
カードベースガーブルド回路の
カード枚数削減手法とその応用

戸澤一成（東京大学）

産学連携と数理・暗号分野連携によるカードベース暗号の深化と新境地Ⅱ 28 May, 2025

この発表について
発表の内容

2

本発表の内容は、以下の国際会議および論文誌にて発表された研究成果に基づいています：

• 国際会議 UCNC 2023

K. Tozawa, H. Morita, and T. Mizuki. “Single-shuffle card-based protocol with eight cards per gate”

• 論文誌 Natural Computing, Vol. 24

K. Tozawa, H. Morita, and T. Mizuki. “Single-shuffle card-based protocol with eight cards per gate and

its applications”

結果 (UCNC ’23)
Efficient Card-based Protocol for Any Boolean Function

3

 をブール関数， を入力数 , ゲート数 , 出力数 の論理回路で を計算するものとする．

任意のブール関数 を秘匿計算する効率の良いカードベースプロトコルを構成した．

• プロトコル中の shuffle の回数は合計で 回．（時間計算量）

• プロトコル実行に必要なカードの枚数は合計で ．（空間計算量）

• 同様の機能を実現している single-shuffle プロトコル [SN21]と比較して，追加カードの枚数を に削減している．
(枚から 枚)

f C n g m f
f

1

2n + 8g
1
32n + 24g 2n + 8g

7

？

7

？

7

？

7

？

7

？
x1

7

？

7

？
x2

⋯

7

？

7

？
xn

⋯

所定の追加カード

7

？

7

？

f1(x)

⋯

7

？

7

？

f2(x)

7

？

7

？

fm(x)所定の手続き

8g shuffle1

[SN21] K. Shinagawa and K. Nuida. A single shuffle is enough for secure card-based computation of any boolean circuit.
 Discrete Applied Mathematics, 289:248‒261, 2021.

•カードベース暗号: カードを用いて暗号プロトコルを実現する手法

•コンピュータを使用する必要がなく、カードを準備するだけで容易に実行可能

•操作が非常に簡潔であり、正当性や安全性を直感的に理解しやすい

•秘密計算: 入力値を秘匿したまま、所望の関数を安全に計算するための暗号プロトコル

•入力: 秘密の値 の暗号文
出力: 所望の値 の暗号文

•暗号化された値のみを用いて計算を行うため、秘密の値が漏洩しない

x1, …, xn [x1], …, [xn]
f(x1, …, xn) [f(x1, …, xn)]

背景
Card-based Cryptography for Any Boolean Function

Protocol for
computing f

The parties learn nothing

about and x f(x)

encryption of
secret values x

encryption of
f(x)

4

設定

5

Standard Encoding for Card-based Cryptography
•裏面から区別できない２種類のカードを利用する

•同じ種類のカードは区別できない (上下の反転は区別できない)

•各カードのデッキ中の位置は公開

•ブール値は２枚のカード列で表現される (standard encoding):

•値 を表現するカード列が裏になっているとき のコミットメントとよぶ

•値 のコミットメントに対し， (= NOT) のコミットメントは左右のカードをスワップすることで得られる

x x

x x x

0 ⟼ 1 ⟼

7

？

7

？

7

？
x

7

？

7

？
x

LR

裏面

•入力および出力はコミットメントで与えられる (コミット型プロトコル)

•プロトコルは以下の操作から構成される：

• (Perm,): カード列 を順列 に従って並び替える

• (Shuffle,): カード列 を置換群 から一様ランダムに選んだ順列 で並び替える

• (Open,): カード列 の各 番目のカードを反転する

• (Output,): カード列 の 番目のカードを出力する

•プロトコルは次の性質を満たすものとする：

•正当性: プロトコルの出力が有限回の操作によって得られ，所望の値 のコミットメントになっている

• (Semi-honest) 安全性: プロトコルの実行中に得られる情報から，入出力 の情報が漏れない

σ D σ ∈ SN

G D G σ ∈ G
S D si ∈ S
S D si ∈ S

f(x)
x, f(x)

設定

6

コミット型プロトコル

7

？

7

？

7

？

7

？

7

？
x1

7

？

7

？
x2

⋯

7

？

7

？
xn

⋯

追加カード

7

？

7

？

f1(x)

⋯

7

？

7

？

f2(x)

7

？

7

？

fm(x)処理

• Card-based Garbled Circuit [SN21] のカード枚数を削減する

• Garbled Circuit: 暗号学的ハッシュ関数を用いた秘密計算方式 [Yao86]

• [SN21] はカードベース暗号を用いて Garbled Circuit を実現している
• Point-and-Permute technique [BMR90] は Garbled circuit の効率化手法の一種．

• Point-and-Permute technique のカードベース暗号での類似を提案し [SN21] を効率化したい

[Yao86] A. C. Yao. How to generate and exchange secrets. In 27th IEEE FOCS, 162‒167, 1986.
[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In 22nd ACM STOC, 503‒513, 1990.

手法
Main Idea: Card-based Variant of Point-and-Permute Technique

7

Garbled Circuit カードベース暗号

Yao’s Garbled Circuit
[Yao86]

Card-based Garbled
Circuit [SN21]

Point-and-Permute
Technique [BMR90] Ours

• 暗号学的ハッシュ関数を用いた秘密計算方式 [Yao86]
• Garbler と Evaluator によるマルチパーティ計算

• 任意の論理回路を計算可能

• 計算に必要な通信回数は 回

• 通信量（データサイズ）は回路サイズに比例して増加

• 以下の２つの手続きから構成される：

• Garbling Phase:

論理回路 を暗号化して得られた Garbled circuit を Evaluator に送る

入力ブール値 に対応するキー を協調的に計算し Evaluator に出力

• Evaluation Phase:

Evaluator は garbled circuit と入力のキー から所望の出力 のキーを計算

パーティ間通信を行い最終的な出力を得る

O(1)

C C̃

x1, …, xn x̃1, …, x̃n

C̃ x̃1, …, x̃n f(x)

Garbled Circuit
Yao’s Garbled Circuit [Yao86] の概要

8

C̃, x̃, ỹ

Garbling

Evaluation

C, x y

˜f(x, y)

comm.

f(x, y)f(x, y)

• Garbling Phase: 回路 をエンコードして garbled circuit を計算
 回路中の各ワイヤ に対し，ブール値 に対応するランダム値のキー を選ぶ
各ゲートの真理値表をハッシュ関数 を用いてエンコードする

• Evaluation Phase: 入力キー と garbled circuit を受け取り出力ワイヤの値 を計算

各ワイヤにおいて，Evaluator はキーの一方のみを知ることができる．
各ゲートにおいて，手持ちの２つのキーを用いて真理値表の４つの値をデコードし，成功したもの一つを出
力ワイヤのキーとする．

C C̃
w 0,1 kw

0 , kw
1

H

kw1
x1

, …, kwn
xn

C̃ kwout
f(x)

Garbled Circuit
Yao’s Garbled Circuit [Yao86] の構成

9

A B f
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

H(kA
0 , kB

0) ⊕ kC
f(0,0)

H(kA
0 , kB

1) ⊕ kC
f(0,1)

H(kA
1 , kB

0) ⊕ kC
f(1,0)

H(kA
1 , kB

1) ⊕ kC
f(1,1)

H(kA
a1

, kB
b1

) ⊕ kC
f(a1,b1)

H(kA
a2

, kB
b2

) ⊕ kC
f(a2,b2)

H(kA
a3

, kB
b3

) ⊕ kC
f(a3,b3)

H(kA
a4

, kB
b4

) ⊕ kC
f(a4,b4)truth table garbled table

random
permutationencryption

• Garbling Phase: 回路 をエンコードして garbled circuit を計算
回路中の各ワイヤ に対し，ブール値 に対応するランダム値のキー を選ぶ

ただし，最下位ビットは異なるものとする. (. 以下， と書く)

各ゲートの真理値表をハッシュ関数 を用いてエンコードする

• Evaluation Phase: 入力値 に対応するキー と garbled circuit を受け取り出力ワイヤの値 を計算

各ワイヤでは一方のキーが得られる．各ゲートでは，キーの最下位ビット を参照し特定した１つの値のみをデコードする.

C C̃
w 0,1 kw

0 , kw
1

kw
0 [0] ⊕ kw

0 [1] = 1 sw := kw
0 [0]

H

x1, …, xn kw1
x1

, …, kwn
xn

C̃ kwout
f(x)

bA, bB

Garbled Circuit
Point-and-Permute Technique の概要

10

A B f
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

H(kA
0 , kB

0) ⊕ kC
f(0,0)

H(kA
0 , kB

1) ⊕ kC
f(0,1)

H(kA
1 , kB

0) ⊕ kC
f(1,0)

H(kA
1 , kB

1) ⊕ kC
f(1,1)

H(kA
sA

, kB
sB

) ⊕ kC
f(sA,sB)

H(kA
sA

, kB
sB

) ⊕ kC
f(sA,sB)

H(kA
sA

, kB
sB

) ⊕ kC
f(sA,sB)

H(kA
sA

, kB
sB

) ⊕ kC
f(sA,sB)

XOR permutation
according to sA, sB

encryption

 のとき,

 のとき,

 のとき,

 のとき,

(sA, sB) = (0,0) (1 2 3 4
1 2 3 4)

(sA, sB) = (0,1) (1 2 3 4
2 1 4 3)

(sA, sB) = (1,0) (1 2 3 4
3 4 1 2)

(sA, sB) = (1,1) (1 2 3 4
4 3 2 1)

 のとき, 1st value

 のとき, 2nd value

 のとき, 3rd value

 のとき, 4th value

(bA, bB) = (0,0)

(bA, bB) = (0,1)

(bA, bB) = (1,0)

(bA, bB) = (1,1)

, なので, デコードするセルは であり， を出力xA = bA ⊕ sA xB = bB ⊕ sB H(kA
xA

, kB
xB

) ⊕ kC
f(xA,xB) kC

f(xA,xB)

Card-based Garbled Circuit
概要

11

• カードベース暗号を用いたガーブルド回路の実装 [SN21]

• 任意の論理回路を計算可能
• 計算に必要なシャッフル回数は1回
• カード枚数は回路サイズに比例して増加

• 以下の３つの手続きから構成される：
• Initialization:
計算したい回路と入力値をカードを用いた表現にエンコードする

• Garbling:
Shuffle 操作を行うことで回路の意味を保ったままランダマイズする

• Evaluation:
Open 操作を行い Garbled Circuit の一部を公開することで所望の結果

を計算する

Single-shuffle card-based… 135

Fig. 2 Data flow diagram for garbling scheme

Figure 3 illustrates the data flow in the card-based garbling
scheme. The security properties of a protocol in the card-
based garbling scheme are described as follows:

• Correctness: If Y is the output of a protocol execution
CardEval(CardGb(Init(x, f))), then Y is the commit-
ment of f (x). This ensures that the protocol output
matches the evaluation of the function on the input.

• Privacy: Let IM be a random variable of the initial
state with a distribution M. Let viewM be a random
variable of the visible information obtained during a
protocol executionofCardEval(CardGb(IM)), including
the positions and suits of the cards revealed by the Open
operations. A protocol is called private if, for any distri-
bution M, IM is independent of viewM. This ensures
that a protocol execution does not reveal any information
on x .

3 Main protocol

In this section, we propose an efficient protocol for card-
based garbled circuits. The main idea of our scheme is to use
an elaborate shuffling technique for randomization.We show
that the XOR shuffle technique for the secret-sharing-based
schemeof (Attrapadung et al. 2021) is also applicable to card-
based cryptography. As a result, the XOR shuffle provides
an analog of the point-and-permute technique in the field of

Fig. 3 Data flow diagram for card-based garbling scheme

garbled circuits, reducing the number of cards required to
represent the circuit.

3.1 Example: a circuit with one gate

To grasp the intuition of our idea, let us consider the simplest
case with a single binary logic gate. In this case, the Boolean
circuit is described as (2, 1, 1, {1, 2, 3}, {3 !→ 1}, {3 !→
2}, f), where f is the functionality of the logic gate. The
procedure consists of three phases: initialization, garbling,
and evaluation. Each phase corresponds to the functionali-
ties Init, CardGb, and CardEval, respectively.

3.1.1 Initialization

The initialization phase aims to set up a deck of face-down
cards representing both input values and the circuit. Let x1
and x2 be distinct inputs, and f be the binary Boolean func-
tion we want to evaluate at the gate. Given the commitments

123

ゲートごとに追加カード24枚

Card-based Garbled Circuit
Card-based Garbled Circuit [SN21] の概要

12

7

？

7

？

0

7

？

7

？

0

7

？

7

？

f(0,0)

7

？

7

？

0

7

？

7

？

1

7

？

7

？

f(0,1)

7

？

7

？

1

7

？

7

？

0

7

？

7

？

f(1,0)

7

？

7

？

1

7

？

7

？

1

7

？

7

？

f(1,1)

x0 x1 f
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1)

• Initialization: 回路 をカード列の表現にエンコードする
回路中の各ゲートについて，真理値表の全てのセルに対応するコミットメントを順番に並べる

C

encryption

Card-based Garbled Circuit
Card-based Garbled Circuit [SN21] の概要

13

7

？

7

？
a1

7

？

7

？

b1

7

？

7

？

f(a1, b1)

7

？

7

？
a2

7

？

7

？

b2

7

？

7

？

f(a2, b2)

7

？

7

？
a3

7

？

7

？

b3

7

？

7

？

f(a3, b3)

7

？

7

？
a4

7

？

7

？

b4

7

？

7

？

f(a4, b4)

7

？

7

？
x1

7

？

7

？
x2

7

？

7

？
a1 ⊕ r1

7

？

7

？

b1

7

？

7

？

f(a1, b1)

7

？

7

？
a2 ⊕ r1

7

？

7

？

b2

7

？

7

？

f(a2, b2)

7

？

7

？
a3 ⊕ r1

7

？

7

？

b3

7

？

7

？

f(a3, b3)

7

？

7

？
a4 ⊕ r1

7

？

7

？

b4

7

？

7

？

f(a4, b4)

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2

7

？

7

？
a1 ⊕ r1

7

？

7

？

b1 ⊕ r2

7

？

7

？

f(a1, b1)

7

？

7

？
a2 ⊕ r1

7

？

7

？

b2 ⊕ r2

7

？

7

？

f(a2, b2)

7

？

7

？
a3 ⊕ r1

7

？

7

？

b3 ⊕ r2

7

？

7

？

f(a3, b3)

7

？

7

？
a4 ⊕ r1

7

？

7

？

b4 ⊕ r2

7

？

7

？

f(a4, b4)

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2 ⊕ r2

• Garbling: 入力値 と回路 のコミットメントをシャッフルし，Garbled circuit を計算

各ゲートと各ワイヤに対し, pile-scramble shuffle を一度ずつ行う.

x1, …, xn C C̃

7

？

7

？

0

7

？

7

？

0

7

？

7

？

f(0,0)

7

？

7

？

0

7

？

7

？

1

7

？

7

？

f(0,1)

7

？

7

？

1

7

？

7

？

0

7

？

7

？

f(1,0)

7

？

7

？

1

7

？

7

？

1

7

？

7

？

f(1,1)

7

？

7

？
x1

7

？

7

？
x2

random
permutation

Card-based Garbled Circuit
Card-based Garbled Circuit [SN21] の概要

14

7

？

7

？
a1 ⊕ r1

7

？

7

？

b1 ⊕ r2

7

？

7

？

f(a1, b1)

7

？

7

？
a2 ⊕ r1

7

？

7

？

b2 ⊕ r2

7

？

7

？

f(a2, b2)

7

？

7

？
a3 ⊕ r1

7

？

7

？

b3 ⊕ r2

7

？

7

？

f(a3, b3)

7

？

7

？
a4 ⊕ r1

7

？

7

？

b4 ⊕ r2

7

？

7

？

f(a4, b4)

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2 ⊕ r2

7

？

7

？

f(a1, b1)

7

？

7

？

f(a2, b2)

7

？

7

？

f(a3, b3)

7

？

7

？

f(a4, b4)

• Evaluation: garbled circuit の一部を Open し，所望のコミットメントを得る
各ゲートにおいて, 入力値と真理値表の入力列を Open する．入力と一致する行のコミットメントをゲートの出力と
する．

x1 ⊕ r1 = ai ⊕ r1

x2 ⊕ r2 = bi ⊕ r2

f(ai, bi) = f(x1, x2)

• Initialization:
真理値表の演算結果のコミットメントのみを並べたカード列を各ゲートのエンコードとする

　回路中のすべてのゲートのエンコードを順番に並べたカード列を回路のエンコードとする

提案手法
メインアイデア: Point-and-Permute Technique in Card-based Garbled Circuit

15

7

？

7

？

f(0,0)

7

？

7

？

f(0,1)

7

？

7

？

f(1,0)

7

？

7

？

f(1,1)

x0 x1 f
0 0 f(0,0)
0 1 f(0,1)
1 0 f(1,0)
1 1 f(1,1) encryption

8 K. Tozawa et al.

For simplicity, we define the offset a : Wires ! {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

(
2i� 1 i 2 Inputs

8i� 6n� 7 i 2 Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that

4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

this example is the same as the Appendix example in [SN21]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
| {z }
x1

3

?
4

?
| {z }
x2

5

?
6

?
| {z }
x3

7

?
8

?
| {z }

0

9

?
10

?
| {z }

0

11

?
12

?
| {z }

0

13

?
14

?
| {z }

1

15

?
16

?
| {z }

0

17

?
18

?
| {z }

1

19

?
20

?
| {z }

1

21

?
22

?
| {z }

0

23

?
24

?
| {z }

0

25

?
26

?
| {z }

1

27

?
28

?
| {z }

1

29

?
30

?
| {z }

1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g � m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i 2 Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ✓ {1, . . . , 2n + 8g} for i 2 Wires \
Outputs as follows:

P (i,1) = I(i,1) k (kj2A�1
i
L(j,1)) k (kj2B�1

i
R(j,1))

P (i,2) = I(i,2) k (kj2A�1
i
L(j,2)) k (kj2B�1

i
R(j,2))

AND
XOR

OR

encryption
7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

gate 4

gate 6

gate 5

ゲートごとに追加カード8枚

• Garbling: 入力値 と回路 のコミットメントをシャッフルし，Garbled circuit を計算

各ワイヤに割り当てられる値の候補と直後のゲートのカード列に対し, pile-scramble shuffle を一度ずつ行う.

x1, …, xn C C̃

提案手法
メインアイデア: Point-and-Permute Technique in Card-based Garbled Circuit

16

7

？

7

？
x1

7

？

7

？
x2

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2

7

？

7

？
f(0,0)

7

？

7

？
f(0,1)

7

？

7

？
f(1,0)

7

？

7

？
f(1,1)

7

？

7

？
f(r1,0)

7

？

7

？
f(r1,1)

7

？

7

？
f(r1,0)

7

？

7

？
f(r1,1)

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2 ⊕ r2

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

pile-scramble
shuffle

全体で XOR shuffle になっている

pile-scramble
shuffle

• Evaluation: garbled circuit の一部を Open し，所望のコミットメントを計算
各ゲートにおいて, Open された入力値に対応する位置のコミットメントをゲートの出力とする．

提案手法
メインアイデア: Point-and-Permute Technique in Card-based Garbled Circuit

17

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2 ⊕ r2

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

Open

安全性
値 は一様ランダムなので,

公開される値は情報を漏らさない
r1, r2

正当性
2度の pile-scramble shuffle は
XOR shuffle になっているため

 のコミットメントを出力f(x1, x2)
7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

7

？

7

？
f(r1, r2)

0 1

 のとき, 1st value

 のとき, 2nd value

 のとき, 3rd value

 のとき, 4th value

(bA, bB) = (0,0)

(bA, bB) = (0,1)

(bA, bB) = (1,0)

(bA, bB) = (1,1)

回路の計算例

18

8 K. Tozawa et al.

For simplicity, we define the offset a : Wires ! {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

(
2i� 1 i 2 Inputs

8i� 6n� 7 i 2 Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that

4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

this example is the same as the Appendix example in [SN21]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
| {z }
x1

3

?
4

?
| {z }
x2

5

?
6

?
| {z }
x3

7

?
8

?
| {z }

0

9

?
10

?
| {z }

0

11

?
12

?
| {z }

0

13

?
14

?
| {z }

1

15

?
16

?
| {z }

0

17

?
18

?
| {z }

1

19

?
20

?
| {z }

1

21

?
22

?
| {z }

0

23

?
24

?
| {z }

0

25

?
26

?
| {z }

1

27

?
28

?
| {z }

1

29

?
30

?
| {z }

1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g � m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i 2 Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ✓ {1, . . . , 2n + 8g} for i 2 Wires \
Outputs as follows:

P (i,1) = I(i,1) k (kj2A�1
i
L(j,1)) k (kj2B�1

i
R(j,1))

P (i,2) = I(i,2) k (kj2A�1
i
L(j,2)) k (kj2B�1

i
R(j,2))

AND
XOR

OR

7

？

7

？
0

7

？

7

？
0

7

？

7

？
0

7

？

7

？
1

7

？

7

？
0

7

？

7

？
1

7

？

7

？
1

7

？

7

？
0

7

？

7

？
0

7

？

7

？
1

7

？

7

？
1

7

？

7

？
1

7

？

7

？
x1

7

？

7

？
x2

7

？

7

？
x3

Initial state

shuffle for wire 1

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

shuffle for wire 2

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

0 r1 0 r1 0 1 1 0 0 1 1 1x1 ⊕ r1 x2 x3

r1 ∧ r2 r1 ∧ r2 r1 ∧ r2 r1 ∧ r2 0 1 1 0 0 1 1 1x1 ⊕ r1 x2 ⊕ r2 x3

Garbling Phase

計算例

19

8 K. Tozawa et al.

For simplicity, we define the offset a : Wires ! {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

(
2i� 1 i 2 Inputs

8i� 6n� 7 i 2 Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that

4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

this example is the same as the Appendix example in [SN21]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
| {z }
x1

3

?
4

?
| {z }
x2

5

?
6

?
| {z }
x3

7

?
8

?
| {z }

0

9

?
10

?
| {z }

0

11

?
12

?
| {z }

0

13

?
14

?
| {z }

1

15

?
16

?
| {z }

0

17

?
18

?
| {z }

1

19

?
20

?
| {z }

1

21

?
22

?
| {z }

0

23

?
24

?
| {z }

0

25

?
26

?
| {z }

1

27

?
28

?
| {z }

1

29

?
30

?
| {z }

1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g � m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i 2 Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ✓ {1, . . . , 2n + 8g} for i 2 Wires \
Outputs as follows:

P (i,1) = I(i,1) k (kj2A�1
i
L(j,1)) k (kj2B�1

i
R(j,1))

P (i,2) = I(i,2) k (kj2A�1
i
L(j,2)) k (kj2B�1

i
R(j,2))

AND
XOR

OR

shuffle for wire 4

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

shuffle for wire 3

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
r1 ∧ r2 r1 ∧ r2 r1 ∧ r2 r1 ∧ r2 r3 r3 r3 r3 0 1 1 1x1 ⊕ r1 x2 ⊕ r2 x3 ⊕ r3

r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r3 ⊕ r4 r3 ⊕ r4 r3 ⊕ r4 r3 ⊕ r4
r4 1 r4 1x1 ⊕ r1 x2 ⊕ r2 x3 ⊕ r3

shuffle for wire 5

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r1 ∧ r2 ⊕ r4 r3 ⊕ r4 ⊕ r5r3 ⊕ r4 ⊕ r5 r3 ⊕ r4 ⊕ r5 r3 ⊕ r4 ⊕ r5 r4 ∨ r5 r4 ∨ r5 r4 ∨ r5 r4 ∨ r5x1 ⊕ r1 x2 ⊕ r2 x3 ⊕ r3

Garbling Phase

計算例

20

8 K. Tozawa et al.

For simplicity, we define the offset a : Wires ! {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

(
2i� 1 i 2 Inputs

8i� 6n� 7 i 2 Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that

4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

this example is the same as the Appendix example in [SN21]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
| {z }
x1

3

?
4

?
| {z }
x2

5

?
6

?
| {z }
x3

7

?
8

?
| {z }

0

9

?
10

?
| {z }

0

11

?
12

?
| {z }

0

13

?
14

?
| {z }

1

15

?
16

?
| {z }

0

17

?
18

?
| {z }

1

19

?
20

?
| {z }

1

21

?
22

?
| {z }

0

23

?
24

?
| {z }

0

25

?
26

?
| {z }

1

27

?
28

?
| {z }

1

29

?
30

?
| {z }

1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g � m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i 2 Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ✓ {1, . . . , 2n + 8g} for i 2 Wires \
Outputs as follows:

P (i,1) = I(i,1) k (kj2A�1
i
L(j,1)) k (kj2B�1

i
R(j,1))

P (i,2) = I(i,2) k (kj2A�1
i
L(j,2)) k (kj2B�1

i
R(j,2))

AND
XOR

OR

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
1 0

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
00

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
0 1

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

Evaluation Phase

Open the commitment of input wires

Evaluate each gate

Output

計算例

21

8 K. Tozawa et al.

For simplicity, we define the offset a : Wires ! {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

(
2i� 1 i 2 Inputs

8i� 6n� 7 i 2 Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that

4
1

2

5
3

6
4

5

Fig. 2: Boolean Circuit f

this example is the same as the Appendix example in [SN21]. Formally, the
circuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
| {z }
x1

3

?
4

?
| {z }
x2

5

?
6

?
| {z }
x3

7

?
8

?
| {z }

0

9

?
10

?
| {z }

0

11

?
12

?
| {z }

0

13

?
14

?
| {z }

1

15

?
16

?
| {z }

0

17

?
18

?
| {z }

1

19

?
20

?
| {z }

1

21

?
22

?
| {z }

0

23

?
24

?
| {z }

0

25

?
26

?
| {z }

1

27

?
28

?
| {z }

1

29

?
30

?
| {z }

1

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g � m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i 2 Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ✓ {1, . . . , 2n + 8g} for i 2 Wires \
Outputs as follows:

P (i,1) = I(i,1) k (kj2A�1
i
L(j,1)) k (kj2B�1

i
R(j,1))

P (i,2) = I(i,2) k (kj2A�1
i
L(j,2)) k (kj2B�1

i
R(j,2))

AND
XOR

OR

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

検算

r4 ∨ r5r3 ⊕ r4 ⊕ r5r1 ∧ r2 ⊕ r4x1 ⊕ r1 x2 ⊕ r2 x3 ⊕ r3

1 = x1 ⊕ r1 0 = x2 ⊕ r2 0 = x3 ⊕ r3 0 = r1 ∧ r2 ⊕ r4 1 = r3 ⊕ r4 ⊕ r5

r4 ∨ r5 = r4 ∨ (r3 ⊕ r4) = (r1 ∧ r2) ∨ (r3 ⊕ r1 ∧ r2) = (x1 ∧ x2) ∨ (x3 ⊕ x1 ∧ x2) = f(x1, x2, x3)

各 pile-scramble shuffle の定義より以下が成り立つ：

従って,

提案手法
Pile-scramble Shuffle が一回の Shuffle 操作にまとめられること

22

7

？

7

？

f(0,0)

7

？

7

？

f(0,1)

7

？

7

？

f(1,0)

7

？

7

？

f(1,1)

• 回の pile-scramble shuffle は，ある置換群 を用いて一回の shuffle 操作 (shuffle,) で表現できる.

ワイヤ i の pile-scramble shuffle が置換群 に対応するとき, 置換群 を以下で定義：

• が群になっていることの証明の概略．

すべての順列対 , に対し, であることを示せばよい．

これは各ゲートに作用する 3 回の pile-scramble shuffle が（定義より）可換であることから従う．

n + g − m Gf Gf

Gi Gf

Gf

gi ∈ Gi gj ∈ Gj gigj = gjgi

10 K. Tozawa et al.

and R, by the distinct random elements rj , rAj , and rBj . The key fact here is
that, by definition, these group actions are all commutative. This is because they
form the group S2⇥S2⇥S2 and its natural action on 8 points. Accordingly, the
players can apply the pile-scramble shuffles in any order.

From the above observation, we can define a variant of the CardGb protocol
that only requires a single shuffle. Let Gi be the permutation group determined
by P (i,1) and P (i,2), and let Gf := {g1g2 · · · gn+g�m 2 S2n+8g | gj 2 Gj}. Note
that Gf is also a permutation group, since any two of Gj are commutative. Thus,
we can combine the n+ g �m pile-scramble shuffles into one shuffle as follows.

Protocol 3. CardGb (with a single shuffle)

Input: I, where I is an initial state.
Output: (F , X), where F and X are decks with 8g and 2n face-down cards,

respectively.

1. Compute (Shuffle, Gf).
2. Parse the resulting deck as X k F and output it.

Example. Consider the garbling phase of the example given by Fig. 2. In this
case, n+ g �m = 5, so the garbling phase contains 5 consecutive pile-scramble
shuffles. Since wire 1 is the first input of gate 4, the first pile-scramble shuffle is
described as (PileShuffle, {1, 7, 8, 9, 10}, {2, 11, 12, 13, 14}):

1

?
�

2

?
•

3

?
4

?
5

?
6

?
7

?
�

8

?
�

9

?
�

10

?
�

11

?
•

12

?
•

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Similarly, wires 2 and 3 respectively determine the second pile-scramble shuffle
(PileShuffle, {3, 7, 8, 11, 12}, {4, 9, 10, 13, 14}) and the third pile-scramble shuffle
(PileShuffle, {5, 15, 16, 17, 18}, {6, 19, 20, 21, 22}):

1

?
2

?
3

?
�

4

?
•

5

?
6

?
7

?
�

8

?
�

9

?
•

10

?
•

11

?
�

12

?
�

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

1

?
2

?
3

?
4

?
5

?
�

6

?
•

7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
�

16

?
�

17

?
�

18

?
�

19

?
•

20

?
•

21

?
•

22

?
•

23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Next, consider the pile-scramble shuffle given by wire 4. This wire comes out
of gate 4 and goes into the second input of gate 5 and the first input of gate
6. Accordingly, all the cards corresponding to gates 4, 5, and 6 are shuffled in
a way that preserves the circuit semantics. Such a shuffle is given as the pile-
scramble shuffle (PileShuffle,P (4,1),P (4,2)), where P (4,1) = I(4,1) kR(5,1) kL(6,1)

and P (4,2) = I(4,2) kR(5,2) kL(6,2):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
�

8

?
•

9

?
�

10

?
•

11

?
�

12

?
•

13

?
�

14

?
•

15

?
�

16

?
�

17

?
•

18

?
•

19

?
�

20

?
�

21

?
•

22

?
•

23

?
�

24

?
�

25

?
�

26

?
�

27

?
•

28

?
•

29

?
•

30

?
•

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
Pile-scramble shuffle
for the first input

Pile-scramble shuffle
for the second input

Pile-scramble shuffle
for an output wire

結果 (UCNC ’23)
Efficient Card-based Protocol for Any Boolean Function

23

 をブール関数， を入力数 , ゲート数 , 出力数 の論理回路で を計算するものとする．

任意のブール関数 を秘匿計算する効率の良いカードベースプロトコルを構成した．

• プロトコル中の shuffle の回数は合計で 回にできる．（時間計算量）

• プロトコル実行に必要なカードの枚数は合計で ．（空間計算量）

• 同様の機能を実現している single-shuffle プロトコル [SN21]と比較して，追加カードの枚数を に削減している．
(枚から 枚)

f C n g m f
f

1

2n + 8g
1
32n + 24g 2n + 8g

7

？

7

？

7

？

7

？

7

？
x1

7

？

7

？
x2

⋯

7

？

7

？
xn

⋯

所定の追加カード

7

？

7

？

f1(x)

⋯

7

？

7

？

f2(x)

7

？

7

？

fm(x)所定の手続き

8g shuffle1

[SN21] K. Shinagawa and K. Nuida. A single shuffle is enough for secure card-based computation of any boolean circuit.
 Discrete Applied Mathematics, 289:248‒261, 2021.

カードベースガーブルド回路の発展
比較

24

カードベース
ガーブルド回路 ゲート種類 AND XOR シャッフル Batching

[SN21] 非公開 24 24 一様閉 ✔

Point-and-permute
[Ours @UCNC23] 非公開 8 8 一様閉

Free-XOR [MS23] 公開 8 0 一様閉

Single-card encoding
[OSNWI24] 公開 6 6 一様

[OSNWI24] T. Ono, K. Shinagawa, T. Nakai, Y. Watanabe and M. Iwamoto. A single shuffle is enough for secure card-
based computation of any boolean circuit. ICISC 2023.

[MS23] Y. Manabe and K. Shinagawa. Free-XOR in Card-Based Garbled Circuits. CANS 2023.

結果 (Natural Computing ’25)
カードベースガーブルド回路の拡張

25

UCNC’23 で提案したカードベースガーブルド回路に対し，以下の２つの自然な拡張を行った

(1)多入力ゲートへの対応

２入力ゲートだけでなく，任意の入力個数のゲートに対応する汎用的構成を与えた

 入力ゲートは 枚のカードで実現可能

(2)算術ゲートへの対応

論理ゲートだけでなく，加算ゲートなどの算術演算に対応

Free-XOR 手法を一般化することで Free-AND が可能であることを示した

• 応用：対称ブール関数を計算するカードベースプロトコル

k 2k+1

 shuffle1

7

？

7

？

7

？

7

？

7

？
x1

7

？

7

？
x2

⋯

7

？

7

？
xn

⋯

追加カード

7

？

7

？

g(
n

∑
j=1

xj)
Processed

2n2 + 6n + 2 cards

• Initialization: 回路 をエンコードする. 各ゲートに対応する真理値表の演算結果のコミットメントのみを並べる．C

カードベースガーブルド回路の拡張
(1)多入力ゲートのサポート

26

x0 x1 x2 f
0 0 0 f(0,0,0)
0 0 1 f(0,0,1)
0 1 0 f(0,1,0)
0 1 1 f(0,1,1)
1 0 0 f(1,0,0)
1 0 1 f(1,0,1)
1 1 0 f(1,1,0)
1 1 1 f(1,1,1)

encryption

7

？

7

？

f(0,0,0)

7

？

7

？

f(0,0,1)

7

？

7

？

f(0,1,0)

7

？

7

？

f(0,1,1)
7

？

7

？

f(1,0,0)

7

？

7

？

f(1,0,1)

7

？

7

？

f(1,1,0)

7

？

7

？

f(1,1,1)

 入力ゲートごとに追加カード 枚k 2k+1

• Garbling: 各ワイヤに対し pile-scramble shuffle を一回実行

カードベースガーブルド回路の拡張
(1)多入力ゲートのサポート

27

7

？

7

？

f(0,0,0)

7

？

7

？

f(0,0,1)

7

？

7

？

f(0,1,0)

7

？

7

？

f(0,1,1)

7

？

7

？

f(1,0,0)

7

？

7

？

f(1,0,1)

7

？

7

？

f(1,1,0)

7

？

7

？

f(1,1,1)

7

？

7

？
x1

7

？

7

？
x2

7

？

7

？
x3

7

？

7

？

f(r1,0,0)

7

？

7

？

f(r1,0,1)

7

？

7

？

f(r1,1,0)

7

？

7

？

f(r1,1,1)

7

？

7

？

f(r̄1,0,0)

7

？

7

？

f(r̄1,0,1)

7

？

7

？

f(r̄1,1,0)

7

？

7

？

f(r̄1,1,1)

7

？

7

？
x1 ⊕ r1

7

？

7

？
x2

7

？

7

？
x3

7

？

7

？

f(r1, r2,0)

7

？

7

？

f(r1, r2,1)

7

？

7

？
f(r1, r̄2,0)

7

？

7

？

f(r1, r̄2,1)

7

？

7

？

f(r̄1, r2,0)

7

？

7

？

f(r̄1, r2,1)

7

？

7

？

f(r̄1, r̄2,0)

7

？

7

？

f(r̄1, r̄2,1)

7

？

7

？
x1 ⊕ r1

7

？

7

？

x2 ⊕ r2

7

？

7

？
x3

7

？

7

？

f(r1, r2, r3)

7

？

7

？

f(r1, r2, r̄3)

7

？

7

？
f(r1, r̄2, r3)

7

？

7

？

f(r1, r̄2, r̄3)

7

？

7

？
x1 ⊕ r1

7

？

7

？

x2 ⊕ r2

7

？

7

？

x3 ⊕ r3

7

？

7

？

f(r̄1, r2, r3)

7

？

7

？

f(r̄1, r2, r̄3)

7

？

7

？

f(r̄1, r̄2, r3)

7

？

7

？

f(r̄1, r̄2, r̄3)

• Evaluation: garbled circuit の一部を Open し，所望のコミットメントを得る

カードベースガーブルド回路の拡張
(1)多入力ゲートのサポート

28

7

？

7

？

f(r1, r2, r3)

7

？

7

？

f(r1, r2, r̄3)

7

？

7

？
f(r1, r̄2, r3)

7

？

7

？

f(r1, r̄2, r̄3)

7

？

7

？

f(r̄1, r2, r3)

7

？

7

？

f(r̄1, r2, r̄3)

7

？

7

？

f(r̄1, r̄2, r3)

7

？

7

？

f(r̄1, r̄2, r̄3)

7

？

7

？

f(r1, r2, r3)

7

？

7

？

f(r1, r2, r̄3)

7

？

7

？
f(r1, r̄2, r3)

7

？

7

？

f(r1, r̄2, r̄3)

7

？

7

？
x1 ⊕ r1

7

？

7

？

x2 ⊕ r2 0

7

？

7

？

f(r̄1, r2, r3)

7

？

7

？

f(r̄1, r2, r̄3)

7

？

7

？

f(r̄1, r̄2, r3)

7

？

7

？

f(r̄1, r̄2, r̄3)

7

？

7

？

x3 ⊕ r3 0 1

Open

 のとき, 1st value

 のとき, 2nd value

 のとき, 3rd value

 のとき, 4th value

 のとき, 5th value

 のとき, 6th value

 のとき, 7th value

 のとき, 8th value

(bA, bB, bC) = (0,0,0)

(bA, bB, bC) = (0,0,1)

(bA, bB, bC) = (0,1,0)

(bA, bB, bC) = (0,1,1)

(bA, bB, bC) = (1,0,0)

(bA, bB, bC) = (1,0,1)

(bA, bB, bC) = (1,1,0)

(bA, bB, bC) = (1,1,1)

• 論理ゲート: 入力・出力がすべてブール値であるゲート

• 算術ゲート: 入力もしくは出力が数値であるゲート

カードベースガーブルド回路の拡張
(2)算術ゲートのサポート

29

x1 x2 f(x1,x2) : Int
0 0 3
0 1 0
1 0 0
1 1 2

x : Int f(x)
0 1
1 0
2 1

２ブール値入力・数値出力のゲート １数値入力・ブール値出力のゲート

x1 x2 AND(x1,x2)
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 XOR(x1,x2)
0 0 0
0 1 1
1 0 1
1 1 0

• position encoding: 数値 を 枚のカードで表現する.

• Initialization: 各ゲートに対応する真理値表の演算結果のコミットメントのみを用いる．

x ∈ ℤN N

カードベースガーブルド回路の拡張
(2)算術ゲートのサポート

30

x ⟼ ⋯ ⋯

x 番目

x0 x1 f(x0,x1)
0 0 3
0 1 0
1 0 0
1 1 2

x0 f(x0) : Bool
0 1
1 0
2 1

２ブール値入力・数値出力のゲート １数値入力・ブール値出力のゲート

3

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
0

0 2

0

2

7

？

7

？
1

7

？

7

？
0

7

？

7

？
1関数 を計算するゲートに対し，追加カード 枚f : ℤk

M → ℤN MkN

• Garbling: 各ワイヤについて pile-shifting shuffle を一回実行する

カードベースガーブルド回路の拡張
(2)算術ゲートのサポート

31

２ブール値入力・数値出力のゲート

１数値入力・ブール値出力のゲート

f(0,0)

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
f(0,1)

f(1,0) f(1,1)

0

2

x1

7

？

7

？

7

？

7

？
x2

f(r1, r2)

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
f(r1, r̄2)

f(r̄1, r2) f(r̄1, r̄2)

x1 ⊕ r1

7

？

7

？

7

？

7

？
x2 ⊕ r2

x

7

？

7

？

7

？

f(0)

7

？

7

？
f(1)

7

？

7

？
f(2)

7

？

7

？

x + r

7

？

7

？

7

？

f(0 − r)

7

？

7

？
f(1 − r)

7

？

7

？
f(2 − r)

7

？

7

？

• Evaluation: garbled circuit の一部を Open し，所望のコミットメントを得る

カードベースガーブルド回路の拡張
(2)算術ゲートのサポート

32

２ブール値入力・数値出力のゲート

１数値入力・ブール値出力のゲート

0

2

f(r1, r2)

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
f(r1, r̄2)

f(r̄1, r2) f(r̄1, r̄2)

x1 ⊕ r1

7

？

7

？

7

？

7

？
x2 ⊕ r2

x + r

7

？

7

？

7

？

f(0 − r)

7

？

7

？
f(1 − r)

7

？

7

？
f(2 − r)

7

？

7

？

f(r1, r2)

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
f(r1, r̄2)

f(r̄1, r2) f(r̄1, r̄2)

1 0

Open

Open

2

f(0 − r)

7

？

7

？
f(1 − r)

7

？

7

？
f(2 − r)

7

？

7

？

 のとき, 1st value

 のとき, 2nd value

 のとき, 3rd value

 のとき, 4th value

(bA, bB) = (0,0)

(bA, bB) = (0,1)

(bA, bB) = (1,0)

(bA, bB) = (1,1)

 のとき, 1st value
 のとき, 2nd value
 のとき, 3rd value

v = 0

v = 1

v = 2

応用：対称ブール関数評価プロトコル
構成の概要

33

• 対称ブール関数評価は右図の拡張回路で書ける

• conv はブール値を数値に変換するゲート

• ADD ゲートは Free-XOR 手法[MS23]を一般化することで追加カードなしで実現

• LUT はテーブル引きのゲート

146 K. Tozawa et al.

Fig. 5 Symmetric Boolean function f with 4 inputs

6 Conclusion

Shinagawa and Nuida (2021) showed a surprising result
that any Boolean function can be securely computed using
only one shuffle by combining card-based cryptography with
Yao’s garbled circuit technique. Their protocol requires 2n+
24g cards, where g is the number of gates and n is the number
of function inputs. This paper improved upon this existing
approach by introducing anXOR shuffle technique that helps
to reduce the number of required cards. Consequently, we
showed that, instead of having 2n+ 24g cards, only 2n+ 8g
cards are sufficient for constructing a single-shuffle protocol.
Furthermore, we introduce two extensions designed to sup-
port numerical encoding and multi-input gates at a primitive
level. These extensions are compatible with the free-ADD
technique, a new optimization technique that generalizes the
free-XOR technique (Manabe and Shinagawa 2023). Finally,
we demonstrate that any n-input symmetricBoolean function
can be securely evaluated, requiring 2n2 + 6n + 2 cards.

Author Contributions K.T. and H.M. designed the main conceptual
ideas and the proof outline. T.M designed the ideas for the applica-
tion. T.M. supervised the project. K.T. mainly wrote the manuscript
with support from H.M. and T.M. All authors discussed the results and
commented on the manuscript.

Funding Open Access funding provided by The University of Tokyo.
Thisworkwas supportedby JSPSKAKENHIGrantNumbers JP21H05052,
JP21K11881, JP23H00479, JP24K02938, and JST, CREST Grant
Number JPMJCR22M1, Japan. Thisworkwas also supported byDIGIT
Aarhus University Centre for Digitalisation, Big Data and Data Analyt-
ics, and Digital Research Centre Denmark (DIREC) under the Privacy
and Machine Learning project, Denmark.

Data Availibility No data associated in the manuscript.

Declarations

Conflict of interest The authors have no Conflict of interest to declare
that are relevant to the content of this article.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abe Y, Iwamoto M, Ohta K (2019) Efficient private PEZ protocols for
symmetric functions. In: Hofheinz D, Rosen A (eds) TCC 2019,
LNCS, vol 11891. Springer, Cham, pp 372–392, https://doi.org/
10.1007/978-3-030-36030-6_15

Attrapadung N, Hanaoka G, Matsuda T et al (2021) Oblivious linear
group actions and applications. In: VignaG, Shi E (eds) ACMCCS
2021. ACM Press, pp 630–650, https://doi.org/10.1145/3460120.
3484584

Balogh J, Csirik JA, Ishai Y et al (2003) Private computation using a
PEZ dispenser. Theor Comput Sci 306(1):69–84. https://doi.org/
10.1016/S0304-3975(03)00210-X

Beaver D, Micali S, Rogaway P (1990) The round complexity of secure
protocols (extended abstract). In: 22nd ACM STOC. ACM Press,
pp 503–513, https://doi.org/10.1145/100216.100287

Bellare M, Hoang VT, Rogaway P (2012) Foundations of garbled cir-
cuits. In: Yu T, Danezis G, Gligor VD (eds) ACMCCS 2012. ACM
Press, pp 784–796, https://doi.org/10.1145/2382196.2382279

Den Boer B (1990) More efficient match-making and satisfiability the
five card trick. In:Quisquater JJ, Vandewalle J (eds) EUROCRYPT
’89, LNCS, vol 434. Springer, Heidelberg, pp 208–217, https://doi.
org/10.1007/3-540-46885-4_23

Haga R, Hayashi Y, Miyahara D et al (2022a) Card-minimal proto-
cols for three-input functions with standard playing cards. In:
AFRICACRYPT 2022, LNCS, vol 13503. Springer, Cham, pp
448–468, https://doi.org/10.1007/978-3-031-17433-9_19

Haga R, Toyoda K, Shinoda Y et al (2022b) Card-based secure sorting
protocol. In: Cheng C, Akiyama M (eds) IWSEC 2022, LNCS,
vol 13504. Springer, Cham, pp 224–240, https://doi.org/10.1007/
978-3-031-15255-9_12

Hanaoka G (2017) Towards user-friendly cryptography. In: Phan RCW,
Yung M (eds) Mycrypt 2016, LNCS, vol 10311. Springer, Cham,
pp 481–484, https://doi.org/10.1007/978-3-319-61273-7_24

Heather J, Schneider S, Teague V (2014) Cryptographic protocols with
everyday objects. Formal Aspects Comput 26(1):37–62. https://
doi.org/10.1007/s00165-013-0274-7

Ishikawa R, Chida E, Mizuki T (2015) Efficient card-based protocols
for generating a hidden random permutation without fixed points.
In: Calude CS, Dinneen MJ (eds) UCNC 2015, LNCS, vol 9252.
Springer, Cham, pp 215–226, https://doi.org/10.1007/978-3-319-
21819-9_16

Isuzugawa R, Miyahara D, Mizuki T (2021) Zero-knowledge proof
protocol for Cryptarithmetic using dihedral cards. In: Kostitsyna I,
Orponen P (eds) UCNC 2021, LNCS, vol 12984. Springer, Cham,
pp 51–67, https://doi.org/10.1007/978-3-030-87993-8_4

Kastner J, Koch A, Walzer S et al (2017a) The minimum number of
cards in practical card-based protocols. In: Takagi T, Peyrin T (eds)
ASIACRYPT 2017, LNCS, vol 10626. Springer, Heidelberg, pp
126–155, https://doi.org/10.1007/978-3-319-70700-6_5

123

x : Bool x : Int

0 0
1 1

0

7

？

7

？

7

？

7

？

7

？

1

7

？

7

？

7

？

7

？

7

？

7

？

7

？
x

x : Int f(x): Bool
0 f(0)
1 f(1)
2 f(2)
3 f(3)
4 f(4)

x

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？

7

？
f(0) f(1) f(2) f(3) f(4)

追加カード 枚2n2 + 6n + 2

結果 (Natural Computing ’25)
カードベースガーブルド回路の拡張

34

UCNC’23 で提案したカードベースガーブルド回路に対し，以下の２つの自然な拡張を行った

(1)多入力ゲートへの対応

２入力ゲートだけでなく，任意の入力個数のゲートに対応する汎用的構成を与えた

 入力ゲートは 枚のカードで実現可能

(2)算術ゲートへの対応

論理ゲートだけでなく，加算ゲートなどの算術演算に対応

Free-XOR 手法を一般化することで Free-AND が可能であることを示した

• 応用：対称ブール関数を計算するカードベースプロトコル

k 2k+1

 shuffle1

7

？

7

？

7

？

7

？

7

？
x1

7

？

7

？
x2

⋯

7

？

7

？
xn

⋯

追加カード

7

？

7

？

g(
n

∑
j=1

xj)
Processed

2n2 + 6n + 2 cards

今後の課題

35

• Garbled circuit の他の最適化手法はカードベース暗号で表現できる？

• GRR3, GRR2, fleXOR, half gates, garbled gadgets, three-halves garbling, one-hot garbling …

• カードベースガーブルド回路における garbled AND ゲートのサイズの下限は？

• 対称ブール関数プロトコルは効率化できる？

• 現在のカードベースプロトコル：カード枚数

• 一方で，対称ブール関数を評価する回路の複雑性は

• ビット列のソート：回路サイズ [LSX19]

• ソート列を使ってLUT：回路サイズ

O(n2)
Ω(n)

Ω(n)
O(n)

[LSX19] W. Lin, E. Shi, and T. Xie. Can We Overcome the nlogn Barrier for Oblivious Sorting? SODA 2019.

