation core 
structure from a Dirac delta function to a continuous function. Our findings revealed 
localized nonlinear stress fields around the dislocation core, with a decay rate scaling as 
1/r2, significantly higher than the classical 1/r scaling. Furthermore, the geometric 
frustration within the dislocation core was expressed in terms of Ricci curvature rather 
than torsion. We demonstrated that the six components of Ricci curvature exhibit 
rotational symmetries consistent with stress symmetries, confirming the long-standing 
hypothesis of stress-curvature duality. 
 
Second Study: Plastic Deformation and Electromagnetic Analogy [2] 
In the second study, we modeled specific dislocation densities using Cartan’s first 
structure equation. Through Helmholtz decomposition, we extracted the plastic part of the 
displacement gradient, a key element of plastic deformation fields. This decomposition 
aligned Cartan’s equations and the divergence-free condition with Ampère’s and Gauss’ 
laws in electromagnetics. Consequently, the Biot-Savart law for static magnetic fields was 
adapted to describe plastic mechanics. This mathematical analogy provided analytical 
solutions for both screw and edge dislocations, independent of their type. Additionally, 
the governing equations for plastic deformation were shown to correspond to the Cauchy-
Riemann equations in complex function theory. The plastic potential, expressed as a 
complex function, displayed multivalued behavior discretized by integer multiples of the 
Burgers vector. These findings underscored the differential topological nature of 
dislocations, beyond their geometric classification. Elastic stress fields generated by 
plastic deformations, derived analytically, were consistent with Volterra dislocation theory, 
linking the stress fields directly to geometric frustration described by Einstein curvature. 
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Third Study: Unified Modeling of Volterra Defects [3] 
In our third study, we developed a mathematical framework for Volterra defects using 
Riemann-Cartan manifolds. Translational and rotational deformations were introduced as 
Volterra deformations along coordinate axes, with Cartan’s moving frame representing 
the plastic deformation field. By applying the Weitzenböck connection to Cartan’s 
equations, we confirmed that dislocation densities align with classical lattice defect 
definitions. For disclinations, the presence of excess torsion or curvature components 
suggested the need for modifications in the Volterra process. The non-uniqueness of 
connections in the Riemann-Cartan manifold allowed flexibility in switching between 
Weitzenböck and Levi-Civita connections, establishing a geometric equivalence between 
dislocations and disclinations. Analytical solutions using the Biot-Savart law 
demonstrated the existence of wedge disclinations at the termini of edge dislocation arrays, 
with edge dislocations acting as the momentum of wedge disclination dipoles. We also 
showed that isolated wedge disclination monopoles can form with semi-infinite edge 
dislocation arrays. The plastic deformation fields of wedge disclinations were shown to be 
conformal, representable by orthogonal coordinate systems. Riemannian holonomy 
quantitatively measured the Frank vector of disclinations, and complex potentials further 
elucidated their topological properties, including jump discontinuities. Analytical stress 
field solutions, consistent with prior studies, highlighted the robustness of this geometric 
framework. 
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Since their initial discovery, luminescent rare earth-doped nanoparticles have garnered 
significant attention. Over the past decade, the field has experienced rapid advancement, 
moving from a fundamental understanding of the photophysical mechanisms underlying 
their nanoscale luminescence, especially upconversion, to their application across a wide 
range of fields, with notable emphasis on biology and medicine. This growing interest is 
largely due to their ability to be excited by near-infrared (NIR) light and their diverse 
emission spectra, which range from the UV to the NIR. Consequently, a single NIR 
excitation can produce either higher-energy luminescence (upconversion) or single-
photon NIR emission (down-shifted luminescence). The upconversion process occurs 
through the sequential absorption of multiple NIR photons via the long-lived 4f electronic 
states of trivalent rare earth ions, making it several orders of magnitude more efficient than 
conventional multiphoton absorption. This is particularly promising for theranostic 
(therapy + diagnostic) applications, where the upconverted light can activate therapeutic 
modalities (e.g. drug release or photodynamic therapy), while NIR luminescence serves 
for diagnostic purposes (e.g. bioimaging and nanothermometry). In this work, we present 
our progress on the synthesis and development of multi-functional, rare earth-doped 
nanoplatforms, demonstrating how their various emissions can be harnessed for biological 
and medical applications. 
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Abstract 
The discovery of novel materials with desirable properties is a critical challenge in materials 
science. Material discovery is often hindered by the complexity and cost of experimental 
trials. To address this, we have developed an automated workflow that integrates 
mathematical modeling, computational algorithms, and data-driven techniques to optimize 
the material discovery pipeline. This platform is designed to systematically identify 
promising candidates with enhanced efficiency. Its versatility is demonstrated through 
applications in diverse material systems, including photo-resisting monomers, diarylethene 
molecules, and austenitic alloys, each exhibiting distinct properties. The results highlight the 
potential of this approach in streamlining material discovery. Future developments will focus 
on extending the platform to more complex systems, further enhancing its capability to tackle 
intricate material design challenges. 
 

Workflow 
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The discovery of new materials is a multifaceted challenge that requires integrating computational 
and experimental techniques. Our platform streamlines this process by incorporating automated data 
analysis, machine learning models, and high-throughput simulations. The workflow begins with a 
small set of experimental data, which serves as the foundation for further computational exploration. 
This data undergoes preprocessing to extract key information relevant to the target properties. The 
above graphical diagram illustrates the workflow, demonstrating how different components interact to 
optimize the material discovery process. 

1. Surrogate Modeling for Efficient Material Screening  
One of the core components of our approach is the construction of a surrogate model. A surrogate 
model acts as an approximation method, particularly useful when the desired outcome is challenging 
to measure or compute directly. By leveraging this model, we can predict the properties of new 
candidate materials with high accuracy, reducing the need for costly and time-consuming 
experiments. This predictive capability is especially beneficial for identifying materials with optimal 
properties in a high-dimensional design space. 

2. Graph-Based Evolutionary Algorithm for Molecular Design   
Another essential submodule of our platform is the graph-based evolutionary algorithm. This 
algorithm systematically mutates molecular structures to generate a large number of candidates in 
each iteration step. Molecules are represented as graphs, where atoms are nodes and bonds are edges. 
The algorithm ensures chemical validity while maintaining diversity in the generated structures. This 
systematic exploration of the molecular design space is critical for discovering promising candidates 
that may not be apparent through manual or random approaches. 

3. Automated Quantum Chemistry Workflow  
To further enhance the efficiency of our platform, we developed an automated Python program that 
controls Turbomole quantum chemistry calculations via the ASE (Atomic Simulation Environment) 
Python wrapper. This program demonstrates the power of automation in handling large-scale 
quantum chemistry calculations. 

4. Performance of Graph Convolutional Neural Network Models   
We constructed Graph Convolutional Neural Network (GCN) model for predicting the properties of 
DFT calculation which hep reduce the computational cost. The results indicate that the model 
achieves sufficient accuracy for real applications. The validation from industry underscores the 
practical value of our approach in supporting real-world material discovery efforts. The integration of 
machine learning into our pipeline not only enhances prediction accuracy but also enables the 
identification of complex structure-property relationships that are otherwise difficult to discern 
through traditional methods. 

Conclusion and Future Work 
Our automated and data-driven workflow presents a promising approach for accelerating material 
discovery. By integrating surrogate modeling, evolutionary optimization, and high-throughput 
quantum chemistry calculations, we can efficiently explore vast chemical spaces and identify novel 
materials with desirable properties. Future work will focus on extending the platform to more 
complex material systems and further refining the predictive models to enhance accuracy and 
generalizability. The success of this approach highlights the transformative potential of automation 
and machine learning in materials science. 
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Self-assembly is a phenomenon in which particles move collectively and form a struc-
ture with order. Controlling self-assembly structures is a key challenge in materials
science to make materials with useful physical properties. This problem also has vari-
ous interesting aspects in fundamental sciences, such as the characterisation of ordered
structures and the mechanism of structural formation from a disordered state. These
issues are hot research topics, particularly in soft condensed matter physics, statistical
mechanics, and nonlinear dynamics[1, 3]. In equilibrium systems, target structures can
be tailored by a functional form of their free energy. Although the quantitative design
of the equilibrium structures is still challenging, several systematic approaches have
been proposed. On the other hand, designing out-of-equilibrium structures remains
elusive, despite the fact that most of the materials’ production processes are in non-
equilibrium states. In this case, the aim is to find an optimal parameter change as a
function of time during the self-assembly process.

Recently, machine learning techniques have been applied to self-assembly problems.
For example, interaction between colloidal particles can be optimised so as to repro-
duce desired structures[2, 4]. Using those approaches, we can figure out what kind of
interaction (symmetry, distance dependence) is necessary to form complex structures,
such as quasicrystals. However, those designs are limited to the static parameters of
the systems.

In this study, we propose the method of optimal feedback control to make a desired
structure[5]. Specifically, we consider the colloidal self-assembly into quasicrystals by
controlling the temperature. Using the framework of reinforcement learning, we esti-
mate the policy, namely, how the temperature should be changed in the next time step
after measuring the current structure. We demonstrate that our estimate policy gener-
ates quasicrystals more efficiently than using the conventional annealing or quenching
method. We also show that we can dynamically stabilise not only stable structures but
also metastable and even unstable structures.
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The basic idea of reinforcement learning is to estimate the best policy to reproduce
the target structure. To do this, we consider a tuple of state st at time t, action a,
Markov transition dynamics of structure P (st+1|st, a), instantaneous reward rt, and
policy π(a|st)(Fig.1). In our study, the policy is whether temperature goes up, stays,
or goes down as a function of the state (Fig.1(B)). Once we estimate the best policy,
we may dynamically change the temperature following the policy, and then obtain the
structure close to the target (Fig.1(A)). We use Q-learning to train the policy. In this
method, we use the Q-function (Q-table) Q(st, a), which is the expected value of future
reward under the action, a. The instantaneous reward is evaluated by comparing the
structure obtained from experiences and the target. Then, we can iteratively update the
Q-function by numerically solving the Bellman’s equation, namely, minimising the dif-
ference between Q(st, a) and its expected value at the next step rt+1+γmaxa Q(st+1, a).

Figure 1. Schematics of reinforcement learning for the self-assembly of
colloidal particles.

The estimated policy for the self-assembly of particles is shown in Fig.1(B). The
particles are in two-dimensional space and are interacting with each other through
five-fold-symmetric anisotropic potential. The target structure is a two-dimensional
dodecagonal quasicrystal. The previous studies revealed that this structure cannot be
reproduced by rapid cooling (quenching), but can be reproduced by slow temperature
change (annealing)[3]. Using our estimated policy, we are capable of reproducing the
quasicrystalline structure in a faster time scale than annealing (Fig.2). The policy in-
dicates that there is a characteristic temperature at which we should switch the policy
of temperature increasing and decreasing. This means that we should first change the
temperature to the transition temperature at which structural fluctuation is enhanced.
Once we obtain the quasicrystalline structure, we should decrease the temperature to
stabilise it.
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of temperature increasing and decreasing. This means that we should first change the
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We emphasise that we did not feed the information of the transition temperature
into reinforcement learning. Still, our method automatically found it and optimised
the policy so that we could reproduce the target more effectively. So far, reinforcement
learning is rarely used in the self-assembly problems, but we believe that our method is
useful for future design of the process of self-assembly, and there is also a deep physics
behind the success of this method.

Figure 2. (A) Temperature change in time using th estimated policy
(grey), annealing (blue), and quenching (orange). The feature of the
structure measuring how it is close to a dodecagonal quasicrystal under
different temperature change.
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Figure 1. Graphical abstract. (a) Laguerre tesselations generalize
Voronoi diagrams with volume, shape and deformation constraints using
a cost function c. (b) Any active point-particle model can be enriched
with volume exclusion and arbitrary deformability properties. (c) The
framework is implemented in 2D and 3D. (d) Laguerre tessellations are
computed as the solution of a semi-discrete optimal transport problem on
a discrete grid. (e) In 3D, a meshing of each cell boundary is computed
in order to implement surface tension effects.

1. Introduction

Many living and physical systems such as cell aggregates, tissues or polycrystalline
materials behave as unconventional systems of particles that are strongly constrained
by volume exclusion and shape interactions. Understanding how these constraints
lead to macroscopic self-organized structures is a fundamental question in particular in
developmental biology. To this end, various types of computational models have been
developed, including phase-fields [18], level-set methods [21], cellular automata [14],
Voronoi tessellations [1], vertex models [15], finite elements methods [5, 19] etc.

In [11], we have introduced a new framework to model particle systems with arbi-
trary dynamical shapes and deformability properties. As a starting point, our method
revolves around an independent volume constraint for each particle. Indeed, although
volume is the first experimentally measurable quantity, most of the approaches men-
tioned above provide little control on it, as it is usually treated as a soft constraint.
As a first description, our method can be seen as a generalized Voronoi tessellation
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method with strict volume constraints. To achieve this goal, we rely on the notion
of Laguerre tessellation which has recently appeared in various different contexts, in
particular the simulation of incompressible fluid flows [4, 13, 16], of crowd motion [17],
the modeling of polycrystalline materials [2, 3, 7] and in computer graphics [10, 6]. Al-
though apparently fundamentally different, these situations are actually related to the
theory of optimal transport which offers both a well-studied mathematical framework
and state-of-the-art GPU implementation techniques.

Although our model is formally a tessellation model, it shares important properties
with point-particle systems, level-set methods and vertex models, which thus also sug-
gests a novel optimal transport point of view for these methods. As a consequence, our
model is remarkably versatile: within the same framework, we can represent individual
particles with arbitrary shapes (as in level-set methods), their collective motion (as in
point-particle systems) and much denser tissue-like aggregates whose dynamics is ruled
by surface tension and other contact-based interactions.

An extended gallery of examples alongside our open source implementation can be
found on the documentation website

https://iceshot.readthedocs.io/

2. Model

We consider a set of i = 1, . . . , N particles, each of them defined by the couple
(xi, vi) of its position, in a given domain Ω of size 1, and its volume. Each particle i is
modeled by a Laguerre cell Li, defined as the following set of points:

(1) Li = {x ∈ Ω, c(x,xi)− wi ≤ c(x,xj)− wj for all j}.
• The function c : Ω×Ω → [0,+∞) is an arbitrary function, called cost function,
which encodes both the shape and the deformability properties of each individ-
ual particle. A typical example to keep in mind is the L2 cost defined as the
square of the distance function: c(x,y) = |x− y|2.

• The Kantorovich potentials w1, . . . , wN are uniquely defined in order to satisfy
the volume constraint vol(Li) = vi.

For a large class of cost functions and any positions xi, the Laguerre tessellation (1)
can be shown to be the unique solution of the following constrained minimization
problem on the set of partitions of Ω:

Tc = min
(Li)i=1,...,N

{
N∑
i=1

∫

Li

c(x,xi)dx, with constraints vol(Li) = vi

}
.

In optimal transport theory, such partition is understood as an assignment problem,
where each point x ∈ Ω is assigned to one of the xi at a cost c(x,xi). This inter-
pretation provides a fast numerical method to compute the Kantorovich potentials wi

[12, 8]. When c is the L2 cost and wi = 0, we recover the standard definition of a
Voronoi diagram. Generalizing the distance function into an arbitrary function c is a
key modeling idea which allows arbitrary shapes, defined as level-sets of the cost func-
tion, and boundaries between neighboring particles, defined by algebraic equations.

In a dynamical framework, we consider the following first-order gradient descent
equation for the particles’ locations:

(2) ẋi = −τi∇xi
Tc = −τi

∫

Li

∇xi
c(x,xi)dx,

62 63



method with strict volume constraints. To achieve this goal, we rely on the notion
of Laguerre tessellation which has recently appeared in various different contexts, in
particular the simulation of incompressible fluid flows [4, 13, 16], of crowd motion [17],
the modeling of polycrystalline materials [2, 3, 7] and in computer graphics [10, 6]. Al-
though apparently fundamentally different, these situations are actually related to the
theory of optimal transport which offers both a well-studied mathematical framework
and state-of-the-art GPU implementation techniques.

Although our model is formally a tessellation model, it shares important properties
with point-particle systems, level-set methods and vertex models, which thus also sug-
gests a novel optimal transport point of view for these methods. As a consequence, our
model is remarkably versatile: within the same framework, we can represent individual
particles with arbitrary shapes (as in level-set methods), their collective motion (as in
point-particle systems) and much denser tissue-like aggregates whose dynamics is ruled
by surface tension and other contact-based interactions.

An extended gallery of examples alongside our open source implementation can be
found on the documentation website

https://iceshot.readthedocs.io/

2. Model

We consider a set of i = 1, . . . , N particles, each of them defined by the couple
(xi, vi) of its position, in a given domain Ω of size 1, and its volume. Each particle i is
modeled by a Laguerre cell Li, defined as the following set of points:

(1) Li = {x ∈ Ω, c(x,xi)− wi ≤ c(x,xj)− wj for all j}.
• The function c : Ω×Ω → [0,+∞) is an arbitrary function, called cost function,
which encodes both the shape and the deformability properties of each individ-
ual particle. A typical example to keep in mind is the L2 cost defined as the
square of the distance function: c(x,y) = |x− y|2.

• The Kantorovich potentials w1, . . . , wN are uniquely defined in order to satisfy
the volume constraint vol(Li) = vi.

For a large class of cost functions and any positions xi, the Laguerre tessellation (1)
can be shown to be the unique solution of the following constrained minimization
problem on the set of partitions of Ω:

Tc = min
(Li)i=1,...,N

{
N∑
i=1

∫

Li

c(x,xi)dx, with constraints vol(Li) = vi

}
.

In optimal transport theory, such partition is understood as an assignment problem,
where each point x ∈ Ω is assigned to one of the xi at a cost c(x,xi). This inter-
pretation provides a fast numerical method to compute the Kantorovich potentials wi

[12, 8]. When c is the L2 cost and wi = 0, we recover the standard definition of a
Voronoi diagram. Generalizing the distance function into an arbitrary function c is a
key modeling idea which allows arbitrary shapes, defined as level-sets of the cost func-
tion, and boundaries between neighboring particles, defined by algebraic equations.

In a dynamical framework, we consider the following first-order gradient descent
equation for the particles’ locations:
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where τi ≥ 0 is an arbitrary gradient step. In fluid mechanics [13, 16, 4], this is the
analog of an incompressibility force exerted on each microscopic fluid element. In the
present context, this motion leads to repulsion interactions between the particles. Other
forces or noise terms can be added in (2), leading to general first-order (stochastic)
differential equations systems on the set of positions xi.

3. Main results

Particles with arbitrary shapes can be realized in our framework by considering
appropriate cost functions. For instance, in dimension 2, any shape defined by a polar
equation r = r0(θ) can be encoded by the cost

c(x,xi) =

(
|x− xi|

r0(θ(x,xi))

)α

.

Here, the exponent α plays the role of a deformability (or softness) parameter which
dictates the penalty for a particle to deform from its base shape.

This model is already sufficient to generate complex 2D tissues (Fig. 2(a)) and poly-
crystalline materials [2]. Then one can extend the base dynamics given by (2) by incor-
porating active forces or random noise to model deformable active particles (Fig. 2(b)).
As a canonical example, one simulates deformable Active Brownian Particles (ABP)
analogously to [20] to illustrate how volume exclusion and active forces affect fluidity
and jamming (Fig. 2(c)). Compared to other computational models, it should be noted
that our intrinsically point-particle formulation fits well into a mean-field setting [9]
which allows the (formal) derivation of coarse-grained Partial Differential Equations.
In the present case, the deformable ABP model leads to the following equation for the
density of particles f(x,n) at a position x and with the orientation n

∂tf(x,n) + c0∇xf = τ∇x · (∇xΦf) +D∆nf,

det
(
I−∇2

xℓ
∗(∇xΦ)∇2

xΦ
)
= f.

The potential Φ(x) is the solution of a nonlinear Monge-Ampère equation, which is
known in other contexts in physics. The function ℓ∗ is the Legendre transform of the
function ℓ(x) = |x|α.

As a more refined model, we propose to incorporate surface tension effects using
the cost and force terms

c(x,xi) =
γi0
Ri

|x− xi|2, F i←j =

∫

Γij

(
γij|κ|+

ηij
|xi − xj|

)
n⃗ dσ.

The force F i←j exerted on xi results from elementary pressure-like interactions de-
pending on the local mean curvature κ along each interface Γij = Li ∩ Lj between
the Laguerre cells i and j, computed in the direction of the inward normal of Li. By
moving the centroid xi away from its interface, the first term reduces the local curva-
ture while the second reduces the interface area. The parameters γij, ηij > 0 have the
dimension of surface tensions. This model satisfies the Young-Dupré relationship for a
two-bubble system. More generally it contains all cell sorting phenomena that are com-
monly used as standardized test cases in computational biology since the work of Chen
and Brodland on the so-called Differential Interfacial Tension Hypothesis (DITH) [5].
While most models in the literature are intrinsically 2D, we showcase the applicability
of our approach in a fully 3D setting (Fig. 2(d)).

63



Figure 2. Main results. (a) 2D materials with straight, curved or
random boundaries. (b) Elongated particles in a box. The model scales
from ten to several thousands of particles in 3D. (c) A system of Active
Brownian Particles showing a transition from a solid state (hexagonal
packing of hard-spheres) to a fluid state (point particles with no shape
constraint) depending on the parameter α. (d) Sorting patterns in 3D
for two cell types with different surface tension parameters. From left to
right: checkerboard, total and partial engulfment, sorting and separation.
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Conductive Polymer Composites (CPCs) are widely used in various technological
applications. They combine filler conductivity with polymer flexibility. Experimental
evidence [1] suggests that critical volume fractions range from 5.5% for small spheres
(radius of 1µm) to 28% for large spheres (radius of the order of 100µm).

In this talk, we present a new off-lattice continuum percolation model that aims
to explain the variation in the percolation threshold for different polymers and fillers.
Our model comprises a contact algorithm and an aggregation algorithm. The contact
algorithm starts with a random arrangement and generates non-overlapping spheres
that are at most in contact. The aggregation algorithm produces giant connected
components critical for the system’s percolative paths. Our approach results in low-
volume fraction clusters that are more similar to experimental ones and exhibit similar
statistical properties.

CPCs, or conductive polymer composites, exhibit a significant positive temperature
coefficient (PTC). This means that as the temperature rises, the polymer expands,
causing a separation between the fillers. Consequently, this leads to transitioning from
an electrical conductor to an insulator. The specific change depends on the distribution
of polymer strain and the bond strength between the filler and the polymer. To inves-
tigate this phenomenon, we employ a mesh-free numerical method [2] to solve the 3D
thermoelastic equations. Additionally, we analyze the resulting electrical conductivity
and calculate the resistivity curve for different thermal strains, which closely resemble
experimental results.
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Nowadays, hydrogen is mainly produced using fossil fuels. Therefore, clean technologies are 
necessary to solve this issue. Photocatalysis is a clean technology for hydrogen production and 
CO2 conversion. However, its efficiency is limited by the utilized catalyst, which requires high 
light absorbance, appropriate band structure, and abundant active sites. High-entropy oxides 
(HEOs) have recently shown great potential as photocatalysts since 2020 [1]. Combining five 
or more cations gives these materials tunable composition and properties. The large number of 
elements increases the entropy, stabilizing them in a single or dual crystal structure. In addition, 
the complex mixture leads to novel photocatalytic properties due to the cocktail effect [1].  
Despite of their popularity, few studies are clarifying the effect of electronic structures and 
differences with conventional photocatalysts.   
 
The current investigation aimed to clarify the characteristics of the band structure and active 
sites of the first high-entropy photocatalyst, TiZrHfNbTaO11, using theoretical calculations and 
experiments. The synthesis of this sample started with the mixture of metallic powders using 
a high-pressure torsion method followed by oxidation at 1373 K for 24 h. Subsequently, the 
crystal structure, optical properties, and photocatalytic activity were examined. Using 
crystallographic information, the two phases found were modeled using special quasi-random 
structures (SQS). The powder diffraction patterns were compared with the experimental XRD 
profiles and further optimized. The electronic structure and active sites were studied in detail 
using density functional theory calculations performed using the Vienna Ab-Initio Simulation 
Package (VASP). 
 
Results indicated that the HEO has a band gap comparable to famous photocatalysts such as 
TiO2. However, the mixture of elements provides infinite active sites. Our study shows that 
water adsorption in different sites demonstrates that cations with lower electronegativity, such 
as Hf and Zr, provide stronger adsorption sites (Fig, 1). In addition, highly electronegative 
cations enhance the change transfer to the water molecules, improving efficiency. This finding 
suggests a novel strategy to design efficient high-entropy photocatalysts incorporating cations 
with different electronegativities [2].  
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Fig. 1. Charge distribution between the surface of the monoclinic phase of TiZrHfNbTaO11 
and the water molecule placed on (a) hafnium, (b) titanium, and (c) niobium. Eads refers to the 
adsorption energy, and χ to the electronegativity. 
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Wedge disclinations play a fundamental role in determining the mechanical behavior of
two-dimensional materials like graphene, and their continuum-level description allows
for predictive modeling of stress and deformation patterns around these defects. We
present both analytical and numerical results for kinematically incompatible Föppl–von
Kármán (FvK) plates [1] able to model, within the continuum framework, graphene
membranes in presence of defects.
Assuming the plate is free of in-plane tractions and clamped in the out-of-plane direc-
tion, we rigorously prove in [2] the existence and regularity of solutions by extending
the work of Ciarlet [3], originally developed for kinematically compatible plates. Fur-
thermore, building upon the formulation in [4], we introduce a fully variational Interior
Penalty C0-Discontinuous Galerkin (IPCDG) formulation, identify the key dimension-
less parameters of the problem, and perform numerical experiments by varying these
parameters over appropriate ranges.
In our model, the kinematic incompatibility stems from the presence of Volterra wedge
disclinations in the underlying crystalline lattice. These defects occur when a wedge-
shaped sector of the crystal is either removed (resulting in a positive wedge disclination)
or inserted (resulting in a negative wedge disclination), which in turn produces a dis-
continuity in the angular orientation of the lattice. In the continuum model, their
effects are captured by a discrete distribution of Dirac delta measures.
The mathematical formulation of a kinematically incompatible, isotropic FvK plate
consists of two coupled, nonlinear, fourth-order elliptic partial differential equations in
the two scalar unknowns: the Airy stress potential v and the out-of-plane displacement
w. Let Ω ⊂ R2 denote the mid-plane of the plate in its rest configuration, let N > 0
be the number of disclinations, {y(1), . . . , y(N)} ⊂ Ω their positions, and si ∈ R the
corresponding Frank angles, then the equations we study are:

(1)





D∆2w = [v, w] + p in Ω,

1

Eh
∆2v = −1

2
[w,w] + ϑ in Ω,

where

(2) ϑ :=
N∑
i=1

siδ(x− y(i)),
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and where ∆2 and [·, ·] denote, respectively, the biharmonic and the MongeAmpère
operators. They are defined as

∆2f :=
∂4f

∂x4
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+ 2
∂4f

∂x2
1∂x

2
2

+
∂4f
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2
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+
∂2f

∂x2
2

∂2g

∂x2
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− 2
∂2f
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∂2g

∂x1∂x2

.

Here, E is the Young’s modulus, h is the plate thickness, and D := Eh3/(12(1− ν2))
is the flexural stiffness, with ν representing the Poisson ratio. The function p : Ω → R
models an external transverse load.
Using the direct method in the calculus of variations and following the strategy estab-
lished by Ciarlet [3] for kinematically compatible plates (i.e., plates free of defects),
we rigorously prove that, provided ∂Ω is Lipschitz and p ∈ H−2(Ω), there exists at
least one pair of functions (v, w) ∈ H2

0 (Ω) × H2
0 (Ω) that solves Eq. (1). Moreover,

we establish the regularity of the solutions under the assumptions that ∂Ω ∈ C4,γ for
γ ∈ (0, 1) and p ∈ Lk(Ω) for k ∈ [1,∞]. These existence and regularity results provide
a robust mathematical foundation for the numerical approximation of the model, they
ensure that problem (1) is well-posed and that the stress field is smooth away from the
defects.
By exploiting the energy functional associated with Eq. (1), we extend the IPCDG
formulation of [4] and propose a compact IPCDG finite element formulation in which
the penalization terms are directly embedded into a new energy functional. In our
implementation, the weak IPCDG formulation of the problem naturally emerges from
the first variation of this functional.
After identifying the key dimensionless parameters of problem (1), we explore complex
configurations of multiple disclinations, where the defects trigger out-of-plane displace-
ments and lead to the formation of wrinkles (Fig. 1).

Figure 1. LEFT: non-dimensional out-of-plane displacement w. CEN-
TRE: non-dimensional Cauchy stress field in the radial direction σnn.
RIGHT: Gaussian curvature. Black (white) crosses indicate the loca-
tions of positive (negative) disclinations.

An immediate application of this study lies in the continuum modeling of graphene
sheets containing wedge disclinations in their crystalline lattice.

.
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plates: analysis and numerics, arXiv preprint, arXiv:2501.15959, (2025).

[3] P. G. Ciarlet, Mathematical Elasticity, Volume II: Theory of Plates, Studies in Mathematics
and Its Applications, vol. 27, Elsevier, North-Holland Publishing Co., Amsterdam (1997).

[4] M. Brunetti, A. Favata, A. Paolone & S. Vidoli, A mixed variational principle for the
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Computational materials science relies on Kohn-Sham (KS) Density Functional Theory 
(DFT) [1] to obtain electronic structures and associated level of insight into phenomena, 
as well as to benchmark force fields and other larger-scale approaches. While the accuracy 
of KS is often either sufficient (e.g. accuracy of structure optimization) or can we 
effectively lived with (e.g. bandgap underestimation with GGA functionals) for most 
applications of computational material science, the formally cubic scaling of KS DFT 
limits routinely doable calculations to a few hundred atoms and prevents its direct 
application to intrinsically large-scale phenomena such as microstructure, large interfaces 
etc. In other words, in many practical applications, it is not the accuracy achievable with 
DFT exchange-correlation functionals but CPU cost and its scaling that are the bottleneck 
of achieving more realistic materials modeling. 

Methods to address this bottleneck include semiempirical methods, order-N DFT, 
and orbital-free (OF-) DFT. In this presentation, I will focus on the semiempirical Density 
Functional Tight Binding (DFTB) [2, 3] method and the ab initio OF-DFT [4] method. 
DFTB is promising in particular for organic materials and ceramics, for many of which 
available approximations already provide DFT-like accuracy. With about three orders of 
magnitude speedup vs. KS-DFT, calculations with 103-4 atoms can be routinely done with 
DFTB. OF-DFT is already sufficiently accurate for light metal to be used for applied 
calculations. It is near-linear scaling with small CPU cost prefactors, enabling routine abb 
initio calculations with 106 atoms and beyond.  

Both methods, however, suffer from limitations on the range of applicability. 
DFTB requires parameter sets for all pairs of atoms, and sufficiently accurate DFTB 
parameters are still not available for many materials. OF-DFT requires a kinetic energy 
functional (KEF), and sufficiently accurate KEFs (that would allow their use in 
applications instead of KS DFT) are not available for most materials. 

I will present recent efforts in our laboratory in improving the accuracy and 
extension of the range of applicability of DFTB and OF-DFT with the help of machine 
learning. For DFTB, I will introduce a DFTB - molecular mechanics hybrid method 
(DFTB-MM), whereby interatomic Slater-Koster parameters for some pairs of atoms (e.g. 
unavailable parameters) are replaced with interatomic potentials, whose functional form 
can be machine-learned [5]. I will show that when interatomic interactions modeled at the 
MM level do not significantly affect key mechanistic details of the electronic structure, 
the substitution with a MM potential allows obtaining correct structures, electronic 
structures, as well as electronic excitation spectra [6], opening way for larger (than doable 
with KS DFT) scale calculations on materials where existing parameterizations may not 
be sufficiently accurate (Figure 1).  
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Figure 1. Left: zoom-in on a silicon-silica-titania interface (relevant for silicon-
perovskite tandem solar cells) that requires electronic structure-level modeling on 
the scale of at least 103 atoms which was facilitated by the use of DFTB-MM with 
Ti-Si interactions modeled with a machine-learned potential. Right: the Ti-Si 
interatomic potential curve. 

 
For OF-DFT, I will show that machine-learning of a KEF requires extremely high 

ML accuracy, exemplified by correlation coefficients between reference values (computed 
with KS DFT) and model-predicted values that need to be as high as 0.99999 (“five nines”) 
– much beyond levels of accuracy required in other ML applications such as materials 
informatics or ML force fields. I will show that such accuracy is in fact obtainable. I will 
highlight issues related with extremely uneven data distributions faced in this application 
[7, 8]. I will present examples of machine learning of (space-dependent) kinetic energy 
densities (KED) [7, 8, 9] as well as kinetic energies [10], ultimately arriving at a machine-
learned KEF that is able to reproduce energy-volume curves of hundreds of materials [11] 
(Figure 2).  
 

 
Figure 2. Examples of energy-volume curves of materials obtained with a machine-
learned kinetic energy functional (red curved) compared to KS DFT reference (blue 
curves). Corresponding values of the curvature at the equilibrium geometry are also 
given (𝑉𝑉!"

#!$
#%!

 where V0 is the equilibrium volume).  
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Abstract 

Cellulose forms highly crystalline fibers by assembling the molecular chains due to strong 
molecular interactions. Its poor processing performance is an issue since water or general 
organic solvents cannot dissolve the cellulose fibers. The objective of this study is to gain a 
deep insight into the dissolution mechanism by elucidating the dissolution state at the 
microscopic level. Extending the relationship between the number of hydrogen bonds and the 
solubility in a previous study1), we attempted to design solvents with high cellulose 
dissolving power by integrating high-throughput molecular dynamics (MD) simulation and 
machine learning (ML). The ML model was used for generating 3,000 chemical structures of 
imidazolium-based ionic liquids to improve the solubility. Furthermore, the interaction free 
energy between cation and anion in ionic liquids was found as the metric to characterize 
cellulose solubility. 
 

Introduction 
Cellulose is a highly crystalline fiber composed of molecular chains assembled by 

complex and strong intermolecular interactions, which makes it insoluble in water and 
common organic solvents and makes it difficult to process for industrial usage. The objective 
of this study is to deepen the dissolution mechanism of cellulose by analyzing the dissolution 
state at the microscopic level. Extending the 
relationship between the amount of 
intermolecular hydrogen bonding and solubility 
based on molecular dynamics (MD) 
calculations1,2), we attempted to design solvents 
with high solubility.  
 

Methods 
A crystal model of a cellulose fiber fragment was 
constructed from the crystal 
structure data of cellulose Iβ 
type3) (Figure 1). MD 
calculations were performed 
under the conditions of constant 
temperature (400 K), constant 
pressure (1 bar), and time (250 
ns) for the system with an 
imidazolium-type ionic liquid 
surrounding the crystal model, 
using AMBER22 software.  
 
 

 
Figure 1. Projection of the ab base-plane of 
cellulose Iβ crystal model (10-chain × 10-mer) 

 
Figure 2. High-throughput MD simulation and ML prediction cycle 
Starting from MD simulation, the solubility indexes were calculated. Then, 
molecular generation was performed based on learned surrogate models. 
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The modified GAFF was applied to the ionic liquid force field parameters. A graph 
convolutional neural network (GcNN) model using PyTorch geometric4) was constructed. In 
addition, a reverse analysis using a genetic algorithm by EvoMol5) was performed to 
enumerate the compounds that decrease HB (number of hydrogen bond between cellulose). 
The anions constituting the ionic liquids were set as chloride ions, and the chemical 
structures of the cations were modified.  
 

Results and Discussion 
 We positioned the solubility prediction by MD calculation in the previous studies1,2) as a 
fundamental calculation technique, created predictive models for those calculations, and 
performed a reverse analysis to see what kind of candidate materials could be obtained if the 
MD calculation itself was accelerated. The cycle shown in Fig. 2 can be repeated for a wider 
range of screening faster than the MD search alone, and about 3,000 chemical structures were 
obtained. The coefficient of determination (R2) for HB was 0.64. As shown in Fig. 3-(a), the 
prediction accuracy decreased when HB was less than 50% and did not improve throughout 
the cycle. The free energy change of cation-anion interaction (PMF1) and cellulose-anion 
interaction (PMF2) were 
calculated from the 
radial distribution 
function as quantities 
related to HB. The R2 
values were 0.92 
(PMF1) and 0.88 
(PMF2) (Fig. 3-(b), (c)). 
As shown in Figure 4, 
HB was also found to be 
strongly related to the 
self-diffusion 
coefficients (D) of 
PMF1, PMF2, and 
anions. In particular, the 
extreme decrease in HB 
(increase in solubility) 
and the simultaneous 
increase in D at certain 
values of PMF1 can be 
interpreted as the 
existence of a threshold 
for efficient dissociation 
of the cations and anions 
of the ionic liquid to 
function as a cellulose solvent. In particular, the lower PMF2 and cellulose-anion interaction 
energy change (stronger interaction), the lower HB (increased solubility), which can be 
interpreted because of the dissolution mechanism by cellulose-anion interaction presented in 
the previous study1).  
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Figure 3. Prediction error plot of HB, PMF1 and PMF2 predictors 
(a), (b) and (c) are prediction error plots of HB, PMF1 and PMF2, respectively. The 
horizon axis indicates the data of MD simulation. The vertical axis indicates the GcNN 
prediction. The circle, triangle and star shaped points are the data of training, validation, 
and test, respectively. 

 
Figure 4. Scatter plot of HB vs. PMF1 and PMF2 
The left and right pictures are scatter plots of HB versus PMF1 and PMF2, respectively. 
The D values of diffusion constants (anion) is used for scale bar. 
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Abstract: Greenhouse gas (GHG) emissions have raised the Earth’s temperature by ~ 
1 °C since 1900 and global warming has become an environmental problem of the 
utmost importance. To tackle global warming world leaders have established the Paris 
Agreement, which is an international treaty that brings 196 parties together to take 
action to prevent global temperature increases from exceeding 2 °C [1]. However, GHG 
emissions and atmospheric carbon dioxide levels continue to rise and have surpassed 
420 ppm and are presently more than 50% higher than pre-industrial levels [2]. The 
global energy-related CO2 emissions were 37.4 gigatonnes (Gt) in 2023 and the rapid 
deployment of carbon capture technologies is needed to realize the goals established 
in the Paris agreement [3]. Roadmaps for achieving net zero emissions reported by the 
IEA estimate that global carbon capture rates must increase to 1.6 GtCO2/y and 7.6 
GtCO2/y, by 2030 and 2050, respectively [4].  
CO2 capture processes can be classified as point source methods, such as post-
combustion, pre-combustion and oxyfuel combustion, or direct air capture (DAC) 
methods [5-7]. Low- temperature DAC (LT-DAC) processes, which can be deployed at 
any location, are particularly attractive because the adsorption and desorption phases 
can occur stepwise in a single unit. Furthermore, LT-DAC processes can be operated 
at temperatures as low as 100 ° C and can be driven using low-grade thermal energy 
sources [8]. Nevertheless, further advancements are needed to prove LT-DAC is a 
viable technology that can be scaled in a cost-effective manner to contribute to 
achieving net zero emissions on a global scale.  
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Optimization of DAC processes is highly complicated due to the large number of design 
parameters and variation in operating environments. Important design choices include 
the type of adsorbent, the adsorbent bed configuration and operating conditions, input 
energy sources, and the environment in which the capture system will be deployed [9, 
10]. Machine  
learning (ML) can provide a great opportunity to improve the performance of DAC 
systems [11, 12]. However, implementing ML for DAC is challenging considering the 
broad scope of the key performance indicators, a few of which include: the density, 
specific surface area, porosity, capacity, of the adsorbent, the geometry of the system 
and operating conditions such as flow rates, compositions, temperatures and 
pressures. Furthermore, the acquisition of accurate and reliable data under known 
conditions presents an even greater challenge.  
This work presents examples wherein ML has been used to advance carbon capture 
processes and discusses the potential for optimizing DAC systems via ML-based 
approaches. The progress and challenges concerning data acquisition for ML is also 
presented with an extensive example provided for experimental results from CO2 
breakthrough curves [13-15]. This work progresses the development of a data quality 
framework in support of ML applications for optimizing DAC processes, which can have 
important implications for achieving widespread, cost-effective, carbon capture at 
global scales.  
 
Keywords: direct air carbon capture, machine learning, breakthrough curves, negative 
emission technology.  
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Carbon dioxide (CO2) capture based on the sorption/desorption of gases by solid ma-
terials can significantly reduce the energy penalty and equipment costs associated with
state-of-the-art CO2 capture technologies, such as amine scrubbing (1–6, 8 ). However,
these materials suffer from low tolerance to humidity and impurities, low CO2 ad-
sorption capacities, high capture costs, slow kinetic rates, the requirement of external
energy for desorption, and poor CO2 selectivity. The existing CO2 sorption/desorption
materials either adsorb CO2 (a) physically, resulting in low selectivity and capacity,
or (b) chemically, which, although results in high selectivity and capacity, requires
external energy (typically heat generated from fossil fuel combustion) to desorb the
strongly adsorbed CO2 and regenerate the material. Thus, a large barrier to realizing
CO2 sorption/desorption technologies commercially is the lack of the ‘ideal’ material,
which adsorbs CO2 selectively and readily desorbs CO2 with minimal energy input
when required. In this regard, the development of new methods of capturing CO2 us-
ing materials under external stimuli, such as light irradiation and electric fields, plays
a pivotal role in improving the energy efficiency of carbon capture technologies.

This research focuses on the development of solid adsorbents that leverage a pho-
todesorption mechanism to capture CO2 with remarkably high efficiency (7, 8 ). These
materials readily adsorb CO2 in the dark or low-illumination environments and subse-
quently photo-desorb captured CO2 when exposed to incident light. By utilizing light
as a “photoswitch” to trigger CO2 desorption, the need for energy-intensive pressure
or temperature alteration is mitigated. Herein, a combination of computational and
experimental methods are employed to develop and validate the photo-driven carbon
capture concept. Density Functional Theory (DFT) calculations were utilized to sys-
tematically screen a range of metal candidates, identifying those exhibiting favorable
CO2 adsorption characteristics and the potential for efficient photodesorption (8 ).

A custom-built experimental setup capable of measuring CO2 breakthrough curves
under illuminated conditions was carefully designed and assembled to validate the com-
putational predictions. The quantification of CO2 adsorption capacities and the ability
to capture CO2 using light as a “photoswitch” is assessed. Experiments are conducted
for a variety of sorbent materials including pure metal supported on aerogel, amine-
functionalized silica, and zeolites. The results demonstrate incident light can facilitate
CO2 capture for some adsorbents, which has important implications for lowering the
“energy penalty” associated regenerating adsorbents and for the development of solar-
driven CO2 capture technologies.

Subsequent steps in this research will involve exploring various metal-alloys and
mixed-metal oxide systems, with the goal of further enhancing CO2 adsorption and
photodesorption capabilities, as well as optimizing the energy efficiency and overall cost
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effectiveness of the process. Moreover, a comprehensive Life Cycle Assessment (LCA)
to evaluate the environmental and economic feasibility of scaling up these materials for
CO2 capture will be conducted. This study establishes a framework for the continued
enhancement and application of light-activated sorbents within scalable carbon capture
and regeneration systems.

Figure 1. CO2 adsorbing on Zn surface in neutral state and desorbing
when the surface is positively charged.
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The urgent need to achieve net-zero emissions by 2050 has intensified interest in Direct 
Air Carbon Capture and Storage (DACCS) technologies as a crucial negative emissions 
strategy. While DACCS shows promise for atmospheric carbon dioxide removal, 
comprehensive understanding of its life cycle environmental impacts across different 
geographical contexts and system configurations remains limited. Building on prior life 
cycle assessments (LCA) of DACCS, including the work of Madhu et al., (2021), this study 
presents a detailed LCA of low-temperature (LT) DACCS systems, examining regional 
variations in performance and the critical role of energy system integration in 
determining overall life cycle efficiency. 
 
Our analysis employs a cradle-to-grave LCA approach following ISO 14040 and 14044 
standards, utilizing OpenLCA software with the Ecoinvent 3.10 database and ReCiPe 
Midpoint (H) impact assessment method. We evaluate three distinct DACCS system 
configurations: (1) grid electricity with natural gas heating, (2) grid electricity with solar 
thermal heating, and (3) grid electricity with solar thermal and auxiliary electric heating. 
The study encompasses seven regions with diverse energy profiles: four Canadian 
provinces (Quebec, Ontario, New Brunswick, Alberta), Switzerland, Greece, and China. 
This geographical spread allows us to assess how varying grid electricity mix and solar 
resource availability influence system performance. 
 
The results reveal substantial variations in greenhouse gas (GHG) emissions across 
configurations and regions. Solar-only systems consistently demonstrate superior 
performance, with emissions ranging from 79 kg CO₂-eq/tCO₂ captured in Quebec to 
366 kg CO₂-eq/tCO₂ in China. The integration of auxiliary heating increases emissions 
by an average of 253 kg CO₂-eq/tCO₂ across all regions, while natural gas-based systems 
show the highest emissions, ranging from 283 to 582 kg CO₂-eq/tCO₂. These variations 
primarily stem from differences in grid carbon intensity and local infrastructure 
requirements. 
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Process contribution analysis identifies critical emission sources across system 
configurations. The solar collector system contributes 3-40% of total emissions in solar-
only configurations, with regional variations reflecting differences in manufacturing 
emissions and installation requirements. Infrastructure accounts for 6-27% of emissions 
across all configurations, while CO₂ transport and storage processes contribute 15-56% 
of total emissions, highlighting the importance of existing infrastructure in determining 
system performance. 
 
Life cycle efficiency calculations demonstrate the superior carbon removal effectiveness 
of solar-based systems, achieving efficiencies between 92% (Quebec) and 63% (China), 
compared to 42-72% for natural gas systems. Sensitivity analysis of regeneration energy 
requirements reveals that for every 1 GJ/tCO₂ increase, emissions rise by approximately 
8 kg CO₂-eq/tCO₂ in solar-only systems, 45 kg CO₂-eq/tCO₂ with auxiliary heating, and 
168 kg CO₂-eq/tCO₂ in natural gas systems, emphasizing the crucial importance of 
minimizing regeneration energy requirements. 
 
Our findings have significant implications for DACCS deployment strategies and 
technology development. The analysis suggests that optimal deployment locations 
should prioritize both solar resource availability and grid cleanliness, with potential 
emissions reductions of up to 290 kg CO₂-eq/tCO₂ achievable through careful site 
selection and system configuration. The substantial efficiency penalties associated with 
natural gas systems indicate their deployment should be limited to scenarios where solar-
based heating is impractical. Our analysis aligns with and expands upon findings from 
Cooper et al., (2022), Qiu et al., (2022), and Terlouw et al., (2021), reinforcing the 
importance of renewable energy use in minimizing greenhouse gas emissions and 
resource trade-offs.  
 
Our comprehensive analysis highlights the importance of adopting a system-level 
approach (careful system design and siting decisions) to DACCS deployment. While 
heating system selection remains crucial, the substantial contributions from 
infrastructure, transport, and storage processes indicate that optimization efforts must 
address all system components. These insights can inform policy decisions and 
deployment strategies aimed at maximizing carbon removal efficiency while minimizing 
environmental impact aligned with global net-zero emissions targets. 
 
 
Keywords: direct air carbon capture and storage (DACCS), energy system integration, global warming 
potential (GWP), life cycle assessment (LCA), life cycle efficiency, negative emissions technology (NET), 
solar thermal energy 
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Abstract: The increasing levels of atmospheric CO2 necessitate the development of 

effective carbon capture technologies to mitigate climate change. This study explores 

the optimization of transition metal alloy adsorbents for CO2 capture using a 

combination of Density Functional Theory (DFT) and Machine Learning (ML). Bimetallic 

surfaces offer a promising avenue for enhancing adsorption selectivity and efficiency, 

leveraging ligand and strain effects to improve CO2 affinity. However, the 

computational cost associated with high-throughput DFT calculations remains a 

significant bottleneck.  
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To address this challenge, we integrate ML models to accelerate the prediction of 

adsorption energies and structural relaxations. We develop a dataset of 75 transition 

metal alloys, analyzing adsorption characteristics through DFT simulations performed 

using Quantum ESPRESSO and the Vienna Ab initio Simulation Package (VASP). 

Machine learning models, including Graph Neural Networks (GNNs) such as 

DimeNet++, SchNet, and EquiFormerV2, are trained on these datasets to predict 

adsorption behaviors with reduced computational overhead.  

Results demonstrate that ML models can approximate DFT-calculated total energies 

with a mean absolute error (MAE) of ~0.425 eV, significantly reducing computational 

time from days to minutes. These findings highlight the potential of ML-driven 

approaches in accelerating material discovery for carbon capture applications.  
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Human breath contains over 3000 volatile organic compounds, abnormal concentrations of 
which can indicate the presence of certain diseases. Recently, metal-organic framework 
(MOF)-metal oxide composite materials have been explored for chemiresistive sensor 
applications, however their ability to detect breath compounds associated with specific diseases 
remains unknown. In this presentation, I will present our new high-throughput computational 
protocol for evaluating the sensing ability of MOF-metal oxide towards small organic 
compounds.1 This protocol uses a cluster-based method for accelerated structure relaxation, 
and a combination of binding energies and density-of-states analysis to evaluate sensing 
ability, the latter measured using Wasserstein distances. We apply this protocol to the case of 
the MOF-metal oxide composite material NM125-TiO2 and show that it is consistent with 
previously reported experimental results for this system. We examine the sensing ability of 
NM125-TiO2 for over 100 human-breath compounds spanning 13 different diseases. Statistical 
inference then allows us to identify ones which subsequent experimental efforts should focus 
on. The work provides new tools for computational sensor research, while also illustrating how 
computational materials science can be integrated into the field of preventative medicine. 
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Catalysts are essential for chemical transformations in energy conversion, environmental 
sustainability, and material synthesis. While early catalyst discovery relied on empirical 
methods, the development of quantum chemical calculations, particularly density 
functional theory (DFT) method, has significantly advanced rational catalyst design. 
However, despite its accuracy, DFT calculations remain computationally expensive, 
especially for large and complex catalytic systems such as supported metal nanoparticles 
(NPs). To bypass these computational costs, descriptor-based approaches have been 
developed to correlate geometrical and electronic properties with catalytic performance. 
Among these, the d-band center model, which represents catalytic activity through a single 
energy quantity, has proven insufficient, particularly in nanoparticle systems [1-3], where 
the large number of adsorption sites introduces significant electronic and structural 
variability. 
 
The electronic structure of materials fundamentally determines their chemical and physical 
properties. The Density of States (DOS) provides a detailed distribution of electronic states 
as a function of energy, offering critical insights into catalytic activity. When an adsorbate 
interacts with a catalyst surface, electron transfer occurs at specific energy levels within 
the material’s DOS, directly influencing adsorption stability, molecular activation, and 
subsequent reaction pathways. Identifying the specific DOS regions responsible for these 
interactions is crucial for both fundamental understanding and rational catalyst design. To 
address this challenge, the Electronic Structure Decomposition Approach (ESDA) was 
developed as a systematic framework to identify the DOS regions governing catalytic 
activity [3]. 
 
In this study, ESDA is applied to Ru nanoparticles (Ru NPs), key catalysts in Fischer-
Tropsch (FT) synthesis, where CO and H2 are converted into liquid hydrocarbons. While 
Ru is highly efficient at activating CO, its scarcity and high cost limit its large-scale 
industrial application. Thus, understanding what makes Ru uniquely effective in CO 
activation is essential for designing alternative catalysts or optimizing Ru-based systems. 
Using ESDA, the electronic structure of Ru NPs is decomposed into energy-resolved DOS 
regions to identify the key electronic features governing CO adsorption and activation. 
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Within the ESDA framework, the DOS was systematically partitioned into 1 eV-separated 
energy regions, categorizing them into s-, p-, eg-, t2g-, and d-states of Ru atoms before CO 
interaction. Specifically, DOS contributions from Ru atoms at the adsorption site (AS), 
surface nearest neighbors (sNN), and subsurface nearest neighbors (bNN) within the 
energy range of −7 to +2 eV were analyzed. These energy-resolved DOS areas served as 
input descriptors in multiple linear regression models, trained on DFT-calculated CO 
adsorption energies (Eads) and C–O vibrational frequencies (νCO), the latter serving as a 
measure of CO bond activation. Figure 1 illustrates the relationship between DOS 
contributions of Ru atoms (AS, sNN, bNN) and Eads and νCO.  
 

  
Figure 1. (a) Illustration of isolated and supported Ru NPs, highlighting the Ru atoms at 
the AS, sNN, and bNN and (b) representation of Eads and νCO as a linear combination of 
the DOS contributions from these Ru atoms. 
 
Through this approach, CO adsorption and activation trends across different Ru NPs have 
been accurately predicted, enabling a transition from electronic structure analysis to 
catalyst optimization. Figure 2 illustrates the DOS regions governing νCO.  
 

  
Figure 2. DOS regions governing C–O bond activation upon CO interaction at the top, 
bridge, threefold (3F), and fourfold (4F) sites of isolated Ru NPs. 
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Following the identification of the DOS regions responsible for CO activation, catalyst 
performance was further engineered by modifying the Ru electronic structure. To achieve 
this, α-Al2O3(0001) was introduced as a support material, as it is known to increase Ru 
dispersion, improve thermal stability, and provide interfacial active sites that enhance 
catalytic activity. The Ru/Al2O3 interface was hypothesized to modify the electronic 
environment of Ru, potentially promoting CO activation. Using ESDA, the impact of 
Al2O3 is predicted without requiring additional DFT calculations, enabling a rapid and 
cost-effective analysis of support effects. The results indicate that CO activation is 
enhanced at the Ru/Al2O3 interface, particularly at fourfold (4F) sites, where the C–O bond 
length increases and the vibrational frequency decreases by 15%, as shown in Figure 3. 
The redshifted vibrational frequencies indicate a weakened C–O bond, which may 
correspond to a lower activation energy and facilitated dissociation. This improvement is 
highly relevant for FT synthesis, where efficient CO dissociation directly enhances 
hydrocarbon formation. 
 
 

  
Figure 3. Influence of α-Al2O3(0001) on νCO upon CO interaction at the top, bridge, 3F, 
and 4F sites of Ru NPs  
 
Beyond simply analyzing electronic interactions, ESDA provides a direct strategy for 
catalyst optimization. Unlike conventional descriptor-based approaches, ESDA enables 
the precise identification and modification of DOS regions to enhance catalytic 
performance, offering a quantitative framework for rational catalyst design. Furthermore, 
pretrained ESDA models eliminate the need for extensive DFT calculations, significantly 
accelerating catalyst screening and materials discovery. ESDA is 4.8 times more efficient 
than DFT for predicting the impact of Al2O3, and when training data is available, it 
accelerates prediction speed by up to 22.6 times. 
 
In summary, ESDA has been demonstrated to be not only a powerful analytical tool but 
also a predictive framework for catalyst engineering. By decoding the electronic structure 
of Ru NPs and subsequently engineering their catalytic activity via support interactions, a 
new pathway for rational catalyst design is established. While this study focuses on Ru-
based catalysts for FT synthesis, the ESDA methodology is broadly applicable to other 
catalytic systems. As ESDA continues to evolve, its integration with high-throughput 
computational screening and data-driven catalyst discovery could transform 
computational catalysis, accelerating the development of next-generation catalytic 
materials for sustainable energy and industrial applications. 
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Basic Cells special Features and Their Influence 
on Global Transport Properties of Long Periodic 

Structures  

Luna R. N. Oliveira & Marcos G. E. da Luz  
Departamento de Física, Universidade Federal do Paraná-UFPR, Curitiba-PR  

In this contribution, we address quantum transport in long periodic arrays whose basic 
cells, localized potentials U(x), display certain particular features. We investigate under 
which conditions these “local” special characteristics can influence the tunneling 
behavior through the full structure. As the building blocks, we consider two types of 
U(x)s: combinations of either P¨oschl–Teller, U0/ cosh2[α x], potentials (for which the 
reflection and transmission coefficients are known analytically) or Gaussian-shaped 
potentials. For the latter, we employ an improved potential slicing procedure using basic 
barriers, like rectangular, triangular and trapezoidal, to approximate U(x) and thus 
obtain its scattering amplitudes. By means of a recently derived method, we discuss 
scattering along lattices composed of a number, N, of these U(x)s. We find that near-
resonance energies of an isolated U(x) do impact the corresponding energy bands in 
the limit of very large Ns, but only when the cell is spatially asymmetric. Then, there is 
a very narrow opening (defect or rip) in the system conduction quasi band, 
corresponding to the energy of the U(x) quasi-state. Also, for specific U0’s of a single 
P¨oschl–Teller well, one has 100% transmission for any incident E > 0. For the U(x) 
parameters rather close to such a condition, the associated array leads to a kind of 
“reflection comb” for large Ns; |TN (k)|2is not close to one only at very specific values of 
k, when |TN |2 !" #$" %&'())*+" ,-." ./(01).2" -.3." 42.." %&5$" 67" 8" &))92,3(,&'5" -:;" ,-."
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Figure 1. (a) Illustration of a building block formed by two rectangular 
barriers, with widths w1, w2 and heights U˜1, U˜2. Graph of the transmis 
sion probability in terms of the wavenumber k, when we consider (b) a 
symmetrical and (c) an asymmetrical cell. In (b) U˜2 = 2, and in (c) 

U˜1 = 2.2. The remain parameters are w1 = w2 = 1, U˜1 = 2 in both figures. 
The width between any two consecutive barriers is unitary. 

98 99



(':0():92",3('21:3,"<:01:3,0.',"&'"=&'&,.">9,"):'5")(,,&<.2"<('">."&'-.3&,.?"=3:0"<.3,(&'"
2&'59)(3"(21.<,2":=",-."@4/72"8"(3.">3&.=)*"?&2<922.?"&'",-."<:',./,":="A':;'".==.<,2"&'"
,-.")&,.3(,93.+"':,(>)*"=:3")(,,&<.2";&,-"(2*00.,3&<"<.))2$" 

References  
[1] L. R. N. Oliveira and M. G. E. da Luz, Phys. Rev. B 110, 054303 (2024). [2] 
L. R. N. Oliveira and M. G. E. da Luz, Entropy 26, 942 (2024). 

 

 
Figure 1. (a) Illustration of a building block formed by two rectangular 
barriers, with widths w1, w2 and heights U˜1, U˜2. Graph of the transmis 
sion probability in terms of the wavenumber k, when we consider (b) a 
symmetrical and (c) an asymmetrical cell. In (b) U˜2 = 2, and in (c) 

U˜1 = 2.2. The remain parameters are w1 = w2 = 1, U˜1 = 2 in both figures. 
The width between any two consecutive barriers is unitary. 

Advancing Materials Data, Design, and Discovery

April 2325, 2025, Kyushu University, Fukuoka, Japan

Variational analysis of elastoplastic deformation
of structured materials

Karel Svadlenka

Department of Mathematics, Graduate School of Science,
Tokyo Metropolitan University, Japan

Structured materials, such as metallic alloys with atomic-scale layers, show peculiar
deformation patterns, which may have significant implications on material properties.
In this presentation, we discuss one possible approach to modeling and understanding
of this kind of pattern formation through the so-called rate-independent evolution in
the variational setting of finite-strain crystal elasto-plasticity [4].

Figure 1: Comparison of numerical simulations and experimental results for the
compression of a stack of papers.
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We start with a mathematical analysis of the macroscopic behavior of mille-feuille
structured crystalline materials, which is composed by alternating rigid and soft layers.
This is done within the mathematical framework of homogenization via Γ-convergence.
We present a generalization of a result by Christowiak and Kreisbeck [1], where more
than one slip system is active in the soft layers [3]. This analysis provides an explicit
formula for the homogenized energy.

Next, we build a mathematical model of an evolutionary rate-independent system,
which reflects the theoretically obtained insights, and study its mathematical prop-
erties. We perform numerical simulations of this mathematical model using a finite
element approximation and an inbuilt Matlab minimization function. Finally, we have
carried out an experiment compressing a stack of papers and investigated the resulting
deformation using digital image correlation analysis. It turned out that the results of
numerical simulations are in a very good agreement with experimental measurements
[2]. We report on these numerical and experimental studies, commenting on unresolved
tasks and future research directions.

This is joint work with D. Drozdenko, M. Knapek, M. Kruž́ık, K. Máthis and J.
Valdman (Prague) and A. Ishikawa (Kyoto).
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Designing long-life shape memory 
alloys using the triplet condition 

Tomonari Inamura 
Institute of Integrated Research, Institute of Science Tokyo, 

Japan 
 

  
 
Shape memory alloys exhibit unique properties, including the shape memory effect, 
where deformation is reversed upon heating, and superelasticity, characterized by 
rubber-like behavior. These properties, driven by thermoelastic martensitic 
transformation between high-symmetry austenite and low-symmetry martensite phases, 
enable diverse applications such as medical devices, actuators, and solid-state 
refrigeration. However, their use is limited by functional fatigue, including 
transformation temperature changes and reduced strain, caused by dislocation 
accumulation during transformation. This issue arises from incompatibilities in 
martensitic microstructures. 
We propose a novel geometrical criterion for achieving highly compatible martensitic 
microstructures and elaborate on its mechanism. Addressing functional fatigue in shape 
memory alloys, particularly enhancing thermal cycling stability, has been a persistent 
challenge in the field. Ensuring martensitic compatibility provides a groundbreaking 
approach to alloy design. The cofactor condition (CC) [1] serves as a geometrical 
framework to simultaneously resolve incompatibilities at parent/martensite and 
martensite/martensite interfaces. However, satisfying CC often imposes strict constraints 
on alloy composition.  
In our work, we identify an alternative condition that enables the emergence of unique 
martensitic microstructures, mimicking the effects of CC without requiring its stringent 
constraints. This condition, termed the triplet condition (TC)[2], offers a new pathway 
for designing supercompatible martensite structures. Unlike CC, which is fulfilled along 
curves in the eigenvalue space of lattice deformation, TC is satisfied across two-
dimensional surfaces, making it significantly easier to meet. We also present detailed 
findings on the martensitic microstructures and dislocation behavior observed in Ti-Ni-
based alloys that closely adhere to TC. 
 
Let U, V, W∈	ℝ!"#$

%×% 	be the deformation gradients of martensitic variants that are 
mutually in a twin relationship, and assume RvwW = V +b⨂m for some Rvw∈ SO(3), b, m 
∈ ℝ%. Then, the three variants can form compatible triple junction if and only if  
 
(Vb)Tcof(V2-U2)m = 0  
tr (U-1V 2U-1) –|b|2|U-1m|2 /4 ≥ 3 
 
hold. This condition is known as the triplet condition [2].  The expression of this 
condition using the eigenvalues of the cubic-to-orthorhombic transformation (a, b, g) in 
Ti-Ni-based alloys is as follows. 
 
a2g2 + 2g2b2 - 3a2b2 = 0  (TC I) 
2a2 + b2 -3g2 = 0 (TC II) 
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The triple junction formed by the three variants joined through type I twinning is 
referred to as TC I, while the triple junction formed through type II twinning is referred 
to as TC II. For more details, refer to the reference [2].  

                                    Figure 1. Parametric surfaces of TCI and TC II  
 
Figure 1 shows the parametric surfaces of TCI and TCII in the eigenvalue space. By 
adjusting the alloying elements to align the eigenvalues of U along these surfaces, alloys 
satisfying the triplet condition can be obtained. The curve representing the CCs are also 
depicted in Fig. 1. It is evident that satisfying the TC is much easier. Ti-Ni-Cu [3] nearly 
satisfies the triplet condition and exhibits a unique microstructure, as shown in Figure 2, 
composed solely of twinning interfaces. When this microstructure forms, the 
accumulation of dislocations during repeated transformations is dramatically suppressed 
[4]. In the presentation, we will discuss in detail the microstructures of alloys satisfying 
the TC, their formation process, and their shape memory properties, demonstrating that 
the TC is a useful design guideline for developing long-life shape memory alloys. 

 
                        Figure 2. Peculiar martensite microstructure in Ti-30Ni-20Cu 
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