
**International Project Research-Workshop (I)**

# **Malaysia – Japan Symposium on Mathematical and Statistical Modelling**

**Chief Editors : Zaiton Mat Isa, Arifah Bahar**

**Editors : Shariffah Suhaila Syed Jamaludin, Zaitul Marlizawati Zainuddin, Sharidan Shafie,  
Ahmad Fadillah Embong, Shaymaa Mustafa, Nur Arina Bazilah Aziz,  
Nik Zetti Amani Nik Faudzi, Mohamad Shahiir Saidin, Mohd Rashid Admon**

九州大学マス・フォア・インダストリ研究所



FY2025 Joint Usage Research Program of Institute of Mathematics  
for Industry, Kyushu University, Japan

International Project Research-Workshop (I)

## **Malaysia – Japan Symposium on Mathematical and Statistical Modelling**

**26 August 2025**

**IMI Auditorium (W1-D-413), West Zone 1,  
Ito Campus, Kyushu University, Japan**

broadcast live to

**UTM HELIxS, Universiti Teknologi Malaysia,  
Johor Bahru, Malaysia**

**Chief Editors:**

Zaiton Mat Isa, Arifah Bahar

**Editors:**

Shariffah Suhaila Syed Jamaludin, Zaitul Marlizawati Zainuddin, Sharidan Shafie,  
Ahmad Fadillah Embong, Shaymaa Mustafa, Nur Arina Bazilah Aziz,  
Nik Zetti Amani Nik Faudzi, Mohamad Shahiir Saidin, Mohd Rashid Admon

## About MI Lecture Note Series

The Math-for-Industry (MI) Lecture Note Series is the successor to the COE Lecture Notes, which were published for the 21st COE Program “Development of Dynamic Mathematics with High Functionality,” sponsored by Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) from 2003 to 2007. The MI Lecture Note Series has published the notes of lectures organized under the following two programs: “Training Program for Ph.D. and New Master’s Degree in Mathematics as Required by Industry,” adopted as a Support Program for Improving Graduate School Education by MEXT from 2007 to 2009; and “Education-and-Research Hub for Mathematics-for-Industry,” adopted as a Global COE Program by MEXT from 2008 to 2012.

In accordance with the establishment of the Institute of Mathematics for Industry (IMI) in April 2011 and the authorization of IMI’s Joint Research Center for Advanced and Fundamental Mathematics-for-Industry as a MEXT Joint Usage / Research Center in April 2013, hereafter the MI Lecture Notes Series will publish lecture notes and proceedings by worldwide researchers of MI to contribute to the development of MI.

October 2025  
Kenji Kajiwara  
Director, Institute of Mathematics for Industry

## **FY2025 Joint Usage Research Program of Institute of Mathematics for Industry, Kyushu University, Japan**

### **International Project Research-Workshop (I)**

### **Malaysia – Japan Symposium on Mathematical and Statistical Modelling**

MI Lecture Note Vol. 105, Institute of Mathematics for Industry, Kyushu University  
ISSN 2188-1200

Date of issue: Junualy 8, 2025

Chief Editors: Zaiton Mat Isa, Arifah Bahar

Editors: Shariffah Suhaila Syed Jamaludin, Zaitul Marlizawati Zainuddin, Sharidan Shafie, Ahmad Fadillah Embong, Shaymaa Mustafa, Nur Arina Bazilah Aziz, Nik Zetti Amani Nik Faudzi, Mohamad Shahiir Saidin, Mohd Rashid Admon

Publisher:

Institute of Mathematics for Industry, Kyushu University  
Graduate School of Mathematics, Kyushu University  
Motooka 744, Nishi-ku, Fukuoka, 819-0395, JAPAN  
Tel +81-(0)92-802-4402, Fax +81-(0)92-802-4405  
URL <https://www.imi.kyushu-u.ac.jp/>

# Preface

The **Malaysia–Japan Symposium on Mathematical and Statistical Modelling**, held on **26 August 2025** at the IMI Auditorium, Kyushu University, Ito Campus, Japan, and broadcast live to UTM HELIxS, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, marks yet another milestone in the enduring friendship and academic cooperation between Malaysia and Japan. For decades, the two nations have worked hand in hand in education, science and technology. This symposium is a further testament to the shared commitment to advancing knowledge for the benefit of societies.

Mathematical and statistical modelling extends beyond numbers and formulas. In today's world of global challenges, applied mathematics is a vital tool for understanding complex systems, guiding informed decisions, and tackling pressing challenges, whether in climate change, urban development issues, agriculture or industrial innovation.

This lecture note compiles the presentations delivered at the symposium, which accommodate both in-person and online participation. The event was jointly organized by the **UTM Centre for Industrial and Applied Mathematics (UTM-CIAM)**, **Universiti Teknologi Malaysia**, and the **Institute of Mathematics for Industry (IMI)**, **Kyushu University** under the framework of FY2025 Joint Usage Research Program of Institute of Mathematics for Industry, Kyushu University, Japan - International Project Research-Workshop. The symposium brought together academicians, researchers, industrial practitioners, and students from both countries to exchange insights, explore emerging methodologies, and strengthen academic ties.

The symposium began with remarks by Prof. Kenji Kajiwara, Director of IMI and Assoc. Prof. Dr. Arifah Bahar, Director of UTM-CIAM, who emphasized the role of mathematical and statistical modelling in bridging theoretical research and practical applications to address pressing societal and industrial challenges. This was followed by a virtual address from the **Ambassador of Malaysia to Japan, H.E. Dato' Shahril Effendi bin Abd Ghany**. In his speech, H.E. Ambassador Dato' applauded both the UTM-CIAM and the IMI, Kyushu University for initiating this inaugural symposium and expressed his hope that it would form the foundation for a long-term collaborative framework in areas of mathematical and statistical research, industrial applications, and innovation-driven problem solving. H.E. Ambassador Dato' also highlighted the importance of fostering academic exchanges and joint research projects between Malaysian and Japanese institutions, noting that such collaborations can contribute meaningfully to the development of advanced analytical solutions for both industry and society.

The event was also attended by representatives Mr. Takashi Toyota from the **Ministry of Education, Culture, Sports, Science and Technology (MEXT)**, Mr. Sotaro Ito from the **Japan Science and Technology Agency (JST)**, and Ms Yumiko Hata from the **Ministry of Economy, Trade and Industry (METI)**.

The morning session featured contributed talks from the industrial sector. **Dr. Haifeng Chen, Department Head of NEC Laboratories America**, presented an AI-driven multi-agent simulation framework for carbon emissions modeling and optimization, highlighting the integration of artificial intelligence techniques with multi-modal prediction and swarm optimization to support carbon neutrality strategies. **Dr. Nurul Farahain Mohammad of Insulet Malaysia Sdn. Bhd.** discussed the role of advanced data analytics in modern manufacturing, illustrating how analytics can optimize operations, enhance decision-making, and improve overall efficiency in industrial systems.

In the afternoon, the symposium continued with invited talks and expert presentations. **Dr. Hideaki Yokomizo of WILLER, Inc.** introduced the application of AI-

based Demand Responsive Transit (DRT) systems in Malaysia as a strategy to alleviate traffic congestion and environmental pressures associated with heavy reliance on private vehicles. **Associate Professor Dr. Zaitul Marlizawati Zainuddin of Universiti Teknologi Malaysia** presented her research on genetic algorithm-based optimization methods for location-routing problems in sustainable biomass supply chains. These sessions were followed by expert presentations that showcased the breadth of applications of mathematical and statistical modelling. **Associate Professor Dr. Atsushi Tero of Kyushu University** introduced common principles and applications of adaptive network theory, including results from collaborative projects with Malaysian researchers. **Associate Professor Dr. Shariffah Suhaila Syed Jamaludin of Universiti Teknologi Malaysia** presented a statistical framework for rainfall intensity and climate challenges in Malaysia, using advanced statistical approaches such as functional data analysis and copula models to improve flood risk prediction. **Dr. Zaiton Mat Isa of Universiti Teknologi Malaysia** ended the session with a presentation on advection-diffusion equations (ADE) and their applications to transport phenomena, including fumigation, heavy metal migration, and aerosol transmission.

The symposium concluded with reflections by Prof. Fumikazu Sato, Leader of the Division of Strategic Liaison, IMI, Kyushu University, and Prof. (Retired) Dr. Zainal Abdul Aziz, Director of MYHIMS Solutions PLT, Malaysia, who emphasized the growing role of mathematics as a platform for transnational collaboration. They highlighted the importance of strengthening research partnerships between the two nations and the relevance of mathematical and statistical modelling in addressing environmental, industrial, and societal challenges. A banquet held in the evening at Big Orange on the Ito Campus provided further opportunities for informal exchange and networking among participants.

Although organized as a one-day event, the symposium succeeded in bringing together a wide spectrum of expertise from academia, industry, and government, stimulating dialogue and collaboration across disciplines and borders. It is our sincere hope that the symposium will serve as a foundation for future Malaysia-Japan initiatives in mathematical and statistical modelling, enabling the co-creation of knowledge and innovative solutions with meaningful global impact.

Chief Editors: Zaiton Mat Isa, Arifah Bahar

November 2025

# Contents

|                                                                                                               |     |
|---------------------------------------------------------------------------------------------------------------|-----|
| <b>Preface</b> .....                                                                                          | i   |
| <b>Organizing Committee</b> .....                                                                             | 1   |
| <b>Poster</b> .....                                                                                           | 2   |
| <b>Program Schedule</b> .....                                                                                 | 3   |
| <b>List of Participants</b> .....                                                                             | 4   |
| <b>Event Photos</b> .....                                                                                     | 7   |
| <b>Haifeng Chen</b> .....                                                                                     | 9   |
| "AI-Driven Multi-Agent Simulation for Accurate Carbon Emissions Modeling and Optimization"                    |     |
| <b>Nurul Farahain Mohammad</b> .....                                                                          | 18  |
| "From Data to Decisions: The Role of Analytics in Modern Manufacturing"                                       |     |
| <b>Hideaki Yokomizo</b> .....                                                                                 | 38  |
| "Solving urban traffic issues in Malaysia by AI-based Demand Responsive Transit "                             |     |
| <b>Zaitul Marlizawati Zainuddin</b> .....                                                                     | 53  |
| "Genetic Algorithm-Based Optimization of Location-Routing Problems for a Sustainable Biomass Supply Chain"    |     |
| <b>Atsushi Tero</b> .....                                                                                     | 67  |
| "Common principles and applications of adaptive network theory using mathematical models"                     |     |
| <b>Shariffah Suhaila Syed Jamaludin</b> .....                                                                 | 87  |
| "A Statistical Data-Driven Framework for Understanding Rainfall Intensity and Climate Challenges in Malaysia" |     |
| <b>Zaiton Mat Isa</b> .....                                                                                   | 106 |
| "Advection-Diffusion Equations (ADE) in Modeling Transport Phenomena"                                         |     |



## Organizing Committee

### MALAYSIA

| POSITION            | NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>ADVISOR</b>      | Assoc. Prof. Dr. Arifah Bahar<br>Assoc. Prof. Dr. Zaitul Marlizawati Zainuddin<br>Dr. Zaiton Mat Isa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>CHAIR</b>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>DEPUTY CHAIR</b> | Assoc. Prof. Dr. Sharidan Shafie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>SECRETARY</b>    | Assoc. Prof. Dr. Shariffah Suhaila Syed Jamaludin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>TREASURER</b>    | Ms. Nik Zetti Amani Nik Faudzi<br>Ms. Faradiba So'aib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>SECRETARIAT</b>  | Assoc. Prof. Dr. Norhaiza Ahmad<br>Assoc. Prof. Dr. Zarina Mohd Khalid<br>Dr. Adila Firdaus Arbain<br>Dr. Ahmad Fadillah Embong<br>Dr. Ahmad Razin Zainal Abidin<br>Dr. Amir Syafiq Syamin Syah Amir Hamzah<br>Dr. Azizi Rosli<br>Dr. Fuuada Mohd Siam<br>Dr. Lim Yeou Jiann<br>Dr. Mohamad Shahiir bin Saidin<br>Dr. Mohd Rashid Admon<br>Dr. Norsyahida Zulkifli<br>Dr. Nur Arina Bazilah Aziz<br>Dr. Nur Syazwin Mansor<br>Dr. Nurul Aini Jaafar<br>Dr. Shaymaa M. H. Darwish<br>Dr. Suzarina Ahmed Sukri<br>Dr. Syarifah Zyurina Nordin<br>Dr. Tan Lit Ken<br>Mr. Muhammad Faiz Irfan Bin Ariffin<br>Mr. Mohd Shazril Mohd Zain<br>Mr. Wan Rohaizad Wan Ibrahim<br>Ms. Aniza Akaram<br>Ms. Intan Diyana Munir<br>Ms. Noraini Hassan |

### JAPAN

| POSITION      | NAME                        |
|---------------|-----------------------------|
| <b>CHAIR</b>  | Fumikazo Sato               |
| <b>MEMBER</b> | Atsushi Tero<br>Takako Iida |

## Poster

International Project Research

# Malaysia-Japan Symposium on Mathematical and Statistical Modelling

■ Auditorium, IMI/Kyushu University (West 1 / D413)

■ 2025 8.26 Tue  
10:00-17:00



## ■ Program Schedule

### 10:00~10:30 **Opening Remarks by Supporting Public Sectors**

Ambassador of Malaysia  
Representatives from MEXT, JST, and/or METI (TBD)

### 10:30~10:50 **Keynote and Welcome Speeches**

Dr. Kenji Kojiwara, Director of IMI, Kyushu University  
Dr. Arifah Bahar, Director of UTM-CLAM, UTM

### 10:50~11:50 **Contributed Talks by the Industrial Sectors**

Dr. Haifeng Chen, Department Head, NEC Laboratories America (online)  
Dr. Nurul Farahain Mohammad, INSULET (online)

### 13:30~14:30 **Invited Talks**

Dr. Hideaki Yokomizo, WILLER, Inc.  
Dr. Zaitul Marlizawati Zainuddin, UTM

### 14:50~16:20 **Expert Presentations**

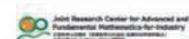
Dr. Atsushi Tero, IMI, Kyushu University (Short Presentation by a Student)  
Dr. Shariffah Sahilia Syed Jamaludin, UTM  
Dr. Zaiton Mat Isa, UTM

### 16:30~16:50 **Summary**

Malaysian Side  
Japanese Side

### Banquet:

The banquet will take place at Big Orange on the Ito Campus, starting at 6:00 PM for guests  
who register in advance using the provided forms.


Organizers : IMI Kyushu University and UTM-CLAM  
Supported : JST, IMI Joint Usage/Research Center, MIP



Hybrid  
(In-person/by Zoom)



E-mail: [imj2025@imi.kyushu-u.ac.jp](mailto:imj2025@imi.kyushu-u.ac.jp)  
<https://japan.imi.kyushu-u.ac.jp/conf/10505/>



# Program Schedule

**Thursday 26th, August 2025**

10:00 – 10:30

## *Opening Remarks*

Ambassador of Malaysia

Ministry of Education, Culture, Sports, Science and Technology (MEXT)

Japan Science & Technology Agency (JST)

10:30 – 10:50

## *Keynote and Welcome Speeches*

- Dr. Kenji Kajiwara, Director of Institute of Mathematics in Industry (IMI), Kyushu University.
- Dr. Arifah Bahar, Director of UTM-Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia.

10:50 – 11:50

## *Contributed Talk by the Industrial Sectors*

Dr. Haifeng Chen

Department Head, NEC Laboratories America

*Title: AI-driven Multi-Agent Simulation for Accurate Carbon Emissions Modeling & Optimization*

11:50 – 13:30

## **Lunch break**

13:30 – 14:30

## *Invited talks*

- Dr. Hideaki Yokomizo  
Director and Executive Office, DWILLER, Inc.  
*Title : Solving urban traffic issues in Malaysia by AI-based Demand Responsive Transit*
- Dr. Zaitul Marlizawati Zainuddin  
Research Fellow, UTM-Centre for Industrial and Applied Mathematics (UTM-CIAM)  
*Title : Genetic Algorithm-Based Optimization of Location-Routing Problems for a Sustainable Biomass Supply Chain*

14:30 – 14:50

## **Break**

14:50 – 16:20

## *Expert presentations*

- Dr. Atsushi Tero  
Institute of Mathematics in Industry, Kyushu university  
*Title : Common principles and applications of adaptive network theory using mathematical models*
- Dr. Shariffah Suhaila Syed Jamaludin,  
Universiti Teknologi Malaysia  
Moderator: Nur Syafiqah  
*Title : A Statistical Data-Driven Framework for Understanding Rainfall Intensity and Climate Challenges in Malaysia*
- Dr. Zaiton Mat Isa,  
Universiti Teknologi Malaysia  
Moderator: Noraini  
*Title : Advection-Diffusion Equations (ADE) in Modeling Transport Phenomena*

16:20 – 16:50

## *Summary*

Malaysian side

Japanese side

## List of Participants

| NO. | NAME                                 | AFFILIATION                   |
|-----|--------------------------------------|-------------------------------|
| 1   | Ahmad Fadillah Embong                | Universiti Teknologi Malaysia |
| 2   | Amidora Idris                        | Universiti Teknologi Malaysia |
| 3   | Anati Ali                            | Universiti Teknologi Malaysia |
| 4   | Aneesa Sofea Abdul Rahim             | Universiti Teknologi Malaysia |
| 5   | Aniza Binti Akaram                   | Universiti Teknologi Malaysia |
| 6   | Arifah Bahar                         | Universiti Teknologi Malaysia |
| 7   | Azizi Rosli                          | Universiti Teknologi Malaysia |
| 8   | Faradiba So'aib                      | Universiti Teknologi Malaysia |
| 9   | Farah Nur Atiqah Nor Azhar           | Universiti Teknologi Malaysia |
| 10  | Fuaada Mohd Siam                     | Universiti Teknologi Malaysia |
| 11  | Haliza Abd Rahman                    | Universiti Teknologi Malaysia |
| 12  | Han Nee Yong                         | Universiti Teknologi Malaysia |
| 13  | Inessya Fam Enn Xii                  | Universiti Teknologi Malaysia |
| 14  | Intan Diyana Munir                   | Universiti Teknologi Malaysia |
| 15  | Lim Xiao Qin                         | Universiti Teknologi Malaysia |
| 16  | Mohd Rashid Admon                    | Universiti Teknologi Malaysia |
| 17  | Mohd Shazril Mohd Zain               | Universiti Teknologi Malaysia |
| 18  | Muhamad Hanis Mohd Nasir             | Universiti Teknologi Malaysia |
| 19  | Muhammad Fauzee Hamdan               | Universiti Teknologi Malaysia |
| 20  | Nik Zetti Amani Binti Nik Faudzi     | Universiti Teknologi Malaysia |
| 21  | Noorehan Yaacob                      | Universiti Teknologi Malaysia |
| 22  | Noraini Binti Hasan                  | Universiti Teknologi Malaysia |
| 23  | Norhaiza Binti Ahmad                 | Universiti Teknologi Malaysia |
| 24  | Norsyahida Zulkifli                  | Universiti Teknologi Malaysia |
| 25  | Nur Arina Bazilah Kamisan            | Universiti Teknologi Malaysia |
| 26  | Nur Husna Amierah Mohd Zaperi        | Universiti Teknologi Malaysia |
| 27  | Nur Shafiqah Najwa Binti Mohd Fairuz | Universiti Teknologi Malaysia |
| 28  | Nur Syazwin Mansor                   | Universiti Teknologi Malaysia |
| 29  | Nurfazira Natasha Murad              | Universiti Teknologi Malaysia |
| 30  | Nurul Aini Jaafar                    | Universiti Teknologi Malaysia |
| 31  | Nurul Syafiqah                       | Universiti Teknologi Malaysia |
| 32  | Purani Kunasegaran                   | Universiti Teknologi Malaysia |
| 33  | Sharidan Shafie                      | Universiti Teknologi Malaysia |
| 34  | Shariffah Suhaila Syed Jamaludin     | Universiti Teknologi Malaysia |
| 35  | Shaymaa M H Darwish                  | Universiti Teknologi Malaysia |
| 36  | Siti Farahiyah Ismail                | Universiti Teknologi Malaysia |
| 37  | Suzarina Ahmed Sukri                 | Universiti Teknologi Malaysia |
| 38  | Wan Rohaizad Wan Ibrahim             | Universiti Teknologi Malaysia |
| 39  | Xin Rui Tan                          | Universiti Teknologi Malaysia |
| 40  | Yeou Jiann Lim                       | Universiti Teknologi Malaysia |
| 41  | Yuli Sudriani                        | Universiti Teknologi Malaysia |
| 42  | Zainal Aziz                          | Universiti Teknologi Malaysia |
| 43  | Zaiton Binti Mat Isa                 | Universiti Teknologi Malaysia |

|    |                                    |                                               |
|----|------------------------------------|-----------------------------------------------|
| 44 | Zaitul Marlizawati Binti Zainuddin | Universiti Teknologi Malaysia                 |
| 45 | Zhi Xin Chong                      | Universiti Teknologi Malaysia                 |
| 46 | Ziou Hon Wu                        | Universiti Teknologi Malaysia                 |
| 47 | Zuhaila Ismail                     | Universiti Teknologi Malaysia                 |
| 48 | Zulkepli Majid                     | Universiti Teknologi Malaysia                 |
| 49 | Hani Suraya Tajudin                | Universiti Kebangsaan Malaysia                |
| 50 | Nuraddeen Gafai Sayyadi            | Umaru Musa Yar'adua University Katsina        |
| 51 | Ummi Munirah Syuhada Mohamad Zan   | Universiti Islam Selangor (UIS)               |
| 52 | Amirah Hazwani Roslin              | Universiti Malaysia Pahang Al-Sultan Abdullah |
| 53 | Nur Hidayah Azmidi                 | Universiti Malaysia Pahang Al-Sultan Abdullah |
| 54 | Intan Martina Md Ghani             | Universiti Malaysia Terengganu                |
| 55 | Koon Sang Wong                     | Universiti Malaysia Terengganu                |
| 56 | Intekhab Husain                    | Universiti Sains Malaysia                     |
| 57 | Mohd Mahayaudin Mansor             | Universiti Teknologi Mara                     |
| 58 | Tian Hwee Lim                      | University Of Reading Malaysia                |
| 59 | Nurul Tasnim Abdul Latiff          | Universiti Teknologi Malaysia                 |
| 60 | Mohd Farizzal                      | Unknown                                       |
| 61 | Kan Sakamoto                       | Hosei University                              |
| 62 | Nurul Farahain Binti Mohammad      | Insulet Malaysia Sdn. Bhd.                    |
| 63 | Sotaro Ito                         | Japan Science and Technology Agency           |
| 64 | Tae Fujishima                      | Japan Science and Technology Agency           |
| 65 | Abdullah Gul Rayan                 | Kabul University                              |
| 66 | Masataka Kanki                     | Kansai University                             |
| 67 | Muhammad Ayaz                      | Kohat University of Science and Technology    |
| 68 | Hinano Tachibana                   | Kumamoto University                           |
| 69 | Atsushi Tero                       | Kyushu University                             |
| 70 | Daisuke Tagami                     | Kyushu University                             |
| 71 | Dong Liang                         | Kyushu University                             |
| 72 | Fumikazu Sato                      | Kyushu University                             |
| 73 | Harada Kentaro                     | Kyushu University                             |
| 74 | Haruka Suga                        | Kyushu University                             |
| 75 | Hidetaka Arimura                   | Kyushu University                             |
| 76 | Hien Nguyen                        | Kyushu University                             |
| 77 | Ichijo Yotsuji                     | Kyushu University                             |
| 78 | Junki Omae                         | Kyushu University                             |
| 79 | Kaname Matsue                      | Kyushu University                             |
| 80 | Katsunari Fujishima                | Kyushu University                             |
| 81 | Kazuhiro Minami                    | Kyushu University                             |
| 82 | Kei Hirose                         | Kyushu University                             |
| 83 | Kenji Kajiwara                     | Kyushu University                             |
| 84 | Kota Hisakado                      | Kyushu University                             |
| 85 | Kota Nishi                         | Kyushu University                             |
| 86 | Masayo Hirose                      | Kyushu University                             |
| 87 | Miki Nagasawa                      | Kyushu University                             |
| 88 | Motoki Masada                      | Kyushu University                             |

|     |                        |                                                                       |
|-----|------------------------|-----------------------------------------------------------------------|
| 89  | Muhammad Solihin       | Kyushu University                                                     |
| 90  | Pierluigi Cesana       | Kyushu University                                                     |
| 91  | Ryota Hagiwara         | Kyushu University                                                     |
| 92  | Satoru Tokuda          | Kyushu University                                                     |
| 93  | Seiko Sasaguri         | Kyushu University                                                     |
| 94  | Shotaro Kaneko         | Kyushu University                                                     |
| 95  | Shuhei Muroya          | Kyushu University                                                     |
| 96  | Taichi Hosotani        | Kyushu University                                                     |
| 97  | Taiga Kadowaki         | Kyushu University                                                     |
| 98  | Takako Iida            | Kyushu University                                                     |
| 99  | Tomoki Kojima          | Kyushu University                                                     |
| 100 | Tomomi Ebara           | Kyushu University                                                     |
| 101 | Tomoyuki Shirai        | Kyushu University                                                     |
| 102 | Toshiki Usui           | Kyushu University                                                     |
| 103 | Yasuhiro Ishitsuka     | Kyushu University                                                     |
| 104 | Yoshihiro Mizoguchi    | Kyushu University                                                     |
| 105 | Yudai Sakihara         | Kyushu University                                                     |
| 106 | Yuko Yokoo             | Kyushu University                                                     |
| 107 | Yusuke Fujiyoshi       | Kyushu University                                                     |
| 108 | Yuto Tanabe            | Kyushu University                                                     |
| 109 | Syarifah Zyrina Nordin | Malaysia-Japan International Institute of Technology (MJIIT)          |
| 110 | Takashi Toyota         | MEXT                                                                  |
| 111 | Yuka Watabe            | MEXT                                                                  |
| 112 | Yuki Serizawa          | Ministry Of Education, Culture, Sports Science and Technology - Japan |
| 113 | Mariya Sadiki          | Mohammed V University                                                 |
| 114 | Fihi Hiba              | Moulay Ismail University                                              |
| 115 | Watanabe Sawaki        | NEc Corporation                                                       |
| 116 | Sunaga Kazuhisa        | NEc Corporation                                                       |
| 117 | Gen Motoyoshi          | NEc Corporation                                                       |
| 118 | Haifeng Chen           | NEc Laboratories America                                              |
| 119 | Shinji Sato            | None                                                                  |
| 120 | Nicolo' Briatico       | Politecnico Di Torino                                                 |
| 121 | Thodsaporn Kumduang    | Rajamangala University of Technology Rattanakosin                     |
| 122 | Sherief Hashima        | RIKEN-AIP/Kyushu University                                           |
| 123 | Mohamad Faizal Ishak   | Solid Waste and Public Cleansing Management Corporation (Swcorp)      |
| 124 | Zohaib Hassan Sain     | Superior University                                                   |
| 125 | Hideaki Yokomizo       | Willer, Inc.                                                          |
| 126 | Kunio Tanabe           | The Institute of Statistical Mathematics & Waseda University          |

## Event Photos



Opening remarks by Ambassador of Malaysia to Japan, H.E. Dato' Shahril Effendi Abd Ghany



Seated (L-R): Dr. Hideaki Yokomizo (WILLER Inc.), Mr. Sotaro Ito (JST), Mr. Takashi Toyota (MEXT), Assoc. Prof. Dr. Arifah Bahar (UTM-CIAM), Prof. Kenji Kajiwara (IMI).

Standing (back, L-R): Assoc. Prof. Dr. Zaitul Marlizawati Zainuddin, Assoc. Prof. Dr. Shariffah Suhaila Syed Jamaludin, Dr. Zaiton Mat Isa (UTM-CIAM Fellows).



Malaysia-Japan Symposium on Mathematical & Statistical Modelling held at Kyushu University, Japan, with live telecast to UTM Johor Bahru



Participation in Kyushu University, Japan



Participation in UTM Johor Bahru, Malaysia



Presentation by Assoc. Prof. Dr. Atsushi Taro in Universiti Teknologi Malaysia.



Presentation by Nurul Farahain Mohammad from Insulet Malaysia Sdn. Bhd.



Concluding remark from Malaysia by Dr. Zainal Abdul Aziz



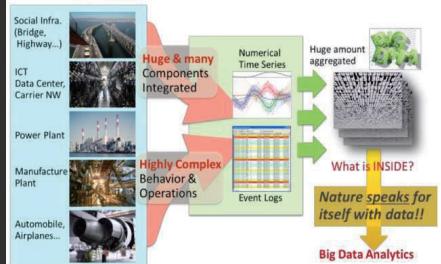
Token of appreciation from both UTM-CIAM and IMI

## **AI-Driven Multi-Agent Simulation for Accurate Carbon Emissions Modeling and Optimization**

**Haifeng Chen**

NEC. US, Department Head

The talk presents the development of a multi-agent simulator designed to model carbon emissions and support global sustainability efforts. The simulator includes three core components: agents, resources, and topology. Advanced AI techniques are also incorporated to enhance the simulator's capabilities, including a multi-modal time series prediction method for accurate energy cost forecasting and a swarm optimization algorithm to identify optimal strategies for achieving carbon neutrality. By integrating AI and simulation, organizations can model carbon emission processes, conduct "what-if" analyses, and develop actionable strategies to reduce emissions and accelerate progress toward carbon neutrality goals.

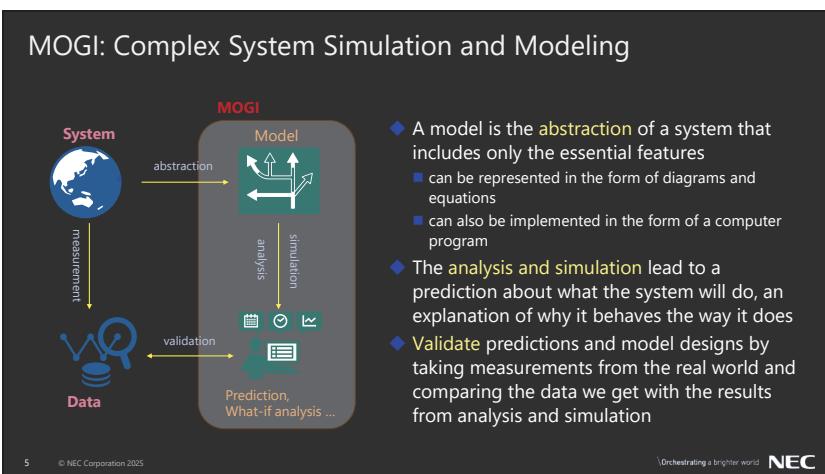
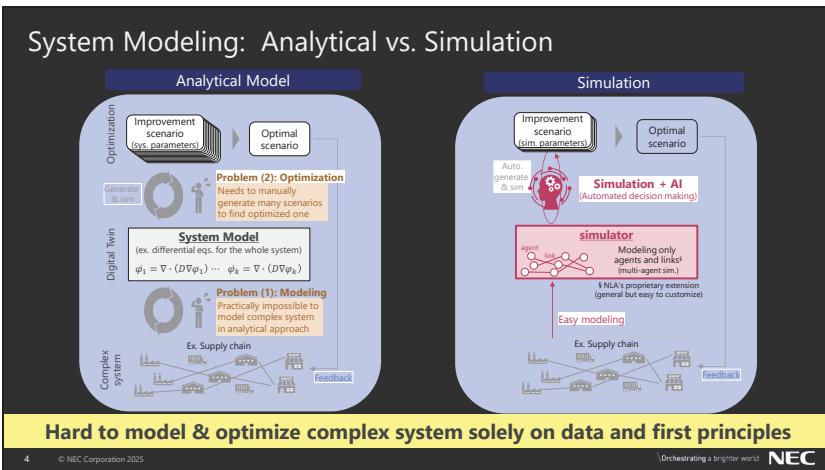
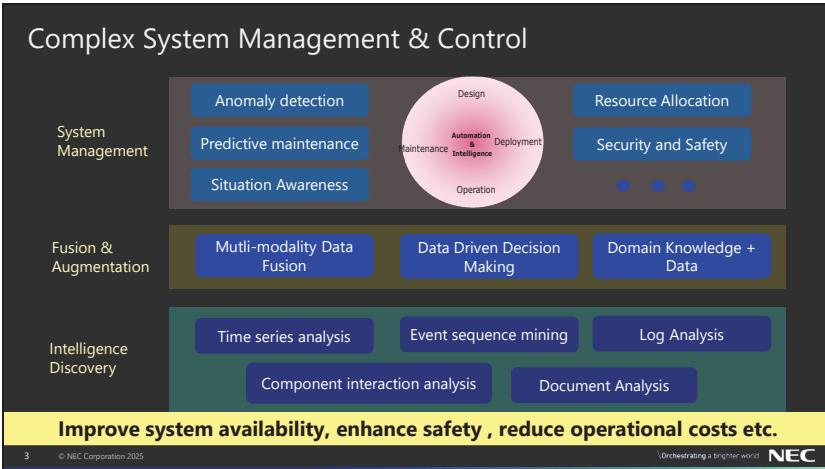

## MOGI: Complex System Simulation and Modeling

### MOGI: 複雑系システムのシミュレーションとモデリング

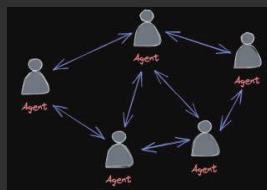
Haifeng Chen  
NEC Labs America  
Princeton, New Jersey, USA

© NEC Corporation 2025

## Complex System Management


- ◆ A shortage of domain experts in industries
- ◆ Finding insights from time series data requires different technology and skills.
  - if derived insights are correct and actionable, they will have a real impact on the business
- ◆ The real impact comes from analyzing the data to derive system insight
  - Separate the signal from the noise
  - Uncover the global structure from local observations
  - Disentangle the heterogeneity in dynamics


- ◆ Understand **system complexity** by data analysis & mining;
- ◆ Model **system properties** by combing first principles & data inference;

**Big insights are more important than big data**

1 © NEC Corporation 2025



## Multi-Agent Modelling



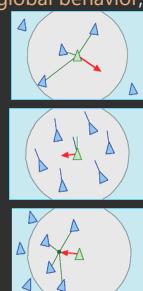
- ◆ Each **agent** is a persistent actor with its own decision-making processes and behaviors.
  - has some state and interacts with other agents
  - mutually modifying each other's states
- ◆ The components of an **agent-based model** are
  - A collection of agents and their states
  - Rules governing the interactions of the agents
  - The environment within which they live
- ◆ **Interaction among agents** is the central point of the simulation
  - agents perceive their environment, take actions based on their internal states, and exchange information with other agents.

6 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Topology & Resources: Interaction between Agents

- ◆ **Static or dynamic topology**: each agent interacts with its neighbors
  - Agent interactions can range from cooperative to competitive and involve communication, resource sharing, negotiation, and conflict resolution.
  - Determine the overall behavior and outcomes of the system.
- ◆ We model the **Resource Flow** between agents for their interactions.
  - Link is responsible for transporting resources.
  - Transporting cost (time/money/distance) is supported for both resource-to-target and target-to-resource
  - The agent can assign priority to links to make a refined strategy.
- ◆ As the number of agents increases, even simple interaction rules between local agents can produce complex and coordinated global behaviors.
  - New emergent properties and behaviors that were not present in smaller groups of agents




7 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Example: Swarm Intelligence

- ◆ The state of each agent  includes its position, velocity, and orientation.
- ◆ Simple interaction rules between agents lead to the emergence of "intelligent" global behavior, unknown to the individual.



Separation rule

The agent maintains a reasonable amount of distance between itself and any nearby agents

Alignment rule


The agent changes its position to correspond with the average alignment of other nearby agents

Cohesion rule

The agent moves towards the average position of other nearby agents

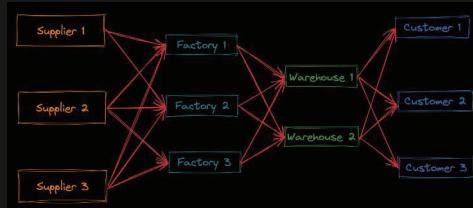


- ◆ No centralized control structure dictating how individual agents should behave
- ◆ can be used for direct control and stabilization of teams of simple unmanned ground vehicles (UGV)



8 © NEC Corporation 2025

Orchestrating a brighter world **NEC**


## Market Opportunities

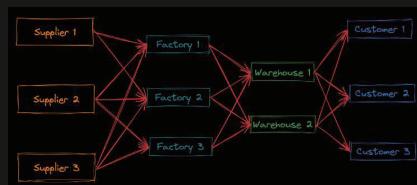
| Manufacturing                                                                                                                                                     | Social Impact                                                                                                                                                                                                               | Defense                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optimize production processes, reduce waste, and improve quality control. Model a production line and identify bottlenecks or inefficiencies.                     | Model the behavior of individuals in a social network, including how they interact and influence one another. Understand how ideas and behaviors spread through a network. Design interventions to influence social change. | Simulate military operations and training exercises, e.g., a battlefield scenario to train soldiers on how to respond to different situations.                                                                                    |
| Finance                                                                                                                                                           | Transportation                                                                                                                                                                                                              | Environmental                                                                                                                                                                                                                     |
| Model financial markets, test investment strategies, and manage risk, e.g., model the performance of a portfolio of investments under different market scenarios. | Model traffic patterns, test transportation infrastructure, and optimize logistics, e.g., simulate traffic flow and identify areas where traffic congestion is likely to occur.                                             | Model the behavior of different actors such as farmers, factories, and policymakers. Understand how different policies and management strategies affect the environment. Design interventions to promote sustainable development. |

9 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

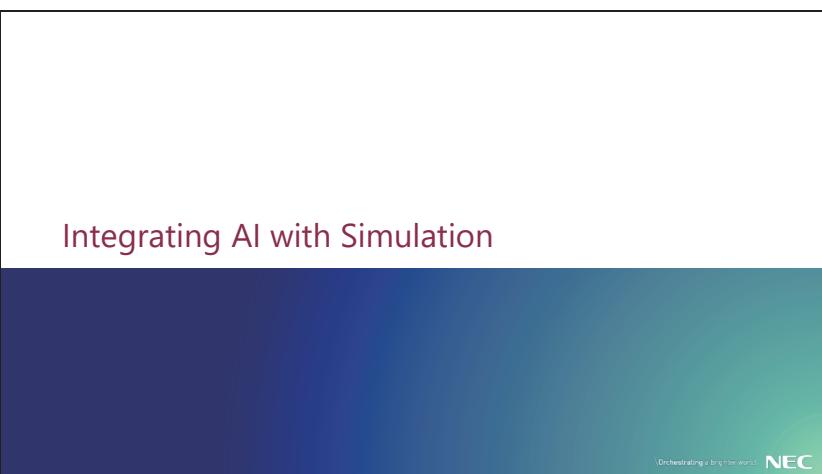
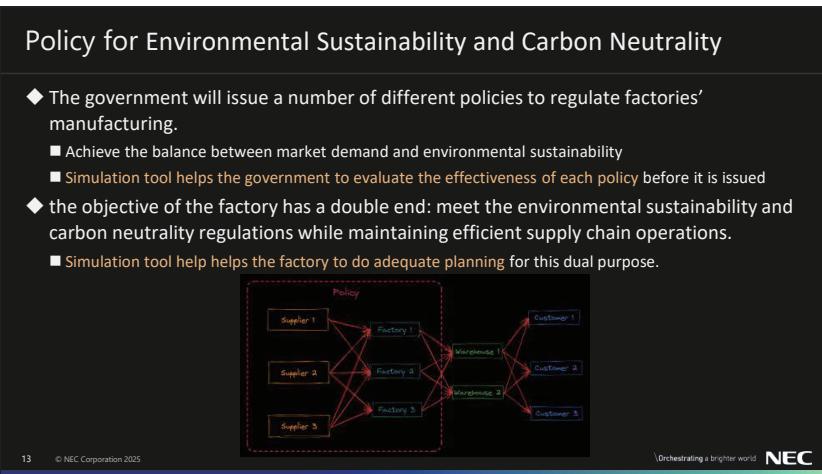
## Case Study: Supply Chain Management




- ◆ Material supplier: location differences, dynamic prices, renewable energy, ...
- ◆ Factory: different manufacturing capacities; purchase of raw materials from different sources; transportation cost to warehouses; different prices for the product...
- ◆ Warehouse: storage cost; purchasing capacity in its location;
- ◆ Customers: uncertainty in demand at each season; economic factors

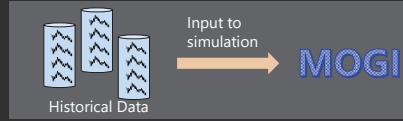
10 © NEC Corporation 2025

Orchestrating a brighter world **NEC**



## Understand the Complexity through Simulation

- ◆ Simulation & Modeling answers various "what-if" questions, given the uncertainties in each component
  - variations in customer demand; transportation costs and delays between factory to warehouse; market price change for the products; capacity change and the quality of product change in each plant; raw material supply changes
- ◆ Discover emerging behaviors; identify and mitigate potential disruptions or inefficiencies
  - impact of potential disease, wars, ...




11 © NEC Corporation 2025

Orchestrating a brighter world **NEC**



## Predictive AI + Simulation

- ◆ **Before:** Use historical data as input to MOGI simulation, assuming that data repeat the patterns



- ◆ **After:** Utilize AI to forecast potential future scenarios and then input to MOGI

- predict rare and catastrophic events. Enhance strategic planning to address some critical challenges proactively.



15 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Forecasting by Time-Series + Text Data

- ◆ **Time-series forecasting** used everywhere:

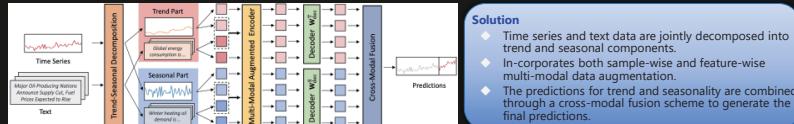
- Finance, sales, energy, weather, transportation, healthcare, and more!

- **Accurate** and **reliable** predictions of future time-series is crucial.

- ◆ Is time-series data enough?

- No! In many cases, time-series data are **limited**, but accompanied by other data with different modalities (e.g., **text information**)



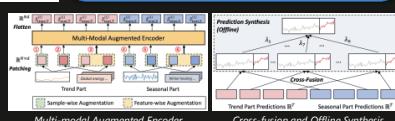

16 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## MoAT: Multi-Modal Augmented Time Series Forecasting

- ◆ **Problem:** Accurate and reliable time-series forecasting is important and beneficial in various domains, facilitating optimized resource allocation and strategic decision-making.

- ◆ **Challenge:** the scarcity of training samples often hinders the accuracy of the forecasting task.




### Key Components

- ◆ The **multi-modal augmented encoder** is utilized across distinct input patches which are obtained by augmenting multi-modal inputs either in a sample-wise or feature-wise manner.
- ◆ Using different representations derived from trend and seasonal components, MoAT generates multiple predictions through **cross-fusion**. These predictions are then aggregated to generate the final prediction using an **offline synthesis** approach.

### Solution

- ◆ Time series and text data are jointly decomposed into trend and seasonal components.
- ◆ In-corporates both sample-wise and feature-wise multi-modal data augmentation.
- ◆ The predictions for trend and seasonality are combined through a cross-modal fusion scheme to generate the final predictions.

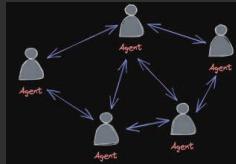


MoAT addresses the data scarcity problem in time series forecasting through multi-modal augmentation.

17 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Muti-Modal Time Series Tutorial @KDD25




[https://uconn-dsisis.github.io/MMTSA\\_tutorial/](https://uconn-dsisis.github.io/MMTSA_tutorial/)

18 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

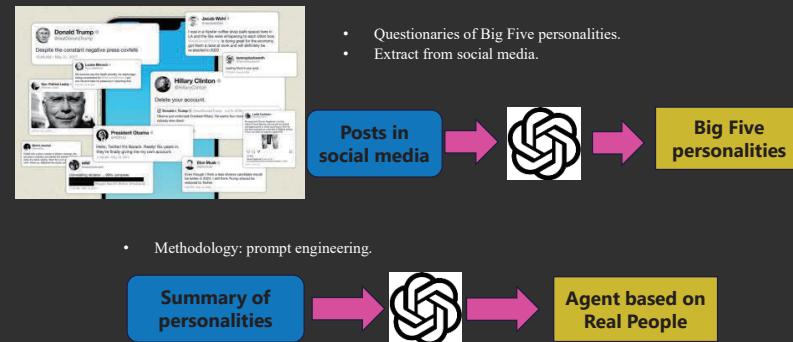
## Potential of Large Language Models (LLMs) in Simulation



- ◆ Each **agent** is a persistent actor with its own decision-making processes and behaviors.
  - has some state and interacts with other agents
  - mutually modifying each other's states
- ◆ Can we use agent to simulate the human?
  - How to simulate the customer's decision in supply chain?
  - How to simulate people's reaction in disaster simulation?
  - How to simulate people's communication in policy design for Government?
  - How to simulate different people in idea transmission and organization optimization?
- ◆ AI agent powered by LLMs → a multi-agent system

19 © NEC Corporation 2025

Orchestrating a brighter world **NEC**


## Why we need people simulation in MOGI



20 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Personality from Real People



21 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

## Take-Aways

- ◆ The increasing complexity of real-world systems requires a cost-effective and efficient way to test, optimize, and improve their processes.
  - Simulation enables the exploration of multiple scenarios and what-if analysis.
  - Users can gain insight into the impact of different factors and variables on the system or process being modeled.
- ◆ We need tools to test scenarios that would be too dangerous or difficult to test in the real world.
  - Emergency situations, military operations, or complex engineering designs.
- ◆ The integration of AI and simulation provides promising future for complex system understanding and management

**Simulation identifies and solves problems before they occur in real-world scenarios.**

22 © NEC Corporation 2025

Orchestrating a brighter world **NEC**

\Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.

MALAYSIAN–JAPAN SYMPOSIUM ON MATHEMATICAL AND  
STATISTICAL MODELLING

August 26th, 2025, Auditorium, IMI, Kyushu University, Japan

---

## **From Data to Decisions: The Role of Analytics in Modern Manufacturing**

**Nurul Farahain Mohammad**

Insulet Malaysia Sdn. Bhd.

In today's manufacturing world, data is key to driving production and efficiency. This study will explore how data analytics is transforming the manufacturing industry. We will discuss the role of data analytics in enabling the visibility of material inventory, monitoring Overall Equipment Effectiveness (OEE), identify issues through scrap analysis and statistical process control. Additionally, the challenges of implementing data analytics projects and the skills and expertise required to leverage data effectively will be addressed.

# From Data to Decisions: The Role of Analytics in Modern Manufacturing

Ts. Dr. Nurul Farahain Mohammad

Senior Analytics Engineer Insulet Malaysia Sdn. Bhd.

Malaysia - Japan Symposium on Mathematical and Statistical Modelling 26

August 2025

Insulet

## About Insulet

Insulet ("Insulet" or "the Company") is an innovative medical device company focused on improving the lives of people with diabetes and other conditions through its proprietary Omnipod® platform.



**The Omnipod platform** provides a unique alternative to traditional insulin delivery methods. A simple, wearable, tubeless design allows the disposable Omnipod device ("Pod") to deliver up to three days of continuous insulin without requiring users to see or handle a needle.



Insulet's flagship Omnipod 5 Automated Insulin Delivery (AID) System integrates with a continuous glucose monitor (CGM) to automatically manage blood sugar levels, eliminating the need for multiple daily injections or fingersticks. Users can control this intuitive system via a compatible smartphone or the Omnipod 5 Controller.



In addition to enhancing diabetes management, **Insulet tailors the Omnipod product platform for subcutaneous delivery of non-insulin drugs across other therapeutic areas.** At Insulet, ingenuity meets a commitment to access, customer-centric operations, and high-quality products. Omnipod products are available in 25 countries around the world, reflecting Insulet's significant role in expanding the global adoption of insulin pump therapy.



**Founded in 2000 and headquartered in Acton, Massachusetts**, Insulet is a publicly traded company listed on the Nasdaq (PODI). We operate globally with offices in the United States (U.S.), Australia, Canada, China, France, Germany, Malaysia, Mexico, Netherlands, United Arab Emirates (U.A.E.), and the United Kingdom (U.K.). Our state-of-the-art manufacturing facilities are located in Massachusetts, China, and Malaysia.

### OUR MISSION

To improve the lives of people with diabetes.

### OUR VISION

We create innovative technology that allows people with diabetes globally to enjoy simplicity, freedom, and healthier lives.



## OUR PRODUCTS

The Omnipod platform offers continuous insulin delivery, providing all the benefits of insulin pump therapy without compromise and eliminating the need for external tubing required with conventional pumps.

The Omnipod platform's innovative, proprietary design and differentiated features offer those with insulin-dependent diabetes unprecedented freedom, comfort, and ease in managing their condition. Pod Therapy is an innovative, intuitive kind of insulin management method — a customizable alternative to traditional insulin pumps and multiple daily injections. The wearable, insulin-filled Pod includes a small, flexible cannula that inserts automatically with the push of a button. The Pod delivers personalized doses of insulin into your body based on the set and variable rates that you program into a handheld Personal Diabetes Manager (PDM), or Omnipod 5 App on the Controller or compatible smartphone.

For more information on our products and expanding accessibility, please see the [Value](#), [Affordability](#), and [Accessibility](#) section of this report and the [Insulet website](#).



Omnipod provides all the benefits of insulin pump therapy in a unique way.

The primary components of our Pod therapy are:

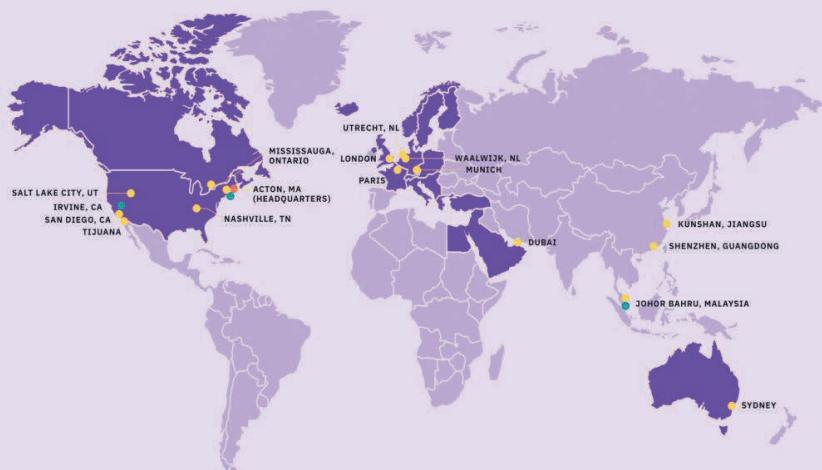


1

POD

The tubeless, waterproof Pod provides automated, virtually pain-free insertion and can be worn in multiple locations to deliver precise, personalized insulin doses for up to three days.




2

PERSONAL DIABETES MANAGER (PDM) OR CONTROLLER

The handheld Controller wirelessly programs the Pod with the user's personalized insulin instructions and monitors Pod operation.

## LOCATIONS

We currently have offices in 11 countries, with products available in 25 countries spanning North America, Europe, the Middle East, and Asia Pacific. Every day, we actively work to expand access and reach more customers worldwide.



- OFFICE
- INSULET-OWNED MANUFACTURING
- DISTRIBUTION CENTER
- COUNTRIES WHERE OMNIPOD WAS SOLD IN 2023

# Introduction

Insulet

## Abstract

In today's manufacturing world, data is key to driving production and efficiency. This study will explore how data analytics is transforming the manufacturing industry. We will discuss the role of data analytics in enabling the visibility of material inventory, monitoring Overall Equipment Effectiveness (OEE), identify issues through scrap analysis and statistical process control. Additionally, the challenges of implementing data analytics projects and the skills and expertise required to leverage data effectively will be addressed.

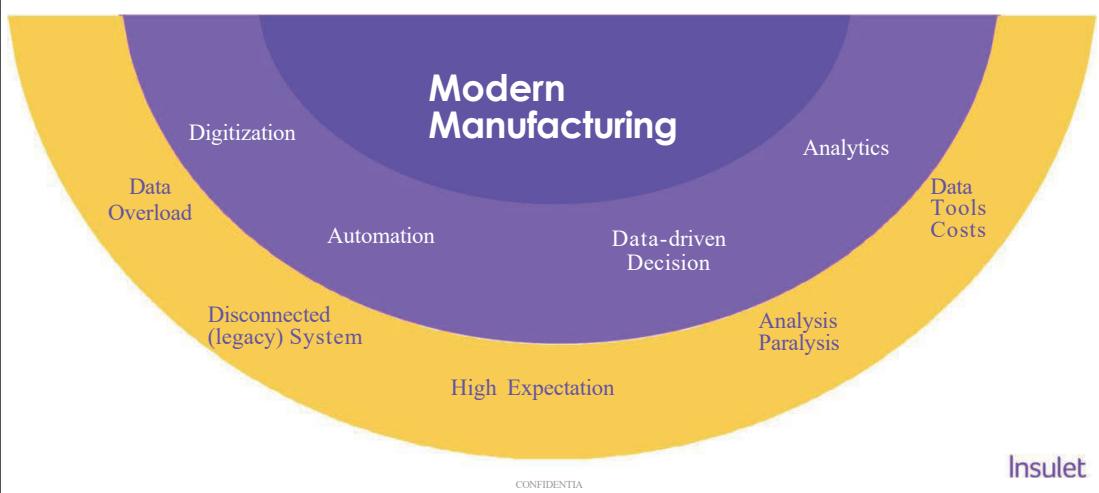
CONFIDENTIAL

Insulet

# Modern Manufacturing

Modern manufacturing is defined as a **transformation process** involving materials, processes, and systems. It integrates traditional and newly developed manufacturing techniques, with a strong **emphasis** on **quantitative analysis**, electronics manufacturing, and sustainability. It reflects the shift toward **IR 4.0**, where **automation**, **data exchange**, and smart technologies are central. (Groover, 2020).

Modern manufacturing **embraces big data analytics** to optimize processes, reduce costs, and enhance production efficiency. (Luciano, 2024).


Groover, M. P. (2020). *Fundamentals of Modern Manufacturing: Materials, Processes, and Systems*. John Wiley & Sons.

Luciano, S. (2024). Data-driven Manufacturing: The Role of Big Data Analytics in Enhancing Production Efficiency. *Industrial Engineering & Management*, 13(5).



Insulet

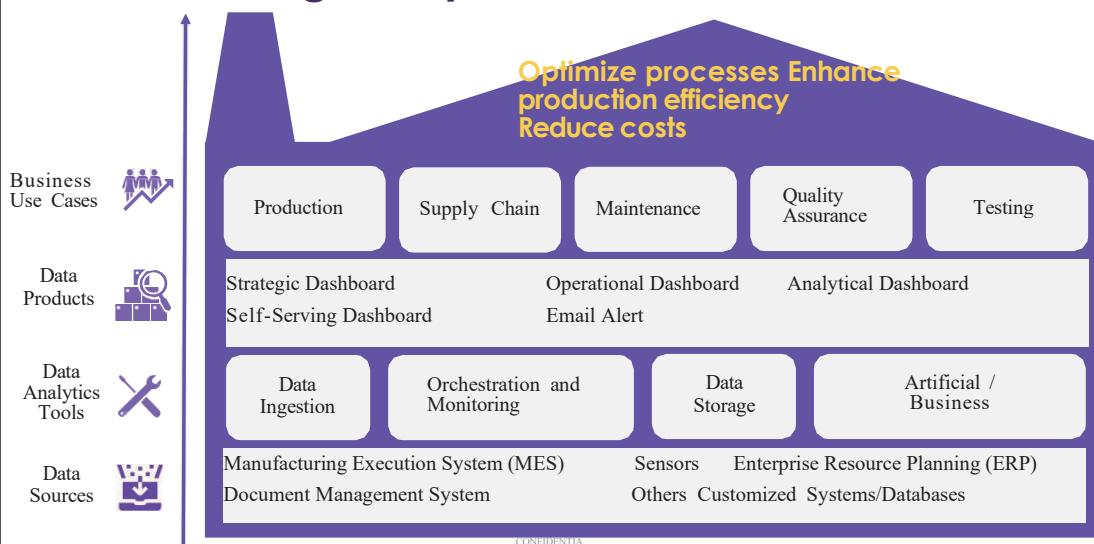
# Modern Manufacturing



# Manufacturing Analytics

Manufacturing analytics refers to the **systematic analysis of data** generated from manufacturing processes, equipment, and enterprise systems to support **data-driven decision making**. These programs aim to improve **productivity**, optimize **yield**, enable predictive **maintenance**, and support product **re-engineering**.

Emphasizes the **integration of internal data** (from MES, ERP, sensors, automation systems) and **external data** (from supply networks, customers, and regulatory bodies) to enhance operational **performance** (Ismail et al., 2019).




Ismail, A., Truong, H.-L., & Kastner, W. (2019). Manufacturing process data analysis pipelines: a requirements analysis and survey. *Journal of Big Data*, 6(1).

CONFIDENTIAL

Insulet

# Manufacturing Analytics



# Material Inventory

## Use Case

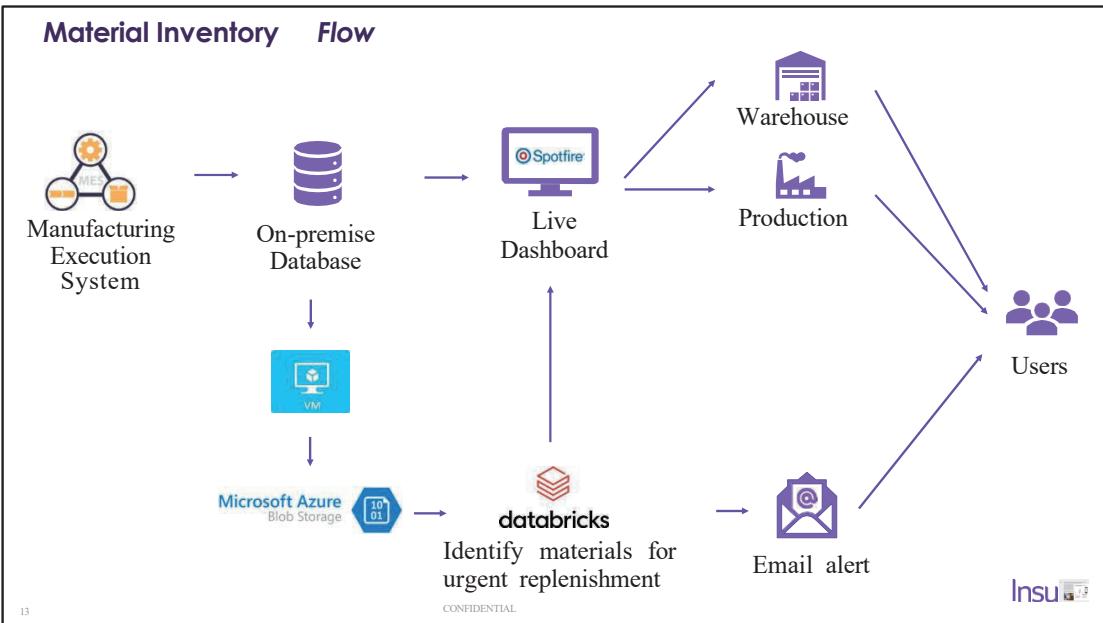
Insulet

### Material Inventory

#### Use Case Description

Managing the movement of materials from the warehouse to the production area to ensure timely replenishment and minimize production downtime.

#### Business Challenges


- Address bottlenecks in the movement of materials from warehouse to production.
- Production downtime due to incomplete material transport to the production areas.
- Lack of visibility on material inventory levels and status.

#### How Analytics Solution Helps?

- Provides visibility of the material inventory at each stages and their status via real-time operational dashboard.
- Identify and notify responsible personnel when materials are not replenished within a defined time threshold via automated email alerts .

#### Implementation

- Data source is from Manufacturing Execution System (MES) containers.
- Collaborate with stakeholders to define logic for categorizing urgency of material replenishment.
- Develop live dashboard using TIBCO Spotfire.
- Implement job orchestration and email alerts using Databricks.



**Material Inventory Categorization**

| Color legend                         | Blue                                                          | Green                | Yellow               | Red                  |
|--------------------------------------|---------------------------------------------------------------|----------------------|----------------------|----------------------|
| <b>Rule 1: Quantity vs threshold</b> | N/A                                                           | Quantity > Threshold | Quantity < Threshold | Quantity < Threshold |
| <b>Rule 2: Time duration</b>         | N/A                                                           | N/A                  | $\leq X$ hours       | $> X$ hour           |
| <b>Rule 3: Movement</b>              | Ready to collect any movement (MES Operation is Transit Area) | N/A                  | N/A                  | N/A                  |

CONFIDENTIAL

14

Insu

## Material Inventory Live Dashboard



15

CONFIDENTIAL

Insu 

# Overall Equipment Effectiveness (OEE)

Use Case

Insulet

## Overall Equipment Effectiveness (OEE)

### Use Case Description

Measure of how well a manufacturing equipment is utilized compared to its full potential, during the periods when it is scheduled to run. An OEE of 100% means that only good parts are produced (100% quality), at the maximum speed (100% performance), and without interruption (100% availability).

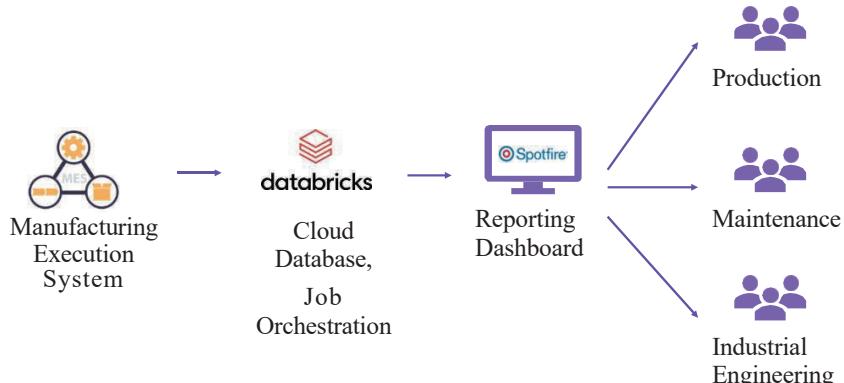
### How Analytics Solution Helps?

- Provides monitoring of performance of each machines at all processes via analytical dashboard.
- Automated and consistent report that can save engineers' time so that they can focus on solving issues, finding opportunities for improvement and

### Business Challenges

- Monitoring of performance of each machines at all processes.
- Time consuming data processing, analysis and report preparation due to the volume of data.

### Implementation


- Data source is from Manufacturing Execution System (MES).
- Collaborate with stakeholders to define logic for each metrics.
- Develop reporting dashboard using TIBCO Spotfire.
- Implement job orchestration using Databricks.

17

CONFIDENTIAL



## Overall Equipment Effectiveness (OEE) Flow



18

CONFIDENTIAL



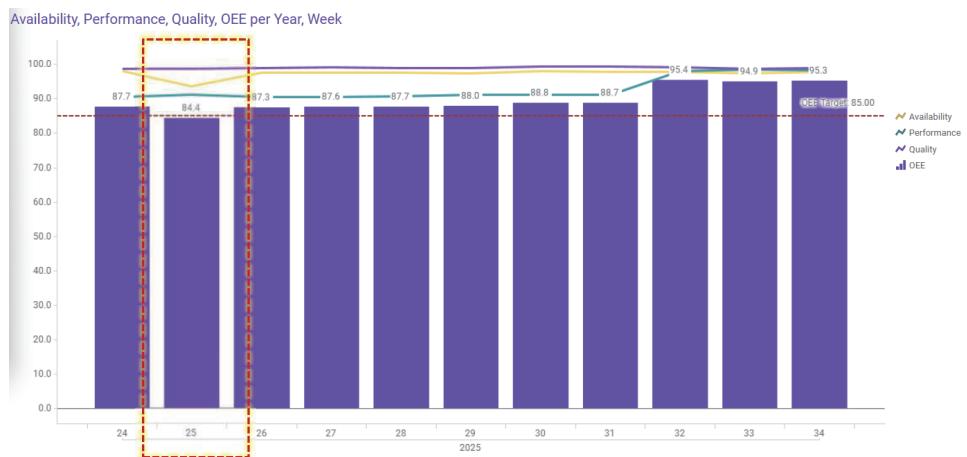
## Overall Equipment Effectiveness (OEE) Formula

$$\text{Availability} = \frac{\sigma \text{ Plan Hour} - \sigma \text{ Unplan Downtime}}{\sigma \text{ Plan Hour}} \times 100$$

$$\text{Performance} = \frac{(\sigma \text{ Input}) \times \text{Cycle Time}}{(\sigma \text{ Plan Hour} - \sigma \text{ Unplan Downtime})} \times 100$$

$$\text{Quality} = \frac{\sigma \text{ Output}}{\sigma \text{ Input}} \times 100$$

$$\text{OEE} = \text{Availability} \times \text{Performance} \times \text{Quality}$$


$\sigma$  subject to daily, weekly, monthly, quarterly and yearly

19

CONFIDENTIAL

Insulet

## Overall Equipment Effectiveness (OEE) Chart



20

CONFIDENTIAL

Insulet

## Overall Equipment Effectiveness (OEE) Chart



21

CONFIDENTIAL

Insulet

# Scrap Analysis

## Use Case

Insulet

## Scrap Analysis

### Use Case Description

Analyze production scrap data to identify root causes, quantify losses, and uncover patterns that can guide process improvements and reduce waste.

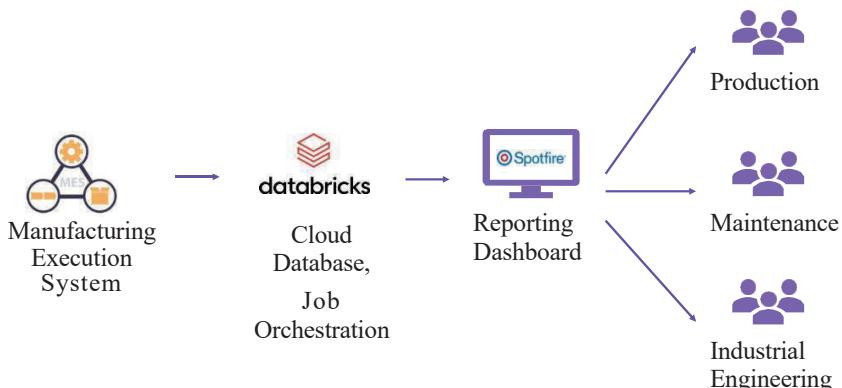
### Business Challenges

- High volume of scrap leading to increased production costs and reduced efficiency.
- Limited visibility into scrap trends across production lines, shifts, or material types.
- Difficulty in pinpointing root causes due to fragmented or inconsistent data.

### How Analytics Solution Helps?

- Visualize scrap trends by product, line, shift, and reject codes for monitoring via dashboards.
- Statistical analysis and pattern detection to help identify recurring issues and potential root causes.
- Enables data-driven decision-making for process optimization and waste reduction.

### Implementation


- Data source is from Manufacturing Execution System (MES).
- Collaborate with stakeholders to define logic for each metrics.
- Develop analytics dashboard using TIBCO Spotfire for trend analysis and drill down.
- Use Databricks for data processing. May be extended to drift detection.

23

CONFIDENTIAL



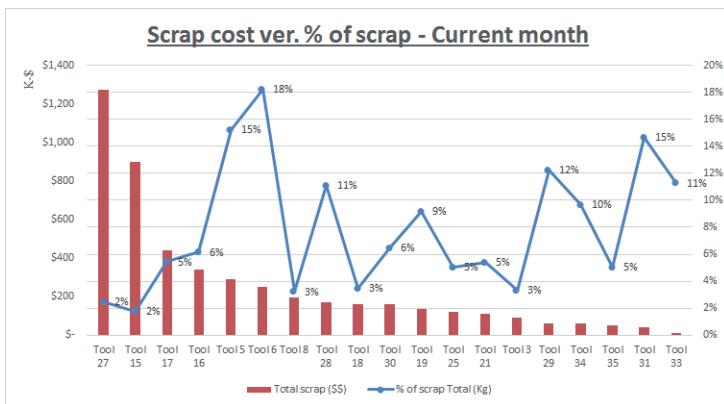
## Scrap Analysis Flow



24

CONFIDENTIAL




## Scrap Analysis Formula

$$\text{Yield} = \frac{\text{Good parts}}{\text{Total parts}} \times 100$$

$$\text{Defect Parts Per Million} = \frac{\text{Defective parts}}{\text{Total parts}} \times 1,000,000$$

$$\text{Scrap Cost} = \sigma_{\text{Reject type}} (\text{Component quantity} \times \text{Component cost})$$

## Scrap Analysis Chart



Source: <https://theplanningmaster.com/scrap-kpi/>

# Statistical Process Control

## Use Case

Insulet

### Statistical Process Control

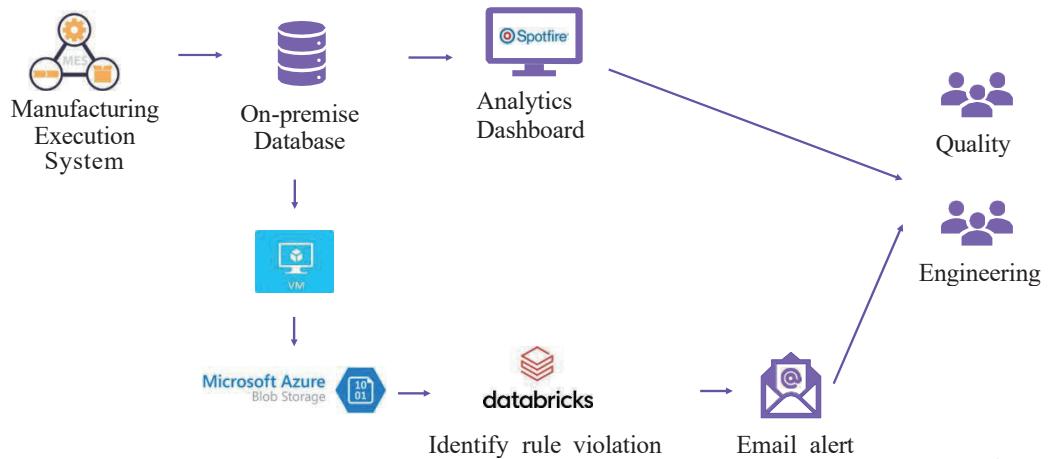
#### Use Case Description

Monitor and control inspection and testing processes using statistical techniques to ensure outputs remain within defined specification limits and maintain consistent quality.

#### Business Challenges

- Manual tracking of inspection/test results is time-consuming and error-prone.
- Lack of early warning signals for processes drifting out of control.
- Difficulty in identifying trends or shifts before defects occur.

#### How Analytics Solution Helps?


- Monitor process stability with control charts via analytics dashboard.
- Automated detection of rule violations to flag out-of-control conditions.
- Enables proactive quality control by identifying trends, shifts, and anomalies early.

#### Implementation

- Data source can be from Manufacturing Execution System (MES) or Standard Testing Data Format (STDF) files.
- Collaborate with quality team to define specification limits and control charts.
- Develop analytics dashboard using TIBCO Spotfire.
- Implement job orchestration using Databricks.



## Statistical Process Control Flow



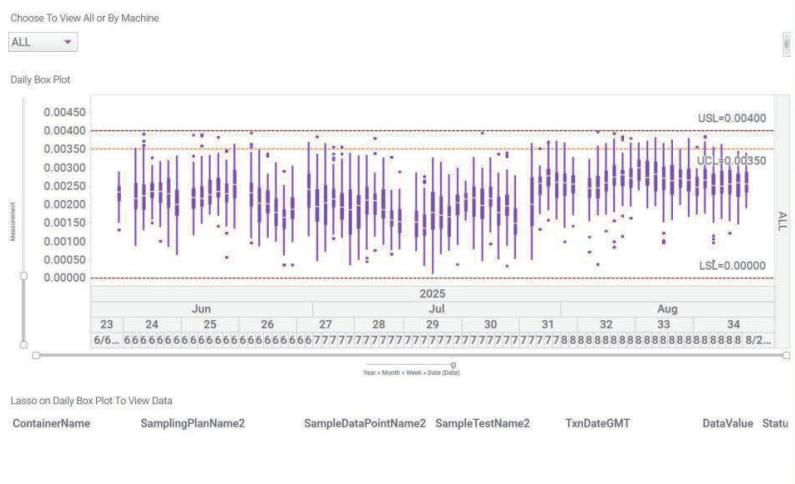
29

CONFIDENTIAL



## Statistical Process Control Metric

| Metric     | What It Measures                  | Goal                     | Std Dev Used |
|------------|-----------------------------------|--------------------------|--------------|
| <b>Pp</b>  | Process spread vs spec limits     | > 1.5                    | Population   |
| <b>Ppk</b> | Centering of process              | > 1.33<br>(ideal > 1.67) | Population   |
| <b>Cp</b>  | Potential capability              | > 1.5                    | Sample       |
| <b>Cpk</b> | Centering of potential capability | > 1.33                   | Sample       |


30

CONFIDENTIAL



# Statistical Process Control Charts

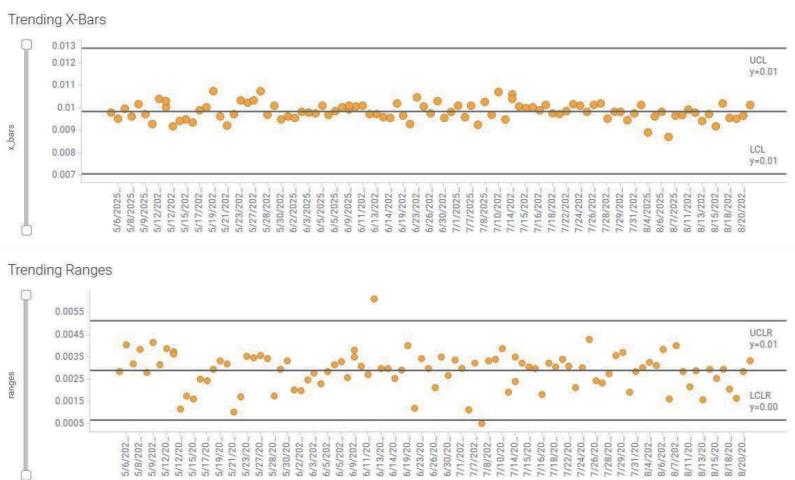
**Box plot:**  
Visualize  
distribution of  
measurements  
and identifying  
outliers



31

CONFIDENTIAL

let**u**let

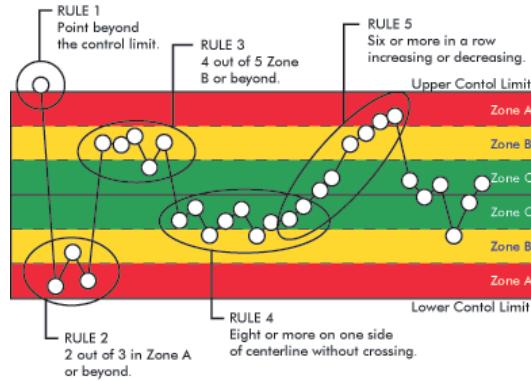

# Statistical Process Control Charts

## X-bar Chart:

Tracks subgroup averages over time

## R Chart:

Tracks subgroup ranges over time




32

CONFIDENTIAL

let'soulet

## Statistical Process Control Detection Rules



Source:

[https://www.infinityqs.com/sites/infinityqs.com/files/images/Western\\_Electric.gif](https://www.infinityqs.com/sites/infinityqs.com/files/images/Western_Electric.gif)

CONFIDENTIAL

Insulet

# Challenges and Skills Required

Insulet

## Challenges of implementing data analytics projects



Data quality



Data governance and ownership



Stakeholder management



Consistent metrics and analytics



Real-time integration



Trade off between most correct and business values

CONFIDENTIAL

Insulet

## Skills and expertise required to leverage data effectively

- 💡 Domain knowledge
- 💬 Communication & Collaboration
- 📈 Data Analysis & Statistics
- 💻 Programming
- 🔧 Data Engineering
- 📊 Data Visualization
- ☁️ Cloud & Big Data Technologies
- 💡 Curiosity & Continuous Learning

CONFIDENTIAL

Insulet

# Thank You

CONFIDENTIAL

MALAYSIAN–JAPAN SYMPOSIUM ON MATHEMATICAL AND  
STATISTICAL MODELLING

August 26th, 2025, Auditorium, IMI, Kyushu University, Japan

---

**Solving urban traffic issues in Malaysia  
by AI-based Demand Responsive Transist**

**Hideaki Yokomizo**

WILLER, Inc.

Urban transportation in Malaysia is overly reliant on private vehicles, resulting in traffic congestion, traffic accidents, and environmental issues. WILLER group is collaborating with public transportation operators such as Rapid KL to provide AI-based DRT (Demand Responsive Transport), developed and operated in Japan, as the last/first mile transportation to MRT/LRT stations, aiming to address these issues. This presentation will introduce this initiative.

# Solving Urban Traffic Issues in Malaysia by AI-based Demand Responsive Transit

2025.8.26

HIDEAKI YOKOMIZO WILLER, INC.



## CONTENTS

1. Introduction
  - WILLER
  - Demand Responsive Transit (DRT)
  - Projects in Japan
2. DRT in Malaysia
  - Transportation issues in KL
  - DRTs by Rapid KL
  - Our trials
3. Future potential

**Presenter Hideaki**

**Yokomizo**

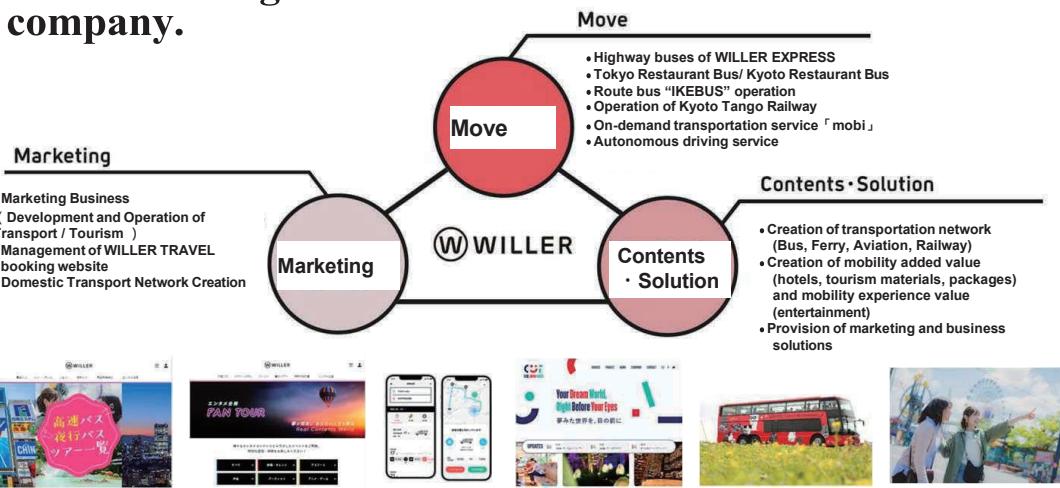
Director and Executive Officer, WILLER, Inc.

Ph.D.

(Interdisciplinary Information Science)

- University of Tokyo
- Research on MaaS (Mobility as a Service)




2

## CONTENTS

- ➡ 1. Introduction
  - WILLER
  - Demand Responsive Transit (DRT)
  - Projects in Japan
- 2. DRT in Malaysia
  - Transportation issues in KL
  - DRTs by Rapid KL
  - Our trials
- 3. Future potential

3

# WILLER is a Transportation and Marketing company.



## • WILLER EXPRESS,



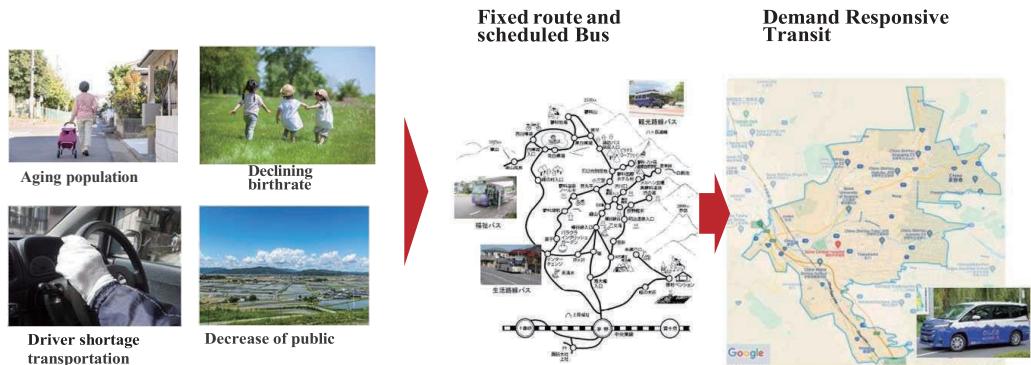
## • Kyoto Tango Railway



## Today's focus

### • DRT "mobi"




## • EV bus "IKEBUS"

## • Tokyo Restaurant Bus

## • Autonomous driving service

## Why DRT in Japan?

Socio-economic changes are driving the shift to DRT in rural areas.



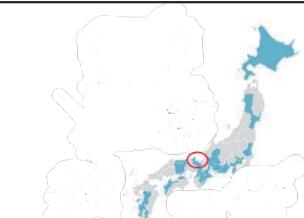
Source: Chino City

6

## Mobi: Our DRT service

Launched the AI-based Demand Responsive Transit service in 2021.

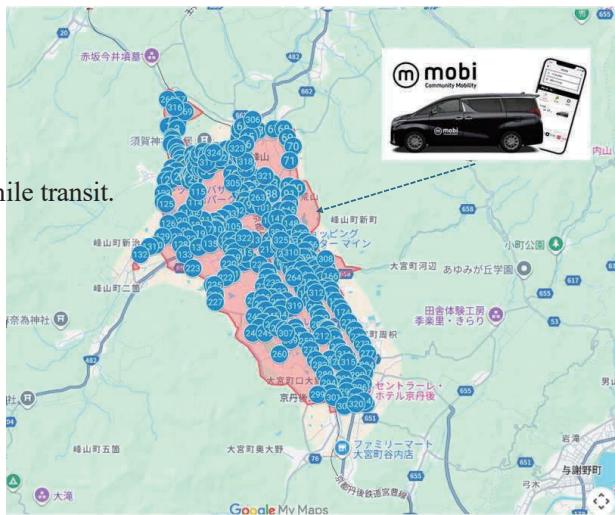



7

## Mobi: Area Coverage in Japan

- Operating in 17 areas (as of August 2025)
- Partnering with local taxi providers




## Mobi: A case in point (Kyo-tango City)



- WILLER runs KTR (local railway line) in Northern part of Kyoto.
- Bus lines from/to railway stations diminishing.

## Mobi: A case in point (Kyo-tango City)

last/first mile transit.



- Introduced DRT to enhance the
- More than 300 virtual stops in the area.

10

## CONTENTS

1. Introduction
  - WILLER
  - Demand Responsive Transit (DRT)
  - Projects in Japan
2. DRT in Malaysia
  - Transportation issues in KL
  - DRTs by Rapid KL
  - Our trials
3. Future potential

11

## Transportation issues in KL

Kuala Lumpur faces several persistent transportation challenges.



- Severe traffic congestion
- High private vehicle ownership
- Inefficient bus services
- Lack of Last-Mile connectivity from public transport
- ...and more.

Picture: Malaymail (16 Feb 2023)

12

## Transportation issues in KL

Kuala Lumpur faces several persistent transportation challenges.

### 1. Severe Traffic Congestion

- **High Private Vehicle Ownership:** passenger cars often making up 50% to 60% of total vehicles on the road.
- **Inadequate Road Capacity**
- **Inefficient Bus Services:** often get stuck in the same traffic jams as private cars, leading to unpredictable schedules and long travel times.

### 2. Lack of Public Transport Integration and Connectivity

- **Last-Mile Connectivity:** A major deterrent for public transport use is the difficulty of getting from a station to one's final destination.
- **Disjointed Systems:** MRT, LRT, Monorail, buses are not always well-integrated.
- **Inaccessible Stations:** Some stations are poorly located in areas with low population density, while others are difficult to access due to surrounding gated communities, private properties, or major expressways.

13

## Grab in Malaysia

Grab-car has high usage in Malaysia.



- Grab's mobility segment: 25.3M MTU (Monthly Transacting Users) in 2024
- Malaysia's share in total revenue: 30%
- Estimated MTU in Malaysia: 7.4M
- Estimated pen rate of the ride-hailing in Malaysia: 28%\*

Source: Grab Investor Relations; \*Digital News Asia

14

## DRT by Rapid KL

Rapid KL is expanding DRT as the last-mile connectivity to stations.

### New fleet of 320 vans to boost Rapid KL On-Demand service

THE Rapid KL On-Demand service will be expanded with the addition of 320 new vans by June, at a cost of RM55mil.

This is to improve first-mile and last-mile connectivity and encourage greater public transport use.



The vans will have designated seats for persons with disabilities. (Right) The open-payment system allows users to pay using debit and credit cards. — Photos: Bernama



Source: The Star (12 May 2025)

15

## A case in Europe: DRT in Hamburg

HHV (Transport Authority in Hamburg) provides DRT to users from/to suburban stations, at the cost of 2 Euro per ride.



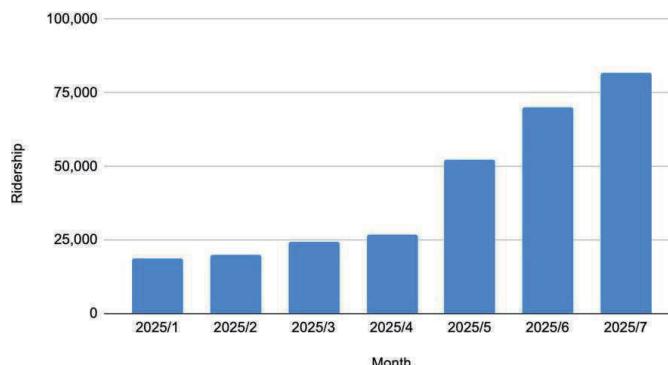
Source: hvv HP: <https://vhvbus.de/hop/>

16

## Mobi in KL: Partnering with Rapid KL

WILLER has partnered with Rapid KL to launch and expand DRT.



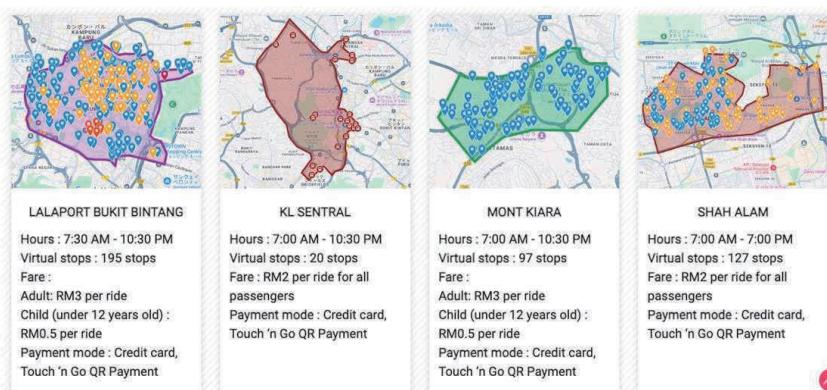

Source: [myrapid.com.my](http://myrapid.com.my)

17

## Mobi in KL: Ridership of Rapid KL project

Our ridership has been steadily increasing.

Monthly Ridership in 17 areas of Rapid On-demand Service




Source: WILLER

18

## Mobi in KL: New Project

Launched 4 new areas with “mobi” original apps and transportation service in August.



Source: <https://mobi.badanbascoach.com.my/>

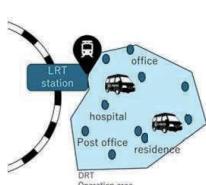
19

## Mobi in KL: “Global South Project” funded by METI Japan

The new project in KL is funded by METI Japan to enhance the economic cooperation with ASEAN countries.

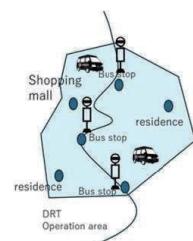


Source: METI; <https://gs-hojo-web.jp/index.html> (Japanese)


20

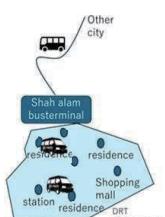
## Mobi in KL: New Project’s Scope

The new project is to enhance the multi-modal connectivity.


### Case 1 : LRT x DRT

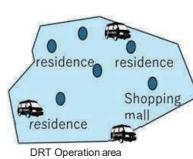
By utilizing DRT for the first and last mile to the LRT lines, we aim to establish a transportation infrastructure that allows commuters and students to travel without the need for a private car.




### Case 2 : Citybus x DRT

Display city buses real-time availability on the app, and improve user convenience by showing both the main city buses and the DRT, which serves as a feeder, in a single app for city travel.



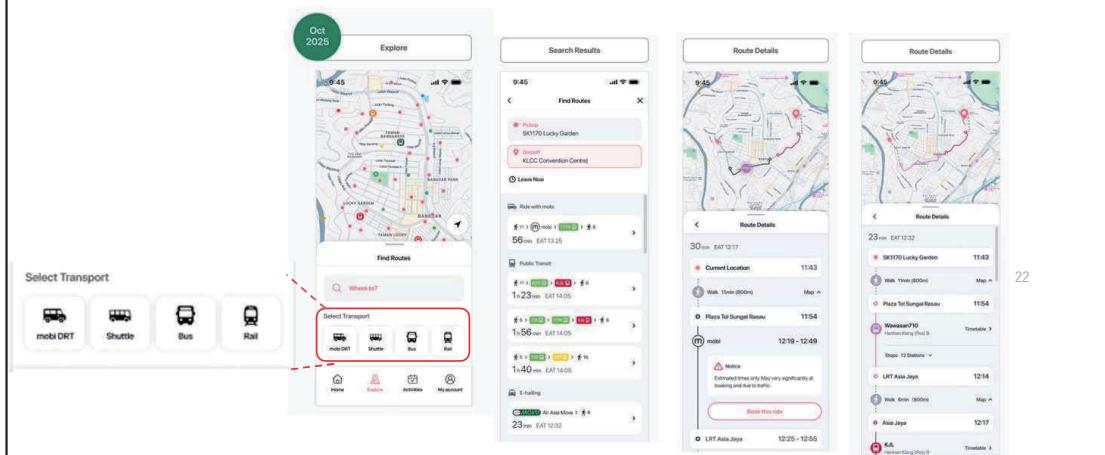

### Case 3 : Intercity Bus x DRT

Connecting the Seksyen 17 Bus Terminal to the city and other mode of public transport to meet the demand for middle mile connectivity throughout the country.



### Case 4 : New connectivity points

Introduce DRT in areas without public transportation services and collect public transportation usage data.




21

## Mobi in KL: The multi-modal MaaS apps

Our new app is to provide the integrated multi-modal journey planning and booking.

Preliminary design of new app



22

## Mobi in KL: New Project in action

New “mobi” car



Customer's voice

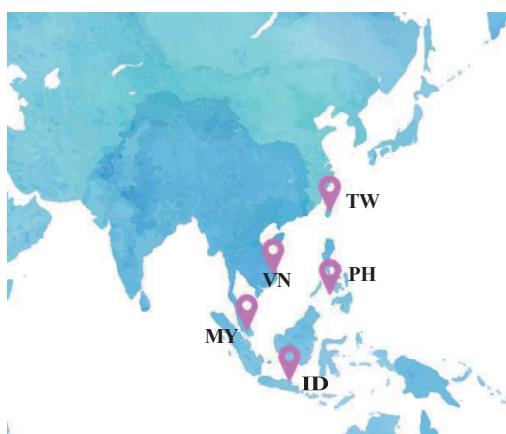


Driver training



Launch campaign

23


## CONTENTS

1. Introduction
  - WILLER
  - Demand Responsive Transit (DRT)
  - Projects in Japan
2. DRT in Malaysia
  - Transportation issues in KL
  - DRTs by Rapid KL
  - Our trials
3. Future potential

24

## Introduction to ASEAN countries

We aim to bring “mobi” and our solutions to other ASEAN countries.



25

## Contact Information

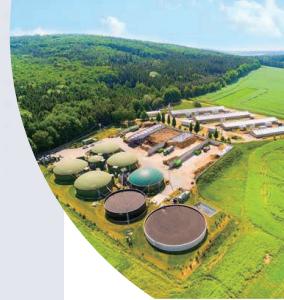
Hideaki YOKOMIZO, Ph.D.

WILLER, Inc.



- Director and Executive Officer at WILLER, Inc.
- [hideaki.yokomizo@willer.co.jp](mailto:hideaki.yokomizo@willer.co.jp)
- <https://www.willer.co.jp/> (Corporate site in Japanese)
- <https://willers.com.sg/> (Corporate site in English)
- <https://willer-travel.com/en/> (B2C site in English)
- <https://mobi.badanbascoach.com.my/> (mobi site in Malaysia)

## **Genetic Algorithm-Based Optimization of Location-Routing problems for a Sustainable Biomass Supply Chain**


**Zaitul Marlizawati Zainuddin**

Universiti Teknologi Malaysia (UTM)

Addressing location-routing problems (LRP) is crucial for sustainability in the biomass supply chain (BSC). This study applies a Genetic Algorithm (GA) with automated mutation selection and elite child strategies to solve the LRP. The approach promotes sustainable logistics and provides valuable insights for stakeholders.

### **References**

- [1] Foo, F. Y., Zainuddin, Z. M., & Pheng, H. S. (2024). Optimizing Palm Oil Biomass Supply Chain Logistics through Multi-Objective Location-Routing Model. Malaysian Journal of Fundamental and Applied Sciences, 20(2): 247 – 265. <https://doi.org/10.11113/mjfas.v20n2.3085>
- [2] Foo, F. Y., Zainuddin, Z. M. & Hang, S. P. (2024). Palm Oil Biomass Supply Chain Multi-Objective Two-Echelon Location-Routing Optimization. Malaysian Journal of Mathematical Sciences, 18(4): 867- 901. <https://doi.org/10.47836/mjms.18.4.12>
- [3] Foo, F. Y., Zainuddin, Z. M. & Hang, S. P. (2025). Optimizing palm oil biomass collection: genetic algorithm approaches in solving location-routing problem. Journal of Quality Measurement and Analysis, 21(2): 2025, 277-288. <https://doi.org/10.17576/jqma.2102.2025.18>



## Genetic Algorithm-Based Optimization of Location- Routing Problems for a Sustainable Biomass Supply Chain

ZAITUL MARLIZAWATI ZAINUDDIN

*UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu  
Sina Institute for Scientific and Industrial Research (ISI-SIR) &*

*Department of Mathematical Sciences, Faculty of Science*

*Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia*

*Innovating Solutions*

[www.utm.my](http://www.utm.my)

## Presentation Outline

1

### Problem Formulation

- Introduction & Motivation

2

### Proposed Genetic Algorithm (GA) Solution Method

- Basic Procedure
- Proposed Procedure
- Chromosome Constructions
- Order Crossover
- Automated Mutation Operator Selection (AMS) Strategy
- Elite Child Population (EC) Strategy

3

### Research Insights

- Inspection framework & Measurements
- Results for 1-LRP, 2-LRP, 2-SLRP

## Introduction & Motivation

### Biomass energy (biofuels)

As the world transitions toward sustainable energy systems, biomass energy derived from **agricultural waste** has emerged as a **promising solution** due to

- **abundant availability**
- potential to **address waste disposal challenges**.

### Complex decision-making problems

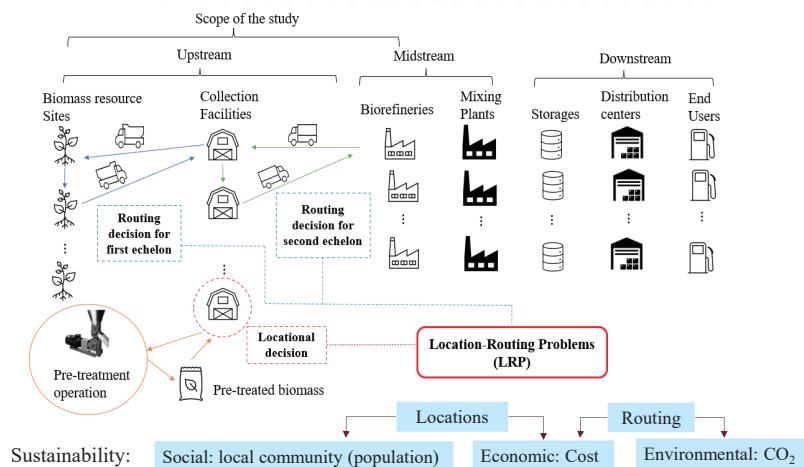
However, the biomass energy industry faces complex **decision-making** problems, particularly in

- **resource allocation**,
- **facility siting**,
- biomass collection **routing**, and
- satisfying the **sustainability goals**.

### An efficient biomass supply chain (BSC)

These challenges have intensified the need for an efficient biomass supply chain (BSC), where logistical optimization plays a critical role.

### Motivation


To address the BSC challenges by optimizing the network and supporting Malaysia's clean energy and sustainability commitments.

## Introduction & Motivation

Atashbar et al. (2018):

the most appealing area for research

resemble those in the petroleum industry



**Multi-Objective Two-Echelon Location-Routing Problem (2-LRP)**


- (a) Open collection facilities can serve multiple mills, whereas each mill can only be associated with a single open collection facility.
- (b) Several collection facilities can fulfill the demand of a given biorefinery, with each open collection facility being restricted to a single biorefinery assignment.
- (c) Within the first echelon, the vehicle routing commences at an open collection facility and ends at the same facility after covering the assigned mills. Notably, no direct paths exist between collection facilities, and each mill must be visited exactly once.
- (d) In the second echelon, truck routes initiate from a biorefinery and return to the same biorefinery after visiting the designated collection facilities. No flow is permitted between biorefineries. Visitation is solely restricted to open collection facilities, and each facility must be visited only once.

**Model Formulation**
**OBJECTIVE FUNCTIONS**

$$\begin{aligned} \text{Total Cost} \\ \text{minimization} \end{aligned} \quad f_1 = \sum_{i \in C} f_i^{EC} z_i + \sum_{i \in C} f_i^{PC} q_i^C + \sum_{i \in F \cup C} \sum_{j \in F \cup C} \sum_{h \in H} v_h^H d_{ij}^F x_{ijh} \\ + \sum_{i \in C \cup B} \sum_{j \in C \cup B} \sum_{g \in G} v_g^G d_{ij}^S y_{ijg} \quad (1)$$

$$\begin{aligned} \text{Total Population} \\ \text{minimization} \end{aligned} \quad f_2 = \sum_{i \in C} Pop_i z_i \quad (2)$$

$$\begin{aligned} \text{Total CO}_2 \\ \text{minimization} \end{aligned} \quad f_3 = \sum_{i \in C} \sum_{j \in C} \sum_{h \in H} \gamma^{FE} d_{ij}^F x_{ijh} + \sum_{i \in B} \sum_{j \in C} \sum_{g \in G} \gamma^{GE} d_{ij}^S y_{ijg} \\ + \sum_{i \in F} \sum_{j \in F \cup C} \sum_{h \in H} \gamma^{FL} d_{ij}^F L P_{ijh}^F \\ + \sum_{i \in C} \sum_{j \in C \cup B} \sum_{g \in G} \gamma^{GL} d_{ij}^S L P_{ijg}^S \quad (3)$$

## CONSTRAINTS

### The first echelon constraints

#### Routing constraints

$$\sum_{j \in F \cup C} \sum_{h \in H} x_{ijh} = 1, \quad \forall i \in F \quad (4)$$

$$\sum_{i \in F \cup C} x_{ijh} = \sum_{i \in F \cup C} x_{jih}, \quad \forall j \in F \cup C, \forall h \in H \quad (5)$$

$$\sum_{i \in F} \sum_{j \in C} x_{ijh} \leq 1, \quad \forall h \in H \quad (6)$$

$$x_{ijh} = 0, \quad \forall i, j \in F \cup C, i = j, \forall h \in H \quad (7)$$

$$\sum_{h \in H} x_{ijh} = 0, \quad \forall i, j \in C \quad (8)$$

#### Routing and locational decision constraint

$$\sum_{j \in F} \sum_{h \in H} x_{ijh} \geq z_i, \quad \forall i \in C \quad (9)$$

#### Assignment (mill to facility) and collection facility capacity (locational decision) constraint

$$\sum_{i \in F} q_i^F \alpha_{ij} \leq t_j^C z_j, \quad \forall j \in C \quad (10)$$

#### Subtour elimination constraints

$$\sum_{h \in H} x_{jih} \leq \alpha_{ij}, \quad \forall i \in F, \forall j \in C \quad (11)$$

$$\sum_{h \in H} x_{jih} \leq \alpha_{ij}, \quad \forall i \in F, \forall j \in C \quad (12)$$

$$\sum_{h \in H} x_{ijh} + \alpha_{ik} + \sum_{m \in C, m \neq k} \alpha_{jm} \leq 2, \quad \forall i, j \in F, \forall k \in C \quad (13)$$

#### Vehicle loading and vehicle capacity constraints

$$\sum_{j \in F \cup C} \sum_{h \in H} LP_{ijh}^F - \sum_{j \in F \cup C} \sum_{h \in H} LP_{jih}^F = q_i^F, \quad \forall i \in F \quad (14)$$

$$LP_{ijh}^F \leq c_h^H x_{ijh}, \quad \forall i, j \in F \cup C, i \neq j, \forall h \in H \quad (15)$$

$$\sum_{j \in F} \sum_{h \in H} LP_{jih}^F = \sum_{j \in F} \alpha_{ji} q_j^F, \quad \forall i \in C \quad (16)$$

$$LP_{ijh}^F \leq (c_h^H - q_j^F) x_{ijh}, \quad \forall i \in F \cup C, \forall j \in F, \forall h \in H \quad (17)$$

$$LP_{ijh}^F \geq q_i^F x_{ijh}, \quad \forall i \in F, \forall j \in F \cup C, \forall h \in H \quad (18)$$

$$\sum_{j \in F} LP_{ijh}^F = 0, \quad \forall i \in C, \forall h \in H \quad (19)$$

#### Collected biomass quantity and pretreated biomass production constraints

$$q_j^C = \sum_{i \in F} \sum_{h \in H} LP_{ijh}^F, \quad \forall j \in C \quad (20)$$

$$q_j^{CP} = \theta^p q_j^C, \quad \forall j \in C \quad (21)$$

## CONSTRAINTS

### The second echelon constraints

#### Routing and locational decision constraints

$$\sum_{j \in G \cup B} \sum_{g \in G} y_{ijg} = z_i, \quad \forall i \in C \quad (22)$$

$$y_{ijg} \leq z_j, \quad \forall i \in B, \forall j \in C, \forall g \in G \quad (23)$$

#### Routing constraint

$$\sum_{g \in G} \sum_{j \in C} y_{ijg} \geq 1, \quad \forall i \in B \quad (24)$$

$$\sum_{j \in G \cup B} y_{ijg} = \sum_{j \in G \cup B} y_{jig}, \quad \forall i \in B \cup C, \forall g \in G \quad (25)$$

$$\sum_{i \in B} \sum_{j \in C} y_{ijg} \leq 1, \quad \forall g \in G \quad (26)$$

$$y_{ijg} = 0, \quad \forall i, j \in B \cup C, i = j, \forall g \in G \quad (27)$$

$$\sum_{g \in G} y_{ijg} = 0, \quad \forall i, j \in B \quad (28)$$

#### Locational decision, assignment (facility to biorefinery) and biorefinery capacity constraints

$$\sum_{j \in B} \beta_{ij} = z_i, \quad \forall i \in C \quad (29)$$

$$\sum_{i \in C} q_i^{CP} \beta_{ij} \leq t_j^B, \quad \forall j \in B \quad (30)$$

#### Subtour elimination constraints

$$\sum_{g \in G} y_{ijg} \leq \beta_{ij}, \quad \forall i \in C, \forall j \in B \quad (31)$$

$$\sum_{g \in G} y_{jig} \leq \beta_{ij}, \quad \forall i \in C, \forall j \in B \quad (32)$$

$$\sum_{g \in G} y_{ijg} + \beta_{ik} + \sum_{m \in B, m \neq k} \beta_{jm} \leq 2, \quad \forall i, j \in C, \forall k \in B \quad (33)$$

#### Vehicle loading and vehicle capacity constraints

$$\sum_{j \in G \cup B} \sum_{g \in G} LP_{ijg}^S - \sum_{j \in G \cup B} \sum_{g \in G} LP_{jig}^S = q_i^{CP}, \quad \forall i \in C \quad (34)$$

$$LP_{ijg}^S \leq c_g^G y_{ijg}, \quad \forall i, j \in C \cup B, i \neq j, \forall g \in G \quad (35)$$

$$LP_{ijg}^S \leq (c_g^G - q_j^{CP}) y_{ijg}, \quad \forall i \in C \cup B, \forall j \in C, \forall g \in G \quad (36)$$

$$LP_{ijg}^S \geq q_i^{CP} y_{ijg}, \quad \forall i \in C, \forall j \in C \cup B, \forall g \in G \quad (37)$$

$$\sum_{j \in C} LP_{ijg}^S = 0, \quad \forall i \in B, \forall g \in G \quad (38)$$

#### Collected pretreated biomass quantity and demand constraints

$$q_j^B = \sum_{i \in C} \sum_{g \in G} LP_{ijg}^S, \quad \forall j \in B \quad (39)$$

$$q_j^B \geq D_j^B, \quad \forall j \in B \quad (40)$$

## CONSTRAINTS

Non-negativity (decision variable) constraints

$$z_i \in \{0, 1\}, \forall i \in C \quad (41)$$

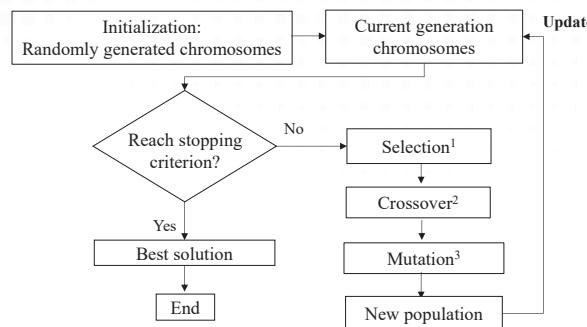
$$\alpha_{ij} \in \{0, 1\}, \forall i \in F, \forall j \in C \quad (42)$$

$$\beta_{ij} \in \{0, 1\}, \forall i \in C, \forall j \in B \quad (43)$$

$$x_{ijh} \in \{0, 1\}, \forall i, j \in F \cup C, \forall h \in H \quad (44)$$

$$y_{ijg} \in \{0, 1\}, \forall i, j \in C \cup B, \forall g \in G \quad (45)$$

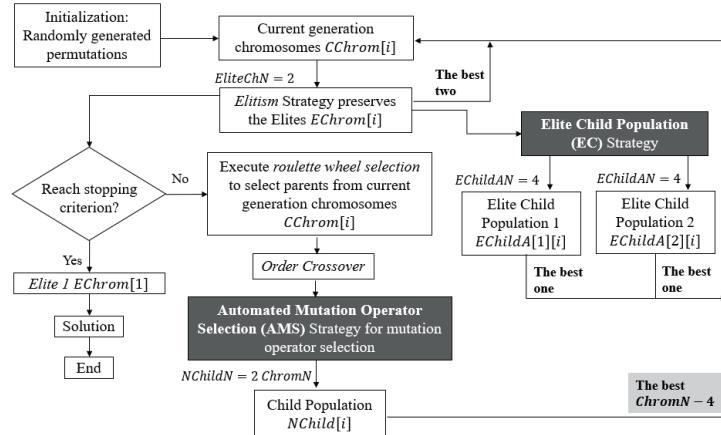
$$LP_{ijh}^F \geq 0, \forall i, j \in F \cup C, \forall h \in H \quad (46)$$


$$LP_{ijg}^S \geq 0, \forall i, j \in C \cup B, \forall g \in G \quad (47)$$

$$q_j^C \geq 0, \forall j \in C \quad (48)$$

$$q_j^{CP} \geq 0, \forall j \in C \quad (49)$$

The MINLP model was solved by GAMS with DICOPT optimizer.


## Basic GA Procedure



- 1) Selection operators include: (a) Roulette Wheel Selection, (b) Tournament Selection, (c) Ranking Selection, and (d) Elitism. The GA procedure **will use (a), (b), or (c), with or without (d)**.
- 2) Crossover operators include: (a) One-point, (b) Two-point, (c) Uniform, (d) Order, and (e) Partially Mapped Crossover (PMX). The GA **will use any of these**, though (a)–(c) are most common for binary chromosomes.
- 3) Mutation operators include: (a) Bit-flip (binary chromosomes), (b) Insertion, (c) Swap, and (d) Inversion. The GA **may use one or a combination, with combinations applied randomly during execution**.

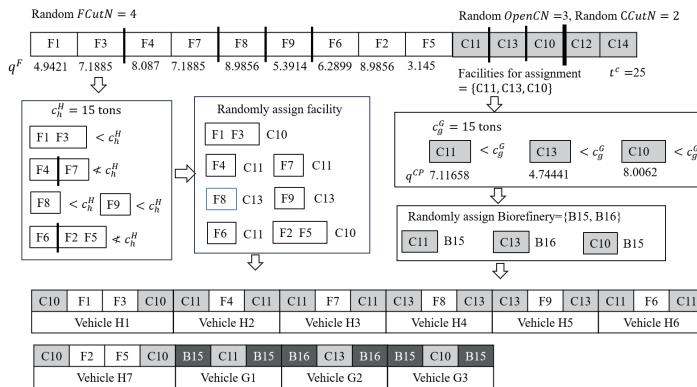
## **Proposed Procedure:**

AMSEC Genetic Algorithm (AMSEC\_GA)



## Chromosome Constructions

- Computational experiments were carried out on a test case involving **nine mills, five potential collection facilities, and two biorefineries**.


### String of mill (F) nodes

### String of candidate facility (C) nodes

| F1     | F3     | F4    | F7     | F8     | F9     | F6     | F2     | F5    | C11 | C13 | C10 | C12 | C14        |
|--------|--------|-------|--------|--------|--------|--------|--------|-------|-----|-----|-----|-----|------------|
| 4.9421 | 7.1885 | 8.087 | 7.1885 | 8.9856 | 5.3914 | 6.2899 | 8.9856 | 3.145 |     |     |     |     | $t^c = 25$ |

- The chromosome construction process starts with string permutations of mill (F) and facility (C) nodes.
- These **nodes** include **data on biomass quantity** ( $q^F$ ) and **facility capacity** ( $t^c$ ).
- The permutation is later **encoded into a chromosome** considering **vehicle capacity, locational decisions, and route assignments**.
- The chromosome is then **decoded into a feasible LRP solution** for **fitness function (objective function) evaluation**.

## Chromosome Constructions



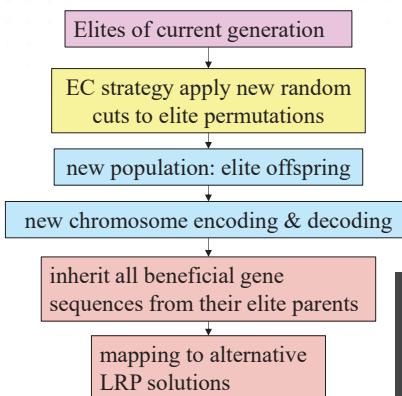
An example of the 2-LRP chromosome

### Genetic Algorithm (GA)

- maintains a constant population size of  $ChromN$
- genetic operators are applied to create a new child population of size  $NChildN$
- elitism strategy is used to preserve  $EliteChN = 2$  elites

#### Elite Child Population (EC) Strategy

$ChromN$  of next generation


$$\begin{aligned}
 &= EliteChN + \frac{EChildAN}{ECP1} C_1^{Best} + \frac{EChildAN}{ECP2} C_1^{Best} + NChildN C_{best ChromN-4}^{Best} \\
 &= 2 + 1 + 1 + NChildN C_{ChromN-4}^{Best} \\
 &= 4 + NChildN C_{ChromN-4}^{Best}
 \end{aligned}$$

where  $EliteChN$  = number of elites from the current population

$NChildN C_{ChromN-4}^{Best}$  = the best ( $ChromN - 4$ ) out of  $NChildN$  offspring from the child population

$EChildAN C_1^{Best}$  = The best offspring from elite child population 1 with size  $EChildAN$

$EChildAN C_2^{Best}$  = The best offspring from elite child population 2 with size  $EChildAN$



### Elite Child Population (EC) Strategy

| Elite [1]                                                                | Random FCutN = 5 |    |    |    |    |    |    |    |    |     |     |     | Random OpenCN = 3, Random CCutN = 2 |     |                                                           |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------|------------------|----|----|----|----|----|----|----|----|-----|-----|-----|-------------------------------------|-----|-----------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                          | F3               | F4 | F8 | F5 | F2 | F9 | F7 | F6 | F1 | C10 | C13 | C11 | C14                                 | C12 | Facilities for assignment $t^c = 25$<br>= {C10, C13, C11} |  |  |  |  |  |  |  |  |  |  |
| Total Cost=27819.8657, Total Population=21336, Total CO2=1921.3907       |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Implement EC strategy on parent Elite [1] will produce 4 elite children. |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Elite Child[1]                                                           |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Random FCutN = 6                                                         |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Random OpenCN = 3, Random CCutN = 2                                      |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Facilities for assignment $t^c = 25$<br>= {C10, C13, C11}                |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Total Cost=27806.0209, Total Population =21336, Total CO2=1643.1379      |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| ⋮                                                                        |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Elite Child [4]                                                          |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Random FCutN = 5                                                         |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Random OpenCN = 4, Random CCutN = 3                                      |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Facilities for assignment $t^c = 25$<br>= {C10, C13, C11, C14}           |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |
| Total Cost=33716.2862, Total Population=26264, Total CO2=2816.4930       |                  |    |    |    |    |    |    |    |    |     |     |     |                                     |     |                                                           |  |  |  |  |  |  |  |  |  |  |

- new cuts initiate a fresh encoding and decoding process, leading to distinct LRP solutions.
- The best individual from this elite child population is then selected for inclusion in the next generation.

### Order Crossover

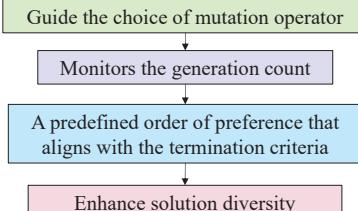
Perform crossover twice to produce a pair of children

| Parent A<br>CCchrom [3] | fcpx |    |    |    |    |     |    |     |    |    |     |     | ccpx |     |    |    |    |    |    |     |    |    |    |    |     |     |     |
|-------------------------|------|----|----|----|----|-----|----|-----|----|----|-----|-----|------|-----|----|----|----|----|----|-----|----|----|----|----|-----|-----|-----|
|                         | F7   | F4 | F8 | F9 | F3 | F10 | F2 | F6  | F5 | F1 | C13 | C12 | C11  | C14 | F7 | F4 | F8 | F9 | F3 | F10 | F2 | F6 | F5 | F1 | C13 | C12 | C11 |
| Parent B<br>CCchrom [6] | F9   | F2 | F6 | F4 | F3 | F5  | F4 | F10 | F8 | F1 | C11 | C12 | C14  | C13 |    |    |    |    |    |     |    |    |    |    |     |     |     |

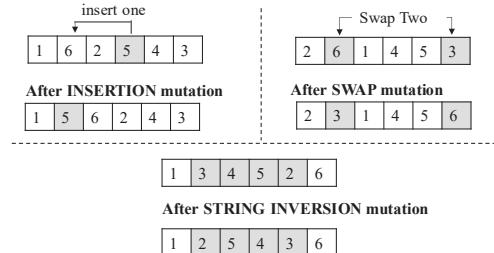
After Order Crossover

| NChild | F7 | F4 | F8 | F9 | F2 | F6 | F3 | F5 | F10 | F1 | C13 | C11 | C12 | C14 |
|--------|----|----|----|----|----|----|----|----|-----|----|-----|-----|-----|-----|
|        | F7 | F4 | F8 | F9 | F2 | F6 | F3 | F5 | F10 | F1 | C13 | C11 | C12 | C14 |

| Parent A<br>CCchrom [6] | fcpx |    |    |    |    |     |    |     |    |    |     |     | ccpx |     |     |     |    |    |    |     |    |    |    |    |     |     |     |
|-------------------------|------|----|----|----|----|-----|----|-----|----|----|-----|-----|------|-----|-----|-----|----|----|----|-----|----|----|----|----|-----|-----|-----|
|                         | F9   | F2 | F6 | F7 | F3 | F5  | F4 | F10 | F8 | F1 | C11 | C12 | C14  | C13 | F9  | F2  | F6 | F7 | F3 | F10 | F4 | F8 | F5 | F1 | C11 | C12 | C14 |
| Parent B<br>CCchrom [3] | F7   | F4 | F8 | F9 | F3 | F10 | F7 | F5  | F4 | F6 | F5  | F1  | C13  | C12 | C11 | C14 |    |    |    |     |    |    |    |    |     |     |     |


After Order Crossover

| NChild | F9 | F2 | F6 | F7 | F4 | F8 | F3 | F10 | F5 | F1 | C11 | C13 | C12 | C14 |
|--------|----|----|----|----|----|----|----|-----|----|----|-----|-----|-----|-----|
|        | F9 | F2 | F6 | F7 | F4 | F8 | F3 | F10 | F5 | F1 | C11 | C13 | C12 | C14 |


An example of the execution of Order Crossover

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. *Computers and Operations Research*, 22(1), 5 – 13. [https://doi.org/10.1016/0305-0548\(93\)E0014-K](https://doi.org/10.1016/0305-0548(93)E0014-K)

### Automated Mutation Operator Selection (AMS) Strategy



|                         |                      |
|-------------------------|----------------------|
| <b>Insertion</b>        | minimal alteration   |
| <b>Swap</b>             | increased alteration |
| <b>String Inversion</b> | high exploration     |



### Automated Mutation Operator Selection (AMS) Strategy

#### AMS strategy for *MaxGen* criterion

let  $MaxGen$  = maximum generations (iterations), then  $GenBY1 = \text{ceil}\left(\frac{1}{3}MaxGen\right)$ ,  $GenBY2 = \text{ceil}\left(\frac{2}{3}MaxGen\right)$

| Domain                  | Mutation Operator |
|-------------------------|-------------------|
| [1, $GenBY1$ ]          | Insertion         |
| ( $GenBY1$ , $GenBY2$ ) | Swap              |
| ( $GenBY2$ , $MaxGen$ ) | String Inversion  |

the *insertion* mutation operator is used due to its minimal impact on the chromosome structure.

the *swap* mutation operator is applied to introduce moderate changes.

the string inversion operator is employed to increase exploration and help escape local optima.

#### AMS strategy for *RepeatN* and *MaxGen* criteria

let  $RepeatN$  = elite solution repeats for  $N$  consecutive generations, then  $RepBY1 = \text{ceil}\left(\frac{1}{3}RepeatN\right)$ ,  $RepBY2 = \text{ceil}\left(\frac{2}{3}RepeatN\right)$

\*Note: the *MaxGen* criterion serves as a default condition, and the algorithm stops when either criterion is met.

| MaxGen Criterion<br>(Domain) | RepeatN Criterion<br>(Domain) | Mutation Operator |
|------------------------------|-------------------------------|-------------------|
| [1, $GenBY1$ ]               | [1, $RepBY1$ ]                | Insertion         |
|                              | ( $RepBY1$ , $RepBY2$ )       | Swap              |
|                              | ( $RepBY2$ , $RepeatN$ )      | String Inversion  |
| ( $GenBY1$ , $GenBY2$ )      | [1, $RepBY1$ ]                | Swap              |
|                              | ( $RepBY1$ , $RepeatN$ )      | String Inversion  |
| ( $GenBY2$ , $MaxGen$ )      | [1, $RepeatN$ ]               | String Inversion  |

**Inspection framework:**
**1** Test CR-MR pairs

**Parameter Settings**

 Fixed Setting:  $ChromN = 20, NChildN = 40, MaxGen = 400$ 

Varied Setting:

 $CR = \{0.7, 0.8, 0.9\}, MR = \{0.05, 0.1, 0.15, 0.2\}$ 
**2** Test  $ChromN$  and  $MaxGen$ 
**Parameter Settings**

Fixed Setting: CR-MR pair from previous stage

Varied Setting:

 $ChromN = \{20, 30, 40\}, NChildN = 2ChromN$ 
 $MaxGen = \{200, 400, 600, 800, 1000\}$ 
**3** Test  $RepeatN$ 
**Parameter Settings**

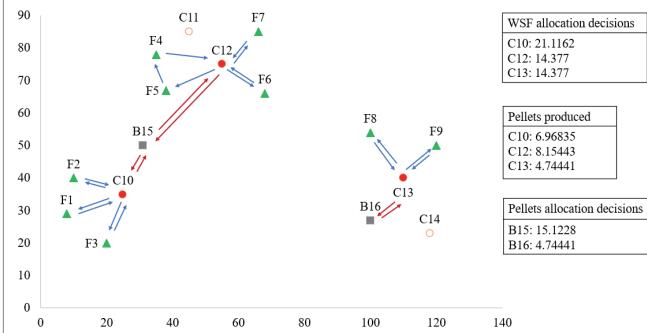
 Fixed Setting: CR-MR pair,  $ChromN$ , and  $MaxGen$  from previous stages

Varied Setting:

 $RepeatN = \{50, 100, 150, 200, 250\}$ 
**Measurements:**

- Percentage Error (PE) is used to measure the difference between the best GA trial value and the GAMS value.
- Since the objectives involve minimization,
  - positive PE indicates that the GA solution is higher than the GAMS solution, meaning the GAMS solution is better.
  - Vice versa, negative PE show that the GA solutions are better.

**Results for 2-LRP :**


| Percentage Error (PE) of Overall Best Trial Value (%) |                    |            |                  |                       |
|-------------------------------------------------------|--------------------|------------|------------------|-----------------------|
| 2-LRP                                                 | Stopping criterion | Total Cost | Total Population | Total CO <sub>2</sub> |
| <b>Multi-objective optimization</b>                   | <i>MaxGen</i>      | -0.5196    | 0.0000           | -27.6580              |
|                                                       | <i>RepeatN</i>     | -0.5196    | 0.0000           | -29.2933              |

The best combination of parameter settings is CR=0.8, MR=0.05,  $ChromN=20$ ,  $MaxGen = 400$  and  $RepeatN = 250$ .

## Results for 2-LRP :

Best trial output

|                                                                                   |                               |
|-----------------------------------------------------------------------------------|-------------------------------|
| Mf                                                                                | <b>1<sup>st</sup> echelon</b> |
| Assignment, allocation and production decisions                                   |                               |
| C10: F1, F2, F3, (allocation, production) = (21.1162, 6.96835)                    |                               |
| C12: F4, F5, F6, F7 (24.7104, 8.15443)                                            |                               |
| C13: F8, F9, (14.377, 4.74441)                                                    |                               |
| Routing decisions and loads                                                       |                               |
| C10                                                                               | $0 \xrightarrow{4.9421} C10$  |
| C10                                                                               | $0 \xrightarrow{8.9856} C10$  |
| C10                                                                               | $0 \xrightarrow{7.1885} C10$  |
| C12                                                                               | $0 \xrightarrow{3.145} C12$   |
| C12                                                                               | $0 \xrightarrow{11.232} C12$  |
| C12                                                                               | $0 \xrightarrow{6.3899} C12$  |
| C12                                                                               | $0 \xrightarrow{7.1885} C12$  |
| C13                                                                               | $0 \xrightarrow{8.9856} C13$  |
| C13                                                                               | $0 \xrightarrow{5.3914} C13$  |
| <b>2<sup>nd</sup> echelon</b>                                                     |                               |
| Assignment and allocation decisions                                               |                               |
| B15: C10, C12, allocation = (15.1228)                                             | B16: C13, (4.74441)           |
| Routing decisions and loads                                                       |                               |
| B15                                                                               | $0 \xrightarrow{8.98835} B15$ |
| B15                                                                               | $0 \xrightarrow{8.15443} B15$ |
| B16                                                                               | $0 \xrightarrow{4.74441} B16$ |
| Total Cost = 27548.290, Total Population = 17435, Total CO <sub>2</sub> = 760.196 |                               |
| Computational Time: 0.63525 minutes                                               |                               |



### Comparison of AMSEC\_GA average computational time and GAMS computational time

| Research Problems | Average computational time of AMSEC_GA (minutes) |         | Computational time of GAMS (minutes) |  |
|-------------------|--------------------------------------------------|---------|--------------------------------------|--|
|                   | Stopping criterion                               |         |                                      |  |
|                   | MaxGen                                           | RepeatN |                                      |  |
| 2-LRP             | 2.2394                                           | 0.4192  | 7.9234                               |  |

### Result findings

The proposed AMS and EC strategies enhance the GA's search capabilities.

Effectively manages the multi-objective optimization

- Outperform GAMS for cost & CO<sub>2</sub> optimization
- GA works as well as GAMS for population optimization

The computational time of AMSEC\_GA is generally faster than GAMS.

## Suggestions and Recommendation



Suggestions and recommendations which are believed to be worthwhile for future investigation:

- (a) Relax the single-visit assumption, as there may be scenarios where the quantity of biomass at a location exceeds a truck's capacity, making multiple visits necessary.
- (b) Consider a heterogeneous fleet of vehicles, as different locations may require trucks with varying capacities where some needing smaller vehicles and others larger ones.
- (c) Extend the proposed GA to solve LRP with time windows, as the mills (resource sites) and facilities may not operate 24 hours a day
- (d) Incorporate stochastic elements into the proposed GA to account for uncertainties in biomass availability and demand.

## List of Publications

Foo, F. Y., Zainuddin, Z. M., & Pheng, H. S. (2024). Optimizing Palm Oil Biomass Supply Chain Logistics through Multi-Objective Location-Routing Model. *Malaysian Journal of Fundamental and Applied Sciences*, 20(2): 247 – 265. <https://doi.org/10.11113/mjfas.v20n2.3085> (WOS, Q4, IF: 0.8; Indexed by Scopus)

Foo, F. Y., Zainuddin, Z. M. & Hang, S. P. (2024). Palm Oil Biomass Supply Chain Multi-Objective Two-Echelon Location-Routing Optimization. *Malaysian Journal of Mathematical Sciences*, 18(4): 867-901. <https://doi.org/10.47836/mjms.18.4.12> (WOS, Q3, IF=0.5; Indexed by Scopus)

Foo, F. Y., Zainuddin, Z. M. & Hang, S. P. (2025). Optimizing palm oil biomass collection: genetic algorithm approaches in solving location-routing problem. *Journal of Quality Measurement and Analysis*, 21(2): 2025, 277-288. <https://doi.org/10.17576/jqma.2102.2025.18> (WOS, Q4, IF=0.3; Indexed by Scopus)





**THANK YOU**

MALAYSIAN-JAPAN SYMPOSIUM ON MATHEMATICAL AND STATISTICAL  
MODELLING

August 26th, 2025, Auditorium, IMI, Kyushu University, Japan

---

**Common principles and applications of  
adaptive network theory using  
mathematical models**

**Atsushi Tero**

Kyushu University

Human distribution networks are an important topic that bring great benefits to society. We must balance various objectives, such as the cost of creating and maintaining the network, transportation efficiency, and robustness against accidents. On the other hand, in addition to humans, ants and mold also form networks. The human body also has a vascular network, the formation and maintenance of which is an important factor for health. In order to understand these and to form and maintain them in good condition, it is important to construct mathematical models. In this presentation, I will introduce a mathematical model of how true slime molds solve mazes that I have created so far. The presenter will then present the results of numerical calculations on Malaysia's transportation network. In addition, the presenter's laboratory students will present the results of a joint research project on vascular networks conducted with Malaysian researchers.

# Malaysia-Japan Symposium on Mathematical and Statistical Modelling

26/Aug./2025

Common principles and applications of adaptive  
network theory using mathematical models

Atsushi Tero (Kyushu University)

Ryo Kobayashi  
(Hiroshima University)

Co-worker  
Supervisor

Toshiyuki Nakagaki  
(Hokkaido University)

Co-worker  
Experimentalist

# Malaysia-Japan Symposium on Mathematical and Statistical Modelling

26/Aug./2025

Common principles and applications of adaptive  
network theory using mathematical models

Atsushi Tero (Kyushu University)

Ryo Kobayashi  
(Hiroshima University)

Co-worker  
Supervisor

Toshiyuki Nakagaki  
(Hokkaido University)

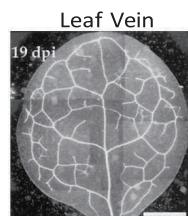
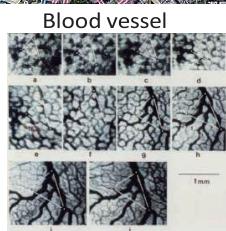
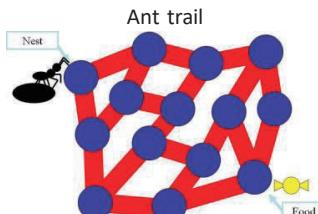
Co-worker  
Experimentalist

# Malaysia-Japan Symposium on Mathematical and Statistical Modelling

26/Aug./2025

## Common principles and applications of adaptive network theory using mathematical models

Atsushi Tero (Kyushu University)

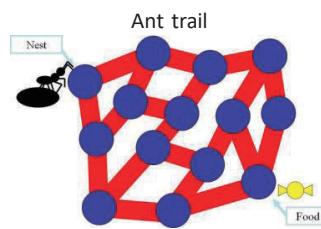



Ryo Kobayashi  
(Hiroshima University)

Toshiyuki Nakagaki  
(Hokkaido University)

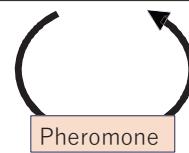
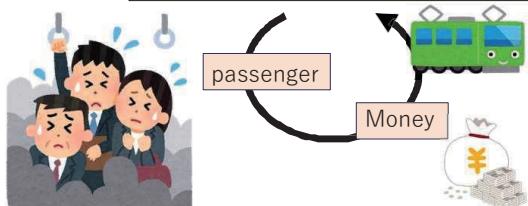
Co-worker  
Supervisor

Co-worker  
Experimentalist

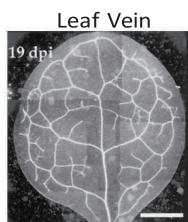
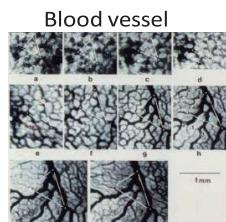
### transportation networks of living organisms




Thanks to H. Honda



[1]

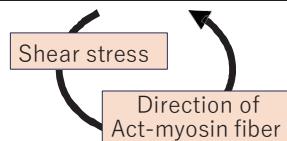
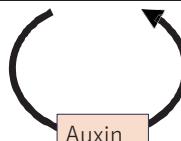
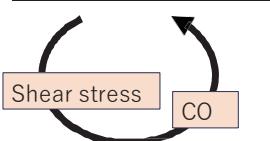
[1] Francois G. Feugier , Yoh Iwasa, How canalization can make loops: A new model  
of reticulated leaf vascular pattern formation



## transportation networks of living organisms (1)



### Adaptive Network

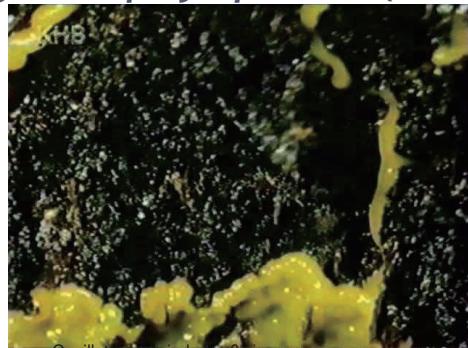





## transportation networks of living organisms (2)



Thanks to H. Honda

[1]


### Adaptive Network



[1] Francois G. Feugier, Yoh Iwasa, How canalization can make loops: A new model of reticulated leaf vascular pattern formation

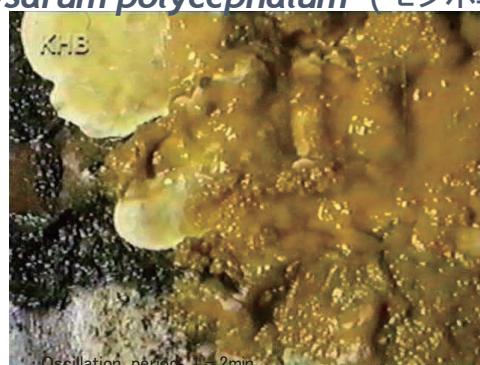
## True Slime Mold(真正粘菌)

*Physarum polycephalum* (モジホコリ)



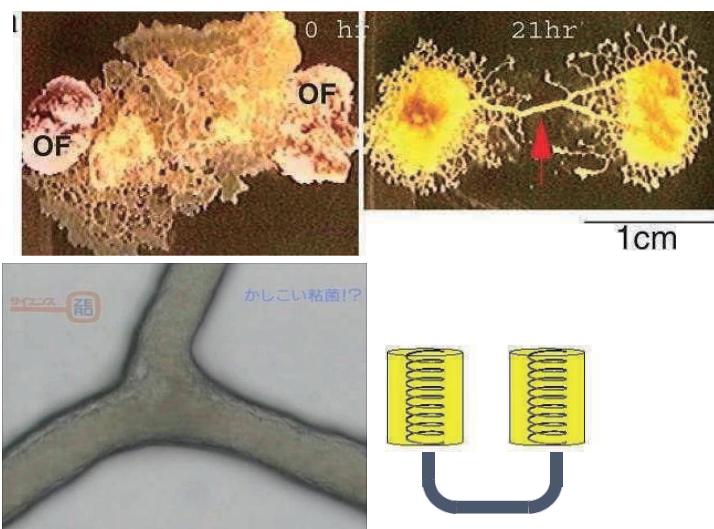
Oscillation period 1—2min.

- It gather to flood source (Oat Flake)
- Single cell (multi-core)
- Free for “cut and paste”
- Living at dark and humid environment


## Slime mold in Studio Ghibli

Nausicaä of the Valley of the Wind



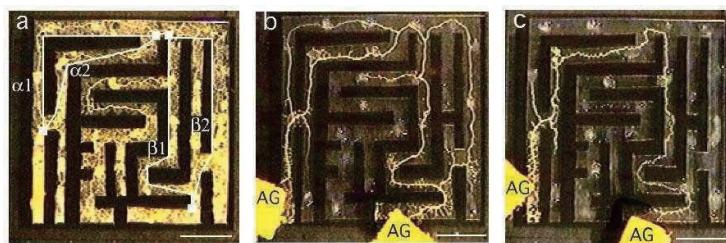

## True Slime Mold(真正粘菌)

### *Physarum polycephalum* (モジホコリ)



- It gather to flood source (Oat Flake)
- Single cell (multi-core)
- Free for “cut and paste”
- Living at dark and humid environment

### *Physarum polycephalum*



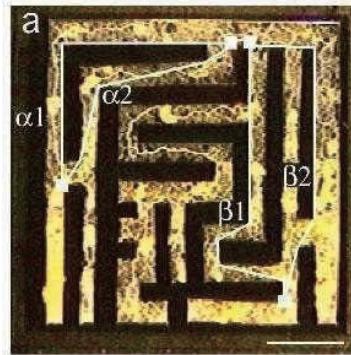
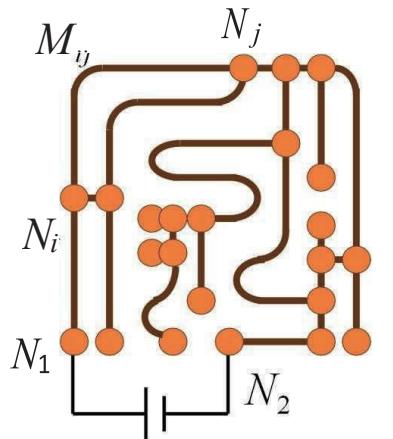

## Solving ma/e by slime mold



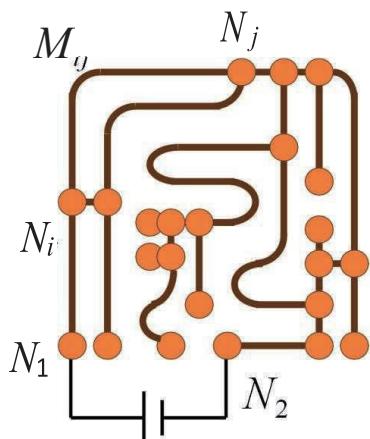
Toshiyuki Nakagaki (Hokkaido University)

## Solving ma/e by slime mold





Why can slime mold solve the ma/e!?

(Solving ma/e needs global information. Slime don't have the brain and have only local information)

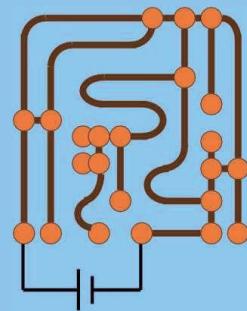

1. Physarum Oscillates near the food
2. Sol flow throw the network
3. High used way grows more.

Make mathematical model and calculate with computer!!

## Mathematical modeling



## Mathematical modeling




$N_i$   $p_{i(t)}$  pressure

$N_1$   $N_2$  Connecting with food

$M_{ij}$   $L_{ij}$  length  
 $D_{ij(t)}$  width  
(conductivity)  
 $Q_{ij(t)}$  Flow amount

## Model equations



$$Q_{ij} = \frac{D_{ij}}{L_{ij}} (p_i - p_j)$$

Ohm's Law

$$\sum_i Q_{ij} + I_j(t) = 0$$

Kirchhoff's 1<sup>st</sup> Law



## Model equations

Tube growth rule

High flow more, growth more

### Tube Growth Eq.

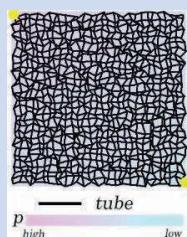
$$\frac{d}{dt} D_{ij} = f(|Q_{ij}|) - rD_{ij} \quad f(0) = 0$$

### Tube Growth Eq.

$$\frac{d}{dt} D_{ij} = |Q_{ij}|^\mu - rD_{ij}$$

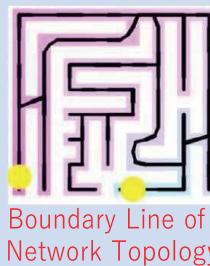
Positive feedback parameter

## Why is Solving Maze important?


For the adaptive network the tube growth by  $\mu$

D : Conductivity

L : Length

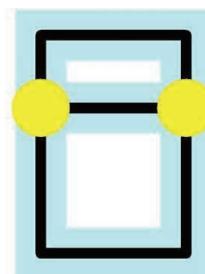
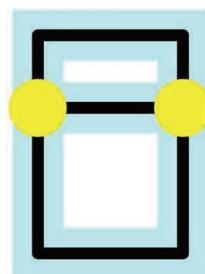
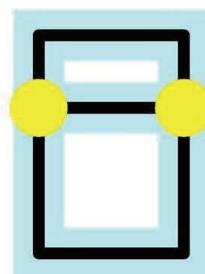
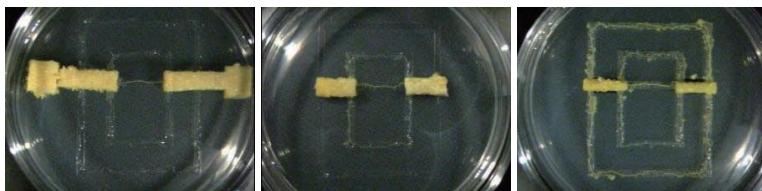

$$0 < \mu < 1$$

Low Conductivity  
growth more



$$\mu = 1$$

Tube selection has **no relation** to  
Conductivity  
(Only Length)

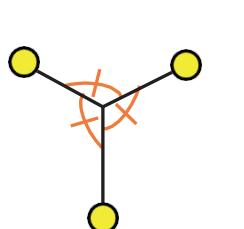

$$\mu > 1$$

High Conductivity  
growth more

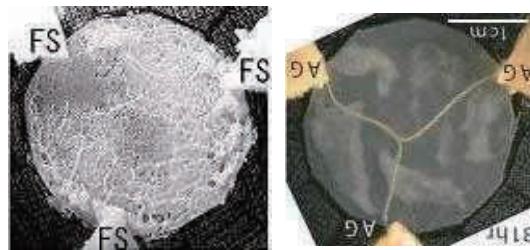


Flux Amount




#Tube

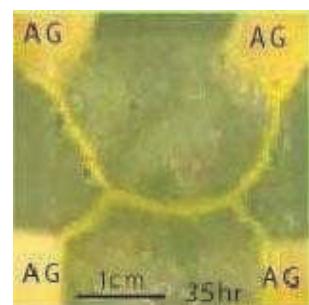
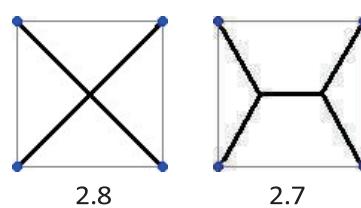
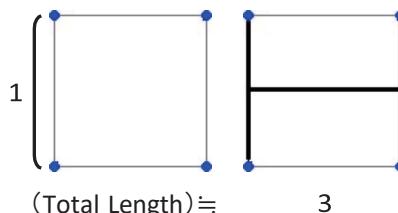
## Minimum Steiner Tree Problem


Shortest network connecting with all points

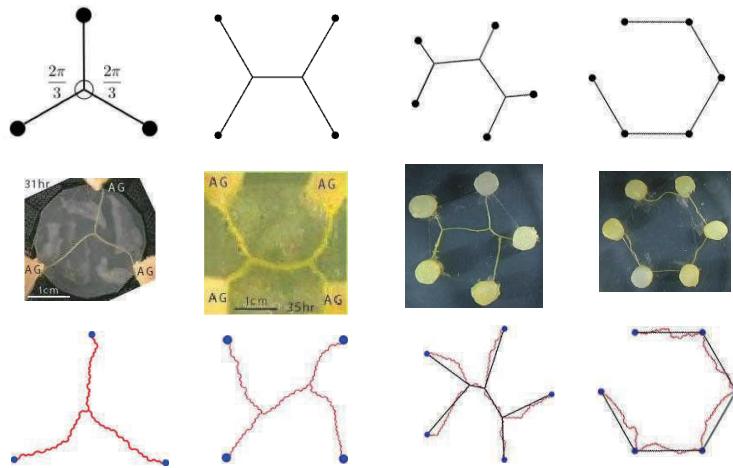
NP-hard problem

(The calculation time increases exponentially when the network size increases.)

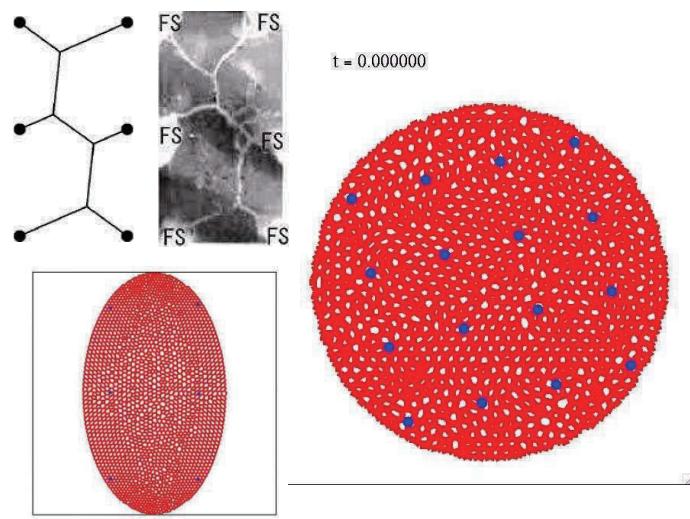





Initial condition

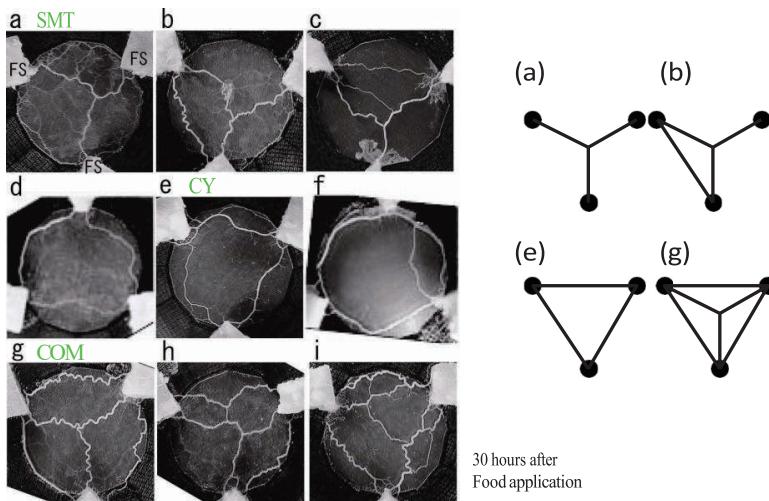



Final state

## Minimum Steiner Tree Problem


What is the shortest network connecting with 4 points?



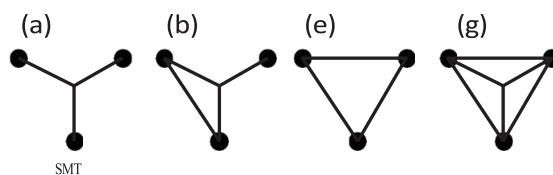

**Minimum Steiner Tree Problem**  $f(q) = |q|^\mu$



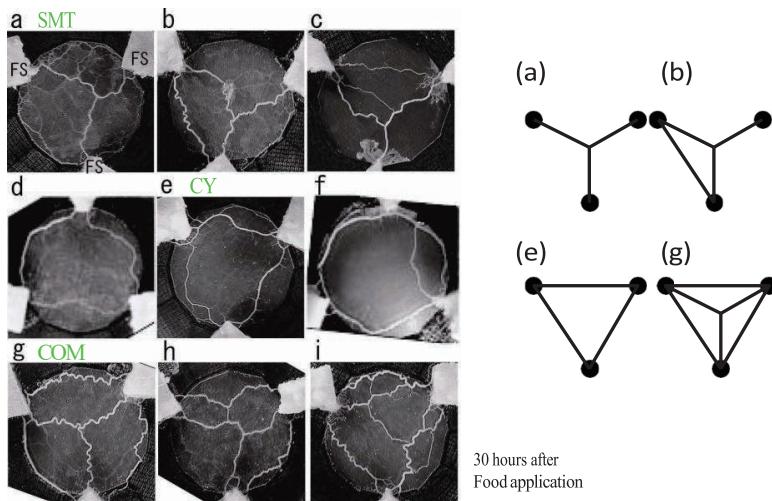
The shortest network



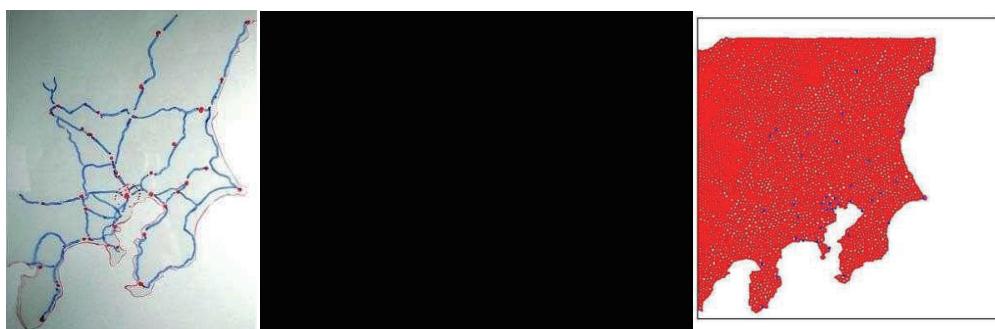
## The optimal network for 3 points




## To estimate the network


TL---total length of the network, normalized to SMT

FT<sub>N</sub>---Fault Tolerance (the probability of keeping coupled network when the network is broken randomly. It describes network robustness.)


|                 |      |      |      |      |
|-----------------|------|------|------|------|
| FT <sub>1</sub> | 0.00 | 0.79 | 1.00 | 1.00 |
| FT <sub>2</sub> | 0.00 | 0.23 | 0.33 | 1.00 |
| TL              | 1.00 | 1.58 | 1.72 | 2.58 |



## The optimal network for 3 points

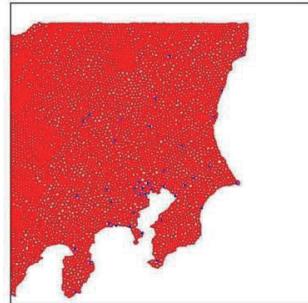
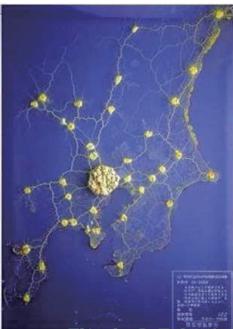
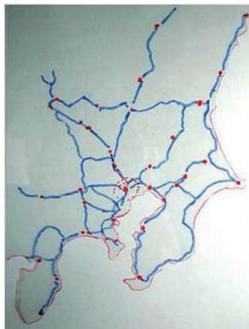


## For real network problem



Human Answer   Physarum Answer   Simulation Answer

1. The railway/tube with a lot of passenger/flow grows more.




The railway/tube without passenger/flow will be closed.

2. The smaller total length is better

3. They need network robustness.

A. Tero, et al. **Science** 2010

## For real network problem



Thanks S. Takagi

Human Answer

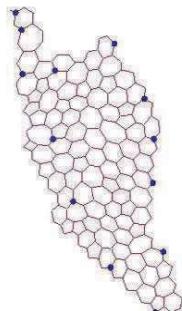
Physarum Answer

Simulation Answer

1. The railway/tube with a lot of passenger/flow grows more.

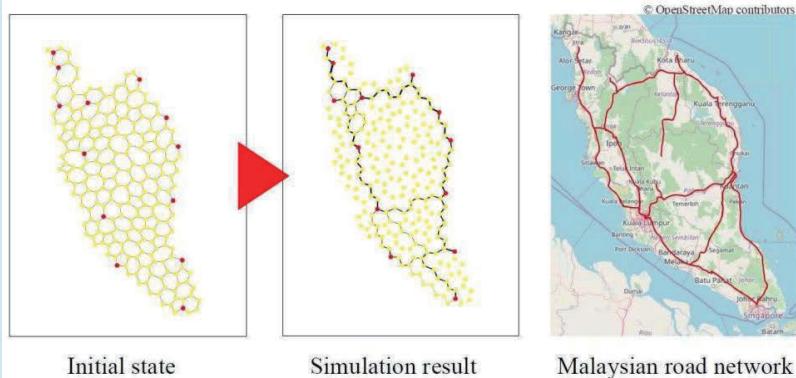
The railway/tube without passenger/flow will be closed.

2. The smaller total length is better


3. They need network robustness.

A. Tero, et al. **Science** 2010

## Network of west Malaysia



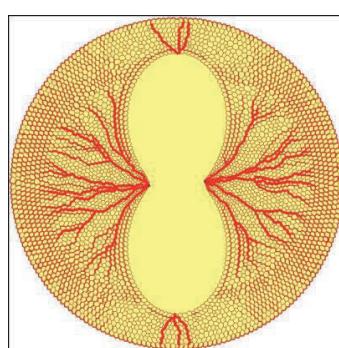
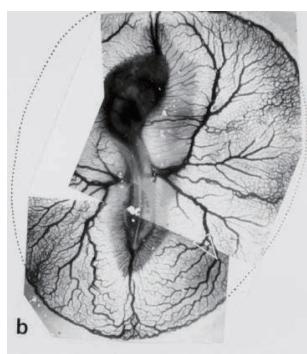

t = 0  
total\_length = 20.848221  
S\_FUNCTION  
mu = 1.800000  
I\_0 = 3.720000



Malaysian road network

## Highway Network in West Malaysia with Ant Algorithm





Kazuhiro Minami, Atsushi Tero @FMFI 2025

Math & biology suggest robust and efficient network

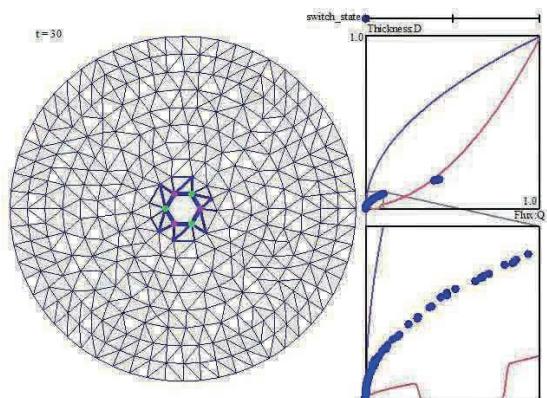
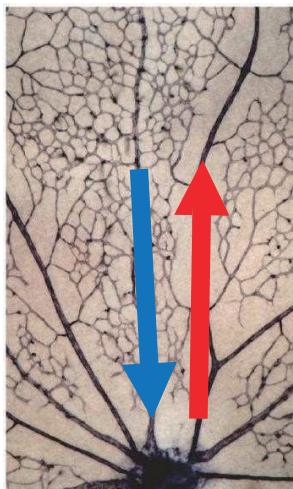
### 3. To blood vessels

## Vascular network in quail embryos

(My supervisor result)



### Initial state

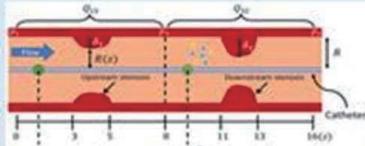


## capillaries

High pressure link  
grows to artery  
Low pressure link  
grows to vein

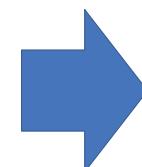
Capillaries does not stable

By Ryo Kobayashi, Hisao Honda  
Calculated by Kenji Yumiki

### Retinal vascular network

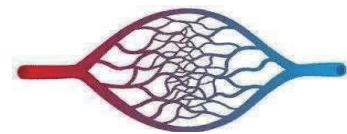
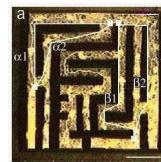



By Uemura, Miura  
Calculated by Atsushi Tero


### 4. Blood Vessel with Stenoses Joint research with Universiti Teknologi Malaysia



**UTM**  
UNIVERSITI TEKNOLOGI MALAYSIA

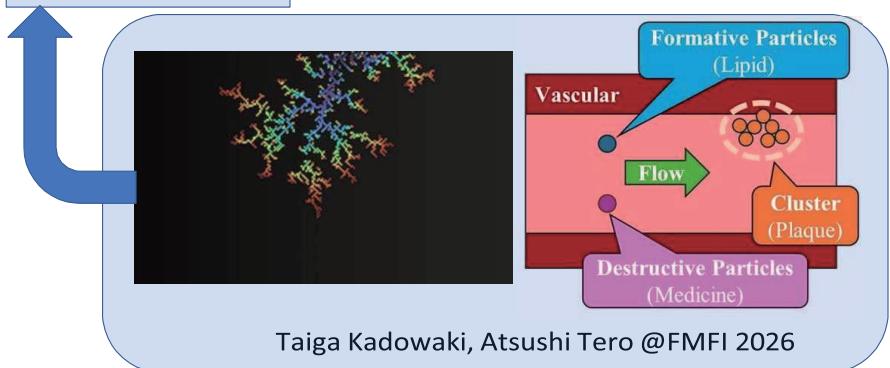




Haruka Suga, Intan Diyana,  
Atsushi Tero @FMFI 2026, In preparation  
**Contributing to medical care  
by reducing calculation time**



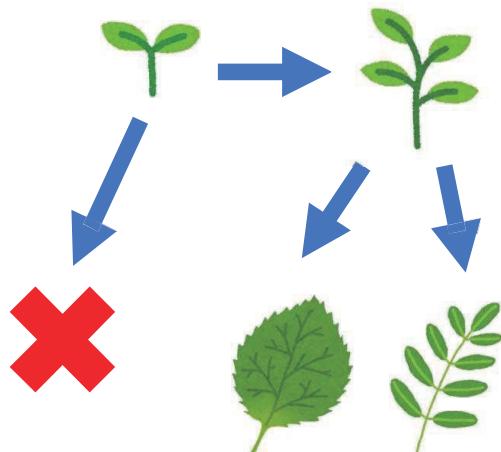
Ms. Suga  
よろしく  
お願いします。

Comparison  
Slime net. and blood net.

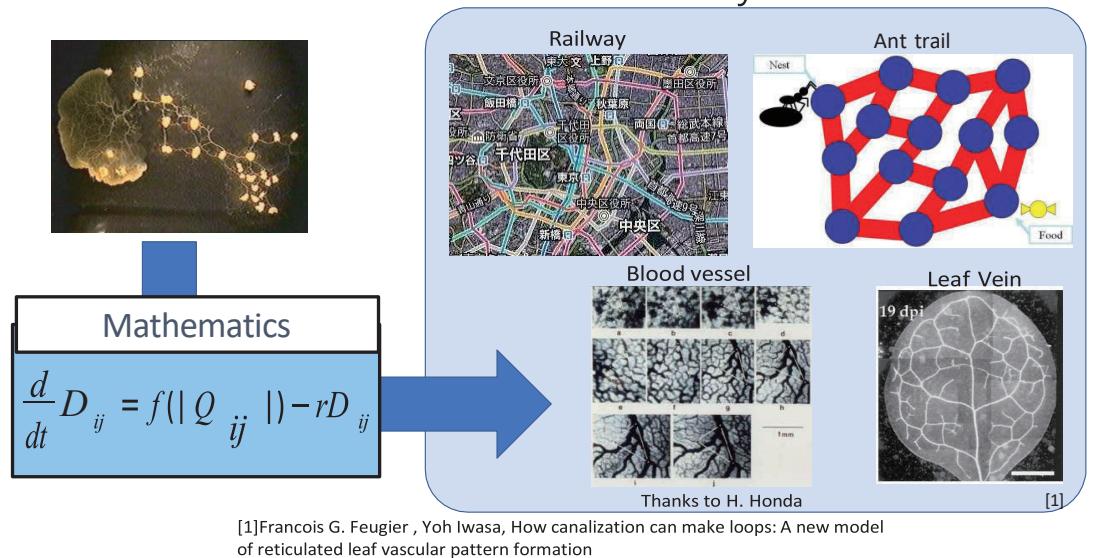



|                |                                                |                                                                                                                                                                                                          |
|----------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flow           | $Q_{ij} = \frac{D_{ij}}{L_{ij}} (p_i - p_j)$   | Navier-Stokes equations<br>$\frac{D\mathbf{v}}{Dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = \frac{1}{\rho} \operatorname{div} \boldsymbol{\sigma} + \mathbf{g}$ |
| Interaction    | $\square \sum_i Q_{ij} = 0$                    | (By Malaysia Team)                                                                                                                                                                                       |
| Network growth | $\frac{d}{dt} D_{ij} = f( Q_{ij} ) - r D_{ij}$ | $\frac{d\delta}{dt} = -\frac{1}{d(\mathcal{R} - \delta)Q}$                                                                                                                                               |

## Stochastic < – > Deterministic Model


Network Growth (Breaking stenosis) eq.

$$\frac{d\delta}{dt} = -\frac{1}{d(\mathcal{R} - \delta)Q}$$




Taiga Kadowaki, Atsushi Tero @FMFI 2026

## Leaf vein



## network common theory



[1] Francois G. Feugier, Yoh Iwasa, How canalization can make loops: A new model of reticulated leaf vascular pattern formation

## **Summary**

True slime molds can solve mazes.

This is not only interesting, but it is also useful for connecting various networks.

It is power of Mathematics

My stay in Malaysia will help study adaptive networks.

**Mathematics can connect the networks of  
Kyushu University and Universiti Teknologi Malaysia.**

MALAYSIAN–JAPAN SYMPOSIUM ON MATHEMATICAL AND STATISTICAL  
MODELLING

August 26th, 2025, Auditorium, IMI, Kyushu University, Japan

---

**A Statistical Data-Driven Framework for  
Understanding Rainfall Intensity and Climate  
Challenges in Malaysia**

**Shariffah Suhaila Syed Jamaludin**

Universiti Teknologi Malaysia (UTM)

This study examines advanced statistical methods, including distribution fitting, functional data analysis (FDA), and copula models, to enhance understanding and modeling of Malaysia's increasing flood risks driven by extreme rainfall and climate change. It emphasizes the importance of capturing the temporal structure, interdependencies, and boundedness of wet days to improve flood prediction and resilience planning.

# A Statistical Data-Driven Framework for Understanding Rainfall Intensity and Climate Challenges in Malaysia

SHARIFFAH SUHAILA SYED JAMALUDIN

RESEARCH FELLOW  
 UTM CENTRE FOR INDUSTRIAL AND APPLIED MATHEMATICS (UTM-CIAM)  
 DEPARTMENT OF MATHEMATICAL SCIENCES  
 FACULTY OF SCIENCE  
 UNIVERSITI TEKNOLOGI MALAYSIA  
 suhailasj@utm.my

*Innovating Solutions*



## Major Climate Change Challenges



### Flooding & Rainfall Extremes

- Flash floods frequently occur in urban areas due to intense rainfall and poor drainage
- Monsoon flooding affecting both east and west Malaysia

### Air Pollution & Seasonal Haze

severely affects air quality

### Rising Temperatures & Heatwaves

- Temperatures rose by  $0.14-0.25^{\circ}\text{C}$  per decade.
- Increase the number of heatwaves occurring annually
- Urban heat island effects in major cities

### Deforestation & Land Use Changes

Habitat loss, biodiversity decline, and disrupted hydrological cycles are increasing flood and landslide risk.

### Sea Level Rise & Coastal Erosions

- ❖ Coastal erosion affecting beaches and infrastructure



### Health Impacts: Vector-Borne Diseases & Heat Stress

Climate shifts increase the incidence of dengue, malaria, and other vector-borne diseases.

IPCC (2021)  
 (The Sixth Assessment Report (AR6))

## Major Flood Events

- Malaysia faced an escalating climate crisis more than two decades ago.

18 December 2006- 13 January 2007

**Caused:** Torrential rainfall (extreme and heavy rainfall that occurs for a short time )associated with Typhoon Utor.

**Affected Areas:** Primarily Johor

**Impacts:** Over 100,000 people evacuated in Johor; 18 deaths.

**Damage:** Infrastructure damage, road closures, economic loss (USD 395 million)

**Exposed weaknesses in flood forecasting and early-warning systems.**



Flood in Kota Tinggi, Johor 2006

*Innovating Solutions*

[www.utm.my](http://www.utm.my)

## Major Flood Events

December 2014- January 2015

Labeled as the worst floods in decades for the East Coast.

**Caused:** Prolonged heavy rain in the Northeast Monsoon, intensified by strong Borneo Vortex

**Affected Areas:** East coast states (Kelantan, Terengganu, Pahang)

**Impacts:** Over 500,000 people affected, at least 21 deaths; floodwaters up to 4 m.

**Estimated damage:** USD 560 million

**Raised urgent calls for river basin management and sustainable land-use planning.**



Flood in Kelantan 2014

*Innovating Solutions*

Source: Shamsuddin J et al. 2016  
[www.utm.my](http://www.utm.my)

Source: Ahmad et al. 2025

2021-2022

## Major Flood Events

December 2021 – January 2022

**Caused:** Tropical Depression (weakest form of Tropical cyclones) 29W + extreme rainfall during NEM monsoon

**Affected areas:** Selangor (Shah Alam, Klang), Negeri Sembilan, Kuala Lumpur.

**Impacts:** Approximately 70,000 victims evacuated daily, 54 killed

**Estimated damage:** USD 4.8 billion

**Demonstrated rising urban flood risk**

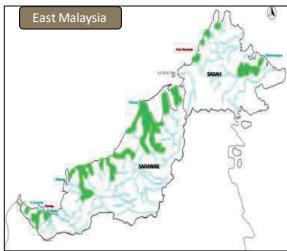
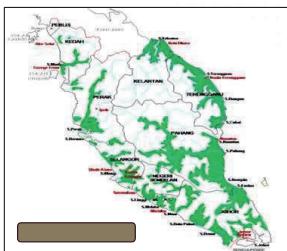


2024

November-December 2024

**Caused:** Intense Northeast Monsoon events compounded by extreme rainfall episodes.

**Affected areas:** 25 districts in seven Malaysian states



**Impacts:** 137,410 people were affected.

**Estimated damage:** USD 224 million

**Reinforces the trend of increasingly frequent and**



### FLOOD PRONE AREAS IN MALAYSIA



### Government Initiatives

#### National Flood Mitigation Plan (2023-2030)

Flood Relief & Preparedness Budget

#### SMART Tunnel (Storm Water Management & Road Tunnel)

Designed to divert floodwaters from Kuala Lumpur City Centre

#### Disaster Coordination

NADMA (National Disaster Management Agency)

SMART (Special Malaysia Rescue Team)

#### Evacuation & Shelter Readiness

Prepare Evacuation Center

## The Statistical Challenges

1. Boundedness Effect

2. Temporal Complexity

3. Dependence Measure

1. "Wet days are not randomly distributed and are not independent. They cluster, they have memory, they create patterns."

2. How do rainfall patterns evolve throughout the day, season, and year?

3. When volume increases, does duration always decrease? How do multiple variables interact during rain/flood events?

### Boundedness Effect

**Issue:** Rainfall events are not independent.

The distribution of rainfall amounts should be considered separately according to the number of adjoining wet days; 0,1,2.

010

**Solitary Wet Days**

$$X_{t-1} = 0, X_t = 1, X_{t+1} = 0$$

**Class 0**

Convective rainfall  
High intensity but  
short duration

011

Wet days bounded on one side by a wet day and on the other side, bounded by a dry day

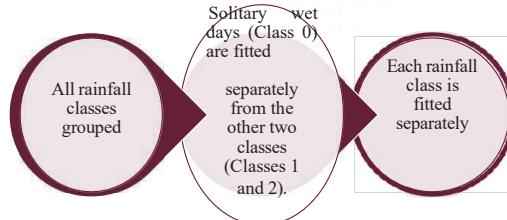
$$X_{t-1} = 0, X_t = 1, X_{t+1} = 1$$
$$X_{t-1} = 1, X_t = 1, X_{t+1} = 0$$

**Class 1**

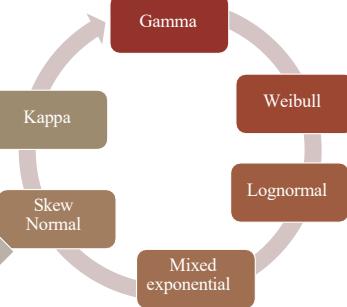
Start or end of wet spell  
Occur particularly during the  
inter-monsoon

111

Wet days bounded on both sides by a wet day.


$$X_{t-1} = 1, X_t = 1, X_{t+1} = 1$$

**Class 2**


Northeast Monsoon season,  
prolonged and heavier rainfall

## Methodology

3 sets of rainfall data



### Fitting Distribution

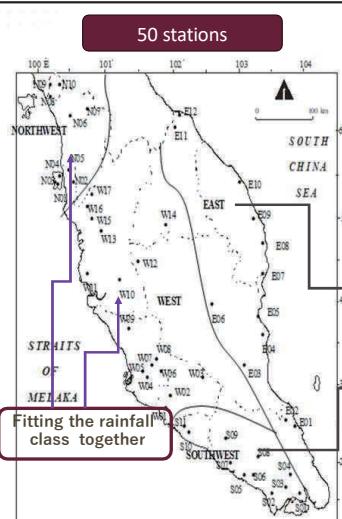
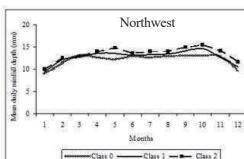
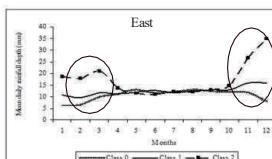
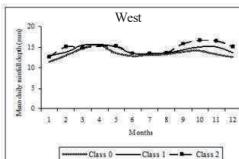
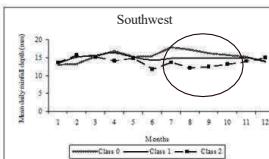


Kolmogorov Smirnov Test

To determine the significant differences between each pair of rainfall classes.

Akaike Information Criterion

$$AIC = -2 \log L + 2k$$

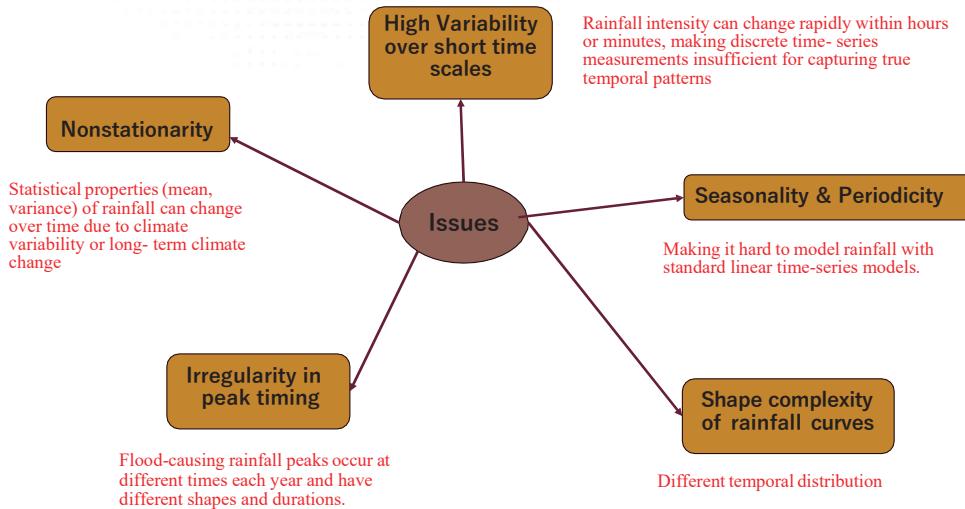





Loglikelihood Ratio Test

To determine the significant difference in AIC between three classes

Suhaila and Jemain, Journal of Hydrology 2009, (368): 17-25. Investigating the impacts of adjoining wet days on the distribution of daily rainfall amounts in Peninsular Malaysia.

Percentage of months showing significant ( $p < 0.05$ ) differences between distributions of rainfall classified according to the number of adjoining wet days.

| Region          | East | Southwest | West | Northwest |
|-----------------|------|-----------|------|-----------|
| Classes 0 and 1 | 17   | 14        | 7    | 9         |
| Classes 1 and 2 | 38   | 38        | 25   | 19        |
| Classes 0 and 2 | 51   | 49        | 28   | 28        |




Fitting the rainfall class together

- ❖ May **overestimate Class 0 (Solitary Wet Days)** and **underestimate** Class 2
- ❖ Leads to **distortion in simulation outputs**, affecting the reliability of predictions.
- ❖ Misclassification can bias the statistical distribution of rainfall in models, leading to poor decision-making in sectors like flood forecasting, climate modeling, and agriculture.

Innovating Solutions

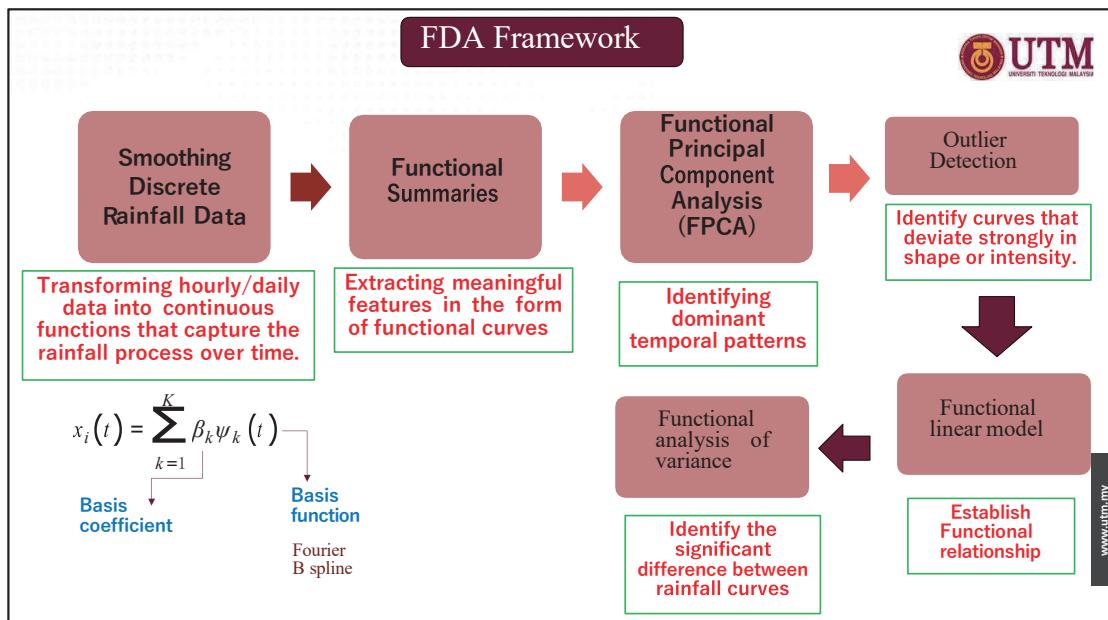
## Rainfall Temporal Complexity



## Functional Data Analysis

Functional Data Analysis treats rainfall data as continuous curves (functions) rather than discrete points. This allows the entire temporal pattern to be modeled, smoothed, and compared. FDA treats the whole curve as a single entity.

Smoothing with basis functions reduces noise while maintaining temporal features

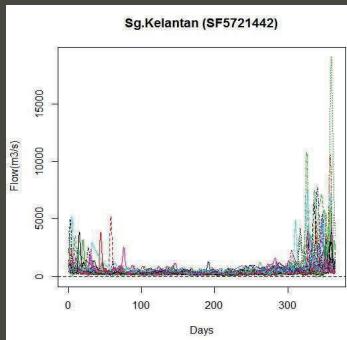

**The Fourier basis can explicitly capture periodic components**

**Functional Principal Component Analysis (FPCA)** detects changing dominant modes over time.

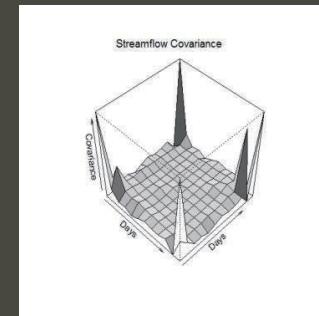
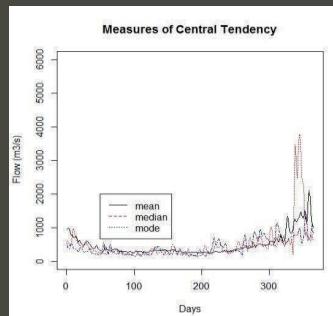
Phase–amplitude separation and curve registration align peaks before analysis.

FDA captures full curve shapes, enabling classification or clustering of different rainfall patterns.

FDA can handle irregular sampling and interpolate missing observations smoothly.




- Daily flow 1980-2014, from Sg. Kelantan (Jam. Guillemard) with station code SF5721442 .
- Situated at Kelantan River Basin with the northern latitude of 5°45N and eastern longitude of 102°09'E.



$$\mathbf{Y}_i = \left( y_i(t_1), \dots, y_i(t_T) \right)^T, i=1,2,\dots,n, j=1,2,\dots,T,$$

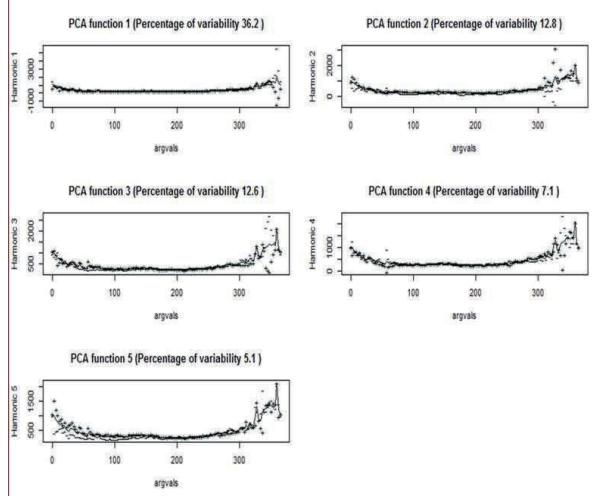
- $n$  is the number of years
- $y_i(t_j)$  – flow measured at the day- $t_j$  of the  $i$ -th year.  $T=365$  days
- The discrete observed data are converted into the smoothing curves as temporal functions with a base period of  $T$  and  $k$  basis functions.
- Choice of  $k$  can be justified to capture the flow variation.

### Smoothing flow curves

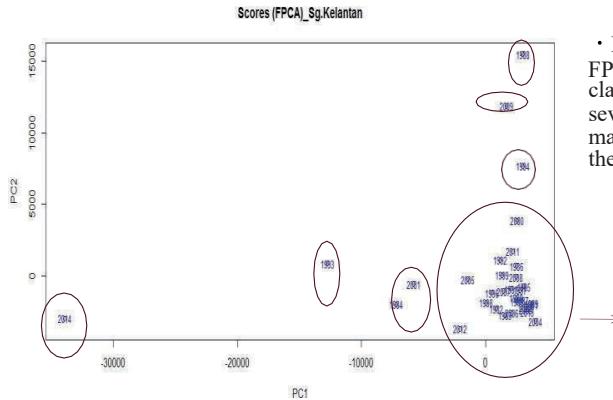


### Summary of functional data




- The smooth representation of flow data is done with a 365-day base period and selected  $k$  basis functions, which are chosen based on the quality of smoothing and a high percentage of explained variance.

- The maximum flow occurs in the middle of November up to early January (North East Monsoon flow)

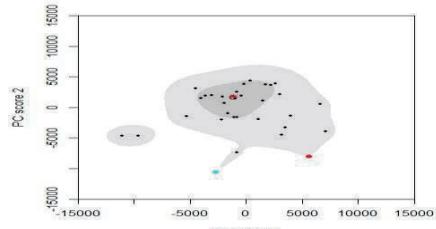

- The highest variability occurs approximately between (Nov-Jan)
  - This period corresponds approximately to the highest flows

## Functional Principal Component Analysis

- ❑ 73.8% of streamflow variability, showing that the **dominant driver is the seasonal monsoon flood regime**
- ❑ Captures the **overall seasonal streamflow regime**, especially the **magnitude of peak flows at year-end**
- ❑ PC1 (36%) → General wet-season intensity (flood magnitude).
- ❑ PC2–PC3 (~25%) → Shape and timing of the hydrograph (flood duration, onset, persistence).
- ❑ PC4–PC5 (~12%) → Extreme and anomalous events (flash floods, unusual peaks).



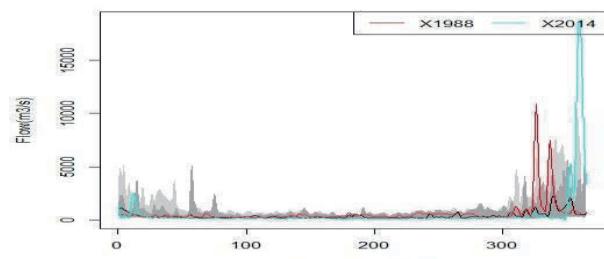
## FUNCTIONAL PCA




- Based on scores of FPCA, the curves can be classified into several clusters. Different magnitude and shape of the curves.

May consider having the same flow pattern

## Functional Outliers


Bivariate HDR plot



Individual functional curves  
based on 99% coverage probability

The dark grey regions show the 'bag'.  
The light grey regions display the fence.  
All points outside the regions were identified as outliers.

Functional high-density region (HDR) plot



□ The outliers detected in the flow series are those curves that represent 1988 and 2014.

- Referring to the flood history of Sg Kelantan River Basin, the year 2014 is one of the worst floods that occurred and caused major destruction to the state of Kelantan.

## Functional Analysis of Variance (ANOVA)

Compare mean rainfall functions across multiple climate categories and identify when during the time such differences were most pronounced.

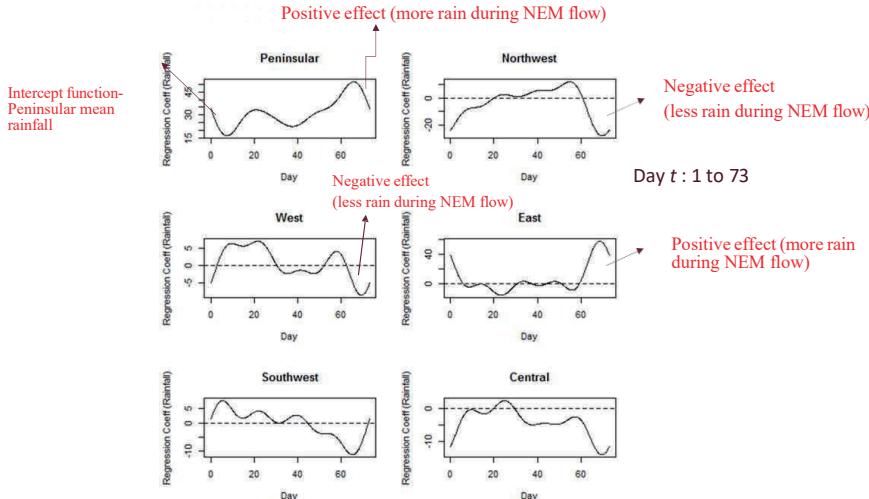
$$\text{Rain}_{mg}(t) = \mu(t) + \alpha_g(t) + s_{mg}(t).$$

grand mean function  
indicates the average rainfall profile  
across the studied stations of  
Peninsular Malaysia

the unexplained variation specific  
to the  $m$ -th rainfall station within  
climate group  $g$

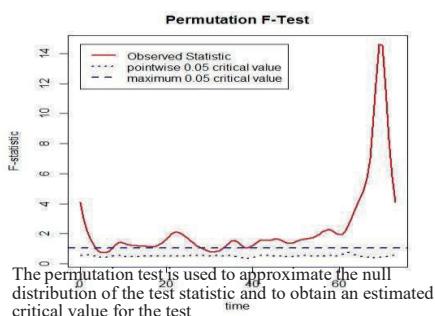
$\alpha_g$  are the specific effects on  
rainfall of being in group  $g$

$$\sum_{g=1}^5 \alpha_g(t) = 0$$


$$\text{Functional response} \quad \text{Rain}_{mg}(t) = \sum_{j=1}^6 z_{(mg)j} \beta_j(t) + s_{mg}(t),$$

Represent  
either 0 or 1

Regression  
Coefficients


## Region effects for the rainfall functions via the functional ANOVA

$\alpha_2$



## Statistical test of no effect of geographical region on the rainfall profile

Comparison all five regions



- ❖ The differences are statistically significant at certain time intervals in the year.
- ❖ The study demonstrates that Peninsular Malaysia regions have distinct rainfall temporal structures that are best captured using functional representations rather than aggregate statistics.

## Why Dependency Matters?

### Issues

Rainfall and flood characteristics are highly correlated and not univariate.

Traditional univariate analysis fail to capture joint behaviors.

Traditional Multivariate statistics have some limitations in dealing with cases with different marginal distributions that need to be the same type, normally distributed, or independent.

Copulas allow us to model the joint behavior of different features of random variables.  
Able to capture the nonlinear & tail dependencies

## Copula

A copula is a multivariate cumulative distribution function (CDF) with uniform marginals on the interval  $[0,1]$ .

$$C : [0, 1]^d \rightarrow [0, 1].$$

### Sklar's Theorem

$$H(x_1, x_2, \dots, x_d) = C(F_1(x_1), F_2(x_2), \dots, F_d(x_d)).$$

Let  $H$  be a joint cumulative distribution function with marginals  $F_1, F_2, \dots, F_d$ .  
Then, there exists a Copula  $C$  such that for all real numbers  $x_1, x_2, \dots, x_d$ .  
If the marginals  $F_1, F_2, \dots, F_d$  are continuous, the copula  $C$  is unique.

If  $C$  is a Copula and  $F_1, F_2, \dots, F_d$  are distribution functions, then the function  $H$  is a multivariate distributions with marginals  $F_1, F_2, \dots, F_d$ .

## COPULA FAMILIES

### Elliptical Copulas

Gaussian

(No tail dependence)

Student T

(Upper & lower tail dependence)

### Archimedean Copulas

Clayton

(Lower Tail Dependence) Gumbel

(Upper Tail Dependence) Frank

(Symmetric)

Joe (Strong upper tail)

### Extreme Value Copulas

Gumbel Hougaard Galambos

### Other Copulas

Farlie-Gumbel-Morgenstern (FGM) Plackett

Ali-Mikhail-Haq

BB Families

## Capturing Dependencies in Rainfall/Flood Characteristics

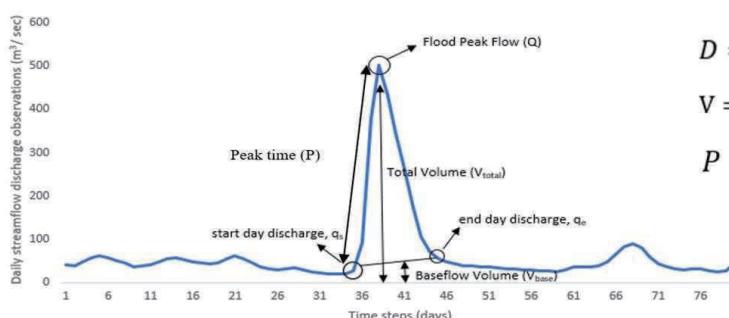
Bivariate  
Copula

Trivariate  
Copula

Vine  
Copula

$$H_{XY}(x, y) = C \square F_X(x) F_Y(y) \square = C(u, u)$$

$$C(u_1, u_2, u_3) = C_1 \square C_2(u_1, u_2), u_3 \square$$


❖ Breaks high-dimensional dependence into a sequence of bivariate copulas.

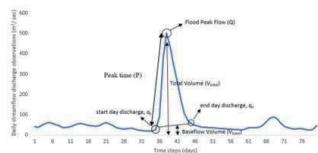
❖ Allows modeling different types of dependencies between pairs of variables.

## J Study E Area



## FLOOD HYDROGRAPH




$$D = q_e - q_s$$

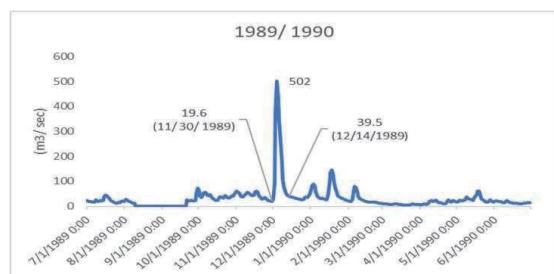
$$V = V_{\text{total}} - V_{\text{base}}$$

$$P = q_d - q_s$$

Figure 2 : Flood hydrograph showing flood characteristics.

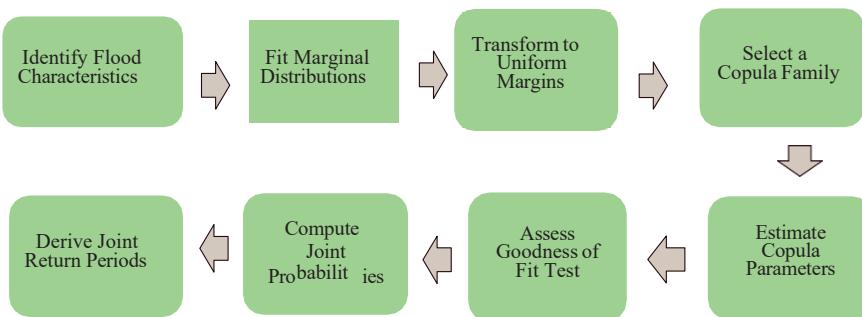
## FLOOD HYDROGRAPH CALCULATION




$$D = q_e - q_s$$

$$V = V_{\text{total}} - V_{\text{base}}$$

$$V = \sum_{i=e}^s q_j - \frac{D}{2}(q_s + q_e),$$


$$P = q_d - q_s$$

N. A. Jafry, J. Suhaila, F. Yusoof, S. R. M. Nor, N. E. Alias, L. Shahid. Joint probabilistic assessments of four-dimensional flood characteristics using the vine copula-based methodology  
<https://doi.org/10.1007/s12665-024-11743-7>



*Innovating Solutions*

## Copula Implementation for Flood Characteristics



## Flood Risk Estimation

The return period (also called recurrence interval) of an event is the average time between occurrences of an event of at least a given magnitude.

The return period  $T$  is calculated as

$$T = \frac{\mu}{P(X \geq x_T)} = \frac{1}{p}$$

$$P(X \geq x_T) = p = \frac{1}{T}$$

$$F_x(x_T) = 1 - p = 1 - \frac{1}{T}$$

$$x_T = F_x^{-1}\left(1 - \frac{1}{T}\right)$$

$\mu$  mean inter-arrival duration between two consecutive episodes

### Univariate Return Period

Lognormal-3P - peak flow & peak time

Weibull-3P – volume

Generalized Extreme Value - duration.

The analysis reveals distinct characteristics for different return periods.

$T=10$ -year (10% probability of occurrence annually)

Estimated flood parameters Peak flow ( $Q$ ) - 337.04 m<sup>3</sup>/s Volume- 2797.05 m<sup>3</sup>

Duration: 28 days, and peak time exceeding 13 days

## Bivariate Copula

### Joint exceedance (AND) for two variables

Return period of both events happening **together** in the same occurrence.

$$\begin{aligned} P_{AND} &= P(X_1 > x_1, X_2 > x_2) \\ &= 1 - F_1(x_1) - F_2(x_2) + C(\mu_1, \mu_2) \\ &= 1 - F_1(x_1) - F_2(x_2) + C(F_1(x_1), F_2(x_2)) \end{aligned}$$

$$T = \frac{1}{P_{AND}}$$

### $T=10$ -year return period

$P(X_Q > 337.04, X_V > 2797.05) = 0.06993$

$P(X_Q > 337.04 \text{ or } X_V > 2797.05) = 0.13004$

$P(X_Q > 337.04, X_D > 14) = 0.02162$

$P(X_Q > 337.04 \text{ or } X_D > 14) = 0.17825$

$T_{Q,V,AND} = 14.30$  years.

$T_{Q,V,OR} = 7.69$  years.

$T_{Q,D,AND} = 46.26$  years.

$T_{Q,D,OR} = 5.61$  years.

### Joint exceedance (OR) for two variables

Return period of at least one event exceeding its threshold.

$$\begin{aligned} P_{OR} &= P(X_1 > x_1 \text{ or } X_2 > x_2) \\ &= 1 - C(\mu_1, \mu_2) \\ &= 1 - C(F_1(x_1), F_2(x_2)) \end{aligned}$$

$$T = \frac{1}{P_{OR}}$$

A flood event where **both the peak discharge exceeds 337.04 m<sup>3</sup>/s AND the volume exceeds 2797.05 m<sup>3</sup>** is expected to occur, on average, **once every 14.3 years**. Rare event (Small probability).

Return period for OR is shorter with a larger probability.

## Summary

### Flood Risk Management

**AND** return periods help design critical infrastructure (dams) for compound worst-case floods.

**OR** return periods help with preparedness planning and insurance assessment, the likelihood of damaging floods.

## Conclusion

### Boundedness Effect

Rainfall and flood extremes are naturally bounded by physical limits, and ignoring this can bias risk estimation.

By incorporating boundedness, more realistic estimates of extreme rainfall are obtained, preventing over- or under-design of infrastructure (e.g., dams, drainage).

### Temporal Complexity

Rainfall exhibits strong seasonality, inter-annual variability, and long-term shifts (e.g., ENSO, climate change).

Functional Data Analysis (FDA) allows authorities to track evolving rainfall patterns and detect anomalies more effectively than traditional methods. This helps anticipate shifts in flood timing, duration, and intensity.

### Copula Rainfall Modelling

Flood risk depends on multiple characteristics simultaneously (e.g., rainfall intensity, volume, duration).

Copula-based models capture the dependence structure between these variables, providing joint return periods that are more informative than univariate approaches.

# THANK YOU

[suhailasj@utm.my](mailto:suhailasj@utm.my)



Scopus ID : 22136916700

Website : <http://people.utm.my/shariffah/>

UTMScholar : <https://utmscholar.utm.my/Scholar/ScholarInfoDetails/v1n1>

ResearchGate : <https://www.researchgate.net/profile/Shariffah-Jamaludin>

ORCID ID : <https://orcid.org/0000-0001-8609-3807>

MALAYSIAN-JAPAN SYMPOSIUM ON MATHEMATICAL AND STATISTICAL  
MODELLING

**August 26th, 2025, Auditorium, IMI, Kyushu University, Japan**

---

## **Advection-Diffusion Equations (ADE) in Modeling Transport Phenomena**

**Zaiton Mat Isa**

Universiti Teknologi Malaysia (UTM)

This talk explores the versatility of advection-diffusion equations (ADE) in modeling transport phenomena. Applications include fumigation in grain storage, heavy metal migration in soil and indoor disease transmission.

# ADVECTION-DIFFUSION EQUATIONS (ADE) IN MODELING TRANSPORT PHENOMENA

**ABSTRACT:** This talk explores the versatility of advection-diffusion equations (ADE) in modeling transport phenomena. Applications include fumigation in grain storage, heavy metal migration in soil and indoor disease transmission.

ZAITON BT MAT ISA  
DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE,  
UNIVERSITI TEKNOLOGI MALAYSIA

*Innovating Sustainable Solutions*

## OUTLINE

- DEFINITION
- BACKGROUND
- DERIVATION OF ADE
- GENERAL MATHEMATICAL MODEL
- APPLICATION

## DEFINITION

### DIFFUSION

Diffusion is the process where particles spread from regions of higher concentration to regions of lower concentration.

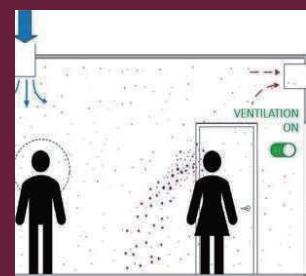


### ADVECTION

Advection refers to the transport of a substance by the bulk motion of the fluid.

### REACTION

Reaction is the process where the concentration of a substance changes due to chemical transformations or other internal interactions within the system.

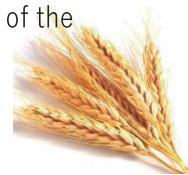

## BACKGROUND



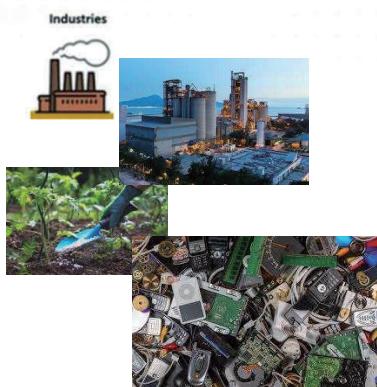
**01** GRAIN FUMIGATION



**02** HEAVY METAL IN SOIL




**03** INDOOR DISEASE TRANSMISSION


## BACKGROUND –grain fumigation



- In grain industry, after harvesting, the grain will be stored in storage/silo
- Stored grain often contains insects that can damage the quality of the product
- To control these pests, one of the method is fumigation
- This process involves pumping a toxic gas, into the silo/storage to kill the insects
- However failed fumigation has been reported, and the ineffective spatial phosphine distribution in the grain storage are one of the factors contributing to the failure

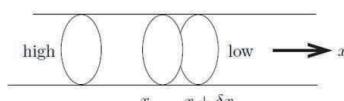


## BACKGROUND –heavy metal migration in soil



- Heavy metals can enter soil from :
  - Industry
  - Agriculture – inorganic fertilizer
  - Electronic waste
- Once in the soil, they can move with water and slowly spread out.
- Effect
  - Can get in to crops - reduce agricultural productivity and overall crop quality – food safety
  - Poses risk to groundwater
  - Long term environmental effect

## BACKGROUND – indoor disease transmission




- When infected individuals breathe, talk, or cough, they release tiny droplets into the air
- These droplets can float around and travel with the air in the room
- If the room has poor ventilation, the air becomes filled with more of these particles.
- This makes it easier for others to breathe them in and get sick.



## DERIVATION OF ADE

- Consider a circular tube with cross-sectional area,  $A$  representing the hollow section, which is filled with solute. It is presumed that bulk mixture remains stationary.



- Mass conservation:

$$\{\text{rate of change of mass}\} = \{\text{net rate of mass diffusing in and out of the tube}\}$$

- Rate of change of mass:

$$\{\text{rate of change of mass}\} = A\delta x \frac{\partial C}{\partial t}(t)$$

- The change in mass of solute as it diffuses down the tube over time

$$\{\text{Net rate of mass diffusing}\} = J(x, t)A - J(x + \Delta x, t)A$$

- Combining both equation

$$\frac{\partial C}{\partial t}(x, t) = - \frac{J(x + \Delta x, t) - J(x, t)}{\delta x}$$

as  $\delta x \rightarrow 0$

$$\frac{\partial C}{\partial t} = - \frac{\partial J}{\partial x}$$

A – cross sectional area  
J – mass flux of the solute

## DERIVATION OF ADE

- Fick's Law

$$J(x, t) = -D \frac{\partial C}{\partial x}$$

- Substituting Fick's law into mass conservation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

- If Advection involve

$$J = J_d + J_a$$

- In the absence of diffusion, solute particles move at the same speed as the mixture

$$J_a = u A \delta t = u \cdot C$$

- Hence  $J = u C - D \frac{\partial C}{\partial x}$

- Resulting in concentration equation

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

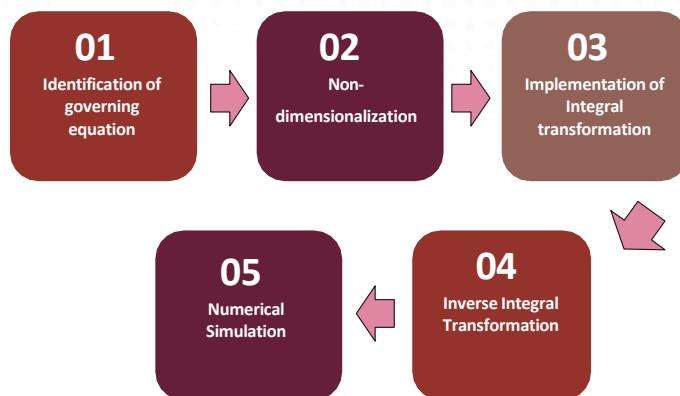
D – diffusivity

$J_d$  – mass flux due to diffusion

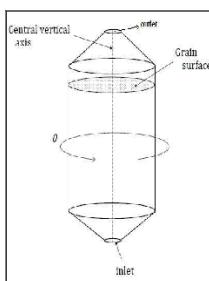
$J_a$  - mass flux due to advection

## MATHEMATICAL MODEL OF ADE

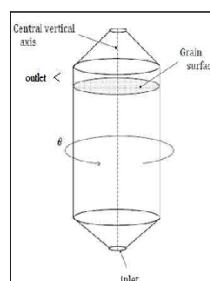
$$\frac{\partial C}{\partial t} + \nabla \cdot (u C) = D \nabla^2 C + R$$


Advection term      Diffusion term      Reaction term

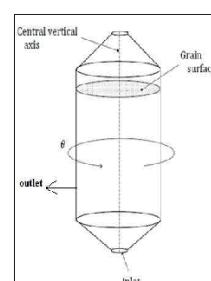
## EXAMPLE OF REACTION TERM


$$R = -kC$$

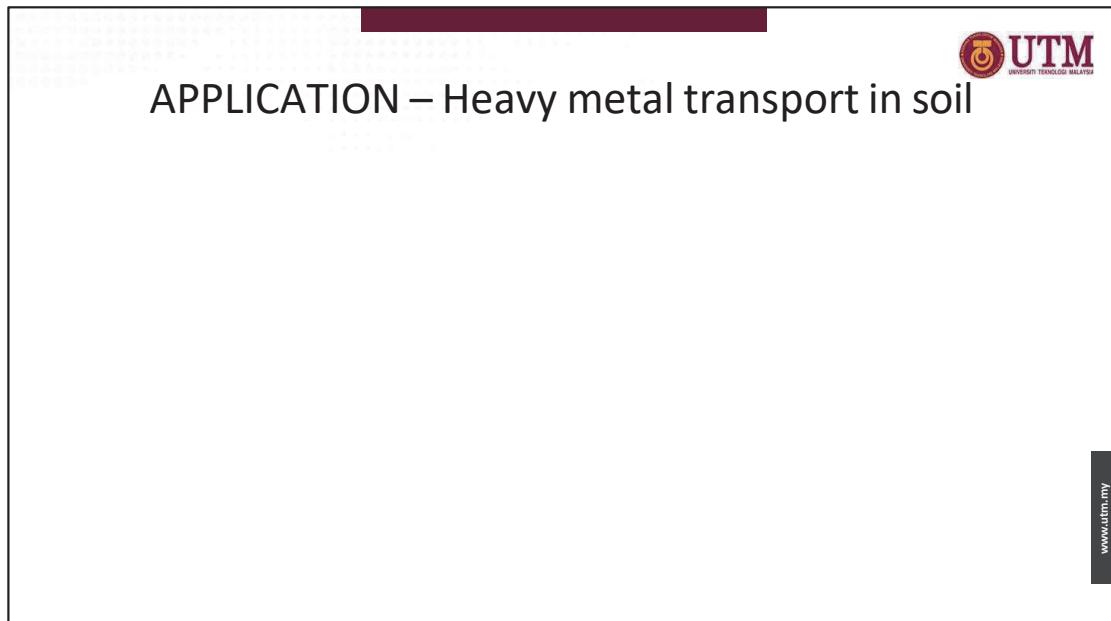
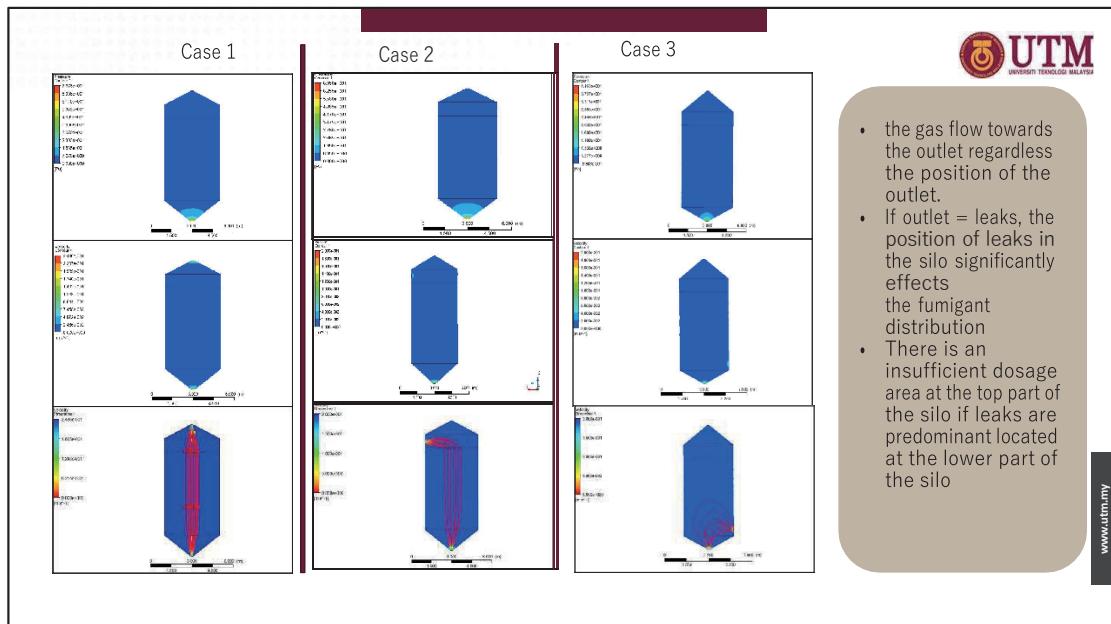
- $k$  is the **rate constant** that determines how fast the reaction occurs.
- $C$  is the **concentration** of the substance involved in the reaction.


## METHODOLOGY IN PRACTICE




## APPLICATION – grain fumigation





Case 1: Outlet at the top of the silo



Case 2: Outlet at the above of the grain surface



Case 3: Outlet at the below of the grain surface



## TWO-DIMENSIONAL HEAVY METAL TRANSPORT IN SOIL WITH ADSORPTION AND SOURCE TERM

PRESENTER: LIANGRUI SHI

SUPERVISOR: DR ZAITON MAT ISA  
 CO-SUPERVISOR: DR SHAYMAA M.H. DARWISH

## TRANSPORT OF HEAVY METAL WITH ADSORPTION AND DESORPTION

**Model Equation:**  $R \frac{\partial C}{\partial t} = D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} - u \frac{\partial C}{\partial x} - v \frac{\partial C}{\partial y} - \frac{\rho A \delta}{\theta \Delta t} = kC - k - 1 \frac{\partial C}{\partial t}$

Problem 1: Instantaneous emission

initial and boundary condition:

The analytical solution:

$$C(\bar{x}, \bar{y}, 0) = C_i; \quad 0 \leq \bar{x} < +\infty, 0 \leq \bar{y} < +\infty$$

$$C(0, 0, t) = \frac{m}{Q} \delta(t),$$

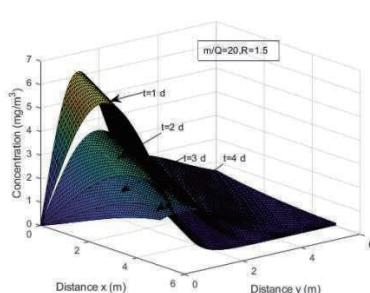
$$\frac{\partial C}{\partial \bar{x}} = 0, \quad \frac{\partial C}{\partial \bar{y}} = 0; \quad \bar{x} \rightarrow \infty, \bar{y} \rightarrow \infty.$$

$$\begin{aligned} C(z, t) = & \frac{mz\sqrt{A}}{2Q\sqrt{\pi}D^3} \exp\left(\frac{Uz}{2D}\right) \exp\left(-\frac{Az^2}{4Dt}\right) \exp\left(\left(-\frac{U^2}{4AD} - \frac{k}{A}\right)t\right) \\ & - \frac{C_i}{2} \exp\left(-\frac{k}{A}t\right) \exp\left(\frac{Uz}{2D}\right) \times \left( \exp\left(-z\sqrt{\frac{U^2}{4D^2}}\right) \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}} - \sqrt{\frac{U^2 t}{4AD}}\right) \right. \\ & \left. + \exp\left(z\sqrt{\frac{U^2}{4D^2}}\right) \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}} + \sqrt{\frac{U^2 t}{4AD}}\right) \right) + C_i \exp\left(-\frac{k}{A}t\right). \end{aligned}$$

## Problem 2: Exponential decay emission

Initial and boundary condition:

$$C(x, y, 0) = C_i; \quad 0 \leq x < +\infty, 0 \leq y < +\infty$$


$$C(0, 0, t) = C_0 e^{-\alpha t}$$

$$\frac{\partial C}{\partial x} = 0, \frac{\partial C}{\partial y} = 0; \quad x \rightarrow \infty, y \rightarrow \infty.$$

The analytical solution:

$$\begin{aligned} C(z, t) = & \frac{C_0}{2} \exp\left(\frac{Uz}{2D} - \alpha t\right) \left\{ \exp\left(-z\sqrt{\frac{A}{D}} \sqrt{\frac{U^2}{4AD} + \frac{k}{A} - \alpha}\right) \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}}\right) \right. \\ & - \sqrt{\left(\frac{U^2}{4AD} + \frac{k}{A} - \alpha\right)t} \Big\} + \exp\left(z\sqrt{\frac{A}{D}} \sqrt{\frac{U^2}{4AD} + \frac{k}{A} - \alpha}\right) \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}}\right) \\ & + \sqrt{\left(\frac{U^2}{4AD} + \frac{k}{A} - \alpha\right)t} \Big\} - \frac{C_i}{2} \exp\left(-\frac{k}{A}t + \frac{Uz}{2D}\right) \left( \exp\left(-z\sqrt{\frac{U^2}{4D^2}}\right) \right. \\ & \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}} - \sqrt{\frac{U^2 t}{4AD}}\right) + \exp\left(z\sqrt{\frac{U^2}{4D^2}}\right) \operatorname{erfc}\left(\frac{z\sqrt{A}}{2\sqrt{Dt}} + \sqrt{\frac{U^2 t}{4AD}}\right) \Big\} \\ & + C_i \exp\left(-\frac{k}{A}t\right) \end{aligned}$$

The concentration at different time for instantaneous boundary condition


 fig 3.1 Concentration profiles of heavy metals at different time for fixed  $m/Q=20$  and  $R=1.5$ 

The concentration at different time for exponential decay boundary condition

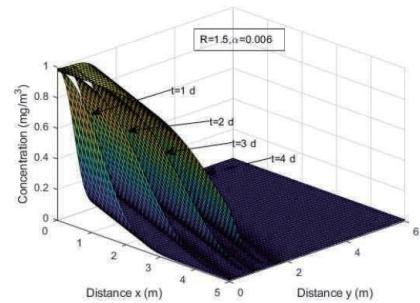



fig 3.2 Concentration profiles of heavy metal with exponential decay boundary condition at different time

# TRANSPORT OF HEAVY METAL WITH ADSORPTION, DESORPTION AND POINT SOURCE

Model equation :  $R \frac{\partial C}{\partial t} = D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} - u \frac{\partial C}{\partial x} - v \frac{\partial C}{\partial y} - \frac{\rho}{\theta} \frac{\partial S}{\partial t} + F, \quad \text{while} \quad \frac{\rho}{\theta} \frac{\partial S}{\partial t} = kC(x, y, t) - k_x \frac{\partial C}{\partial x} - k_y \frac{\partial C}{\partial y}.$

### Problem 3: Instantaneous point source

Initial and boundary condition:

$$\begin{aligned} C(x, y, 0) &= 0; 0 \leq x < +\infty, 0 \leq y < +\infty, \\ C(0, 0, t) &= 0, \\ C(x, y, t) &= 0; x \rightarrow +\infty, y \rightarrow +\infty \end{aligned}$$

point source:

$$\begin{aligned} F &= G(t)W(z), G = M\delta(t - t_0), W(z) \\ &= \frac{1}{\theta} \delta(z - z_0) \end{aligned}$$

The analytical solution

$$\begin{aligned} \bar{C}(z, t) &= \frac{M}{2\theta\sqrt{DR}} \exp\left(\frac{U(z - z_0)}{2D}\right) \frac{\exp\left(-\left(\frac{U^2}{4DR} + \frac{k}{R}\right)(t - t_0)\right)}{\sqrt{\pi(t - t_0)}} \\ &\times \left\{ \exp\left(-\frac{R(z - z_0)^2}{4D(t - t_0)}\right) - \exp\left(-\frac{R(z + z_0)^2}{4D(t - t_0)}\right) \right\}. \end{aligned}$$

The concentration at different time for instantaneous point source

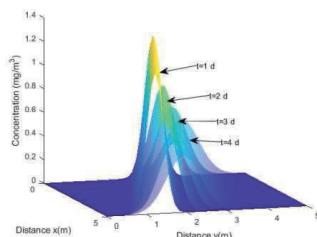



fig4.1 Concentration profiles of heavy metals at different time for fixed  $M/\theta = 1$  and  $R=1.5$  with instantaneous release source heavy metals is introduced at  $(2.5, 2.5)$

#### Problem 4: The exponential decay source

point source:

$$F = G(t)W(z), \quad W(z) = \delta(z - z_0), \quad G(t) = g_0 e^{-\alpha t}$$

The concentration effects at different time

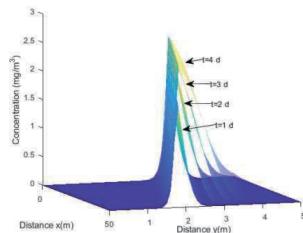
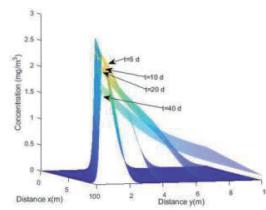




fig 4.4 Concentration profiles of heavy metals at different time for fixed  $g_0/\theta=1$  and  $R=1.5$  with exponential decay release source heavy metals is introduced at  $(2.5, 2.5)$  and  $\alpha=0.01$

The analytical solution

$$C(z, t) = \int_0^t \frac{g_0}{2\theta\sqrt{DR}} \exp(-\alpha\zeta) \exp\left(\frac{U(z - z_0)}{2D}\right) \frac{\exp\left(-\left(\frac{U^2}{4DR} + \frac{k}{R}\right)(t - \zeta)\right)}{\sqrt{\pi(t - \zeta)}} \times \left\{ \exp\left(-\frac{R(z - z_0)^2}{4D(t - \zeta)}\right) - \exp\left(-\frac{R(z + z_0)^2}{4D(t - \zeta)}\right) \right\} d\zeta$$



## TRANSPORT OF HEAVY METAL WITH ADSORPTION, DESORPTION AND LINE SOURCE

#### Problem 5: Instantaneous line source

The model equation, initial and boundary conditions are same as CH4, but the line source is:

$$F = G(t)W(z);$$

$$W(z) = M(H(z - c) - H(z - d))G(t) = \delta(t - t_0) \frac{1}{\theta}$$

The analytical solution

$$C(z, t) = \frac{M}{2\theta\sqrt{DR}} \int_0^\infty \exp\left(\frac{U(z - \tau)}{2D}\right) \frac{(H(\tau - c) - H(\tau - d)) \exp\left(-\left(\frac{U^2}{4DR} + \frac{k}{R}\right)(t - t_0)\right)}{\sqrt{\pi(t - t_0)}} \times \left\{ \exp\left(-\frac{R(z - \tau)^2}{4D(t - t_0)}\right) - \exp\left(-\frac{R(z + \tau)^2}{4D(t - t_0)}\right) \right\} d\tau$$

The concentration at different time for instantaneous line source

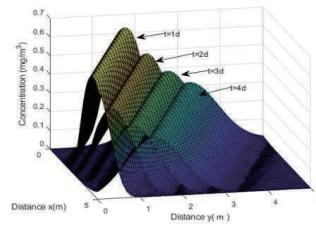



fig 5.1 Concentration profiles of heavy metals at different time for fixed  $M/\theta=1$  and  $R=1.5$  with instantaneous release line source heavy metals

#### Problem 6: Exponential decay line source

The analytical solution:

The line source is:

$$F = G(t)W(z);$$

$$W(z) = M(H(z - c) - H(z - d)), \quad G(t) = g_0 e^{-\alpha t}$$

$$C(z, t) = \frac{g_0}{2\sqrt{DR}} \int_0^{\infty} \exp\left(-\frac{U(z - \tau)}{2D}\right) \int_0^t \frac{\exp(-\alpha\zeta)M(H(\tau - c) - H(\tau - d)) \exp\left(-\left(\frac{U^2}{4DR} + \frac{k}{R}\right)(t - \zeta)\right)}{\sqrt{\pi(t - \zeta)}} \times \left\{ \exp\left(-\frac{R(z - \tau)^2}{4D(t - \zeta)}\right) - \exp\left(\frac{-R(z + \tau)^2}{4D(t - \zeta)}\right) \right\} d\zeta d\tau$$

The concentration at different time for exponential decay line source

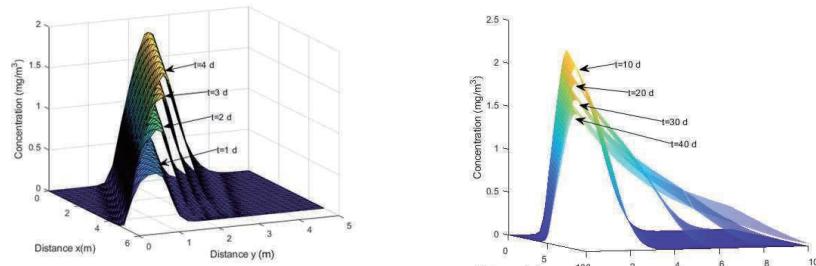



fig 5.1 Concentration profiles of heavy metals at different time for fixed  $R=1.5$  with exponential decay release line source heavy metals

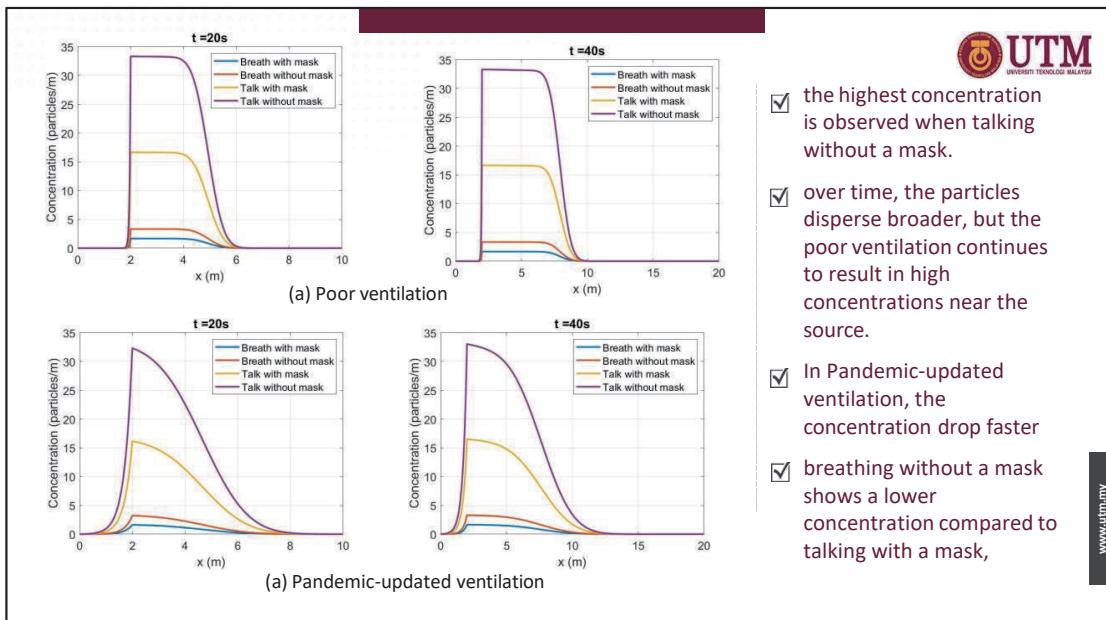
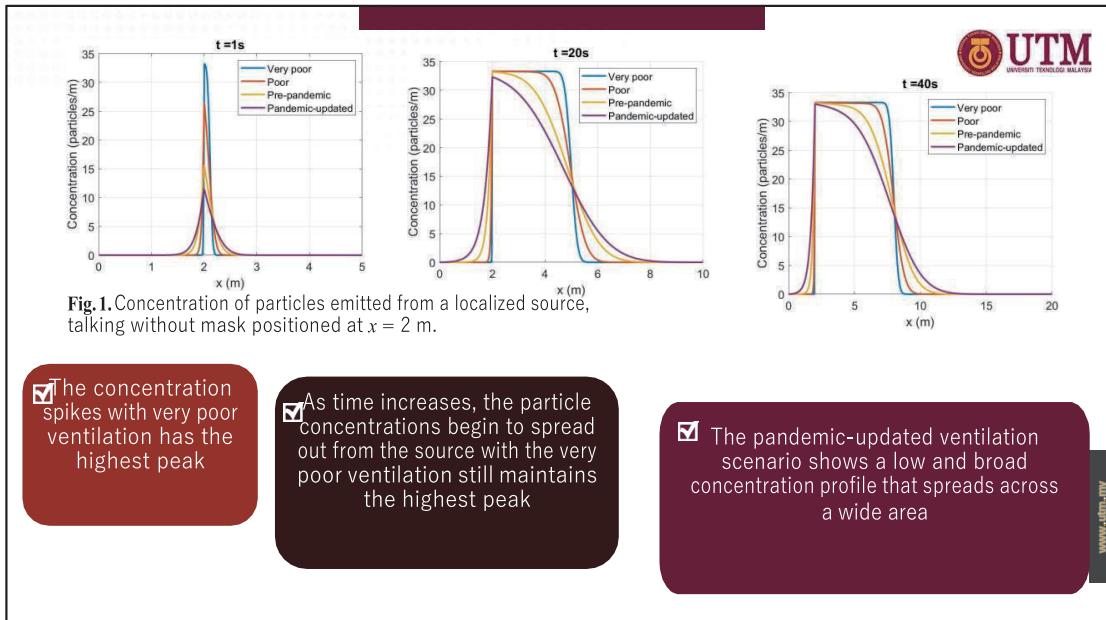
## APPLICATION - Indoor transmission of covid-19

How does Covid-19 spread in an indoor space?



talking?  
breathing?  
Mask?  
Without mask?

Advection-Diffusion Equation



$$\frac{\partial C}{\partial t} = K \frac{\partial^2 C}{\partial x^2} - U \frac{\partial C}{\partial x} - \lambda C + R \delta(x - x_0) H(t - t_0)$$

$$C(x, 0) = 0, \quad C(0, t) = 0, \quad C(\infty, t) = 0$$

$C$  – concentration  
 $K$  – diffusion coefficient  
 $u$  - velocity  
 $\lambda$  – air exchange rate

$R$  – rate of production of  
 infectious particle

Turkyilmazoglu (2022)  
 Lau et al. (2020)



# THANK YOU



univteknologimalaysia



utm.my



utmofficial



## MI レクチャーノートシリーズ刊行にあたり

本レクチャーノートシリーズは、文部科学省 21 世紀 COE プログラム「機能数理学の構築と展開」(H15-19 年度)において作成した COE Lecture Notes の続刊であり、文部科学省大学院教育改革支援プログラム「産業界が求める数学博士と新修士養成」(H19-21 年度)および、同グローバル COE プログラム「マス・フォア・インダストリ教育研究拠点」(H20-24 年度)において行われた講義の講義録として出版されてきた。平成 23 年 4 月のマス・フォア・インダストリ研究所 (IMI) 設立と平成 25 年 4 月の IMI の文部科学省共同利用・共同研究拠点として「産業数学の先進的・基礎的共同研究拠点」の認定を受け、今後、レクチャーノートは、マス・フォア・インダストリに関する国内外の研究者による講義の講義録、会議録等として出版し、マス・フォア・インダストリの本格的な展開に資するものとする。

2022 年 10 月  
マス・フォア・インダストリ研究所  
所長 梶原 健司

International Project Research-Workshop (I)

# Malaysia – Japan Symposium on Mathematical and Statistical Modelling

発行 2026年 1月8日  
編集 Chief Editors : Zaiton Mat Isa, Arifah Bahar  
Shariffah Suhaila Syed Jamaludin, Zaitul Marlizawati Zainuddin, Sharidan Shafie,  
Ahmad Fadillah Embong, Shaymaa Mustafa, Nur Arina Bazilah Aziz,  
Nik Zetti Amani Nik Faudzi, Mohamad Shahir Saidin, Mohd Rashid Admon  
発行 九州大学マス・フォア・インダストリ研究所  
九州大学大学院数理学府  
〒819-0395 福岡市西区元岡744  
九州大学数理・IMI 事務室  
TEL 092-802-4402 FAX 092-802-4405  
URL <https://www.imi.kyushu-u.ac.jp/>

印刷 城島印刷株式会社  
〒810-0012 福岡市中央区白金 2 丁目 9 番 6 号  
TEL 092-531-7102 FAX 092-524-4411

## シリーズ既刊

| Issue                   | Author／Editor                                     | Title                                                                                                               | Published          |
|-------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------|
| COE Lecture Note        | Mitsuhiro T. NAKAO<br>Kazuhiro YOKOYAMA           | Computer Assisted Proofs - Numeric and Symbolic Approaches -<br>199pages                                            | August 22, 2006    |
| COE Lecture Note        | M.J.Shai HARAN                                    | Arithmetical Investigations - Representation theory, Orthogonal<br>polynomials and Quantum interpolations- 174pages | August 22, 2006    |
| COE Lecture Note Vol.3  | Michal BENES<br>Masato KIMURA<br>Tatsuyuki NAKAKI | Proceedings of Czech-Japanese Seminar in Applied Mathematics 2005<br>155pages                                       | October 13, 2006   |
| COE Lecture Note Vol.4  | 宮田 健治                                             | 辺要素有限要素法による磁界解析 - 機能数理学特別講義 21pages                                                                                 | May 15, 2007       |
| COE Lecture Note Vol.5  | Francois APERY                                    | Univariate Elimination Subresultants - Bezout formula, Laurent series<br>and vanishing conditions - 89pages         | September 25, 2007 |
| COE Lecture Note Vol.6  | Michal BENES<br>Masato KIMURA<br>Tatsuyuki NAKAKI | Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006<br>209pages                                       | October 12, 2007   |
| COE Lecture Note Vol.7  | 若山 正人<br>中尾 充宏                                    | 九州大学産業技術数理研究センター キックオフミーティング<br>138pages                                                                            | October 15, 2007   |
| COE Lecture Note Vol.8  | Alberto PARMEGGIANI                               | Introduction to the Spectral Theory of Non-Commutative Harmonic<br>Oscillators 233pages                             | January 31, 2008   |
| COE Lecture Note Vol.9  | Michael I. TRIBELSKY                              | Introduction to Mathematical modeling 23pages                                                                       | February 15, 2008  |
| COE Lecture Note Vol.10 | Jacques FARAUT                                    | Infinite Dimensional Spherical Analysis 74pages                                                                     | March 14, 2008     |
| COE Lecture Note Vol.11 | Gerrit van DIJK                                   | Gelfand Pairs And Beyond 60pages                                                                                    | August 25, 2008    |
| COE Lecture Note Vol.12 | Faculty of Mathematics,<br>Kyushu University      | Consortium "MATH for INDUSTRY" First Forum 87pages                                                                  | September 16, 2008 |
| COE Lecture Note Vol.13 | 九州大学大学院<br>数理学研究院                                 | プロシードィング「損保数理に現れる確率モデル」<br>— 日々新火災・九州大学 共同研究2008年11月 研究会 — 82pages                                                  | February 6, 2009   |

## シリーズ既刊

| Issue                   | Author／Editor                                                                                | Title                                                                                                                                                              | Published         |
|-------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| COE Lecture Note Vol.14 | Michal Beneš,<br>Tohru Tsujikawa<br>Shigetoshi Yazaki                                        | Proceedings of Czech-Japanese Seminar in Applied Mathematics 2008<br>77pages                                                                                       | February 12, 2009 |
| COE Lecture Note Vol.15 | Faculty of Mathematics,<br>Kyushu University                                                 | International Workshop on Verified Computations and Related Topics<br>129pages                                                                                     | February 23, 2009 |
| COE Lecture Note Vol.16 | Alexander Samokhin                                                                           | Volume Integral Equation Method in Problems of Mathematical Physics<br>50pages                                                                                     | February 24, 2009 |
| COE Lecture Note Vol.17 | 矢嶋 徹<br>及川 正行<br>梶原 健司<br>辻 英一<br>福本 康秀                                                      | 非線形波動の数理と物理 66pages                                                                                                                                                | February 27, 2009 |
| COE Lecture Note Vol.18 | Tim Hoffmann                                                                                 | Discrete Differential Geometry of Curves and Surfaces 75pages                                                                                                      | April 21, 2009    |
| COE Lecture Note Vol.19 | Ichiro Suzuki                                                                                | The Pattern Formation Problem for Autonomous Mobile Robots<br>—Special Lecture in Functional Mathematics— 23pages                                                  | April 30, 2009    |
| COE Lecture Note Vol.20 | Yasuhide Fukumoto<br>Yasunori Maekawa                                                        | Math-for-Industry Tutorial: Spectral theories of non-Hermitian<br>operators and their application 184pages                                                         | June 19, 2009     |
| COE Lecture Note Vol.21 | Faculty of Mathematics,<br>Kyushu University                                                 | Forum “Math-for-Industry”<br>Casimir Force, Casimir Operators and the Riemann Hypothesis<br>95pages                                                                | November 9, 2009  |
| COE Lecture Note Vol.22 | Masakazu Suzuki<br>Hoon Hong<br>Hirokazu Anai<br>Chee Yap<br>Yousuke Sato<br>Hiroshi Yoshida | The Joint Conference of ASCM 2009 and MACIS 2009:<br>Asian Symposium on Computer Mathematics Mathematical Aspects of<br>Computer and Information Sciences 436pages | December 14, 2009 |
| COE Lecture Note Vol.23 | 荒川 恒男<br>金子 昌信                                                                               | 多重ゼータ値入門 111pages                                                                                                                                                  | February 15, 2010 |
| COE Lecture Note Vol.24 | Fulton B.Gonzalez                                                                            | Notes on Integral Geometry and Harmonic Analysis 125pages                                                                                                          | March 12, 2010    |
| COE Lecture Note Vol.25 | Wayne Rossman                                                                                | Discrete Constant Mean Curvature Surfaces via Conserved Quantities<br>130pages                                                                                     | May 31, 2010      |
| COE Lecture Note Vol.26 | Mihai Ciucu                                                                                  | Perfect Matchings and Applications 66pages                                                                                                                         | July 2, 2010      |

## シリーズ既刊

| Issue                   | Author／Editor                                                                                  | Title                                                                                                                                                                     | Published          |
|-------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| COE Lecture Note Vol.27 | 九州大学大学院<br>数理学研究院                                                                              | Forum “Math-for-Industry” and Study Group Workshop<br>Information security, visualization, and inverse problems, on the basis<br>of optimization techniques 100pages      | October 21, 2010   |
| COE Lecture Note Vol.28 | ANDREAS LANGER                                                                                 | MODULAR FORMS, ELLIPTIC AND MODULAR CURVES<br>LECTURES AT KYUSHU UNIVERSITY 2010 62pages                                                                                  | November 26, 2010  |
| COE Lecture Note Vol.29 | 木田 雅成<br>原田 昌晃<br>横山 俊一                                                                        | Magma で広がる数学の世界 157pages                                                                                                                                                  | December 27, 2010  |
| COE Lecture Note Vol.30 | 原 隆<br>松井 卓<br>廣島 文生                                                                           | Mathematical Quantum Field Theory and Renormalization Theory<br>201pages                                                                                                  | January 31, 2011   |
| COE Lecture Note Vol.31 | 若山 正人<br>福本 康秀<br>高木 剛<br>山本 昌宏                                                                | Study Group Workshop 2010 Lecture & Report 128pages                                                                                                                       | February 8, 2011   |
| COE Lecture Note Vol.32 | Institute of Mathematics<br>for Industry,<br>Kyushu University                                 | Forum “Math-for-Industry” 2011<br>“TSUNAMI-Mathematical Modelling”<br>Using Mathematics for Natural Disaster Prediction, Recovery and<br>Provision for the Future 90pages | September 30, 2011 |
| COE Lecture Note Vol.33 | 若山 正人<br>福本 康秀<br>高木 剛<br>山本 昌宏                                                                | Study Group Workshop 2011 Lecture & Report 140pages                                                                                                                       | October 27, 2011   |
| COE Lecture Note Vol.34 | Adrian Muntean<br>Vladimir Chalupecký                                                          | Homogenization Method and Multiscale Modeling 72pages                                                                                                                     | October 28, 2011   |
| COE Lecture Note Vol.35 | 横山 俊一<br>夫 紀惠<br>林 卓也                                                                          | 計算機代数システムの進展 210pages                                                                                                                                                     | November 30, 2011  |
| COE Lecture Note Vol.36 | Michal Beneš<br>Masato Kimura<br>Shigetoshi Yazaki                                             | Proceedings of Czech-Japanese Seminar in Applied Mathematics 2010 107pages                                                                                                | January 27, 2012   |
| COE Lecture Note Vol.37 | 若山 正人<br>高木 剛<br>Kirill Morozov<br>平岡 裕章<br>木村 正人<br>白井 朋之<br>西井 龍映<br>柴 伸一郎<br>穴井 宏和<br>福本 康秀 | 平成23年度 数学・数理科学と諸科学・産業との連携研究ワーク<br>ショッピング 拡がっていく数学～期待される“見えない力”～<br>154pages                                                                                               | February 20, 2012  |

## シリーズ既刊

| Issue                   | Author／Editor                                                    | Title                                                                                                                                                                                                                                   | Published         |
|-------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| COE Lecture Note Vol.38 | Fumio Hiroshima<br>Itaru Sasaki<br>Herbert Spohn<br>Akito Suzuki | Enhanced Binding in Quantum Field Theory 204pages                                                                                                                                                                                       | March 12, 2012    |
| COE Lecture Note Vol.39 | Institute of Mathematics<br>for Industry,<br>Kyushu University   | Multiscale Mathematics: Hierarchy of collective phenomena and<br>interrelations between hierarchical structures 180pages                                                                                                                | March 13, 2012    |
| COE Lecture Note Vol.40 | 井ノ口順一<br>太田 泰広<br>筧 三郎<br>梶原 健司<br>松浦 望                          | 離散可積分系・離散微分幾何 チュートリアル2012 152pages                                                                                                                                                                                                      | March 15, 2012    |
| COE Lecture Note Vol.41 | Institute of Mathematics<br>for Industry,<br>Kyushu University   | Forum “Math-for-Industry” 2012<br>“Information Recovery and Discovery” 91pages                                                                                                                                                          | October 22, 2012  |
| COE Lecture Note Vol.42 | 佐伯 修<br>若山 正人<br>山本 昌宏                                           | Study Group Workshop 2012 Abstract, Lecture & Report 178pages                                                                                                                                                                           | November 19, 2012 |
| COE Lecture Note Vol.43 | Institute of Mathematics<br>for Industry,<br>Kyushu University   | Combinatorics and Numerical Analysis Joint Workshop 103pages                                                                                                                                                                            | December 27, 2012 |
| COE Lecture Note Vol.44 | 萩原 学                                                             | モダン符号理論からポストモダン符号理論への展望 107pages                                                                                                                                                                                                        | January 30, 2013  |
| COE Lecture Note Vol.45 | 金山 寛                                                             | Joint Research Workshop of Institute of Mathematics for Industry<br>(IMI), Kyushu University<br>“Propagation of Ultra-large-scale Computation by the Domain-<br>decomposition-method for Industrial Problems (PUCDIP 2012)”<br>121pages | February 19, 2013 |
| COE Lecture Note Vol.46 | 西井 龍映<br>栄 伸一郎<br>岡田 勘三<br>落合 啓之<br>小磯 深幸<br>斎藤 新悟<br>白井 朋之      | 科学・技術の研究課題への数学アプローチ<br>—数学モデリングの基礎と展開— 325pages                                                                                                                                                                                         | February 28, 2013 |
| COE Lecture Note Vol.47 | SOO TECK LEE                                                     | BRANCHING RULES AND BRANCHING ALGEBRAS FOR THE<br>COMPLEX CLASSICAL GROUPS 40pages                                                                                                                                                      | March 8, 2013     |
| COE Lecture Note Vol.48 | 溝口 佳寛<br>脇 隼人<br>平坂 貢<br>谷口 哲至<br>島袋 修                           | 博多ワークショップ「組み合わせとその応用」 124pages                                                                                                                                                                                                          | March 28, 2013    |

## シリーズ既刊

| Issue                   | Author／Editor                                                                                                                                         | Title                                                                                                                          | Published         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
| COE Lecture Note Vol.49 | 照井 章<br>小原 功任<br>濱田 龍義<br>横山 俊一<br>穴井 宏和<br>横田 博史                                                                                                     | マス・フォア・インダストリ研究所 共同利用研究集会 II<br>数式処理研究と産学連携の新たな発展 137pages                                                                     | August 9, 2013    |
| MI Lecture Note Vol.50  | Ken Anjyo<br>Hiroyuki Ochiai<br>Yoshinori Dobashi<br>Yoshihiro Mizoguchi<br>Shizuo Kaji                                                               | Symposium MEIS2013:<br>Mathematical Progress in Expressive Image Synthesis 154pages                                            | October 21, 2013  |
| MI Lecture Note Vol.51  | Institute of Mathematics<br>for Industry, Kyushu<br>University                                                                                        | Forum “Math-for-Industry” 2013<br>“The Impact of Applications on Mathematics” 97pages                                          | October 30, 2013  |
| MI Lecture Note Vol.52  | 佐伯 修<br>岡田 勘三<br>高木 剛<br>若山 正人<br>山本 昌宏                                                                                                               | Study Group Workshop 2013 Abstract, Lecture & Report 142pages                                                                  | November 15, 2013 |
| MI Lecture Note Vol.53  | 四方 義啓<br>櫻井 幸一<br>安田 貴徳<br>Xavier Dahan                                                                                                               | 平成25年度 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会 安全・安心社会基盤構築のための代数構造<br>～サイバー社会の信頼性確保のための数理学～ 158pages                                  | December 26, 2013 |
| MI Lecture Note Vol.54  | Takashi Takiguchi<br>Hiroshi Fujiwara                                                                                                                 | Inverse problems for practice, the present and the future 93pages                                                              | January 30, 2014  |
| MI Lecture Note Vol.55  | 栄 伸一郎<br>溝口 佳寛<br>脇 隼人<br>渋田 敬史                                                                                                                       | Study Group Workshop 2013 数学協働プログラム Lecture & Report 98pages                                                                   | February 10, 2014 |
| MI Lecture Note Vol.56  | Yoshihiro Mizoguchi<br>Hayato Waki<br>Takafumi Shibuta<br>Tetsuji Taniguchi<br>Osamu Shimabukuro<br>Makoto Tagami<br>Hirotake Kurihara<br>Shuya Chiba | Hakata Workshop 2014<br>～ Discrete Mathematics and its Applications ～ 141pages                                                 | March 28, 2014    |
| MI Lecture Note Vol.57  | Institute of Mathematics<br>for Industry, Kyushu<br>University                                                                                        | Forum “Math-for-Industry” 2014:<br>“Applications + Practical Conceptualization + Mathematics = fruitful<br>Innovation” 93pages | October 23, 2014  |
| MI Lecture Note Vol.58  | 安生健一<br>落合啓之                                                                                                                                          | Symposium MEIS2014:<br>Mathematical Progress in Expressive Image Synthesis 135pages                                            | November 12, 2014 |

## シリーズ既刊

| Issue                  | Author／Editor                                                           | Title                                                                                                                          | Published          |
|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| MI Lecture Note Vol.59 | 西井 龍映<br>岡田 勘三<br>梶原 健司<br>高木 剛<br>若山 正人<br>脇 隼人<br>山本 昌宏               | Study Group Workshop 2014 数学協働プログラム<br>Abstract, Lecture & Report 196pages                                                     | November 14, 2014  |
| MI Lecture Note Vol.60 | 西浦 博                                                                    | 平成26年度九州大学 IMI 共同利用研究・研究集会 (I)<br>感染症数理モデルの実用化と産業及び政策での活用のための新たな展開 120pages                                                    | November 28, 2014  |
| MI Lecture Note Vol.61 | 溝口 佳寛<br>Jacques Garrigue<br>萩原 学<br>Reynald Affeldt                    | 研究集会<br>高信頼な理論と実装のための定理証明および定理証明器<br>Theorem proving and provers for reliable theory and implementations<br>(TPP2014) 138pages | February 26, 2015  |
| MI Lecture Note Vol.62 | 白井 朋之                                                                   | Workshop on “ $\beta$ -transformation and related topics” 59pages                                                              | March 10, 2015     |
| MI Lecture Note Vol.63 | 白井 朋之                                                                   | Workshop on “Probabilistic models with determinantal structure” 107pages                                                       | August 20, 2015    |
| MI Lecture Note Vol.64 | 落合 啓之<br>土橋 宜典                                                          | Symposium MEIS2015:<br>Mathematical Progress in Expressive Image Synthesis 124pages                                            | September 18, 2015 |
| MI Lecture Note Vol.65 | Institute of Mathematics<br>for Industry, Kyushu<br>University          | Forum “Math-for-Industry” 2015<br>“The Role and Importance of Mathematics in Innovation” 74pages                               | October 23, 2015   |
| MI Lecture Note Vol.66 | 岡田 勘三<br>藤澤 克己<br>白井 朋之<br>若山 正人<br>脇 隼人<br>Philip Broadbridge<br>山本 昌宏 | Study Group Workshop 2015 Abstract, Lecture & Report<br>156pages                                                               | November 5, 2015   |
| MI Lecture Note Vol.67 | Institute of Mathematics<br>for Industry, Kyushu<br>University          | IMI-La Trobe Joint Conference<br>“Mathematics for Materials Science and Processing”<br>66pages                                 | February 5, 2016   |
| MI Lecture Note Vol.68 | 古庄 英和<br>小谷 久寿<br>新甫 洋史                                                 | 結び目と Grothendieck-Teichmüller 群<br>116pages                                                                                    | February 22, 2016  |
| MI Lecture Note Vol.69 | 土橋 宜典<br>鍛治 静雄                                                          | Symposium MEIS2016:<br>Mathematical Progress in Expressive Image Synthesis 82pages                                             | October 24, 2016   |
| MI Lecture Note Vol.70 | Institute of Mathematics<br>for Industry,<br>Kyushu University          | Forum “Math-for-Industry” 2016<br>“Agriculture as a metaphor for creativity in all human endeavors”<br>98pages                 | November 2, 2016   |
| MI Lecture Note Vol.71 | 小磯 深幸<br>二宮 嘉行<br>山本 昌宏                                                 | Study Group Workshop 2016 Abstract, Lecture & Report 143pages                                                                  | November 21, 2016  |

## シリーズ既刊

| Issue                  | Author／Editor                                                                                                   | Title                                                                                                                                              | Published          |
|------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| MI Lecture Note Vol.72 | 新井 朝雄<br>小嶋 泉<br>廣島 文生                                                                                          | Mathematical quantum field theory and related topics 133pages                                                                                      | January 27, 2017   |
| MI Lecture Note Vol.73 | 穴田 啓晃<br>Kirill Morozov<br>須賀 祐治<br>奥村 伸也<br>櫻井 幸一                                                              | Secret Sharing for Dependability, Usability and Security of Network Storage and Its Mathematical Modeling 211pages                                 | March 15, 2017     |
| MI Lecture Note Vol.74 | QUISPTEL, G. Reinout W.<br>BADER, Philipp<br>MCLAREN, David I.<br>TAGAMI, Daisuke                               | IMI-La Trobe Joint Conference<br>Geometric Numerical Integration and its Applications 71pages                                                      | March 31, 2017     |
| MI Lecture Note Vol.75 | 手塚 集<br>田上 大助<br>山本 昌宏                                                                                          | Study Group Workshop 2017 Abstract, Lecture & Report 118pages                                                                                      | October 20, 2017   |
| MI Lecture Note Vol.76 | 宇田川誠一                                                                                                           | Tzitzéica 方程式の有限間隙解に付随した極小曲面の構成理論<br>—Tzitzéica 方程式の橙円関数解を出発点として— 68pages                                                                          | August 4, 2017     |
| MI Lecture Note Vol.77 | 松谷 茂樹<br>佐伯 修<br>中川 淳一<br>田上 大助<br>上坂 正晃<br>Pierluigi Cesana<br>濱田 裕康                                           | 平成29年度 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会 (I)<br>結晶の界面, 転位, 構造の数理 148pages                                                                           | December 20, 2017  |
| MI Lecture Note Vol.78 | 瀧澤 重志<br>小林 和博<br>佐藤憲一郎<br>斎藤 努<br>清水 正明<br>間瀬 正啓<br>藤澤 克樹<br>神山 直之                                             | 平成29年度 九州大学マス・フォア・インダストリ研究所<br>プロジェクト研究 研究集会 (I)<br>防災・避難計画の数理モデルの高度化と社会実装へ向け<br>136pages                                                          | February 26, 2018  |
| MI Lecture Note Vol.79 | 神山 直之<br>畔上 秀幸                                                                                                  | 平成29年度 AIMaP チュートリアル<br>最適化理論の基礎と応用 96pages                                                                                                        | February 28, 2018  |
| MI Lecture Note Vol.80 | Kirill Morozov<br>Hiroaki Anada<br>Yuji Suga                                                                    | IMI Workshop of the Joint Research Projects<br>Cryptographic Technologies for Securing Network Storage<br>and Their Mathematical Modeling 116pages | March 30, 2018     |
| MI Lecture Note Vol.81 | Tsuyoshi Takagi<br>Masato Wakayama<br>Keisuke Tanaka<br>Noboru Kunihiro<br>Kazufumi Kimoto<br>Yasuhiko Ikematsu | IMI Workshop of the Joint Research Projects<br>International Symposium on Mathematics, Quantum Theory,<br>and Cryptography 246pages                | September 25, 2019 |
| MI Lecture Note Vol.82 | 池森 俊文                                                                                                           | 令和2年度 AIMaP チュートリアル<br>新型コロナウイルス感染症にかかる諸問題の数理<br>145pages                                                                                          | March 22, 2021     |

## シリーズ既刊

| Issue                  | Author／Editor                                                                                                                                                                | Title                                                                                                                                                     | Published         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| MI Lecture Note Vol.83 | 早川健太郎<br>軸丸 芳揮<br>横須賀洋平<br>可香谷 隆<br>林 和希<br>堺 雄亮                                                                                                                             | シェル理論・膜理論への微分幾何学からのアプローチと<br>その建築曲面設計への応用 49pages                                                                                                         | July 28, 2021     |
| MI Lecture Note Vol.84 | Taketoshi Kawabe<br>Yoshihiro Mizoguchi<br>Junichi Kako<br>Masakazu Mukai<br>Yuji Yasui                                                                                      | SICE-JSAE-AIMaP Tutorial<br>Advanced Automotive Control and Mathematics 110pages                                                                          | December 27, 2021 |
| MI Lecture Note Vol.85 | Hiroaki Anada<br>Yasuhiko Ikematsu<br>Koji Nuida<br>Satsuya Ohata<br>Yuntao Wang                                                                                             | IMI Workshop of the Joint Usage Research Projects<br>Exploring Mathematical and Practical Principles of Secure Computation<br>and Secret Sharing 114pages | February 9, 2022  |
| MI Lecture Note Vol.86 | 濱田 直希<br>穴井 宏和<br>梅田 裕平<br>千葉 一永<br>佐藤 寛之<br>能島 裕介<br>加葉田雄太朗<br>一木 俊助<br>早野 健太<br>佐伯 修                                                                                       | 2020年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>進化計算の数理 135pages                                                                                            | February 22, 2022 |
| MI Lecture Note Vol.87 | Osamu Saeki,<br>Ho Tu Bao,<br>Shizuo Kaji,<br>Kenji Kajiwara,<br>Nguyen Ha Nam,<br>Ta Hai Tung,<br>Melanie Roberts,<br>Masato Wakayama,<br>Le Minh Ha,<br>Philip Broadbridge | Proceedings of Forum “Math-for-Industry” 2021<br>-Mathematics for Digital Economy- 122pages                                                               | March 28, 2022    |
| MI Lecture Note Vol.88 | Daniel PACKWOOD<br>Pierluigi CESANA,<br>Shigenori FUJIKAWA,<br>Yasuhide FUKUMOTO,<br>Petros SOFRONIS,<br>Alex STAYKOV                                                        | Perspectives on Artificial Intelligence and Machine Learning in<br>Materials Science, February 4-6, 2022 74pages                                          | November 8, 2022  |

## シリーズ既刊

| Issue                  | Author／Editor                                                                                                          | Title                                                                                                                                 | Published         |
|------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| MI Lecture Note Vol.89 | 松谷 茂樹<br>落合 啓之<br>井上 和俊<br>小磯 深幸<br>佐伯 修<br>白井 朋之<br>垂水 竜一<br>内藤 久資<br>中川 淳一<br>濱田 裕康<br>松江 要<br>加葉田 雄太朗               | 2022年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>材料科学における幾何と代数 III 356pages                                                              | December 7, 2022  |
| MI Lecture Note Vol.90 | 中山 尚子<br>谷川 拓司<br>品野 勇治<br>近藤 正章<br>石原 亨<br>鍛治 静雄<br>藤澤 克樹                                                             | 2022年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>データ格付けサービス実現のための数理基盤の構築 58pages                                                         | December 12, 2022 |
| MI Lecture Note Vol.91 | Katsuki Fujisawa<br>Shizuo Kaji<br>Toru Ishihara<br>Masaaki Kondo<br>Yuji Shinano<br>Takuji Tanigawa<br>Naoko Nakayama | IMI Workshop of the Joint Usage Research Projects<br>Construction of Mathematical Basis for Realizing Data Rating Service<br>610pages | December 27, 2022 |
| MI Lecture Note Vol.92 | 丹田 聰<br>三宮 俊<br>廣島 文生                                                                                                  | 2022年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>時間・量子測定・準古典近似の理論と実験<br>～古典論と量子論の境界～ 150pages                                            | Janualy 6, 2023   |
| MI Lecture Note Vol.93 | Philip Broadbridge<br>Luke Bennetts<br>Melanie Roberts<br>Kenji Kajiwara                                               | Proceedings of Forum “Math-for-Industry” 2022<br>-Mathematics of Public Health and Sustainability- 170pages                           | June 19, 2023     |
| MI Lecture Note Vol.94 | 國廣 昇<br>池松 泰彦<br>伊豆 哲也<br>穴田 啓晃<br>縫田 光司                                                                               | 2023年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>現代暗号に対する安全性解析・攻撃の数理 260pages                                                            | Janualy 11, 2024  |
| MI Lecture Note Vol.96 | 澤田 茉伊                                                                                                                  | 2023年度採択分 九州大学マス・フォア・インダストリ研究所<br>共同利用研究集会<br>デジタル化時代に求められる斜面防災の思考法 70pages                                                           | March 18, 2024    |

## シリーズ既刊

| Issue                   | Author／Editor                                                                                                                                                                                                                                          | Title                                                                                                                                                             | Published         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| MI Lecture Note Vol.97  | Shariffah Suhaila Syed Jamaludin<br>Zaiton Mat Isa<br>Nur Arina Bazilah Aziz<br>Taufiq Khairi Ahmad Khairuddin<br>Shaymaa M.H.Darwish<br>Ahmad Razin Zainal Abidin<br>Norhaiza Ahmad<br>Zainal Abdul Aziz<br>Hang See Pheng<br>Mohd Ali Khameini Ahmad | International Project Research-Workshop (I)<br>Proceedings of 4 <sup>th</sup> Malaysia Mathematics in Industry Study Group<br>(MMISG2023) 172pages                | March 28, 2024    |
| MI Lecture Note Vol.98  | 中澤 嵩                                                                                                                                                                                                                                                   | 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共 同利用研究集会<br>自動車性能の飛躍的向上を目指す Data-Driven 設計 92pages                                                                               | January 30, 2025  |
| MI Lecture Note Vol.99  | Jacques Garrigue                                                                                                                                                                                                                                       | 2024 年度採択分 九州大学マス・フォア・インダストリ研究所 共 同利用研究集会<br>コンピュータによる定理証明支援とその応用 308pages                                                                                        | March 17, 2025    |
| MI Lecture Note Vol.100 | Yutaka Jitsumatsu<br>Masayoshi Ohashi<br>Akio Hasegawa<br>Katsutoshi Shinohara<br>Shintaro Mori                                                                                                                                                        | IMI Workshop of the Joint Usage Research Projects<br>Mathematics for Innovation in Information and Communication<br>Technology<br>274pages                        | March 19, 2025    |
| MI Lecture Note Vol.101 | Makoto Ohsaki<br>Yoshiki Jikumaru                                                                                                                                                                                                                      | IMI Workshop of the Joint Usage Research Projects<br>Evolving Design and Discrete Differential Geometry:towards<br>Mathematics Aided Geometric Design<br>528pages | October 1st, 2025 |
| MI Lecture Note Vol.102 | Keunsu Kim                                                                                                                                                                                                                                             | Young Researchers and Students-Workshop (I)<br>Topological Data Analysis and Industrial Mathematics<br>198 pages                                                  | December 22, 2025 |
| MI Lecture Note Vol.103 | Kulbir Ghuman<br>Pierluigi Cesana,<br>Kenji Kajiwara,<br>Yu Kaneko<br>Linh Thi Hoai Nguyen<br>Daniel Packwood,<br>Yasser Salah Eddine<br>Bouchareb                                                                                                     | International Project Research-Workshop (I)<br>Advancing Materials Data, Design and Discovery<br>102 pages                                                        | December 26, 2025 |
| MI Lecture Note Vol.104 | Soon-Sun Kwon<br>Minjung Gim<br>Jae-Hun Jung                                                                                                                                                                                                           | International Project Research-Workshop (I)<br>orum “Math for Industry” 2025<br>- Challenge of Mathematics for Industry in the AI era –<br>444pages               | January 5, 2026   |





九州大学マス・フォア・インダストリ研究所  
九州大学大学院 数理学府

〒819-0395 福岡市西区元岡744 TEL 092-802-4402 FAX 092-802-4405  
URL <https://www.imi.kyushu-u.ac.jp/>